The Optimization by Using the Learning Styles in the Adaptive Hypermedia Applications
ERIC Educational Resources Information Center
Hamza, Lamia; Tlili, Guiassa Yamina
2018-01-01
This article addresses the learning style as a criterion for optimization of adaptive content in hypermedia applications. First, the authors present the different optimization approaches proposed in the area of adaptive hypermedia systems whose goal is to define the optimization problem in this type of system. Then, they present the architecture…
Encoder-Decoder Optimization for Brain-Computer Interfaces
Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam
2015-01-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
Online adaptation and over-trial learning in macaque visuomotor control.
Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.
Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control
Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526
Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization
ERIC Educational Resources Information Center
Rastegarmoghadam, Mahin; Ziarati, Koorush
2017-01-01
Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…
A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
Wen, Hui; Xie, Weixin; Pei, Jihong
2016-01-01
This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
How Language Supports Adaptive Teaching through a Responsive Learning Culture
ERIC Educational Resources Information Center
Johnston, Peter; Dozier, Cheryl; Smit, Julie
2016-01-01
For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…
Adaptable Learning Pathway Generation with Ant Colony Optimization
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2009-01-01
One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…
Uncertainty, learning, and the optimal management of wildlife
Williams, B.K.
2001-01-01
Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control through learning. The framework for optimal adaptive control is generalized by including partial observability and non-adaptive, sample-based updating of model likelihoods. Passive adaptive management is derived as a special case of constrained adaptive optimization, representing a potentially efficient suboptimal alternative that nonetheless accounts for structural uncertainty.
The Framework of Intervention Engine Based on Learning Analytics
ERIC Educational Resources Information Center
Sahin, Muhittin; Yurdugül, Halil
2017-01-01
Learning analytics primarily deals with the optimization of learning environments and the ultimate goal of learning analytics is to improve learning and teaching efficiency. Studies on learning analytics seem to have been made in the form of adaptation engine and intervention engine. Adaptation engine studies are quite widespread, but intervention…
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.
Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin
2017-01-01
In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.
Shimansky, Yury P; Kang, Tao; He, Jiping
2004-02-01
A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.
Spatial features of synaptic adaptation affecting learning performance.
Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J
2017-09-08
Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Adaptive and perceptual learning technologies in medical education and training.
Kellman, Philip J
2013-10-01
Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
An extended ASLD trading system to enhance portfolio management.
Hung, Kei-Keung; Cheung, Yiu-Ming; Xu, Lei
2003-01-01
An adaptive supervised learning decision (ASLD) trading system has been presented by Xu and Cheung (1997) to optimize the expected returns of investment without considering risks. In this paper, we propose an extension of the ASLD system (EASLD), which combines the ASLD with a portfolio optimization scheme to take a balance between the expected returns and risks. This new system not only keeps the learning adaptability of the ASLD, but also dynamically controls the risk in pursuit of great profits by diversifying the capital to a time-varying portfolio of N assets. Consequently, it is shown that: 1) the EASLD system gives the investment risk much smaller than the ASLD one; and 2) more returns are gained through the EASLD system in comparison with the two individual portfolio optimization schemes that statically determine the portfolio weights without adaptive learning. We have justified these two issues by the experiments.
On valuing information in adaptive-management models.
Moore, Alana L; McCarthy, Michael A
2010-08-01
Active adaptive management looks at the benefit of using strategies that may be suboptimal in the near term but may provide additional information that will facilitate better management in the future. In many adaptive-management problems that have been studied, the optimal active and passive policies (accounting for learning when designing policies and designing policy on the basis of current best information, respectively) are very similar. This seems paradoxical; when faced with uncertainty about the best course of action, managers should spend very little effort on actively designing programs to learn about the system they are managing. We considered two possible reasons why active and passive adaptive solutions are often similar. First, the benefits of learning are often confined to the particular case study in the modeled scenario, whereas in reality information gained from local studies is often applied more broadly. Second, management objectives that incorporate the variance of an estimate may place greater emphasis on learning than more commonly used objectives that aim to maximize an expected value. We explored these issues in a case study of Merri Creek, Melbourne, Australia, in which the aim was to choose between two options for revegetation. We explicitly incorporated monitoring costs in the model. The value of the terminal rewards and the choice of objective both influenced the difference between active and passive adaptive solutions. Explicitly considering the cost of monitoring provided a different perspective on how the terminal reward and management objective affected learning. The states for which it was optimal to monitor did not always coincide with the states in which active and passive adaptive management differed. Our results emphasize that spending resources on monitoring is only optimal when the expected benefits of the options being considered are similar and when the pay-off for learning about their benefits is large.
Biomimetic molecular design tools that learn, evolve, and adapt.
Winkler, David A
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.
Biomimetic molecular design tools that learn, evolve, and adapt
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
What if Learning Analytics Were Based on Learning Science?
ERIC Educational Resources Information Center
Marzouk, Zahia; Rakovic, Mladen; Liaqat, Amna; Vytasek, Jovita; Samadi, Donya; Stewart-Alonso, Jason; Ram, Ilana; Woloshen, Sonya; Winne, Philip H.; Nesbit, John C.
2016-01-01
Learning analytics are often formatted as visualisations developed from traced data collected as students study in online learning environments. Optimal analytics inform and motivate students' decisions about adaptations that improve their learning. We observe that designs for learning often neglect theories and empirical findings in learning…
Statistical efficiency of adaptive algorithms.
Widrow, Bernard; Kamenetsky, Max
2003-01-01
The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights and less than optimal performance. In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple and practical, and is used in many applications worldwide. LMS/Newton is based on Newton's method and the LMS algorithm. LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data. Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance, on average, than LMS/Newton. LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton, and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal performance under important practical conditions. For these reasons, the LMS algorithm has enjoyed very widespread application. It is used in almost every modem for channel equalization and echo cancelling. Furthermore, it is related to the famous backpropagation algorithm used for training neural networks.
Parameter learning for performance adaptation
NASA Technical Reports Server (NTRS)
Peek, Mark D.; Antsaklis, Panos J.
1990-01-01
A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.
Adaptive low-rank subspace learning with online optimization for robust visual tracking.
Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan
2017-04-01
In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Two-step adaptive management for choosing between two management actions
Moore, Alana L.; Walker, Leila; Runge, Michael C.; McDonald-Madden, Eve; McCarthy, Michael A
2017-01-01
Adaptive management is widely advocated to improve environmental management. Derivations of optimal strategies for adaptive management, however, tend to be case specific and time consuming. In contrast, managers might seek relatively simple guidance, such as insight into when a new potential management action should be considered, and how much effort should be expended on trialing such an action. We constructed a two-time-step scenario where a manager is choosing between two possible management actions. The manager has a total budget that can be split between a learning phase and an implementation phase. We use this scenario to investigate when and how much a manager should invest in learning about the management actions available. The optimal investment in learning can be understood intuitively by accounting for the expected value of sample information, the benefits that accrue during learning, the direct costs of learning, and the opportunity costs of learning. We find that the optimal proportion of the budget to spend on learning is characterized by several critical thresholds that mark a jump from spending a large proportion of the budget on learning to spending nothing. For example, as sampling variance increases, it is optimal to spend a larger proportion of the budget on learning, up to a point: if the sampling variance passes a critical threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a function of the total budget and the difference in the expected performance of the two actions. We illustrate how this model can be applied using a case study of choosing between alternative rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is a simplified scenario, we believe it is relevant to many management situations. Managers often have relatively short time horizons for management, and might be reluctant to consider further investment in learning and monitoring beyond collecting data from a single time period.
Two-step adaptive management for choosing between two management actions.
Moore, Alana L; Walker, Leila; Runge, Michael C; McDonald-Madden, Eve; McCarthy, Michael A
2017-06-01
Adaptive management is widely advocated to improve environmental management. Derivations of optimal strategies for adaptive management, however, tend to be case specific and time consuming. In contrast, managers might seek relatively simple guidance, such as insight into when a new potential management action should be considered, and how much effort should be expended on trialing such an action. We constructed a two-time-step scenario where a manager is choosing between two possible management actions. The manager has a total budget that can be split between a learning phase and an implementation phase. We use this scenario to investigate when and how much a manager should invest in learning about the management actions available. The optimal investment in learning can be understood intuitively by accounting for the expected value of sample information, the benefits that accrue during learning, the direct costs of learning, and the opportunity costs of learning. We find that the optimal proportion of the budget to spend on learning is characterized by several critical thresholds that mark a jump from spending a large proportion of the budget on learning to spending nothing. For example, as sampling variance increases, it is optimal to spend a larger proportion of the budget on learning, up to a point: if the sampling variance passes a critical threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a function of the total budget and the difference in the expected performance of the two actions. We illustrate how this model can be applied using a case study of choosing between alternative rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is a simplified scenario, we believe it is relevant to many management situations. Managers often have relatively short time horizons for management, and might be reluctant to consider further investment in learning and monitoring beyond collecting data from a single time period. © 2017 by the Ecological Society of America.
To Adapt or Not to Adapt: Navigating an Implementation Conundrum
ERIC Educational Resources Information Center
Leko, Melinda M.
2015-01-01
Maximizing the effectiveness of evidence-based practices (EBPs) requires an optimal balance of implementation fidelity and adaptation so EBPs fit local contexts and meet the individual learning needs of students with disabilities. The framework for classifying adaptations presented in this article can help educators make decisions about whether…
Neural robust stabilization via event-triggering mechanism and adaptive learning technique.
Wang, Ding; Liu, Derong
2018-06-01
The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
The power of associative learning and the ontogeny of optimal behaviour.
Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano
2016-11-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce 'intelligent' behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion.
The power of associative learning and the ontogeny of optimal behaviour
Enquist, Magnus; Lind, Johan
2016-01-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce ‘intelligent’ behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion. PMID:28018662
Optimal and Adaptive Online Learning
ERIC Educational Resources Information Center
Luo, Haipeng
2016-01-01
Online learning is one of the most important and well-established machine learning models. Generally speaking, the goal of online learning is to make a sequence of accurate predictions "on the fly," given some information of the correct answers to previous prediction tasks. Online learning has been extensively studied in recent years,…
Optimal structure of metaplasticity for adaptive learning
2017-01-01
Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
Recommendation System for Adaptive Learning.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-01-01
An adaptive learning system aims at providing instruction tailored to the current status of a learner, differing from the traditional classroom experience. The latest advances in technology make adaptive learning possible, which has the potential to provide students with high-quality learning benefit at a low cost. A key component of an adaptive learning system is a recommendation system, which recommends the next material (video lectures, practices, and so on, on different skills) to the learner, based on the psychometric assessment results and possibly other individual characteristics. An important question then follows: How should recommendations be made? To answer this question, a mathematical framework is proposed that characterizes the recommendation process as a Markov decision problem, for which decisions are made based on the current knowledge of the learner and that of the learning materials. In particular, two plain vanilla systems are introduced, for which the optimal recommendation at each stage can be obtained analytically.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
Adaptive Batch Mode Active Learning.
Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman
2015-08-01
Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
Predicting Student Performance in a Collaborative Learning Environment
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol
2015-01-01
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.
Sun, Kangkang; Sui, Shuai; Tong, Shaocheng
2018-04-01
This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.
Strategies for sustainable management of renewable resources during environmental change.
Lindkvist, Emilie; Ekeberg, Örjan; Norberg, Jon
2017-03-15
As a consequence of global environmental change, management strategies that can deal with unexpected change in resource dynamics are becoming increasingly important. In this paper we undertake a novel approach to studying resource growth problems using a computational form of adaptive management to find optimal strategies for prevalent natural resource management dilemmas. We scrutinize adaptive management, or learning-by-doing, to better understand how to simultaneously manage and learn about a system when its dynamics are unknown. We study important trade-offs in decision-making with respect to choosing optimal actions (harvest efforts) for sustainable management during change. This is operationalized through an artificially intelligent model where we analyze how different trends and fluctuations in growth rates of a renewable resource affect the performance of different management strategies. Our results show that the optimal strategy for managing resources with declining growth is capable of managing resources with fluctuating or increasing growth at a negligible cost, creating in a management strategy that is both efficient and robust towards future unknown changes. To obtain this strategy, adaptive management should strive for: high learning rates to new knowledge, high valuation of future outcomes and modest exploration around what is perceived as the optimal action. © 2017 The Author(s).
How we value the future affects our desire to learn.
Moore, Alana L; Hauser, Cindy E; McCarthy, Michael A
2008-06-01
Active adaptive management is increasingly advocated in natural resource management and conservation biology. Active adaptive management looks at the benefit of employing strategies that may be suboptimal in the near term but which may provide additional information that will facilitate better management in future years. However, when comparing management policies it is traditional to weigh future rewards geometrically (at a constant discount rate) which results in far-distant rewards making a negligible contribution to the total benefit. Under such a discounting scheme active adaptive management is rarely of much benefit, especially if learning is slow. A growing number of authors advocate the use of alternative forms of discounting when evaluating optimal strategies for long-term decisions which have a social component. We consider a theoretical harvested population for which the recovery rate from an unharvestably small population size is unknown and look at the effects on the benefit of experimental management when three different forms of discounting are employed. Under geometric discounting, with a discount rate of 5% per annum, managing to learn actively had little benefit. This study demonstrates that discount functions which weigh future rewards more heavily result in more conservative harvesting strategies, but do not necessarily encourage active learning. Furthermore, the optimal management strategy is not equivalent to employing geometric discounting at a lower rate. If alternative discount functions are made mandatory in calculating optimal management strategies for environmental management then this will affect the structure of optimal management regimes and change when and how much we are willing to invest in learning.
A plastic corticostriatal circuit model of adaptation in perceptual decision making
Hsiao, Pao-Yueh; Lo, Chung-Chuan
2013-01-01
The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814
Towards a Self-Configuring Optimization System for Spacecraft Design
NASA Technical Reports Server (NTRS)
Chien, Steve
1997-01-01
In this paper, we propose the use of a set of generic, metaheuristic optimization algorithms, which is configured for a particular optimization problem by an adaptive problem solver based on artificial intelligence and machine learning techniques. We describe work in progress on these principles.
Ong, M L; Ng, E Y K
2005-12-01
In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.
NASA Astrophysics Data System (ADS)
Yang, Xiong; Liu, Derong; Wang, Ding
2014-03-01
In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.
Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)
2016-01-01
Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C
2017-02-15
Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.
Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning
NASA Astrophysics Data System (ADS)
Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel
2014-06-01
Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.
Sparse time-frequency decomposition based on dictionary adaptation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).
Approximate Optimal Control as a Model for Motor Learning
ERIC Educational Resources Information Center
Berthier, Neil E.; Rosenstein, Michael T.; Barto, Andrew G.
2005-01-01
Current models of psychological development rely heavily on connectionist models that use supervised learning. These models adapt network weights when the network output does not match the target outputs computed by some agent. The authors present a model of motor learning in which the child uses exploration to discover appropriate ways of…
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.
Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen
2018-04-01
In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.
NASA Astrophysics Data System (ADS)
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Dura-Bernal, S.; Neymotin, S. A.; Kerr, C. C.; Sivagnanam, S.; Majumdar, A.; Francis, J. T.; Lytton, W. W.
2017-01-01
Biomimetic simulation permits neuroscientists to better understand the complex neuronal dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, which can read and write signals from the brain, will permit applications for amelioration of motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprostheses require real-time adaptation to changes in the external environment, thus constituting an example of a dynamic data-driven application system. As model fidelity increases, so does the number of parameters and the complexity of finding appropriate parameter configurations. Instead of adapting synaptic weights via machine learning, we employed major biological learning methods: spike-timing dependent plasticity and reinforcement learning. We optimized the learning metaparameters using evolutionary algorithms, which were implemented in parallel and which used an island model approach to obtain sufficient speed. We employed these methods to train a cortical spiking model to utilize macaque brain activity, indicating a selected target, to drive a virtual musculoskeletal arm with realistic anatomical and biomechanical properties to reach to that target. The optimized system was able to reproduce macaque data from a comparable experimental motor task. These techniques can be used to efficiently tune the parameters of multiscale systems, linking realistic neuronal dynamics to behavior, and thus providing a useful tool for neuroscience and neuroprosthetics. PMID:29200477
Optimal Sequential Rules for Computer-Based Instruction.
ERIC Educational Resources Information Center
Vos, Hans J.
1998-01-01
Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…
Kumar, M; Mishra, S K
2017-01-01
The clinical magnetic resonance imaging (MRI) images may get corrupted due to the presence of the mixture of different types of noises such as Rician, Gaussian, impulse, etc. Most of the available filtering algorithms are noise specific, linear, and non-adaptive. There is a need to develop a nonlinear adaptive filter that adapts itself according to the requirement and effectively applied for suppression of mixed noise from different MRI images. In view of this, a novel nonlinear neural network based adaptive filter i.e. functional link artificial neural network (FLANN) whose weights are trained by a recently developed derivative free meta-heuristic technique i.e. teaching learning based optimization (TLBO) is proposed and implemented. The performance of the proposed filter is compared with five other adaptive filters and analyzed by considering quantitative metrics and evaluating the nonparametric statistical test. The convergence curve and computational time are also included for investigating the efficiency of the proposed as well as competitive filters. The simulation outcomes of proposed filter outperform the other adaptive filters. The proposed filter can be hybridized with other evolutionary technique and utilized for removing different noise and artifacts from others medical images more competently.
Consensus-based distributed cooperative learning from closed-loop neural control systems.
Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang
2015-02-01
In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.
NASA Astrophysics Data System (ADS)
Zuel, Brian
The purpose of this dissertation was to examine the effectiveness of matching learners' optimal learning styles to their overall knowledge retention. The study attempted to determine if learners who are placed in an online learning environment that matches their optimal learning styles will retain the information at a higher rate than those learners who are not in an adapted learning environment. There were 56 participants that took one of two lessons; the first lesson was textual based, had no hypertext, and was not influenced heavily by the coherence principle, while the second lesson was multimedia based utilizing hypermedia guided by the coherence principle. Each participant took Felder and Soloman's (1991, 2000) Index of Learning Styles (ILS) questionnaire and was classified using the Felder-Silverman Learning Style Model (FSLSM; 1998) into four individual categories. Groups were separated using the Visual/Verbal section of the FSLSM with 55% (n = 31) of participants going to the adapted group, and 45% (n =25) of participants going to the non-adapted group. Each participant completed an immediate posttest directly after the lesson and a retention posttest a week later. Several repeated measures MANOVA tests were conducted to measure the significance of differences in the tests between groups and within groups. Repeated measures MANOVA tests were conducted to determine if significance existed between the immediate posttest results and the retention posttest results. Also, participants were asked their perspectives if the lesson type they received was beneficial to their perceived learning of the material. Of the 56 students who took part in this study, 31 students were placed in the adapted group and 25 in the non-adapted group based on outcomes of the ILS and the FLSSM. No significant differences were found between groups taking the multimedia lesson and the textual lesson in the immediate posttest. No significant differences were found between the adapted and the non-adapted groups on the immediate posttest. No significant difference was found between the adapted and the non-adapted groups on the retention posttest. However, results also revealed that the adapted group scored significantly higher on the retention posttest when compared with the immediate posttest. Interestingly, the non-adapted group scored significantly higher on the immediate posttest when compared with the retention posttest. When queried about the perception of benefit of the lesson style, 42% of the adapted group replied in the affirmative following the immediate posttest, yet that percentage grew to 81% following the retention posttest. The non-adapted group had 28% reply in the affirmative following the immediate posttest, and that percentage grew to 48% following the retention posttest. Both groups found benefit, yet the numbers associated with the adapted group were higher. Overall perceptions of benefit corresponded to higher test scores as opposed to those who did not find benefit, who had a lower score.
Tsai, Jason Sheng-Hong; Du, Yan-Yi; Huang, Pei-Hsiang; Guo, Shu-Mei; Shieh, Leang-San; Chen, Yuhua
2011-07-01
In this paper, a digital redesign methodology of the iterative learning-based decentralized adaptive tracker is proposed to improve the dynamic performance of sampled-data linear large-scale control systems consisting of N interconnected multi-input multi-output subsystems, so that the system output will follow any trajectory which may not be presented by the analytic reference model initially. To overcome the interference of each sub-system and simplify the controller design, the proposed model reference decentralized adaptive control scheme constructs a decoupled well-designed reference model first. Then, according to the well-designed model, this paper develops a digital decentralized adaptive tracker based on the optimal analog control and prediction-based digital redesign technique for the sampled-data large-scale coupling system. In order to enhance the tracking performance of the digital tracker at specified sampling instants, we apply the iterative learning control (ILC) to train the control input via continual learning. As a result, the proposed iterative learning-based decentralized adaptive tracker not only has robust closed-loop decoupled property but also possesses good tracking performance at both transient and steady state. Besides, evolutionary programming is applied to search for a good learning gain to speed up the learning process of ILC. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
A meta-learning system based on genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.
Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.
Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian
2013-01-01
Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces sparser coefficients than the original SPF basis and results in significantly lower reconstruction error than Bilgic et al.'s method.
Adaptive optimal training of animal behavior
NASA Astrophysics Data System (ADS)
Bak, Ji Hyun; Choi, Jung Yoon; Akrami, Athena; Witten, Ilana; Pillow, Jonathan
Neuroscience experiments often require training animals to perform tasks designed to elicit various sensory, cognitive, and motor behaviors. Training typically involves a series of gradual adjustments of stimulus conditions and rewards in order to bring about learning. However, training protocols are usually hand-designed, and often require weeks or months to achieve a desired level of task performance. Here we combine ideas from reinforcement learning and adaptive optimal experimental design to formulate methods for efficient training of animal behavior. Our work addresses two intriguing problems at once: first, it seeks to infer the learning rules underlying an animal's behavioral changes during training; second, it seeks to exploit these rules to select stimuli that will maximize the rate of learning toward a desired objective. We develop and test these methods using data collected from rats during training on a two-interval sensory discrimination task. We show that we can accurately infer the parameters of a learning algorithm that describes how the animal's internal model of the task evolves over the course of training. We also demonstrate by simulation that our method can provide a substantial speedup over standard training methods.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
Aircraft adaptive learning control
NASA Technical Reports Server (NTRS)
Lee, P. S. T.; Vanlandingham, H. F.
1979-01-01
The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.
Optimization through satisficing with prospects
NASA Astrophysics Data System (ADS)
Oyo, Kuratomo; Takahashi, Tatsuji
2017-07-01
As the broadening scope of reinforcement learning calls for a rational and more efficient heuristics, we test a satisficing strategy named RS, based on the theory of bounded rationality that considers the limited resources in agents. In K-armed bandit problems, despite its simpler form than the previous formalization of satisficing, RS shows better-than-optimal performances when the optimal aspiration level is given. We also show that RS shows a scalability for the number of actions, K, and an adaptability in the face of an infinite number of actions. It may be an efficient means for online learning in a complex or real environments.
ERIC Educational Resources Information Center
Dias, Shamini Samanlatha Elizabeth
2013-01-01
This dissertation explored the value and functions of imagination in leading learning in the twenty-first century, a knowledge-based age marked by diversity, change and unpredictability. In such a context, how can imagination enable teachers to be leaders of learning who optimally engage and prepare students for success? Research in cognitive…
Optimization of Educational Environment for Students
ERIC Educational Resources Information Center
Tausan, Liana
2015-01-01
The paradigm of adapting school to the learning necessities and possibilities of the student, characteristic for future systems of education and for contemporary type of educational system network requires a diversity of learning situations and experiences, built in accordance with the possibilities and the needs of all student categories, in…
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
A particle swarm optimization variant with an inner variable learning strategy.
Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin
2014-01-01
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.
ERIC Educational Resources Information Center
Neubrand, Charlotte; Borzikowsky, Christoph; Harms, Ute
2016-01-01
Evolutionary theory constitutes the overarching concept in biology. There is hardly any other concept that is more complex, and causes more difficulties in learning and teaching. One instructional approach in optimizing the learning of complex topics is to use worked examples combined with self-explanation prompts that fit to the prior knowledge…
Beyond adaptive-critic creative learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.
2001-10-01
Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it permits the discovery of the unknown problems, ones that are not yet recognized but may be critical to survival or success.
Information-theoretic approach to interactive learning
NASA Astrophysics Data System (ADS)
Still, S.
2009-01-01
The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.
Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
Silva, Pedro; Matos, Vitor; Santos, Cristina P
2014-02-01
There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy-for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot's perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.
Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian
2018-01-01
A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Investigation of Drive-Reinforcement Learning and Application of Learning to Flight Control
1993-08-01
Attachment 1 138 Reprint of: Baird, L. (1991). Learning and Adaptive Hybrid Systems for Nonlinear Control, CSDL Report T-1099, M.S. Thesis , Department of...Aircraft, CSDL Report T-1127, S.M. Thesis , Department of Aeronautics and Astronautics, M.I.T. Attachment 3 351 . iprint of: Atkins, S. (1993...Incremental Synthesis of Optimal Control Laws Using Learning Algorithms, CSDL Report T-1181, S.M. Thesis , Department of Aeronautics and Astronautics, M.I.T
An intelligent agent for optimal river-reservoir system management
NASA Astrophysics Data System (ADS)
Rieker, Jeffrey D.; Labadie, John W.
2012-09-01
A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.
Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding
2016-10-01
Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.
Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.
Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen
2017-08-29
In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.
Cerebellar Deep Nuclei Involvement in Cognitive Adaptation and Automaticity
ERIC Educational Resources Information Center
Callu, Delphine; Lopez, Joelle; El Massioui, Nicole
2013-01-01
To determine the role of the interpositus nuclei of cerebellum in rule-based learning and optimization processes, we studied (1) successive transfers of an initially acquired response rule in a cross maze and (2) behavioral strategies in learning a simple response rule in a T maze in interpositus lesioned rats (neurotoxic or electrolytic lesions).…
Optimal region of latching activity in an adaptive Potts model for networks of neurons
NASA Astrophysics Data System (ADS)
Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein
2012-02-01
In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)-adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise-adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred.
NASA Astrophysics Data System (ADS)
Sun, Xinyao; Wang, Xue; Wu, Jiangwei; Liu, Youda
2014-05-01
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufacturing center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.
Evolution, learning, and cognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.C.
1988-01-01
The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.
Adaptive critic learning techniques for engine torque and air-fuel ratio control.
Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting
2008-08-01
A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Adaptive learning and control for MIMO system based on adaptive dynamic programming.
Fu, Jian; He, Haibo; Zhou, Xinmin
2011-07-01
Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.
Evolving autonomous learning in cognitive networks.
Sheneman, Leigh; Hintze, Arend
2017-12-01
There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.
ERIC Educational Resources Information Center
Konert, Johannes; Gutjahr, Michael; Göbel, Stefan; Steinmetz, Ralf
2014-01-01
For adaptation and personalization of game play sophisticated player models and learner models are used in game-based learning environments. Thus, the game flow can be optimized to increase efficiency and effectiveness of gaming and learning in parallel. In the field of gaming still the Bartle model is commonly used due to its simplicity and good…
Learning and Generalization under Ambiguity: An fMRI Study
Chumbley, J. R.; Flandin, G.; Bach, D. R.; Daunizeau, J.; Fehr, E.; Dolan, R. J.; Friston, K. J.
2012-01-01
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence. PMID:22275857
Learning and generalization under ambiguity: an fMRI study.
Chumbley, J R; Flandin, G; Bach, D R; Daunizeau, J; Fehr, E; Dolan, R J; Friston, K J
2012-01-01
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence.
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.
MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiollahzadeh, S; Clark, J; Mawlawi, O
2014-06-15
Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based onmore » an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.« less
ERIC Educational Resources Information Center
Mooij, Ton; Dijkstra, Elma M.; Walraven, Amber; Kirschner, Paul A.
2014-01-01
At the start of preschool, four-year-old pupils differ in their development, including in their capacity to self-regulate their playing and learning. In preschool and primary school, educational processes are generally adapted to the mean age of the pupils in the class. The same may apply to pupil-monitoring systems based on information and…
Discrete sequence prediction and its applications
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
Learning from experience to predict sequences of discrete symbols is a fundamental problem in machine learning with many applications. We apply sequence prediction using a simple and practical sequence-prediction algorithm, called TDAG. The TDAG algorithm is first tested by comparing its performance with some common data compression algorithms. Then it is adapted to the detailed requirements of dynamic program optimization, with excellent results.
ERIC Educational Resources Information Center
Kim, Min Kyu
2012-01-01
It is generally accepted that the cognitive development for a wide range of students can be improved through adaptive instruction-learning environments optimized to suit individual needs (e.g., Cronbach, Am Psychol 12:671-684, 1957; Lee and Park, in Handbook of research for educational communications and technology, Taylor & Francis Group,…
Adaptive Diagrams: Handing Control over to the Learner to Manage Split-Attention Online
ERIC Educational Resources Information Center
Agostinho, Shirley; Tindall-Ford, Sharon; Roodenrys, Kylie
2013-01-01
Based on cognitive load theory, it is well known that when studying a diagram that includes explanatory text, optimal learning occurs when the text is physically positioned close to the diagram as it eliminates the need for learners to split their attention between the two sources of information. What is not known is the effect on learning when…
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-12-13
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.
Exploration of joint redundancy but not task space variability facilitates supervised motor learning
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-01-01
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808
Optimal Sensor Management and Signal Processing for New EMI Systems
2010-09-01
adaptive techniques that would improve the speed of data collection and increase the mobility of a TEMTADS system. Although an active learning technique...data, SIG has simulated the active selection based on the data already collected at Camp SLO. In this setup, the active learning approach was constrained...to work only on a 5x5 grid (corresponding to twenty five transmitters and co-located receivers). The first technique assumes that active learning will
Adaptive effort investment in cognitive and physical tasks: a neurocomputational model
Verguts, Tom; Vassena, Eliana; Silvetti, Massimo
2015-01-01
Despite its importance in everyday life, the computational nature of effort investment remains poorly understood. We propose an effort model obtained from optimality considerations, and a neurocomputational approximation to the optimal model. Both are couched in the framework of reinforcement learning. It is shown that choosing when or when not to exert effort can be adaptively learned, depending on rewards, costs, and task difficulty. In the neurocomputational model, the limbic loop comprising anterior cingulate cortex (ACC) and ventral striatum in the basal ganglia allocates effort to cortical stimulus-action pathways whenever this is valuable. We demonstrate that the model approximates optimality. Next, we consider two hallmark effects from the cognitive control literature, namely proportion congruency and sequential congruency effects. It is shown that the model exerts both proactive and reactive cognitive control. Then, we simulate two physical effort tasks. In line with empirical work, impairing the model's dopaminergic pathway leads to apathetic behavior. Thus, we conceptually unify the exertion of cognitive and physical effort, studied across a variety of literatures (e.g., motivation and cognitive control) and animal species. PMID:25805978
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
Adaptive Bayes classifiers for remotely sensed data
NASA Technical Reports Server (NTRS)
Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.
1975-01-01
An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.
SU-D-BRB-05: Quantum Learning for Knowledge-Based Response-Adaptive Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Naqa, I; Ten, R
Purpose: There is tremendous excitement in radiotherapy about applying data-driven methods to develop personalized clinical decisions for real-time response-based adaptation. However, classical statistical learning methods lack in terms of efficiency and ability to predict outcomes under conditions of uncertainty and incomplete information. Therefore, we are investigating physics-inspired machine learning approaches by utilizing quantum principles for developing a robust framework to dynamically adapt treatments to individual patient’s characteristics and optimize outcomes. Methods: We studied 88 liver SBRT patients with 35 on non-adaptive and 53 on adaptive protocols. Adaptation was based on liver function using a split-course of 3+2 fractions with amore » month break. The radiotherapy environment was modeled as a Markov decision process (MDP) of baseline and one month into treatment states. The patient environment was modeled by a 5-variable state represented by patient’s clinical and dosimetric covariates. For comparison of classical and quantum learning methods, decision-making to adapt at one month was considered. The MDP objective was defined by the complication-free tumor control (P{sup +}=TCPx(1-NTCP)). A simple regression model represented state-action mapping. Single bit in classical MDP and a qubit of 2-superimposed states in quantum MDP represented the decision actions. Classical decision selection was done using reinforcement Q-learning and quantum searching was performed using Grover’s algorithm, which applies uniform superposition over possible states and yields quadratic speed-up. Results: Classical/quantum MDPs suggested adaptation (probability amplitude ≥0.5) 79% of the time for splitcourses and 100% for continuous-courses. However, the classical MDP had an average adaptation probability of 0.5±0.22 while the quantum algorithm reached 0.76±0.28. In cases where adaptation failed, classical MDP yielded 0.31±0.26 average amplitude while the quantum approach averaged a more optimistic 0.57±0.4, but with high phase fluctuations. Conclusion: Our results demonstrate that quantum machine learning approaches provide a feasible and promising framework for real-time and sequential clinical decision-making in adaptive radiotherapy.« less
Providing QoS through machine-learning-driven adaptive multimedia applications.
Ruiz, Pedro M; Botía, Juan A; Gómez-Skarmeta, Antonio
2004-06-01
We investigate the optimization of the quality of service (QoS) offered by real-time multimedia adaptive applications through machine learning algorithms. These applications are able to adapt in real time their internal settings (i.e., video sizes, audio and video codecs, among others) to the unpredictably changing capacity of the network. Traditional adaptive applications just select a set of settings to consume less than the available bandwidth. We propose a novel approach in which the selected set of settings is the one which offers a better user-perceived QoS among all those combinations which satisfy the bandwidth restrictions. We use a genetic algorithm to decide when to trigger the adaptation process depending on the network conditions (i.e., loss-rate, jitter, etc.). Additionally, the selection of the new set of settings is done according to a set of rules which model the user-perceived QoS. These rules are learned using the SLIPPER rule induction algorithm over a set of examples extracted from scores provided by real users. We will demonstrate that the proposed approach guarantees a good user-perceived QoS even when the network conditions are constantly changing.
A Collaborative 20 Questions Model for Target Search with Human-Machine Interaction
2013-05-01
optimal policies for entropy loss,” Journal of Applied Probability, vol. 49, pp. 114–136, 2012. [2] R. Castro and R. Nowak, “ Active learning and...vol. 10, pp. 223231, 1974. [8] R. Castro, Active Learning and Adaptive Sampling for Non- parametric Inference, Ph.D. thesis, Rice University, August...2007. [9] R. Castro and R. D. Nowak, “Upper and lower bounds for active learning ,” in 44th Annual Allerton Conference on Communica- tion, Control and Computing, 2006.
Continuous-time adaptive critics.
Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony
2007-05-01
A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.
Fan, Quan-Yong; Yang, Guang-Hong
2017-01-01
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, Zhanshan; Liu, Lei; Wu, Yanming; Zhang, Huaguang
2018-06-01
This paper investigates the problem of optimal fault-tolerant control (FTC) for a class of unknown nonlinear discrete-time systems with actuator fault in the framework of adaptive critic design (ACD). A pivotal highlight is the adaptive auxiliary signal of the actuator fault, which is designed to offset the effect of the fault. The considered systems are in strict-feedback forms and involve unknown nonlinear functions, which will result in the causal problem. To solve this problem, the original nonlinear systems are transformed into a novel system by employing the diffeomorphism theory. Besides, the action neural networks (ANNs) are utilized to approximate a predefined unknown function in the backstepping design procedure. Combined the strategic utility function and the ACD technique, a reinforcement learning algorithm is proposed to set up an optimal FTC, in which the critic neural networks (CNNs) provide an approximate structure of the cost function. In this case, it not only guarantees the stability of the systems, but also achieves the optimal control performance as well. In the end, two simulation examples are used to show the effectiveness of the proposed optimal FTC strategy.
A new optimized GA-RBF neural network algorithm.
Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan
2014-01-01
When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.
Reinforcement Learning Strategies for Clinical Trials in Non-small Cell Lung Cancer
Zhao, Yufan; Zeng, Donglin; Socinski, Mark A.; Kosorok, Michael R.
2010-01-01
Summary Typical regimens for advanced metastatic stage IIIB/IV non-small cell lung cancer (NSCLC) consist of multiple lines of treatment. We present an adaptive reinforcement learning approach to discover optimal individualized treatment regimens from a specially designed clinical trial (a “clinical reinforcement trial”) of an experimental treatment for patients with advanced NSCLC who have not been treated previously with systemic therapy. In addition to the complexity of the problem of selecting optimal compounds for first and second-line treatments based on prognostic factors, another primary goal is to determine the optimal time to initiate second-line therapy, either immediately or delayed after induction therapy, yielding the longest overall survival time. A reinforcement learning method called Q-learning is utilized which involves learning an optimal regimen from patient data generated from the clinical reinforcement trial. Approximating the Q-function with time-indexed parameters can be achieved by using a modification of support vector regression which can utilize censored data. Within this framework, a simulation study shows that the procedure can extract optimal regimens for two lines of treatment directly from clinical data without prior knowledge of the treatment effect mechanism. In addition, we demonstrate that the design reliably selects the best initial time for second-line therapy while taking into account the heterogeneity of NSCLC across patients. PMID:21385164
Optimizing area under the ROC curve using semi-supervised learning
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M.
2014-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.1 PMID:25395692
Optimizing area under the ROC curve using semi-supervised learning.
Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M
2015-01-01
Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.
Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.
Villaverde, Monica; Perez, David; Moreno, Felix
2015-11-17
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S
2011-01-01
As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE
Adaptive Virtual Reality Training to Optimize Military Medical Skills Acquisition and Retention.
Siu, Ka-Chun; Best, Bradley J; Kim, Jong Wook; Oleynikov, Dmitry; Ritter, Frank E
2016-05-01
The Department of Defense has pursued the integration of virtual reality simulation into medical training and applications to fulfill the need to train 100,000 military health care personnel annually. Medical personnel transitions, both when entering an operational area and returning to the civilian theater, are characterized by the need to rapidly reacquire skills that are essential but have decayed through disuse or infrequent use. Improved efficiency in reacquiring such skills is critical to avoid the likelihood of mistakes that may result in mortality and morbidity. We focus here on a study testing a theory of how the skills required for minimally invasive surgery for military surgeons are learned and retained. Our adaptive virtual reality surgical training system will incorporate an intelligent mechanism for tracking performance that will recognize skill deficiencies and generate an optimal adaptive training schedule. Our design is modeling skill acquisition based on a skill retention theory. The complexity of appropriate training tasks is adjusted according to the level of retention and/or surgical experience. Based on preliminary work, our system will improve the capability to interactively assess the level of skills learning and decay, optimizes skill relearning across levels of surgical experience, and positively impact skill maintenance. Our system could eventually reduce mortality and morbidity by providing trainees with the reexperience they need to help make a transition between operating theaters. This article reports some data that will support adaptive tutoring of minimally invasive surgery and similar surgical skills. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695
Hayashibe, Mitsuhiro; Shimoda, Shingo
2014-01-01
A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.
Jiang, Jiefeng; Beck, Jeffrey; Heller, Katherine; Egner, Tobias
2015-01-01
The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences. PMID:26391305
Building entity models through observation and learning
NASA Astrophysics Data System (ADS)
Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura
2011-05-01
To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.
Adaptive Urban Stormwater Management Using a Two-stage Stochastic Optimization Model
NASA Astrophysics Data System (ADS)
Hung, F.; Hobbs, B. F.; McGarity, A. E.
2014-12-01
In many older cities, stormwater results in combined sewer overflows (CSOs) and consequent water quality impairments. Because of the expense of traditional approaches for controlling CSOs, cities are considering the use of green infrastructure (GI) to reduce runoff and pollutants. Examples of GI include tree trenches, rain gardens, green roofs, and rain barrels. However, the cost and effectiveness of GI are uncertain, especially at the watershed scale. We present a two-stage stochastic extension of the Stormwater Investment Strategy Evaluation (StormWISE) model (A. McGarity, JWRPM, 2012, 111-24) to explicitly model and optimize these uncertainties in an adaptive management framework. A two-stage model represents the immediate commitment of resources ("here & now") followed by later investment and adaptation decisions ("wait & see"). A case study is presented for Philadelphia, which intends to extensively deploy GI over the next two decades (PWD, "Green City, Clean Water - Implementation and Adaptive Management Plan," 2011). After first-stage decisions are made, the model updates the stochastic objective and constraints (learning). We model two types of "learning" about GI cost and performance. One assumes that learning occurs over time, is automatic, and does not depend on what has been done in stage one (basic model). The other considers learning resulting from active experimentation and learning-by-doing (advanced model). Both require expert probability elicitations, and learning from research and monitoring is modelled by Bayesian updating (as in S. Jacobi et al., JWRPM, 2013, 534-43). The model allocates limited financial resources to GI investments over time to achieve multiple objectives with a given reliability. Objectives include minimizing construction and O&M costs; achieving nutrient, sediment, and runoff volume targets; and community concerns, such as aesthetics, CO2 emissions, heat islands, and recreational values. CVaR (Conditional Value at Risk) and chance constraints are placed on the objectives to achieve desired confidence levels. By varying the budgets, reliability constraints, and priorities among other objectives, we generate a range of GI deployment strategies that represent tradeoffs among objectives as well as the confidence in achieving them.
Optimization of an organic memristor as an adaptive memory element
NASA Astrophysics Data System (ADS)
Berzina, Tatiana; Smerieri, Anteo; Bernabò, Marco; Pucci, Andrea; Ruggeri, Giacomo; Erokhin, Victor; Fontana, M. P.
2009-06-01
The combination of memory and signal handling characteristics of a memristor makes it a promising candidate for adaptive bioinspired information processing systems. This poses stringent requirements on the basic device, such as stability and reproducibility over a large number of training/learning cycles, and a large anisotropy in the fundamental control material parameter, in our case the electrical conductivity. In this work we report results on the improved performance of electrochemically controlled polymeric memristors, where optimization of a conducting polymer (polyaniline) in the active channel and better environmental control of fabrication methods led to a large increase both in the absolute values of the conductivity in the partially oxydized state of polyaniline and of the on-off conductivity ratio. These improvements are crucial for the application of the organic memristor to adaptive complex signal handling networks.
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
NASA Astrophysics Data System (ADS)
Turner, D.
2014-12-01
Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.
Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.
Nemati, Shamim; Ghassemi, Mohammad M; Clifford, Gari D
2016-08-01
Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.
Franklin, Nicholas T; Frank, Michael J
2015-12-25
Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments.
In Respect to the Cognitive Load Theory: Adjusting Instructional Guidance with Student Expertise.
Schilling, Jim
2017-01-01
The amount of guidance supplied by educators to students in allied health programs is a factor in student learning. According to the cognitive load theory of learning, without adequate instructional support, novice learners will be overwhelmed and unable to store information, while unnecessary guidance supplied to advanced students will cause extraneous cognitive load on the working memory system. Adjusting instructional guidance for students according to their level of expertise to minimize extraneous cognitive load and optimize working memory storage capacity will enhance learning effectiveness. Novice students presented with complex subject matter require significant guidance during the initial stages, using strategies such as worked examples. As students comprehend information, instructional guidance needs to gradually fade to avoid elevated extraneous cognitive load from the expertise reversal effect. An instructional strategy that utilizes a systemic (fixed) or adjustable (adaptive) tapering of guidance to students in allied health programs depending on their expertise will optimize learning capability.
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Adaptive surrogate model based multiobjective optimization for coastal aquifer management
NASA Astrophysics Data System (ADS)
Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin
2018-06-01
In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.
Watson, Richard A; Mills, Rob; Buckley, C L
2011-01-01
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.
Rational metareasoning and the plasticity of cognitive control.
Lieder, Falk; Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L
2018-04-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.
Rational metareasoning and the plasticity of cognitive control
Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L.
2018-01-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure. PMID:29694347
Adaptive strategies for cumulative cultural learning.
Ehn, Micael; Laland, Kevin
2012-05-21
The demographic and ecological success of our species is frequently attributed to our capacity for cumulative culture. However, it is not yet known how humans combine social and asocial learning to generate effective strategies for learning in a cumulative cultural context. Here we explore how cumulative culture influences the relative merits of various pure and conditional learning strategies, including pure asocial and social learning, critical social learning, conditional social learning and individual refiner strategies. We replicate the Rogers' paradox in the cumulative setting. However, our analysis suggests that strategies that resolved Rogers' paradox in a non-cumulative setting may not necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-cumulative cultural learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enabling Incremental Query Re-Optimization.
Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau
2016-01-01
As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.
Enabling Incremental Query Re-Optimization
Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau
2017-01-01
As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658
2017-02-08
Georgia Tech Research Corporation 505 Tenth Street NW Atlanta, GA 30332 -0420 ABSTRACT Final Report: MURI: Neuro-Inspired Adaptive Perception and...Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming, IEEE Transactions on Robotics, (12 2015): 0. doi: 10.1109/TRO...Learning Day, Microsoft Corporation , Cambridge, MA, May 18, 2015. (c) Presentations 09/06/2015 09/08/2015 125 131 Ali Borji, Dicky N. Sihite, Laurent Itti
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Predicting Short-Term Remembering as Boundedly Optimal Strategy Choice.
Howes, Andrew; Duggan, Geoffrey B; Kalidindi, Kiran; Tseng, Yuan-Chi; Lewis, Richard L
2016-07-01
It is known that, on average, people adapt their choice of memory strategy to the subjective utility of interaction. What is not known is whether an individual's choices are boundedly optimal. Two experiments are reported that test the hypothesis that an individual's decisions about the distribution of remembering between internal and external resources are boundedly optimal where optimality is defined relative to experience, cognitive constraints, and reward. The theory makes predictions that are tested against data, not fitted to it. The experiments use a no-choice/choice utility learning paradigm where the no-choice phase is used to elicit a profile of each participant's performance across the strategy space and the choice phase is used to test predicted choices within this space. They show that the majority of individuals select strategies that are boundedly optimal. Further, individual differences in what people choose to do are successfully predicted by the analysis. Two issues are discussed: (a) the performance of the minority of participants who did not find boundedly optimal adaptations, and (b) the possibility that individuals anticipate what, with practice, will become a bounded optimal strategy, rather than what is boundedly optimal during training. Copyright © 2015 Cognitive Science Society, Inc.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
NASA Technical Reports Server (NTRS)
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.
Wang, Wei; Tong, Shaocheng
2018-02-01
This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.
Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O
2016-03-01
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
Adaptive feature selection using v-shaped binary particle swarm optimization.
Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.
Adaptive feature selection using v-shaped binary particle swarm optimization
Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
Potential of Audiographic Computerized Telelearning for Distance Extension Education.
ERIC Educational Resources Information Center
Verma, Satish; And Others
In the last 10 years, an approach to electronic distance education called audiographic computerized telelearning using standard telephone lines has come to the fore. Telelearning is a cost-effective system which optimizes existing computer facilities and creates a teaching-learning environment that is interactive, efficient, and adaptable to a…
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.
2016-12-01
As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS framework to discover key tradeoffs within the LSRB system.
NASA Technical Reports Server (NTRS)
Padgett, Mary L. (Editor)
1993-01-01
The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Discriminative clustering on manifold for adaptive transductive classification.
Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang
2017-10-01
In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
Control of nitromethane photoionization efficiency with shaped femtosecond pulses.
Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel
2011-04-21
The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.
Task-driven dictionary learning.
Mairal, Julien; Bach, Francis; Ponce, Jean
2012-04-01
Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
Tutsoy, Onder; Barkana, Duygun Erol; Tugal, Harun
2018-05-01
In this paper, an adaptive controller is developed for discrete time linear systems that takes into account parametric uncertainty, internal-external non-parametric random uncertainties, and time varying control signal delay. Additionally, the proposed adaptive control is designed in such a way that it is utterly model free. Even though these properties are studied separately in the literature, they are not taken into account all together in adaptive control literature. The Q-function is used to estimate long-term performance of the proposed adaptive controller. Control policy is generated based on the long-term predicted value, and this policy searches an optimal stabilizing control signal for uncertain and unstable systems. The derived control law does not require an initial stabilizing control assumption as in the ones in the recent literature. Learning error, control signal convergence, minimized Q-function, and instantaneous reward are analyzed to demonstrate the stability and effectiveness of the proposed adaptive controller in a simulation environment. Finally, key insights on parameters convergence of the learning and control signals are provided. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Genetic algorithm learning in a New Keynesian macroeconomic setup.
Hommes, Cars; Makarewicz, Tomasz; Massaro, Domenico; Smits, Tom
2017-01-01
In order to understand heterogeneous behavior amongst agents, empirical data from Learning-to-Forecast (LtF) experiments can be used to construct learning models. This paper follows up on Assenza et al. (2013) by using a Genetic Algorithms (GA) model to replicate the results from their LtF experiment. In this GA model, individuals optimize an adaptive, a trend following and an anchor coefficient in a population of general prediction heuristics. We replicate experimental treatments in a New-Keynesian environment with increasing complexity and use Monte Carlo simulations to investigate how well the model explains the experimental data. We find that the evolutionary learning model is able to replicate the three different types of behavior, i.e. convergence to steady state, stable oscillations and dampened oscillations in the treatments using one GA model. Heterogeneous behavior can thus be explained by an adaptive, anchor and trend extrapolating component and the GA model can be used to explain heterogeneous behavior in LtF experiments with different types of complexity.
NASA Astrophysics Data System (ADS)
Enquist, C.
2014-12-01
Within the past decade, a wealth of federal, state, and NGO-driven initiatives has emerged across managed landscapes in the United States with the goal of facilitating a coordinated response to rapidly changing climate and environmental conditions. In addition to acquisition and translation of the latest climate science, climate vulnerability assessment and scenario planning at multiple spatial and temporal scales are typically major components of such broad adaptation efforts. Numerous approaches for conducting this work have emerged in recent years and have culminated in general guidance and trainings for resource professionals that are specifically designed to help practitioners face the challenges of climate change. In particular, early engagement of stakeholders across multiple jurisdictions is particularly critical to cultivate buy-in and other enabling conditions for moving the science to on-the-ground action. I report on a suite of adaptation efforts in the southwestern US and interior Rockies, highlighting processes used, actions taken, lessons learned, and recommended next steps to facilitate achieving desired management outcomes. This includes a discussion of current efforts to optimize funding for actionable climate science, formalize science-management collaborations, and facilitate new investments in approaches for strategic climate-informed monitoring and evaluation.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Probability density function learning by unsupervised neurons.
Fiori, S
2001-10-01
In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals.
Approximate dynamic programming for optimal stationary control with control-dependent noise.
Jiang, Yu; Jiang, Zhong-Ping
2011-12-01
This brief studies the stochastic optimal control problem via reinforcement learning and approximate/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the approximated cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the approximated cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.
Improving processes through evolutionary optimization.
Clancy, Thomas R
2011-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
A Bayesian Tutoring System for Newtonian Mechanics: Can It Adapt to Different Learners?
ERIC Educational Resources Information Center
Pek, Peng-Kiat; Poh, Kim-Leng
2004-01-01
Newtonian mechanics is a core module in technology courses, but is difficult for many students to learn. Computerized tutoring can assist the teachers to provide individualized instruction. This article presents the application of decision theory to develop a tutoring system, "iTutor", to select optimal tutoring actions under uncertainty of…
Fostering Self-Regulation in Training Complex Cognitive Tasks
ERIC Educational Resources Information Center
van Meeuwen, Ludo W.; Brand-Gruwel, Saskia; Kirschner, Paul A.; de Bock, Jeano J. P. R.; van Merriënboer, Jeroen J. G.
2018-01-01
In complex cognitive domains such as air traffic control, professionals must be able to adapt to and act upon continuing changes in a highly advanced technological work environment. To function optimally in such an environment, the controllers must be able to regulate their learning. Although these regulation skills should be part of their…
Franklin, Nicholas T; Frank, Michael J
2015-01-01
Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments. DOI: http://dx.doi.org/10.7554/eLife.12029.001 PMID:26705698
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
When is an error not a prediction error? An electrophysiological investigation.
Holroyd, Clay B; Krigolson, Olave E; Baker, Robert; Lee, Seung; Gibson, Jessica
2009-03-01
A recent theory holds that the anterior cingulate cortex (ACC) uses reinforcement learning signals conveyed by the midbrain dopamine system to facilitate flexible action selection. According to this position, the impact of reward prediction error signals on ACC modulates the amplitude of a component of the event-related brain potential called the error-related negativity (ERN). The theory predicts that ERN amplitude is monotonically related to the expectedness of the event: It is larger for unexpected outcomes than for expected outcomes. However, a recent failure to confirm this prediction has called the theory into question. In the present article, we investigated this discrepancy in three trial-and-error learning experiments. All three experiments provided support for the theory, but the effect sizes were largest when an optimal response strategy could actually be learned. This observation suggests that ACC utilizes dopamine reward prediction error signals for adaptive decision making when the optimal behavior is, in fact, learnable.
Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities
NASA Astrophysics Data System (ADS)
Sadeghi, Alireza; Sheikholeslami, Fatemeh; Giannakis, Georgios B.
2018-02-01
Small basestations (SBs) equipped with caching units have potential to handle the unprecedented demand growth in heterogeneous networks. Through low-rate, backhaul connections with the backbone, SBs can prefetch popular files during off-peak traffic hours, and service them to the edge at peak periods. To intelligently prefetch, each SB must learn what and when to cache, while taking into account SB memory limitations, the massive number of available contents, the unknown popularity profiles, as well as the space-time popularity dynamics of user file requests. In this work, local and global Markov processes model user requests, and a reinforcement learning (RL) framework is put forth for finding the optimal caching policy when the transition probabilities involved are unknown. Joint consideration of global and local popularity demands along with cache-refreshing costs allow for a simple, yet practical asynchronous caching approach. The novel RL-based caching relies on a Q-learning algorithm to implement the optimal policy in an online fashion, thus enabling the cache control unit at the SB to learn, track, and possibly adapt to the underlying dynamics. To endow the algorithm with scalability, a linear function approximation of the proposed Q-learning scheme is introduced, offering faster convergence as well as reduced complexity and memory requirements. Numerical tests corroborate the merits of the proposed approach in various realistic settings.
Evolutionary online behaviour learning and adaptation in real robots.
Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne
2017-07-01
Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.
Sibille, Kimberly T; Bartsch, Felix; Reddy, Divya; Fillingim, Roger B; Keil, Andreas
2016-03-01
Neuroplastic changes in brain structure and function are not only a consequence of chronic pain but are involved in the maintenance of pain symptoms. Thus, promotion of adaptive, treatment-responsive neuroplasticity represents a promising clinical target. Emerging evidence about the human brain's response to an array of behavioral and environmental interventions may assist in identifying targets to facilitate increased neurobiological receptivity, promoting healthy neuroplastic changes. Specifically, strategies to maximize neuroplastic responsiveness to chronic pain treatment could enhance treatment gains by optimization of learning and positive central nervous system adaptation. Periods of heightened plasticity have been traditionally identified with the early years of development. More recent research, however, has identified a wide spectrum of methods that can be used to "reopen" and enhance plasticity and learning in adults. In addition to transcranial direct current stimulation and transcranial magnetic stimulation, behavioral and pharmacological interventions have been investigated. Intermittent fasting and glucose administration are two propitious strategies, that are noninvasive, inexpensive to administer, implementable in numerous settings, and might be applicable across differing chronic pain treatments. Key findings and neurophysiological mechanisms are summarized, and evidence for the potential clinical contributions of these two strategies toward ameliorating chronic pain is presented. Neuroplastic changes are a defining feature of chronic pain and a complicating factor in treatment. Noninvasive strategies to optimize the brain's response to treatment interventions might improve learning and memory, increase the positive adaptability of the central nervous system, and enhance treatment outcomes. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Self-adaptive trust based ABR protocol for MANETs using Q-learning.
Kumar, Anitha Vijaya; Jeyapal, Akilandeswari
2014-01-01
Mobile ad hoc networks (MANETs) are a collection of mobile nodes with a dynamic topology. MANETs work under scalable conditions for many applications and pose different security challenges. Due to the nomadic nature of nodes, detecting misbehaviour is a complex problem. Nodes also share routing information among the neighbours in order to find the route to the destination. This requires nodes to trust each other. Thus we can state that trust is a key concept in secure routing mechanisms. A number of cryptographic protection techniques based on trust have been proposed. Q-learning is a recently used technique, to achieve adaptive trust in MANETs. In comparison to other machine learning computational intelligence techniques, Q-learning achieves optimal results. Our work focuses on computing a score using Q-learning to weigh the trust of a particular node over associativity based routing (ABR) protocol. Thus secure and stable route is calculated as a weighted average of the trust value of the nodes in the route and associativity ticks ensure the stability of the route. Simulation results show that Q-learning based trust ABR protocol improves packet delivery ratio by 27% and reduces the route selection time by 40% over ABR protocol without trust calculation.
Self-Adaptive Trust Based ABR Protocol for MANETs Using Q-Learning
Jeyapal, Akilandeswari
2014-01-01
Mobile ad hoc networks (MANETs) are a collection of mobile nodes with a dynamic topology. MANETs work under scalable conditions for many applications and pose different security challenges. Due to the nomadic nature of nodes, detecting misbehaviour is a complex problem. Nodes also share routing information among the neighbours in order to find the route to the destination. This requires nodes to trust each other. Thus we can state that trust is a key concept in secure routing mechanisms. A number of cryptographic protection techniques based on trust have been proposed. Q-learning is a recently used technique, to achieve adaptive trust in MANETs. In comparison to other machine learning computational intelligence techniques, Q-learning achieves optimal results. Our work focuses on computing a score using Q-learning to weigh the trust of a particular node over associativity based routing (ABR) protocol. Thus secure and stable route is calculated as a weighted average of the trust value of the nodes in the route and associativity ticks ensure the stability of the route. Simulation results show that Q-learning based trust ABR protocol improves packet delivery ratio by 27% and reduces the route selection time by 40% over ABR protocol without trust calculation. PMID:25254243
Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.
Li, Cai; Lowe, Robert; Ziemke, Tom
2013-01-01
The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.
Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture
Li, Cai; Lowe, Robert; Ziemke, Tom
2013-01-01
The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value. PMID:23675345
Gerjets, Peter; Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Zander, Thorsten O.
2014-01-01
According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work. PMID:25538544
Mylopoulos, Maria; Regehr, Glenn
2009-02-01
The ability to innovate new solutions in response to daily workplace challenges is an important component of adaptive expertise. Exploring how to optimally develop this skill is therefore of paramount importance to education researchers. This is certainly no less true in health care, where optimal patient care is contingent on the continuous efforts of doctors and other health care workers to provide the best care to their patients through the development and incorporation of new knowledge. Medical education programmes must therefore foster the skills and attitudes necessary to engage future doctors in the systematic development of innovative problem solving. The aim of this paper is to describe the perceptions and experiences of medical students in their third and fourth years of training, and to explore their understanding of their development as adaptive experts. A sample of 25 medical students participated in individual 45-60-minute semi-structured interviews. Interviews were audiotaped, transcribed and entered into NVivo qualitative data analysis software to facilitate a thematic analysis. The analysis was both inductive, in that themes were generated from the data, and deductive, in that our data were meaningful when interpreted in the context of theories of adaptive expertise. Participants expressed a general belief that, as learners in the health care system, exerting any effort to be innovative was beyond the scope of their responsibilities. Generally, students suggested that innovative practice was the prerogative of experts and an outcome of expert development centred on the acquisition of knowledge and experience. Students' perceptions of themselves as having no responsibility to be innovative in their learning process have implications for their learning trajectories as adaptive experts.
Enhanced procedural learning of speech sound categories in a genetic variant of FOXP2.
Chandrasekaran, Bharath; Yi, Han-Gyol; Blanco, Nathaniel J; McGeary, John E; Maddox, W Todd
2015-05-20
A mutation of the forkhead box protein P2 (FOXP2) gene is associated with severe deficits in human speech and language acquisition. In rodents, the humanized form of FOXP2 promotes faster switching from declarative to procedural learning strategies when the two learning systems compete. Here, we examined a polymorphism of FOXP2 (rs6980093) in humans (214 adults; 111 females) for associations with non-native speech category learning success. Neurocomputational modeling results showed that individuals with the GG genotype shifted faster to procedural learning strategies, which are optimal for the task. These findings support an adaptive role for the FOXP2 gene in modulating the function of neural learning systems that have a direct bearing on human speech category learning. Copyright © 2015 the authors 0270-6474/15/357808-05$15.00/0.
Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.
Zhang, Qichao; Zhao, Dongbin; Wang, Ding
2018-01-01
In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Efficient boundary hunting via vector quantization
NASA Astrophysics Data System (ADS)
Diamantini, Claudia; Panti, Maurizio
2001-03-01
A great amount of information about a classification problem is contained in those instances falling near the decision boundary. This intuition dates back to the earliest studies in pattern recognition, and in the more recent adaptive approaches to the so called boundary hunting, such as the work of Aha et alii on Instance Based Learning and the work of Vapnik et alii on Support Vector Machines. The last work is of particular interest, since theoretical and experimental results ensure the accuracy of boundary reconstruction. However, its optimization approach has heavy computational and memory requirements, which limits its application on huge amounts of data. In the paper we describe an alternative approach to boundary hunting based on adaptive labeled quantization architectures. The adaptation is performed by a stochastic gradient algorithm for the minimization of the error probability. Error probability minimization guarantees the accurate approximation of the optimal decision boundary, while the use of a stochastic gradient algorithm defines an efficient method to reach such approximation. In the paper comparisons to Support Vector Machines are considered.
Maximization of Learning Speed Due to Neuronal Redundancy in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-11-01
Adaptable neural activity contributes to the flexibility of human behavior, which is optimized in situations such as motor learning and decision making. Although learning signals in motor learning and decision making are low-dimensional, neural activity, which is very high dimensional, must be modified to achieve optimal performance based on the low-dimensional signal, resulting in a severe credit-assignment problem. Despite this problem, the human brain contains a vast number of neurons, leaving an open question: what is the functional significance of the huge number of neurons? Here, I address this question by analyzing a redundant neural network with a reinforcement-learning algorithm in which the numbers of neurons and output units are N and M, respectively. Because many combinations of neural activity can generate the same output under the condition of N ≫ M, I refer to the index N - M as neuronal redundancy. Although greater neuronal redundancy makes the credit-assignment problem more severe, I demonstrate that a greater degree of neuronal redundancy facilitates learning speed. Thus, in an apparent contradiction of the credit-assignment problem, I propose the hypothesis that a functional role of a huge number of neurons or a huge degree of neuronal redundancy is to facilitate learning speed.
Ludolph, Nicolas; Giese, Martin A; Ilg, Winfried
2017-10-16
There is increasing evidence that sensorimotor learning under real-life conditions relies on a composition of several learning processes. Nevertheless, most studies examine learning behaviour in relation to one specific learning mechanism. In this study, we examined the interaction between reward-based skill acquisition and motor adaptation to changes of object dynamics. Thirty healthy subjects, split into two groups, acquired the skill of balancing a pole on a cart in virtual reality. In one group, we gradually increased the gravity, making the task easier in the beginning and more difficult towards the end. In the second group, subjects had to acquire the skill on the maximum, most difficult gravity level. We hypothesized that the gradual increase in gravity during skill acquisition supports learning despite the necessary adjustments to changes in cart-pole dynamics. We found that the gradual group benefits from the slow increment, although overall improvement was interrupted by the changes in gravity and resulting system dynamics, which caused short-term degradations in performance and timing of actions. In conclusion, our results deliver evidence for an interaction of reward-based skill acquisition and motor adaptation processes, which indicates the importance of both processes for the development of optimized skill acquisition schedules.
Adaptive local linear regression with application to printer color management.
Gupta, Maya R; Garcia, Eric K; Chin, Erika
2008-06-01
Local learning methods, such as local linear regression and nearest neighbor classifiers, base estimates on nearby training samples, neighbors. Usually, the number of neighbors used in estimation is fixed to be a global "optimal" value, chosen by cross validation. This paper proposes adapting the number of neighbors used for estimation to the local geometry of the data, without need for cross validation. The term enclosing neighborhood is introduced to describe a set of neighbors whose convex hull contains the test point when possible. It is proven that enclosing neighborhoods yield bounded estimation variance under some assumptions. Three such enclosing neighborhood definitions are presented: natural neighbors, natural neighbors inclusive, and enclosing k-NN. The effectiveness of these neighborhood definitions with local linear regression is tested for estimating lookup tables for color management. Significant improvements in error metrics are shown, indicating that enclosing neighborhoods may be a promising adaptive neighborhood definition for other local learning tasks as well, depending on the density of training samples.
NASA Astrophysics Data System (ADS)
Bilionis, I.; Koutsourelakis, P. S.
2012-05-01
The present paper proposes an adaptive biasing potential technique for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective of minimizing the Kullback-Leibler divergence between appropriately selected densities. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the learning and sampling scheme enables the efficient calculation of free energy functions parametrized by the temperature. The characteristics and capabilities of the proposed method are demonstrated in three numerical examples.
Toward Self-Referential Autonomous Learning of Object and Situation Models.
Damerow, Florian; Knoblauch, Andreas; Körner, Ursula; Eggert, Julian; Körner, Edgar
2016-01-01
Most current approaches to scene understanding lack the capability to adapt object and situation models to behavioral needs not anticipated by the human system designer. Here, we give a detailed description of a system architecture for self-referential autonomous learning which enables the refinement of object and situation models during operation in order to optimize behavior. This includes structural learning of hierarchical models for situations and behaviors that is triggered by a mismatch between expected and actual action outcome. Besides proposing architectural concepts, we also describe a first implementation of our system within a simulated traffic scenario to demonstrate the feasibility of our approach.
Barry, Danika; Kimble, Leighann E; Nambiar, Bejoy; Parry, Gareth; Jha, Ashish; Chattu, Vijay Kumar; Massoud, M Rashad; Goldmann, Don
2018-01-01
Abstract Improving health care involves many actors, often working in complex adaptive systems. Interventions tend to be multi-factorial, implementation activities diverse, and contexts dynamic and complicated. This makes improvement initiatives challenging to describe and evaluate as matching evaluation and program designs can be difficult, requiring collaboration, trust and transparency. Collaboration is required to address important epidemiological principles of bias and confounding. If this does not take place, results may lack credibility because the association between interventions implemented and outcomes achieved is obscure and attribution uncertain. Moreover, lack of clarity about what was implemented, how it was implemented, and the context in which it was implemented often lead to disappointment or outright failure of spread and scale-up efforts. The input of skilled evaluators into the design and conduct of improvement initiatives can be helpful in mitigating these potential problems. While evaluation must be rigorous, if it is too rigid necessary adaptation and learning may be compromised. This article provides a framework and guidance on how improvers and evaluators can work together to design, implement and learn about improvement interventions more effectively. PMID:29873794
NASA Astrophysics Data System (ADS)
Alessa, L.
2014-12-01
Ultimately, adaptation is based on a set of trade-offs rather than optimal conditions, something that is rarely seen in messy social ecological systems (SES). In this talk, we discuss the role of spatial hot-spot mapping using social and biophysical data to understand the feedbacks in SES. We review the types of data needed, their means of acquisition and the analytic methods involved. In addition, we outline the challenges faced in co-developing this type of inquiry based on lessons learned from several long-term programs. Finally, we present the utility of SES hotspots in developing adaptation strategies on the ground by communities and policy makers.
Adaptability and Flexibility of the Human Motor System: Implications for Neurological Rehabilitation
Mulder, Theo; Hochstenbach, Jacqueline
2001-01-01
This article stresses the plasticity of the adult sensorimotor cortex in response to various injuries or environmental changes. The dominant role of sensory input is discussed. A number of studies are presented that show how input may lead to learning and change. Learning is discussed in relation to recovery. It is shown how concepts from the field of motor control and learning may be used for improving neurological rehabilitation. Specific attention is given to the variability of input, the meaningfulness of input, and the role of the learning context. The learning context and the application context should have essential characteristics in common, otherwise transfer of learning will be non-optimal. It is argued that learning landscapes are necessary in order to treat patients in such a way that he learned skills are transferable to situations outside the hospital. PMID:11530884
Conditions and limitations on learning in the adaptive management of mallard harvests
Johnson, F.A.; Kendall, W.L.; Dubovsky, J.A.
2002-01-01
In 1995, the United States Fish and Wildlife Service adopted a protocol for the adaptive management of waterfowl hunting regulations (AHM) to help reduce uncertainty about the magnitude of sustainable harvests. To date, the AHM process has focused principally on the midcontinent population of mallards (Anas platyrhynchos), whose dynamics are described by 4 alternative models. Collectively, these models express uncertainty (or disagreement) about whether harvest is an additive or a compensatory form of mortality and whether the reproductive process is weakly or strongly density-dependent. Each model is associated with a probability or 'weight,' which describes its relative ability to predict changes in population size. These Bayesian probabilities are updated annually using a comparison of population size predicted under each model with that observed by a monitoring program. The current AHM process is passively adaptive, in the sense that there is no a priori consideration of how harvest decisions might affect discrimination among models. We contrast this approach with an actively adaptive approach, in which harvest decisions are used in part to produce the learning needed to increase long-term management performance. Our investigation suggests that the passive approach is expected to perform nearly as well as an optimal actively adaptive approach, particularly considering the nature of the model set, management objectives and constraints, and current regulatory alternatives. We offer some comments about the nature of the biological hypotheses being tested and describe some of the inherent limitations on learning in the AHM process.
Joint seismic data denoising and interpolation with double-sparsity dictionary learning
NASA Astrophysics Data System (ADS)
Zhu, Lingchen; Liu, Entao; McClellan, James H.
2017-08-01
Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
Switching Reinforcement Learning for Continuous Action Space
NASA Astrophysics Data System (ADS)
Nagayoshi, Masato; Murao, Hajime; Tamaki, Hisashi
Reinforcement Learning (RL) attracts much attention as a technique of realizing computational intelligence such as adaptive and autonomous decentralized systems. In general, however, it is not easy to put RL into practical use. This difficulty includes a problem of designing a suitable action space of an agent, i.e., satisfying two requirements in trade-off: (i) to keep the characteristics (or structure) of an original search space as much as possible in order to seek strategies that lie close to the optimal, and (ii) to reduce the search space as much as possible in order to expedite the learning process. In order to design a suitable action space adaptively, we propose switching RL model to mimic a process of an infant's motor development in which gross motor skills develop before fine motor skills. Then, a method for switching controllers is constructed by introducing and referring to the “entropy”. Further, through computational experiments by using robot navigation problems with one and two-dimensional continuous action space, the validity of the proposed method has been confirmed.
Network congestion control algorithm based on Actor-Critic reinforcement learning model
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2018-04-01
Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.
Decision Making and Reward in Frontal Cortex
Kennerley, Steven W.; Walton, Mark E.
2011-01-01
Patients with damage to the prefrontal cortex (PFC)—especially the ventral and medial parts of PFC—often show a marked inability to make choices that meet their needs and goals. These decision-making impairments often reflect both a deficit in learning concerning the consequences of a choice, as well as deficits in the ability to adapt future choices based on experienced value of the current choice. Thus, areas of PFC must support some value computations that are necessary for optimal choice. However, recent frameworks of decision making have highlighted that optimal and adaptive decision making does not simply rest on a single computation, but a number of different value computations may be necessary. Using this framework as a guide, we summarize evidence from both lesion studies and single-neuron physiology for the representation of different value computations across PFC areas. PMID:21534649
Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.
Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie
2017-09-12
In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.
Adaptive Sampling of Time Series During Remote Exploration
NASA Technical Reports Server (NTRS)
Thompson, David R.
2012-01-01
This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its datapoints lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared. Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change. An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an active learning problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonsta tion - ary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches. Most common GP models are stationary, e.g., the covariance relationships are time-invariant. In such cases, information gain is independent of previously collected data, and the optimal solution can always be computed in advance. Information-optimal sampling of a stationary GP time series thus reduces to even spacing, and such models are not appropriate for tracking localized anomalies. Additionally, GP model inference can be computationally expensive.
Evolutionary online behaviour learning and adaptation in real robots
Correia, Luís; Christensen, Anders Lyhne
2017-01-01
Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm. PMID:28791130
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.
McGrath, Robert L; Kantak, Shailesh S
2016-02-01
Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng; Wu, Ming-Hsiung
2009-01-01
The level of learners' expertise has been used as a metric and diagnostic mechanism of instruction. This metric influences mental effort directly according to the applications of cognitive load theory. Cognitive efficiency, an optimal measurement technique of expertise, was developed by Kalyuga and Sweller to replace instructional efficiency in…
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
The surprisingly high human efficiency at learning to recognize faces
Peterson, Matthew F.; Abbey, Craig K.; Eckstein, Miguel P.
2009-01-01
We investigated the ability of humans to optimize face recognition performance through rapid learning of individual relevant features. We created artificial faces with discriminating visual information heavily concentrated in single features (nose, eyes, chin or mouth). In each of 2500 learning blocks a feature was randomly selected and retained over the course of four trials, during which observers identified randomly sampled, noisy face images. Observers learned the discriminating feature through indirect feedback, leading to large performance gains. Performance was compared to a learning Bayesian ideal observer, resulting in unexpectedly high learning compared to previous studies with simpler stimuli. We explore various explanations and conclude that the higher learning measured with faces cannot be driven by adaptive eye movement strategies but can be mostly accounted for by suboptimalities in human face discrimination when observers are uncertain about the discriminating feature. We show that an initial bias of humans to use specific features to perform the task even though they are informed that each of four features is equally likely to be the discriminatory feature would lead to seemingly supra-optimal learning. We also examine the possibility of inefficient human integration of visual information across the spatially distributed facial features. Together, the results suggest that humans can show large performance improvement effects in discriminating faces as they learn to identify the feature containing the discriminatory information. PMID:19000918
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.
Fujii, Keisuke; Yoshihara, Yuki; Tanabe, Hiroko; Yamamoto, Yuji
2017-01-01
Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.
Hilliard, Marisa E; Ernst, Michelle M; Gray, Wendy N; Saeed, Shehzad A; Cortina, Sandra
2012-09-01
Pediatric psychologists are increasingly called upon to treat children from non-Western countries, whose cultures may contrast with a Western medical setting. Research on cultural adaptations of evidence-based treatments (EBTs), particularly for individuals from the Middle East, is sparse. To address this need, we discuss clinical issues encountered when working with patients from the Middle East. Synthesis of the literature regarding culturally adapted EBTs and common themes in Middle Eastern culture. Case vignettes illustrate possible EBT adaptations. Integrating cultural values in treatment is an opportunity to join with patients and families to optimize care. Expectations for medical and psychological treatment vary, and collaborations with cultural liaisons are beneficial. Critical next steps include systematic development, testing, and training in culturally adapting EBTs in pediatric medical settings. Increased dialogue between clinicians, researchers, and cultural liaisons is needed to share knowledge and experiences to enhance patient care.
Liu, Ying; ZENG, Donglin; WANG, Yuanjia
2014-01-01
Summary Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data. PMID:25642116
NASA Astrophysics Data System (ADS)
Zhang, Kai; Li, Jingzhi; He, Zhubin; Yan, Wanfeng
2018-07-01
In this paper, a stochastic optimization framework is proposed to address the microgrid energy dispatching problem with random renewable generation and vehicle activity pattern, which is closer to the practical applications. The patterns of energy generation, consumption and storage availability are all random and unknown at the beginning, and the microgrid controller design (MCD) is formulated as a Markov decision process (MDP). Hence, an online learning-based control algorithm is proposed for the microgrid, which could adapt the control policy with increasing knowledge of the system dynamics and converges to the optimal algorithm. We adopt the linear approximation idea to decompose the original value functions as the summation of each per-battery value function. As a consequence, the computational complexity is significantly reduced from exponential growth to linear growth with respect to the size of battery states. Monte Carlo simulation of different scenarios demonstrates the effectiveness and efficiency of our algorithm.
NASA Astrophysics Data System (ADS)
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.
Chen, S; Samingan, A K; Hanzo, L
2001-01-01
The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.
Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?
Lücke, Jörg
2012-01-01
Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing. PMID:22457610
Feedforward inhibition and synaptic scaling--two sides of the same coin?
Keck, Christian; Savin, Cristina; Lücke, Jörg
2012-01-01
Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.
Bauer, Robert; Fels, Meike; Royter, Vladislav; Raco, Valerio; Gharabaghi, Alireza
2016-09-01
Considering self-rated mental effort during neurofeedback may improve training of brain self-regulation. Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening their left hand, while threshold-based classification of beta-band desynchronization resulted in proprioceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted on the basis of these ratings whereas adjustments were carried out at random in the other block. Electroencephalography was used to examine the cortical activation patterns during the training sessions. The perceived mental effort was correlated with the difficulty threshold of neurofeedback training. Adaptive threshold-setting reduced mental effort and increased the classification accuracy and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort was achieved at thresholds significantly higher than maximum classification accuracy. Rating of mental effort is a feasible approach for effective threshold-adaptation during neurofeedback training. Closed-loop adaptation of the neurofeedback difficulty level facilitates reinforcement learning of brain self-regulation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Liu, Zitao; Hauskrecht, Milos
2017-11-01
Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.
Kheifets, Aaron; Gallistel, C R
2012-05-29
Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain.
Kheifets, Aaron; Gallistel, C. R.
2012-01-01
Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain. PMID:22592792
NASA Astrophysics Data System (ADS)
Lewis, Rory; Ellenberger, James; Williams, Colton; White, Andrew M.
2013-11-01
In the ongoing investigation of integrating Knowledge Discovery in Databases (KDD) into neuroscience, we present a paper that facilitates overcoming the two challenges preventing this integration. Pathological oscillations found in the human brain are difficult to evaluate because 1) there is often no time to learn and train off of the same distribution in the fatally sick, and 2) sinusoidal signals found in the human brain are complex and transient in nature requiring large data sets to work with which are costly and often very expensive or impossible to acquire. Overcoming these challenges in today's neuro-intensive-care unit (ICU) requires insurmountable resources. For these reasons, optimizing KDD for pathological oscillations so machine learning systems can predict neuropathological states would be of immense value. Domain adaptation, which allows a way of predicting on a separate set of data than the training data, can theoretically overcome the first challenge. However, the challenge of acquiring large data sets that show whether domain adaptation is a good candidate to test in a live neuro ICU remains a challenge. To solve this conundrum, we present a methodology for generating synthesized neuropathological oscillations for domain adaptation.
NASA Astrophysics Data System (ADS)
Chen, B.; Harp, D. R.; Lin, Y.; Keating, E. H.; Pawar, R.
2017-12-01
Monitoring is a crucial aspect of geologic carbon sequestration (GCS) risk management. It has gained importance as a means to ensure CO2 is safely and permanently stored underground throughout the lifecycle of a GCS project. Three issues are often involved in a monitoring project: (i) where is the optimal location to place the monitoring well(s), (ii) what type of data (pressure, rate and/or CO2 concentration) should be measured, and (iii) What is the optimal frequency to collect the data. In order to address these important issues, a filtering-based data assimilation procedure is developed to perform the monitoring optimization. The optimal monitoring strategy is selected based on the uncertainty reduction of the objective of interest (e.g., cumulative CO2 leak) for all potential monitoring strategies. To reduce the computational cost of the filtering-based data assimilation process, two machine-learning algorithms: Support Vector Regression (SVR) and Multivariate Adaptive Regression Splines (MARS) are used to develop the computationally efficient reduced-order-models (ROMs) from full numerical simulations of CO2 and brine flow. The proposed framework for GCS monitoring optimization is demonstrated with two examples: a simple 3D synthetic case and a real field case named Rock Spring Uplift carbon storage site in Southwestern Wyoming.
Intelligent control and cooperation for mobile robots
NASA Astrophysics Data System (ADS)
Stingu, Petru Emanuel
The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation of robots subjected to dynamic communication constraints, game theory is used in addition to reinforcement learning. The nodes maintain an extra set of state variables about all the other nodes that they can communicate to. The more important are trust and predictability. They are a way to incorporate knowledge acquired in the past into the control decisions taken by each node. The trust variable provides a simple mechanism for the implementation of reinforcement learning. For robot formations, potential field based control algorithms are used to generate the control commands. The formation structure changes due to the environment and due to the decisions of the nodes. It is a problem of building a graph and coalitions by having distributed decisions but still reaching an optimal behavior globally.
Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.
Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M
2017-08-23
Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.
The Binding of Learning to Action in Motor Adaptation
Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.
2011-01-01
In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476
Development of a Countermeasure to Enhance Postflight Locomotor Adaptability
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.
2006-01-01
Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program during regular inflight treadmill operations. A visual display system will provide variation in visual flow patterns during treadmill exercise. Crewmembers will be exposed to a virtual scene that can translate and rotate in six-degrees-of freedom during their regular treadmill exercise period. Associated ground based studies are focused on determining optimal combinations of sensory manipulations (visual flow, body loading and support surface variation) and training schedules that will produce the greatest potential for adaptive flexibility in gait function during exposure to challenging and novel environments. An overview of our progress in these areas will be discussed during the presentation.
Catch trials in force field learning influence adaptation and consolidation of human motor memory
Stockinger, Christian; Focke, Anne; Stein, Thorsten
2014-01-01
Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598
Deep reinforcement learning for automated radiation adaptation in lung cancer.
Tseng, Huan-Hsin; Luo, Yi; Cui, Sunan; Chien, Jen-Tzung; Ten Haken, Randall K; Naqa, Issam El
2017-12-01
To investigate deep reinforcement learning (DRL) based on historical treatment plans for developing automated radiation adaptation protocols for nonsmall cell lung cancer (NSCLC) patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade 2 (RP2). In a retrospective population of 114 NSCLC patients who received radiotherapy, a three-component neural networks framework was developed for deep reinforcement learning (DRL) of dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative adversarial network (GAN) was employed to learn patient population characteristics necessary for DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment (RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy patients' treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing the optimal dose in a response-adapted treatment setting. This multicomponent reinforcement learning approach was benchmarked against real clinical decisions that were applied in an adaptive dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2. The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL. Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL (GAN + RAE + DQN) architecture, we obtained an automated dose adaptation estimate for use at ∼2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely control the estimated adaptive dose per fraction (ranging from 1-5 Gy), the DRL automatically favored dose escalation/de-escalation between 1.5 and 3.8 Gy, a range similar to that used in the clinical protocol. The same DQN yielded two patterns of dose escalation for the 34 test patients, but with different reward variants. First, using the baseline P+ reward function, individual adaptive fraction doses of the DQN had similar tendencies to the clinical data with an RMSE = 0.76 Gy; but adaptations suggested by the DQN were generally lower in magnitude (less aggressive). Second, by adjusting the P+ reward function with higher emphasis on mitigating local failure, better matching of doses between the DQN and the clinical protocol was achieved with an RMSE = 0.5 Gy. Moreover, the decisions selected by the DQN seemed to have better concordance with patients eventual outcomes. In comparison, the traditional temporal difference (TD) algorithm for reinforcement learning yielded an RMSE = 3.3 Gy due to numerical instabilities and lack of sufficient learning. We demonstrated that automated dose adaptation by DRL is a feasible and a promising approach for achieving similar results to those chosen by clinicians. The process may require customization of the reward function if individual cases were to be considered. However, development of this framework into a fully credible autonomous system for clinical decision support would require further validation on larger multi-institutional datasets. © 2017 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Munoz, Marco A.
In schools, the learning and optimal development of children with adaptive or behavioral problems may be seriously affected. In many schools, such problems are so prevalent that demand time and energy of the educators may dilute the educational experience of all children. This study examines the impact of the Primary Mental Health Project-- a…
Yang, Xiaomei; Zhou, Chenghu; Li, Zhi
2017-01-01
Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features. PMID:28914787
Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi
2017-09-15
Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.
Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo
2016-01-01
Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504
Active Inference, homeostatic regulation and adaptive behavioural control
Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl
2015-01-01
We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173
Sim, Kwang Mong; Guo, Yuanyuan; Shi, Benyun
2009-02-01
Automated negotiation provides a means for resolving differences among interacting agents. For negotiation with complete information, this paper provides mathematical proofs to show that an agent's optimal strategy can be computed using its opponent's reserve price (RP) and deadline. The impetus of this work is using the synergy of Bayesian learning (BL) and genetic algorithm (GA) to determine an agent's optimal strategy in negotiation (N) with incomplete information. BLGAN adopts: 1) BL and a deadline-estimation process for estimating an opponent's RP and deadline and 2) GA for generating a proposal at each negotiation round. Learning the RP and deadline of an opponent enables the GA in BLGAN to reduce the size of its search space (SP) by adaptively focusing its search on a specific region in the space of all possible proposals. SP is dynamically defined as a region around an agent's proposal P at each negotiation round. P is generated using the agent's optimal strategy determined using its estimations of its opponent's RP and deadline. Hence, the GA in BLGAN is more likely to generate proposals that are closer to the proposal generated by the optimal strategy. Using GA to search around a proposal generated by its current strategy, an agent in BLGAN compensates for possible errors in estimating its opponent's RP and deadline. Empirical results show that agents adopting BLGAN reached agreements successfully, and achieved: 1) higher utilities and better combined negotiation outcomes (CNOs) than agents that only adopt GA to generate their proposals, 2) higher utilities than agents that adopt BL to learn only RP, and 3) higher utilities and better CNOs than agents that do not learn their opponents' RPs and deadlines.
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
Tuo, Shouheng; Yong, Longquan; Deng, Fang’an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. PMID:28403224
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
Bio-inspired adaptive feedback error learning architecture for motor control.
Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo
2012-10-01
This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).
Experiments in Neural-Network Control of a Free-Flying Space Robot
NASA Technical Reports Server (NTRS)
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
Computer-based learning: interleaving whole and sectional representation of neuroanatomy.
Pani, John R; Chariker, Julia H; Naaz, Farah
2013-01-01
The large volume of material to be learned in biomedical disciplines requires optimizing the efficiency of instruction. In prior work with computer-based instruction of neuroanatomy, it was relatively efficient for learners to master whole anatomy and then transfer to learning sectional anatomy. It may, however, be more efficient to continuously integrate learning of whole and sectional anatomy. A study of computer-based learning of neuroanatomy was conducted to compare a basic transfer paradigm for learning whole and sectional neuroanatomy with a method in which the two forms of representation were interleaved (alternated). For all experimental groups, interactive computer programs supported an approach to instruction called adaptive exploration. Each learning trial consisted of time-limited exploration of neuroanatomy, self-timed testing, and graphical feedback. The primary result of this study was that interleaved learning of whole and sectional neuroanatomy was more efficient than the basic transfer method, without cost to long-term retention or generalization of knowledge to recognizing new images (Visible Human and MRI). Copyright © 2012 American Association of Anatomists.
Computer-Based Learning: Interleaving Whole and Sectional Representation of Neuroanatomy
Pani, John R.; Chariker, Julia H.; Naaz, Farah
2015-01-01
The large volume of material to be learned in biomedical disciplines requires optimizing the efficiency of instruction. In prior work with computer-based instruction of neuroanatomy, it was relatively efficient for learners to master whole anatomy and then transfer to learning sectional anatomy. It may, however, be more efficient to continuously integrate learning of whole and sectional anatomy. A study of computer-based learning of neuroanatomy was conducted to compare a basic transfer paradigm for learning whole and sectional neuroanatomy with a method in which the two forms of representation were interleaved (alternated). For all experimental groups, interactive computer programs supported an approach to instruction called adaptive exploration. Each learning trial consisted of time-limited exploration of neuroanatomy, self-timed testing, and graphical feedback. The primary result of this study was that interleaved learning of whole and sectional neuroanatomy was more efficient than the basic transfer method, without cost to long-term retention or generalization of knowledge to recognizing new images (Visible Human and MRI). PMID:22761001
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com
2016-06-15
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiationmore » of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.« less
Incremental Support Vector Machine Framework for Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Awad, Mariette; Jiang, Xianhua; Motai, Yuichi
2006-12-01
Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.
Cross-sensor iris recognition through kernel learning.
Pillai, Jaishanker K; Puertas, Maria; Chellappa, Rama
2014-01-01
Due to the increasing popularity of iris biometrics, new sensors are being developed for acquiring iris images and existing ones are being continuously upgraded. Re-enrolling users every time a new sensor is deployed is expensive and time-consuming, especially in applications with a large number of enrolled users. However, recent studies show that cross-sensor matching, where the test samples are verified using data enrolled with a different sensor, often lead to reduced performance. In this paper, we propose a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. We first present a novel optimization framework for learning transformations on iris biometrics. We then utilize this framework for sensor adaptation, by reducing the distance between samples of the same class, and increasing it between samples of different classes, irrespective of the sensors acquiring them. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to improvement in cross-sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems.
Subspace Clustering via Learning an Adaptive Low-Rank Graph.
Yin, Ming; Xie, Shengli; Wu, Zongze; Zhang, Yun; Gao, Junbin
2018-08-01
By using a sparse representation or low-rank representation of data, the graph-based subspace clustering has recently attracted considerable attention in computer vision, given its capability and efficiency in clustering data. However, the graph weights built using the representation coefficients are not the exact ones as the traditional definition is in a deterministic way. The two steps of representation and clustering are conducted in an independent manner, thus an overall optimal result cannot be guaranteed. Furthermore, it is unclear how the clustering performance will be affected by using this graph. For example, the graph parameters, i.e., the weights on edges, have to be artificially pre-specified while it is very difficult to choose the optimum. To this end, in this paper, a novel subspace clustering via learning an adaptive low-rank graph affinity matrix is proposed, where the affinity matrix and the representation coefficients are learned in a unified framework. As such, the pre-computed graph regularizer is effectively obviated and better performance can be achieved. Experimental results on several famous databases demonstrate that the proposed method performs better against the state-of-the-art approaches, in clustering.
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-01-01
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162
Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.
Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen
2018-05-01
In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-12-04
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.
Support Vector Machines for Differential Prediction
Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude
2015-01-01
Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction. In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results. PMID:26158123
Support Vector Machines for Differential Prediction.
Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude
Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction . In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results.
Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai
2015-07-01
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-09-01
This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.
Zamli, Kamal Z.; Din, Fakhrud; Bures, Miroslav
2018-01-01
The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level. PMID:29771918
Zamli, Kamal Z; Din, Fakhrud; Ahmed, Bestoun S; Bures, Miroslav
2018-01-01
The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.
Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong
2017-07-01
Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.
Käser, Tanja; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; Richtmann, Verena; Grond, Ursina; Gross, Markus; von Aster, Michael
2013-01-01
This article presents the design and a first pilot evaluation of the computer-based training program Calcularis for children with developmental dyscalculia (DD) or difficulties in learning mathematics. The program has been designed according to insights on the typical and atypical development of mathematical abilities. The learning process is supported through multimodal cues, which encode different properties of numbers. To offer optimal learning conditions, a user model completes the program and allows flexible adaptation to a child's individual learning and knowledge profile. Thirty-two children with difficulties in learning mathematics completed the 6–12-weeks computer training. The children played the game for 20 min per day for 5 days a week. The training effects were evaluated using neuropsychological tests. Generally, children benefited significantly from the training regarding number representation and arithmetic operations. Furthermore, children liked to play with the program and reported that the training improved their mathematical abilities. PMID:23935586
Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.
1983-11-01
Dereverberation Simulations ... ............ .. 96 Ŗ 4. ARRAY OPTIMIZATION ......... ...................... . 115 * 4.1 Phased Array Fundamentals... 115 4.2 Phased Array Diffraction Suboptimization ......... ... 121 , .i Page s 4.3 Diffraction Pattern Simulations of Phased Arrays...by differentiating (2.13.14) with respect to z and • -- equating equal powers of z , giving n-i c n bn + I/n kckbn-k (2.13.15)nk= This is very
Growing a hypercubical output space in a self-organizing feature map.
Bauer, H U; Villmann, T
1997-01-01
Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.
Microvascular Anastomosis: Proposition of a Learning Curve.
Mokhtari, Pooneh; Tayebi Meybodi, Ali; Benet, Arnau; Lawton, Michael T
2018-04-14
Learning to perform a microvascular anastomosis is one of the most difficult tasks in cerebrovascular surgery. Previous studies offer little regarding the optimal protocols to maximize learning efficiency. This failure stems mainly from lack of knowledge about the learning curve of this task. To delineate this learning curve and provide information about its various features including acquisition, improvement, consistency, stability, and recall. Five neurosurgeons with an average surgical experience history of 5 yr and without any experience in bypass surgery performed microscopic anastomosis on progressively smaller-caliber silastic tubes (Biomet, Palm Beach Gardens, Florida) during 24 consecutive sessions. After a 1-, 2-, and 8-wk retention interval, they performed recall test on 0.7-mm silastic tubes. The anastomoses were rated based on anastomosis patency and presence of any leaks. Improvement rate was faster during initial sessions compared to the final practice sessions. Performance decline was observed in the first session of working on a smaller-caliber tube. However, this rapidly improved during the following sessions of practice. Temporary plateaus were seen in certain segments of the curve. The retention interval between the acquisition and recall phase did not cause a regression to the prepractice performance level. Learning the fine motor task of microvascular anastomosis adapts to the basic rules of learning such as the "power law of practice." Our results also support the improvement of performance during consecutive sessions of practice. The objective evidence provided may help in developing optimized learning protocols for microvascular anastomosis.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
A recipe for mealtime resilience for families living with dementia.
Wong, Fiona; Keller, Heather H; Schindel Martin, Lori; Sutherland, Olga
2015-09-01
To date, research delving into the narratives of persons living with dementia is limited. Taking part in usual mealtime activities such as preparing food can sustain the identity of persons living with dementia. Yet if capacity for mealtime activities changes, this can put a strain or demand on the family, which must adjust and adapt to these changes. The aim of this study was to develop an in-depth story of resilience in one family living with dementia that was experiencing mealtime changes. Thematic narrative analysis following the elements of Clandinin and Connelly's (2000) 3D narrative inquiry space was used. One family's dementia journey was highlighted using the metaphor of a baking recipe to reflect their story of resilience. Developing positive strategies and continuing to learn and adapt were the two approaches used by this resilient family. Reminiscing, incorporating humour, having hope and optimism, and establishing social support were specific strategies. This family continued to learn and adapt by focusing on their positive gains and personal growth, accumulating life experiences, and balancing past pleasures while adapting to the new normal. Future work needs to further conceptualise resilience and how it can be supported in families living with dementia. © 2014 Nordic College of Caring Science.
Voss, Joel L; Warren, David E; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Dan; Cohen, Neal J
2011-08-02
Effective exploratory behaviors involve continuous updating of sensory sampling to optimize the efficacy of information gathering. Despite some work on this issue in animals, little information exists regarding the cognitive or neural mechanisms for this sort of behavioral optimization in humans. Here we examined a visual exploration phenomenon that occurred when human subjects studying an array of objects spontaneously looked "backward" in their scanning paths to view recently seen objects again. This "spontaneous revisitation" of recently viewed objects was associated with enhanced hippocampal activity and superior subsequent memory performance in healthy participants, but occurred only rarely in amnesic patients with severe damage to the hippocampus. These findings demonstrate the necessity of the hippocampus not just in the aspects of long-term memory with which it has been associated previously, but also in the short-term adaptive control of behavior. Functional neuroimaging showed hippocampal engagement occurring in conjunction with frontocerebellar circuits, thereby revealing some of the larger brain circuitry essential for the strategic deployment of information-seeking behaviors that optimize learning.
Fu, Yue; Chai, Tianyou
2016-12-01
Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.
Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the H ∞ control problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.
Shimansky, Yury P
2009-12-01
Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks.
Genetic learning in rule-based and neural systems
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
Bryant, D P; Bryant, B R
1998-01-01
Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Frequencies of decision making and monitoring in adaptive resource management
Johnson, Fred A.
2017-01-01
Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions. PMID:28800591
Frequencies of decision making and monitoring in adaptive resource management
Williams, Byron K.; Johnson, Fred A.
2017-01-01
Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions.
Adaptive, Distributed Control of Constrained Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
AHaH computing-from metastable switches to attractors to machine learning.
Nugent, Michael Alexander; Molter, Timothy Wesley
2014-01-01
Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.
Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.
Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016
AHaH Computing–From Metastable Switches to Attractors to Machine Learning
Nugent, Michael Alexander; Molter, Timothy Wesley
2014-01-01
Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315
A Framework for Matching User Needs to an Optimal Level of Office Automation
1988-06-01
TECHNOSTRESS Craig Brod coins the term " technostress " to describe the emotional stress induced by the introduction of new technology. (Brod, 1984, pp. 28... Technostress has a very negative effect on the productivity of people who use OA systems. Common indicators of technostress are very slow learning... technostress using a strategy which divides adaptation to computers into three phases called orientation, operations and mastery. 59 1. Orientation The
Theoretical and Experimental Analysis of an Evolutionary Social-Learning Game
2012-01-13
Nettle outlines the circumstances in which verbal communication is evolutionarily adaptive, and why few species have developed the ability to use...language despite its apparent advantages [28]. Nettle uses a significantly simpler model than the Cultaptation game, but provides insight that may be useful...provided by Kearns et al. was designed as an online algorithm, so it only returns the near-optimal action for the state at the root of the search tree
The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory
NASA Astrophysics Data System (ADS)
Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong
Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.
Seizure Control in a Computational Model Using a Reinforcement Learning Stimulation Paradigm.
Nagaraj, Vivek; Lamperski, Andrew; Netoff, Theoden I
2017-11-01
Neuromodulation technologies such as vagus nerve stimulation and deep brain stimulation, have shown some efficacy in controlling seizures in medically intractable patients. However, inherent patient-to-patient variability of seizure disorders leads to a wide range of therapeutic efficacy. A patient specific approach to determining stimulation parameters may lead to increased therapeutic efficacy while minimizing stimulation energy and side effects. This paper presents a reinforcement learning algorithm that optimizes stimulation frequency for controlling seizures with minimum stimulation energy. We apply our method to a computational model called the epileptor. The epileptor model simulates inter-ictal and ictal local field potential data. In order to apply reinforcement learning to the Epileptor, we introduce a specialized reward function and state-space discretization. With the reward function and discretization fixed, we test the effectiveness of the temporal difference reinforcement learning algorithm (TD(0)). For periodic pulsatile stimulation, we derive a relation that describes, for any stimulation frequency, the minimal pulse amplitude required to suppress seizures. The TD(0) algorithm is able to identify parameters that control seizures quickly. Additionally, our results show that the TD(0) algorithm refines the stimulation frequency to minimize stimulation energy thereby converging to optimal parameters reliably. An advantage of the TD(0) algorithm is that it is adaptive so that the parameters necessary to control the seizures can change over time. We show that the algorithm can converge on the optimal solution in simulation with slow and fast inter-seizure intervals.
An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning
ERIC Educational Resources Information Center
Chen, Ching-Huei
2014-01-01
This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…
Investigating the Effect of an Adaptive Learning Intervention on Students' Learning
ERIC Educational Resources Information Center
Liu, Min; McKelroy, Emily; Corliss, Stephanie B.; Carrigan, Jamison
2017-01-01
Educators agree on the benefits of adaptive learning, but evidence-based research remains limited as the field of adaptive learning is still evolving within higher education. In this study, we investigated the impact of an adaptive learning intervention to provide remedial instruction in biology, chemistry, math, and information literacy to…
A Model for an Adaptive e-Learning Hypermedia System
ERIC Educational Resources Information Center
Mahnane, Lamia; Tayeb, Laskri Mohamed; Trigano, Philippe
2013-01-01
Recent years have shown increasing awareness for the importance of adaptivity in e-learning. Since the learning style of each learner is different. Adaptive e-learning hypermedia system (AEHS) must fit different learner's needs. A number of AEHS have been developed to support learning styles as a source for adaptation. However, these systems…
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca
2017-04-01
Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.
The remapping of space in motor learning and human-machine interfaces
Mussa-Ivaldi, F.A.; Danziger, Z.
2009-01-01
Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553
Remembering forward: Neural correlates of memory and prediction in human motor adaptation
Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia
2011-01-01
We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405
NASA Astrophysics Data System (ADS)
Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin
2018-02-01
Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.
Preliminary Work for Examining the Scalability of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Clouse, Jeff
1998-01-01
Researchers began studying automated agents that learn to perform multiple-step tasks early in the history of artificial intelligence (Samuel, 1963; Samuel, 1967; Waterman, 1970; Fikes, Hart & Nilsonn, 1972). Multiple-step tasks are tasks that can only be solved via a sequence of decisions, such as control problems, robotics problems, classic problem-solving, and game-playing. The objective of agents attempting to learn such tasks is to use the resources they have available in order to become more proficient at the tasks. In particular, each agent attempts to develop a good policy, a mapping from states to actions, that allows it to select actions that optimize a measure of its performance on the task; for example, reducing the number of steps necessary to complete the task successfully. Our study focuses on reinforcement learning, a set of learning techniques where the learner performs trial-and-error experiments in the task and adapts its policy based on the outcome of those experiments. Much of the work in reinforcement learning has focused on a particular, simple representation, where every problem state is represented explicitly in a table, and associated with each state are the actions that can be chosen in that state. A major advantage of this table lookup representation is that one can prove that certain reinforcement learning techniques will develop an optimal policy for the current task. The drawback is that the representation limits the application of reinforcement learning to multiple-step tasks with relatively small state-spaces. There has been a little theoretical work that proves that convergence to optimal solutions can be obtained when using generalization structures, but the structures are quite simple. The theory says little about complex structures, such as multi-layer, feedforward artificial neural networks (Rumelhart & McClelland, 1986), but empirical results indicate that the use of reinforcement learning with such structures is promising. These empirical results make no theoretical claims, nor compare the policies produced to optimal policies. A goal of our work is to be able to make the comparison between an optimal policy and one stored in an artificial neural network. A difficulty of performing such a study is finding a multiple-step task that is small enough that one can find an optimal policy using table lookup, yet large enough that, for practical purposes, an artificial neural network is really required. We have identified a limited form of the game OTHELLO as satisfying these requirements. The work we report here is in the very preliminary stages of research, but this paper provides background for the problem being studied and a description of our initial approach to examining the problem. In the remainder of this paper, we first describe reinforcement learning in more detail. Next, we present the game OTHELLO. Finally we argue that a restricted form of the game meets the requirements of our study, and describe our preliminary approach to finding an optimal solution to the problem.
Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm.
Poon, Chi-Sang; Tin, Chung; Yu, Yunguo
2007-10-15
Homeostasis is a basic tenet of biomedicine and an open problem for many physiological control systems. Among them, none has been more extensively studied and intensely debated than the dilemma of exercise hyperpnea - a paradoxical homeostatic increase of respiratory ventilation that is geared to metabolic demands instead of the normal chemoreflex mechanism. Classical control theory has led to a plethora of "feedback/feedforward control" or "set point" hypotheses for homeostatic regulation, yet so far none of them has proved satisfactory in explaining exercise hyperpnea and its interactions with other respiratory inputs. Instead, the available evidence points to a far more sophisticated respiratory controller capable of integrating multiple afferent and efferent signals in adapting the ventilatory pattern toward optimality relative to conflicting homeostatic, energetic and other objectives. This optimality principle parsimoniously mimics exercise hyperpnea, chemoreflex and a host of characteristic respiratory responses to abnormal gas exchange or mechanical loading/unloading in health and in cardiopulmonary diseases - all without resorting to a feedforward "exercise stimulus". Rather, an emergent controller signal encoding the projected metabolic level is predicted by the principle as an exercise-induced 'mental percept' or 'internal model', presumably engendered by associative learning (operant conditioning or classical conditioning) which achieves optimality through continuous identification of, and adaptation to, the causal relationship between respiratory motor output and resultant chemical-mechanical afferent feedbacks. This internal model self-tuning adaptive control paradigm opens a new challenge and exciting opportunity for experimental and theoretical elucidations of the mechanisms of respiratory control - and of homeostatic regulation and sensorimotor integration in general.
Fan, Quan-Yong; Yang, Guang-Hong
2016-01-01
This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Wu, Stephen; Miller, Timothy; Masanz, James; Coarr, Matt; Halgrim, Scott; Carrell, David; Clark, Cheryl
2014-01-01
A review of published work in clinical natural language processing (NLP) may suggest that the negation detection task has been “solved.” This work proposes that an optimizable solution does not equal a generalizable solution. We introduce a new machine learning-based Polarity Module for detecting negation in clinical text, and extensively compare its performance across domains. Using four manually annotated corpora of clinical text, we show that negation detection performance suffers when there is no in-domain development (for manual methods) or training data (for machine learning-based methods). Various factors (e.g., annotation guidelines, named entity characteristics, the amount of data, and lexical and syntactic context) play a role in making generalizability difficult, but none completely explains the phenomenon. Furthermore, generalizability remains challenging because it is unclear whether to use a single source for accurate data, combine all sources into a single model, or apply domain adaptation methods. The most reliable means to improve negation detection is to manually annotate in-domain training data (or, perhaps, manually modify rules); this is a strategy for optimizing performance, rather than generalizing it. These results suggest a direction for future work in domain-adaptive and task-adaptive methods for clinical NLP. PMID:25393544
Adaptive dynamic programming approach to experience-based systems identification and control.
Lendaris, George G
2009-01-01
Humans have the ability to make use of experience while selecting their control actions for distinct and changing situations, and their process speeds up and have enhanced effectiveness as more experience is gained. In contrast, current technological implementations slow down as more knowledge is stored. A novel way of employing Approximate (or Adaptive) Dynamic Programming (ADP) is described that shifts the underlying Adaptive Critic type of Reinforcement Learning method "up a level", away from designing individual (optimal) controllers to that of developing on-line algorithms that efficiently and effectively select designs from a repository of existing controller solutions (perhaps previously developed via application of ADP methods). The resulting approach is called Higher-Level Learning Algorithm. The approach and its rationale are described and some examples of its application are given. The notions of context and context discernment are important to understanding the human abilities noted above. These are first defined, in a manner appropriate to controls and system-identification, and as a foundation relating to the application arena, a historical view of the various phases during development of the controls field is given, organized by how the notion 'context' was, or was not, involved in each phase.
Adaptive Learning Resources Sequencing in Educational Hypermedia Systems
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Sampson, Demetrios
2005-01-01
Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…
OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support
NASA Astrophysics Data System (ADS)
Pedrazzoli, Attilio
2010-06-01
AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.
Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.
Yao, Yu; Zhao, Junhui; Wu, Lenan
2018-05-29
A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.
von Borries, A K L; Verkes, R J; Bulten, B H; Cools, R; de Bruijn, E R A
2013-12-01
Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures--that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model predicts an FRN on negative prediction errors, as well as implying a role for the FRN in learning and the adaptation of behavior. However, these predictions have recently been challenged. Notably, studies so far have used tasks in which the outcomes have been contingent on the response. In these paradigms, the need to adapt behavioral responses is present only for negative, not for positive feedback. The goal of the present study was to investigate the effects of positive as well as negative violations of expectancy on FRN amplitudes, without the usual confound of behavioral adjustments. A reversal-learning task was employed in which outcome value and outcome expectancy were orthogonalized; that is, both positive and negative outcomes were equally unexpected. The results revealed a double dissociation, with effects of valence but not expectancy on the FRN and, conversely, effects of expectancy but not valence on the P300. While FRN amplitudes were largest for negative-outcome trials, irrespective of outcome expectancy, P300 amplitudes were largest for unexpected-outcome trials, irrespective of outcome valence. These FRN effects were interpreted to reflect an evaluation along a good-bad dimension, rather than reflecting a negative prediction error or a role in behavioral adaptation. By contrast, the P300 reflects the updating of information relevant for behavior in a changing context.
Online Learning of Genetic Network Programming and its Application to Prisoner’s Dilemma Game
NASA Astrophysics Data System (ADS)
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
A new evolutionary model with the network structure named Genetic Network Programming (GNP) has been proposed recently. GNP, that is, an expansion of GA and GP, represents solutions as a network structure and evolves it by using “offline learning (selection, mutation, crossover)”. GNP can memorize the past action sequences in the network flow, so it can deal with Partially Observable Markov Decision Process (POMDP) well. In this paper, in order to improve the ability of GNP, Q learning (an off-policy TD control algorithm) that is one of the famous online methods is introduced for online learning of GNP. Q learning is suitable for GNP because (1) in reinforcement learning, the rewards an agent will get in the future can be estimated, (2) TD control doesn’t need much memory and can learn quickly, and (3) off-policy is suitable in order to search for an optimal solution independently of the policy. Finally, in the simulations, online learning of GNP is applied to a player for “Prisoner’s dilemma game” and its ability for online adaptation is confirmed.
Using brain potentials to understand prism adaptation: the error-related negativity and the P300
MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715
Using brain potentials to understand prism adaptation: the error-related negativity and the P300.
MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue
2016-01-01
This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan
2009-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.
Hedging Your Bets by Learning Reward Correlations in the Human Brain
Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2011-01-01
Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609
Active Inference, homeostatic regulation and adaptive behavioural control.
Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl
2015-11-01
We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Adaptable, Personalised E-Learning Incorporating Learning Styles
ERIC Educational Resources Information Center
Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad
2010-01-01
Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…
MO-E-BRC-00: Online Adaptive Radiotherapy - Considerations for Practical Clinical Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled themore » implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.« less
MO-E-BRC-02: MRI-Guided Online Adaptive Radiotherapy: The UCLA Approach to Quality Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J.
Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled themore » implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.« less
MO-E-BRC-01: Online Adaptive MR-Guided RT: Workflow and Clinical Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashani, R.
Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled themore » implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.« less
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
Farmer, George D; Janssen, Christian P; Nguyen, Anh T; Brumby, Duncan P
2018-04-01
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Adapted all-numerical correlator for face recognition applications
NASA Astrophysics Data System (ADS)
Elbouz, M.; Bouzidi, F.; Alfalou, A.; Brosseau, C.; Leonard, I.; Benkelfat, B.-E.
2013-03-01
In this study, we suggest and validate an all-numerical implementation of a VanderLugt correlator which is optimized for face recognition applications. The main goal of this implementation is to take advantage of the benefits (detection, localization, and identification of a target object within a scene) of correlation methods and exploit the reconfigurability of numerical approaches. This technique requires a numerical implementation of the optical Fourier transform. We pay special attention to adapt the correlation filter to this numerical implementation. One main goal of this work is to reduce the size of the filter in order to decrease the memory space required for real time applications. To fulfil this requirement, we code the reference images with 8 bits and study the effect of this coding on the performances of several composite filters (phase-only filter, binary phase-only filter). The saturation effect has for effect to decrease the performances of the correlator for making a decision when filters contain up to nine references. Further, an optimization is proposed based for an optimized segmented composite filter. Based on this approach, we present tests with different faces demonstrating that the above mentioned saturation effect is significantly reduced while minimizing the size of the learning data base.
Neuroprosthetic Decoder Training as Imitation Learning.
Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P
2016-05-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
Improving Adaptive Learning Technology through the Use of Response Times
ERIC Educational Resources Information Center
Mettler, Everett; Massey, Christine M.; Kellman, Philip J.
2011-01-01
Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…
Development of an Adaptive Learning System with Two Sources of Personalization Information
ERIC Educational Resources Information Center
Tseng, J. C. R.; Chu, H. C.; Hwang, G. J.; Tsai, C. C.
2008-01-01
Previous research of adaptive learning mainly focused on improving student learning achievements based only on single-source of personalization information, such as learning style, cognitive style or learning achievement. In this paper, an innovative adaptive learning approach is proposed by basing upon two main sources of personalization…
Systematic evaluation of deep learning based detection frameworks for aerial imagery
NASA Astrophysics Data System (ADS)
Sommer, Lars; Steinmann, Lucas; Schumann, Arne; Beyerer, Jürgen
2018-04-01
Object detection in aerial imagery is crucial for many applications in the civil and military domain. In recent years, deep learning based object detection frameworks significantly outperformed conventional approaches based on hand-crafted features on several datasets. However, these detection frameworks are generally designed and optimized for common benchmark datasets, which considerably differ from aerial imagery especially in object sizes. As already demonstrated for Faster R-CNN, several adaptations are necessary to account for these differences. In this work, we adapt several state-of-the-art detection frameworks including Faster R-CNN, R-FCN, and Single Shot MultiBox Detector (SSD) to aerial imagery. We discuss adaptations that mainly improve the detection accuracy of all frameworks in detail. As the output of deeper convolutional layers comprise more semantic information, these layers are generally used in detection frameworks as feature map to locate and classify objects. However, the resolution of these feature maps is insufficient for handling small object instances, which results in an inaccurate localization or incorrect classification of small objects. Furthermore, state-of-the-art detection frameworks perform bounding box regression to predict the exact object location. Therefore, so called anchor or default boxes are used as reference. We demonstrate how an appropriate choice of anchor box sizes can considerably improve detection performance. Furthermore, we evaluate the impact of the performed adaptations on two publicly available datasets to account for various ground sampling distances or differing backgrounds. The presented adaptations can be used as guideline for further datasets or detection frameworks.
Web-Based Learning Support System
NASA Astrophysics Data System (ADS)
Fan, Lisa
Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.
Learning multivariate distributions by competitive assembly of marginals.
Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald
2013-02-01
We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.
Lewis, F L; Vamvoudakis, Kyriakos G
2011-02-01
Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
Miller, Virginia M; Kararigas, Georgios; Seeland, Ute; Regitz-Zagrosek, Vera; Kublickiene, Karolina; Einstein, Gillian; Casanova, Robert; Legato, Marianne J
2016-01-01
In the era of individualized medicine, training future scientists and health-care providers in the principles of sex- and gender-based differences in health and disease is critical in order to optimize patient care. International successes to incorporate these concepts into medical curricula can provide a template for others to follow. Methodologies and resources are provided that can be adopted and adapted to specific needs of other institutions and learning situations.
Optimally managing water resources in large river basins for an uncertain future
Roehl, Edwin A.; Conrads, Paul
2014-01-01
One of the challenges of basin management is the optimization of water use through ongoing regional economic development, droughts, and climate change. This paper describes a model of the Savannah River Basin designed to continuously optimize regulated flow to meet prioritized objectives set by resource managers and stakeholders. The model was developed from historical data by using machine learning, making it more accurate and adaptable to changing conditions than traditional models. The model is coupled to an optimization routine that computes the daily flow needed to most efficiently meet the water-resource management objectives. The model and optimization routine are packaged in a decision support system that makes it easy for managers and stakeholders to use. Simulation results show that flow can be regulated to substantially reduce salinity intrusions in the Savannah National Wildlife Refuge while conserving more water in the reservoirs. A method for using the model to assess the effectiveness of the flow-alteration features after the deepening also is demonstrated.
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Approach for Using Learner Satisfaction to Evaluate the Learning Adaptation Policy
ERIC Educational Resources Information Center
Jeghal, Adil; Oughdir, Lahcen; Tairi, Hamid; Radouane, Abdelhay
2016-01-01
The learning adaptation is a very important phase in a learning situation in human learning environments. This paper presents the authors' approach used to evaluate the effectiveness of learning adaptive systems. This approach is based on the analysis of learner satisfaction notices collected by a questionnaire on a learning situation; to analyze…
The Educational Kanban: promoting effective self-directed adult learning in medical education.
Goldman, Stuart
2009-07-01
The author reviews the many forces that have driven contemporary medical education approaches to evaluation and places them in an adult learning theory context. After noting their strengths and limitations, the author looks to lessons learned from manufacturing on both efficacy and efficiency and explores how these can be applied to the process of trainee assessment in medical education.Building on this, the author describes the rationale for and development of the Educational Kanban (EK) at Children's Hospital Boston--specifically, how it was designed to integrate adult learning theory, Japanese manufacturing models, and educator observations into a unique form of teacher-student collaboration that allows for continuous improvement. It is a formative tool, built on the Accreditation Council for Graduate Medical Education's six core competencies, that guides educational efforts to optimize teaching and learning, promotes adult learner responsibility and efficacy, and takes advantage of the labor-intensive clinical educational setting. The author discusses how this model, which will be implemented in July 2009, will lead to training that is highly individualized, optimizes faculty and student educational efforts, and ultimately conserves faculty resources. A model EK is provided for general reference.The EK represents a novel approach to adult learning that will enhance educational effectiveness and efficiency and complement existing evaluative models. Described here in a specific graduate medical setting, it can readily be adapted and integrated into a wide range of undergraduate and graduate clinical educational environments.
A self-taught artificial agent for multi-physics computational model personalization.
Neumann, Dominik; Mansi, Tommaso; Itu, Lucian; Georgescu, Bogdan; Kayvanpour, Elham; Sedaghat-Hamedani, Farbod; Amr, Ali; Haas, Jan; Katus, Hugo; Meder, Benjamin; Steidl, Stefan; Hornegger, Joachim; Comaniciu, Dorin
2016-12-01
Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it. The problem is reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, learns a representative decision process model through exploration of the computational model: it learns how the model behaves under change of parameters. The agent then automatically learns an optimal strategy for on-line personalization. The algorithm is model-independent; applying it to a new model requires only adjusting few hyper-parameters of the agent and defining the observations to match. The full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained results suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, while being more robust (up to 11% higher success rates) and with faster (up to seven times) convergence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable and self-adaptable to any patient and any model. Copyright © 2016. Published by Elsevier B.V.
Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.
Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J
2016-05-01
Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.
Haraldseid, Cecilie; Friberg, Febe; Aase, Karina
2016-01-01
Policy initiatives and an increasing amount of the literature within higher education both call for students to become more involved in creating their own learning. However, there is a lack of studies in undergraduate nursing education that actively involve students in developing such learning material with descriptions of the students' roles in these interactive processes. Explorative qualitative study, using data from focus group interviews, field notes and student notes. The data has been subjected to qualitative content analysis. Active student involvement through an iterative process identified five different learning needs that are especially important to the students: clarification of learning expectations, help to recognize the bigger picture, stimulation of interaction, creation of structure, and receiving context- specific content. The iterative process involvement of students during the development of new technological learning material will enhance the identification of important learning needs for students. The use of student and teacher knowledge through an adapted co-design process is the most optimal level of that involvement.
Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments
ERIC Educational Resources Information Center
Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine
2012-01-01
Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…
One-trial overshadowing: Evidence for fast specific fear learning in humans.
Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram
2017-03-01
Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fasihuddin, Heba; Skinner, Geoff; Athauda, Rukshan
2017-01-01
Open learning represents a new form of online learning where courses are provided freely online for large numbers of learners. MOOCs are examples of this form of learning. The authors see an opportunity for personalising open learning environments by adapting to learners' learning styles and providing adaptive support to meet individual learner…
Adapting environmental management to uncertain but inevitable change.
Nicol, Sam; Fuller, Richard A; Iwamura, Takuya; Chadès, Iadine
2015-06-07
Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian-Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25,000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Di; Liang Jian
Purpose: To construct expected treatment dose for adaptive inverse planning optimization, and evaluate it on head and neck (h and n) cancer adaptive treatment modification. Methods: Adaptive inverse planning engine was developed and integrated in our in-house adaptive treatment control system. The adaptive inverse planning engine includes an expected treatment dose constructed using the daily cone beam (CB) CT images in its objective and constrains. Feasibility of the adaptive inverse planning optimization was evaluated retrospectively using daily CBCT images obtained from the image guided IMRT treatment of 19 h and n cancer patients. Adaptive treatment modification strategies with respect tomore » the time and the number of adaptive inverse planning optimization during the treatment course were evaluated using the cumulative treatment dose in organs of interest constructed using all daily CBCT images. Results: Expected treatment dose was constructed to include both the delivered dose, to date, and the estimated dose for the remaining treatment during the adaptive treatment course. It was used in treatment evaluation, as well as in constructing the objective and constraints for adaptive inverse planning optimization. The optimization engine is feasible to perform planning optimization based on preassigned treatment modification schedule. Compared to the conventional IMRT, the adaptive treatment for h and n cancer illustrated clear dose-volume improvement for all critical normal organs. The dose-volume reductions of right and left parotid glands, spine cord, brain stem and mandible were (17 {+-} 6)%, (14 {+-} 6)%, (11 {+-} 6)%, (12 {+-} 8)%, and (5 {+-} 3)% respectively with the single adaptive modification performed after the second treatment week; (24 {+-} 6)%, (22 {+-} 8)%, (21 {+-} 5)%, (19 {+-} 8)%, and (10 {+-} 6)% with three weekly modifications; and (28 {+-} 5)%, (25 {+-} 9)%, (26 {+-} 5)%, (24 {+-} 8)%, and (15 {+-} 9)% with five weekly modifications. Conclusions: Adaptive treatment modification can be implemented including the expected treatment dose in the adaptive inverse planning optimization. The retrospective evaluation results demonstrate that utilizing the weekly adaptive inverse planning optimization, the dose distribution of h and n cancer treatment can be largely improved.« less
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
How to Represent Adaptation in e-Learning with IMS Learning Design
ERIC Educational Resources Information Center
Burgos, Daniel; Tattersall, Colin; Koper, Rob
2007-01-01
Adaptation in e-learning has been an important research topic for the last few decades in computer-based education. In adaptivity the behaviour of the user triggers some actions in the system that guides the learning process. In adaptability, the user makes changes and takes decisions. Progressing from computer-based training and adaptive…
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
New MPLS network management techniques based on adaptive learning.
Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante
2005-09-01
The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.
NASA Astrophysics Data System (ADS)
Werner, Teresa; Weckenmann, Albert
2010-05-01
Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner.
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
Simulation as a surgical teaching model.
Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos
2018-01-01
Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Intelligence in the brain: a theory of how it works and how to build it.
Werbos, Paul J
2009-04-01
This paper presents a theory of how general-purpose learning-based intelligence is achieved in the mammal brain, and how we can replicate it. It reviews four generations of ever more powerful general-purpose learning designs in Adaptive, Approximate Dynamic Programming (ADP), which includes reinforcement learning as a special case. It reviews empirical results which fit the theory, and suggests important new directions for research, within the scope of NSF's recent initiative on Cognitive Optimization and Prediction. The appendices suggest possible connections to the realms of human subjective experience, comparative cognitive neuroscience, and new challenges in electric power. The major challenge before us today in mathematical neural networks is to replicate the "mouse level", but the paper does contain a few thoughts about building, understanding and nourishing levels of general intelligence beyond the mouse.
Adaptive Management of Bull Trout Populations in the Lemhi Basin
Peterson, James T.; Tyre, Andrew J.; Converse, Sarah J.; Bogich, Tiffany L.; Miller, Damien; Post van der Burg, Max; Thomas, Carmen; Thompson, Ralph J.; Wood, Jeri; Brewer, Donna; Runge, Michael C.
2011-01-01
The bull trout Salvelinus confluentus, a stream-living salmonid distributed in drainages of the northwestern United States, is listed as threatened under the Endangered Species Act because of rangewide declines. One proposed recovery action is the reconnection of tributaries in the Lemhi Basin. Past water use policies in this core area disconnected headwater spawning sites from downstream habitat and have led to the loss of migratory life history forms. We developed an adaptive management framework to analyze which types of streams should be prioritized for reconnection under a proposed Habitat Conservation Plan. We developed a Stochastic Dynamic Program that identified optimal policies over time under four different assumptions about the nature of the migratory behavior and the effects of brook trout Salvelinus fontinalis on subpopulations of bull trout. In general, given the current state of the system and the uncertainties about the dynamics, the optimal policy would be to connect streams that are currently occupied by bull trout. We also estimated the value of information as the difference between absolute certainty about which of our four assumptions were correct, and a model averaged optimization assuming no knowledge. Overall there is little to be gained by learning about the dynamics of the system in its current state, although in other parts of the state space reducing uncertainties about the system would be very valuable. We also conducted a sensitivity analysis; the optimal decision at the current state does not change even when parameter values are changed up to 75% of the baseline values. Overall, the exercise demonstrates that it is possible to apply adaptive management principles to threatened and endangered species, but logistical and data availability constraints make detailed analyses difficult.
Neural Architectures for Control
NASA Technical Reports Server (NTRS)
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
On the optimal degree of fluctuations in practice for motor learning.
Hossner, Ernst-Joachim; Käch, Boris; Enz, Jonas
2016-06-01
In human movement science, it is widely accepted that random practice generally enhances complex motor-skill learning compared to repetitive practice. In two experiments, a particular variability-related concept is put to empirical test, namely the concept of differencial learning (DL), which assumes (i) that learners should not be distracted from task-space exploration by corrections, and (ii) that learning is facilitated by large inter-trial fluctuations. In both experiments, the advantage of DL over repetitive learning was not statistically significant. Moreover, learning was more pronounced when participants either received corrections in addition to DL (Exp. 1) or practiced in an order in which differences between consecutive trials were relatively small (Exp. 2). These findings suggest that the positive DL effects reported in literature cannot be attributed to the reduction of feedback or to the increase of inter-trial fluctuations. These results are discussed in the light of the structural-learning approach and the two-state model of motor learning in which structure-related learning effects are distinguished from the capability to adapt to current changes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.
Effects of repeated walking in a perturbing environment: a 4-day locomotor learning study.
Blanchette, Andreanne; Moffet, Helene; Roy, Jean-Sébastien; Bouyer, Laurent J
2012-07-01
Previous studies have shown that when subjects repeatedly walk in a perturbing environment, initial movement error becomes smaller, suggesting that retention of the adapted locomotor program occurred (learning). It has been proposed that the newly learned locomotor program may be stored separately from the baseline program. However, how locomotor performance evolves with repeated sessions of walking with the perturbation is not yet known. To address this question, 10 healthy subjects walked on a treadmill on 4 consecutive days. Each day, locomotor performance was measured using kinematics and surface electromyography (EMGs), before, during, and after exposure to a perturbation, produced by an elastic tubing that pulled the foot forward and up during swing, inducing a foot velocity error in the first strides. Initial movement error decreased significantly between days 1 and 2 and then remained stable. Associated changes in medial hamstring EMG activity stabilized only on day 3, however. Aftereffects were present after perturbation removal, suggesting that daily adaptation involved central command recalibration of the baseline program. Aftereffects gradually decreased across days but were still visible on day 4. Separation between the newly learned and baseline programs may take longer than suggested by the daily improvement in initial performance in the perturbing environment or may never be complete. These results therefore suggest that reaching optimal performance in a perturbing environment should not be used as the main indicator of a completed learning process, as central reorganization of the motor commands continues days after initial performance has stabilized.
A New Approach for Constructing the Concept Map
ERIC Educational Resources Information Center
Tseng, Shian-Shyong; Sue, Pei-Chi; Su, Jun-Ming; Weng, Jui-Feng; Tsai, Wen-Nung
2007-01-01
In recent years, e-learning system has become more and more popular and many adaptive learning environments have been proposed to offer learners customized courses in accordance with their aptitudes and learning results. For achieving the adaptive learning, a predefined concept map of a course is often used to provide adaptive learning guidance…
Using Data to Understand How to Better Design Adaptive Learning
ERIC Educational Resources Information Center
Liu, Min; Kang, Jina; Zou, Wenting; Lee, Hyeyeon; Pan, Zilong; Corliss, Stephanie
2017-01-01
There is much enthusiasm in higher education about the benefits of adaptive learning and using big data to investigate learning processes to make data-informed educational decisions. The benefits of adaptive learning to achieve personalized learning are obvious. Yet, there lacks evidence-based research to understand how data such as user behavior…
A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment
ERIC Educational Resources Information Center
Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan
2017-01-01
In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…
Bhaya, Amit; Kaszkurewicz, Eugenius
2004-01-01
It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.
[School adaptation of children with borderline mental disorders].
Shalimov, V F
2007-01-01
Three hundreds and forty children with borderline mental disorders (BMD) experiencing difficulties in learning have been studied. The typology of BMD has been elaborated and the types have been specified as follows: disontogenetic, with cerebral alteration and deprived. In accordance to these types, the differentiated modules of corrective and rehabilitative programs have been singled out. The elaborated technology of corrective and rehabilitative work of specialists in educational institutions of compensative character allows to optimize the transition of children with BMB to a common educational setting.
Obayashi, Chihiro; Tamei, Tomoya; Shibata, Tomohiro
2014-05-01
This paper proposes a novel robotic trainer for motor skill learning. It is user-adaptive inspired by the assist-as-needed principle well known in the field of physical therapy. Most previous studies in the field of the robotic assistance of motor skill learning have used predetermined desired trajectories, and it has not been examined intensively whether these trajectories were optimal for each user. Furthermore, the guidance hypothesis states that humans tend to rely too much on external assistive feedback, resulting in interference with the internal feedback necessary for motor skill learning. A few studies have proposed a system that adjusts its assistive strength according to the user's performance in order to prevent the user from relying too much on the robotic assistance. There are, however, problems in these studies, in that a physical model of the user's motor system is required, which is inherently difficult to construct. In this paper, we propose a framework for a robotic trainer that is user-adaptive and that neither requires a specific desired trajectory nor a physical model of the user's motor system, and we achieve this using model-free reinforcement learning. We chose dart-throwing as an example motor-learning task as it is one of the simplest throwing tasks, and its performance can easily be and quantitatively measured. Training experiments with novices, aiming at maximizing the score with the darts and minimizing the physical robotic assistance, demonstrate the feasibility and plausibility of the proposed framework. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.
Fung, Wai-keung; Liu, Yun-hui
2003-12-01
Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.
Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty
NASA Astrophysics Data System (ADS)
Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea
2017-04-01
Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted to a scenario that is different from the one that will actually realize.
Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model
NASA Technical Reports Server (NTRS)
Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.
2010-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.
Cognitive biases, linguistic universals, and constraint-based grammar learning.
Culbertson, Jennifer; Smolensky, Paul; Wilson, Colin
2013-07-01
According to classical arguments, language learning is both facilitated and constrained by cognitive biases. These biases are reflected in linguistic typology-the distribution of linguistic patterns across the world's languages-and can be probed with artificial grammar experiments on child and adult learners. Beginning with a widely successful approach to typology (Optimality Theory), and adapting techniques from computational approaches to statistical learning, we develop a Bayesian model of cognitive biases and show that it accounts for the detailed pattern of results of artificial grammar experiments on noun-phrase word order (Culbertson, Smolensky, & Legendre, 2012). Our proposal has several novel properties that distinguish it from prior work in the domains of linguistic theory, computational cognitive science, and machine learning. This study illustrates how ideas from these domains can be synthesized into a model of language learning in which biases range in strength from hard (absolute) to soft (statistical), and in which language-specific and domain-general biases combine to account for data from the macro-level scale of typological distribution to the micro-level scale of learning by individuals. Copyright © 2013 Cognitive Science Society, Inc.
Learning to speciate: The biased learning of mate preferences promotes adaptive radiation
Gilman, R. Tucker; Kozak, Genevieve M.
2015-01-01
Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795
Specificity and timescales of cortical adaptation as inferences about natural movie statistics.
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-10-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.
Specificity and timescales of cortical adaptation as inferences about natural movie statistics
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-01-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416
Neuroprosthetic Decoder Training as Imitation Learning
Merel, Josh; Paninski, Liam; Cunningham, John P.
2016-01-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
Concept Based Approach for Adaptive Personalized Course Learning System
ERIC Educational Resources Information Center
Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali
2013-01-01
One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…
Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning
ERIC Educational Resources Information Center
Huang, Shiu-Li; Yang, Chia-Wei
2009-01-01
Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa
2013-01-01
In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…
MO-E-BRC-03: Fast Online Replanning Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.
Online adaptive radiation therapy has the potential to ensure delivery of optimal treatment to the patient by accounting for anatomical and potentially functional changes that occur from one fraction to the next and over the course of treatment. While on-line adaptive RT (ART) has been a topic of many publications, discussions, and research, it has until very recently remained largely a concept and not a practical implementation. However, recent advances in on-table imaging, use of deformable image registration for contour generation and dose tracking, faster and more efficient plan optimization, as well as fast quality assurance method has enabled themore » implementation of ART in the clinic in the past couple of years. The introduction of these tools into routine clinical use requires many considerations and progressive knowledge to understand how processes that have historically taken hours/days to complete can now be done in less than 30 minutes. This session will discuss considerations to perform real time contouring, planning and patient specific QA, as well as a practical workflow and the required resources. Learning Objectives: To understand the difficulties, challenges and available technologies for online adaptive RT. To understand how to implement online adaptive therapy in a clinical environment and to understand the workflow and resources required. To understand the limitations and sources of uncertainty in the online adaptive process I have research funding from ViewRay Inc. and Philips Medical Systems.; R. Kashani, I have research funding from ViewRay Inc. and Philips Medical Systems.; X. Li, Research supported by Elekta Inc.« less
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan
2001-07-01
A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.
NASA Astrophysics Data System (ADS)
Babbar-Sebens, M.; Minsker, B. S.
2006-12-01
In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives that met the DM's preference criteria, therefore allowing the expert to select among several strong candidate designs depending on her/his LTM budget, c) two of the methodologies - Case-Based Micro Interactive Genetic Algorithm (CBMIGA) and Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) - were also able to assist in controlling human fatigue and adapt to the DM's learning process.
Training Modalities to Increase Sensorimotor Adaptability
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.
2009-01-01
During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA training can be effectively integrated with treadmill exercise and optimized to provide a unique system that combines multiple training requirements in a single countermeasure system. Learning Objectives: The development of a new countermeasure approach that enhances sensorimotor adaptability will be discussed.
Adaptive Units of Learning and Educational Videogames
ERIC Educational Resources Information Center
Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar
2007-01-01
In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…
Araki, Tadashi; Ikeda, Nobutaka; Shukla, Devarshi; Jain, Pankaj K; Londhe, Narendra D; Shrivastava, Vimal K; Banchhor, Sumit K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S
2016-05-01
Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueda, Haruka; Dazai, Ryota; Kaseda, Chosei; Ikaga, Toshiharu; Kato, Akihiro
Demand among large office buildings for the energy-saving benefits of the HVAC (Heating, Ventilating and Air-Conditioning) System are increasing as more and more people become concerned with global environmental issues. However, immoderate measures taken in the interest of energy conservation may encroach on the thermal comfort and productivity level of office workers. Building management should satisfy both indoor thermal comfort and energy conservation while adapting to the many regulatory, social, climate, and other changes that occur during the lifespan of the building. This paper demonstrates how optimal control of the HVAC system, based on data modeling and the multi-objective optimal method, achieves an efficient equilibrium between thermal comfort and energy conservation.
ERIC Educational Resources Information Center
Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, Carlos Delgado
2011-01-01
The use of technology in learning environments should be targeted at improving the learning outcome of the process. Several technology enhanced techniques can be used for maximizing the learning gain of particular students when having access to learning resources. One of them is content adaptation. Adapting content is especially important when…
Adaptivity in Game-Based Learning: A New Perspective on Story
NASA Astrophysics Data System (ADS)
Berger, Florian; Müller, Wolfgang
Game-based learning as a novel form of e-learning still has issues in fundamental questions, the lack of a general model for adaptivity being one of them. Since adaptive techniques in traditional e-learning applications bear close similarity to certain interactive storytelling approaches, we propose a new notion of story as the joining element of arbitraty learning paths.
Motor Learning in Childhood Reveals Distinct Mechanisms for Memory Retention and Re-Learning
ERIC Educational Resources Information Center
Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.
2016-01-01
Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted…
Enhancing Learning Performance and Adaptability for Complex Tasks
2005-03-30
development of active learning interventions and techniques that influence the focus and quality of learner regulatory activity (Kozlowski Toney et al...what are the effects of these goal representations on learning strategies, performance, and adaptability? Can active learning inductions, that influence...and mindful process - active learning - are generally associated with improved skill acquisition and adaptability for complex tasks (Smith et al
Towards adaptation in e-learning 2.0
NASA Astrophysics Data System (ADS)
Cristea, Alexandra I.; Ghali, Fawaz
2011-04-01
This paper presents several essential steps from an overall study on shaping new ways of learning and teaching, by using the synergetic merger of three different fields: Web 2.0, e-learning and adaptation (in particular, personalisation to the learner). These novel teaching and learning ways-the latter focus of this paper-are reflected in and finally adding to various versions of the My Online Teacher 2.0 adaptive system. In particular, this paper focuses on a study of how to more effectively use and combine the recommendation of peers and content adaptation to enhance the learning outcome in e-learning systems based on Web 2.0. In order to better isolate and examine the effects of peer recommendation and adaptive content presentation, we designed experiments inspecting collaboration between individuals based on recommendation of peers who have greater knowledge, and compare this to adaptive content recommendation, as well as to "simple" learning in a system with a minimum of Web 2.0 support. Overall, the results of adding peer recommendation and adaptive content presentation were encouraging, and are further discussed in detail in this paper.
Safety-I, Safety-II and Resilience Engineering.
Patterson, Mary; Deutsch, Ellen S
2015-12-01
In the quest to continually improve the health care delivered to patients, it is important to understand "what went wrong," also known as Safety-I, when there are undesired outcomes, but it is also important to understand, and optimize "what went right," also known as Safety-II. The difference between Safety-I and Safety-II are philosophical as well as pragmatic. Improving health care delivery involves understanding that health care delivery is a complex adaptive system; components of that system impact, and are impacted by, the actions of other components of the system. Challenges to optimal care include regular, irregular and unexampled threats. This article addresses the dangers of brittleness and miscalibration, as well as the value of adaptive capacity and margin. These qualities can, respectively, detract from or contribute to the emergence of organizational resilience. Resilience is characterized by the ability to monitor, react, anticipate, and learn. Finally, this article celebrates the importance of humans, who make use of system capabilities and proactively mitigate the effects of system limitations to contribute to successful outcomes. Copyright © 2015 Mosby, Inc. All rights reserved.
Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao
2016-09-01
In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.
Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke
2016-01-01
Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.
De novo peptide sequencing by deep learning
Tran, Ngoc Hieu; Zhang, Xianglilan; Xin, Lei; Shan, Baozhen; Li, Ming
2017-01-01
De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7–22.9% higher accuracy at the amino acid level and 38.1–64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5–100% coverage and 97.2–99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming. PMID:28720701
Remick, Kyle N; Shackelford, Stacy; Oh, John S; Seery, Jason M; Grabo, Daniel; Chovanes, John; Gross, Kirby R; Nessen, Shawn C; Tai, Nigel Rm; Rickard, Rory F; Elster, Eric; Schwab, C W
2016-01-01
Military surgeons have gained familiarity and experience with mass casualty events (MCEs) as a matter of routine over the course of the last two conflicts in Afghanistan and Iraq. Over the same period of time, civilian surgeons have increasingly faced complex MCEs on the home front. Our objective is to summarize and adapt these combat surgery lessons to enhance civilian surgeon preparedness for complex MCEs on the home front. The authors describe the unique lessons learned from combat surgery over the course of the wars in Afghanistan and Iraq and adapt these lessons to enhance civilian surgical readiness for a MCE on the home front. Military Damage Control Surgery (mDCS) combines the established concept of clinical DCS (cDCS) with key combat situational awareness factors that enable surgeons to optimally care for multiple, complex patients, from multiple simultaneous events, with limited resources. These additional considerations involve the surgeon's role of care within the deployed trauma system and the battlefield effects. The proposed new concept of mass casualty DCS (mcDCS) similarly combines cDCS decisions with key factors of situational awareness for civilian surgeons faced with complex MCEs to optimize outcomes. The additional considerations for a civilian MCE include the surgeon's role of care within the regional trauma system and the incident effects. Adapting institutionalized lessons from combat surgery to civilian surgical colleagues will enhance national preparedness for complex MCEs on the home front.
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.
Groman, Stephanie M; Smith, Nathaniel J; Petrullli, J Ryan; Massi, Bart; Chen, Lihui; Ropchan, Jim; Huang, Yiyun; Lee, Daeyeol; Morris, Evan D; Taylor, Jane R
2016-06-22
Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes. Copyright © 2016 the authors 0270-6474/16/366732-10$15.00/0.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
Learner-Adaptive Educational Technology for Simulation in Healthcare: Foundations and Opportunities.
Lineberry, Matthew; Dev, Parvati; Lane, H Chad; Talbot, Thomas B
2018-06-01
Despite evidence that learners vary greatly in their learning needs, practical constraints tend to favor ''one-size-fits-all'' educational approaches, in simulation-based education as elsewhere. Adaptive educational technologies - devices and/or software applications that capture and analyze relevant data about learners to select and present individually tailored learning stimuli - are a promising aid in learners' and educators' efforts to provide learning experiences that meet individual needs. In this article, we summarize and build upon the 2017 Society for Simulation in Healthcare Research Summit panel discussion on adaptive learning. First, we consider the role of adaptivity in learning broadly. We then outline the basic functions that adaptive learning technologies must implement and the unique affordances and challenges of technology-based approaches for those functions, sharing an illustrative example from healthcare simulation. Finally, we consider future directions for accelerating research, development, and deployment of effective adaptive educational technology and techniques in healthcare simulation.
Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat
2018-05-23
The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
NASA Technical Reports Server (NTRS)
Troudet, Terry; Merrill, Walter C.
1990-01-01
The ability of feed-forward neural network architectures to learn continuous valued mappings in the presence of noise was demonstrated in relation to parameter identification and real-time adaptive control applications. An error function was introduced to help optimize parameter values such as number of training iterations, observation time, sampling rate, and scaling of the control signal. The learning performance depended essentially on the degree of embodiment of the control law in the training data set and on the degree of uniformity of the probability distribution function of the data that are presented to the net during sequence. When a control law was corrupted by noise, the fluctuations of the training data biased the probability distribution function of the training data sequence. Only if the noise contamination is minimized and the degree of embodiment of the control law is maximized, can a neural net develop a good representation of the mapping and be used as a neurocontroller. A multilayer net was trained with back-error-propagation to control a cart-pole system for linear and nonlinear control laws in the presence of data processing noise and measurement noise. The neurocontroller exhibited noise-filtering properties and was found to operate more smoothly than the teacher in the presence of measurement noise.
NASA Astrophysics Data System (ADS)
Blöcher, Johanna; Kuraz, Michal
2017-04-01
In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.
Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander
2016-01-01
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.
Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander
2016-01-01
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205
Improved patch-based learning for image deblurring
NASA Astrophysics Data System (ADS)
Dong, Bo; Jiang, Zhiguo; Zhang, Haopeng
2015-05-01
Most recent image deblurring methods only use valid information found in input image as the clue to fill the deblurring region. These methods usually have the defects of insufficient prior information and relatively poor adaptiveness. Patch-based method not only uses the valid information of the input image itself, but also utilizes the prior information of the sample images to improve the adaptiveness. However the cost function of this method is quite time-consuming and the method may also produce ringing artifacts. In this paper, we propose an improved non-blind deblurring algorithm based on learning patch likelihoods. On one hand, we consider the effect of the Gaussian mixture model with different weights and normalize the weight values, which can optimize the cost function and reduce running time. On the other hand, a post processing method is proposed to solve the ringing artifacts produced by traditional patch-based method. Extensive experiments are performed. Experimental results verify that our method can effectively reduce the execution time, suppress the ringing artifacts effectively, and keep the quality of deblurred image.
Adaptive metric learning with deep neural networks for video-based facial expression recognition
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Ge, Yubin; Yang, Chao; Jia, Ping
2018-01-01
Video-based facial expression recognition has become increasingly important for plenty of applications in the real world. Despite that numerous efforts have been made for the single sequence, how to balance the complex distribution of intra- and interclass variations well between sequences has remained a great difficulty in this area. We propose the adaptive (N+M)-tuplet clusters loss function and optimize it with the softmax loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using the similarity measurements of multiple samples in the feature space with many fewer comparison times as conventional deep metric learning approaches, which enables the metric calculations for large data applications (e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of an Inception-ResNet network with long short term memory and the two fully connected layer branches structure. Our proposed method has been evaluated with three well-known databases, and the experimental results show that our method outperforms many state-of-the-art approaches.
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng
2012-01-01
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
The Influence of Student Characteristics on the Use of Adaptive E-Learning Material
ERIC Educational Resources Information Center
van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.
2012-01-01
Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…
Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles
ERIC Educational Resources Information Center
Beckmann, Jennifer; Bertel, Sven; Zander, Steffi
2015-01-01
Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…
Krause, Mark A
2015-07-01
Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.
Bell, Adrian Viliami; Hernandez, Daniel
2017-03-01
Understanding the prevalence of adaptive culture in part requires understanding the dynamics of learning. Here we explore the adaptive value of social learning in groups and how formal social groups function as effective mediums of information exchange. We discuss the education literature on Cooperative Learning Groups (CLGs), which outlines the potential of group learning for enhancing learning outcomes. Four qualities appear essential for CLGs to enhance learning: (1) extended conversations, (2) regular interactions, (3) gathering of experts, and (4) incentives for sharing knowledge. We analyze these four qualities within the context of a small-scale agricultural society using data we collected in 2010 and 2012. Through an analysis of surveys, interviews, and observations in the Tongan islands, we describe the role CLGs likely plays in facilitating individuals' learning of adaptive information. Our analysis of group affiliation, membership, and topics of conversation suggest that the first three CLG qualities reflect conditions for adaptive learning in groups. We utilize ethnographic anecdotes to suggest the fourth quality is also conducive to adaptive group learning. Using an evolutionary model, we further explore the scope for CLGs outside the Tongan socioecological context. Model analysis shows that environmental volatility and migration rates among human groups mediate the scope for CLGs. We call for wider attention to how group structure facilitates learning in informal settings, which may be key to assessing the contribution of groups to the evolution of complex, adaptive culture.
Simon, Anja; Bock, Otmar
2015-01-01
A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration.
Baddeley, Michelle; Tobler, Philippe N.; Schultz, Wolfram
2016-01-01
Given that the range of rewarding and punishing outcomes of actions is large but neural coding capacity is limited, efficient processing of outcomes by the brain is necessary. One mechanism to increase efficiency is to rescale neural output to the range of outcomes expected in the current context, and process only experienced deviations from this expectation. However, this mechanism comes at the cost of not being able to discriminate between unexpectedly low losses when times are bad versus unexpectedly high gains when times are good. Thus, too much adaptation would result in disregarding information about the nature and absolute magnitude of outcomes, preventing learning about the longer-term value structure of the environment. Here we investigate the degree of adaptation in outcome coding brain regions in humans, for directly experienced outcomes and observed outcomes. We scanned participants while they performed a social learning task in gain and loss blocks. Multivariate pattern analysis showed two distinct networks of brain regions adapt to the most likely outcomes within a block. Frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Critically, in both cases, adaptation was incomplete and information about whether the outcomes arose in a gain block or a loss block was retained. Univariate analysis confirmed incomplete adaptive coding in these regions but also detected nonadapting outcome signals. Thus, although neural areas rescale their responses to outcomes for efficient coding, they adapt incompletely and keep track of the longer-term incentives available in the environment. SIGNIFICANCE STATEMENT Optimal value-based choice requires that the brain precisely and efficiently represents positive and negative outcomes. One way to increase efficiency is to adapt responding to the most likely outcomes in a given context. However, too strong adaptation would result in loss of precise representation (e.g., when the avoidance of a loss in a loss-context is coded the same as receipt of a gain in a gain-context). We investigated an intermediate form of adaptation that is efficient while maintaining information about received gains and avoided losses. We found that frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Importantly, adaptation was intermediate, in line with influential models of reference dependence in behavioral economics. PMID:27683899
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
ERIC Educational Resources Information Center
Schellings, Gonny L. M.; Broekkamp, Hein
2011-01-01
Self-regulated learning has been described as an adaptive process: students adapt their learning strategies for attaining different learning goals. In order to be adaptive, students must have a clear notion of what the task requirements consist of. Both trace data and questionnaire data indicate that students adapt study strategies in limited ways…
Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs
ERIC Educational Resources Information Center
Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.
2012-01-01
The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.
Fast converging minimum probability of error neural network receivers for DS-CDMA communications.
Matyjas, John D; Psaromiligkos, Ioannis N; Batalama, Stella N; Medley, Michael J
2004-03-01
We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct-sequence code-division-multiple-access (DS-CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit-error rate (BER) at the output of the receiver. The adaptive algorithm has three key features: i) it incorporates the BER, i.e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single-user decision boundary for additive white Gaussian noise (AWGN) multiple-access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.
Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.
Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L
2007-02-01
In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results.
Authoring Adaptive 3D Virtual Learning Environments
ERIC Educational Resources Information Center
Ewais, Ahmed; De Troyer, Olga
2014-01-01
The use of 3D and Virtual Reality is gaining interest in the context of academic discussions on E-learning technologies. However, the use of 3D for learning environments also has drawbacks. One way to overcome these drawbacks is by having an adaptive learning environment, i.e., an environment that dynamically adapts to the learner and the…
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems
NASA Astrophysics Data System (ADS)
Rabl, Tilmann; Lang, Andreas; Hackl, Thomas; Sick, Bernhard; Kosch, Harald
A large body of research concerns the adaptability of database systems. Many commercial systems already contain autonomic processes that adapt configurations as well as data structures and data organization. Yet there is virtually no possibility for a just measurement of the quality of such optimizations. While standard benchmarks have been developed that simulate real-world database applications very precisely, none of them considers variations in workloads produced by human factors. Today’s benchmarks test the performance of database systems by measuring peak performance on homogeneous request streams. Nevertheless, in systems with user interaction access patterns are constantly shifting. We present a benchmark that simulates a web information system with interaction of large user groups. It is based on the analysis of a real online eLearning management system with 15,000 users. The benchmark considers the temporal dependency of user interaction. Main focus is to measure the adaptability of a database management system according to shifting workloads. We will give details on our design approach that uses sophisticated pattern analysis and data mining techniques.
Does Artificial Tutoring Foster Inquiry Based Learning?
ERIC Educational Resources Information Center
Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro
2014-01-01
This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…
Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming
2008-11-01
An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.
Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao
2018-05-01
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
Application of free energy minimization to the design of adaptive multi-agent teams
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel
2017-05-01
Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.
Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
NASA Astrophysics Data System (ADS)
Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing
2016-12-01
The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
Indirect learning control for nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Development of Adaptive Kanji Learning System for Mobile Phone
ERIC Educational Resources Information Center
Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo
2010-01-01
This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…
A new proof of the generalized Hamiltonian–Real calculus
Gao, Hua; Mandic, Danilo P.
2016-01-01
The recently introduced generalized Hamiltonian–Real (GHR) calculus comprises, for the first time, the product and chain rules that makes it a powerful tool for quaternion-based optimization and adaptive signal processing. In this paper, we introduce novel dual relationships between the GHR calculus and multivariate real calculus, in order to provide a new, simpler proof of the GHR derivative rules. This further reinforces the theoretical foundation of the GHR calculus and provides a convenient methodology for generic extensions of real- and complex-valued learning algorithms to the quaternion domain.
Intelligent Control Systems Research
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.
1994-01-01
Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems
NASA Technical Reports Server (NTRS)
Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.
2000-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.
Motor learning and consolidation: the case of visuomotor rotation.
Krakauer, John W
2009-01-01
Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).
Applying Learning Analytics to Investigate Timed Release in Online Learning
ERIC Educational Resources Information Center
Martin, Florence; Whitmer, John C.
2016-01-01
Adaptive learning gives learners control of context, pace, and scope of their learning experience. This strategy can be implemented in online learning by using the "Adaptive Release" feature in learning management systems. The purpose of this study was to use learning analytics research methods to explore the extent to which the adaptive…
MEAT: An Authoring Tool for Generating Adaptable Learning Resources
ERIC Educational Resources Information Center
Kuo, Yen-Hung; Huang, Yueh-Min
2009-01-01
Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…
Alternating prism exposure causes dual adaptation and generalization to a novel displacement
NASA Technical Reports Server (NTRS)
Welch, Robert B.; Bridgeman, Bruce; Anand, Sulekha; Browman, Kaitlin E.
1993-01-01
In two experiments, we examined the hypothesis that repeatedly adapting and readapting to two mutually conflicting sensory environments fosters the development of a separate adaptation to each situation (dual adaptation) as well as an increased ability to adapt to a novel displacement (adaptive generalization). In the preliminary study, subjects alternated between adapting their visuomotor coordination to 30-diopter prismatic displacement and readapting to normal vision. Dual adaptation was observed by the end of 10 alternation cycles. However, an unconfounded test of adaptive generalization was prevented by an unexpected prism-adaptive shift in preexposure baselines for the dual-adapted subjects. In the primary experiment, the subjects adapted and readapted to opposite 15-diopter displacements for a total of 12 cycles. Both dual adaptation and adaptive generalization to a 30-diopter displacement were obtained. These findings may be understood in terms of serial reversal learning and 'learning to learn'.
Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xu, Bo; Wu, Ya'nan
2013-09-01
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
The Future of Adaptive Learning: Does the Crowd Hold the Key?
ERIC Educational Resources Information Center
Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay
2016-01-01
Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
Kringelbach, Morten L.; Berridge, Kent C.
2017-01-01
Arguably, emotion is always valenced—either pleasant or unpleasant—and dependent on the pleasure system. This system serves adaptive evolutionary functions; relying on separable wanting, liking, and learning neural mechanisms mediated by mesocorticolimbic networks driving pleasure cycles with appetitive, consummatory, and satiation phases. Liking is generated in a small set of discrete hedonic hotspots and coldspots, while wanting is linked to dopamine and to larger distributed brain networks. Breakdown of the pleasure system can lead to anhedonia and other features of affective disorders. Eudaimonia and well-being are difficult to study empirically, yet whole-brain computational models could offer novel insights (e.g., routes to eudaimonia such as caregiving of infants or music) potentially linking eudaimonia to optimal metastability in the pleasure system. PMID:28943891
Dynamic Learner Profiling and Automatic Learner Classification for Adaptive E-Learning Environment
ERIC Educational Resources Information Center
Premlatha, K. R.; Dharani, B.; Geetha, T. V.
2016-01-01
E-learning allows learners individually to learn "anywhere, anytime" and offers immediate access to specific information. However, learners have different behaviors, learning styles, attitudes, and aptitudes, which affect their learning process, and therefore learning environments need to adapt according to these differences, so as to…
Liu, Jing-Ying; Liu, Yan-Hui; Yang, Ji-Peng
2014-01-01
The aim of this study was to explore the relationships among study engagement, learning adaptability, and time management disposition in a sample of Chinese baccalaureate nursing students. A convenient sample of 467 baccalaureate nursing students was surveyed in two universities in Tianjin, China. Students completed a questionnaire that included their demographic information, Chinese Utrecht Work Engagement Scale-Student Questionnaire, Learning Adaptability Scale, and Adolescence Time Management Disposition Scale. One-way analysis of variance tests were used to assess the relationship between certain characteristics of baccalaureate nursing students. Pearson correlation was performed to test the correlation among study engagement, learning adaptability, and time management disposition. Hierarchical linear regression analyses were performed to explore the mediating role of time management disposition. The results revealed that study engagement (F = 7.20, P < .01) and learning adaptability (F = 4.41, P < .01) differed across grade groups. Learning adaptability (r = 0.382, P < .01) and time management disposition (r = 0.741, P < .01) were positively related with study engagement. Time management disposition had a partially mediating effect on the relationship between study engagement and learning adaptability. The findings implicate that educators should not only promote interventions to increase engagement of baccalaureate nursing students but also focus on development, investment in adaptability, and time management. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Amir, Nader; Kuckertz, Jennie M.; Strege, Marlene V.
2016-01-01
An attentional bias toward threat may be one mechanism underlying clinical anxiety. Attention bias modification (ABM) aims to reduce symptoms of anxiety disorders by directly modifying this deficit. However, existing ABM training programs have not consistently modified attentional bias and may not reflect optimal learning needs of participants (i.e., lack of explicit instruction, training goal unclear to participants, lack of feedback, non-adaptive, inability to differentiate or target different components of attentional bias). In the current study, we introduce a new adaptive ABM program (AABM) and test its feasibility in individuals with social anxiety disorder. We report task characteristics and preliminary evidence that this task consistently modifies attentional bias and that changes in attentional bias (but not number of trials) correlate with the level of symptom reduction. These results suggest that AABM may be a targeted method for the next generation of studies examining the utility of attention training. PMID:27795598
NASA Astrophysics Data System (ADS)
Chernick, Julian A.; Perlovsky, Leonid I.; Tye, David M.
1994-06-01
This paper describes applications of maximum likelihood adaptive neural system (MLANS) to the characterization of clutter in IR images and to the identification of targets. The characterization of image clutter is needed to improve target detection and to enhance the ability to compare performance of different algorithms using diverse imagery data. Enhanced unambiguous IFF is important for fratricide reduction while automatic cueing and targeting is becoming an ever increasing part of operations. We utilized MLANS which is a parametric neural network that combines optimal statistical techniques with a model-based approach. This paper shows that MLANS outperforms classical classifiers, the quadratic classifier and the nearest neighbor classifier, because on the one hand it is not limited to the usual Gaussian distribution assumption and can adapt in real time to the image clutter distribution; on the other hand MLANS learns from fewer samples and is more robust than the nearest neighbor classifiers. Future research will address uncooperative IFF using fused IR and MMW data.
Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.
Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido
2018-03-23
Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.
Speciation: more likely through a genetic or through a learned habitat preference?
Beltman, J.B; Metz, J.A.J
2005-01-01
A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
ERIC Educational Resources Information Center
Debevc, Matjaž; Stjepanovic, Zoran; Holzinger, Andreas
2014-01-01
Web-based and adapted e-learning materials provide alternative methods of learning to those used in a traditional classroom. Within the study described in this article, deaf and hard of hearing people used an adaptive e-learning environment to improve their computer literacy. This environment included streaming video with sign language interpreter…
Rizer, Milisa K; Kaufman, Beth; Sieck, Cynthia J; Hefner, Jennifer L; McAlearney, Ann Scheck
2015-01-01
Electronic medical record (EMR) implementation efforts face many challenges, including individual and organizational barriers and concerns about loss of productivity during the process. These issues may be particularly complex in large and diverse settings with multiple specialties providing inpatient and outpatient care. This case report provides an example of a successful EMR implementation that emphasizes the importance of flexibility and adaptability on the part of the implementation team. It also presents the top 10 lessons learned from this EMR implementation in a large midwestern academic medical center. Included are five overarching lessons related to leadership, initial approach, training, support, and optimization as well as five lessons related to the EMR system itself that are particularly important elements of a successful implementation.
Rizer, Milisa K.; Kaufman, Beth; Sieck, Cynthia J.; Hefner, Jennifer L.; McAlearney, Ann Scheck
2015-01-01
Electronic medical record (EMR) implementation efforts face many challenges, including individual and organizational barriers and concerns about loss of productivity during the process. These issues may be particularly complex in large and diverse settings with multiple specialties providing inpatient and outpatient care. This case report provides an example of a successful EMR implementation that emphasizes the importance of flexibility and adaptability on the part of the implementation team. It also presents the top 10 lessons learned from this EMR implementation in a large midwestern academic medical center. Included are five overarching lessons related to leadership, initial approach, training, support, and optimization as well as five lessons related to the EMR system itself that are particularly important elements of a successful implementation. PMID:26396558
Thalamic and parietal brain morphology predicts auditory category learning.
Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas
2014-01-01
Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.
Investigating Work and Learning through Complex Adaptive Organisations
ERIC Educational Resources Information Center
Lizier, Amanda Louise
2017-01-01
Purpose: The purpose of this paper is to outline an empirical study of how professionals experience work and learning in complex adaptive organisations. The study uses a complex adaptive systems approach, which forms the basis of a specifically developed conceptual framework for explaining professionals' experiences of work and learning.…
ERIC Educational Resources Information Center
Kontoghiorghes, Constantine; Awbre, Susan M.; Feurig, Pamela L.
2005-01-01
The main purpose of this exploratory study was to examine the relationship between certain learning organization characteristics and change adaptation, innovation, and bottom-line organizational performance. The following learning organization characteristics were found to be the strongest predictors of rapid change adaptation, quick product or…
Evolution of social learning does not explain the origin of human cumulative culture.
Enquist, Magnus; Ghirlanda, Stefano
2007-05-07
Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.
Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.
Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar
2006-04-01
This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.
ERIC Educational Resources Information Center
Thalmann, Stefan
2014-01-01
Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…
Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning.
Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J; Nomura, Toshihiro; Stauffer, Shaun R; Lindsley, Craig W; Conn, P Jeffrey; Contractor, Anis
2013-07-18
Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.
Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning
Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J.; Nomura, Toshihiro; Stauffer, Shaun R.; Lindsley, Craig W.; Conn, P. Jeffrey; Contractor, Anis
2013-01-01
Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility. PMID:23869026
Human Machine Learning Symbiosis
ERIC Educational Resources Information Center
Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.
2017-01-01
Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Fang, Wenjie; Zhang, Yanting; Mei, Jiaojiao; Chai, Xiaohui; Fan, Xiuzhen
2018-06-01
For solving the problem of the abandonment of the career in nursing undergraduates, it is important to understand their motivation to choose nursing as a career and its associated personal and situational factors. To examine the relationships between optimism, educational environment, career adaptability, and career motivation in nursing undergraduates using the career construction model of adaptation. This study adopted a cross-sectional design. A convenience sample of 1060 nursing undergraduates from three universities completed questionnaires for measuring optimism, educational environment, career adaptability, and career motivation. Confirmatory factor analyses, descriptive analyses, comparison analyses, correlation analyses, and mediation analyses were performed accordingly. Nursing undergraduates' career motivation was positively correlated with their career adaptability (r = 0.41, P < 0.01), the educational environment (r = 0.60, P < 0.01), and optimism (r = 0.26, P < 0.01). In addition, the effects of optimism and educational environment on career motivation were partially mediated by career adaptability in nursing undergraduates. In nursing undergraduates, the educational environment had a relatively strong positive association with career motivation, while optimism had a weak one. Career adaptability played a mediating role in the relationships. Targeted interventions may improve nursing undergraduates' career motivation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Visual learning with reduced adaptation is eccentricity-specific.
Harris, Hila; Sagi, Dov
2018-01-12
Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.
Optimal Bayesian Adaptive Design for Test-Item Calibration.
van der Linden, Wim J; Ren, Hao
2015-06-01
An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.
Wang, Quanfu; Hou, Yanhua; Yan, Peisheng
2012-06-01
Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong
2017-06-01
In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
ERIC Educational Resources Information Center
Pradhan, Rabindra Kumar; Jena, Lalatendu Kesari; Singh, Sanjay Kumar
2017-01-01
Purpose: The purpose of this study is to examine the relationship between organisational learning and adaptive performance. Furthermore, the study investigates the moderating role of emotional intelligence in the perspective of organisational learning for addressing adaptive performance of executives employed in manufacturing organisations.…
ERIC Educational Resources Information Center
Phung, Dan; Valetto, Giuseppe; Kaiser, Gail E.; Liu, Tiecheng; Kender, John R.
2007-01-01
The increasing popularity of online courses has highlighted the need for collaborative learning tools for student groups. In this article, we present an e-Learning architecture and adaptation model called AI2TV (Adaptive Interactive Internet Team Video), which allows groups of students to collaboratively view instructional videos in synchrony.…
Individualization of Foreign Language Teaching through Adaptive eLearning
ERIC Educational Resources Information Center
Kostolanyova, Katerina; Nedbalova, Stepanka
2017-01-01
Lifelong learning has become an essential part of each profession. For this reason, personalized and adaptive learning has been drawing attention of professionals in the field of formal as well as informal education in the last few years. The effort has been made to design adaptive study supports regarding students' requirements, abilities and…
Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chang, Shu-Wei
2015-01-01
The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…
The Effects of Rapid Assessments and Adaptive Restudy Prompts in Multimedia Learning
ERIC Educational Resources Information Center
Renkl, Alexander; Skuballa, Irene T.; Schwonke, Rolf; Harr, Nora; Leber, Jasmin
2015-01-01
We investigated the effects of rapid assessment tasks and different adaptive restudy prompts in multimedia learning. The adaptivity was based on rapid assessment tasks that were interspersed throughout a multimedia learning environment. In Experiment 1 (N = 52 university students), we analyzed to which extent rapid assessment tasks were reactive…
Exploring Adaptability through Learning Layers and Learning Loops
ERIC Educational Resources Information Center
Lof, Annette
2010-01-01
Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…
Teacher-Led Design of an Adaptive Learning Environment
ERIC Educational Resources Information Center
Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas
2016-01-01
This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…
An Adaptive Approach to Managing Knowledge Development in a Project-Based Learning Environment
ERIC Educational Resources Information Center
Tilchin, Oleg; Kittany, Mohamed
2016-01-01
In this paper we propose an adaptive approach to managing the development of students' knowledge in the comprehensive project-based learning (PBL) environment. Subject study is realized by two-stage PBL. It shapes adaptive knowledge management (KM) process and promotes the correct balance between personalized and collaborative learning. The…
Studying the Effectiveness of an Online Language Learning Platform in China
ERIC Educational Resources Information Center
Baker, Ryan; Wang, Feng; Ma, Zhenjun; Ma, Wei; Zheng, Shiyue
2018-01-01
In this paper we evaluate the effectiveness of an adaptive online learning platform, designed to support Chinese students in learning the English language. The adaptive platform is studied in three studies, where the experimental platform is compared to an alternate, non-adaptive platform, with random assignment to conditions (the adaptive…
Recasting Transfer as a Socio-Personal Process of Adaptable Learning
ERIC Educational Resources Information Center
Billett, Stephen
2013-01-01
Transfer is usually cast as an educational, rather than learning, problem. Yet, seeking to adapt what individuals know from one circumstance to another is a process more helpfully associated with learning, than a hybrid one called transfer. Adaptability comprises individuals construing what they experience, then aligning and reconciling with what…