Patterns of Learning Object Reuse in the Connexions Repository
ERIC Educational Resources Information Center
Duncan, S. M.
2009-01-01
Since the term "learning object" was first published, there has been either an explicit or implicit expectation of reuse. There has also been a lot of speculation about why learning objects are, or are not, reused. This study quantitatively examined the actual amount and type of learning object use, to include reuse, modification, and translation,…
Participative Knowledge Production of Learning Objects for E-Books.
ERIC Educational Resources Information Center
Dodero, Juan Manuel; Aedo, Ignacio; Diaz, Paloma
2002-01-01
Defines a learning object as any digital resource that can be reused to support learning and thus considers electronic books as learning objects. Highlights include knowledge management; participative knowledge production, i.e. authoring electronic books by a distributed group of authors; participative knowledge production architecture; and…
Writing objectives and evaluating learning in the affective domain.
Maier-Lorentz, M M
1999-01-01
Staff educators recognize the importance of affective competency for effective nursing practice. Inservice programs must include affective learning with objectives stated in measurable terms. Staff educators often express frustration in developing affective objectives and evaluating the learning outcome because attitudes and feelings are usually inferred from observations. This article presents affective learning objectives for a gerontological nursing inservice program and a rating scale that measures attitudes to evaluate the learning outcome.
Smith, Jay; Laskowski, Edward R; Newcomer-Aney, Karen L; Thompson, Jeffrey M; Schaefer, Michael P; Morfe, Erasmus G
2005-04-01
To develop and implement formal learning objectives during a physical medicine and rehabilitation sports medicine rotation and characterize resident experiences with the objectives over a 16-mo period. Prospective, including learning objective development, implementation, and postrotation survey. A total of 69 learning objectives were developed by physical medicine and rehabilitation staff physician consensus, including 39 core objectives. Eighteen residents completed 4-wk sports medicine rotations from January 2003 through April 2004. Residents completed an average of 31 total objectives (45%; range, 3-52), of which 24 (62%; range, 3-35) were core. Residents completed the highest percentage of knee (60%), shoulder (57%), and ankle-foot (57%) objectives and reported that objectives related to these areas were most effective to facilitate learning. In general, residents reported that objective content was good and that the objectives delineated important concepts to learn during the rotation. Seventeen of 18 residents indicated that the objectives should be permanently implemented into the sports rotation and that similar objectives should be developed for other rotations. Based on our experience and the recommendations of residents, the average resident should be able to complete approximately 30 objectives during a typical 4-wk rotation. Successful implementation of specific, consensus-derived learning objectives is possible within the context of a busy clinical practice. Our initial physician staff and resident experience with the objectives suggests that this model may be useful as a supplementary educational tool in physical medicine and rehabilitation residency programs.
Building Communities for the Exchange of Learning Objects: Theoretical Foundations and Requirements
ERIC Educational Resources Information Center
Koper, Rob; Pannekeet, Kees; Hendriks, Maaike; Hummel, Hans
2004-01-01
In order to reduce overall costs of developing high-quality digital courses (including both the content, and the learning and teaching activities), the exchange of learning objects has been recognized as a promising solution. This article makes an inventory of the issues involved in the exchange of learning objects within a community. It explores…
FILILAB: Creation and Use of a Learning Object Repository for EFL
ERIC Educational Resources Information Center
Litzler, Mary Frances; Garcia Laborda, Jesus; Halbach, Ana
2012-01-01
Background: Students at the Universidad de Alcala need batteries of learning objects and exercises. Although student textbooks tend to include a wide range of additional exercises, students in advanced linguistics and language courses require learning objects to obtain additional practice. Online repositories offer excellent opportunities for…
ERIC Educational Resources Information Center
Chiu, Thomas K. F.; Churchill, Daniel
2016-01-01
Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Div. of Elementary Education.
The specific educational objectives or basic learning skills are listed for the Virginia elementary school grades. Minimum skills are listed in reading, communications, and mathematics. Terminal objectives for reading include skills in word identification or decoding, comprehension, and study skills. Communication skills include listening,…
Khandoobhai, Anand; Leadon, Kim
2012-01-01
Objective. To determine whether a 2-year continuing professional development (CPD) training program improved first-year (P1) and second-year (P2) pharmacy students’ ability to write SMART (specific, measurable, achievable, relevant, and timed) learning objectives. Design. First-year students completed live or online CPD training, including creating portfolios and writing SMART objectives prior to their summer introductory pharmacy practice experience (IPPE). In year 2, P1 and P2 students were included. SMART learning objectives were graded and analyzed. Assessment. On several objectives, the 2011 P1 students (n = 130) scored higher than did the P2 cohort (n = 105). In 2011, P2 students outscored their own performance in 2010. In 2011, P1 students who had been trained in online modules performed the same as did live-session trainees with respect to SMART objectives. Conclusion. With focused online or live training, students are capable of incorporating principles of CPD by writing SMART learning objectives. PMID:22611277
It's all connected: Pathways in visual object recognition and early noun learning.
Smith, Linda B
2013-11-01
A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Diesel Equipment Department. Student Learning Guide.
ERIC Educational Resources Information Center
Palm Beach County Board of Public Instruction, West Palm Beach, FL.
Eleven student learning guides are provided for the duty entitled "completing core curriculum" of the diesel equipment program. Each learning guide concerns one of the tasks that comprise the duty. Introductory materials for each guide include the purpose and performance and enabling objectives. For each enabling objective, these materials are…
Learning Objects, Repositories, Sharing and Reusability
ERIC Educational Resources Information Center
Koppi, Tony; Bogle, Lisa; Bogle, Mike
2005-01-01
The online Learning Resource Catalogue (LRC) Project has been part of an international consortium for several years and currently includes 25 institutions worldwide. The LRC Project has evolved for several pragmatic reasons into an academic network whereby members can identify and share reusable learning objects as well as collaborate in a number…
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
NASA Astrophysics Data System (ADS)
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Adaptive Units of Learning and Educational Videogames
ERIC Educational Resources Information Center
Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar
2007-01-01
In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…
Development of learning objectives for neurology in a veterinary curriculum: part I: undergraduates.
Lin, Yu-Wei; Volk, Holger A; Penderis, Jacques; Tipold, Andrea; Ehlers, Jan P
2015-01-13
With an increasing caseload of veterinary neurology patients in first opinion practice, there is a requirement to establish relevant learning objectives for veterinary neurology encompassing knowledge, skills and attitudes for veterinary undergraduate students in Europe. With help of experts in veterinary neurology from the European College of Veterinary Neurology (ECVN) and the European Society of Veterinary Neurology (ESVN) a survey of veterinary neurologic learning objectives using a modified Delphi method was conducted. The first phase comprised the development of a draft job description and learning objectives by a working group established by the ECVN. In the second phase, a quantitative questionnaire (multiple choice, Likert scale and free text) covering 140 learning objectives and subdivided into 8 categories was sent to 341 ESVN and ECVN members and a return rate of 62% (n = 213/341) was achieved. Of these 140 learning objectives ECVN Diplomates and ESVN members considered 42 (30%) objectives as not necessary for standard clinical veterinary neurology training, 94 (67%) were graded to be learned at a beginner level and 4 (3%) at an advanced level. The following objectives were interpreted as the most important day one skills: interpret laboratory tests, perform a neurological examination and establish a neuroanatomical localization. In this survey the three most important diseases of the central nervous system included epilepsy, intervertebral disc disease and inflammatory diseases. The three most important diseases of the peripheral nervous system included polyradiculoneuritis, myasthenia gravis and toxic neuropathies. The results of this study should help to reform the veterinary curriculum regarding neurology and may reduce the phenomenon of "Neurophobia".
[Systemic learning planification for medical students during oncology clinical rotation].
Gonçalves, Anthony; Viens, Patrice; Gilabert, Marine; Turrini, Olivier; Lambaudie, Eric; Prebet, Thomas; Farnault, Bertrand; Eisinger, François; Gorincour, Guillaume; Bertucci, François
2011-12-01
The expected increase in cancer incidence emphasizes the need for specific training in this area, including either family physician or specialized oncologists. In France, the fourth to sixth years of medical teaching include both theoretical classes at the university and daily actual practice at the hospital. Thus, clinical rotations are thought to play a major role in the training of medical students and also largely participate to the choice of the student of his/her final specialty. Pedagogic quality of these rotations is dependent on multiple parameters, including a rigorous planification of the expected learning. Here, we reported a systemic planification of learning activities for medical students during an oncology rotation at the Paoli-Calmettes Institute in Marseille, France, a regional comprehensive cancer center. This planification includes an evaluation of learning requirements, definition of learning objectives, selection of learning methods and choice of methods of assessment of the students' achievement of these objectives as well as the learning activity itself.
Assessment of the core learning objectives curriculum for the urology clerkship.
Rapp, David E; Gong, Edward M; Reynolds, W Stuart; Lucioni, Alvaro; Zagaja, Gregory P
2007-11-01
The traditional approach to the surgical clerkship has limitations, including variability of clinical exposure. To optimize student education we developed and introduced the core learning objectives curriculum, which is designed to allow students freedom to direct their learning and focus on core concepts. We performed a prospective, randomized, controlled study to compare the efficacy of core learning objectives vs traditional curricula through objective and subjective measures. Medical students were randomly assigned to the core learning objectives or traditional curricula during the 2-week urology clerkship. Faculty was blinded to student assignment. Upon rotation completion all students were given a 20-question multiple choice examination covering basic urology concepts. In addition, students completed a questionnaire addressing subjective clerkship satisfaction, comprising 15 questions. Between June 2005 and January 2007, 10 core learning objectives students and 10 traditional students completed the urology clerkship. The average +/- SEM multiple choice examination score was 12.1 +/- 0.87 and 9.8 +/- 0.59 for students assigned to the core learning objectives and traditional curricula, respectively (p <0.05). Subjective scores were higher in the core learning objectives cohort, although this result did not attain statistical significance (124.9 +/- 3.72 vs 114.3 +/- 4.96, p = 0.1). Core learning objectives students reported higher satisfaction in all 15 assessed subjective end points. Our experience suggests that the core learning objectives model may be an effective educational tool to help students achieve a broad and directed exposure to the core urological concepts.
Abstract numerical discrimination learning in rats.
Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko
2016-06-01
In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.
Impact of feature saliency on visual category learning.
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.
Impact of feature saliency on visual category learning
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies. PMID:25954220
Family Life and Worker Productivity. Learning Modules.
ERIC Educational Resources Information Center
Indiana Univ., Bloomington. Vocational Education Services.
This manual includes eight learning modules about family life and worker productivity. Each module begins with the rationale and a list of objectives. Each objective is then taken up in turn, with an introductory statement and classroom activities given for each objective. Main ideas are presented in boldface type, and correlated with the learning…
Trelease, Robert B; Nieder, Gary L
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.
ERIC Educational Resources Information Center
Schreiber, Deborah A.; Berge, Zane L.
This book contains 19 papers examining ways in which innovative organizations are using distance learning technology to maximize learning and meet business objectives. The following papers are included: "Preface" (Deborah A. Schreiber, Zane L. Berge); "Organizational Technology and Its Impact on Distance Training" (Deborah A.…
Incorporating Mobile Learning into Athletic Training Education
ERIC Educational Resources Information Center
Davie, Emily
2009-01-01
Objective: To introduce and present techniques for incorporating mobile learning into athletic training education. Background: The matriculation of digital natives into college has stimulated the identification and development of new teaching and learning strategies. Electronic learning (e-learning), including the use of learning management…
KBGIS-II: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj
1986-01-01
The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.
Walpole, Sarah C; Mortimer, Frances; Inman, Alice; Braithwaite, Isobel; Thompson, Trevor
2015-12-24
This study aimed to engage wide-ranging stakeholders and develop consensus learning objectives for undergraduate and postgraduate medical education. A UK-wide consultation garnered opinions of healthcare students, healthcare educators and other key stakeholders about environmental sustainability in medical education. The policy Delphi approach informed this study. Draft learning objectives were revised iteratively during three rounds of consultation: online questionnaire or telephone interview, face-to-face seminar and email consultation. Twelve draft learning objectives were developed based on review of relevant literature. In round one, 64 participants' median ratings of the learning objectives were 3.5 for relevance and 3.0 for feasibility on a Likert scale of one to four. Revisions were proposed, e.g. to highlight relevance to public health and professionalism. Thirty three participants attended round two. Conflicting opinions were explored. Added content areas included health benefits of sustainable behaviours. To enhance usability, restructuring provided three overarching learning objectives, each with subsidiary points. All participants from rounds one and two were contacted in round three, and no further edits were required. This is the first attempt to define consensus learning objectives for medical students about environmental sustainability. Allowing a wide range of stakeholders to comment on multiple iterations of the document stimulated their engagement with the issues raised and ownership of the resulting learning objectives.
Elementary Physical Education and Math Skill Development
ERIC Educational Resources Information Center
DeFrancesco, Charmaine; Casas, Betty
2004-01-01
Physical education programs are essential to holistic development of children, because learning occurs within several domains. In addition to addressing the psychomotor objectives related to physical development, many physical education curriculums include learning objectives geared toward facilitating the cognitive development of children. One…
Challenges in Developing XML-Based Learning Repositories
NASA Astrophysics Data System (ADS)
Auksztol, Jerzy; Przechlewski, Tomasz
There is no doubt that modular design has many advantages, including the most important ones: reusability and cost-effectiveness. In an e-leaming community parlance the modules are determined as Learning Objects (LOs) [11]. An increasing amount of learning objects have been created and published online, several standards has been established and multiple repositories developed for them. For example Cisco Systems, Inc., "recognizes a need to move from creating and delivering large inflexible training courses, to database-driven objects that can be reused, searched, and modified independent of their delivery media" [6]. The learning object paradigm of education resources authoring is promoted mainly to reduce the cost of the content development and to increase its quality. A frequently used metaphor of Learning Objects paradigm compares them to Lego Logs or objects in Object-Oriented program design [25]. However a metaphor is only an abstract idea, which should be turned to something more concrete to be usable. The problem is that many papers on LOs end up solely in metaphors. In our opinion Lego or OO metaphors are gross oversimplificatation of the problem as there is much easier to develop Lego set or design objects in OO program than develop truly interoperable, context-free learning content1.
NASA Astrophysics Data System (ADS)
Abualrob, Marwan M. A.; Gnanamalar Sarojini Daniel, Esther
2013-10-01
This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second, using this list, ninth grade science textbooks and curriculum document contents were analyzed. Third, based on this content analysis, a possible list of 71 learning objectives for the integration of STS elements was prepared. This list of learning objectives was refined by using a two-round Delphi technique. The Delphi study was used to rate and to determine the consensus regarding which items (i.e. learning objectives for STS in the ninth grade science textbooks in Palestine) are to be accepted for inclusion. The results revealed that of the initial 71 objectives in round one, 59 objectives within round two had a mean score of 5.683 or higher, which indicated that the learning objectives could be included in the development of STS modules for ninth grade science in Palestine.
Learning object correspondences with the observed transport shape measure.
Pitiot, Alain; Delingette, Hervé; Toga, Arthur W; Thompson, Paul M
2003-07-01
We propose a learning method which introduces explicit knowledge to the object correspondence problem. Our approach uses an a priori learning set to compute a dense correspondence field between two objects, where the characteristics of the field bear close resemblance to those in the learning set. We introduce a new local shape measure we call the "observed transport measure", whose properties make it particularly amenable to the matching problem. From the values of our measure obtained at every point of the objects to be matched, we compute a distance matrix which embeds the correspondence problem in a highly expressive and redundant construct and facilitates its manipulation. We present two learning strategies that rely on the distance matrix and discuss their applications to the matching of a variety of 1-D, 2-D and 3-D objects, including the corpus callosum and ventricular surfaces.
NASA Astrophysics Data System (ADS)
Baker, D.
2006-12-01
As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.
Building High Performance Learning: A Focus on Career Results and the Bottom Line.
ERIC Educational Resources Information Center
Ingram, Hadyn; Sandelands, Eric; Teare, Richard
2001-01-01
Discusses how action learning can be targeted to business objectives and how electronically enabled action learning can increase productivity. Provides examples of personal learning aligned with organizational goals, including a certificate of management studies course, prior learning experiences, and an advanced diploma in virtual learning. (SK)
Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins
Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.
2006-01-01
The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.
Statistical Mechanics of Node-perturbation Learning with Noisy Baseline
NASA Astrophysics Data System (ADS)
Hara, Kazuyuki; Katahira, Kentaro; Okada, Masato
2017-02-01
Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.
Allen, Edwin B; Walls, Richard T; Reilly, Frank D
2008-02-01
This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.
Shepard, Michelle E; Sastre, Elizabeth A; Davidson, Mario A; Fleming, Amy E
2012-01-01
Individualized Learning Plans (ILPs) are an effective tool for promoting self-directed learning among residents. However, no literature details ILP use among medical students. Fifty fourth-year sub-interns in pediatrics and internal medicine created ILPs, including a self-assessment of strengths and weaknesses based on ACGME core competencies and the setting of learning objectives. During weekly follow-up meetings with faculty mentors and peers, students discussed challenges and revised goals. Upon completion of the rotation, students completed a survey of Likert-scale questions addressing satisfaction with and perceived utility of ILP components. Students most often self-identified strengths in the areas of Professionalism and Interpersonal and Communication Skills and weaknesses in Patient Care and Systems-Based Practice. Eighty-two percent set at least one learning objective in an identified area of weakness. Students expressed high confidence in their abilities to create achievable learning objectives and to generate strategies to meet those objectives. Students agreed that discussions during group meetings were meaningful, and they identified the setting learning objectives and weekly meetings as the most important elements of the exercise. Fourth-year sub-interns reported that ILPs helped them to accomplish rotation goals, with the setting of learning objectives and weekly discussions being the most useful elements.
Mathematics in Baseball. Topical Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Stitt, Mary; Ostrom, Nat
The objectives of this module include: (1) improving general arithmetic skills including whole numbers, fractions, and decimal fractions; (2) learning to compute averages; (3) strengthening knowledge of percent; (4) learning to locate needed information or statistical data; (5) reviewing or learning the use of the Pythagorean Theorem; (6)…
Designing Web-based telemedicine training for military health care providers.
Bangert, D; Doktor, R; Johnson, E
2001-01-01
The purpose of the study was to ascertain those learning objectives that will initiate increased use of telemedicine by military health care providers. Telemedicine is increasingly moving to the center of the health care industry's service offerings. As this migration occurs, health professionals will require training for proper and effective change management. The United States Department of Defense (DoD) is embracing the use of telemedicine and wishes to use Web-based training as a tool for effective change management to increase use. This article summarizes the findings of an educational needs assessment of military health care providers for the creation of the DoD Web-based telemedicine training curriculum. Forty-eight health care professionals were interviewed and surveyed to capture their opinions on what learning objectives a telemedicine training curriculum should include. Twenty learning objectives were found to be needed in a telemedicine training program. These 20 learning objectives were grouped into four learning clusters that formed the structure for the training program. In order of importance, the learning clusters were clinical, technical, organizational, and introduction to telemedicine. From these clusters, five Web-based modules were created, with two addressing clinical learning needs and one for each of the other learning objective clusters.
Experiences with Reusable E-Learning Objects: From Theory to Practice.
ERIC Educational Resources Information Center
Muzio, Jeanette A.; Heins, Tanya; Mundell, Roger
2002-01-01
Explains reusable electronic learning objects (ELOs) that are stored in a database and discusses the practical application of creating and reusing ELOs at Royal Roads University (Canada). Highlights include ELOs and the instructional design of online courses; and examples of using templates to develop interactive ELOs. (Author/LRW)
Liu, Chunming; Xu, Xin; Hu, Dewen
2013-04-29
Reinforcement learning is a powerful mechanism for enabling agents to learn in an unknown environment, and most reinforcement learning algorithms aim to maximize some numerical value, which represents only one long-term objective. However, multiple long-term objectives are exhibited in many real-world decision and control problems; therefore, recently, there has been growing interest in solving multiobjective reinforcement learning (MORL) problems with multiple conflicting objectives. The aim of this paper is to present a comprehensive overview of MORL. In this paper, the basic architecture, research topics, and naive solutions of MORL are introduced at first. Then, several representative MORL approaches and some important directions of recent research are reviewed. The relationships between MORL and other related research are also discussed, which include multiobjective optimization, hierarchical reinforcement learning, and multi-agent reinforcement learning. Finally, research challenges and open problems of MORL techniques are highlighted.
ERIC Educational Resources Information Center
Anderson, Elaine J.; And Others
Investigated was the effect of systematically combined high and low level cognitive objectives upon the acquisition of science learning. An instructional unit based on a Biological Sciences Curriculum Study (BSCS) Inquiry Slide Set (structure and function, control of blood sugar, a homeostatic mechanism) was chosen because it included stimuli for…
ERIC Educational Resources Information Center
Georgantaki, Stavroula C.; Retalis, Symeon D.
2007-01-01
"Object-Oriented Programming" subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and…
Equations, Functions, Critical Aspects and Mathematical Communication
ERIC Educational Resources Information Center
Olteanu, Constanta; Olteanu, Lucian
2012-01-01
The purpose of this paper is to present the mechanism for effective communication when the mathematical objects of learning are equations and functions. The presentation is based on data collected while the same object of learning is presented in two classes, and it includes two teachers and 45 students. Among other things, the data consists of…
TU-D-213AB-01: How You Can Be the Speaker and Communicator Everyone Wants You to Be.
Collins, J; Aydogan, B
2012-06-01
Effectiveness of an oral presentation depends on the ability of the speaker to communicate with the audience. An important part of this communication is focusing on two to five key points and emphasizing those points during the presentation. Every aspect of the presentation should be purposeful and directed at facilitating learners' achievement of the objectives. This necessitates that the speaker has carefully developed the objectives and built the presentation around attainment of the objectives. A presentation should be designed to include as much audience participation as possible, no matter the size of the audience. Techniques to encourage audience participation include questioning, brainstorming, small-group activities, role-playing, case-based examples, directed listening, and use of an audience response system. It is first necessary to motivate and gain attention of the learner for learning to take place. This can be accomplished through appropriate use of humor, anecdotes, and quotations. This course will review adult learning principles and effective presentation skills, Learning Objectives: 1. Apply adult learning principles. 2. Demonstrate effective presentations skills. © 2012 American Association of Physicists in Medicine.
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
ERIC Educational Resources Information Center
Washington, Christopher
2015-01-01
Digitally delivered learning shows the promise of enhancing learner motivation and engagement, advancing critical thinking skills, encouraging reflection and knowledge sharing, and improving professional self-efficacy. Digital learning objects take many forms including interactive media, apps and games, video and other e-learning activities and…
OLIVER: an online library of images for veterinary education and research.
McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick
2007-01-01
As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.
The Direction of Web-based Training: A Practitioner's View.
ERIC Educational Resources Information Center
Kilby, Tim
2001-01-01
Web-based training has had achievements and disappointments as online learning has matured. Best practices include user-centered design, knowledge object structures, usability engineering, and formal evaluation. Knowledge management, peer-to-peer learning, and personal learning appliances will continue to alter the online learning landscape. (SK)
Leclair, Laurie W; Dawson, Mary; Howe, Alison; Hale, Sue; Zelman, Eric; Clouser, Ryan; Garrison, Garth; Allen, Gilman
2018-05-01
Interprofessional care teams are the backbone of intensive care units (ICUs) where severity of illness is high and care requires varied skills and experience. Despite this care model, longitudinal educational programmes for such workplace teams rarely include all professions. In this article, we report findings on the initial assessment and evaluation of an ongoing, longitudinal simulation-based curriculum for interprofessional workplace critical care teams. The study had two independent components, quantitative learner assessment and qualitative curricular evaluation. To assess curriculum effectiveness at meeting learning objectives, participant-reported key learning points identified using a self-assessment tool administered immediately following curricular participation were mapped to session learning objectives. To evaluate the curriculum, we conducted a qualitative study using a phenomenology approach involving purposeful sampling of nine curricular participants undergoing recorded semi-structured interviews. Verbatim transcripts were reviewed by two independent readers to derive themes further subdivided into successes and barriers. Learner self-assessment demonstrated that the majority of learners, across all professions, achieved at least one intended learning objective with senior learners more likely to report team-based objectives and junior learners more likely to report knowledge/practice objectives. Successes identified by curricular evaluation included authentic critical care curricular content, safe learning environment, and team comradery from shared experience. Barriers included unfamiliarity with the simulation environment and clinical coverage for curricular participation. This study suggests that a sustainable interprofessional curriculum for workplace ICU critical care teams can achieve the desired educational impact and effectively deliver authentic simulated work experiences if barriers to educational engagement and participation can be overcome.
KBGIS-2: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, T.; Peuquet, D.; Menon, S.; Agarwal, P.
1986-01-01
The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2.
Learning Disabilities and the American Public: A Look at American's Awareness and Knowledge.
ERIC Educational Resources Information Center
Roper Starch Worldwide Inc.
This study examined 1,200 adults' understanding of and attitudes toward learning disabilities, through a telephone survey. Additional objectives included the identification of various information sources and testing of potential messages about learning disabilities. Halfway through each telephone interview, a definition of learning disabilities…
Mechanisms of object recognition: what we have learned from pigeons
Soto, Fabian A.; Wasserman, Edward A.
2014-01-01
Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784
When Love Really Hurts: Dating Violence Curriculum.
ERIC Educational Resources Information Center
Family Crisis Shelter, Williston, ND.
This document presents a curriculum developed for the prevention of violence in teenage relationships. A guide for presenting material in four class periods is included. Student learning objectives are listed and a pre/post test is included. Each of the four objectives is discussed in its own section of the curriculum. Objective I, Dating…
A Model for the Design of Puzzle-Based Games Including Virtual and Physical Objects
ERIC Educational Resources Information Center
Melero, Javier; Hernandez-Leo, Davinia
2014-01-01
Multiple evidences in the Technology-Enhanced Learning domain indicate that Game-Based Learning can lead to positive effects in students' performance and motivation. Educational games can be completely virtual or can combine the use of physical objects or spaces in the real world. However, the potential effectiveness of these approaches…
ERIC Educational Resources Information Center
Yalcinalp, Serpil; Emiroglu, Bulent
2012-01-01
Although many developments have been made in the design and development of learning object repositories (LORs), the efficient use of such systems is still questionable. Without realising the functional use of such systems or considering the involvement of their dynamic users, these systems would probably become obsolete. This study includes both…
Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams
ERIC Educational Resources Information Center
Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde
2013-01-01
This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…
Peden, M E; Okely, A D; Eady, M J; Jones, R A
2018-05-31
The purpose of this systematic review was to investigate professional learning models (length, mode, content) offered as part of objectively measured physical childcare-based interventions. A systematic review of eight electronic databases was conducted to June 2017. Only English, peer-reviewed studies that evaluated childcare-based physical activity interventions, incorporated professional learning and reported objectively measured physical activity were included. Study designs included randomized controlled trails, cluster randomized trials, experimental or pilot studies. The search identified 11 studies. Ten studies objectively measured physical activity using accelerometers; five studies used both accelerometer and direct observation tools and one study measured physical activity using direct observation only. Seven of these studies reported statistically significant intervention effects. Only six studies described all components of professional learning, but only two studies reported specific professional learning outcomes and physical activity outcomes. No patterns were identified between the length, mode and content of professional learning and children's physical activity outcomes in childcare settings. Educators play a critical role in modifying children's levels of physical activity in childcare settings. The findings of this review suggest that professional learning offered as part of a physical activity intervention that potentially impacts on children's physical activity outcomes remains under-reported. © 2018 World Obesity Federation.
Advances in high energy astronomy from space
NASA Technical Reports Server (NTRS)
Giacconi, R.
1972-01-01
Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.
Grossberg, Stephen
2015-09-24
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
English, Nancy; Hendricks, Charlotte M.
1997-01-01
Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…
Whelan, Alexander; Leddy, John J; Mindra, Sean; Matthew Hughes, J D; El-Bialy, Safaa; Ramnanan, Christopher J
2016-01-01
The purpose of this study was to compare student perceptions regarding two, small group learning approaches to compressed (46.5 prosection-based laboratory hours), integrated anatomy education at the University of Ottawa medical program. In the facilitated active learning (FAL) approach, tutors engage students and are expected to enable and balance both active learning and progression through laboratory objectives. In contrast, the emphasized independent learning (EIL) approach stresses elements from the "flipped classroom" educational model: prelaboratory preparation, independent laboratory learning, and limited tutor involvement. Quantitative (Likert-style questions) and qualitative data (independent thematic analysis of open-ended commentary) from a survey of students who had completed the preclerkship curriculum identified strengths from the EIL (promoting student collaboration and communication) and FAL (successful progression through objectives) approaches. However, EIL led to student frustration related to a lack of direction and impaired completion of objectives, whereas active learning opportunities in FAL were highly variable and dependent on tutor teaching style. A "hidden curriculum" was also identified, where students (particularly EIL and clerkship students) commonly compared their compressed anatomy education or their anatomy learning environment with other approaches. Finally, while both groups highly regarded the efficiency of prosection-based learning and expressed value for cadaveric-based learning, student commentary noted that the lack of grade value dedicated to anatomy assessment limited student accountability. This study revealed critical insights into small group learning in compressed anatomy education, including the need to balance student active learning opportunities with appropriate direction and feedback (including assessment). © 2015 American Association of Anatomists.
Vocational Education Distance Learning Delivery System. Final Report.
ERIC Educational Resources Information Center
Hardy, Darcy Walsh
A project was conducted to identify criteria and procedures for using a distance learning delivery system at the University of Texas TeleLearning Center to teach Health Occupations II to high school seniors. Another objective was expanding the current distance learning program for health occupations to include between 15 and 20 school districts.…
Implementation of Project Based Learning in Mechatronic Lab Course at Bandung State Polytechnic
ERIC Educational Resources Information Center
Basjaruddin, Noor Cholis; Rakhman, Edi
2016-01-01
Mechatronics is a multidisciplinary that includes a combination of mechanics, electronics, control systems, and computer science. The main objective of mechatronics learning is to establish a comprehensive mindset in the development of mechatronic systems. Project Based Learning (PBL) is an appropriate method for use in the learning process of…
LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval
NASA Astrophysics Data System (ADS)
Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan
2013-01-01
As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.
Half Lives for ``Irradiated'' Nonscience Majors
NASA Astrophysics Data System (ADS)
Geise, Kathleen; Hallam, Peter; Rattray, Rebecca; Stencel, Robert; Wolfe, Tristan
2014-03-01
We launched new hands-on radiation labs to supplement lecture material for undergraduate, non-science majors at the University of Denver to reinforce learning objectives during winter quarter 2014 and in order to help educate the public about nuclear energy decisions. Our learning objectives included: 1. differentiate between particle radiation and electro-magnetic radiation, 2. understand that particle radiation comes in alpha, beta and gamma types, 3. atomic and nuclear structure, 4. decay and half-life, 5. understand safe vs. unsafe doses and issues surrounding nuclear waste disposal. We used prelab surveys, prelab assessments, laboratory write-ups and quizzes to measure success with the learning objectives.
Toward Self-Referential Autonomous Learning of Object and Situation Models.
Damerow, Florian; Knoblauch, Andreas; Körner, Ursula; Eggert, Julian; Körner, Edgar
2016-01-01
Most current approaches to scene understanding lack the capability to adapt object and situation models to behavioral needs not anticipated by the human system designer. Here, we give a detailed description of a system architecture for self-referential autonomous learning which enables the refinement of object and situation models during operation in order to optimize behavior. This includes structural learning of hierarchical models for situations and behaviors that is triggered by a mismatch between expected and actual action outcome. Besides proposing architectural concepts, we also describe a first implementation of our system within a simulated traffic scenario to demonstrate the feasibility of our approach.
ERIC Educational Resources Information Center
Makkonen, Reino; Tejwani, Jaclyn; Rodriguez, Fernando, Jr.
2015-01-01
Approximately 30 states are now adopting teacher evaluation policies that include student learning objectives (SLOs), which are classroom-specific student test growth targets set by teachers and approved (and scored) by principals. Today state and district leaders are trying to determine the appropriate level of guidance and oversight to provide…
ERIC Educational Resources Information Center
Sahin, Sami
2010-01-01
The purpose of this study was to develop a questionnaire to measure student teachers' perception of digital learning objects. The participants included 308 voluntary senior students attending courses in a college of education of a public university in Turkey. The items were extracted to their related factors by the principal axis factoring method.…
ERIC Educational Resources Information Center
Christman-Rothlein, Liz; Meinbach, Anita M.
1981-01-01
Information is given on how to put together a learning center. Discusses information and activity packets for a complete learning center on tornadoes including objectives, directions, materials, photographs of physical arrangements, and posttest. (DC)
Cao, Yongqiang; Grossberg, Stephen; Markowitz, Jeffrey
2011-12-01
All primates depend for their survival on being able to rapidly learn about and recognize objects. Objects may be visually detected at multiple positions, sizes, and viewpoints. How does the brain rapidly learn and recognize objects while scanning a scene with eye movements, without causing a combinatorial explosion in the number of cells that are needed? How does the brain avoid the problem of erroneously classifying parts of different objects together at the same or different positions in a visual scene? In monkeys and humans, a key area for such invariant object category learning and recognition is the inferotemporal cortex (IT). A neural model is proposed to explain how spatial and object attention coordinate the ability of IT to learn invariant category representations of objects that are seen at multiple positions, sizes, and viewpoints. The model clarifies how interactions within a hierarchy of processing stages in the visual brain accomplish this. These stages include the retina, lateral geniculate nucleus, and cortical areas V1, V2, V4, and IT in the brain's What cortical stream, as they interact with spatial attention processes within the parietal cortex of the Where cortical stream. The model builds upon the ARTSCAN model, which proposed how view-invariant object representations are generated. The positional ARTSCAN (pARTSCAN) model proposes how the following additional processes in the What cortical processing stream also enable position-invariant object representations to be learned: IT cells with persistent activity, and a combination of normalizing object category competition and a view-to-object learning law which together ensure that unambiguous views have a larger effect on object recognition than ambiguous views. The model explains how such invariant learning can be fooled when monkeys, or other primates, are presented with an object that is swapped with another object during eye movements to foveate the original object. The swapping procedure is predicted to prevent the reset of spatial attention, which would otherwise keep the representations of multiple objects from being combined by learning. Li and DiCarlo (2008) have presented neurophysiological data from monkeys showing how unsupervised natural experience in a target swapping experiment can rapidly alter object representations in IT. The model quantitatively simulates the swapping data by showing how the swapping procedure fools the spatial attention mechanism. More generally, the model provides a unifying framework, and testable predictions in both monkeys and humans, for understanding object learning data using neurophysiological methods in monkeys, and spatial attention, episodic learning, and memory retrieval data using functional imaging methods in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that includes the following: (a) Systematic analysis of the jobs to be performed. (b) Learning... and implementation based on the learning objectives. (d) Evaluation of trainee mastery of the... personnel in the job setting. ...
Hands in the air: using ungrounded iconic gestures to teach children conservation of quantity.
Ping, Raedy M; Goldin-Meadow, Susan
2008-09-01
Including gesture in instruction facilitates learning. Why? One possibility is that gesture points out objects in the immediate context and thus helps ground the words learners hear in the world they see. Previous work on gesture's role in instruction has used gestures that either point to or trace paths on objects, thus providing support for this hypothesis. The experiments described here investigated the possibility that gesture helps children learn even when it is not produced in relation to an object but is instead produced "in the air." Children were given instruction in Piagetian conservation problems with or without gesture and with or without concrete objects. The results indicate that children given instruction with speech and gesture learned more about conservation than children given instruction with speech alone, whether or not objects were present during instruction. Gesture in instruction can thus help learners learn even when those gestures do not direct attention to visible objects, suggesting that gesture can do more for learners than simply ground arbitrary, symbolic language in the physical, observable world.
An Introduction to Research and the Computer: A Self-Instructional Package.
ERIC Educational Resources Information Center
Vasu, Ellen Storey; Palmer, Richard I.
This self-instructional package includes learning objectives, definitions, exercises, and feedback for learning some basic concepts and skills involved in using computers for analyzing data and understanding basic research terminology. Learning activities are divided into four sections: research and research hypotheses; variables, cases, and…
Filling in the Gaps of Clerkship with a Comprehensive Clinical Skills Curriculum
ERIC Educational Resources Information Center
Veale, Pamela; Carson, Julie; Coderre, Sylvain; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin
2014-01-01
Although the clinical clerkship model is based upon sound pedagogy, including theories of social learning and situated learning, studies evaluating clinical performance of residents suggests that this model may not fully meet the learning needs of students. Here our objective was to design a curriculum to bridge the learning gaps of the existing…
ERIC Educational Resources Information Center
Geri, Nitza; Blau, Ina; Caspi, Avner; Kalman, Yoram M.; Silber-Varod, Vered; Eshet-Alkalai, Yoram
2015-01-01
The seventh issue of the "Interdisciplinary Journal of e-Skills and Lifelong Learning" (IJELL--formerly "Interdisciplinary Journal of E-Learning and Learning Objects"--IJELLO) special series includes a selection of best papers presented at the 10th Chais Conference for the Study of Innovation and Learning Technologies: Learning…
Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques
NASA Astrophysics Data System (ADS)
Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel
Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.
CD-ROM Integration Peaks Student Interest in Inquiry.
ERIC Educational Resources Information Center
O'Bannon, Blanche
1997-01-01
Discussion of learning processes examines past educational practices and considers how CD-ROM technology can impact teaching and learning. A lesson plan for elementary school science that uses a CD-ROM encyclopedia is presented that includes instructional goals, performance objectives, teaching and learning activities, and assessment methods.…
Increasing Student Learning through Multimedia Projects.
ERIC Educational Resources Information Center
Simkins, Michael; Cole, Karen; Tavalin, Fern; Means, Barbara
This book discusses enhancing student achievement through project-based learning with multimedia. Chapter 1 describes project-based multimedia learning. Chapter 2 presents a multimedia primer, including the five basic types of media objects (i.e., images, text, sound, motion, and interactivity). Chapter 3 addresses making a real-world connection,…
Online Self-Organizing Social Systems: The Decentralized Future of Online Learning.
ERIC Educational Resources Information Center
Wiley, David A.; Edwards, Erin K.
2002-01-01
Describes an online self-organizing social system (OSOSS) which allows large numbers of individuals to self-organize in a highly decentralized manner to solve problems and accomplish other goals. Topics include scalability and bandwidth in online learning; self-organization; learning objects; instructional design underlying OSOSS, including…
Characterizing Student Perceptions of and Buy-In toward Common Formative Assessment Techniques
ERIC Educational Resources Information Center
Brazeal, Kathleen R.; Brown, Tanya L.; Couch, Brian A.
2016-01-01
Formative assessments (FAs) can occur as preclass assignments, in-class activities, or postclass homework. FAs aim to promote student learning by accomplishing key objectives, including clarifying learning expectations, revealing student thinking to the instructor, providing feedback to the student that promotes learning, facilitating peer…
ERIC Educational Resources Information Center
Moller, Leslie; Prestera, Gustavo E.; Harvey, Douglas; Downs-Keller, Margaret; McCausland, Jo-Ann
2002-01-01
Discusses organic architecture and suggests that learning environments should be designed and constructed using an organic approach, so that learning is not viewed as a distinct human activity but incorporated into everyday performance. Highlights include an organic knowledge-building model; information objects; scaffolding; discourse action…
Interviewing Objects: Including Educational Technologies as Qualitative Research Participants
ERIC Educational Resources Information Center
Adams, Catherine A.; Thompson, Terrie Lynn
2011-01-01
This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…
Social pediatrics: weaving horizontal and vertical threads through pediatric residency.
van den Heuvel, Meta; Martimianakis, Maria Athina Tina; Levy, Rebecca; Atkinson, Adelle; Ford-Jones, Elizabeth; Shouldice, Michelle
2017-01-13
Social pediatrics teaches pediatric residents how to understand disease within their patients' social, environmental and political contexts. It's an essential component of pediatric residency training; however there is very little literature that addresses how such a broad-ranging topic can be taught effectively. The aim of this study was to determine and characterize social pediatric education in our pediatric residency training in order to identify strengths and gaps. A social pediatrics curriculum map was developed, attending to 3 different dimensions: (1) the intended curriculum as prescribed by the Objectives of Training for Pediatrics of the Royal College of Physicians and Surgeons of Canada (RCPSC), (2) the formal curriculum defined by rotation-specific learning objectives, and (3) the informal/hidden curriculum as reflected in resident and teacher experiences and perceptions. Forty-one social pediatric learning objectives were extracted from the RCPSC Objectives of Training for Pediatrics, most were listed in the Medical Expert (51%) and Health Advocate competencies (24%). Almost all RCPSC social pediatric learning objectives were identified in more than one rotation and/or seminar. Adolescent Medicine (29.2%), Pediatric Ambulatory Medicine (26.2%) and Developmental Pediatrics (25%) listed the highest proportion of social pediatric learning objectives. Four (10%) RCPSC social pediatric objectives were not explicitly named within learning objectives of the formal curriculum. The informal curriculum revealed that both teachers and residents viewed social pediatrics as integral to all clinical encounters. Perceived barriers to teaching and learning of social pediatrics included time constraints, particularly in a tertiary care environment, and the value of social pediatrics relative to medical expert knowledge. Despite the lack of an explicit thematic presentation of social pediatric learning objectives by the Royal College and residency training program, social pediatric topics are integrated, taught and learned throughout the entire curriculum. Special attention needs to be given to the hidden curriculum and system barriers that may impede social pediatric education.
Expectancy violations promote learning in young children
Stahl, Aimee E.; Feigenson, Lisa
2018-01-01
Children, including infants, have expectations about the world around them, and produce reliable responses when these expectations are violated. However, little is known about how such expectancy violations affect subsequent cognition. Here we tested the hypothesis that violations of expectation enhance children’s learning. In four experiments we compared 3- to 6-year-old children’s ability to learn novel words in situations that defied versus accorded with their core knowledge of object behavior. In Experiments 1 and 2 we taught children novel words following one of two types of events. One event violated expectations about the spatiotemporal or featural properties of objects (e.g., an object appeared to magically change locations). The other event was almost identical, but did not violate expectations (e.g., an object was visibly moved from one location to another). In both experiments we found that children robustly learned when taught after the surprising event, but not following the expected event. In Experiment 3 we ruled out two alternative explanations for our results. Finally, in Experiment 4, we asked whether surprise affects children’s learning in a targeted or a diffuse way. We found that surprise only enhanced children’s learning about the entity that had behaved surprisingly, and not about unrelated objects. Together, these experiments show that core knowledge – and violations of expectations generated by core knowledge – shapes new learning. PMID:28254617
Thellesen, Line; Hedegaard, Morten; Bergholt, Thomas; Colov, Nina P; Hoegh, Stinne; Sorensen, Jette L
2015-08-01
To define learning objectives for a national cardiotocography (CTG) education program based on expert consensus. A three-round Delphi survey. One midwife and one obstetrician from each maternity unit in Denmark were appointed based on CTG teaching experience and clinical obstetric experience. Following national and international guidelines, the research group determined six topics as important when using CTG: fetal physiology, equipment, indication, interpretation, clinical management, and communication/responsibility. In the first Delphi round, participants listed one to five learning objectives within the predefined topics. Responses were analyzed by a directed approach to content analysis. Phrasing was modified in accordance with Bloom's taxonomy. In the second and third Delphi rounds, participants rated each objective on a five-point relevance scale. Consensus was predefined as objectives with a mean rating value of ≥ 3. A prioritized list of CTG learning objectives. A total of 42 midwives and obstetricians from 21 maternity units were invited to participate, of whom 26 completed all three Delphi rounds, representing 18 maternity units. The final prioritized list included 40 objectives. The highest ranked objectives emphasized CTG interpretation and clinical management. The lowest ranked objectives emphasized fetal physiology. Mean ratings of relevance ranged from 3.15 to 5.00. National consensus on CTG learning objectives was achieved using the Delphi methodology. This was an initial step in developing a valid CTG education program. A prioritized list of objectives will clarify which topics to emphasize in a CTG education program. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
The Convergence of Intelligences
NASA Astrophysics Data System (ADS)
Diederich, Joachim
Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.
The Effectiveness of the Chemistry Problem Based Learning (PBL) via FB among Pre-University Students
ERIC Educational Resources Information Center
Sunar, Mohd Shahir Mohamed; Shaari, Ahmad Jelani
2017-01-01
The impact of social media, such as Facebook in various fields including education is undeniable. The main objective of this study is to examine the effect of the interaction between students' learning styles and learning approaches on their achievements in the chemistry subject using the Problem-Based Learning (PBL) method through Facebook. The…
ERIC Educational Resources Information Center
Turkington, B. A.
This autoinstructional lesson deals with the study of the human body with emphasis on the life process of reproduction. It is a learning activity included in high school biology or health education classes. The behavioral objectives are listed and the equipment and materials needed to help the student gain these objectives are also included in the…
Color Research and Its Application to the Design of Instructional Materials.
ERIC Educational Resources Information Center
Pett, Dennis; Wilson, Trudy
1996-01-01
Reviews color research and considers its implications for the design of instructional materials. Topics include physiological and psychological effects; color and learning, including attention, search tasks, retention and other objective measures, and non-objective measures; color and the cathode ray tube (CRT); and further research needs.…
Characterizing Student Perceptions of and Buy-In toward Common Formative Assessment Techniques
Brazeal, Kathleen R.; Brown, Tanya L.; Couch, Brian A.
2016-01-01
Formative assessments (FAs) can occur as preclass assignments, in-class activities, or postclass homework. FAs aim to promote student learning by accomplishing key objectives, including clarifying learning expectations, revealing student thinking to the instructor, providing feedback to the student that promotes learning, facilitating peer interactions, and activating student ownership of learning. While FAs have gained prominence within the education community, we have limited knowledge regarding student perceptions of these activities. We used a mixed-methods approach to determine whether students recognize and value the role of FAs in their learning and how students perceive course activities to align with five key FA objectives. To address these questions, we administered a midsemester survey in seven introductory biology course sections that were using multiple FA techniques. Overall, responses to both open-ended and closed-ended questions revealed that the majority of students held positive perceptions of FAs and perceived FAs to facilitate their learning in a variety of ways. Students consistently considered FA activities to have accomplished particular objectives, but there was greater variation among FAs in how students perceived the achievement of other objectives. We further discuss potential sources of student resistance and implications of these results for instructor practice. PMID:27909023
Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.
Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash
2015-11-01
In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.
Schlesselman, Lauren; Borrego, Matthew; Mehta, Bella; Drobitch, Robert K.; Smith, Thomas
2015-01-01
Objective. To determine if the service-learning components used at a convenience sample of schools and colleges of pharmacy meet the intent of the 2001 AACP Professional Affairs Committee (PAC) report. Methods. An online questionnaire was used to survey faculty members or staff involved with service-learning education at their school of pharmacy. Questions addressed aspects of service-learning including types of activities used, duration of student involvement with community partners, and association of learning objectives with service-learning activities. Results. The majority (85.3%) of respondents reported their institution used service-learning. Activities reported as part of service-learning ranged from working at health fairs to involvement with pharmacy school recruitment. More than half (64.3%) of service-learning activities involved long-term interactions with one community partner, and 74.1% of respondents indicated there was always an opportunity for student reflection on the service-learning activity. Conclusion. There is increasing though inconsistent application of PAC guidelines regarding service-learning. PMID:26688584
Designing Online Education Courses.
ERIC Educational Resources Information Center
Trentin, Guglielmo
2001-01-01
Focuses on the main elements that characterize online course design. Topics include design constraints; analysis of learning needs; defining objectives; course prerequisites; content structuring; course flexibility; learning strategies; evaluation criteria; course activities; course structure; communication architecture; and design evaluation.…
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
Each technology learning activity in this article includes content description, objectives, required materials, challenge, and evaluation questions. Subjects are designing product packages and communication through advertising. (SK)
Learning Activities: Students and Recycling. [and] Automobile Aerodynamics.
ERIC Educational Resources Information Center
McLaughlin, Charles H., Jr.; Schieber, Rich
1994-01-01
The first learning activity is intended to heighten students' awareness of the need for recycling, reuse, and reduction of materials; the second explores the aerodynamics of automobiles. Both include context, concept, objectives, procedure, and materials needed. (SK)
Advertising Art Work in Action.
ERIC Educational Resources Information Center
Skophammer, Karen
2002-01-01
Presents an activity where students select a social problem or cause and then create a poster to express something about the problem. States that students first learn about the history of posters. Includes learning objectives and an additional activity. (CMK)
Random learning units using WIRIS quizzes in Moodle
NASA Astrophysics Data System (ADS)
Mora, Ángel; Mérida, Enrique; Eixarch, Ramon
2011-09-01
Moodle is an extended learning management system for developing learning units, including mathematically-based subjects. A wide variety of material can be developed in Moodle which contains facilities for forums, questionnaires, lessons, tasks, wikis, glossaries and chats. Therefore, the Moodle platform provides a meeting point for those working in a mathematics course. Mathematics requires special materials and activities: The material must include mathematical objects and the activities included in the virtual course must be able to do mathematical computations. WIRIS is a powerful software for educational environments. It has libraries for calculus, algebra, geometry and much more. In this article, examples showing the use of WIRIS in numerical methods and examples of using a new tool, WIRIS quizzes, are illustrated. By enhancing Moodle with WIRIS, we can add random learning questions to modules. Moodle has a simpler version of this capability, but WIRIS extends the method in which the random material is presented to the students. Random objects can appear in a question, in a variable of a question, in a plot or in the definition of a mathematical object. This article illustrates material prepared for numerical methods using a WIRIS library integrated in WIRIS quizzes. As a result, WIRIS in Moodle can be considered as a global solution for mathematics education.
Learning Capability and Business Performance: A Non-Financial and Financial Assessment
ERIC Educational Resources Information Center
Ma Prieto, Isabel; Revilla, Elena
2006-01-01
Purpose: There has been little research that includes reliable deductions about the positive influence of learning capability on business performance. For this reason, the main objective of the present study is to empirically explore the link between learning capability in organizations and business performance evaluated in both financial and…
A Practical Ontology Query Expansion Algorithm for Semantic-Aware Learning Objects Retrieval
ERIC Educational Resources Information Center
Lee, Ming-Che; Tsai, Kun Hua; Wang, Tzone I.
2008-01-01
Following the rapid development of Internet, particularly web page interaction technology, distant e-learning has become increasingly realistic and popular. To solve the problems associated with sharing and reusing teaching materials in different e-learning systems, several standard formats, including SCORM, IMS, LOM, and AICC, etc., recently have…
A SCORM Compliant Courseware Authoring Tool for Supporting Pervasive Learning
ERIC Educational Resources Information Center
Wang, Te-Hua; Chang, Flora Chia-I
2007-01-01
The sharable content object reference model (SCORM) includes a representation of distance learning contents and a behavior definition of how users should interact with the contents. Generally, SCORMcompliant systems were based on multimedia and Web technologies on PCs. We further build a pervasive learning environment, which allows users to read…
ERIC Educational Resources Information Center
Kunkle, Wanda M.
2010-01-01
Many students experience difficulties learning to program. They find learning to program in the object-oriented paradigm particularly challenging. As a result, computing educators have tried a variety of instructional methods to assist beginning programmers. These include developing approaches geared specifically toward novices and experimenting…
Impact of Service-Learning Experiences in Culinary Arts and Nutrition Science
ERIC Educational Resources Information Center
Daugherty, Jamie B.
2015-01-01
A grant from a regional nonprofit organization for the 2012-2013 academic year facilitated the revision of an existing course learning objective in a Culinary Nutrition lab course--performing effective culinary demonstrations--to include a service-learning experience. This course is a graduation requirement in a research- and science-based…
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.
Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun
2016-01-01
Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.
The Field Trip as a Positive Experience for the Learning Disabled.
ERIC Educational Resources Information Center
Cox, Charles C., III
1993-01-01
Describes a 12-year program in which learning-disabled students visit an ice cream making company in Providence, RI. Provides instructional objectives and procedures for the activity. Includes suggestions for postactivity discussion and student evaluation. (CFR)
ERIC Educational Resources Information Center
Etchison, Cindy; Deal, Walter F., III
1992-01-01
Presents learning activities such as planning and building a sailboat, manufacturing cellular phone cases, and designing and building emergency shelters. Includes the context, the challenge, resources used, objectives, materials needed, and an evaluation. (JOW)
ERIC Educational Resources Information Center
Karns, James M. L.; And Others
1983-01-01
Significant differences were found between the stated objectives of most college level economics textbooks and the instruments included in the instructor's manuals to measure student achievement. (Author/RM)
Online Object Tracking, Learning and Parsing with And-Or Graphs.
Wu, Tianfu; Lu, Yang; Zhu, Song-Chun
2017-12-01
This paper presents a method, called AOGTracker, for simultaneously tracking, learning and parsing (TLP) of unknown objects in video sequences with a hierarchical and compositional And-Or graph (AOG) representation. The TLP method is formulated in the Bayesian framework with a spatial and a temporal dynamic programming (DP) algorithms inferring object bounding boxes on-the-fly. During online learning, the AOG is discriminatively learned using latent SVM [1] to account for appearance (e.g., lighting and partial occlusion) and structural (e.g., different poses and viewpoints) variations of a tracked object, as well as distractors (e.g., similar objects) in background. Three key issues in online inference and learning are addressed: (i) maintaining purity of positive and negative examples collected online, (ii) controling model complexity in latent structure learning, and (iii) identifying critical moments to re-learn the structure of AOG based on its intrackability. The intrackability measures uncertainty of an AOG based on its score maps in a frame. In experiments, our AOGTracker is tested on two popular tracking benchmarks with the same parameter setting: the TB-100/50/CVPR2013 benchmarks , [3] , and the VOT benchmarks [4] -VOT 2013, 2014, 2015 and TIR2015 (thermal imagery tracking). In the former, our AOGTracker outperforms state-of-the-art tracking algorithms including two trackers based on deep convolutional network [5] , [6] . In the latter, our AOGTracker outperforms all other trackers in VOT2013 and is comparable to the state-of-the-art methods in VOT2014, 2015 and TIR2015.
Enhancing Motivation for Learning and Work.
ERIC Educational Resources Information Center
Kirkhorn, Judith
1988-01-01
Discusses motivation based on adult learning conditions, and suggests appropriate motivation plans for leaders and trainers that will enhance performance. The steps to develop motivation plans include assessing current thinking on motivation and reinforcement options; objectively describing expected behaviors; and developing motivational…
American Industries. Junior Hi. Pre-Vocational. Power and Transportation.
ERIC Educational Resources Information Center
Goldsbury, Paul; And Others
Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives in this junior high school power and transportation course guide. Each objective also includes learning steps and suggestions for supplementary instructional aids. The overall focus is on the concepts of industrial…
Teaching Literature and Human Values in ESL: Objectives and Selection
ERIC Educational Resources Information Center
Adeyanju, Thomas K.
1978-01-01
Long-term objectives for teaching literature to the student of English as a second language include developing an appreciation for literature and forming a civilized character through the modification and enlargement of values. Short-term objectives are to provide vicarious literary experiences and to reinforce language learning. (SW)
French-Canadians, Acadians and the French in New England. A Learning Activity Packet.
ERIC Educational Resources Information Center
Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.
The history of the French-Canadians from their beginnings to the present time is the topic of this Learning Activity Packet (LAP). Designed to acquaint students with the French, Canada's earliest permanent settlers following the Indians, the unit is divided into six objectives which include learning activities for each. Students are expected to…
From Tech Skills to Life Skills: Google Online Marketing Challenge and Experiential Learning
ERIC Educational Resources Information Center
Croes, Jo-Anne V.; Visser, Melina M.
2015-01-01
The Google Online Marketing Challenge (GOMC) is a global, online student competition sponsored by Google. It is a prime example of an experiential learning activity that includes using real money ($250 sponsored by Google) with a real client. The GOMC has yielded compelling results in student engagement and learning objectives related to the…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chang, Shao-Chen
2016-01-01
One of the important and challenging objectives of social studies courses is to promote students' affective domain exhibition, including learning interest, positive attitudes and local culture identity. In this paper, a location-aware mobile learning approach was proposed based on a competition strategy for conducting local cultural activities in…
Flexible Learning Strategies in First through Fourth-Year Courses
ERIC Educational Resources Information Center
Cassidy, Alice; Fu, Guopeng; Valley, Will; Lomas, Cyprien; Jovel, Eduardo; Riseman, Andrew
2016-01-01
Flexible Learning (FL) is a pedagogical approach allowing for flexibility of time, place, and audience, including but not solely focused on the use of technologies. We describe Flexible Learning as a pedagogical approach in four courses framed by three key themes: 1) objectives and aspects of course design, 2) evaluation and assessment, and 3)…
Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian
2013-07-09
In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.
Learning style and concept acquisition of community college students in introductory biology
NASA Astrophysics Data System (ADS)
Bobick, Sandra Burin
This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.
Border collie comprehends object names as verbal referents.
Pilley, John W; Reid, Alliston K
2011-02-01
Four experiments investigated the ability of a border collie (Chaser) to acquire receptive language skills. Experiment 1 demonstrated that Chaser learned and retained, over a 3-year period of intensive training, the proper-noun names of 1022 objects. Experiment 2 presented random pair-wise combinations of three commands and three names, and demonstrated that she understood the separate meanings of proper-noun names and commands. Chaser understood that names refer to objects, independent of the behavior directed toward those objects. Experiment 3 demonstrated Chaser's ability to learn three common nouns--words that represent categories. Chaser demonstrated one-to-many (common noun) and many-to-one (multiple-name) name-object mappings. Experiment 4 demonstrated Chaser's ability to learn words by inferential reasoning by exclusion--inferring the name of an object based on its novelty among familiar objects that already had names. Together, these studies indicate that Chaser acquired referential understanding of nouns, an ability normally attributed to children, which included: (a) awareness that words may refer to objects, (b) awareness of verbal cues that map words upon the object referent, and (c) awareness that names may refer to unique objects or categories of objects, independent of the behaviors directed toward those objects. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Rosman, Fuziah; Alias, Norlidah; Rahman, Mohd Nazri Abdul; Dewitt, Dorothy
2015-01-01
This study aims at reviewing the curriculum design by including video games in the implementation of the Malay language course at an Institute of Higher Learning. The objective of this study is to obtain expert opinion on the expected manner of implementation of video games in learning the Malay language. The Fuzzy Delphi technique (FDM) is used…
ERIC Educational Resources Information Center
Lehman, Rosemary
2007-01-01
This chapter looks at the development and nature of learning objects, meta-tagging standards and taxonomies, learning object repositories, learning object repository characteristics, and types of learning object repositories, with type examples. (Contains 1 table.)
Slow feature analysis: unsupervised learning of invariances.
Wiskott, Laurenz; Sejnowski, Terrence J
2002-04-01
Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.
Rapp, David E; Lyon, Mark B; Orvieto, Marcelo A; Zagaja, Gregory P
2005-10-01
The classical approach to the undergraduate medical clerkship has several limitations, including variability of clinical exposure and method of examination. As a result, the clerkship experience does not ensure exposure to and reinforcement of the fundamental concepts of a given specialty. This article reviews the classic approach to clerkship education within the undergraduate medical education. Specific attention is placed on clinical exposure and clerkship examination. We describe the introduction of the Core Learning Objective (CLO) educational model at the University of Chicago Section of Urology. This model is designed to provide an efficient exposure to and evaluation of core clerkship learning objectives. The CLO model has been successfully initiated, focusing on both technical and clinical skill sets. The proposed model has been introduced with positive initial results and should allow for an efficient approach to the teaching and evaluation of core objectives in clerkship education.
Reflections on Adult Learning in Cultural Institutions
ERIC Educational Resources Information Center
Parrish, Marilyn McKinley
2010-01-01
Cultural institutions are rich locations for adult learning. Despite apparent differences in mission, they are similar in many ways. Similarities include social and historical development, educational philosophy and objectives, epistemological tensions and contestations, and challenges associated when attracting and educating adult visitors. In an…
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Gray, A.
2014-04-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Scalable Machine Learning for Massive Astronomical Datasets
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Astronomy Data Centre, Canadian
2014-01-01
We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.
Integrating Prevention into Obstetrics/Gynecology.
ERIC Educational Resources Information Center
Carey, J. Christopher
2000-01-01
Discusses formats to teach preventive medicine in obstetrics and gynecology (including learning objectives, lectures/seminars, and rounds/office practice) and evaluation methods (oral examinations, computerized question banks, objective structured clinical examinations). Offers examples from specific programs at American medical schools, including…
A survey on object detection in optical remote sensing images
NASA Astrophysics Data System (ADS)
Cheng, Gong; Han, Junwei
2016-07-01
Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.
Mere exposure alters category learning of novel objects.
Folstein, Jonathan R; Gauthier, Isabel; Palmeri, Thomas J
2010-01-01
We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.
Mere Exposure Alters Category Learning of Novel Objects
Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.
2010-01-01
We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning. PMID:21833209
A focus group study of chiropractic students following international service learning experiences
Boysen, James C.; Salsbury, Stacie A.; Derby, Dustin; Lawrence, Dana J.
2016-01-01
Objective: One objective of chiropractic education is to cultivate clinical confidence in novice practitioners. The purpose of this qualitative study was to describe how participation in a short-term international service learning experience changed perceptions of clinical confidence in senior chiropractic students. Methods: Seventeen senior chiropractic students participated in 4 moderated focus group sessions within 4 months after a clinical educational opportunity held in international settings. Participants answered standard questions on how this educational experience may have changed their clinical confidence. Two investigators performed qualitative thematic analysis of the verbatim transcripts to identify core concepts and supporting themes. Results: The core concept was transformation from an unsure student to a confident doctor. The service learning experience allowed students to deliver chiropractic treatment to patients in a real-world setting, engage in frequent repetitions of technical skills, perform clinical decision-making and care coordination, and communicate with patients and other health professionals. Students described increased clinical confidence in 9 competency areas organized within 3 domains: (1) chiropractic competencies including observation, palpation, and manipulation; (2) clinical competencies including problem solving, clinic flow, and decision-making; and (3) communication competencies, including patient communication, interprofessional communication, and doctor–patient relationship. Students recommended that future service learning programs include debriefing sessions similar to the experience offered by these focus groups to enhance student learning. Conclusion: Senior chiropractic students who participated in an international service learning program gained confidence and valuable practical experience in integrating their chiropractic, clinical, and communication skills for their future practices. PMID:27258817
ERIC Educational Resources Information Center
Crelinsten, Michael, Ed.
Part of the documentation for Katimavik, a nine-month volunteer community service and learning program for 17 to 21-year-old Canadians, the bilingual student manual focuses on the work skills portion of the learning program. The manual includes learning program objectives, trimester guidelines and a checklist for activity participation, optional…
ERIC Educational Resources Information Center
Lacireno-Paquet, Natalie; Morgan, Claire; Mello, Daniel
2014-01-01
Motivated by the need to improve teaching and learning and by federal priorities reflected in requirements for grant programs such as Race to the Top and the Teacher Incentive Fund, many states are developing teacher evaluation systems that include measures of individual teachers' contributions to their students' learning growth. One way to…
ERIC Educational Resources Information Center
Lacireno-Paquet, Natalie; Morgan, Claire; Mello, Daniel
2014-01-01
Motivated by the need to improve teaching and learning and by federal priorities reflected in requirements for grant programs such as Race to the Top and the Teacher Incentive Fund, many states are developing teacher evaluation systems that include measures of individual teachers' contributions to their students' learning growth. One way to…
Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang
2014-01-01
The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339
Third-Graders Learn about Fractions Using Virtual Manipulatives: A Classroom Study
ERIC Educational Resources Information Center
Reimer, Kelly; Moyer, Patricia S.
2005-01-01
With recent advances in computer technology, it is no surprise that the manipulation of objects in mathematics classrooms now includes the manipulation of objects on the computer screen. These objects, referred to as "virtual manipulatives," are essentially replicas of physical manipulatives placed on the World Wide Web in the form of computer…
Teacher's Guide: Social Studies, 5.
ERIC Educational Resources Information Center
Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.
Part of a sequential K-12 program, this teacher's guide provides objectives and activities for students in grade 5. Five major sections correspond to learning, inquiry, and discussion skills, concepts, and values and moral reasoning. Learning skills include listening, speaking, viewing, reading, writing, map, and statistical abilities. Students…
A Problem Solving Active-Learning Course in Pharmacotherapy.
ERIC Educational Resources Information Center
Delafuente, Jeffrey C.; And Others
1994-01-01
A third-year pharmacology course in a doctoral pharmacy program that is case based and intended for a large class is described. Aspects discussed include learning objectives, course organization, classroom activities, case selection and design, faculty involvement, grading, and areas identified for improvement. (MSE)
Intellectual Innovation: A Paradigm Shift in Workforce Development
2016-08-01
varying learning abilities and disabilities , and require vary ing lengths of time to learn and Although experienced employees need less training...training courses or objectives, organizations should develop a tailored plan that focuses on what each employee needs to learn . Time and effort are... learns in a different way, which can include the use of visual and/or audible as well as the handson method of instruc tion. Employees also have
Velocity-based motion categorization by pigeons.
Cook, Robert G; Beale, Kevin; Koban, Angie
2011-04-01
To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).
Butler, Andrew J; James, Thomas W; James, Karin Harman
2011-11-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.
Interoperability Gap Challenges for Learning Object Repositories & Learning Management Systems
ERIC Educational Resources Information Center
Mason, Robert T.
2011-01-01
An interoperability gap exists between Learning Management Systems (LMSs) and Learning Object Repositories (LORs). Learning Objects (LOs) and the associated Learning Object Metadata (LOM) that is stored within LORs adhere to a variety of LOM standards. A common LOM standard found in LORs is the Sharable Content Object Reference Model (SCORM)…
Adaptive Urban Stormwater Management Using a Two-stage Stochastic Optimization Model
NASA Astrophysics Data System (ADS)
Hung, F.; Hobbs, B. F.; McGarity, A. E.
2014-12-01
In many older cities, stormwater results in combined sewer overflows (CSOs) and consequent water quality impairments. Because of the expense of traditional approaches for controlling CSOs, cities are considering the use of green infrastructure (GI) to reduce runoff and pollutants. Examples of GI include tree trenches, rain gardens, green roofs, and rain barrels. However, the cost and effectiveness of GI are uncertain, especially at the watershed scale. We present a two-stage stochastic extension of the Stormwater Investment Strategy Evaluation (StormWISE) model (A. McGarity, JWRPM, 2012, 111-24) to explicitly model and optimize these uncertainties in an adaptive management framework. A two-stage model represents the immediate commitment of resources ("here & now") followed by later investment and adaptation decisions ("wait & see"). A case study is presented for Philadelphia, which intends to extensively deploy GI over the next two decades (PWD, "Green City, Clean Water - Implementation and Adaptive Management Plan," 2011). After first-stage decisions are made, the model updates the stochastic objective and constraints (learning). We model two types of "learning" about GI cost and performance. One assumes that learning occurs over time, is automatic, and does not depend on what has been done in stage one (basic model). The other considers learning resulting from active experimentation and learning-by-doing (advanced model). Both require expert probability elicitations, and learning from research and monitoring is modelled by Bayesian updating (as in S. Jacobi et al., JWRPM, 2013, 534-43). The model allocates limited financial resources to GI investments over time to achieve multiple objectives with a given reliability. Objectives include minimizing construction and O&M costs; achieving nutrient, sediment, and runoff volume targets; and community concerns, such as aesthetics, CO2 emissions, heat islands, and recreational values. CVaR (Conditional Value at Risk) and chance constraints are placed on the objectives to achieve desired confidence levels. By varying the budgets, reliability constraints, and priorities among other objectives, we generate a range of GI deployment strategies that represent tradeoffs among objectives as well as the confidence in achieving them.
Space Object Classification Using Fused Features of Time Series Data
NASA Astrophysics Data System (ADS)
Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.
In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.
Marketing Feud: An Active Learning Game of (Mis)Perception
ERIC Educational Resources Information Center
Schee, Brian A. Vander
2011-01-01
This paper presents the results of implementing an active learning activity in the principles of marketing course adapted from the television show "Family Feud". The objectives of the Marketing Feud game include increasing awareness of marketing misperceptions, clarifying marketing misunderstandings, encouraging class participation, and building…
ERIC Educational Resources Information Center
Lewis, Jim
This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…
Observation Skills - Tuning Up the Five Senses.
ERIC Educational Resources Information Center
Mason, Fred J.
Lesson plans designed to increase the observation skills for intermediate elementary students and provide them with a variety of sensory experiences in learning situations are presented in this document. Lesson plans include objectives, outlines for both indoor and outdoor learning experiences, materials and equipment needed, and evaluation…
Using speakers' referential intentions to model early cross-situational word learning.
Frank, Michael C; Goodman, Noah D; Tenenbaum, Joshua B
2009-05-01
Word learning is a "chicken and egg" problem. If a child could understand speakers' utterances, it would be easy to learn the meanings of individual words, and once a child knows what many words mean, it is easy to infer speakers' intended meanings. To the beginning learner, however, both individual word meanings and speakers' intentions are unknown. We describe a computational model of word learning that solves these two inference problems in parallel, rather than relying exclusively on either the inferred meanings of utterances or cross-situational word-meaning associations. We tested our model using annotated corpus data and found that it inferred pairings between words and object concepts with higher precision than comparison models. Moreover, as the result of making probabilistic inferences about speakers' intentions, our model explains a variety of behavioral phenomena described in the word-learning literature. These phenomena include mutual exclusivity, one-trial learning, cross-situational learning, the role of words in object individuation, and the use of inferred intentions to disambiguate reference.
Vollmar, H C; Schürer-Maly, C-C; Lelgemann, M; Koneczny, N; Koch, M; Butzlaff, M
2006-05-01
Effective translation of relevant knowledge into clinical practice is essential for modern health care systems. National Disease Management Guidelines (NDMG) are considered relevant instruments to support this transfer. To implement NDMG Internet-based continuing medical education (CME), modules and online case-based learning objects were designed and published. To ensure high quality the contents are based on NDMG and subjected to multi-step review processes. Presentation on the web was realized through a modified content management system. To obtain a CME certificate, completing an online questionnaire using a four-point Likert scale was mandatory. Between June 2003 and April 2005, 3,105 physicians were registered and used the platform: 95% of the physicians expressed positive feedback in the evaluation questionnaire, and 35% actually used the corresponding NDMG in practice. This prompted the development of interactive medical case-based learning objects as a second learning pathway. An Internet platform for CME including case-based learning objects can be a helpful tool to assure the provision of scientific knowledge for patient care.
ERIC Educational Resources Information Center
de Campos, Ana Carolina; da Costa, Carolina Souza Neves; Savelsbergh, Geert J. P.; Rocha, Nelci Adriana Cicuto Ferreira
2013-01-01
During infant development, objects and their functions are learned by means of active exploration. Factors that may influence exploration include reaching and grasping ability, object properties and the presence of developmental disorders. We assessed the development of exploratory actions in 16 typically-developing (TD) infants and 9 infants with…
Shoemaker, Michael J; Platko, Christina M; Cleghorn, Susan M; Booth, Andrew
2014-07-01
The purpose of this retrospective qualitative case report is to describe how a case-based, virtual patient interprofessional education (IPE) simulation activity was utilized to achieve physician assistant (PA), physical therapy (PT) and occupational therapy (OT) student IPE learning outcomes. Following completion of a virtual patient case, 30 PA, 46 PT and 24 OT students were required to develop a comprehensive, written treatment plan and respond to reflective questions. A qualitative analysis of the submitted written assignment was used to determine whether IPE learning objectives were met. Student responses revealed three themes that supported the learning objectives of the IPE experience: benefits of collaborative care, role clarification and relevance of the IPE experience for future practice. A case-based, IPE simulation activity for physician assistant and rehabilitation students using a computerized virtual patient software program effectively facilitated achievement of the IPE learning objectives, including development of greater student awareness of other professions and ways in which collaborative patient care can be provided.
Nutrition. Learning Activity Package.
ERIC Educational Resources Information Center
Lee, Carolyn
This learning activity package on nutrition is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…
Shock & Anaphylactic Shock. Learning Activity Package.
ERIC Educational Resources Information Center
Hime, Kirsten
This learning activity package on shock and anaphylactic shock is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…
Anthropomorphism in Decorative Pictures: Benefit or Harm for Learning?
ERIC Educational Resources Information Center
Schneider, Sascha; Nebel, Steve; Beege, Maik; Rey, Günter Daniel
2018-01-01
When people attribute human characteristics to nonhuman objects they are amenable to anthropomorphism. For example, human faces or the insertion of personalized labels are found to trigger anthropomorphism. Two studies examine the effects of these features when included in decorative pictures in multimedia learning materials. In a first…
Inference and Discovery in an Exploratory Laboratory. Technical Report No. 10.
ERIC Educational Resources Information Center
Shute, Valerie; And Others
This paper describes the results of a study done as part of a research program investigating the use of computer-based laboratories to support self-paced discovery learning in related to microeconomics, electricity, and light refraction. Program objectives include maximizing the laboratories' effectiveness in helping students learn content…
Learning through Transitions: The Role of Institutions
ERIC Educational Resources Information Center
Zittoun, Tania
2008-01-01
In this paper two models are proposed for analysing transitions in education. Firstly, transitions are the processes that follow ruptures perceived by people. They include learning, identity change, and meaning making processes. Secondly, processes of change are observed through a semiotic prism, articulating self-other-object-sense of the object…
Curriculum Guide for Fashion Merchandising (Fashion Salesperson).
ERIC Educational Resources Information Center
Gregory, Margaret R.
This curriculum guide is designed to help teachers teach a course in fashion merchandising to high school students. The guide contains eight performance-based learning modules, each consisting of one to seven units. Each unit teaches a job-relevant task, and includes performance objectives, performance guides, resources, learning activities,…
Rainbows of Intelligence. Exploring How Students Learn.
ERIC Educational Resources Information Center
Teele, Sue
This book offers practical applications for exploring multiple intelligences in the classroom to help each student express his or her own personal learning rainbow. Special features of the book include seven complete lesson plans ready to be adapted to any grade level; objectives, activities, and applications that meet U.S. and California…
Some Instructional Strategies for Improving Learning from Distance Teaching Materials.
ERIC Educational Resources Information Center
Marland, P. W.; Store, R. E.
1982-01-01
Examines some traditional instructional strategies used to improve textual materials for learning at a distance, including advance organizers, overviews, pretests, objectives, and inserted questions, together with devices in typography and graphics. Research in each area is reviewed and guidelines are given for using each strategy. An extensive…
Multiple Learning Strategies Project. Medical Assistant. [Regular Vocational. Vol. 1.
ERIC Educational Resources Information Center
Varney, Beverly; And Others
This instructional package, one of four designed for regular vocational students, focuses on the vocational area of medical assistant. Contained in this document are twenty-six learning modules organized into three units: language; receptioning; and asepsis. Each module includes these elements: a performance objective page telling what will be…
Design Concepts. Teacher Edition. Marketing Education LAPs.
ERIC Educational Resources Information Center
Hawley, Jana
This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…
ERIC Educational Resources Information Center
Gallo, Dennis; And Others
This packet contains technology-based learning activities for the transportation technology course at the orientation level (grades 9 and 10) of the Illinois Plan for Industrial Technology Education curriculum project. The packet includes a course rationale, mission, description, and course outline. Suggested learning objectives and suggested…
Alternate Learning Center. Abstracts of Inservice Training Programs.
ERIC Educational Resources Information Center
Rhode Island State Dept. of Education, Providence. Div. of Development and Operations.
This booklet is a collection of abstracts describing the 18 programs offered at the Alternate Learning Center of the Rhode Island Teacher Center which has as its Primary function school based inservice training for local teachers and administrators. Each project is described in detail, including course goals, specific objectives, training…
Oral Hygiene. Learning Activity Package.
ERIC Educational Resources Information Center
Hime, Kirsten
This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…
Grooming. Learning Activity Package.
ERIC Educational Resources Information Center
Stark, Pamela
This learning activity package on grooming for health workers is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…
Student nurses' learning on community-based education in Ethiopia.
Salmon, Karen; Keneni, Gutema
2004-07-01
At Jimma University educational goals are to apply the concept of community-oriented education through community-based education (CBE) of health students. This study examined the experiences of student nurses on CBE. The aims of the study were to identify factors that students considered had helped or hindered their learning on CBE and to ascertain if the stated learning objectives were met. A quantitative, descriptive, survey design was adopted, using a single, anonymous questionnaire. Some qualitative data were gained using open questions. A convenience sample of 95 students participated in the research. Participants represented 90% of all students who had completed their CBE placements. Participation, mentors' willingness to answer questions and the relevance of the placement were factors that facilitated learning. Factors reported by students that hindered learning were difficulties of self-expression in a group, mentors emphasising mistakes and weakness and the short time-frame due to ongoing lectures during placement. Students said learning objectives most met were socio-demographic assessment, identifying health problems and action planning. Objectives reported to be least met were identifying environmental health problems, planning preventive health interventions and implementing health interventions. These include the need to develop students' group skills, prepare mentors to facilitate learning, organise CBE in spiral phases, avoid concurrent lectures and improve study facilities.
Krichbaum, Kathleen; Kaas, Merrie J; Wyman, Jean F; Van Son, Catherine R
2015-06-01
The Facilitated Learning to Advance Geriatrics program (FLAG) was designed to increase the numbers of nurse faculty in prelicensure programs with basic knowledge about aging and teaching effectiveness to prepare students to provide safe, high quality care for older adults. Using a framework to improve transfer of learning, FLAG was designed to include: (a) a workshop to increase basic knowledge of aging and common geriatric syndromes, and effective use of evidence-based teaching/learning strategies; (b) a year-long mentoring program to support application of workshop learning and leading change in participants' schools to ensure that geriatrics is a priority. Both formative and summative evaluation methods were used, and included self-assessment of objectives, program satisfaction, and teaching self-efficacy. FLAG achieved its overall purpose by enrolling 152 participants from 19 states including 23 faculty from associate degree programs and 102 from baccalaureate programs. Self-rated teaching effectiveness improved significantly from pre- to post-workshop each year. Achievement of learning objectives was rated highly as was satisfaction. Transfer of learning was evidenced by implementation of educational projects in home schools supported by mentoring. The FLAG program provided opportunities for nurse educators to learn to teach geriatrics more effectively and to transfer learning to their work environment. Future FLAG programs will be offered in a shortened format, incorporating online content and strategies, adding other health professionals to the audience with the same goal of increasing the knowledge and abilities of educators to prepare learners to provide competent care for older adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N
2015-11-01
Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Learning to Estimate Dynamical State with Probabilistic Population Codes
Sabes, Philip N.
2015-01-01
Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152
Intelligent Discovery for Learning Objects Using Semantic Web Technologies
ERIC Educational Resources Information Center
Hsu, I-Ching
2012-01-01
The concept of learning objects has been applied in the e-learning field to promote the accessibility, reusability, and interoperability of learning content. Learning Object Metadata (LOM) was developed to achieve these goals by describing learning objects in order to provide meaningful metadata. Unfortunately, the conventional LOM lacks the…
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
Alexander, Gerianne M; Packard, Mark G; Peterson, Bradley S
2002-01-01
Memory for object location relative both to veridical center (left versus right visual hemispace) and to eccentricity (central versus peripheral objects) was measured in 26 males and 25 females using the Silverman and Eals Location Memory Task. A subset of participants (17 males and 13 females) also completed a measure of implicit learning, the mirror-tracing task. No sex differences were observed in memory for object identities. Further, in both sexes, memory for object locations was better for peripherally located objects than for centrally located objects. In contrast to these similarities in female and male task performance, females but not males showed better recovery of object locations in the right compared to the left visual hemispace. Moreover, memory for object locations in the right hemispace was associated with mirror-tracing performance in women but not in men. Together, these data suggest that the processing of object features and object identification in the left cerebral hemisphere may include processing of spatial information that may contribute to superior object location memory in females relative to males.
Lee, Inah; Kim, Jangjin
2010-08-01
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in association with a shift in strategy during learning. We used an object-place paired-associate task in which a pair of objects was presented in two different arms of a radial maze. Each object was associated with reward only in one of the arms, thus requiring the rats to consider both object identity and its location in the maze. Hippocampal neurons recorded in CA1 displayed a dynamic transition in their firing patterns during the acquisition of the task across days, and this corresponded to a shift in strategy manifested in behavioral data. Specifically, before the rats learned the task, they chose an object that maintained a particular egocentric relationship with their body (response strategy) irrespective of the object identity. However, as the animal acquired the task, it chose an object according to both its identity and the associated location in the maze (object-in-place strategy). We report that CA1 neurons in the hippocampus changed their prospective firing correlates according to the dominant strategy (i.e., response versus object-in-place strategy) employed at a given stage of learning. The results suggest that neural firing pattern in the hippocampus is heavily influenced by the task demand hypothesized by the animal and the firing pattern changes flexibly as the perceived task demand changes.
ERIC Educational Resources Information Center
Kay, Robin H.; Knaack, Liesel
2009-01-01
Learning objects are interactive web-based tools that support the learning of specific concepts by enhancing, amplifying, and/or guiding the cognitive processes of learners. Research on the impact, effectiveness, and usefulness of learning objects is limited, partially because comprehensive, theoretically based, reliable, and valid evaluation…
Liberating Learning Object Design from the Learning Style of Student Instructional Designers
ERIC Educational Resources Information Center
Akpinar, Yavuz
2007-01-01
Learning objects are a new form of learning resource, and the design of these digital environments has many facets. To investigate senior instructional design students' use of reflection tools in designing learning objects, a series of studies was conducted using the Reflective Action Instructional Design and Learning Object Review Instrument…
NASA Astrophysics Data System (ADS)
Ernawati, D.; Ikhsan, J.
2017-02-01
The development of 3D technology provides more advantages in education sectors. In chemistry, the 3D technology makes chemistry objects look more tangible. This research developed a monograph titled “Augmented Chemistry: Hydrocarbon” as learning enrichment materials. The development model consisted of 5 steps, which were the adaptation of the ADDIE model. The 3D objects of chemistry were built using the computer applications of Chem Sketch, and Google Sketch Up with AR Plugin. The 3D objects were displayed by relevant markers on the texts of the monograph from which the visualizations of the 3D objects appeared when they were captured by digital camera of laptop or smartphone, and were possibly viewed with free-rotation. Not only were 3D chemistry objects included in the monograph, but also graphics, videos, audios, and animations, which facilitated more fun learning for readers of the monograph. After the reviews by the experts of subject matter, of media, of instruction, and by peers, the monograph was revised, and then rated by chemistry teachers. The analysis of the data showed that the monograph titled “Augmented Chemistry: Hydrocarbon” was in the criteria of very good for the enrichment materials of Chemistry learning.
Learning Objects and Gerontology
ERIC Educational Resources Information Center
Weinreich, Donna M.; Tompkins, Catherine J.
2006-01-01
Virtual AGE (vAGE) is an asynchronous educational environment that utilizes learning objects focused on gerontology and a learning anytime/anywhere philosophy. This paper discusses the benefits of asynchronous instruction and the process of creating learning objects. Learning objects are "small, reusable chunks of instructional media" Wiley…
Lehmann, Susan W; Brooks, William B; Popeo, Dennis; Wilkins, Kirsten M; Blazek, Mary C
2017-10-01
America is aging as the population of older adults increases. The shortage of geriatric mental health specialists means that most geriatric mental healthcare will be provided by physicians who do not have specialty training in geriatrics. The Institute of Medicine Report of 2012 highlighted the urgent need for development of national competencies and curricula in geriatric mental health for all clinicians. Virtually all physicians can expect to treat older patients with mental health symptoms, yet currently there are no widely accepted learning objectives in geriatric mental health specific for medical students. The authors describe the development of a set of such learning objectives that all medical students should achieve by graduation. The iterative process included initial drafting by content experts from five medical schools with input and feedback from a wider group of geriatric psychiatrists, geriatricians, internists, and medical educators. The final document builds upon previously published work and includes specific knowledge, attitudes and skills in six key domains: Normal Aging, Mental Health Assessment of the Geriatric Patient, Psychopharmacology, Delirium, Depression, and Dementia. These objectives address a pressing need, providing a framework for national standards and curriculum development. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Balzer, Felix; Hautz, Wolf E; Spies, Claudia; Bietenbeck, Andreas; Dittmar, Martin; Sugiharto, Firman; Lehmann, Lars; Eisenmann, Dorothea; Bubser, Florian; Stieg, Markus; Hanfler, Sven; Georg, Waltraud; Tekian, Ara; Ahlers, Olaf
2016-01-01
This study presents a web-based method and its interface ensuring alignment of all parts of a curriculum map including competencies, objectives, teaching and assessment methods, workload and patient availability. Needs, acceptance and effectiveness are shown through a nine-year study. After a comprehensive needs assessment, the curriculum map and a web-based interface "Learning Opportunities, Objectives and Outcome Platform" (LOOOP) were developed according to Harden's conceptual framework of 10-steps for curriculum mapping. The outcome was measured by surveys and results of interdisciplinary MCQ-assessments. The usage rates and functionalities were analysed. The implementation of LOOOP was significantly associated with improved perception of the curriculum structure by teachers and students, quality of defined objectives and their alignment with teaching and assessment, usage by students to prepare examinations and their scores in interdisciplinary MCQ-assessment. Additionally, LOOOP improved the curriculum coordination by faculty, and assisted departments for identifying patient availability for clinical training. LOOOP is well accepted among students and teachers, has positive effect on curriculum development, facilitates effective utilisation of educational resources and improves student's outcomes. Currently, LOOOP is used in five undergraduate medical curricula including 85,000 mapped learning opportunities (lectures, seminars), 5000 registered users (students, teachers) and 380,000 yearly page-visits.
FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri
2015-02-17
To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.
Algorithms for Learning Preferences for Sets of Objects
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; desJardins, Marie; Eaton, Eric
2010-01-01
A method is being developed that provides for an artificial-intelligence system to learn a user's preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics. The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of setbased preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term portfolio effect. The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (depth) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical concepts to estimate quantitative measures of the user s preferences from training examples (preferred subsets) specified by the user. Once preferences have been learned, the system uses those preferences to select preferred subsets from new sets. The method was found to be viable when tested in computational experiments on menus, music playlists, and rover images. Contemplated future development efforts include further tests on more diverse sets and development of a sub-method for (a) estimating the parameter that represents the relative importance of diversity versus depth, and (b) incorporating background knowledge about the nature of quality functions, which are special functions that specify depth preferences for features.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Early Representations of Ownership
ERIC Educational Resources Information Center
Blake, Peter R.; Harris, Paul L.
2011-01-01
To navigate a world filled with private property, children must be able to assign ownership information to objects and update that information when appropriate. In this chapter, the authors propose that children include ownership as an attribute of their object representations. Children can learn about ownership attributes either by witnessing…
Webly-Supervised Fine-Grained Visual Categorization via Deep Domain Adaptation.
Xu, Zhe; Huang, Shaoli; Zhang, Ya; Tao, Dacheng
2018-05-01
Learning visual representations from web data has recently attracted attention for object recognition. Previous studies have mainly focused on overcoming label noise and data bias and have shown promising results by learning directly from web data. However, we argue that it might be better to transfer knowledge from existing human labeling resources to improve performance at nearly no additional cost. In this paper, we propose a new semi-supervised method for learning via web data. Our method has the unique design of exploiting strong supervision, i.e., in addition to standard image-level labels, our method also utilizes detailed annotations including object bounding boxes and part landmarks. By transferring as much knowledge as possible from existing strongly supervised datasets to weakly supervised web images, our method can benefit from sophisticated object recognition algorithms and overcome several typical problems found in webly-supervised learning. We consider the problem of fine-grained visual categorization, in which existing training resources are scarce, as our main research objective. Comprehensive experimentation and extensive analysis demonstrate encouraging performance of the proposed approach, which, at the same time, delivers a new pipeline for fine-grained visual categorization that is likely to be highly effective for real-world applications.
Instructional Strategy: Didactic Media Presentation to Optimize Student Learning
ERIC Educational Resources Information Center
Schilling, Jim
2017-01-01
Context: Subject matter is presented to athletic training students in the classroom using various modes of media. The specific type of mode and when to use it should be considered to maximize learning effectiveness. Other factors to consider in this process include a student's knowledge base and the complexity of material. Objective: To introduce…
Using Blended Learning for Enhancing EFL Prospective Teachers' Pedagogical Knowledge and Performance
ERIC Educational Resources Information Center
Badawi, Mohamed Farrag
2009-01-01
The basic objective of the present study is to investigate the effectiveness of using blended learning model in developing EFL prospective teachers' pedagogical knowledge and performance. The study sample included 38 EFL Saudi prospective teachers (fourth-year students) at the Faculty of Education & Arts, University of Tabuk, KSA. To collect…
Effects of Instructional Design with Mental Model Analysis on Learning.
ERIC Educational Resources Information Center
Hong, Eunsook
This paper presents a model for systematic instructional design that includes mental model analysis together with the procedures used in developing computer-based instructional materials in the area of statistical hypothesis testing. The instructional design model is based on the premise that the objective for learning is to achieve expert-like…
The Feasibility of E-Learning Implementation in an Iranian University
ERIC Educational Resources Information Center
Mirzamohammadi, M. H.
2017-01-01
The present research aimed to investigate the feasibility of e-learning implementation in an Iranian comprehensive university (included medical and non-medical fields) to provide appropriate solutions in this regard. To achieve this objective, seven research questions were formed. Surveying method was applied for data collection in this study.…
ERIC Educational Resources Information Center
Kravitz, Martin
1982-01-01
A contract approach specifying long and short term objectives is part of an overall treatment approach for students whose learning and attention skills are inconsistent. Additional program efforts include allergy and food assessment, medication assessment and trial (if appropriate), and attention to the child's biochemical functioning. (CL)
The Impact of Creative Learning Environments on Learners: A Systematic Literature Review
ERIC Educational Resources Information Center
Jindal-Snape, Divya; Davies, Dan; Collier, Chris; Howe, Alan; Digby, Rebecca; Hay, Penny
2013-01-01
This article is based on a systematic review of educational research, policy and professional literature relating to creative environments for learning in schools. Despite the search yielding 210 documents, comparatively few empirical studies were published between 2005 and 2011 that addressed the review objectives. Only 18 studies included in the…
The Semiotics of Learning Korean at Home: An Ecological Autoethnographic Perspective
ERIC Educational Resources Information Center
Jenks, Christopher J.
2017-01-01
This autoethnographic study examines how I re-learn Korean in, and through, interactions with family members at home. The analysis, which is informed by language ecology and sociocultural concepts of development, shows how semiotic and human resources, including material objects and more proficient speakers, play a mediating role in how I deal…
ERIC Educational Resources Information Center
Stone, Deborah L.; Villachica, Steven W.
2003-01-01
Provides suggestions to ensure the success of electronic performance support systems (EPSS) and electronic learning, including creating hybrid solutions; aligning EPSS with business objectives and performance requirements; change management efforts; and rapid application development to lower costs, shrink schedules, and improve quality.…
ERIC Educational Resources Information Center
Gallo, Dennis; Welty, Kenneth
This document contains technology-based learning activities for the Illinois energy utilization technology course at the orientation level (grades 9 and 10). This packet includes a course rationale, course mission statement, course description, course outline, suggested learning objectives for each of the energy utilization areas, and suggested…
Intentions and Actions in Molecular Self-Assembly: Perspectives on Students' Language Use
ERIC Educational Resources Information Center
Höst, Gunnar E.; Anward, Jan
2017-01-01
Learning to talk science is an important aspect of learning to do science. Given that scientists' language frequently includes intentions and purposes in explanations of unobservable objects and events, teachers must interpret whether learners' use of such language reflects a scientific understanding or inaccurate anthropomorphism and teleology.…
The Surgical Scrub. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This learning activity package on the surgical scrub is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These…
The lift-fan aircraft: Lessons learned
NASA Technical Reports Server (NTRS)
Deckert, Wallace H.
1995-01-01
This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.
Irvine, Susan; Williams, Brett; McKenna, Lisa
2017-03-01
Near Peer teaching (NPT) is reported as an effective pedagogical approach to student learning and performance. Studies in medicine, nursing and health sciences have relied mainly on self-reports to describe its benefits, focusing on psychomotor and cognitive aspects of learning. Despite increasing research reports on peer teaching internationally, little is known about the various domains of learning used in assessment of performance and objective learning outcomes of NPT. To determine the domains of learning and assessment outcomes used in NPT in undergraduate health professional education. Quantitative systematic review was conducted in accord with the PRISMA protocol and the Joanna Briggs Institute processes. A wide literature search was conducted for the period 1990-November 2015 of fourteen databases. Grey literature was undertaken from all key research articles. Studies meeting the inclusion criteria were eligible for consideration, including measured learning outcomes of near-peer teaching in undergraduate education in nursing, medicine and health sciences. Set limitations included publications after 1990 (2015 inclusive), English language and objective learning outcomes. A quality appraisal process involving two independent reviewers was used to analyse the data. Of 212 selected articles, 26 were included in the review. Terminology was confusing and found to be a barrier to the review process. Although some studies demonstrated effective learning outcomes resulting from near-peer teaching, others were inconclusive. Studies focused on cognitive and psychomotor abilities of learners with none assessing metacognition, affective behaviours or learning outcomes from quality of understanding. The studies reviewed focused on cognitive and psychomotor abilities of learners. Even though evidence clearly indicates that metacognition and affective behaviours have direct influence on learning and performance, indicating more research around this topic is warranted. Methodological quality of the studies and lack of theoretical frameworks underpinned by educational psychology may have contributed to inconsistencies in learning outcomes reported. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott E. Grasman; John W. Sheffield; Fatih Dogan
2010-04-30
This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways andmore » a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.« less
ERIC Educational Resources Information Center
Wanapu, Supachanun; Fung, Chun Che; Kerdprasop, Nittaya; Chamnongsri, Nisachol; Niwattanakul, Suphakit
2016-01-01
The issues of accessibility, management, storage and organization of Learning Objects (LOs) in education systems are a high priority of the Thai Government. Incorporating personalized learning or learning styles in a learning object management system to improve the accessibility of LOs has been addressed continuously in the Thai education system.…
Three learning phases for radial-basis-function networks.
Schwenker, F; Kestler, H A; Palm, G
2001-05-01
In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (ID objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.
LDCM Ground System. Network Lesson Learned
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan
2010-01-01
This slide presentation reviews the Landsat Data Continuity Mission (LDCM) and the lessons learned in implementing the network that was assembled to allow for the acquisition, archiving and distribution of the data from the Landsat mission. The objective of the LDCM is to continue the acquisition, archiving, and distribution of moderate-resolution multispectral imagery affording global, synoptic, and repetitive coverage of the earth's land surface at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. It includes a review of the ground network, including a block diagram of the ground network elements (GNE) and a review of the RF design and testing. Also included is a listing of the lessons learned.
Ogrinc, Greg; Headrick, Linda A; Mutha, Sunita; Coleman, Mary T; O'Donnell, Joseph; Miles, Paul V
2003-07-01
To create a framework for teaching the knowledge and skills of practice-based learning and improvement to medical students and residents based on proven, effective strategies. The authors conducted a Medline search of English-language articles published between 1996 and May 2001, using the term "quality improvement" (QI), and cross-matched it with "medical education" and "health professions education." A thematic-synthesis method of review was used to compile the information from the articles. Based on the literature review, an expert panel recommended educational objectives for practice-based learning and improvement. Twenty-seven articles met the inclusion criteria. The majority of studies were conducted in academic medical centers and medical schools and 40% addressed experiential learning of QI. More than 75% were qualitative case reports capturing educational outcomes, and 7% included an experimental study design. The expert panel integrated data from the literature review with the Dreyfus model of professional skill acquisition, the Institute for Healthcare Improvement's (IHI) knowledge domains for improving health care, and the ACGME competencies and generated a framework of core educational objectives about teaching practice-based learning and improvement to medical students and residents. Teaching the knowledge and skills of practice-based learning and improvement to medical students and residents is a necessary and important foundation for improving patient care. The authors present a framework of learning objectives-informed by the literature and synthesized by the expert panel-to assist educational leaders when integrating these objectives into a curriculum. This framework serves as a blueprint to bridge the gap between current knowledge and future practice needs.
The Initial Development of Object Knowledge by a Learning Robot
Modayil, Joseph; Kuipers, Benjamin
2008-01-01
We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Smith, Mandy McCormick
2011-01-01
Some of children's earliest explorations focus on movement of their own bodies. Quickly, children learn to further explore movement by using objects like a ball or car. They recognize that a ball moves differently than a pushed block. As they grow, children enjoy their experiences with motion and movement, including making objects move, changing…
Prescription Drug Abuse Information in D.A.R.E.
ERIC Educational Resources Information Center
Morris, Melissa C.; Cline, Rebecca J. Welch; Weiler, Robert M.; Broadway, S. Camille
2006-01-01
This investigation was designed to examine prescription drug-related content and learning objectives in Drug Abuse Resistance Education (D.A.R.E.) for upper elementary and middle schools. Specific prescription-drug topics and context associated with content and objectives were coded. The coding system for topics included 126 topics organized…
Baia, Patricia; Canning, Jacquelyn E.; Strang, Aimee F.
2015-01-01
Objective. To describe the shift to an asynchronous online approach for pedagogy instruction within a pharmacy resident teaching program offered by a dual-campus college. Design. The pedagogy instruction component of the teaching program (Part I) was redesigned with a focus on the content, delivery, and coordination of the learning environment. Asynchronous online learning replaced distance technology or lecture capture. Using a pedagogical content knowledge framework, residents participated in self-paced online learning using faculty recordings, readings, and discussion board activities. A learning management system was used to assess achievement of learning objectives and participation prior to progressing to the teaching experiences component of the teaching program (Part II). Assessment. Evaluation of resident pedagogical knowledge development and participation in Part I of the teaching program was achieved through the learning management system. Participant surveys and written reflections showed general satisfaction with the online learning environment. Future considerations include addition of a live orientation session and increased faculty presence in the online learning environment. Conclusion. An online approach framed by educational theory can be an effective way to provide pedagogy instruction within a teaching program. PMID:25861110
ERIC Educational Resources Information Center
Paulsson, Fredrik; Naeve, Ambjorn
2006-01-01
Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…
An object memory bias induced by communicative reference.
Marno, Hanna; Davelaar, Eddy J; Csibra, Gergely
2016-01-01
In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associations that constituted either an extrinsic object property (the colour of the box that contained the object, Experiment 1) or an intrinsic one (the colour of the object, Experiment 2). Compared to a non-communicative context, communicative presentation of the objects impaired participants' performance when they recalled extrinsic object properties, while their incidental memory of the intrinsic shape-colour associations was not affected. Communicative signals had no effect on performance when the task required the memorisation of intrinsic object properties. The negative effect of communicative reference on the memory of extrinsic properties was also confirmed in Experiment 3, where this property was object location. Such a memory bias suggests that referent objects in communication tend to be seen as representatives of their kind rather than as individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lau, Siong-Hoe; Woods, Peter C.
2009-01-01
Many organisations and institutions have integrated learning objects into their e-learning systems to make the instructional resources more efficient. Like any other information systems, this trend has made user acceptance of learning objects an increasingly critical issue as a high level of learner satisfaction and acceptance reflects that the…
Learned filters for object detection in multi-object visual tracking
NASA Astrophysics Data System (ADS)
Stamatescu, Victor; Wong, Sebastien; McDonnell, Mark D.; Kearney, David
2016-05-01
We investigate the application of learned convolutional filters in multi-object visual tracking. The filters were learned in both a supervised and unsupervised manner from image data using artificial neural networks. This work follows recent results in the field of machine learning that demonstrate the use learned filters for enhanced object detection and classification. Here we employ a track-before-detect approach to multi-object tracking, where tracking guides the detection process. The object detection provides a probabilistic input image calculated by selecting from features obtained using banks of generative or discriminative learned filters. We present a systematic evaluation of these convolutional filters using a real-world data set that examines their performance as generic object detectors.
Involving a young person in the development of a digital resource in nurse education.
Fenton, Gaynor
2014-01-01
Health policies across western societies have embedded the need for service user and carer perspectives in service design and delivery of educational programmes. There is a growing recognition of the need to include the perspectives of children and young people as service users in the design and delivery of child focused educational programmes. Digital storytelling provides a strategy for student nurses to gain insight into the lived experiences of children and young people. Engaging with these stories enables students to develop an understanding of a young persons' experience of healthcare. This paper outlines a project that developed a digital learning object based upon a young person's experience of cancer and student evaluations of the digital learning object as a teaching and learning strategy. Over 80% of students rated the digital learning object as interesting and were motivated to explore its content. In addition, the evaluation highlighted that listening to the young person's experiences of her treatment regimes was informative and assisted understanding of a patients' perspective of care delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tian, Moqian; Grill-Spector, Kalanit
2015-01-01
Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454
NASA Astrophysics Data System (ADS)
Nagai, Yukie; Hosoda, Koh; Morita, Akio; Asada, Minoru
This study argues how human infants acquire the ability of joint attention through interactions with their caregivers from a viewpoint of cognitive developmental robotics. In this paper, a mechanism by which a robot acquires sensorimotor coordination for joint attention through bootstrap learning is described. Bootstrap learning is a process by which a learner acquires higher capabilities through interactions with its environment based on embedded lower capabilities even if the learner does not receive any external evaluation nor the environment is controlled. The proposed mechanism for bootstrap learning of joint attention consists of the robot's embedded mechanisms: visual attention and learning with self-evaluation. The former is to find and attend to a salient object in the field of the robot's view, and the latter is to evaluate the success of visual attention, not joint attention, and then to learn the sensorimotor coordination. Since the object which the robot looks at based on visual attention does not always correspond to the object which the caregiver is looking at in an environment including multiple objects, the robot may have incorrect learning situations for joint attention as well as correct ones. However, the robot is expected to statistically lose the learning data of the incorrect ones as outliers because of its weaker correlation between the sensor input and the motor output than that of the correct ones, and consequently to acquire appropriate sensorimotor coordination for joint attention even if the caregiver does not provide any task evaluation to the robot. The experimental results show the validity of the proposed mechanism. It is suggested that the proposed mechanism could explain the developmental mechanism of infants' joint attention because the learning process of the robot's joint attention can be regarded as equivalent to the developmental process of infants' one.
Is the Recall of Verbal-Spatial Information from Working Memory Affected by Symptoms of ADHD?
ERIC Educational Resources Information Center
Caterino, Linda C.; Verdi, Michael P.
2012-01-01
Objective: The Kulhavy model for text learning using organized spatial displays proposes that learning will be increased when participants view visual images prior to related text. In contrast to previous studies, this study also included students who exhibited symptoms of ADHD. Method: Participants were presented with either a map-text or…
ERIC Educational Resources Information Center
Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto
2010-01-01
This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…
How Does the Legal System Respond when Children with Learning Difficulties Are Victimized?
ERIC Educational Resources Information Center
Cederborg, Ann-Christin; Lamb, Michael E.
2006-01-01
Objective: To understand how the Swedish legal system perceives and handles mentally handicapped children who may have been victimized. Method: Twenty-two judicial districts in Sweden provided complete files on 39 District Court cases (including the Appeals Court files on 17 of these cases) involving children with learning difficulties or other…
Applying Augmented Reality to Enhance Learning: A Study of Different Teaching Materials
ERIC Educational Resources Information Center
Hung, Y.-H.; Chen, C.-H.; Huang, S.-W.
2017-01-01
The objective of this study was to determine the usefulness of augmented reality (AR) in teaching. An experiment was conducted to examine children's learning performances, which included the number of errors they made, their ability to remember the content of what they had read and their satisfaction with the three types of teaching materials,…
Relationship between Learning Problems and Attention Deficit in Childhood
ERIC Educational Resources Information Center
Ponde, Milena Pereira; Cruz-Freire, Antonio Carlos; Silveira, Andre Almeida
2012-01-01
Objective: To assess the impact of attention deficit on learning problems in a sample of schoolchildren in the city of Salvador, Bahia, Brazil. Method: All students enrolled in selected elementary schools were included in this study, making a total of 774 children. Each child was assessed by his or her teacher using a standardized scale. "The…
ERIC Educational Resources Information Center
Young, Shelley Shwu-Ching; Huang, Yi-Long; Jang, Jyh-Shing Roger
2000-01-01
Describes the development and implementation process of a Web-based science museum in Taiwan. Topics include use of the Internet; lifelong distance learning; museums and the Internet; objectives of the science museum; funding; categories of exhibitions; analysis of Web users; homepage characteristics; graphics and the effect on speed; and future…
NASA Technical Reports Server (NTRS)
Stow, D. A.; Estes, J. E.; Mertz, F. C.
1981-01-01
A learning kit is an essential part of any remote sensing workshop, course, or in-house training program to provide the "hands-on" experience of working with remotely sensed imagery. This is the objective of laboratory and field exercises as well as the reason behind the production of imagery/map kits. The way in which these learning kits (containing conventional remotely sensed and collateral data products) are put together is described and some concerns that influence the creation of learning kits are discussed. These include budgetary constraints, number of imagery types, and number of collateral data types.
Unintended knowledge learnt in primary science practical lessons
NASA Astrophysics Data System (ADS)
Park, Jisun; Abrahams, Ian; Song, Jinwoong
2016-11-01
This study explored the different kinds of unintended learning in primary school practical science lessons. In this study, unintended learning has been defined as student learning that was found to occur that was not included in the teachers learning objectives for that specific lesson. A total of 22 lessons, taught by five teachers in Korean primary schools with 10- to 12-year-old students, were audio-and video recorded. Pre-lesson interviews with the teachers were conducted to ascertain their intended learning objectives. Students were asked to write short memos after the lesson about what they learnt. Post-lesson interviews with students and teachers were undertaken. What emerged was that there were three types of knowledge that students learnt unintentionally: factual knowledge gained by phenomenon-based reasoning, conceptual knowledge gained by relation- or model-based reasoning, and procedural knowledge acquired by practice. Most unintended learning found in this study fell into the factual knowledge and only a few cases of conceptual knowledge were found. Cases of both explicit procedural knowledge and implicit procedural knowledge were found. This study is significant in that it suggests how unintended learning in practical work can be facilitated as an educative opportunity for meaningful learning by exploring what and how students learnt.
The influence of personality on neural mechanisms of observational fear and reward learning
Hooker, Christine I.; Verosky, Sara C.; Miyakawa, Asako; Knight, Robert T.; D’Esposito, Mark
2012-01-01
Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning. PMID:18573512
Impaired associative learning in schizophrenia: behavioral and computational studies
Diwadkar, Vaibhav A.; Flaugher, Brad; Jones, Trevor; Zalányi, László; Ujfalussy, Balázs; Keshavan, Matcheri S.
2008-01-01
Associative learning is a central building block of human cognition and in large part depends on mechanisms of synaptic plasticity, memory capacity and fronto–hippocampal interactions. A disorder like schizophrenia is thought to be characterized by altered plasticity, and impaired frontal and hippocampal function. Understanding the expression of this dysfunction through appropriate experimental studies, and understanding the processes that may give rise to impaired behavior through biologically plausible computational models will help clarify the nature of these deficits. We present a preliminary computational model designed to capture learning dynamics in healthy control and schizophrenia subjects. Experimental data was collected on a spatial-object paired-associate learning task. The task evinces classic patterns of negatively accelerated learning in both healthy control subjects and patients, with patients demonstrating lower rates of learning than controls. Our rudimentary computational model of the task was based on biologically plausible assumptions, including the separation of dorsal/spatial and ventral/object visual streams, implementation of rules of learning, the explicit parameterization of learning rates (a plausible surrogate for synaptic plasticity), and learning capacity (a plausible surrogate for memory capacity). Reductions in learning dynamics in schizophrenia were well-modeled by reductions in learning rate and learning capacity. The synergy between experimental research and a detailed computational model of performance provides a framework within which to infer plausible biological bases of impaired learning dynamics in schizophrenia. PMID:19003486
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-02-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.
Abdul Ghaffar Al-Shaibani, Tarik A; Sachs-Robertson, Annette; Al Shazali, Hafiz O; Sequeira, Reginald P; Hamdy, Hosam; Al-Roomi, Khaldoon
2003-07-01
A problem-based learning strategy is used for curriculum planning and implementation at the Arabian Gulf University, Bahrain. Problems are constructed in a way that faculty-set objectives are expected to be identified by students during tutorials. Students in small groups, along with a tutor functioning as a facilitator, identify learning issues and define their learning objectives. We compared objectives identified by student groups with faculty-set objectives to determine extent of congruence, and identified factors that influenced students' ability at identifying faculty-set objectives. Male and female students were segregated and randomly grouped. A faculty tutor was allocated for each group. This study was based on 13 problems given to entry-level medical students. Pooled objectives of these problems were classified into four categories: structural, functional, clinical and psychosocial. Univariate analysis of variance was used for comparison, and a p > 0.05 was considered significant. The mean of overall objectives generated by the students was 54.2%, for each problem. Students identified psychosocial learning objectives more readily than structural ones. Female students identified more psychosocial objectives, whereas male students identified more of structural objectives. Tutor characteristics such as medical/non-medical background, and the years of teaching were correlated with categories of learning issues identified. Students identify part of the faculty-set learning objectives during tutorials with a faculty tutor acting as a facilitator. Students' gender influences types of learning issues identified. Content expertise of tutors does not influence identification of learning needs by students.
NASA Astrophysics Data System (ADS)
Harrington, Philip S.
2003-07-01
Your Passport to the Universe The night sky is alive with many wonders--distant planets, vast star clusters, glowing nebulae, and expansive galaxies, all waiting to be explored. Let respected astronomy writer Philip Harrington introduce you to the universe in Star Watch, a complete beginner's guide to locating, observing, and understanding these celestial objects. You'll start by identifying the surface features of the Moon, the banded cloud tops of Jupiter, the stunning rings of Saturn, and other members of our solar system. Then you'll venture out beyond our solar system, where you'll learn tips and tricks for finding outstanding deep-sky objects from stars to galaxies, including the entire Messier catalog--a primary goal of every serious beginner. Star Watch features a detailed physical description of each target, including size, distance, and structure, as well as concise directions for locating the objects, handy finder charts, hints on the best times to view each object, and descriptions of what you'll really see through a small telescope or binoculars and with the naked eye. Star Watch will transport you to the farthest depths of space--and return you as a well-traveled, experienced stargazer.
NASA Astrophysics Data System (ADS)
Reis, Itamar; Poznanski, Dovi; Baron, Dalya; Zasowski, Gail; Shahaf, Sahar
2018-05-01
In this work, we apply and expand on a recently introduced outlier detection algorithm that is based on an unsupervised random forest. We use the algorithm to calculate a similarity measure for stellar spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We show that the similarity measure traces non-trivial physical properties and contains information about complex structures in the data. We use it for visualization and clustering of the data set, and discuss its ability to find groups of highly similar objects, including spectroscopic twins. Using the similarity matrix to search the data set for objects allows us to find objects that are impossible to find using their best-fitting model parameters. This includes extreme objects for which the models fail, and rare objects that are outside the scope of the model. We use the similarity measure to detect outliers in the data set, and find a number of previously unknown Be-type stars, spectroscopic binaries, carbon rich stars, young stars, and a few that we cannot interpret. Our work further demonstrates the potential for scientific discovery when combining machine learning methods with modern survey data.
Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries
ERIC Educational Resources Information Center
Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han
2009-01-01
The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…
Study on process evaluation model of students' learning in practical course
NASA Astrophysics Data System (ADS)
Huang, Jie; Liang, Pei; Shen, Wei-min; Ye, Youxiang
2017-08-01
In practical course teaching based on project object method, the traditional evaluation methods include class attendance, assignments and exams fails to give incentives to undergraduate students to learn innovatively and autonomously. In this paper, the element such as creative innovation, teamwork, document and reporting were put into process evaluation methods, and a process evaluation model was set up. Educational practice shows that the evaluation model makes process evaluation of students' learning more comprehensive, accurate, and fairly.
Access to oral health care services among adults with learning disabilities: a scoping review
Naseem, Mustafa; Shah, Altaf H; Khiyani, Muhammad Faheem; Khurshid, Zohaib; Zafar, Muhammad Sohail; Gulzar, Shabnam; AlJameel, AlBandary H.; Khalil, Hesham S.
2016-01-01
Summary Background The prevalence of oral diseases including dental caries and periodontal conditions is remarkably higher in people with disabilities. The provision of accessible oral health services for people with learning disabilities may be challenging. Objectives The objectives of the review were to identify barriers in accessing oral health care that persists within society, enabling or disabling people with learning disabilities. Methods Using the Arksey O’Malley framework, a scoping review was conducted on PubMed/Medline, OVIDSP, and EMBASE. Studies were evaluated and short-listed based on the inclusion criteria, which consisted of: (1) study participants or population with learning disabilities, (2) aged 16 years or over, (3) reporting on access to oral health services, (4) published in the English language. Those that justified the inclusion criteria were carefully chosen after a blind peer-reviewed process when relevance and quality were debated. Results Nine studies were eventually included from searches. Tabulation of data was done under the heading of study type, outcomes, the year of publication and patient selection. The majority of studies provided a biomedical overview of access for adults with learning disabilities. Conclusions The concept of access for people with disability is still ill-defined and obscure. Access to oral health care and needs of people with learning disabilities are complex and multi-facet. PMID:28149451
Dynamic Learning Objects to Teach Java Programming Language
ERIC Educational Resources Information Center
Narasimhamurthy, Uma; Al Shawkani, Khuloud
2010-01-01
This article describes a model for teaching Java Programming Language through Dynamic Learning Objects. The design of the learning objects was based on effective learning design principles to help students learn the complex topic of Java Programming. Visualization was also used to facilitate the learning of the concepts. (Contains 1 figure and 2…
A Framework for the Flexible Content Packaging of Learning Objects and Learning Designs
ERIC Educational Resources Information Center
Lukasiak, Jason; Agostinho, Shirley; Burnett, Ian; Drury, Gerrard; Goodes, Jason; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper presents a platform-independent method for packaging learning objects and learning designs. The method, entitled a Smart Learning Design Framework, is based on the MPEG-21 standard, and uses IEEE Learning Object Metadata (LOM) to provide bibliographic, technical, and pedagogical descriptors for the retrieval and description of learning…
Semantic and phonological schema influence spoken word learning and overnight consolidation.
Havas, Viktória; Taylor, Jsh; Vaquero, Lucía; de Diego-Balaguer, Ruth; Rodríguez-Fornells, Antoni; Davis, Matthew H
2018-06-01
We studied the initial acquisition and overnight consolidation of new spoken words that resemble words in the native language (L1) or in an unfamiliar, non-native language (L2). Spanish-speaking participants learned the spoken forms of novel words in their native language (Spanish) or in a different language (Hungarian), which were paired with pictures of familiar or unfamiliar objects, or no picture. We thereby assessed, in a factorial way, the impact of existing knowledge (schema) on word learning by manipulating both semantic (familiar vs unfamiliar objects) and phonological (L1- vs L2-like novel words) familiarity. Participants were trained and tested with a 12-hr intervening period that included overnight sleep or daytime awake. Our results showed (1) benefits of sleep to recognition memory that were greater for words with L2-like phonology and (2) that learned associations with familiar but not unfamiliar pictures enhanced recognition memory for novel words. Implications for complementary systems accounts of word learning are discussed.
Object Oriented Learning Objects
ERIC Educational Resources Information Center
Morris, Ed
2005-01-01
We apply the object oriented software engineering (OOSE) design methodology for software objects (SOs) to learning objects (LOs). OOSE extends and refines design principles for authoring dynamic reusable LOs. Our learning object class (LOC) is a template from which individualised LOs can be dynamically created for, or by, students. The properties…
ERIC Educational Resources Information Center
Niemann, Katja; Wolpers, Martin
2015-01-01
In this paper, we introduce a new way of detecting semantic similarities between learning objects by analysing their usage in web portals. Our approach relies on the usage-based relations between the objects themselves rather then on the content of the learning objects or on the relations between users and learning objects. We then take this new…
Mau, Wilfried; Liebl, Max Emanuel; Deck, Ruth; Lange, Uwe; Smolenski, Ulrich Christian; Walter, Susanne; Gutenbrunner, Christoph
2017-12-01
Since the first publication of learning objectives for the interdisciplinary subject "Rehabilitation, Physical Medicine, Naturopathic Treatment" in undergraduate medical education in 2004 a revision is reasonable due to heterogenous teaching programmes in the faculties and the introduction of the National Competence Based Catalogue of Learning Objectives in Medicine as well as the "Masterplan Medical Education 2020". Therefore the German Society of Rehabilitation Science and the German Society of Physical Medicine and Rehabilitation started a structured consensus process using the DELPHI-method to reduce the learning objectives and arrange them more clearly. Objectives of particular significance are emphasised. All learning objectives are assigned to the cognitive and methodological level 1 or to the action level 2. The learning objectives refer to the less detailed National Competence Based Catalogue of Learning Objectives in Medicine. The revised learning objectives will contribute to further progress in competence based and more homogenous medical teaching in core objectives of Rehabilitation, Physical Medicine, and Naturopathic Treatment in the faculties. © Georg Thieme Verlag KG Stuttgart · New York.
Visualization: a tool for enhancing students' concept images of basic object-oriented concepts
NASA Astrophysics Data System (ADS)
Cetin, Ibrahim
2013-03-01
The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey including open-ended questions, which was administered to the participants. Follow-up interviews with 12 randomly selected students were conducted to explore their answers to the survey in depth. The results of the first part of the research were utilized to construct visualization scenarios. The students used these scenarios to develop animations using Flash software. The study found that most of the students experienced difficulties in learning object-oriented notions. Overdependence on code-writing practice and examples and incorrectly learned analogies were determined to be the sources of their difficulties. Moreover, visualization was found to be a promising approach in facilitating students' concept images of basic object-oriented notions. The results of this study have implications for researchers and practitioners when designing programming instruction.
NASA Astrophysics Data System (ADS)
Shih, D.-T.; Lin, C. L.; Tseng, C.-Y.
2015-08-01
This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of "The Digital ARt/ARchitecture Project". The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, "3D AR for Hukou Old " and "Hsinchu County History Museum AR Tour" which are in form of augmented reality (AR). By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in Hsinchu County.
All Tapped Out: Touchscreen Interactivity and Young Children’s Word Learning
Russo-Johnson, Colleen; Troseth, Georgene; Duncan, Charlotte; Mesghina, Almaz
2017-01-01
Touchscreen devices differ from passive screen media in promoting physical interaction with events on the screen. Two studies examined how young children’s screen-directed actions related to self-regulation (Study 1) and word learning (Study 2). In Study 1, 30 2-year-old children’s tapping behaviors during game play were related to their self-regulation, measured using Carlson’s snack task: girls and children with high self-regulation tapped significantly less during instruction portions of an app (including object labeling events) than did boys and children with low self-regulation. Older preschoolers (N = 47, aged 4–6 years) tapped significantly less during instruction than 2-year-olds did. Study 2 explored whether the particular way in which 170 children (2–4 years of age) interacted with a touchscreen app affected their learning of novel object labels. Conditions in which children tapped or dragged a named object to move it across the screen required different amounts of effort and focus, compared to a non-interactive (watching) condition. Age by sex interactions revealed a particular benefit of dragging (a motorically challenging behavior) for preschool girls’ learning compared to that of boys, especially for girls older than age 2. Boys benefited more from watching than dragging. Children from low socioeconomic status families learned more object names when dragging objects versus tapping them, possibly because tapping is a prepotent response that does not require thoughtful attention. Parents and industry experts should consider age, sex, self-regulation, and the physical requirements of children’s engagement with touchscreens when designing and using educational content. PMID:28446895
Approaching Academic Digital Content Management.
ERIC Educational Resources Information Center
Acker, Stephen R.
2002-01-01
Discusses digital content management in higher education. Highlights include learning objects that make content more modular so it can be used in other courses or by other institutions; and a system at Ohio State University for content management that includes the creation of learner profiles. (LRW)
Hybrid Multiagent System for Automatic Object Learning Classification
NASA Astrophysics Data System (ADS)
Gil, Ana; de La Prieta, Fernando; López, Vivian F.
The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.
Kim, Bumhwi; Ban, Sang-Woo; Lee, Minho
2013-10-01
Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Extended Relation Metadata for SCORM-Based Learning Content Management Systems
ERIC Educational Resources Information Center
Lu, Eric Jui-Lin; Horng, Gwoboa; Yu, Chia-Ssu; Chou, Ling-Ying
2010-01-01
To increase the interoperability and reusability of learning objects, Advanced Distributed Learning Initiative developed a model called Content Aggregation Model (CAM) to describe learning objects and express relationships between learning objects. However, the suggested relations defined in the CAM can only describe structure-oriented…
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
Age-related impairments in active learning and strategic visual exploration.
Brandstatt, Kelly L; Voss, Joel L
2014-01-01
Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.
Perceptual Learning and Attention: Reduction of Object Attention Limitations with Practice
Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin
2012-01-01
Perceptual learning has widely been claimed to be attention driven; attention assists in choosing the relevant sensory information and attention may be necessary in many cases for learning. In this paper, we focus on the interaction of perceptual learning and attention – that perceptual learning can reduce or eliminate the limitations of attention, or, correspondingly, that perceptual learning depends on the attention condition. Object attention is a robust limit on performance. Two attributes of a single attended object may be reported without loss, while the same two attributes of different objects can exhibit a substantial dual-report deficit due to the sharing of attention between objects. The current experiments document that this fundamental dual-object report deficit can be reduced, or eliminated, through perceptual learning that is partially specific to retinal location. This suggests that alternative routes established by practice may reduce the competition between objects for processing resources. PMID:19796653
Mathiesen, Ole; Hägi-Pedersen, Daniel; Skovgaard, Lene Theil; Østergaard, Doris; Engbaek, Jens; Gätke, Mona Ring
2017-01-01
Background Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel. A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. Objective The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff’s use of objective neuromuscular monitoring and the incidence of residual neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. Methods In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff’s knowledge and skills, patient care practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit as well as a multiple-choice test to assess knowledge. The e-learning module was developed based on a needs assessment process, including focus group interviews, surveys, and expert opinions. Results The e-learning module was implemented in 6 anesthesia departments on 21 November 2016. Currently, we are collecting postintervention data. The final dataset will include data from more than 10,000 anesthesia procedures. We expect to publish the results in late 2017 or early 2018. Conclusions With a dataset consisting of thousands of general anesthesia procedures, the INVERT study will assess whether an e-learning module can increase anesthetists’ use of neuromuscular monitoring. Trial Registration Clinicaltrials.gov NCT02925143; https://clinicaltrials.gov/ct2/show/NCT02925143 (Archived by WebCite® at http://www.webcitation.org/6s50iTV2x) PMID:28986337
Learning while Babbling: Prelinguistic Object-Directed Vocalizations Indicate a Readiness to Learn
ERIC Educational Resources Information Center
Goldstein, Michael H.; Schwade, Jennifer; Briesch, Jacquelyn; Syal, Supriya
2010-01-01
Two studies illustrate the functional significance of a new category of prelinguistic vocalizing--object-directed vocalizations (ODVs)--and show that these sounds are connected to learning about words and objects. Experiment 1 tested 12-month-old infants' perceptual learning of objects that elicited ODVs. Fourteen infants' vocalizations were…
Team-Based Learning in US Colleges and Schools of Pharmacy
Copeland, Jeffrey; Franks, Andrea S.; Karimi, Reza; McCollum, Marianne; Riese, David J.; Lin, Anne Y.F.
2013-01-01
Objective. To characterize the use of team-based learning (TBL) in US colleges and schools of pharmacy, including factors that may affect implementation and perceptions of faculty members regarding the impact of TBL on educational outcomes. Methods. Respondents identified factors that inhibit or enable TBL use and its impact on student learning. Results were stratified by type of institution (public/private), class size, and TBL experience. Results. Sixty-nine of 100 faculty members (69%) representing 43 (86%) institutions responded. Major factors considered to enable TBL implementation included a single campus and student and administration buy-in. Inhibiting factors included distant campuses, faculty resistance, and lack of training. Compared with traditional lectures, TBL is perceived to enhance student engagement, improve students’ preparation for class, and promote achievement of course outcomes. In addition, TBL is perceived to be more effective than lectures at fostering learning in all 6 domains of Bloom’s Taxonomy. Conclusions. Despite potential implementation challenges, faculty members perceive that TBL improves student engagement and learning. PMID:23966718
ERIC Educational Resources Information Center
Ärlemalm-Hagsér, Eva
2017-01-01
Workplace-based learning experiences are integral to early childhood teacher education. In Sweden, the objectives of early childhood teacher education programmes require students to develop knowledge and skills about education for sustainability (EfS), in accordance with national policy documents. This includes how to work with EfS in everyday…
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)
Getting Things Done. A Learning Package for Process Skills. An Occasional Paper.
ERIC Educational Resources Information Center
Taylor, Max
This manual is designed to help teachers and tutors implement a 4-day modular course in the skills and processes necessary to get things done. The aims and content of the course are described. A course summary is provided along with a model course program that includes parallel lists of objectives, suggested learning activities and text materials,…
ERIC Educational Resources Information Center
Wisedsang, Dheerayut; Chookhampaeng, Chowwalit; Noiwangklang, Pitak
2015-01-01
The objective of this research and development was to develop a curriculum for enhancing grade 7 students' aesthetic sense and substantial art learning. There were 2 phases of the study consisting of: (i) the study of basic information about art aesthetics, including the attributes, approaches, theories, problems, and needs, (ii) the development…
ERIC Educational Resources Information Center
Jones, Stephanie M.; Brown, Joshua L.; Hoglund, Wendy L. G.; Aber, J. Lawrence
2010-01-01
Objective: To report experimental impacts of a universal, integrated school-based intervention in social-emotional learning and literacy development on change over 1 school year in 3rd-grade children's social-emotional, behavioral, and academic outcomes. Method: This study employed a school-randomized, experimental design and included 942…
Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J
2005-01-01
A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be combined with other approaches to enhance and enliven classroom discussions in the veterinary curriculum.
Machine learning-based coreference resolution of concepts in clinical documents
Ware, Henry; Mullett, Charles J; El-Rawas, Oussama
2012-01-01
Objective Coreference resolution of concepts, although a very active area in the natural language processing community, has not yet been widely applied to clinical documents. Accordingly, the 2011 i2b2 competition focusing on this area is a timely and useful challenge. The objective of this research was to collate coreferent chains of concepts from a corpus of clinical documents. These concepts are in the categories of person, problems, treatments, and tests. Design A machine learning approach based on graphical models was employed to cluster coreferent concepts. Features selected were divided into domain independent and domain specific sets. Training was done with the i2b2 provided training set of 489 documents with 6949 chains. Testing was done on 322 documents. Results The learning engine, using the un-weighted average of three different measurement schemes, resulted in an F measure of 0.8423 where no domain specific features were included and 0.8483 where the feature set included both domain independent and domain specific features. Conclusion Our machine learning approach is a promising solution for recognizing coreferent concepts, which in turn is useful for practical applications such as the assembly of problem and medication lists from clinical documents. PMID:22582205
Wang, Zhenshan; Phan, Trongha; Storm, Daniel R.
2011-01-01
Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3−/− mice for several forms of learning and memory. Here, we report that AC3−/− mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociated passive avoidance (TDPA). Since AC3 is exclusively expressed in primary cilia we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory including extinction of contextual fear conditioning. PMID:21490195
Wang, Zhenshan; Phan, Trongha; Storm, Daniel R
2011-04-13
Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.
An impoverished machine: challenges to human learning and instructional technology.
Taraban, Roman
2008-08-01
Many of the limitations to human learning and processing identified by cognitive psychologists over the last 50 years still hold true, including computational constraints, low learning rates, and unreliable processing. Instructional technology can be used in classrooms and in other learning contexts to address these limitations to learning. However, creating technological innovations is not enough. As part of psychological science, the development and assessment of instructional systems should be guided by theories and practices within the discipline. The technology we develop should become an object of research like other phenomena that are studied. In the present article, I present an informal account of my own work in assessing instructional technology for engineering thermodynamics to show not only the benefits, but also the limitations, in studying the technology we create. I conclude by considering several ways of advancing the development of instructional technology within the SCiP community, including interdisciplinary research and envisioning learning contexts that differ radically from traditional learning focused on lectures and testing.
Introductory Industrial Technology I. Laboratory Activities.
ERIC Educational Resources Information Center
Towler, Alan L.; And Others
This guide contains 36 learning modules intended for use by technology teachers and students in grades 7 and 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced,…
Introductory Industrial Technology II. Laboratory Activities.
ERIC Educational Resources Information Center
Towler, Alan L.
This guide contains 29 learning modules intended for use by technology teachers and students in grade 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced, equipment/supplies,…
Spallek, Heiko; von Bergmann, HsingChi
2014-12-01
This Point/Counterpoint article discusses the pros and cons of deploying one aspect of instructional technology in dental education: the use of laptops in the classroom. Two opposing viewpoints, written by different authors, evaluate the arguments. Viewpoint 1 argues that laptops in classrooms can be a catalyst for rapid curricular advancement and prepare dental graduates for the digital age of dentistry. As dental education is not limited to textual information, but includes skill development in spatial relationships and hands-on training, technology can play a transformative role in students' learning. Carefully implemented instructional technology can enhance student motivation when it transforms students from being the objects of teaching to the subjects of learning. Ubiquitous access to educational material allows for just-in-time learning and can overcome organizational barriers when, for instance, introducing interprofessional education. Viewpoint 2 argues that, in spite of widespread agreement that instructional technology leads to curricular innovation, the notion of the use of laptops in classrooms needs to be deconstructed and rethought when effective learning outcomes are sought. Analyzing the purpose, pedagogy, and learning product while applying lessons learned from K-12 implementation leads to a more complex picture of laptop integration in dental classrooms and forms the basis for questioning the value of such usage. For laptop use to contribute to student learning, rather than simply providing opportunity for students to take notes and access the Internet during class, this viewpoint emphasizes that dental educators need to think carefully about the purpose of this technology and to develop appropriate pedagogical strategies to achieve their objectives. The two viewpoints agree that significant faculty development efforts should precede any introduction of technology into the educational process and that technology alone cannot change education. While the first viewpoint emphasizes the pivotal role of technology in bringing dental education into the contemporary digital world, the second viewpoint focuses on challenges surrounding laptop usage in the classroom including the alignment of instructional methods with learning objectives.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
A Data Mining Approach to Improve Re-Accessibility and Delivery of Learning Knowledge Objects
ERIC Educational Resources Information Center
Sabitha, Sai; Mehrotra, Deepti; Bansal, Abhay
2014-01-01
Today Learning Management Systems (LMS) have become an integral part of learning mechanism of both learning institutes and industry. A Learning Object (LO) can be one of the atomic components of LMS. A large amount of research is conducted into identifying benchmarks for creating Learning Objects. Some of the major concerns associated with LO are…
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso
2017-01-01
SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522
Grossberg, Stephen; Markowitz, Jeffrey; Cao, Yongqiang
2011-12-01
Visual object recognition is an essential accomplishment of advanced brains. Object recognition needs to be tolerant, or invariant, with respect to changes in object position, size, and view. In monkeys and humans, a key area for recognition is the anterior inferotemporal cortex (ITa). Recent neurophysiological data show that ITa cells with high object selectivity often have low position tolerance. We propose a neural model whose cells learn to simulate this tradeoff, as well as ITa responses to image morphs, while explaining how invariant recognition properties may arise in stages due to processes across multiple cortical areas. These processes include the cortical magnification factor, multiple receptive field sizes, and top-down attentive matching and learning properties that may be tuned by task requirements to attend to either concrete or abstract visual features with different levels of vigilance. The model predicts that data from the tradeoff and image morph tasks emerge from different levels of vigilance in the animals performing them. This result illustrates how different vigilance requirements of a task may change the course of category learning, notably the critical features that are attended and incorporated into learned category prototypes. The model outlines a path for developing an animal model of how defective vigilance control can lead to symptoms of various mental disorders, such as autism and amnesia. Copyright © 2011 Elsevier Ltd. All rights reserved.
McVicar, Andrew; Andrew, Sharon; Kemble, Ross
2014-04-01
The learning of biosciences is well-documented to be problematic as students find the subjects amongst the most difficult and anxiety-provoking of their pre-registration programme. Studies suggest that learning consequently is not at the level anticipated by the profession. Curriculum innovations might improve the situation but the effectiveness of applied interventions has not been evaluated. To undertake an integrative review and narrative synthesis of curriculum interventions and evaluate their effect on the learning of biosciences by pre-registration student nurses. Review methods A systematic search of electronic databases CINAHL, Medline, British Nursing Index and Google Scholar for empirical research studies was designed to evaluate the introduction of a curriculum intervention related to the biosciences, published in 1990-2012. Studies were evaluated for design, receptivity of the intervention and impact on bioscience learning. The search generated fourteen papers that met inclusion criteria. Seven studies introduced on-line learning packages, five an active learning format into classroom teaching or practical sessions, and two applied Audience Response Technology as an exercise in self-testing and reflection. Almost all studies reported a high level of student satisfaction, though in some there were access/utilization issues for students using on-line learning. Self-reporting suggested positive experiences, but objective evaluation suggests that impacts on learning were variable and unconvincing even where an effect on course progress was identified. Adjunct on-line programmes also show promise for supporting basic science or language acquisition. Published studies of curriculum interventions, including on-line support, have focused too heavily on the perceived benefit to students rather than objective measures of impact on actual learning. Future studies should include rigorous assessment evaluations within their design if interventions are to be adopted to reduce the 'bioscience problem'. © 2013.
A course designed for undergraduate biochemistry students to learn about cultural diversity issues.
Benore-Parsons, Marilee
2006-09-01
Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science majors to learn about diversity issues in a context that would be relevant to them, entitled "Diversity Issues in Health Care: Treatment and Research." Learning objectives included: developing awareness of current topics concerning diversity issues in health care; learning how research is carried out in health care, including pharmaceutical research, clinical trials, and social research; and learning about health care practices. Lectures and projects included readings on laboratory and clinical research, as well as literature on legal, race, gender, language, age, and income issues in health care research and clinical practice. Exams, papers, and a service learning project were used to determine the final course grade. Assessment indicated student understanding of diversity issues was improved, and the material was relevant. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Guler, Cetin; Altun, Arif
2010-01-01
Learning objects (LOs) can be defined as resources that are reusable, digital with the aim of fulfilling learning objectives (or expectations). Educators, both at the individual and institutional levels, are cautioned about the fact that LOs are to be processed through a proper development process. Who should be involved in the LO development…
Learning to learn causal models.
Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B
2010-09-01
Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.
Using a Review Book to Improve Knowledge Retention
ERIC Educational Resources Information Center
Elmas, Ridvan; Aydogdu, Bülent; Saban, Yakup
2017-01-01
This study has two primary objectives. The first one is preparation of an efficient review book including a series of activities, which will help fourth grade students exercise what they learned in the elementary science course in a year. The second objective is examination of the prepared book in the framework of student and teacher opinions. In…
Remembering Math: The Design of Digital Learning Objects to Spark Professional Learning
ERIC Educational Resources Information Center
Halverson, Richard; Wolfenstein, Moses; Williams, Caroline C.; Rockman, Charles
2009-01-01
This article describes how the design of digital learning objects can spark professional learning. The challenge was to build learning objects that would help experienced special education teachers, who had been teaching in math classes, to demonstrate their proficiency in middle and secondary school mathematics on the PRAXIS examination. While…
Collaborative Production of Learning Objects on French Literary Works Using the LOC Software
ERIC Educational Resources Information Center
Penman, Christine
2015-01-01
This case study situates the collaborative design of learning objects (interactive online learning material) using the LOC (Learning Object Creator) software in the context of language activities external to the core learning activities of language students at a UK university. It describes the creative and pedagogical processes leading to the…
Learning Objects and Virtual Learning Environments Technical Evaluation Criteria
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Dagiene, Valentina
2009-01-01
The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…
A Case Study: Developing Learning Objects with an Explicit Learning Design
ERIC Educational Resources Information Center
Watson, Julie
2010-01-01
In learning object design an emphasis on visual attractiveness and high technological impact has seemed to persist while content frequently reflects a lack of clear pedagogical basis for the application of learning objects for online learning. Most apparent is the absence of supportive scaffolding for the student user; interactivity built on an…
Jafari, Javad; Karimi Moonaghi, Hosein; Zary, Nabil; Masiello, Italo
2016-01-01
Objective The objective of this article is to explore the educational needs and design aspects of personalised internet-enabled education for patients with diabetes in Iran. Design Data were collected using semistructured interviews and then qualitatively analysed using inductive content analysis. Participants 9 patients with type 2 diabetes were included. Inclusion criteria were access to and knowledge on how to use the internet. The selection ensured representation based on gender, age, occupation and educational background. Setting The sample population was patients with diabetes who were admitted to an outpatient diabetes clinic in Mashhad, a large city of Iran with about 3 million inhabitants. Results 4 core categories emerged from the data: (1) seeking knowledge about diabetes, including specific knowledge acquisition, patient's interactions and learning requirements; (2) teaching and learning, including using different teaching methods and different ways to learn about the disease; (3) facilitators, including internet and mobile phone use to learn about the disease; and (4) barriers, including lack of internet access, uncertainty of access to the internet and lack of website in the local language and also perceived cultural barriers, such as patients' fears of the internet, lack of time and awareness. Conclusions This study provides a better understanding of the patient's educational expectations and technical needs in relation to internet-enabled education. This knowledge will inform the development of functional mock-ups in the next research phase using a design-based research approach in order to design internet-enabled patient education for self-management of diabetes. PMID:27799245
Remedial training for the radiology resident: a template for optimization of the learning plan.
Mar, Colin; Chang, Silvia; Forster, Bruce
2015-02-01
All radiology residency programs should strive for the early identification of individuals in need of remedial training and have an approach ready to address this situation. This article provides a template for a step-by-step approach which is team based. It includes definition of the learning or performance issues, creation of suitable learning objectives and learning plan, facilitation of feedback and assessment, and definition of outcomes. Using such a template will assist the resident in returning to the path toward a safe and competent radiologist. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Student-Generated Multimedia Projects in the Classroom.
ERIC Educational Resources Information Center
Green, Tim; Brown, Abbie H.
2002-01-01
Explains how student-generated, computer-based multimedia projects can be meaningful learning activities to integrate into the K-12 curriculum. Describes three phases: design, including goals and objectives of the project and use of the finished product; production, including choosing multimedia software, prototyping, and usability testing; and…
The Teaching of Electromagnetic Induction at Sixth Form Level
ERIC Educational Resources Information Center
Archenhold, W. F.
1974-01-01
Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…
ERIC Educational Resources Information Center
Evans, Dina
The cultural diversity of Japan can provide a rewarding learning experience for children of all grade levels. This teaching unit includes resources and ideas for the study of Japanese society, art, folklore, and poetry. Included among the instructional objectives are: (1) children will compare U.S. lifestyles with Japanese lifestyles by reading…
Colomer, Carla; Berenguer, Carmen; Roselló, Belén; Baixauli, Inmaculada; Miranda, Ana
2017-01-01
Children diagnosed with attention deficit/hyperactivity disorder (ADHD) are at risk of experiencing lower academic achievement compared to their peers without ADHD. However, we have a limited understanding of the mechanisms underlying this association. Both the symptoms of the disorder and the executive functions can negatively influence learning behaviors, including motivation, attitude toward learning, or persistence, key aspects of the learning process. The first objective of this study was to compare different components of learning behaviors in children diagnosed with ADHD and typically developing (TD) children. The second objective was to analyze the relationships among learning behaviors, executive functioning, and symptoms of hyperactivity/impulsivity in both groups. Participants were 35 children diagnosed with ADHD and 37 with TD (7–11 years old), matched on age and IQ. The teachers filled out the Behavior Rating Inventory of Executive Function (BRIEF) and the Learning Behaviors Scale, which evaluates Competence/motivation, Attitude toward learning, Attention/persistence, and Strategy/flexibility. In addition, parents and teachers filled out the DSM-5 diagnostic criteria for ADHD. ANOVAs showed significant differences between children with ADHD and TD children on all the learning behaviors. Moreover, in both the ADHD and TD groups, the behavioral regulation index of the BRIEF predicted the search for strategies, and the metacognition index was a good predictor of motivation. However, attitude toward learning was predicted by metacognition only in the group with ADHD. Therefore, the executive functions had greater power than the typical symptoms of inattention and hyperactivity/impulsivity in predicting learning behaviors of children with ADHD. The findings are in line with other studies that support the influence of the executive functions on performance, highlighting the importance of including their development as a top priority from early ages in the school setting in order to strengthen learning behaviors. PMID:28446885
ERIC Educational Resources Information Center
Guthrie, Patricia Ann
2010-01-01
In recent years, learning objects have emerged as an instructional tool for teachers. Digital libraries and collections provide teachers with free or fee-base access to a variety of learning objects from photos and famous speeches to Flash animations and interactive Java Applets. Learning objects offer opportunities for students to interact with…
ERIC Educational Resources Information Center
Alvarado, Amy Edmonds; Herr, Patricia R.
This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…
Beyond Ethical Frameworks: Using Moral Experimentation in the Engineering Ethics Classroom.
Walling, Olivia
2015-12-01
Although undergraduate engineering ethics courses often include the development of moral sensitivity as a learning objective and the use of active learning techniques, teaching centers on the transmission of cognitive knowledge. This article describes a complementary assignment asking students to perform an ethics "experiment" on themselves that has a potential to enhance affective learning and moral imagination. The article argues that the focus on cognitive learning may not promote, and may even impair, our efforts to foster moral sensitivity. In contrast, the active learning assignments and exercises, like the ethics "experiment" discussed, offer great potential to expand the scope of instruction in engineering ethics to include ethical behavior as well as knowledge. Engineering ethics education needs to extend beyond the narrow range of human action associated with the technical work of the engineer and explore ways to draw on broader lifeworld experiences to enrich professional practice and identity.
Competition between multiple words for a referent in cross-situational word learning
Benitez, Viridiana L.; Yurovsky, Daniel; Smith, Linda B.
2016-01-01
Three experiments investigated competition between word-object pairings in a cross-situational word-learning paradigm. Adults were presented with One-Word pairings, where a single word labeled a single object, and Two-Word pairings, where two words labeled a single object. In addition to measuring learning of these two pairing types, we measured competition between words that refer to the same object. When the word-object co-occurrences were presented intermixed in training (Experiment 1), we found evidence for direct competition between words that label the same referent. Separating the two words for an object in time eliminated any evidence for this competition (Experiment 2). Experiment 3 demonstrated that adding a linguistic cue to the second label for a referent led to different competition effects between adults who self-reported different language learning histories, suggesting both distinctiveness and language learning history affect competition. Finally, in all experiments, competition effects were unrelated to participants’ explicit judgments of learning, suggesting that competition reflects the operating characteristics of implicit learning processes. Together, these results demonstrate that the role of competition between overlapping associations in statistical word-referent learning depends on time, the distinctiveness of word-object pairings, and language learning history. PMID:27087742
ERIC Educational Resources Information Center
Özdemir, Muzaffer
2016-01-01
This study investigates the relationships between the primary learning styles of students and different learning objects presented simultaneously in an online learning environment in the context of the usage levels of these objects. A total of 103 sophomores from a Turkish State University participated in the study. Felder-Solomon Index of…
Building Interoperable Learning Objects Using Reduced Learning Object Metadata
ERIC Educational Resources Information Center
Saleh, Mostafa S.
2005-01-01
The new e-learning generation depends on Semantic Web technology to produce learning objects. As the production of these components is very costly, they should be produced and registered once, and reused and adapted in the same context or in other contexts as often as possible. To produce those components, developers should use learning standards…
Stockert, Brad; Ohtake, Patricia J
2017-10-01
There is growing recognition that collaborative practice among healthcare professionals is associated with improved patient outcomes and enhanced team functioning, but development of collaborative practitioners requires interprofessional education (IPE). Immersive simulation, a clinically relevant experience that deeply engages the learner in realistic clinical environments, is used increasingly for IPE. The purpose of this study was to assess the use of immersive simulation as a strategy for IPE in physical therapist (PT) education programs. During fall 2014 and spring 2015, we contacted all 214 Commission on Accreditation in Physical Therapy Education accredited PT education programs in the United States and invited a faculty member to participate in our online survey. One hundred fourteen PT programs responded (53% response rate). Eighty responding programs (70%) identified themselves as users of immersive simulation, and 45 programs (39%) used simulation for IPE. Of these 45 programs, more than 90% included Interprofessional Education Collaborative competency learning objectives of roles/responsibilities, interprofessional communication, and teams/teamwork and 51% reported learning objectives for values/ethics for interprofessional practice. Interprofessional simulations with PT students commonly included nursing (91%). In programs using immersive simulation for IPE, 91% included debriefing and 51% included debriefing by interprofessional teams. Eighty accredited PT programs (70%) that responded to the survey use immersive simulation, and 45 programs (39%) use simulation for IPE. Most programs conduct simulations consistent with recognized best practice, including debriefing and Interprofessional Education Collaborative competency learning objectives for promoting interprofessional collaborative practice. We anticipate an increase in the use of immersive simulation for IPE as an educational strategy to comply with the revised Commission on Accreditation in Physical Therapy Education accreditation standards related to interprofessional collaborative practice that will become effective on January 1, 2018.
Kullgren, Justin; Unni, Elizabeth; Hanson, Eric
2013-01-01
Objective. To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students’ advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Design. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Assessment. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Conclusions. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy. PMID:23966724
Implementing Infrastructures for Managing Learning Objects
ERIC Educational Resources Information Center
Klemke, Roland; Ternier, Stefaan; Kalz, Marco; Specht, Marcus
2010-01-01
Making learning objects available is critical to reuse learning resources. Making content transparently available and providing added value to different stakeholders is among the goals of the European Commission's eContentplus programme. This paper analyses standards and protocols relevant for making learning objects accessible in distributed data…
Credit assignment between body and object probed by an object transportation task.
Kong, Gaiqing; Zhou, Zhihao; Wang, Qining; Kording, Konrad; Wei, Kunlin
2017-10-17
It has been proposed that learning from movement errors involves a credit assignment problem: did I misestimate properties of the object or those of my body? For example, an overestimate of arm strength and an underestimate of the weight of a coffee cup can both lead to coffee spills. Though previous studies have found signs of simultaneous learning of the object and of the body during object manipulation, there is little behavioral evidence about their quantitative relation. Here we employed a novel weight-transportation task, in which participants lift the first cup filled with liquid while assessing their learning from errors. Specifically, we examined their transfer of learning when switching to a contralateral hand, the second identical cup, or switching both hands and cups. By comparing these transfer behaviors, we found that 25% of the learning was attributed to the object (simply because of the use of the same cup) and 58% of the learning was attributed to the body (simply because of the use of the same hand). The nervous system thus seems to partition the learning of object manipulation between the object and the body.
Predictable Locations Aid Early Object Name Learning
Benitez, Viridiana L.; Smith, Linda B.
2012-01-01
Expectancy-based localized attention has been shown to promote the formation and retrieval of multisensory memories in adults. Three experiments show that these processes also characterize attention and learning in 16- to 18- month old infants and, moreover, that these processes may play a critical role in supporting early object name learning. The three experiments show that infants learn names for objects when those objects have predictable rather than varied locations, that infants who anticipate the location of named objects better learn those object names, and that infants integrate experiences that are separated in time but share a common location. Taken together, these results suggest that localized attention, cued attention, and spatial indexing are an inter-related set of processes in young children that aid in the early building of coherent object representations. The relevance of the experimental results and spatial attention for everyday word learning are discussed. PMID:22989872
2012-01-01
Objective. To evaluate preceptors’ perception of their ability to perform the Structured Practical Experiences in Pharmacy (SPEP) learning objectives through a self-assessment activity. Methods. A self-assessment instrument consisting of 28 learning objectives associated with clinic, community, and hospital pharmacy practice experiences were developed. Preceptors rated their performance ability for each of the learning objectives using a 3-point Likert scale. Results. Of the 116 preceptors, 89 (77%) completed the self-assessment survey instrument. The overall preceptor responses to the items on performance of the 28 SPEP learning objectives ranged from good to excellent. Years of experience, practice experience setting, and involvement as a SPEP or SPEP and PharmD preceptor had no influence on their self-reported capabilities. Conclusion. Most preceptors rated their ability to perform the learning objectives for the structured practical experiences in pharmacy as high. Competency areas requiring further preceptor development were identified. PMID:23193333
ERIC Educational Resources Information Center
Plummer, Carol A.
2006-01-01
Objective: The aim of this study was to explore how mothers discovered that their children had been sexually abused. The exploration included learning from whom or in what ways mothers learned about the abuse, whether there were prior suspicions, if actions were taken to determine likelihood of abuse, and the barriers to recognizing abuse. Method:…
ERIC Educational Resources Information Center
Edelstein, Richard
2014-01-01
University learning objectives and the curriculum have evolved to include more knowledge, skills and aptitudes related to the increasingly international nature of a broad range of professions and occupations. More broadly, graduates are expected to know more about the world outside their home country in order to be informed and responsible…
ERIC Educational Resources Information Center
Udeani, U. N.; Atagana, H. I.; Esiobu, G. O.
2016-01-01
The main objective of the study was to implement an action research strategy to improve the teaching and learning of biology in senior secondary schools in Nigeria. Specifically the following research questions were raised: (1) What are the levels of intellectual challenge included in the activities used for classroom and laboratory instructions?…
ERIC Educational Resources Information Center
Watson, Jacqueline
2008-01-01
The new National Framework for Religious Education (RE) suggests, for the first time in national advice on agreed syllabuses, that atheism can be included in the curriculum alongside world religions. This article counters objections to the inclusion of atheism in RE and argues that children and young people can learn from atheistic beliefs and…
ERIC Educational Resources Information Center
Crisp, Michael G.; Kable, Scott H.; Read, Justin R.; Buntine, Mark A.
2011-01-01
This paper describes an educational analysis of a first year university chemistry practical called "Investigating sugar using a home made polarimeter". The analysis follows the formalism of the Advancing Chemistry by Enhancing Learning in the Laboratory (ACELL) project, which includes a statement of education objectives, and an analysis…
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Office of Curriculum Services.
The natural science curriculum guide for gifted primary students includes a sample teaching-learning plan for an ecology unit and eight sample lesson plans. Chapter One provides an overview of the unit, a review of behavioral objectives, and a list of concepts and generalizations. The second chapter cites a teaching-learning plan dealing with such…
ERIC Educational Resources Information Center
Grimes, L. A., Jr.
The student's manual in this two-part instructional kit is designed to help students in individualized courses in bricklaying and stone masonry to tie together classroom learning and on-the-job practice. The manual includes assignments, technical information, objectives that tell what the student is to learn from each assignment, and exercise…
Hayat, Matthew J
2014-04-01
Statistics coursework is usually a core curriculum requirement for nursing students at all degree levels. The American Association of Colleges of Nursing (AACN) establishes curriculum standards for academic nursing programs. However, the AACN provides little guidance on statistics education and does not offer standardized competency guidelines or recommendations about course content or learning objectives. Published standards may be used in the course development process to clarify course content and learning objectives. This article includes suggestions for implementing and integrating recommendations given in the Guidelines for Assessment and Instruction in Statistics Education (GAISE) report into statistics education for nursing students. Copyright 2014, SLACK Incorporated.
Acceptability of the flipped classroom approach for in-house teaching in emergency medicine.
Tan, Eunicia; Brainard, Andrew; Larkin, Gregory L
2015-10-01
To evaluate the relative acceptability of the flipped classroom approach compared with traditional didactics for in-house teaching in emergency medicine. Our department changed its learning model from a 'standard' lecture-based model to a 'flipped classroom' model. The 'flipped classroom' included provided pre-session learning objectives and resources before each 2 h weekly session. In-session activities emphasised active learning strategies and knowledge application. Feedback was sought from all medical staff regarding the acceptability of the new approach using an online anonymous cross-sectional qualitative survey. Feedback was received from 49/57 (86%) medical staff. Ninety-eight per cent (48/49) of respondents preferred the flipped classroom over the traditional approach. Aspects of the flipped classroom learners liked most included case-based discussion, interaction with peers, application of knowledge, self-directed learning and small-group learning. Barriers to pre-session learning include work commitments, 'life', perceived lack of time, family commitments, exam preparation and high volume of learning materials. Reported motivational factors promoting pre-session learning include formal assessment, participation requirements, more time, less material, more clinical relevance and/or more interesting material. Case studies and 'hands-on' activities were perceived to be the most useful in-session activities. The flipped classroom shows promise as an acceptable approach to in-house emergency medicine teaching. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
ERIC Educational Resources Information Center
Armstrong, Sherry
2003-01-01
Describes an art project for high school students in which they create Aboriginal-style paintings using cotton swabs. Discusses the process of creating the works of art in detail. Includes learning objectives, art materials, and a bibliography. (CMK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong
Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant declinemore » on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.« less
NASA Astrophysics Data System (ADS)
Alseddiqi, M.; Mishra, R.; Pislaru, C.
2012-05-01
This paper diagnoses the implementation of a new engineering course entitled 'school-based learning (SBL) to work-based learning (WBL) transition module' in the Bahrain Technical and Vocational Education (TVE) learning environment. The module was designed to incorporate an innovative education and training approach with a variety of learning activities that are included in various learning case studies. Each case study was based on with learning objectives coupled with desired learning outcomes. The TVE students should meet the desired outcomes after the completion of the learning activities and assessments. To help with the implementation phase of the new module, the authors developed guidelines for each case study. The guidelines incorporated learning activities to be delivered in an integrated learning environment. The skills to be transferred were related to cognitive, affective, and technical proficiencies. The guidelines included structured instructions to help students during the learning process. In addition, technology was introduced to improve learning effectiveness and flexibility. The guidelines include learning indicators for each learning activity and were based on their interrelation with competencies to be achieved with respect to modern industrial requirements. Each learning indicator was then correlated against the type of learning environment, teaching and learning styles, examples of mode of delivery, and assessment strategy. Also, the learning activities were supported by technological features such as discussion forums for social perception and engagement and immediate feedback exercises for self-motivation. Through the developed module, TVE teachers can effectively manage the teaching and learning process as well as the assessment strategy to satisfy students' individual requirements and enable them to meet workplace requirements.
Plant Hormones: How They Affect Root Formation.
ERIC Educational Resources Information Center
Reinhard, Diana Hereda
This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…
ERIC Educational Resources Information Center
Norton, Cynthia G.; Gildensoph, Lynne H.; Phillips, Martha M.; Wygal, Deborah D.; Olson, Kurt H.; Pellegrini, John J.; Tweeten, Kathleen A.
1997-01-01
Describes the reform of an introductory biology curriculum to reverse high attrition rates. Objectives include fostering self-directed learning, emphasizing process over content, and offering laboratory experiences that model the way to acquire scientific knowledge. Teaching methods include discussion, group mentoring, laboratory sections, and…
Schools Are for All Kids. Part II: School Site Implementation. Trainer's Packet.
ERIC Educational Resources Information Center
Roger, Blair; And Others
This trainer's packet, designed to be used in conjunction with the participant's manual, was prepared for a 2-day workshop to restructure schools to embrace all children, including those with disabilities. The trainer's materials include: program objectives; masters for overhead transparencies; and descriptions of learning activities, including…
Telephone Equipment Installation and Repair Specialist (AFSC 36254).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This document contains the four volumes of an Air Force correspondence course in telephone equipment installation and repair. Each volume consists of student learning objectives, information, exercises, and answers to exercises; a volume review exercise is included for each volume. The first volume includes information about career field duties…
Roles for Technology in Collaborative Teaching.
ERIC Educational Resources Information Center
Bonvallet, Susan; De Luce, Judith
2001-01-01
Describes a collaborative upper level Latin literature course taught at a secondary school and a university that used a variety of technologies, including a MOO and e-mail. The design of this course on Plautus'"Aulularia" is discussed, including objectives, learning goals, and collaborative assignments. Argues that informed use of technology can…
ERIC Educational Resources Information Center
Wang, Tzone I; Tsai, Kun Hua; Lee, Ming Che; Chiu, Ti Kai
2007-01-01
With vigorous development of the Internet, especially the web page interaction technology, distant E-learning has become more and more realistic and popular. Digital courses may consist of many learning units or learning objects and, currently, many learning objects are created according to SCORM standard. It can be seen that, in the near future,…
Learning Object Retrieval and Aggregation Based on Learning Styles
ERIC Educational Resources Information Center
Ramirez-Arellano, Aldo; Bory-Reyes, Juan; Hernández-Simón, Luis Manuel
2017-01-01
The main goal of this article is to develop a Management System for Merging Learning Objects (msMLO), which offers an approach that retrieves learning objects (LOs) based on students' learning styles and term-based queries, which produces a new outcome with a better score. The msMLO faces the task of retrieving LOs via two steps: The first step…
NASA Astrophysics Data System (ADS)
Škoda, Petr; Palička, Andrej; Koza, Jakub; Shakurova, Ksenia
2017-06-01
The current archives of LAMOST multi-object spectrograph contain millions of fully reduced spectra, from which the automatic pipelines have produced catalogues of many parameters of individual objects, including their approximate spectral classification. This is, however, mostly based on the global shape of the whole spectrum and on integral properties of spectra in given bandpasses, namely presence and equivalent width of prominent spectral lines, while for identification of some interesting object types (e.g. Be stars or quasars) the detailed shape of only a few lines is crucial. Here the machine learning is bringing a new methodology capable of improving the reliability of classification of such objects even in boundary cases. We present results of Spark-based semi-supervised machine learning of LAMOST spectra attempting to automatically identify the single and double-peak emission of Hα line typical for Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature of interesting candidates benefited considerably from cross-matching and visualisation in the Virtual Observatory environment.
Does learning style influence academic performance in different forms of assessment?
Wilkinson, Tracey; Boohan, Mairead; Stevenson, Michael
2014-03-01
Educational research on learning styles has been conducted for some time, initially within the field of psychology. Recent research has widened to include more diverse disciplines, with greater emphasis on application. Although there are numerous instruments available to measure several different dimensions of learning style, it is generally accepted that styles differ, although the qualities of more than one style may be inherent in any one learner. But do these learning styles have a direct effect on student performance in examinations, specifically in different forms of assessment? For this study, hypotheses were formulated suggesting that academic performance is influenced by learning style. Using the Honey and Mumford Learning Style Questionnaire, learning styles of a cohort of first year medical and dental students at Queen's University Belfast were assessed. Pearson correlation was performed between the score for each of the four learning styles and the student examination results in a variety of subject areas (including anatomy) and in different types of assessments - single best answer, short answer questions and Objective Structured Clinical Examinations. In most of the analyses, there was no correlation between learning style and result and in the few cases where the correlations were statistically significant, they generally appeared to be weak. It seems therefore from this study that although the learning styles of students vary, they have little effect on academic performance, including in specific forms of assessment. © 2013 Anatomical Society.
Learning Objects--Instructional Metadata and Sequencing.
ERIC Educational Resources Information Center
Redeker, Giselher
The main focus of current discussions within the standardization process of learning technology is on economical opportunities and technical aspects of learning objects. There has been little discussion about the instructional or didactical issues. The purpose of this paper is to conceptualize a taxonomy of learning objects for the facilitation of…
The International Learning Object Metadata Survey
ERIC Educational Resources Information Center
Friesen, Norm
2004-01-01
A wide range of projects and organizations is currently making digital learning resources (learning objects) available to instructors, students, and designers via systematic, standards-based infrastructures. One standard that is central to many of these efforts and infrastructures is known as Learning Object Metadata (IEEE 1484.12.1-2002, or LOM).…
Martinez-Mier, Esperanza A; Soto-Rojas, Armando E; Stelzner, Sarah M; Lorant, Diane E; Riner, Mary E; Yoder, Karen M
2011-04-01
Many health professions students who treat Spanish-speaking patients in the United States have little concept of their culture and health related traditions. The lack of understanding of these concepts may constitute major barriers to healthcare for these patients. International service-learning experiences allow students to work directly in communities from which patients immigrate and, as a result, students gain a better understanding of these barriers. This article describes the implementation of an international, multidisciplinary, service-learning program in a dental school in the United States. The Indiana University International Service-Learning program in Hidalgo, Mexico began in 1999 as an alternative spring break travel and clinical experience for medical students, focusing on the treatment of acute health problems. Travel-related preparatory sessions were offered, and no learning or service objectives had been developed. The program has evolved to include a multidisciplinary team of dental, medical, nursing, public health and social work students and faculty. The experience is now integrated into a curriculum based on the service-learning model that allows students to use their clinical skills in real-life situations and provides structured time for reflection. The program aims to enhance teaching and foster civic responsibility in explicit partnership with the community. Preparatory sessions have evolved into a multidisciplinary graduate level course with defined learning and service objectives. PROGRAM EVALUATION METHODS: In order to assess the program's operation as perceived by students and faculty and to evaluate student's perceptions of learning outcomes, evaluation tools were developed. These tools included student and faculty evaluation questionnaires, experiential learning journals, and a strengths, weaknesses, opportunities and threats analysis. Evaluation data show that after program participation, students perceived an increase in their cultural awareness, cross-cultural communication skills and understanding of barriers and disparities faced by Latinos in the United States. Faculty evaluations offer insights into the lessons learned through the implementation process. The development of a service-learning based curriculum has posed challenges but has enriched international service experiences.
Nicklen, Peter; Keating, Jenny L; Paynter, Sophie; Storr, Michael; Maloney, Stephen
2016-01-01
Case-based learning (CBL) is an educational approach where students work in small, collaborative groups to solve problems. Computer assisted learning (CAL) is the implementation of computer technology in education. The purpose of this study was to compare the effects of a remote-online CBL (RO-CBL) with traditional face-to-face CBL on learning the outcomes of undergraduate physiotherapy students. Participants were randomized to either the control (face-to-face CBL) or to the CAL intervention (RO-CBL). The entire 3rd year physiotherapy cohort (n = 41) at Monash University, Victoria, Australia, were invited to participate in the randomized controlled trial. Outcomes included a postintervention multiple-choice test evaluating the knowledge gained from the CBL, a self-assessment of learning based on examinable learning objectives and student satisfaction with the CBL. In addition, a focus group was conducted investigating perceptions and responses to the online format. Thirty-eight students (control n = 19, intervention n = 19) participated in two CBL sessions and completed the outcome assessments. CBL median scores for the postintervention multiple-choice test were comparable (Wilcoxon rank sum P = 0.61) (median/10 [range] intervention group: 9 [8-10] control group: 10 [7-10]). Of the 15 examinable learning objectives, eight were significantly in favor of the control group, suggesting a greater perceived depth of learning. Eighty-four percent of students (16/19) disagreed with the statement "I enjoyed the method of CBL delivery." Key themes identified from the focus group included risks associated with the implementation of, challenges of communicating in, and flexibility offered, by web-based programs. RO-CBL appears to provide students with a comparable learning experience to traditional CBL. Procedural and infrastructure factors need to be addressed in future studies to counter student dissatisfaction and decreased perceived depth of learning.
Hands in the Air: Using Ungrounded Iconic Gestures to Teach Children Conservation of Quantity
ERIC Educational Resources Information Center
Ping, Raedy M.; Goldin-Meadow, Susan
2008-01-01
Including gesture in instruction facilitates learning. Why? One possibility is that gesture points out objects in the immediate context and thus helps ground the words learners hear in the world they see. Previous work on gesture's role in instruction has used gestures that either point to or trace paths on objects, thus providing support for this…
Learning the 3-D structure of objects from 2-D views depends on shape, not format
Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit
2016-01-01
Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196
Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.
Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies
2016-01-01
During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.
Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard
2016-01-01
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592
NASA Astrophysics Data System (ADS)
Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard
2016-12-01
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.
Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard
2016-12-06
Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.
[Digital learning object for diagnostic reasoning in nursing applied to the integumentary system].
da Costa, Cecília Passos Vaz; Luz, Maria Helena Barros Araújo
2015-12-01
To describe the creation of a digital learning object for diagnostic reasoning in nursing applied to the integumentary system at a public university of Piaui. A methodological study applied to technological production based on the pedagogical framework of problem-based learning. The methodology for creating the learning object observed the stages of analysis, design, development, implementation and evaluation recommended for contextualized instructional design. The revised taxonomy of Bloom was used to list the educational goals. The four modules of the developed learning object were inserted into the educational platform Moodle. The theoretical assumptions allowed the design of an important online resource that promotes effective learning in the scope of nursing education. This study should add value to nursing teaching practices through the use of digital learning objects for teaching diagnostic reasoning applied to skin and skin appendages.
Evaluation of a Modified Debate Exercise Adapted to the Pedagogy of Team-Based Learning
Yang, Haoshu; Gupta, Vasudha
2018-01-01
Objective. To assess the impact of a debate exercise on self-reported evidence of student learning in literature evaluation, evidence-based decision making, and oral presentation. Methods. Third-year pharmacy students in a required infectious disease therapeutics course participated in a modified debate exercise that included a reading assignment and readiness assessment tests consistent with team-based learning (TBL) pedagogy. Peer and faculty assessment of student learning was accomplished with a standardized rubric. A pre- and post-debate survey was used to assess self-reported perceptions of abilities to perform skills outlined by the learning objectives. Results. The average individual readiness assessment score was 93.5% and all teams scored 100% on their team readiness assessments. Overall student performance on the debates was also high with an average score of 88.2% prior to extra credit points. Of the 95 students, 88 completed both pre- and post-surveys (93% participation rate). All learning objectives were associated with a statistically significant difference between pre- and post-debate surveys with the majority of students reporting an improvement in self-perceived abilities. Approximately two-thirds of students enjoyed the debates exercise and believed it improved their ability to make and defend clinical decisions. Conclusion. A debate format adapted to the pedagogy of TBL was well-received by students, documented high achievement in assessment of skills, and improved students’ self-reported perceptions of abilities to evaluate the literature, develop evidence-based clinical decisions, and deliver an effective oral presentation.
Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane
2018-01-01
We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.
Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane
2018-01-01
We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy. PMID:29904518
Basic steps in establishing effective small group teaching sessions in medical schools.
Meo, Sultan Ayoub
2013-07-01
Small-group teaching and learning has achieved an admirable position in medical education and has become more popular as a means of encouraging the students in their studies and enhance the process of deep learning. The main characteristics of small group teaching are active involvement of the learners in entire learning cycle and well defined task orientation with achievable specific aims and objectives in a given time period. The essential components in the development of an ideal small group teaching and learning sessions are preliminary considerations at departmental and institutional level including educational strategies, group composition, physical environment, existing resources, diagnosis of the needs, formulation of the objectives and suitable teaching outline. Small group teaching increases the student interest, teamwork ability, retention of knowledge and skills, enhance transfer of concepts to innovative issues, and improve the self-directed learning. It develops self-motivation, investigating the issues, allows the student to test their thinking and higher-order activities. It also facilitates an adult style of learning, acceptance of personal responsibility for own progress. Moreover, it enhances student-faculty and peer-peer interaction, improves communication skills and provides opportunity to share the responsibility and clarify the points of bafflement.
Collaborative mining and transfer learning for relational data
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Eslami, Mohammed
2015-06-01
Many of the real-world problems, - including human knowledge, communication, biological, and cyber network analysis, - deal with data entities for which the essential information is contained in the relations among those entities. Such data must be modeled and analyzed as graphs, with attributes on both objects and relations encode and differentiate their semantics. Traditional data mining algorithms were originally designed for analyzing discrete objects for which a set of features can be defined, and thus cannot be easily adapted to deal with graph data. This gave rise to the relational data mining field of research, of which graph pattern learning is a key sub-domain [11]. In this paper, we describe a model for learning graph patterns in collaborative distributed manner. Distributed pattern learning is challenging due to dependencies between the nodes and relations in the graph, and variability across graph instances. We present three algorithms that trade-off benefits of parallelization and data aggregation, compare their performance to centralized graph learning, and discuss individual benefits and weaknesses of each model. Presented algorithms are designed for linear speedup in distributed computing environments, and learn graph patterns that are both closer to ground truth and provide higher detection rates than centralized mining algorithm.
Conducting correlation seminars in basic sciences at KIST Medical College, Nepal
2011-01-01
KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033
Developing Learning Objectives for Accounting Ethics Using Bloom's Taxonomy
ERIC Educational Resources Information Center
Kidwell, Linda A.; Fisher, Dann G.; Braun, Robert L.; Swanson, Diane L.
2013-01-01
The purpose of our article is to offer a set of core knowledge learning objectives for accounting ethics education. Using Bloom's taxonomy of educational objectives, we develop learning objectives in six content areas: codes of ethical conduct, corporate governance, the accounting profession, moral development, classical ethics theories, and…
Design, Development, and Validation of Learning Objects
ERIC Educational Resources Information Center
Nugent, Gwen; Soh, Leen-Kiat; Samal, Ashok
2006-01-01
A learning object is a small, stand-alone, mediated content resource that can be reused in multiple instructional contexts. In this article, we describe our approach to design, develop, and validate Shareable Content Object Reference Model (SCORM) compliant learning objects for undergraduate computer science education. We discuss the advantages of…
Pest Control in the School Environment:Adopting Integrated Pest Management
Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.
Writing in Science: Beyond the Lab Report.
ERIC Educational Resources Information Center
Stallsworth, Dana
2002-01-01
Discusses the importance of writing in learning science. Describes a science lesson designed as a part of an ocean unit using many genres of literature. Includes activity length, objectives, goals, and material for the lesson. (KHR)
Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P
2016-02-15
Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Al-Kloub, Manal Ibrahim; Salameh, Taghreed Nayel; Froelicher, Erika Sivarajan
2014-03-01
This study evaluates students' learning experiences in a clinical pediatric nursing course adopting Problem Based Learning (PBL) and investigates how students' cultural background impacts on self directed learning. A mixed-methods approach combining quantitative and qualitative methods was utilized to answer the research objectives. An observational technique for the PBL teaching sessions was employed; and 226 third-year students were asked to complete PBL evaluation questionnaire. Fifty seven percent (n = 130) responses to the questionnaire were analyzed. Overall, students considered PBL to be moderately effective in their learning experience, with a mean of 3.64 (S.D = 1.18). Students qualitative responses fell within four thematic categories including: developing cognitive abilities, independent learning, motivation to learn, and group learning. Difficulties encountered by students were: it is time-consuming, it has unclear objectives, it is a stressful process, and it results in an increased workload. A small number of students indicated that PBL tutorials were boring and complained about lack of contribution from instructors and limited recourses. Learning is intertwined with culture; students' previous educational experiences, uncertainty, English language proficiency, computer resources, gender, and achievement were identified as the most important cultural issues that impact the learning process and outcomes. Successful implementation of PBL does not come easily; teachers should be alert to the issues of culture in designing curriculum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Learning Objects as Tools for Teaching Information Literacy Online: A Survey of Librarian Usage
ERIC Educational Resources Information Center
Mestre, Lori S.; Baures, Lisa; Niedbala, Mona; Bishop, Corinne; Cantrell, Sarah; Perez, Alice; Silfen, Kate
2011-01-01
Based on information gathered from two discussion sessions moderated by members of the Education and Behavioral Sciences Section's Online Learning Research Committee a survey was conducted to identify how librarians use course/learning management systems and learning objects to deliver instruction. Objectives of the study were to identify the…
Learning from Objects: A Future for 21st Century Urban Arts Education
ERIC Educational Resources Information Center
Lasky, Dorothea
2009-01-01
In this technological age, where mind and body are increasingly disconnected in the classroom, object-based learning--along with strong museum-school partnerships--provide many benefits for student learning. In this article, the author first outlines some of the special mind-body connections that object-based learning in museums affords learners…
Learning Grasp Context Distinctions that Generalize
NASA Technical Reports Server (NTRS)
Platt, Robert; Grupen, Roderic A.; Fagg, Andrew H.
2006-01-01
Control-based approaches to grasp synthesis create grasping behavior by sequencing and combining control primitives. In the absence of any other structure, these approaches must evaluate a large number of feasible control sequences as a function of object shape, object pose, and task. This work explores a new approach to grasp synthesis that limits consideration to variations on a generalized localize-reach-grasp control policy. A new learning algorithm, known as schema structured learning, is used to learn which instantiations of the generalized policy are most likely to lead to a successful grasp in different problem contexts. Two experiments are described where Dexter, a bimanual upper torso, learns to select an appropriate grasp strategy as a function of object eccentricity and orientation. In addition, it is shown that grasp skills learned in this way can generalize to new objects. Results are presented showing that after learning how to grasp a small, representative set of objects, the robot's performance quantitatively improves for similar objects that it has not experienced before.
Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Freiwald, Winrich A; Poggio, Tomaso
2017-01-09
The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3-6]. Here, we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here, we demonstrate that one specific biologically plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli, like faces, at intermediate levels of the architecture and show why it does so. Thus, the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. Copyright © 2017 Elsevier Ltd. All rights reserved.
The company objects keep: Linking referents together during cross-situational word learning.
Zettersten, Martin; Wojcik, Erica; Benitez, Viridiana L; Saffran, Jenny
2018-04-01
Learning the meanings of words involves not only linking individual words to referents but also building a network of connections among entities in the world, concepts, and words. Previous studies reveal that infants and adults track the statistical co-occurrence of labels and objects across multiple ambiguous training instances to learn words. However, it is less clear whether, given distributional or attentional cues, learners also encode associations amongst the novel objects. We investigated the consequences of two types of cues that highlighted object-object links in a cross-situational word learning task: distributional structure - how frequently the referents of novel words occurred together - and visual context - whether the referents were seen on matching backgrounds. Across three experiments, we found that in addition to learning novel words, adults formed connections between frequently co-occurring objects. These findings indicate that learners exploit statistical regularities to form multiple types of associations during word learning.
On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products.
Varshney, Kush R; Alemzadeh, Homa
2017-09-01
Machine learning algorithms increasingly influence our decisions and interact with us in all parts of our daily lives. Therefore, just as we consider the safety of power plants, highways, and a variety of other engineered socio-technical systems, we must also take into account the safety of systems involving machine learning. Heretofore, the definition of safety has not been formalized in a machine learning context. In this article, we do so by defining machine learning safety in terms of risk, epistemic uncertainty, and the harm incurred by unwanted outcomes. We then use this definition to examine safety in all sorts of applications in cyber-physical systems, decision sciences, and data products. We find that the foundational principle of modern statistical machine learning, empirical risk minimization, is not always a sufficient objective. We discuss how four different categories of strategies for achieving safety in engineering, including inherently safe design, safety reserves, safe fail, and procedural safeguards can be mapped to a machine learning context. We then discuss example techniques that can be adopted in each category, such as considering interpretability and causality of predictive models, objective functions beyond expected prediction accuracy, human involvement for labeling difficult or rare examples, and user experience design of software and open data.
Authoring of Learning Objects in Context
ERIC Educational Resources Information Center
Specht, Marcus; Kravcik, Milos
2006-01-01
Learning objects and content interchange standards provide new possibilities for e-learning. Nevertheless the content often lacks context data to find appropriate use for adaptive learning on demand and personalized learning experiences. In the Remotely Accessible Field Trips (RAFT) project mobile authoring of learning content in context has shown…
ERIC Educational Resources Information Center
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-01-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified…
[Therapeutic education didactic techniques].
Valverde, Maite; Vidal, Mercè; Jansa, Margarida
2012-10-01
This article includes an introduction to the role of Therapeutic Education for Diabetes treatment according to the recommendations of the American Diabetes Association (ADA), the Diabetes Education Study Group (DESG) of the "European Association for Study of Diabetes (EASD) and the clinical Practice Guidelines (CPG) of the Spanish Ministry of Health. We analyze theoretical models and the differences between teaching vs. learning as well as current trends (including Internet), that can facilitate meaningful learning of people with diabetes and their families and relatives. We analyze the differences, similarities, advantages and disadvantages of individual and group education. Finally, we describe different educational techniques (metaplan, case method, brainstorming, role playing, games, seminars, autobiography, forums, chats,..) applicable to individual, group or virtual education and its application depending on the learning objective.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
ERIC Educational Resources Information Center
Sun, Jun
2009-01-01
Based on Activity Theory, this article examines attitude formation in human learning as shaped by the experiences of individual learners with various learning objects in particular learning contexts. It hypothesizes that a learner's object-related perceptions, personality traits and situational perceptions may have different relationships with the…
Otolaryngology--head and neck surgery in undergraduate medical education: advances and innovations.
Fung, Kevin
2015-02-01
Medical students graduate with the knowledge and skills to be undifferentiated general physicians. Otolaryngology-head and neck surgery (OtoHNS) is an essential component of primary healthcare, but is disproportionately under-represented in undergraduate medical education (UME). Advances and innovations in educational technology may represent an exciting and creative solution to this important problem. Failure to meet this educational need will result in substantial downstream effects in primary healthcare delivery. The objectives of this study were to 1) demonstrate current deficits in OtoHNS teaching at the UME level; 2) develop, validate, and critically appraise educational innovations that may enrich OtoHNS teaching in medical school curricula; and 3) propose a process for standardization of learning objectives for OtoHNS in UME as it relates to development and deployment of such educational tools. A white paper, prepared as a Triological Society thesis, which consolidates a prospective 10-year investigation of the problem of and potential solutions for under-representation of OtoHNS in UME. Cited datasets include multicenter surveys, cohort studies, and prospective, randomized controlled trials. A series of published and unpublished data were synthesized that addresses the following: 1) the current state of OtoHNS teaching at the UME level with respect to content, volume, structure, and methods; and 2) educational innovations including e-learning and simulation with emphasis on validity and learning effectiveness. Educational innovations specific to postgraduate (residency) training were excluded. Data support the observation that there is uniformly disproportionate under-representation of OtoHNS within UME curricula. Medical school graduates, especially those pursuing primary care specialties, report poor overall comfort levels in managing OtoHNS problems. A series of novel teaching methods were developed and validated using e-learning and simulation. Selected technologies may have a role in medical student teaching. It has been shown that e-learning has limited value in teaching complex spatial anatomy to novice learners, but good value in teaching basic clinical knowledge and selected technical skills. The role of simulation as it pertains to the novice learner is evolving. Important factors to consider during development of these tools include: 1) knowledge base and learning style of the learner, 2) complexity and nature of the learning objectives, 3) understanding the features and limitations of different technological genres, and 4) a team approach to module development. There remains a role for traditional teaching paradigms such as lectures, labs, and standardized patients; however, the choice of instructional genre should be fundamentally tailored to the nature of the learning outcomes. Enriching OtoHNS teaching in medical school is essential optimize primary care delivered to patients. Although e-learning and simulation are broadly accepted and desirable by today's medical students, these technologies should be woven into the fabric of UME pedagogical principles judiciously, and only after empiric assessment. Foundational to the development and implementation of these technologies is the framework of standardized competency-based learning objectives, common to all graduating medical students. NA © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
The CenterSpot: Safari Schoolroom.
ERIC Educational Resources Information Center
Wirtz, Ruth E.
1980-01-01
Described are activities to be used in five learning centers which build on children's interests in wild animals. Developed is an imaginary safari park with artwork depicting wild animals and tropical vegetation. Objectives, materials, and directions are included. (KC)
ERIC Educational Resources Information Center
Topuz, Hifzi
1974-01-01
The author lists four learning objectives for use of newspapers in the classroom. Also included are brief summaries of newspaper use in the classrooms of the United States, Sweden, Canada, Japan, Switzerland, France, England, Mali, Congo-Brazzaville, and Togo. (DE)
ERIC Educational Resources Information Center
Lee, Inah; Kim, Jangjin
2010-01-01
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in…
Behrends, Marianne; Steffens, Sandra; Marschollek, Michael
2017-01-01
The National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) describes medical skills and attitudes without being ordered by subjects or organs. Thus, the NKLM enables systematic curriculum mapping and supports curricular transparency. In this paper we describe where learning objectives related to Medical Informatics (MI) in Hannover coincide with other subjects and where they are taught exclusively in MI. An instance of the web-based MERLIN-database was used for the mapping process. In total 52 learning objectives overlapping with 38 other subjects could be allocated to MI. No overlap exists for six learning objectives describing explicitly topics of information technology or data management for scientific research. Most of the overlap was found for learning objectives relating to documentation and aspects of data privacy. The identification of numerous shared learning objectives with other subjects does not mean that other subjects teach the same content as MI. Identifying common learning objectives rather opens up the possibility for teaching cooperations which could lead to an important exchange and hopefully an improvement in medical education. Mapping of a whole medical curriculum offers the opportunity to identify common ground between MI and other medical subjects. Furthermore, in regard to MI, the interaction with other medical subjects can strengthen its role in medical education.
Book Club Elective to Facilitate Student Learning of the Patient Experience With Chronic Disease
2010-01-01
Objectives To evaluate the impact of a book club experience on pharmacy students' learning about chronic illness. Design Students read autobiographies/biographies regarding the patient experience of chronic illness. Similar to a traditional book club, small group discussions were held based on questions submitted by students. Other activities included written reflections, a final paper, and an oral presentation. Assessment A retrospective pretest and posttest were administered at the end of the course. Students indicated improvement in the key aspects of the course with significant differences (p < 0.01) between retrospective pretest and posttest scores for all course objectives assessed. Students also indicated that the course contributed to their development as pharmacists, motivated them to learn about new topics, and helped them reconsider their attitudes. Conclusion A book club elective course was successful in helping students understand the patient experience. PMID:20498730
King, Gillian; Shepherd, Tracy A; Servais, Michelle; Willoughby, Colleen; Bolack, Linda; Strachan, Deborah; Moodie, Sheila; Baldwin, Patricia; Knickle, Kerry; Parker, Kathryn; Savage, Diane; McNaughton, Nancy
2016-10-01
To describe the creation and validation of six simulations concerned with effective listening and interpersonal communication in pediatric rehabilitation. The simulations involved clinicians from various disciplines, were based on clinical scenarios related to client issues, and reflected core aspects of listening/communication. Each simulation had a key learning objective, thus focusing clinicians on specific listening skills. The article outlines the process used to turn written scenarios into digital video simulations, including steps taken to establish content validity and authenticity, and to establish a series of videos based on the complexity of their learning objectives, given contextual factors and associated macrocognitive processes that influence the ability to listen. A complexity rating scale was developed and used to establish a gradient of easy/simple, intermediate, and hard/complex simulations. The development process exemplifies an evidence-based, integrated knowledge translation approach to the teaching and learning of listening and communication skills.
Online gaming for learning optimal team strategies in real time
NASA Astrophysics Data System (ADS)
Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.
2010-04-01
This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
ERIC Educational Resources Information Center
Smigielski, Alan
The three lesson plans in this issue feature the Eskimos of the Bering Sea and their culture. The lesson plans are: (1) "Learning about a Culture from Its Objects"; (2) "Learning about a Culture from a Story"; and (3) "Everyday Objects." Each lesson cites student objectives; lists materials needed; gives subjects…
MODeLeR: A Virtual Constructivist Learning Environment and Methodology for Object-Oriented Design
ERIC Educational Resources Information Center
Coffey, John W.; Koonce, Robert
2008-01-01
This article contains a description of the organization and method of use of an active learning environment named MODeLeR, (Multimedia Object Design Learning Resource), a tool designed to facilitate the learning of concepts pertaining to object modeling with the Unified Modeling Language (UML). MODeLeR was created to provide an authentic,…
Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review
Jin, Jun
2014-01-01
Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education. Positive outcomes for student learning included providing rich, authentic problems and/or case contexts for learning; supporting student development of medical expertise through the accessing and structuring of expert knowledge and skills; making disciplinary thinking and strategies explicit; providing a platform to elicit articulation, collaboration, and reflection; and reducing perceived cognitive load. Limitations included cumbersome scenarios, infrastructure requirements, and the need for staff and student support in light of the technological demands of new affordances. Conclusions This literature review demonstrates the generally positive effect of educational technologies in PBL. Further research into the various applications of educational technology in PBL curricula is needed to fully realize its potential to enhance problem-based approaches in health sciences education. PMID:25498126
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
Project management lessons learned on SDIO's Delta Star and Single Stage Rocket Technology programs
NASA Technical Reports Server (NTRS)
Klevatt, Paul L.
1992-01-01
The topics are presented in viewgraph form and include the following: a Delta Star (Delta 183) Program Overview, lessons learned, and rapid prototyping and the Single Stage Rocket Technology (SSRT) Program. The basic objective of the Strategic Defense Initiative Programs are to quickly reduce key uncertainties to a manageable range of parameters and solutions, and to yield results applicable to focusing subsequent research dollars on high payoff areas.
Solar Ready Vets Curriculum Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalstrom, Tenley
The 5-week SRV program includes four sets of program learning goals aligned around (1) the NABCEP Entry Level body of knowledge; (2) gaining hands-on experience with solar system site analysis, design, installation, commissioning, operation, maintenance and financial considerations; (3) Safety issues unique to solar + OSHA 30; (4) Transition planning and individual support of entry into the solar industry. These goals, and the learning objectives associate with each, are pursued in parallel during the course.
Wu, Lin; Wang, Yang; Pan, Shirui
2017-12-01
It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.
Çelik, Yasemin; Ceylantekin, Yeşim; Kiliç, İbrahim
2017-01-01
Objective: The aim of this study is to detect the overall evaluation of nursing students toward simulation markets throughout the practice education and to reveal their learning styles in relation to certain individual features. Materials and Methods: The data were collected via questionnaires including students’ evaluation toward simulation markets and “Kolb learning styles inventory.” Participants included 103 male and female nursing students in Turkey. For the analysis, percentage, means, standard deviation, t-test, and ANOVA were utilized. Results: 71% of the students stated that the laboratory was suitable for the skill education but 53.4% uttered the duration of the practice was not enough. Students were found to have different learning styles (28.2% assimilating, 27.2% convergent, 26.2% accommodating, and 18.4% divergent). Conclusion: The results demonstrated that the duration of the laboratory practice and the number of the markets should be increased during the education of students with different learning styles. PMID:28293150
Çelik, Yasemin; Ceylantekin, Yeşim; Kiliç, İbrahim
2017-01-01
Objective: The aim of this study is to detect the overall evaluation of nursing students toward simulation makets throughout the practice education and to reveal their learning styles in relation to certain individual features. Materials and Methods: The data were collected via questionnaires including students’ evaluation toward simulation makets and “Kolb learning styles inventory.” Participants included 103 male and female nursing students in Turkey. For the analysis, percentage, means, standard deviation, t-test, and ANOVA were utilized. Results: 71% of the students stated that the laboratory was suitable for the skill education but 53.4% uttered the duration of the practice was not enough. Students were found to have different learning styles (28.2% assimilating, 27.2% convergent, 26.2% accommodating, and 18.4% divergent). Conclusion: The results demonstrated that the duration of the laboratory practice and the number of the makets should be increased during the education of students with different learning styles. PMID:28936157
Muntinga, M E; Krajenbrink, V Q E; Peerdeman, S M; Croiset, G; Verdonk, P
2016-08-01
Recent years have seen a rise in the efforts to implement diversity topics into medical education, using either a 'narrow' or a 'broad' definition of culture. These developments urge that outcomes of such efforts are systematically evaluated by mapping the curriculum for diversity-responsive content. This study was aimed at using an intersectionality-based approach to define diversity-related learning objectives and to evaluate how biomedical and sociocultural aspects of diversity were integrated into a medical curriculum in the Netherlands. We took a three-phase mixed methods approach. In phase one and two, we defined essential learning objectives based on qualitative interviews with school stakeholders and diversity literature. In phase three, we screened the written curriculum for diversity content (culture, sex/gender and class) and related the results to learning objectives defined in phase two. We identified learning objectives in three areas of education (medical knowledge and skills, patient-physician communication, and reflexivity). Most diversity content pertained to biomedical knowledge and skills. Limited attention was paid to sociocultural issues as determinants of health and healthcare use. Intersections of culture, sex/gender and class remained mostly unaddressed. The curriculum's diversity-responsiveness could be improved by an operationalization of diversity that goes beyond biomedical traits of assumed homogeneous social groups. Future efforts to take an intersectionality-based approach to curriculum evaluations should include categories of difference other than culture, sex/gender and class as separate, equally important patient identities or groups.
Learning Object Names at Different Hierarchical Levels Using Cross-Situational Statistics.
Chen, Chi-Hsin; Zhang, Yayun; Yu, Chen
2018-05-01
Objects in the world usually have names at different hierarchical levels (e.g., beagle, dog, animal). This research investigates adults' ability to use cross-situational statistics to simultaneously learn object labels at individual and category levels. The results revealed that adults were able to use co-occurrence information to learn hierarchical labels in contexts where the labels for individual objects and labels for categories were presented in completely separated blocks, in interleaved blocks, or mixed in the same trial. Temporal presentation schedules significantly affected the learning of individual object labels, but not the learning of category labels. Learners' subsequent generalization of category labels indicated sensitivity to the structure of statistical input. Copyright © 2017 Cognitive Science Society, Inc.
Throw Away Those Erasers! Building Dragons with Basic Shapes.
ERIC Educational Resources Information Center
Parker, Karen
2003-01-01
Describes an art lesson for second-grade students that uses basic shapes to paint pictures of dragons. Discusses how the students created their dragons and lists the art materials needed. Includes a list of learning objectives. (CMK)
Equipment Decisions: Micros, Terminals, or Typewriters.
ERIC Educational Resources Information Center
Swanson, Jean C.
1986-01-01
Discusses factors to be considered when deciding whether to buy typewriters, terminals, or microcomputers for the school typing room. Factors include (1) objectives of the typewriting program, (2) market needs, (3) student learning methods, (4) costs, and (5) instructional materials. (CH)
The Hospital Satellite Network. A National/International Perspective.
ERIC Educational Resources Information Center
Linder, Ronald L.
1985-01-01
Describes how continuing distance education through satellite transmitted-television can help health service professionals, and how such networks operate. The development of such a program is described, including audience, title, learning objectives, program text, and onsite instructional materials. (CT)
Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Harley
2012-12-01
This report includes the methodology and findings in evaluating DOE’s Solar Decathlon event. The primary purpose of this evaluation is to learn how effectively the Solar Decathlon event is in meeting its objectives.
ERIC Educational Resources Information Center
Raghuveer, V. R.; Tripathy, B. K.
2012-01-01
With the advancements in the WWW and ICT, the e-learning domain has developed very fast. Even many educational institutions these days have shifted their focus towards the e-learning and mobile learning environments. However, from the quality of learning point of view, which is measured in terms of "active learning" taking place, the…
Pinto, Marcos Di; Conklin, Heather M.; Li, Chenghong; Merchant, Thomas E.
2012-01-01
Purpose The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test–Children’s Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions This study did not reveal any impairment or decline in learning after CRT in over-all aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients. PMID:22867897
The Development of the Virtual Learning Media of the Sacred Object Artwork
ERIC Educational Resources Information Center
Nuanmeesri, Sumitra; Jamornmongkolpilai, Saran
2018-01-01
This research aimed to develop the virtual learning media of the sacred object artwork by applying the concept of the virtual technology in order to publicize knowledge on the cultural wisdom of the sacred object artwork. It was done by designing and developing the virtual learning media of the sacred object artwork for the virtual presentation.…
Proposal of a Framework for Internet Based Licensing of Learning Objects
ERIC Educational Resources Information Center
Santos, Osvaldo A.; Ramos, Fernando M. S.
2004-01-01
This paper presents a proposal of a framework whose main objective is to manage the delivery and rendering of learning objects in a digital rights controlled environment. The framework is based on a digital licensing scheme that requires each learning object to have the proper license in order to be rendered by a trusted player. A conceptual model…
Learning to detect and combine the features of an object
Suchow, Jordan W.; Pelli, Denis G.
2013-01-01
To recognize an object, it is widely supposed that we first detect and then combine its features. Familiar objects are recognized effortlessly, but unfamiliar objects—like new faces or foreign-language letters—are hard to distinguish and must be learned through practice. Here, we describe a method that separates detection and combination and reveals how each improves as the observer learns. We dissociate the steps by two independent manipulations: For each step, we do or do not provide a bionic crutch that performs it optimally. Thus, the two steps may be performed solely by the human, solely by the crutches, or cooperatively, when the human takes one step and a crutch takes the other. The crutches reveal a double dissociation between detecting and combining. Relative to the two-step ideal, the human observer’s overall efficiency for unconstrained identification equals the product of the efficiencies with which the human performs the steps separately. The two-step strategy is inefficient: Constraining the ideal to take two steps roughly halves its identification efficiency. In contrast, we find that humans constrained to take two steps perform just as well as when unconstrained, which suggests that they normally take two steps. Measuring threshold contrast (the faintness of a barely identifiable letter) as it improves with practice, we find that detection is inefficient and learned slowly. Combining is learned at a rate that is 4× higher and, after 1,000 trials, 7× more efficient. This difference explains much of the diversity of rates reported in perceptual learning studies, including effects of complexity and familiarity. PMID:23267067
Self-Organized Behavior Generation for Musculoskeletal Robots.
Der, Ralf; Martius, Georg
2017-01-01
With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics.
Self-Organized Behavior Generation for Musculoskeletal Robots
Der, Ralf; Martius, Georg
2017-01-01
With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors “waiting” to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics. PMID:28360852
Practicing doctors' perceptions on new learning objectives for Vietnamese medical schools.
Hoat, Luu Ngoc; Dung, Do Van; Wright, E Pamela
2007-06-28
As part of the process to develop more community-oriented medical teaching in Vietnam, eight medical schools prepared a set of standard learning objectives with attention to the needs of a doctor working with the community. Because they were prepared based on government documents and the opinions of the teachers, it was necessary to check them with doctors who had already graduated and were working at different sites in the community. Each of the eight medical faculties asked 100 practising recent graduates to complete a questionnaire to check the relevance of the skills that the teachers considered most important. We used mean and standard deviation to summarize the scores rated by the respondents for each skill and percentile at four points: p50, p25, p10 and p5 to describe the variation of scores among the respondents. Correlation coefficient was used to measure the relationship between skill levels set by the teachers and the perception of practicing doctors regarding frequency of using skills and priority for each skill. Additional information was taken from the records of focus group discussions to clarify, explain or expand on the results from the quantitative data. In many cases the skills considered important by teachers were also rated as highly necessary and/or frequently used by the respondents. There were, however, discrepancies: some skills important to teachers were seldom used and not considered important by the doctors. In focus group discussions the doctors also identified skills that are not taught at all in the medical schools but would be needed by practising doctors. Although most of the skills and skill levels included in the learning objectives by the teachers were consistent with the opinions of their graduates, the match was not perfect. The experience of the graduates and their additional comments should be included as inputs to the definition of learning objectives for medical students.
Diuguid-Gerber, Jillian; Porter, Samuel; Quiah, Samuel C.; Nickerson, Katherine; Jones, Deborah; Audi, Zeena; Richards, Boyd F.
2017-01-01
ABSTRACT Background: Many medical schools have adopted the longitudinal integrated clerkship (LIC) model in response to calls for increased continuity in clinical learning environments. However, because of implementation challenges, such programs are not feasible at some institutions or are limited to a small number of students. Objective: In January 2014, Columbia University College of Physicians and Surgeons (P&S) recognized the need to explore different LIC formats and began offering four, 12-week amalgamative clerkships (AC). Students within this curricular track experienced primary care, internal medicine ‘away’, orthopedic surgery, urology, and an elective in an integrated format. Design: P&S developed the AC in partnership with the James J. Peters VA Medical Center in Bronx, NY (BVA). All patient care and educational conferences took place at the BVA during the 12-week experience. The learning objectives of the AC were aligned to the learning objectives of a 52-week LIC also offered at Columbia. An evaluation process was developed to determine student learning experiences and preliminary outcomes, including how well the LIC-related objectives could be achieved in a shorter period of time. Results: In 2015, P&S collected AC evaluation data through three student feedback sessions. Students reported that the AC provided opportunity for patient continuity, patient-centered care approaches, meaningful roles for students, career development opportunities, and health systems awareness. Conclusions: Early outcomes indicate that the BVA AC provides a degree of longitudinality that can influence student perceptions of patient care, career development, and health systems, consistent with the larger LIC. The team continues to gather additional data on students’ experiences and investigate additional sites that have potential to serve as future AC learning environments. PMID:28317473
Reilly, Frank D
2011-01-01
This study investigated the educational benefits of system-based lecture notes and interactive learning objects in a peripheral nervous system component of a traditional first-year medical school human anatomy course. The impetus for the investigation was anecdotal evidence suggesting enhanced learner satisfaction with the learning resources. Retrospective review of existing data from 2006 to 2009 was undertaken to quantify (1) the effects of Web-based system courseware on examination item performance, and (2) differences among learner opinions regarding the benefit level of the five different types of interactive learning objects as evaluated by instructional design questionnaires. Interactive patient-based case studies (IPCS) and review games (Games), simulated interactive patients (SIP), flashcards, and unit quizzes (Quizzes) developed in-house have been peer-reviewed and published in MedEdPORTAL. Statistics included one-way analysis of variance, Tukey's post hoc test, and power meta-analysis (d). Examination item analysis scores remained significantly higher (P ≤ 0.05; d = 0.3938) for learners receiving the instructional treatment incorporating system-based lecture notes and interactive learning objects than for those not receiving this treatment. Using questionnaires with a five-point Likert scale, students reported favorably on the benefit level of all learning objects. They rated the SIP and IPCS significantly higher (P ≤0.05) and games significantly lower (P ≤ 0.05) than in previous years, indicating a change in learner preferences. This study reaffirms that online system-based instructional techniques improve student examination performance and overall student satisfaction. Learners indicated stronger preferences for SIP and IPCS over exercises encouraging passive memorization of anatomical content. Copyright © 2011 American Association of Anatomists.
System safety management lessons learned from the US Army acquisition process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piatt, J.A.
1989-05-01
The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They aremore » broadly applicable and supportive of the Army structure and acquisition objectives. Pacific Northwest Laboratory (PNL) was given the task of conducting an independent, objective appraisal of the Army's system safety program in the context of the Army materiel acquisition process by focusing on four fielded systems which are products of that process. These systems included the Apache helicopter, the Bradley Fighting Vehicle (BFV), the Tube Launched, Optically Tracked, Wire Guided (TOW) Missile and the High Mobility Multipurpose Wheeled Vehicle (HMMWV). The objective of this study was to develop system safety management lessons learned associated with the acquisition process. The first step was to identify residual hazards associated with the selected systems. Since it was impossible to track all residual hazards through the acquisition process, certain well-known, high visibility hazards were selected for detailed tracking. These residual hazards illustrate a variety of systemic problems. Systemic or process causes were identified for each residual hazard and analyzed to determine why they exist. System safety management lessons learned were developed to address related systemic causal factors. 29 refs., 5 figs.« less
[Effect of object consistency in a spatial contextual cueing paradigm].
Takeda, Yuji
2008-04-01
Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.
Selective attention: psi performance in children with learning disabilities.
Garcia, Vera Lúcia; Pereira, Liliane Desgualdo; Fukuda, Yotaka
2007-01-01
Selective attention is essential for learning how to write and read. The objective of this study was to examine the process of selective auditory attention in children with learning disabilities. Group I included forty subjects aged between 9 years and six months and 10 years and eleven months, who had a low risk of altered hearing, language and learning development. Group II included 20 subjects aged between 9 years and five months and 11 years and ten months, who presented learning disabilities. A prospective study was done using the Pediatric Speech Intelligibility Test (PSI). Right ear PSI with an ipsilateral competing message at speech/noise ratios of 0 and -10 was sufficient to differentiate Group I and Group II. Special attention should be given to the performance of Group II on the first tested ear, which may substantiate important signs of improvements in performance and rehabilitation. The PSI - MCI of the right ear at speech/noise ratios of 0 and -10 was appropriate to differentiate Groups I and II. There was an association with the group that presented learning disabilities: this group showed problems in selective attention.
Mobile Authoring of Open Educational Resources as Reusable Learning Objects
ERIC Educational Resources Information Center
Kinshuk; Jesse, Ryan
2013-01-01
E-learning technologies have allowed authoring and playback of standardized reusable learning objects (RLO) for several years. Effective mobile learning requires similar functionality at both design time and runtime. Mobile devices can play RLO using applications like SMILE, mobile access to a learning management system (LMS), or other systems…
An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies
ERIC Educational Resources Information Center
Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko
2006-01-01
Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…
Grading for Understanding--Standards-Based Grading
ERIC Educational Resources Information Center
Zimmerman, Todd
2017-01-01
Standards-based grading (SBG), sometimes called learning objectives-based assessment (LOBA), is an assessment model that relies on students demonstrating mastery of learning objectives (sometimes referred to as standards). The goal of this grading system is to focus students on mastering learning objectives rather than on accumulating points. I…
Assessment of item-writing flaws in multiple-choice questions.
Nedeau-Cayo, Rosemarie; Laughlin, Deborah; Rus, Linda; Hall, John
2013-01-01
This study evaluated the quality of multiple-choice questions used in a hospital's e-learning system. Constructing well-written questions is fraught with difficulty, and item-writing flaws are common. Study results revealed that most items contained flaws and were written at the knowledge/comprehension level. Few items had linked objectives, and no association was found between the presence of objectives and flaws. Recommendations include education for writing test questions.
Student Response to Remote-Online Case-Based Learning: A Qualitative Study
2016-01-01
Background Case-based learning (CBL) typically involves face-to-face interaction in small collaborative groups with a focus on self-directed study. To our knowledge, no published studies report an evaluation of Web conferencing in CBL. Objective The primary aim of this study was to explore student perceptions and attitudes in response to a remote-online case-based learning (RO-CBL) experience. Methods This study took place over a 2-week period in 2013 at Monash University, Victoria, Australia. A third year cohort (n=73) of physiotherapy students was invited to participate. Students were required to participate in 2 training sessions, followed by RO-CBL across 2 sessions. The primary outcome of interest was the student feedback on the quality of the learning experience during RO-CBL participation. This was explored with a focus group and a survey. Results Most students (68/73) completed the postintervention survey (nonparticipation rate 8%). RO-CBL was generally well received by participants, with 59% (40/68) of participates stating that they’d like RO-CBL to be used in the future and 78% (53/68) of participants believing they could meet the CBL’s learning objectives via RO-CBL. The 4 key themes relevant to student response to RO-CBL that emerged from the focus groups and open-ended questions on the postintervention survey were how RO-CBL compared to expectations, key benefits of RO-CBL including flexibility and time and cost savings, communication challenges in the online environment compared to face-to-face, and implications of moving to an online platform. Conclusions Web conferencing may be a suitable medium for students to participate in CBL. Participants were satisfied with the learning activity and felt they could meet the CBL’s learning objectives. Further study should evaluate Web conferencing CBL across an entire semester in regard to student satisfaction, perceived depth of learning, and learning outcomes. PMID:27731852
Discriminative graph embedding for label propagation.
Nguyen, Canh Hao; Mamitsuka, Hiroshi
2011-09-01
In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.
Digital learning objects in nursing consultation: technology assessment by undergraduate students.
Silveira, DeniseTolfo; Catalan, Vanessa Menezes; Neutzling, Agnes Ludwig; Martinato, Luísa Helena Machado
2010-01-01
This study followed the teaching-learning process about the nursing consultation, based on digital learning objects developed through the active Problem Based Learning method. The goals were to evaluate the digital learning objects about nursing consultation, develop cognitive skills on the subject using problem based learning and identify the students' opinions on the use of technology. This is an exploratory and descriptive study with a quantitative approach. The sample consisted of 71 students in the sixth period of the nursing program at the Federal University of Rio Grande do Sul. The data was collected through a questionnaire to evaluate the learning objects. The results showed positive agreement (58%) on the content, usability and didactics of the proposed computer-mediated activity regarding the nursing consultation. The application of materials to the students is considered positive.
Common world model for unmanned systems
NASA Astrophysics Data System (ADS)
Dean, Robert Michael S.
2013-05-01
The Robotic Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using metric, semantic, and symbolic information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines. The Common World Model must understand how these objects relate to each other. Our world model includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model includes models of how aspects of the environment behave, which enable prediction of future world states. To manage complexity, we adopted a phased implementation approach to the world model. We discuss the design of "Phase 1" of this world model, and interfaces by tracing perception data through the system from the source to the meta-cognitive layers provided by ACT-R and SS-RICS. We close with lessons learned from implementation and how the design relates to Open Architecture.
ERIC Educational Resources Information Center
Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin
2014-01-01
This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pinto, Marcos; Conklin, Heather M.; Li, Chenghong
Purpose: The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials: Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test-Children's Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 monthsmore » later, and then yearly for a total of 5 years. Results: No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions: This study did not reveal any impairment or decline in learning after CRT in overall aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients.« less
Deep learning methods to guide CT image reconstruction and reduce metal artifacts
NASA Astrophysics Data System (ADS)
Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Zhou, Ye; Zhang, Junping; Wang, Ge
2017-03-01
The rapidly-rising field of machine learning, including deep learning, has inspired applications across many disciplines. In medical imaging, deep learning has been primarily used for image processing and analysis. In this paper, we integrate a convolutional neural network (CNN) into the computed tomography (CT) image reconstruction process. Our first task is to monitor the quality of CT images during iterative reconstruction and decide when to stop the process according to an intelligent numerical observer instead of using a traditional stopping rule, such as a fixed error threshold or a maximum number of iterations. After training on ground truth images, the CNN was successful in guiding an iterative reconstruction process to yield high-quality images. Our second task is to improve a sinogram to correct for artifacts caused by metal objects. A large number of interpolation and normalization-based schemes were introduced for metal artifact reduction (MAR) over the past four decades. The NMAR algorithm is considered a state-of-the-art method, although residual errors often remain in the reconstructed images, especially in cases of multiple metal objects. Here we merge NMAR with deep learning in the projection domain to achieve additional correction in critical image regions. Our results indicate that deep learning can be a viable tool to address CT reconstruction challenges.
Scripting Scenarios for the Human Patient Simulator
NASA Technical Reports Server (NTRS)
Bacal, Kira; Miller, Robert; Doerr, Harold
2004-01-01
The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.
Exploring the changing learning environment of the gross anatomy lab.
Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D
2011-07-01
The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.
Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri
2012-07-01
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.
Adaptive and perceptual learning technologies in medical education and training.
Kellman, Philip J
2013-10-01
Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay
2018-05-20
Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.
Deep learning for EEG-Based preference classification
NASA Astrophysics Data System (ADS)
Teo, Jason; Hou, Chew Lin; Mountstephens, James
2017-10-01
Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.
International Learning Institutions: Organization, Visions, and Missions
ERIC Educational Resources Information Center
Van Hook, Steven R.
2011-01-01
This doctoral research examines the challenges, objectives, goals, strategies, and tactics facing leaders, administrators, faculty, students, and other stakeholders with an interest in international higher education. These broad topics necessarily encompass many factors including the market forces of globalization, increasing competition,…
Enhancing the Conceptual Understanding of Science.
ERIC Educational Resources Information Center
Gabel, Dorothy
2003-01-01
Describes three levels of understanding science: the phenomena (macroscopic), the particle (microscopic), and the symbolic. Suggests that the objective of science instruction at all levels is conceptual understanding of scientific inquiry. Discusses effective instructional strategies, including analogy, collaborative learning, concept mapping,…
What Is Instrumented Learning? Part 1
ERIC Educational Resources Information Center
Blake, Robert; Mouton, Jane
1972-01-01
Although article is directed specifically towards improving sales techniques through self evaluation, it discusses various autoinstructional aids that could be applied to other fields. These include self-ranking against an objectives" grid, forced and multiple choice quizzes and the sentence-completion approach. (PD)
A theoretical framework for improving education in geriatric medicine.
Boreham, N C
1983-01-01
Alternative concepts of learning include a formal system in which part of the medical curriculum is designated as that for geriatric medicine; a non-formal system including conferences, lectures, broadcasts, available to both medical students and physicians; and thirdly, an informal system in which doctors learn medicine through their experience practising the profession. While the most emphasis in medical schools would seem to be on the formal system it is essential that medical educators (if they wish their students in later life to maintain high levels of self-initiated learning) must use all three strategies. The structure of a system of formal teaching for geriatric medicine is examined. An important objective is attitude change and it is in achieving this that geriatricians must be particularly involved in non-formal and informal systems.
Automotive Mechanics. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…
Learning and Forgetting New Names and Objects in MCI and AD
ERIC Educational Resources Information Center
Gronholm-Nyman, Petra; Rinne, Juha O.; Laine, Matti
2010-01-01
We studied how subjects with mild cognitive impairment (MCI), early Alzheimer's disease (AD) and age-matched controls learned and maintained the names of unfamiliar objects that were trained with or without semantic support (object definitions). Naming performance, phonological cueing, incidental learning of the definitions and recognition of the…
Information Retrieval in Virtual Universities
ERIC Educational Resources Information Center
Puustjärvi, Juha; Pöyry, Päivi
2006-01-01
Information retrieval in the context of virtual universities deals with the representation, organization, and access to learning objects. The representation and organization of learning objects should provide the learner with an easy access to the learning objects. In this article, we give an overview of the ONES system, and analyze the relevance…
Learning Objects for Educational Applications via PDA Technology
ERIC Educational Resources Information Center
Churchill, Daniel
2008-01-01
This article discusses an ongoing study into issues relevant to the design of learning objects for educational applications via portable digital assistant (PDA) technology. The specific areas of inquiry in this study are: the kinds of learning objects that are effective for PDA delivery; contexts for their effective educational applications; and…
Mechanical Drafting. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These four learning guides are self-instructional packets for four tasks identified as essential for performance on an entry-level job in mechanical drafting. Each guide is based on a terminal performance objective (task) and 2-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps…
Livestock. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These 25 learning guides are self-instructional packets for 25 tasks identified as essential for performance on an entry-level job in livestock production. Each guide is based on a terminal performance objective (task) and 1-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline…
APA's Learning Objectives for Research Methods and Statistics in Practice: A Multimethod Analysis
ERIC Educational Resources Information Center
Tomcho, Thomas J.; Rice, Diana; Foels, Rob; Folmsbee, Leah; Vladescu, Jason; Lissman, Rachel; Matulewicz, Ryan; Bopp, Kara
2009-01-01
Research methods and statistics courses constitute a core undergraduate psychology requirement. We analyzed course syllabi and faculty self-reported coverage of both research methods and statistics course learning objectives to assess the concordance with APA's learning objectives (American Psychological Association, 2007). We obtained a sample of…
Learning Objects Update: Review and Critical Approach to Content Aggregation
ERIC Educational Resources Information Center
Balatsoukas, Panos; Morris, Anne; O'Brien, Ann
2008-01-01
The structure and composite nature of a learning object is still open to interpretation. Although several theoretical studies advocate integrated approaches to the structure and aggregation level of learning objects, in practice, many content specifications, such as SCORM, IMS Content Packaging, and course authoring tools, do not explicitly state…
Emberson, Lauren L.; Rubinstein, Dani
2016-01-01
The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1—dog1, bird2—dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1— dog_picture1, bird_picture2—dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual objects) and suggests that, at least with the current categories and type of learner, there are biases to pick up on statistical regularities between individual objects even when robust statistical information is present at other levels of abstraction. These findings speak directly to emerging theories about how systems supporting statistical learning and prediction operate in our structure-rich environments. Moreover, the theoretical implications of the current work across multiple domains of study is already clear: statistical learning cannot be assumed to be unconstrained even if statistical learning has previously been established at a given level of abstraction when that information is presented in isolation. PMID:27139779
Near or far: The effect of spatial distance and vocabulary knowledge on word learning.
Axelsson, Emma L; Perry, Lynn K; Scott, Emilly J; Horst, Jessica S
2016-01-01
The current study investigated the role of spatial distance in word learning. Two-year-old children saw three novel objects named while the objects were either in close proximity to each other or spatially separated. Children were then tested on their retention for the name-object associations. Keeping the objects spatially separated from each other during naming was associated with increased retention for children with larger vocabularies. Children with a lower vocabulary size demonstrated better retention if they saw objects in close proximity to each other during naming. This demonstrates that keeping a clear view of objects during naming improves word learning for children who have already learned many words, but keeping objects within close proximal range is better for children at earlier stages of vocabulary acquisition. The effect of distance is therefore not equal across varying vocabulary sizes. The influences of visual crowding, cognitive load, and vocabulary size on word learning are discussed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning
Yee, Meagan; Jones, Susan S.; Smith, Linda B.
2012-01-01
Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015
Bloom's taxonomy of cognitive learning objectives.
Adams, Nancy E
2015-07-01
Information professionals who train or instruct others can use Bloom's taxonomy to write learning objectives that describe the skills and abilities that they desire their learners to master and demonstrate. Bloom's taxonomy differentiates between cognitive skill levels and calls attention to learning objectives that require higher levels of cognitive skills and, therefore, lead to deeper learning and transfer of knowledge and skills to a greater variety of tasks and contexts.
ERIC Educational Resources Information Center
Salkhanova, Zhanat H.; Lee, Valentine S.; Tumanova, Ainakul B.; Zhusanbaeva, Aida T.
2016-01-01
The research object is the activity-based learning theory. The purpose of the study is to prove the assumption that the subject-object approach as a direction of the learning theory is the most effective one in the context of development of modern paradigms of linguistic education. The authors believe that the main content of the learning activity…
Max-margin multiattribute learning with low-rank constraint.
Zhang, Qiang; Chen, Lin; Li, Baoxin
2014-07-01
Attribute learning has attracted a lot of interests in recent years for its advantage of being able to model high-level concepts with a compact set of midlevel attributes. Real-world objects often demand multiple attributes for effective modeling. Most existing methods learn attributes independently without explicitly considering their intrinsic relatedness. In this paper, we propose max margin multiattribute learning with low-rank constraint, which learns a set of attributes simultaneously, using only relative ranking of the attributes for the data. By learning all the attributes simultaneously through low-rank constraint, the proposed method is able to capture their intrinsic correlation for improved learning; by requiring only relative ranking, the method avoids restrictive binary labels of attributes that are often assumed by many existing techniques. The proposed method is evaluated on both synthetic data and real visual data including a challenging video data set. Experimental results demonstrate the effectiveness of the proposed method.
Shimansky, Yury P; Kang, Tao; He, Jiping
2004-02-01
A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.
An Adaptive Navigation Support System for Conducting Context-Aware Ubiquitous Learning in Museums
ERIC Educational Resources Information Center
Chiou, Chuang-Kai; Tseng, Judy C. R.; Hwang, Gwo-Jen; Heller, Shelly
2010-01-01
In context-aware ubiquitous learning, students are guided to learn in the real world with personalized supports from the learning system. As the learning resources are realistic objects in the real world, certain physical constraints, such as the limitation of stream of people who visit the same learning object, the time for moving from one object…
Imam, Bita; Jarus, Tal
2014-01-01
Objectives. To identify the virtual reality (VR) interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT) and Motor Learning (MLT) theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiotherapy Evidence Database (PEDro) scale was used to assess the quality of the included studies. The underlying training mechanisms involved in each VR intervention were explained according to the principles of SCT (vicarious learning, performance accomplishment, and verbal persuasion) and MLT (focus of attention, order and predictability of practice, augmented feedback, and feedback fading). Results. Eleven studies were included. PEDro scores varied from 3 to 7/10. All studies but one showed significant improvement in outcomes in favour of the VR group (P < 0.05). Ten VR interventions followed the principle of performance accomplishment. All the eleven VR interventions directed subject's attention externally, whereas nine provided training in an unpredictable and variable fashion. Conclusions. The results of this review suggest that VR applications used for lower extremity rehabilitation in stroke population predominantly mediate learning through providing a task-oriented and graduated learning under a variable and unpredictable practice. PMID:24523967
ERIC Educational Resources Information Center
Ricles, Shannon; Jaramillo, Becky; Fargo, Michelle
2004-01-01
In this companion to the "NASA SCI Files" episode "The Case of the Great Space Exploration," the tree house detectives learn about NASA's new vision for exploring space. In four segments aimed at grades 3-5, students learn about a variety of aspects of space exploration. Each segment of the guide includes an overview, a set of objectives,…
Intelligence Virtual Analyst Capability: Governing Concepts and Science and Technology Roadmap
2014-12-01
system’s perspective. That is to say : what is the information the user needs to achieve his tasks and objective; and what information does the system need...be able to learn from demonstration, which is to say by looking at examples of how a given task is usually performed. Learning is an important part...address, and phone number. Finally it can also include biometric and genetic information such as face attributes, fingerprints, handwriting , DNA. Time
Perspectives on object manipulation and action grammar for percussive actions in primates
Hayashi, Misato
2015-01-01
The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use. PMID:26483528
Perspectives on object manipulation and action grammar for percussive actions in primates.
Hayashi, Misato
2015-11-19
The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use. © 2015 The Author(s).
Ontologies for Effective Use of Context in E-Learning Settings
ERIC Educational Resources Information Center
Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff
2007-01-01
This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…
Throw out Learning Objectives! In Support of a New Taxonomy
ERIC Educational Resources Information Center
Gander, Sharon L.
2006-01-01
In the right hands, learning objectives are great tools for clarifying thinking, breaking down learning into component parts, creating a logical order to learning, and demonstrating that a learning intervention is successful. Mostly, however, they have become cliches. With the industry's tendency to use them as pro forma media bites, they tend to…
Learning from Online Modules in Diverse Instructional Contexts
ERIC Educational Resources Information Center
Nugent, Gwen; Kohmetscher, Amy; Namuth-Covert, Deana; Guretzky, John; Murphy, Patrick; Lee, DoKyoung
2016-01-01
Learning objects originally developed for use in online learning environments can also be used to enhance face-to-face instruction. This study examined the learning impacts of online learning objects packaged into modules and used in different contexts for undergraduate education offered on campus at three institutions. A multi-case study approach…
Medical professionalism in the formal curriculum: 5th year medical students' experiences.
Stockley, Amelia J; Forbes, Karen
2014-11-30
The standards and outcomes outlined in the General Medical Council's publication 'Tomorrow's Doctors' include proposals that medical professionalism be included in undergraduate curricula. Learning the values and attitudes necessary to become a 'doctor as a professional' has traditionally been left largely to the informal and hidden curricula. There remains no consensus or confirmed evidence upon which to base best practice for teaching in this area. In 2010, as part of a revision of the fifth year curriculum the University of Bristol Medical School introduced tutorials which focused on students' achievement of the learning objectives in 'Tomorrow's Doctors Outcomes 3: the doctor as a professional'. This study sought to explore the students' experiences of these tutorials in order to develop the evidence base further. Sixteen medical students participated in three focus-group interviews exploring their experiences of medical professionalism tutorials. A course evaluation questionnaire to all fifth year students also provided data. Data were analysed using the principles of Interpretative Phenomenological Analysis. Four main themes were identified: students' aversion to 'ticking-boxes', lack of engagement by the students, lack of engagement by the tutors and students' views on how medical professionalism should be taught. A curriculum innovation which placed the achievement of medical professionalism in the formal curriculum was not unanimously embraced by students or faculty. Further consideration of the students' aversion to 'ticking-boxes' is warranted. With continued demand for increased accountability and transparency in medical education, detailed check-lists of specific learning objectives will continue to feature as a means by which medical schools and learners demonstrate attainment. Students' experiences and acceptance of these check-lists deserves attention in order to inform teaching and learning in this area. Learner and faculty 'buy in' are imperative to the success of curriculum change and vital if the students are to attain the intended learning objectives. Effective faculty development and student induction programmes could be employed to facilitate engagement by both parties.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
Supporting traditional PBL with online discussion forums: a study from Qassim Medical School.
Alamro, Ahmad S; Schofield, Susie
2012-01-01
The Qassim Medical School first year curriculum includes a 5-week problem-based learning (PBL) block. Student evaluation has highlighted inadequate feedback and lack of student-student and student-tutor interactions. An online intervention may alleviate this. For each problem, a discussion forum (DF) was created with 14 threads (one for each group) in virtual PBL rooms. Students' and tutors' perceived satisfaction of the intervention was evaluated and types of posts were classified. By the end of the block, all academic staff involved and 123 students (95%) had participated in the DFs. There were around 2800 posts and 28,500 views. All 14 tutors and 102 (78%) students completed the online questionnaire. Of the students, 66 (76%) male and 36 (92%) female students responded. Overall, both students and tutors perceived the intervention positively. Posts included: reforming and finalizing learning objectives, posting the concept map constructed in the face-to-face session and questioning, encouraging and motivating each other. In addition, posts included tutors' feedback and redirection. Blending e-learning with conventional PBL may help overcome student-perceived shortcomings of conventional PBL and improve the learning experience, making learning more interactive and interesting.
Virtual learning object and environment: a concept analysis.
Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira
2017-01-01
To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.
Sadofsky, Moshe; Knollmann-Ritschel, Barbara; Conran, Richard M; Prystowsky, Michael B
2014-03-01
Medical school education has evolved from department-specific memorization of facts to an integrated curriculum presenting knowledge in a contextual manner across traditional disciplines, integrating information, improving retention, and facilitating application to clinical practice. Integration occurs throughout medical school using live data-sharing technologies, thereby providing the student with a framework for lifelong active learning. Incorporation of educational teams during medical school prepares students for team-based patient care, which is also required for pay-for-performance models used in accountable care organizations. To develop learning objectives for teaching pathology to medical students. Given the rapid expansion of basic science knowledge of human development, normal function, and pathobiology, it is neither possible nor desirable for faculty to teach, and students to retain, this vast amount of information. Courses teaching the essentials in context and engaging students in the learning process enable them to become lifelong learners. An appreciation of pathobiology and the role of laboratory medicine underlies the modern practice of medicine. As such, all medical students need to acquire 3 basic competencies in pathology: an understanding of disease mechanisms, integration of mechanisms into organ system pathology, and application of pathobiology to diagnostic medicine. We propose the development of 3 specific competencies in pathology to be implemented nationwide, aimed at disease mechanisms/processes, organ system pathology, and application to diagnostic medicine. Each competency will include learning objectives and a means to assess acquisition, integration, and application of knowledge. The learning objectives are designed to be a living document managed (curated) by a group of pathologists representing Liaison Committee on Medical Education-accredited medical schools nationally. Development of a coherent set of learning objectives will assist medical students nationally to gain the basic competencies in pathology necessary for clinical practice. Having national standards for competencies preserves schools' independence in specific curriculum design while assuring all students meet the evolving needs of medical practice.
Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.
Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena
2017-03-01
Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stotz, Sarah; Lee, Jung Sun
2018-01-01
The objective of this report was to describe the development process of an innovative smartphone-based electronic learning (eLearning) nutrition education program targeted to Supplemental Nutrition Assistance Program-Education-eligible individuals, entitled Food eTalk. Lessons learned from the Food eTalk development process suggest that it is critical to include all key team members from the program's inception using effective inter-team communication systems, understand the unique resources needed, budget ample time for development, and employ an iterative development and evaluation model. These lessons have implications for researchers and funding agencies in developing an innovative evidence-based eLearning nutrition education program to an increasingly technology-savvy, low-income audience. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Piloting a Statewide Home Visiting Quality Improvement Learning Collaborative.
Goyal, Neera K; Rome, Martha G; Massie, Julie A; Mangeot, Colleen; Ammerman, Robert T; Breckenridge, Jye; Lannon, Carole M
2017-02-01
Objective To pilot test a statewide quality improvement (QI) collaborative learning network of home visiting agencies. Methods Project timeline was June 2014-May 2015. Overall objectives of this 8-month initiative were to assess the use of collaborative QI to engage local home visiting agencies and to test the use of statewide home visiting data for QI. Outcome measures were mean time from referral to first home visit, percentage of families with at least three home visits per month, mean duration of participation, and exit rate among infants <6 months. Of 110 agencies, eight sites were selected based on volume, geography, and agency leadership. Our adapted Breakthrough Series model included monthly calls with performance feedback and cross-agency learning. A statewide data system was used to generate monthly run charts. Results Mean time from referral to first home visit was 16.7 days, and 9.4% of families received ≥3 visits per month. Mean participation was 11.7 months, and the exit rate among infants <6 months old was 6.1%. Agencies tested several strategies, including parent commitment agreements, expedited contact after referral, and Facebook forums. No shift in outcome measures was observed, but agencies tracked intermediate process changes using internal site-specific data. Agencies reported positive experiences from participation including more frequent and structured staff meetings. Conclusions for Practice Within a pilot QI learning network, agencies tested and measured changes using statewide and internal data. Potential next steps are to develop and test new metrics with current pilot sites and a larger collaborative.
Introducing students to patient safety through an online interprofessional course.
Blue, Amy V; Charles, Laurine; Howell, David; Koutalos, Yiannis; Mitcham, Maralynne; Nappi, Jean; Zoller, James
2010-01-01
Interprofessional education (IPE) is increasingly called upon to improve health care systems and patient safety. Our institution is engaged in a campus-wide IPE initiative. As a component of this initiative, a required online interprofessional patient-safety-focused course for a large group (300) of first-year medical, dental, and nursing students was developed and implemented. We describe our efforts with developing the course, including the use of constructivist and adult learning theories and IPE competencies to structure students' learning in a meaningful fashion. The course was conducted online to address obstacles of academic calendars and provide flexibility for faculty participation. Students worked in small groups online with a faculty facilitator. Thematic modules were created with associated objectives, online learning materials, and assignments. Students posted completed assignments online and responded to group members' assignments for purposes of group discussion. Students worked in interprofessional groups on a project requiring them to complete a root cause analysis and develop recommendations based on a fictional sentinel event case. Through project work, students applied concepts learned in the course related to improving patient safety and demonstrated interprofessional collaboration skills. Projects were presented during a final in-class session. Student course evaluation results suggest that learning objectives and content goals were achieved. Faculty course evaluation results indicate that the course was perceived to be a worthwhile learning experience for students. We offer the following recommendations to others interested in developing an in-depth interprofessional learning experience for a large group of learners: 1) consider a hybrid format (inclusion of some face-to-face sessions), 2) address IPE and broader curricular needs, 3) create interactive opportunities for shared learning and working together, 4) provide support to faculty facilitators, and 5) recognize your learners' educational level. The course has expanded to include students from additional programs for the current academic year.
Introducing students to patient safety through an online interprofessional course
Blue, Amy V; Charles, Laurine; Howell, David; Koutalos, Yiannis; Mitcham, Maralynne; Nappi, Jean; Zoller, James
2010-01-01
Interprofessional education (IPE) is increasingly called upon to improve health care systems and patient safety. Our institution is engaged in a campus-wide IPE initiative. As a component of this initiative, a required online interprofessional patient-safety-focused course for a large group (300) of first-year medical, dental, and nursing students was developed and implemented. We describe our efforts with developing the course, including the use of constructivist and adult learning theories and IPE competencies to structure students’ learning in a meaningful fashion. The course was conducted online to address obstacles of academic calendars and provide flexibility for faculty participation. Students worked in small groups online with a faculty facilitator. Thematic modules were created with associated objectives, online learning materials, and assignments. Students posted completed assignments online and responded to group members’ assignments for purposes of group discussion. Students worked in interprofessional groups on a project requiring them to complete a root cause analysis and develop recommendations based on a fictional sentinel event case. Through project work, students applied concepts learned in the course related to improving patient safety and demonstrated interprofessional collaboration skills. Projects were presented during a final in-class session. Student course evaluation results suggest that learning objectives and content goals were achieved. Faculty course evaluation results indicate that the course was perceived to be a worthwhile learning experience for students. We offer the following recommendations to others interested in developing an in-depth interprofessional learning experience for a large group of learners: 1) consider a hybrid format (inclusion of some face-to-face sessions), 2) address IPE and broader curricular needs, 3) create interactive opportunities for shared learning and working together, 4) provide support to faculty facilitators, and 5) recognize your learners’ educational level. The course has expanded to include students from additional programs for the current academic year. PMID:23745069
Ego-Motion and Tracking for Continuous Object Learning: A Brief Survey
2017-09-01
ARL-TR-8167• SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip...SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip OsteenVehicle...
Parts Marketing. A Student Learning Guide.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
This learning guide is a self-instructional packet for one task identified as essential for performance on an entry-level job in parts marketing. The guide is based on a terminal performance objective (task) and two enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline of student…
Transformative Sustainability Learning: Cultivating a Tree-Planting Ethos in Western Kenya
ERIC Educational Resources Information Center
Bull, Marijoan
2013-01-01
Given the fundamental objective of ESD--perspective change--it is increasingly being aligned with the theoretical foundation of Mezirow's Transformative Learning. In 2008, Sipos et al. built upon this connection by proposing a matrix of learning objectives to assess ESD in formal settings. These objectives, grouped under the title of…
Semantic Overlays in Educational Content Networks--The hylOs Approach
ERIC Educational Resources Information Center
Engelhardt, Michael; Hildebrand, Arne; Lange, Dagmar; Schmidt, Thomas C.
2006-01-01
Purpose: The paper aims to introduce an educational content management system, Hypermedia Learning Objects System (hylOs), which is fully compliant to the IEEE LOM eLearning object metadata standard. Enabled through an advanced authoring toolset, hylOs allows the definition of instructional overlays of a given eLearning object mesh.…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed by primary teachers and elementary principals from small districts in Snohomish and Island counties in Washington, this handbook contains sequenced student learning objectives for grades K-3 in the curriculum areas of reading, language arts, mathematics, science, and social studies. Each student learning objective is correlated to the…
Welding. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These 23 learning guides are self-instructional packets for 23 tasks identified as essential for performance on an entry-level job in welding. Each guide is based on a terminal performance objective (task) and 1-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline of student…
An Assistant for Loading Learning Object Metadata: An Ontology Based Approach
ERIC Educational Resources Information Center
Casali, Ana; Deco, Claudia; Romano, Agustín; Tomé, Guillermo
2013-01-01
In the last years, the development of different Repositories of Learning Objects has been increased. Users can retrieve these resources for reuse and personalization through searches in web repositories. The importance of high quality metadata is key for a successful retrieval. Learning Objects are described with metadata usually in the standard…
History, Context, and Policies of a Learning Object Repository
ERIC Educational Resources Information Center
Simpson, Steven Marshall
2016-01-01
Learning object repositories, a form of digital libraries, are robust systems that provide educators new ways to search for educational resources, collaborate with peers, and provide instruction to students in unique and varied ways. This study examines a learning object repository created by a large suburban school district to increase teaching…
The Effects of Using Learning Objects in Two Different Settings
ERIC Educational Resources Information Center
Cakiroglu, Unal; Baki, Adnan; Akkan, Yasar
2012-01-01
The study compared the effects of Learning Objects (LOs) within different applications; in classroom and in extracurricular activities. So in this study, firstly a Learning Object Repository (LOR) has been designed in parallel with 9th grade school mathematics curriculum. One of the two treatment groups was named as "classroom group" (n…
Plumbing and Pipefitting. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These 32 learning guides are self-instructional packets for 32 tasks identified as essential for performance on an entry-level job in plumbing and pipefitting. Each guide is based on a terminal performance objective (task) and 1-4 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps…
Clothing Production. Student Learning Guides.
ERIC Educational Resources Information Center
Ridge Vocational-Technical Center, Winter Haven, FL.
These 59 learning guides are self-instructional packets for 59 tasks identified as essential for performance on an entry-level job in clothing production. Each guide is based on a terminal performance objective (task) and 2-5 enabling objectives. For each enabling objective, some or all of these materials may be presented: learning steps (outline…
The Sloan-C Pillars and Boundary Objects As a Framework for Evaluating Blended Learning
ERIC Educational Resources Information Center
Laumakis, Mark; Graham, Charles; Dziuban, Chuck
2009-01-01
The authors contend that blended learning represents a boundary object; a construct that brings together constituencies from a variety of backgrounds with each of these cohorts defining the object somewhat differently. The Sloan-C Pillars (learning effectiveness, access, cost effectiveness, student satisfaction, and faculty satisfaction) provide…
Visual one-shot learning as an 'anti-camouflage device': a novel morphing paradigm.
Ishikawa, Tetsuo; Mogi, Ken
2011-09-01
Once people perceive what is in the hidden figure such as Dallenbach's cow and Dalmatian, they seldom seem to come back to the previous state when they were ignorant of the answer. This special type of learning process can be accomplished in a short time, with the effect of learning lasting for a long time (visual one-shot learning). Although it is an intriguing cognitive phenomenon, the lack of the control of difficulty of stimuli presented has been a problem in research. Here we propose a novel paradigm to create new hidden figures systematically by using a morphing technique. Through gradual changes from a blurred and binarized two-tone image to a blurred grayscale image of the original photograph including objects in a natural scene, spontaneous one-shot learning can occur at a certain stage of morphing when a sufficient amount of information is restored to the degraded image. A negative correlation between confidence levels and reaction times is observed, giving support to the fluency theory of one-shot learning. The correlation between confidence ratings and correct recognition rates indicates that participants had an accurate introspective ability (metacognition). The learning effect could be tested later by verifying whether or not the target object was recognized quicker in the second exposure. The present method opens a way for a systematic production of "good" hidden figures, which can be used to demystify the nature of visual one-shot learning.
Overseas testing of a multisensor landmine detection system: results and lessons learned
NASA Astrophysics Data System (ADS)
Keranen, Joe G.; Topolosky, Zeke
2009-05-01
The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.
The Amistad Incident: A Classroom Reenactment.
ERIC Educational Resources Information Center
Levy, Tedd
1995-01-01
Presents a role-playing activity based on political and legal issues surrounding a mutiny on a Spanish slave ship that landed on U.S. soil in 1839. Includes learning objectives, background information, and role descriptions. Suggests student writing assignments and further research projects. (CFR)
Cognition and Function in Language.
ERIC Educational Resources Information Center
Fox, Barbara A., Ed.; Jurafsky, Dan, Ed.; Michaelis, Laura A., Ed.
Selected papers include: "From Core to Periphery: A Study on the Directionality of Syntactic Change in Japanese" (Kaoru Horie); "On the Extension of Body-Part Nouns to Object-Part Nouns and Spatial Adpositions" (Yo Matsumoto); "Noun Classes: Language Change and Learning" (Maria Polinsky, Dan Jackson);…
Production Systems. Laboratory Activities.
ERIC Educational Resources Information Center
Gallaway, Ann, Ed.
This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…
ERIC Educational Resources Information Center
Thompson, Craig D.
1987-01-01
Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…
ERIC Educational Resources Information Center
Moore, Charles G.; And Others
This guide provides job-related tasks, performance objectives, performance guides, resources, teaching activities, evaluation standards, and criterion-referenced measures in three units of a welding course. Through the curriculum content of the welding course, the guide helps teachers lead students through the learning process, including the…
Communication Systems. Laboratory Activities.
ERIC Educational Resources Information Center
Sutherland, Barbara, Ed.
This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…
ERIC Educational Resources Information Center
Jacobs, James A.
1994-01-01
This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)
Human Factors Engineering. Student Supplement,
1981-08-01
a job TASK TAXONOMY A classification scheme for the different levels of activities in a system, i.e., job - task - sub-task, etc. TASK-AN~ALYSIS...with the classification of learning objectives by learning category so as to identify learningPhas III guidelines necessary for optimum learning to...correct. .4... .the sequencing of all dependent tasks. .1.. .the classification of learning objectives by learning category and the Identification of
Learning to recognize objects on the fly: a neurally based dynamic field approach.
Faubel, Christian; Schöner, Gregor
2008-05-01
Autonomous robots interacting with human users need to build and continuously update scene representations. This entails the problem of rapidly learning to recognize new objects under user guidance. Based on analogies with human visual working memory, we propose a dynamical field architecture, in which localized peaks of activation represent objects over a small number of simple feature dimensions. Learning consists of laying down memory traces of such peaks. We implement the dynamical field model on a service robot and demonstrate how it learns 30 objects from a very small number of views (about 5 per object are sufficient). We also illustrate how properties of feature binding emerge from this framework.
NASA Astrophysics Data System (ADS)
Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck
2018-01-01
Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.
NASA Astrophysics Data System (ADS)
Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.
2018-05-01
Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.
Reinforcement active learning in the vibrissae system: optimal object localization.
Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud
2013-01-01
Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Freundlieb, Nils; Ridder, Volker; Dobel, Christian; Enriquez-Geppert, Stefanie; Baumgaertner, Annette; Zwitserlood, Pienie; Gerloff, Christian; Hummel, Friedhelm C; Liuzzi, Gianpiero
2012-01-01
Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning to optimize therapeutic strategies.
Object Familiarity Facilitates Foreign Word Learning in Preschoolers
ERIC Educational Resources Information Center
Sera, Maria D.; Cole, Caitlin A.; Oromendia, Mercedes; Koenig, Melissa A.
2014-01-01
Studying how children learn words in a foreign language can shed light on how language learning changes with development. In one experiment, we examined whether three-, four-, and five-year-olds could learn and remember words for familiar and unfamiliar objects in their native English and a foreign language. All age groups could learn and remember…
Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).
ERIC Educational Resources Information Center
von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus
2001-01-01
Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…
Overview of deep learning in medical imaging.
Suzuki, Kenji
2017-09-01
The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
Common Learning Objectives for Undergraduate Control Systems Laboratories
ERIC Educational Resources Information Center
Reck, Rebecca M.
2017-01-01
Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended…
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra
2013-06-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.
The construction of learning objects on communicable diseases for community health agents.
Pacheco, Kátia Cilene Ferreira; Azambuja, Marcelo Schenk de; Bonamigo, Andrea Wander
2018-06-07
To describe the creation of a learning object about communicable diseases and their identification, monitoring, and prevention for community health agents. The qualitative, exploratory, case study conducted in the North District Management Zone - Baltazar of the Universidade Federal de Ciências da Saúde de Porto Alegre, from October to January 2015 2016. The study had 58 participants and consisted of the stages field research, Bardin's content analysis, and design of the learning object. The profile of the professionals working in the location was established. These agents identified the most commonly found diseases and stressed their needs in relation to a technological resource. The identified needs were considered to define the content and structure the learning object. The learning object is an alternative method for sharing knowledge on communicable diseases. The tool allows the combination of technology with teaching, which makes the learning process and the work of the community health agents more rewarding and productive.
Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra
2013-01-01
The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627
ERIC Educational Resources Information Center
Bader, Morris
Presented are the teacher's guide and student manual for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on the colligative properties of solutions includes objectives, prerequisites, pretest, discussion, and 20 problem sets. Included in…
Neuronal Reward and Decision Signals: From Theories to Data
Schultz, Wolfram
2015-01-01
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341
Object based implicit contextual learning: a study of eye movements.
van Asselen, Marieke; Sampaio, Joana; Pina, Ana; Castelo-Branco, Miguel
2011-02-01
Implicit contextual cueing refers to a top-down mechanism in which visual search is facilitated by learned contextual features. In the current study we aimed to investigate the mechanism underlying implicit contextual learning using object information as a contextual cue. Therefore, we measured eye movements during an object-based contextual cueing task. We demonstrated that visual search is facilitated by repeated object information and that this reduction in response times is associated with shorter fixation durations. This indicates that by memorizing associations between objects in our environment we can recognize objects faster, thereby facilitating visual search.
Prediction errors to emotional expressions: the roles of the amygdala in social referencing.
Meffert, Harma; Brislin, Sarah J; White, Stuart F; Blair, James R
2015-04-01
Social referencing paradigms in humans and observational learning paradigms in animals suggest that emotional expressions are important for communicating valence. It has been proposed that these expressions initiate stimulus-reinforcement learning. Relatively little is known about the role of emotional expressions in reinforcement learning, particularly in the context of social referencing. In this study, we examined object valence learning in the context of a social referencing paradigm. Participants viewed objects and faces that turned toward the objects and displayed a fearful, happy or neutral reaction to them, while judging the gender of these faces. Notably, amygdala activation was larger when the expressions following an object were less expected. Moreover, when asked, participants were both more likely to want to approach, and showed stronger amygdala responses to, objects associated with happy relative to objects associated with fearful expressions. This suggests that the amygdala plays two roles in social referencing: (i) initiating learning regarding the valence of an object as a function of prediction errors to expressions displayed toward this object and (ii) orchestrating an emotional response to the object when value judgments are being made regarding this object. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Interservice Procedures for Instructional Systems Development. Phase 3. Develop
1975-08-01
Occur at wide intervals to be learned *Reads about the actions to *Occur at the end, but before be learned tests or on-the-job performance *Watches a...the particular sub-category. Use the learning objective action statement, conditions, standards, and the test item to help select which guidelines to...objective. EXAMPLE If you have a CLASSIFYING objective like "identifying poisonous plants,’ when you get to guideline 16. "To test learning, require the
A neurocomputational account of taxonomic responding and fast mapping in early word learning.
Mayor, Julien; Plunkett, Kim
2010-01-01
We present a neurocomputational model with self-organizing maps that accounts for the emergence of taxonomic responding and fast mapping in early word learning, as well as a rapid increase in the rate of acquisition of words observed in late infancy. The quality and efficiency of generalization of word-object associations is directly related to the quality of prelexical, categorical representations in the model. We show how synaptogenesis supports coherent generalization of word-object associations and show that later synaptic pruning minimizes metabolic costs without being detrimental to word learning. The role played by joint-attentional activities is identified in the model, both at the level of selecting efficient cross-modal synapses and at the behavioral level, by accelerating and refining overall vocabulary acquisition. The model can account for the qualitative shift in the way infants use words, from an associative to a referential-like use, for the pattern of overextension errors in production and comprehension observed during early childhood and typicality effects observed in lexical development. Interesting by-products of the model include a potential explanation of the shift from prototype to exemplar-based effects reported for adult category formation, an account of mispronunciation effects in early lexical development, and extendability to include accounts of individual differences in lexical development and specific disorders such as Williams syndrome. The model demonstrates how an established constraint on lexical learning, which has often been regarded as domain-specific, can emerge from domain-general learning principles that are simultaneously biologically, psychologically, and socially plausible.
ERIC Educational Resources Information Center
Pegler, Chris
2005-01-01
This paper draws on the presentation of three online pilot "series" of learning objects aimed at offering university staff convenient updating opportunities around issues connected with e-learning. The "Hot Topics" format presented short themed sets (series) of learning objects to a wide-range of staff, encouraging sampling strategies to support…
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
Teaching and Assessing Ethics as a Learning Objective: One School's Journey
ERIC Educational Resources Information Center
Templin, Carl R.; Christensen, David
2009-01-01
This paper reports the results of a ten-year effort to establish ethics as a learning objective for all business students, to assess the effectiveness in achieving that learning objective and to incorporate ethical conduct as a part of the school's organizational culture. First, it addresses the importance of ethics instruction for all business…
The Open Learning Object Model to Promote Open Educational Resources
ERIC Educational Resources Information Center
Fulantelli, Giovanni; Gentile, Manuel; Taibi, Davide; Allegra, Mario
2008-01-01
In this paper we present the results of research work, that forms part of the activities of the EU-funded project SLOOP: Sharing Learning Objects in an Open Perspective, aimed at encouraging the definition, development and management of Open Educational Resources based on the Learning Object paradigm (Wiley, 2000). We present a model of Open…
Differences in How Monolingual and Bilingual Children Learn Second Labels for Familiar Objects
ERIC Educational Resources Information Center
Rowe, Lindsey; Jacobson, Rebecca; Saylor, Megan M.
2015-01-01
Monolingual children sometimes resist learning second labels for familiar objects. One explanation is that they are guided by word learning constraints that lead to the assumption that objects have only one name. It is less clear whether bilingual children observe this constraint. In the current study, we test the hypothesis that bilingual…
ERIC Educational Resources Information Center
Nelson, JoAnne, Ed.; Hartl, David, Ed.
Designed by Washington curriculum specialists and secondary teachers to assist teachers in small schools with the improvement of curriculum and instruction and to aid smaller districts lacking curriculum personnel to comply with Washington's Student Learning Objectives Law, this handbook contains learning objectives in the areas of language arts,…
Searching for and Positioning of Contextualized Learning Objects
ERIC Educational Resources Information Center
Baldiris, Silvia; Graf, Sabine; Fabregat, Ramon; Mendez, Nestor Dario Duque
2012-01-01
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong…
A Selection System and Catalog for Instructional Media and Devices.
ERIC Educational Resources Information Center
Boucher, Brian G.; And Others
A system is presented which facilitates the selection of training media and devices based on the requirements of specific learning objectives. The system consists of the use of a set of descriptive parameters which are common to both learning objectives and media. The system allows the essential intent of learning objectives to be analyzed in…
Real-world visual statistics and infants' first-learned object names
Clerkin, Elizabeth M.; Hart, Elizabeth; Rehg, James M.; Yu, Chen
2017-01-01
We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-old infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present—a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872373
Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-08-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.
Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning
Hassler, Uwe; Friese, Uwe; Gruber, Thomas
2012-01-01
The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558
Sarigiannis, Amy N.; Boulton, Matthew L.
2012-01-01
Objectives. We evaluated the utility of a competency mapping process for assessing the integration of clinical and public health skills in a newly developed Community Health Center (CHC) rotation at the University of Michigan School of Public Health Preventive Medicine residency. Methods. Learning objectives for the CHC rotation were derived from the Accreditation Council for Graduate Medical Education core clinical preventive medicine competencies. CHC learning objectives were mapped to clinical preventive medicine competencies specific to the specialty of public health and general preventive medicine. Objectives were also mapped to The Council on Linkages Between Academia and Public Health Practice’s tier 2 Core Competencies for Public Health Professionals. Results. CHC learning objectives mapped to all 4 (100%) of the public health and general preventive medicine clinical preventive medicine competencies. CHC population-level learning objectives mapped to 32 (94%) of 34 competencies for public health professionals. Conclusions. Utilizing competency mapping to assess clinical–public health integration in a new CHC rotation proved to be feasible and useful. Clinical preventive medicine learning objectives for a CHC rotation can also address public health competencies. PMID:22690972
Plan of Work 2010: Towards True Student-Centered Learning
ERIC Educational Resources Information Center
European Students' Union (NJ1), 2010
2010-01-01
The European Students' Union's (ESU's) vision regarding the Student Centered Learning concept stems from the fundamental belief that the learning process should have at its core learning objectives as they are prioritized by each individual students, also that each (potential) student should be empowered to define those objectives and progress…
Form over Substance: Learning Objectives in the Business Core
ERIC Educational Resources Information Center
Stokes, Leonard; Rosetti, Joseph L.; King, Michelle
2010-01-01
While members of the business faculty community have been advocating active learning in the classroom, it appears that textbooks encourage learning from a passive perspective. A review of learning objectives from 16 textbooks used in Financial Accounting, Managerial Accounting, Finance, and Marketing demonstrates a focus on basically the same set…
Holistic Approach to Learning and Teaching Introductory Object-Oriented Programming
ERIC Educational Resources Information Center
Thota, Neena; Whitfield, Richard
2010-01-01
This article describes a holistic approach to designing an introductory, object-oriented programming course. The design is grounded in constructivism and pedagogy of phenomenography. We use constructive alignment as the framework to align assessments, learning, and teaching with planned learning outcomes. We plan learning and teaching activities,…
Web-Based Learning Design Tool
ERIC Educational Resources Information Center
Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.
2012-01-01
Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…
Learning Activities for the Young Handicapped Child.
ERIC Educational Resources Information Center
Bailey, Don; And Others
Presented is a collection of learning activities for the young handicapped child covering 295 individual learning objectives in six areas of development: gross motor skills, fine motor skills, social skills, self help skills, cognitive skills, and language skills. Provided for each learning activity are the teaching objective, teaching procedures,…
The Usefulness of Learning Objects in Industry Oriented Learning Environments
ERIC Educational Resources Information Center
Fernando, Shantha; Sol, Henk; Dahanayake, Ajantha
2012-01-01
A model is presented to evaluate the usefulness of learning objects for industry oriented learning environments that emphasise training university graduates for job opportunities in a competitive industry oriented economy. Knowledge workers of the industry seek continuous professional development to keep their skills and knowledge up to date. Many…
Rural Workplace Literacy Demonstration Project. Welding Curriculum. Dorsey Trailers, Inc.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum guide contains workplace-specific instructional materials developed for use in a rural workplace literacy demonstration project, specifically with welders. Contents include a student assessment form, instructional objectives, pre- and posttests, learning activities (some locally developed and some selected from commercially…