The Analysis of High School Students' Conceptions of Learning in Different Domains
ERIC Educational Resources Information Center
Sadi, Özlem
2015-01-01
The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…
Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts
ERIC Educational Resources Information Center
Lee, Young-Jin
2015-01-01
The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…
NASA Astrophysics Data System (ADS)
Karim, S.; Saepuzaman, D.; Sriyansyah, S. P.
2016-08-01
This study is initiated by low achievement of prospective teachers in understanding concepts in introductory physics course. In this case, a problem has been identified that students cannot develop their thinking skills required for building physics concepts. Therefore, this study will reconstruct a learning process, emphasizing a physics concept building. The outcome will design physics lesson plans for the concepts of particle system as well as linear momentum conservation. A descriptive analysis method will be used in order to investigate the process of learning reconstruction carried out by students. In this process, the students’ conceptual understanding will be evaluated using essay tests for concepts of particle system and linear momentum conservation. The result shows that the learning reconstruction has successfully supported the students’ understanding of physics concept.
ERIC Educational Resources Information Center
Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung
2013-01-01
Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
Analysis of the most common concept inventories in physics: What are we assessing?
NASA Astrophysics Data System (ADS)
Laverty, James T.; Caballero, Marcos D.
2018-06-01
Assessing student learning is a cornerstone of educational practice. Standardized assessments have played a significant role in the development of instruction, curricula, and educational spaces in college physics. However, the use of these assessments to evaluate student learning is only productive if they continue to align with our learning goals. Recently, there have been calls to elevate the process of science ("scientific practices") to the same level of importance and emphasis as the concepts of physics ("core ideas" and "crosscutting concepts"). We use the recently developed Three-Dimensional Learning Assessment Protocol to investigate how well the most commonly used standardized assessments in introductory physics (i.e., concept inventories) align with this modern understanding of physics education's learning goals. We find that many of the questions on concept inventories do elicit evidence of student understanding of core ideas, but do not have the potential to elicit evidence of scientific practices or crosscutting concepts. Furthermore, we find that the individual scientific practices and crosscutting concepts that are assessed using these tools are limited to a select few. We discuss the implications that these findings have on designing and testing curricula and instruction both in the past and for the future.
ERIC Educational Resources Information Center
Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.
2013-01-01
A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…
NASA Astrophysics Data System (ADS)
Saprudin, S.; Liliasari, L.; Prihatmanto, A. S.
2017-09-01
This study is a survey that aims to describe pre-service physics teachers’ concept mastery at a university in Ternate. Data were collected through test standard instrument for physics which used in the teacher certification program. Data were analyzed by using quantitative descriptive technique. Based on the results of data analysis, it was concluded that generally pre-service physics teachers’ concept mastery can be categorized on low category (25.4%). The map of concept mastery will be used as a reference to developing game design in the physics learning context for pre-service physics teachers.
Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited
ERIC Educational Resources Information Center
Koponen, Ismo T.; Huttunen, Laura
2013-01-01
In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…
NASA Astrophysics Data System (ADS)
Ibrahim, Hyatt Abdelhaleem
The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and power of the study suggest that the effect may not be subtle, but reliable. Physics teachers can use these results to inform their decisions about structuring learning environment when conceptual learning is important.
Let's Get Physical: Teaching Physics through Gymnastics
ERIC Educational Resources Information Center
Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.
2018-01-01
The concept of embodied learning--that we can learn with our bodies and with our minds--is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of…
Making a Low Cost Candy Floss Kit Gets Students Excited about Learning Physics
ERIC Educational Resources Information Center
Amir, Nazir; Subramaniam, R.
2009-01-01
An activity to excite kinaesthetically inclined students about learning physics is described in this article. Using only commonly available materials, a low cost candy floss kit is fabricated by students. A number of physics concepts are embedded contextually in the activity so that students get to learn these concepts in a real world setting…
NASA Astrophysics Data System (ADS)
Thomas, Gregory P.
2013-05-01
Problems persist with physics learning in relation to students' understanding and use of representations for making sense of physics concepts. Further, students' views of physics learning and their physics learning processes have been predominantly found to reflect a 'surface' approach to learning that focuses on mathematical aspects of physics learning that are often passed on via textbooks and lecture-style teaching. This paper reports on a teacher's effort to stimulate students' metacognitive reflection regarding their views of physics learning and their physics learning processes via a pedagogical change that incorporated the use of a representational framework and metaphors. As a consequence of the teacher's pedagogical change, students metacognitively reflected on their views of physics and their learning processes and some reported changes in their views of what it meant to understand physics and how they might learn and understand physics concepts. The findings provide a basis for further explicit teaching of representational frameworks to students in physics education as a potential means of addressing issues with their physics learning.
Active Learning in the Physics Classroom
NASA Astrophysics Data System (ADS)
Naron, Carol
Many students enter physics classes filled with misconceptions about physics concepts. Students tend to retain these misconceptions into their adult lives, even after physics instruction. Constructivist researchers have found that students gain understanding through their experiences. Researchers have also found that active learning practices increase conceptual understanding of introductory physics students. This project study sought to examine whether incorporating active learning practices in an advanced placement physics classroom increased conceptual understanding as measured by the force concept inventory (FCI). Physics students at the study site were given the FCI as both a pre- and posttest. Test data were analyzed using two different methods---a repeated-measures t test and the Hake gain method. The results of this research project showed that test score gains were statistically significant, as measured by the t test. The Hake gain results indicated a low (22.5%) gain for the class. The resulting project was a curriculum plan for teaching the mechanics portion of Advanced Placement (AP) physics B as well as several active learning classroom practices supported by the research. This project will allow AP physics teachers an opportunity to improve their curricular practices. Locally, the results of this project study showed that research participants gained understanding of physics concepts. Social change may occur as teachers implement active learning strategies, thus creating improved student understanding of physics concepts.
Analysis of self-directed mastery learning of honors physics
NASA Astrophysics Data System (ADS)
Athens, Wendy
Self-directed learning (SDL) is an important life skill in a knowledge-based society and prepares students to persist, manage their time and resources, use logic to construct their knowledge, argue their views, and collaborate. The purpose of this study was to facilitate mastery of physics concepts through self-directedness in formative testing with feedback, a choice of learning activities, and multiple forms of support. This study was conducted within two sections of honors physics at a private high school (N=24). Students' learning activity choices, time investments, and perceptions (assessed through a post survey) were tracked and analyzed. SDL readiness was linked to success in mastering physics concepts. The three research questions pursued in this study were: What SDL activities did honors physics students choose in their self-directed mastery learning environment? How many students achieved concept mastery and how did they spend their time? Did successful and unsuccessful students perceive the self-directed mastery learning environment differently? Only seven of 24 students were successful in passing the similar concept-based unit tests within four tries, and these seven students were separated into a "successful" group and the other 17 into an "unsuccessful" group. Differences between the two groups were analyzed. A profile of a self-directed secondary honors physics student emerged. A successful self-directed student invested more time learning from activities rather than simply completing them, focused on learning concepts more than rote operations, intentionally selected activities to fill in gaps of knowledge and practice concepts, actively constructed knowledge into a cognitive framework, engaged in academic discourse with instructor and peers as they made repeated attempts to master content and pass the test given constructive feedback, used a wide variety of learning resources, and managed their workload to meet deadlines. This capstone study found that parallel instruction in content and SDL skills could be important for improving learning outcomes and better equipping secondary honors physics students for college and life in general. Mastery learning principles coupled with modeling in self-direction appear mutually reinforcing and, when more explicitly approached, should yield dual benefits in concept mastery as well as self-efficacy.
ERIC Educational Resources Information Center
Lin, Tzung-Jin; Liang, Jyh-Chong; Tsai, Chin-Chung
2015-01-01
The main purposes of this study were to identify Taiwanese university students' physics learning profiles in terms of their critical conceptions of learning physics and to compare their physics learning self-efficacy with the different learning profiles. A total of 250 Taiwanese undergraduates who were majoring in physics participated in this…
The Effects of Integrating Computer-Based Concept Mapping for Physics Learning in Junior High School
ERIC Educational Resources Information Center
Chang, Cheng-Chieh; Yeh, Ting-Kuang; Shih, Chang-Ming
2016-01-01
It generally is accepted that concept mapping has a noticeable impact on learning. But literatures show the use of concept mapping is not benefit all learners. The present study explored the effects of incorporating computer-based concept mapping in physics instruction. A total of 61 9th-grade students participated in this study. By using a…
Pre-Service Physics Teachers' Comprehension of Quantum Mechanical Concepts
ERIC Educational Resources Information Center
Didis, Nilufer; Eryilmaz, Ali; Erkoc, Sakir
2010-01-01
When quantum theory caused a paradigm shift in physics, it introduced difficulties in both learning and teaching of physics. Because of its abstract, counter-intuitive and mathematical structure, students have difficulty in learning this theory, and instructors have difficulty in teaching the concepts of the theory. This case study investigates…
Active Learning Strategies for Introductory Light and Optics
ERIC Educational Resources Information Center
Sokoloff, David R.
2016-01-01
There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…
NASA Astrophysics Data System (ADS)
Hidayati, H.; Ramli, R.
2018-04-01
This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.
ERIC Educational Resources Information Center
Molotsky, Gregg Jeremy
2011-01-01
This case study examined the impact of the application of an inquiry-based concept related physics curriculum on student attitudes and learning in a secondary physics classroom in southern New Jersey. Students who had previously used a traditional physics curriculum were presented with a 10 week inquiry-based concept related physics curriculum on…
ERIC Educational Resources Information Center
Thomas, Gregory P.
2013-01-01
Problems persist with physics learning in relation to students' understanding and use of representations for making sense of physics concepts. Further, students' views of physics learning and their physics learning processes have been predominantly found to reflect a "surface" approach to learning that focuses on mathematical aspects of…
NASA Astrophysics Data System (ADS)
Nguyen, Dong-Hai
This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi
2014-01-01
In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…
ERIC Educational Resources Information Center
Franco, Gina M.; Muis, Krista R.; Kendeou, Panayiota; Ranellucci, John; Sampasivam, Lavanya; Wang, Xihui
2012-01-01
The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing when learning about physics concepts through text. Specifically, we manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with…
Improving student learning and views of physics in a large enrollment introductory physics class
NASA Astrophysics Data System (ADS)
Salehzadeh Einabad, Omid
Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction. Findings also indicate that the interaction of the instructional strategies together contributed to student learning. Based on these results, IE methods should be adopted in introductory physics classes, particularly in classes where students have low pre-test scores. It is also important to provide support for instructors new to IE strategies.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
NASA Astrophysics Data System (ADS)
Lin, Tzung-Jin; Liang, Jyh-Chong; Tsai, Chin-Chung
2015-08-01
The main purposes of this study were to identify Taiwanese university students' physics learning profiles in terms of their critical conceptions of learning physics and to compare their physics learning self-efficacy with the different learning profiles. A total of 250 Taiwanese undergraduates who were majoring in physics participated in this study and were invited to complete two instruments, physics learning profile and physics learning self-efficacy (PLSE). The main results indicated that, first, the two instruments developed in this study had satisfactory validity and reliability. Second, three fundamental physics learning profiles, the reproductive, transitional, and constructive profiles, were characterized based on the cluster analysis. It is also evident that the three learning profiles demonstrated different levels of self-efficacy for the five PLSE dimensions. The students with a reproductive profile tended to possess the lowest PLSE across the five dimensions. The students with a transitional profile may possess higher confidence in higher-order cognitive skills and laboratory activities than those with a reproductive profile. However, only those with a constructive profile, highlighting a comprehensive understanding of physics knowledge/concepts as well as de-emphasizing physics learning as preparing for tests and calculating and practising tutorial problems, possessed stronger PLSE in applying what they learned to real-world contexts as well as in scientifically communicating with others.
A Study on Contingency Learning in Introductory Physics Concepts
ERIC Educational Resources Information Center
Scaife, Thomas M.
2010-01-01
Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student…
Applying HOPSCOTCH as an Exer-Learning Game in English Lessons: Two Exploratory Studies
ERIC Educational Resources Information Center
Lucht, Martina; Heidig, Steffi
2013-01-01
This article describes HOPSCOTCH, a design concept for an "exer-learning game" to engage elementary school children in learning. Exer-learning is a new genre of digital learning games that combines playing and learning with physical activity (exercise). HOPSCOTCH is a first design concept for exer-learning games that can be applied to…
RealTime Physics: Active learning laboratory
NASA Astrophysics Data System (ADS)
Thornton, Ronald K.; Sokoloff, David R.
1997-03-01
Our research shows that student learning of physics concepts in introductory physics courses is enhanced by the use of special guided discovery laboratory curricula which embody the results of educational research and which are supported by the use of the Tools for Scientific Thinking microcomputer-based laboratory (MBL) tools. In this paper we first describe the general characteristics of the research-based RealTime Physics laboratory curricula developed for use in introductory physics classes in colleges, universities and high schools. We then describe RealTime Physics Mechanics in detail. Finally we examine student learning of dynamics in traditional physics courses and in courses using RealTime Physics Mechanics, primarily by the use of correlated questions on the Force and Motion Conceptual Evaluation. We present considerable evidence that students who use the new laboratory curricula demonstrate significantly improved learning and retention of dynamics concepts compared to students taught by traditional methods.
ERIC Educational Resources Information Center
West, Emily Lincoln Ashbaugh
2009-01-01
Prior research across hundreds for introductory physics courses has demonstrated that traditional physics instruction does not generally lead to students learning physics concepts in a meaningful way, but that interactive-engagement physics courses do sometimes promote a great deal more student learning. In this work I analyze a reform effort in a…
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana
2012-06-01
Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who used physical equipment. In this study, we explored how university-level nonscience majors’ understanding of the physics concepts related to pulleys was supported by experimentation with real pulleys and a computer simulation of pulleys. We report that when students use one type of manipulative (physical or virtual), the comparison is influenced both by the concept studied and the timing of the post-test. Students performed similarly on questions related to force and mechanical advantage regardless of the type of equipment used. On the other hand, students who used the computer simulation performed better on questions related to work immediately after completing the activities; however, the two groups performed similarly on the work questions on a test given one week later. Additionally, both sequences of experimentation (physical-virtual and virtual-physical) equally supported students’ understanding of all of the concepts. These results suggest that both the concept learned and the stability of learning gains should continue to be explored to improve educators’ ability to select the best learning experience for a given topic.
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
Cooperative Learning: Exploring Its Effectiveness in the Physics Classroom
ERIC Educational Resources Information Center
Ho, Fui Fong; Boo, Hong Kwen
2007-01-01
This paper reports on the results of an action research to explore the effectiveness of using cooperative learning strategies on students' academic achievement, their understanding of physics concepts and their motivation to learn in the physics classroom. The study involved a secondary four express physics class of 41 students in a neighbourhood…
NASA Astrophysics Data System (ADS)
Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar
2016-02-01
Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.
Impact E-Learning Platform Moodle on the Physic's Learning Process in the High School's Students
NASA Astrophysics Data System (ADS)
Torres-Montealban, Jonas; Ruiz-Chavarria, Gregorio; Gomez-Lozoya, Enrique Armando
2011-03-01
As a didactic proposal, moodle e-learning platform was implemented in one of two Physics High School's group at UACH, in order to show how the use of new technologies can improve the learning progress linked to physics concepts. As a result, the first group worked at the same time with inside class activities as well as outside resources from the moodle e-platform. The second group only worked with inside class activities. This teaching application was developed in six sections. Section I defines the educational framework. Section II identifies the key physic's concepts to be studied in each proposed activity. Section III describes the didactic model. Section IV displays the compared results between similarities and differences in both groups. Section VI shows the gathered information in order to be discussed as a topic related on how new technologies improve the Physic's learning process in the high school' students.
ERIC Educational Resources Information Center
Shin, Shin-Shing
2016-01-01
Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…
Cultural factors in the origin and remediation of alternative conceptions in physics
NASA Astrophysics Data System (ADS)
Thijs, Gerard D.; van den Berg, Ed
1995-10-01
Over a wide range of subject areas students exhibit persistent conceptions contrary to the prevailing scientific concepts. The same alternative conceptions in physics are reported to exist across many countries, within a variety of cultural and environmental contexts. Also, many alternative conceptions show striking similarities with difficulties encountered in the historical development of physics. What is the reason for these similarities? Is intuitive science learned or triggered? And, if similar brain structures are responsible for common-sense theories, in what way then are cultural factors still important in the teaching-learning process? The influence of cultural factors will be discussed on the basis of literature available on this topic. Data collected by the authors in the Netherlands, Indonesia and countries in Africa are also taken into consideration. A distinction is proposed between alternative conceptions some of which may be universal and some dependent on culture. The same distinction is made regarding ways of reasoning and epistemology. It is suggested that the effectiveness of methods for the remediation of alternative conceptions is strongly influenced by cultural aspects of the teaching-learning process.
Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping
ERIC Educational Resources Information Center
Gourlay, H.
2017-01-01
This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…
Promoting Physical Understanding through Peer Mentoring
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Huesmann, A.; Hooper, E.; Moore, C.; Watson, L.; Trestrail, A.; Weber, J.; Timbie, P.; Jacob, A.
2015-12-01
The Physics Learning Center at the University of Wisconsin-Madison provides a supportive learning community for students studying introductory physics, as well as teaching and leadership experience for undergraduate Peer Mentor Tutors who receive extensive training and supervision. Many of our Peer Tutors were former Physics Learning Center participants. A central goal of the Physics Learning Center is to address achievement/equity gaps (e.g. race, gender, socio-economic status, disability, age, transfer status, etc.) for undergraduate students pursuing majors and coursework in STEM fields. Students meet twice a week in small learning teams of 3-8 students, facilitated by a trained Peer Mentor Tutor or staff member. These active learning teams focus on discussing core physical concepts and practicing problem-solving. The weekly training of the tutors addresses both teaching and mentoring issues in science education such as helping students to build confidence, strategies for assessing student understanding, and fostering a growth mindset. A second weekly training meeting addresses common misconceptions and strategies for teaching specific physics topics. For non-science majors we have a small Peer Mentor Tutor program for Physics in the Arts. We will discuss the Physics Learning Center's approaches to promoting inclusion, understanding, and confidence for both our participants and Peer Mentor Tutors, as well as examples from the geosciences that can be used to illustrate introductory physics concepts.
ERIC Educational Resources Information Center
Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen
2016-01-01
In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-06-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.
Active Learning Strategies for Introductory Light and Optics
NASA Astrophysics Data System (ADS)
Sokoloff, David R.
2016-01-01
There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
ERIC Educational Resources Information Center
Rose, Mike
1999-01-01
Examines, within a situated-cognition framework, the teaching and learning of a concept in biomechanics, the manual techniques and tactile discrimination skills that accompany it, and the diagnostic frame of mind that informs concept, technique, and skill. Draws on observations of a class of physical-therapy students. (Author/SLD)
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing…
In Physics Education, Perception Matters
ERIC Educational Resources Information Center
Sattizahn, Jason R.; Lyons, Daniel J.; Kontra, Carly; Fischer, Susan M.; Beilock, Sian L.
2015-01-01
Student difficulties in science learning are frequently attributed to misconceptions about scientific concepts. We argue that domain-general perceptual processes may also influence students' ability to learn and demonstrate mastery of difficult science concepts. Using the concept of center of gravity (CoG), we show how student difficulty in…
Analysis of Learning in the Case of a Teaching on Heat and Temperature.
ERIC Educational Resources Information Center
Tiberghien, Andree
In the domain of research on physics education, results on students' conceptions show difficulties in physics learning. This paper aims to propose theoretical elements to interpret such learning difficulties related to physics teaching in the case of heat and temperature. Sections in this paper include: (1) Introduction; (2) Epistemological…
Teaching undergraduate biomechanics with Just-in-Time Teaching.
Riskowski, Jody L
2015-06-01
Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.
Energy: Between Physics and Metaphysics.
ERIC Educational Resources Information Center
Bunge, Mario
2000-01-01
The general concept of energy is somewhat unclear as long as it is confined to physics since every chapter of it defines its own particular concept of energy. The general concept can be elucidated in terms of the hypergeneral concepts of concrete things and changeability. Concludes that physicists and philosophers can learn from one another.…
NASA Astrophysics Data System (ADS)
Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi
2016-08-01
The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.
A.V. Usova's Contribution to the Field of Concept Learning in Physics Classroom
ERIC Educational Resources Information Center
Yavoruk, Oleg
2015-01-01
A.V. Usova (1921-2014) has always been one of the leading figures in Russian physics education. Her theory of physics concept formation was formulated during the 1970s and the 1980s and directly influenced the process of physics education in the 20th and the 21st century. Over the years there have been a lot of theories of concept formation. Her…
Physical Chemistry in Practice: Evaluation of DVD Modules
ERIC Educational Resources Information Center
Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.
2007-01-01
The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…
Student Understanding of Taylor Series Expansions in Statistical Mechanics
ERIC Educational Resources Information Center
Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.
2013-01-01
One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann…
ERIC Educational Resources Information Center
Nousiainen, Maija; Koponen, Ismo T.
2017-01-01
The concepts of electricity and magnetism in physics are complex and demanding to learn because their meaning builds through several different phenomenological areas. Each of the phenomenological areas adds a certain facet of the meaning of the concept. All standard physics textbooks discuss at least 1) force, 2) energy and work, and 3) electric…
NASA Astrophysics Data System (ADS)
Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.
2016-08-01
Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.
ERIC Educational Resources Information Center
Schwartz, Daniel L.; Chase, Catherine C.; Oppezzo, Marily A.; Chin, Doris B.
2011-01-01
Being told procedures and concepts before problem solving can inadvertently undermine the learning of deep structures in physics. If students do not learn the underlying structure of physical phenomena, they will exhibit poor transfer. Two studies on teaching physics to adolescents compared the effects of "telling" students before and after…
ERIC Educational Resources Information Center
Gambari, Amosa Isiaka; Yusuf, Mudasiru Olalere; Thomas, David Akpa
2015-01-01
This study examined the effectiveness of computer-assisted instruction on Student Team Achievement Division (STAD) and Learning Together (LT) cooperative learning strategies on Nigerian secondary students' achievement and motivation in physics. The effectiveness of computer assisted instructional package (CAI) for teaching physics concepts in…
Concepts in Physical Education with Laboratories and Experiments. Second Edition.
ERIC Educational Resources Information Center
Corbin, Charles B.; And Others
This text is designed for student use in introductory course of physical education at the college level and deals with the specific areas of physical activity, exercise, health, physical fitness, skill learning, and body mechanics. Twenty concepts and thirty accompanying laboratory exercises suitable for both men and women are presented. Two…
Imagery, Intuition and Imagination in Quantum Physics Education
ERIC Educational Resources Information Center
Stapleton, Andrew J.
2018-01-01
In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area…
Instructional strategies for online introductory college physics based on learning styles
NASA Astrophysics Data System (ADS)
Ekwue, Eleazer U.
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.
Unified Technical Concepts. Application Modules Volume II.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary technician programs. This UTC laboratory textbook, the second of two volumes, consists of 45 learning modules dealing with basic concepts of physics. Addressed in the individual chapters of the guide are the following topics: force…
Joined up Thinking? Evaluating the Use of Concept-Mapping to Develop Complex System Learning
ERIC Educational Resources Information Center
Stewart, Martyn
2012-01-01
In the physical and natural sciences, the complexity of natural systems and their interactions is becoming better understood. With increased emphasis on learning about complex systems, students will be encountering concepts that are dynamic, ill-structured and interconnected. Concept-mapping is a method considered particularly valuable for…
ERIC Educational Resources Information Center
Jena, Ananta Kumar
2012-01-01
This study deals with the application of constructivist approach through individual and cooperative modes of spider and hierarchical concept maps to achieve meaningful learning on science concepts (e.g. acids, bases & salts, physical and chemical changes). The main research questions were: Q (1): is there any difference in individual and…
Bioliteracy and Teaching Efficacy: What Biologists Can Learn from Physicists
ERIC Educational Resources Information Center
Klymkowsky, Michael W.; Garvin-Doxas, Kathy; Zeilik, Michael
2003-01-01
The introduction of the Force Concept Inventory (FCI) by David Hestenes and colleagues in 1992 produced a remarkable impact within the community of physics teachers. An instrument to measure student comprehension of the Newtonian concept of force, the FCI demonstrates that active learning leads to far superior student conceptual learning than…
ERIC Educational Resources Information Center
Wang, Youming
2010-01-01
In order to sharpen English learning capabilities of students in the institutes of physical education, the author makes a tracking investigation of New Concept English teaching model in Grade 08 of the department of sports training and national traditional sports. By analyzing and comparing the students' English levels before and after the…
NASA Astrophysics Data System (ADS)
Turner, Michael Lloyd
Research on student difficulties in learning physics concepts has been coincident with a general reform movement in science education with the aim of increasing the level of inquiry in the teaching and learning of science. Coincident with these efforts has been a dramatic increase in the offering of online courses. Generally, this movement toward online course offerings has taken place without the inclusion of laboratory science offerings. The Learn Anytime Anywhere Physics (LAAPhysics) program for asynchronous online introductory physics learning is a notable exception. LAAPhysics software attempts to implement the principles of reformed science teaching and learning in an online environment. The purpose of this study was to measure how student cognition of physics concepts in kinematics was effected through use of LAAPhysics online kinematics tutorials. The normalized gains between pre-instruction and post-instruction scores on the Test of Understanding Graphs in Kinematics (TUG-K) for a treatment group of LAAPhysics testers was calculated. This normalized gain was compared to normalized gains typically found for students taking face-to-face physics courses. The normalized gain scores for LAAPhysics testers were also tested for correlation against time on task variables as measured by connectivity to the online software. Finally, a content analysis of student responses recorded in the LAAPhysics software was conducted. Normalized gain scores for LAAPhysics testers were not found to be greater than gain scores typically found in face-to-face courses. The number of student connections to the software and their total time working in the software were found to be significantly related to normalized gain on the TUG-K. The content analysis of student responses in the LAAPhysics software revealed variation in initial understanding of physics concepts in kinematics as well as variation in change in understanding across students.
ERIC Educational Resources Information Center
Downing, John H.; Lander, Jeffrey E.
1997-01-01
Integrating physical training with physics concepts gives teachers increased opportunities for exploration, problem solving, and concept application, while providing an additional medium for cooperative learning and mutual understanding of each others' goals and objectives. An interdisciplinary model requires alternative planning and preparation…
Diagnosing alternative conceptions of Fermi energy among undergraduate students
NASA Astrophysics Data System (ADS)
Sharma, Sapna; Ahluwalia, Pardeep Kumar
2012-07-01
Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (εF). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper.
Unified Technical Concepts. Application Modules Volume I.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary technician programs. This UTC laboratory textbook, the first of two volumes, consists of 56 learning modules dealing with basic concepts of physics. Addressed in the individual chapters of the guide are the following topics: force, work,…
Students' Conceptions on White Light and Implications for Teaching and Learning about Colour
ERIC Educational Resources Information Center
Haagen-Schützenhöfer, Claudia
2017-01-01
The quality of learning processes is mainly determined by the extent to which students' conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying…
Teaching Vectors Through an Interactive Game Based Laboratory
NASA Astrophysics Data System (ADS)
O'Brien, James; Sirokman, Gergely
2014-03-01
In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.
ERIC Educational Resources Information Center
Mun, Wong Kin; Hew, Khe Foon; Cheung, Wing Sum
2009-01-01
Although a number of researchers have examined response pad systems (RPSs) in higher education, there has been very little research at the K-12 level. This paper investigated the impact of using an RPS in the learning of physics concepts in a secondary school in Singapore. Two classes (n = 35 students in each class) of secondary five students…
NASA Astrophysics Data System (ADS)
Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia
2007-12-01
To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.
Learning to Play: A "Hedgehog Concept" for Physical Education
ERIC Educational Resources Information Center
Johnson, Tyler
2014-01-01
What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…
ERIC Educational Resources Information Center
Colpas, Ricardo Ducatti
2000-01-01
Seeks to understand school physical education praxis in light of the human development theories of Lev Vygotsky. Develops a methodology of teaching and a conception of learning that enables students to recognize physical education as a school discipline connected to a dynamic curriculum. (BT)
Using the Learning Cycle To Teach Physical Science: A Hands-on Approach for the Middle Grades.
ERIC Educational Resources Information Center
Beisenherz, Paul; Dantonio, Marylou
The Learning Cycle Strategy enables students themselves to construct discrete science concepts and includes an exploration phase, introduction phase, and application phase. This book focuses on the use of the Learning Cycle to teach physical sciences and is divided into three sections. Section I develops a rationale for the Learning Cycle as an…
NASA Astrophysics Data System (ADS)
Supurwoko; Cari; Sarwanto; Sukarmin; Fauzi, Ahmad; Faradilla, Lisa; Summa Dewi, Tiarasita
2017-11-01
The process of learning and teaching in Physics is often confronted with abstract concepts. It makes difficulty for students to understand and teachers to teach the concept. One of the materials that has an abstract concept is Compton Effect. The purpose of this research is to evaluate computer simulation model on Compton Effect material which is used to improve high thinking ability of Physics teacher candidate students. This research is a case study. The subject is students at physics educations who have attended Modern Physics lectures. Data were obtained through essay test for measuring students’ high-order thinking skills and quisioners for measuring students’ responses. The results obtained indicate that computer simulation model can be used to improve students’ high order thinking skill and can be used to improve students’ responses. With this result it is suggested that the audiences use the simulation media in learning
NASA Astrophysics Data System (ADS)
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-02-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.
A Laborative Model of Geomagnetism as an Example of Creative Learning
ERIC Educational Resources Information Center
Prytz, Kjell
2015-01-01
Creative learning is discussed with respect to a specific physics topic. A teaching example, based on an apparatus that demonstrates the standard dynamo model of geomagnetism, is presented. It features many of the basic physics concepts within the syllabus of electromagnetism at high-school and university. To stimulate conceptual learning and to…
Problem-Based Learning in the Physical Science Classroom, K-12
ERIC Educational Resources Information Center
McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet
2018-01-01
"Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…
Learning From Physics Instruction
ERIC Educational Resources Information Center
Shavelson, Richard J.
1973-01-01
Extends P. E. Jonson's studies of physics learning by analyzing, on the basis of a 12-student control group, 24 high-school students' word associations, aptitude scores, and achievement results during instruction. Indicated a positive relationship between problem-solving ability and meaningful concept formation. (CC)
Professionals' Perception of Quality Physical Education Learning in Selected Asian Cities
ERIC Educational Resources Information Center
Ho, Walter King Yan; Ahmed, Md. Dilsad; Keh, Nyit Chin; Khoo, Selina; Tan, Cheehian; Dehkordi, Mitra Rouhi; Gallardo, Mila; Lee, Kicheon; Yamaguchi, Yasuo; Wang, Jian; Liu, Min; Huang, Fan
2017-01-01
Numerous studies have been published heralding the benefits of physical education in school education. Sport and physical activities form the major content in learning and the arrangement serves as the major source of development in students. This paper identifies "quality" as an internationally concerned issue and within the concept,…
NASA Astrophysics Data System (ADS)
Yerdelen-Damar, Sevda; Elby, Andrew
2016-06-01
This study investigates how elite Turkish high school physics students claim to approach learning physics when they are simultaneously (i) engaged in a curriculum that led to significant gains in their epistemological sophistication and (ii) subject to a high-stakes college entrance exam. Students reported taking surface (rote) approaches to learning physics, largely driven by college entrance exam preparation and therefore focused on algorithmic problem solving at the expense of exploring concepts and real-life examples more deeply. By contrast, in recommending study strategies to "Arzu," a hypothetical student who doesn't need to take a college entrance exam and just wants to understand physics deeply, the students focused more on linking concepts and real-life examples and on making sense of the formulas and concepts—deep approaches to learning that reflect somewhat sophisticated epistemologies. These results illustrate how students can epistemically compartmentalize, consciously taking different epistemic stances—different views of what counts as knowing and learning—in different contexts even within the same discipline.
ERIC Educational Resources Information Center
Kulgemeyer, Christoph
2014-01-01
Hans Niedderer has contributed a lot to German physics education research. His work includes quantitative and qualitative studies about topics like the learning of physics concepts or the history and philosophy of science in science teaching, he has worked on theoretical issues as well as on textbooks. But it is not only his work that is…
Understanding the relationship between student attitudes and student learning
NASA Astrophysics Data System (ADS)
Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca
2018-02-01
Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.
Let's Get Physical: Teaching Physics Through Gymnastics
NASA Astrophysics Data System (ADS)
Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.
2018-01-01
The concept of embodied learning—that we can learn with our bodies and with our minds—is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of exploring physical phenomena through body movements. Sport has long served as a guide for both illustrating and experiencing physical concepts and phenomena, with a particularly relevant example being the sport of gymnastics. Here, the practitioner is subjected to a wide range of forces and torques, and experiences translational and rotational motions, all guided by control of body positioning, shape, strength, and leverage. Smith provides a comprehensive study of the mechanics used to analyze gymnastic movements, which includes core concepts such as force balance, leverage and torque, center of mass and stability, moment of inertia, ballistic motion, pendulum motion, and circular motion. For life science majors, gymnastics also provides relevant physical examples of biomechanics and the physical limits of biological materials (skin, bones, ligaments). The popularity of gymnastics—consider the phenomenon of Simone Biles—makes it broadly accessible and engaging, particularly across genders.
Understanding pressure: didactical transpositions and pupils' conceptions
NASA Astrophysics Data System (ADS)
Kariotogloy, P.; Psillos, D.; Vallassiades, O.
1990-03-01
Using the concept of pressure two research trends-content analysis and pupils' conceptions of subject matter-are drawn together, in an attempt to understand the issues in teaching and learning specific domains of physics.
Video Analysis of a Plucked String: An Example of Problem-based Learning
NASA Astrophysics Data System (ADS)
Wentworth, Christopher D.; Buse, Eric
2009-11-01
Problem-based learning is a teaching methodology that grounds learning within the context of solving a real problem. Typically the problem initiates learning of concepts rather than simply being an application of the concept, and students take the lead in identifying what must be developed to solve the problem. Problem-based learning in upper-level physics courses can be challenging, because of the time and financial requirements necessary to generate real data. Here, we present a problem that motivates learning about partial differential equations and their solution in a mathematical methods for physics course. Students study a plucked elastic cord using high speed digital video. After creating video clips of the cord motion under different tensions they are asked to create a mathematical model. Ultimately, students develop and solve a model that includes damping effects that are clearly visible in the videos. The digital video files used in this project are available on the web at http://physics.doane.edu .
Analysing the physics learning environment of visually impaired students in high schools
NASA Astrophysics Data System (ADS)
Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry
2017-07-01
Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.
Tam, S F
2000-10-15
The aim of this controlled, quasi-experimental study was to evaluate the effects of both self-efficacy enhancement and social comparison training strategy on computer skills learning and self-concept outcome of trainees with physical disabilities. The self-efficacy enhancement group comprised 16 trainees, the tutorial training group comprised 15 trainees, and there were 25 subjects in the control group. Both the self-efficacy enhancement group and the tutorial training group received a 15 week computer skills training course, including generic Chinese computer operation, Chinese word processing and Chinese desktop publishing skills. The self-efficacy enhancement group received training with tutorial instructions that incorporated self-efficacy enhancement strategies and experienced self-enhancing social comparisons. The tutorial training group received behavioural learning-based tutorials only, and the control group did not receive any training. The following measurements were employed to evaluate the outcomes: the Self-Concept Questionnaire for the Physically Disabled Hong Kong Chinese (SCQPD), the computer self-efficacy rating scale and the computer performance rating scale. The self-efficacy enhancement group showed significantly better computer skills learning outcome, total self-concept, and social self-concept than the tutorial training group. The self-efficacy enhancement group did not show significant changes in their computer self-efficacy: however, the tutorial training group showed a significant lowering of their computer self-efficacy. The training strategy that incorporated self-efficacy enhancement and positive social comparison experiences maintained the computer self-efficacy of trainees with physical disabilities. This strategy was more effective in improving the learning outcome (p = 0.01) and self-concept (p = 0.05) of the trainees than the conventional tutorial-based training strategy.
NASA Astrophysics Data System (ADS)
Brereton, Margot Felicity
A series of short engineering exercises and design projects was created to help students learn to apply abstract knowledge to physical experiences with hardware. The exercises involved designing machines from kits of materials and dissecting and analyzing familiar household products. Students worked in teams. During the activities students brought their knowledge of engineering fundamentals to bear. Videotape analysis was used to identify and characterize the ways in which hardware contributed to learning fundamental concepts. Structural and qualitative analyses of videotaped activities were undertaken. Structural analysis involved counting the references to theory and hardware and the extent of interleaving of references in activity. The analysis found that there was much more discussion linking fundamental concepts to hardware in some activities than in others. The analysis showed that the interleaving of references to theory and hardware in activity is observable and quantifiable. Qualitative analysis was used to investigate the dialog linking concepts and hardware. Students were found to advance their designs and their understanding of engineering fundamentals through a negotiation process in which they pitted abstract concepts against hardware behavior. Through this process students sorted out theoretical assumptions and causal relations. In addition they discovered design assumptions, functional connections and physical embodiments of abstract concepts in hardware, developing a repertoire of familiar hardware components and machines. Hardware was found to be integral to learning, affecting the course of inquiry and the dynamics of group interaction. Several case studies are presented to illustrate the processes at work. The research illustrates the importance of working across the boundary between abstractions and experiences with hardware in order to learn engineering and physical sciences. The research findings are: (a) the negotiation process by which students discover fundamental concepts in hardware (and three central causes of negotiation breakdown); (b) a characterization of the ways that material systems contribute to learning activities, (the seven roles of hardware in learning); (c) the characteristics of activities that support discovering fundamental concepts in hardware (plus several engineering exercises); (d) a research methodology to examine how students learn in practice.
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
Toward instructional design principles: Inducing Faraday's law with contrasting cases
NASA Astrophysics Data System (ADS)
Kuo, Eric; Wieman, Carl E.
2016-06-01
Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.
Students’ conceptions on white light and implications for teaching and learning about colour
NASA Astrophysics Data System (ADS)
Haagen-Schützenhöfer, Claudia
2017-07-01
The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N = 32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.
NASA Astrophysics Data System (ADS)
Sokoloff, David R.
2005-10-01
Widespread physics education research has shown that most introductory physics students have difficulty learning essential optics concepts - even in the best of traditional courses, and that well-designed active learning approaches can remedy this problem. This mini-workshop and the associated poster session will provide direct experience with methods for promoting students' active involvement in the learning process in lecture and laboratory. Participants will have hands-on experience with activities from RealTime Physics labs and Interactive Lecture Demonstrations - a learning strategy for large (and small) lectures, including specially designed Optics Magic Tricks. The poster will provide more details on these highly effective curricula.
How Students Combine Resources to Build Understanding of Complex Topics
ERIC Educational Resources Information Center
Richards, Alan J.
2013-01-01
The field of Physics Education Research (PER) seeks to investigate how students learn physics and how instructors can help students learn more effectively. The process by which learners create understanding about a complex physics concept is an active area of research. My study explores this process, using solar cells as the context. To understand…
ERIC Educational Resources Information Center
Lafayette, R. C.
1991-01-01
A discussion of the Total Physical Response method of second language instruction places the concept within the context of other unconventional language learning methods, reviews the rationale behind the approach, and outlines the classroom procedures used. A sampling of useful commands for classroom use is included. (19 references) (MSE)
Building Concepts through Writing-to-Learn in College Physics Classrooms
ERIC Educational Resources Information Center
Bullock, Shawn
2006-01-01
This paper draws on an action research inquiry into my teaching practice featuring careful analysis of the experiences of some of the students in my college-level introductory college physics course. Specifically, the research describes and interprets the role of Writing-to-Learn pedagogies in a physics classroom with a view to exploring how such…
Instructional Strategies for Online Introductory College Physics Based on Learning Styles
ERIC Educational Resources Information Center
Ekwue, Eleazer U.
2013-01-01
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…
Problem Solving, Scaffolding and Learning
ERIC Educational Resources Information Center
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
Interactive lecture demonstrations, active learning, and the ALOP project
NASA Astrophysics Data System (ADS)
Lakshminarayanan, Vasudevan
2011-05-01
There is considerable evidence from the physics education literature that traditional approaches are ineffective in teaching physics concepts. A better teaching method is to use the active learning environment, which can be created using interactive lecture demonstrations. Based on the active learning methodology and within the framework of the UNESCO mandate in physics education and introductory physics, the ALOP project (active learning in optics and photonics) was started in 2003, to provide a focus on an experimental area that is adaptable and relevant to research and educational conditions in many developing countries. This project is discussed in this paper.
NASA Astrophysics Data System (ADS)
Valente, Diego; Savkar, Amit; Mokaya, Fridah; Wells, James
The Force Concept Inventory (FCI) has been analyzed and studied in various ways with regards to students' understanding of basic physics concepts. We present normalized learning gains and effect size calculations of FCI scores, taken in the context of large-scale classes in a 4-year public university and course instruction that incorporates elements of Just-In-Time teaching and active learning components. In addition, we will present here a novel way of using FCI pre- and post-test as a predictor of students' performance on midterm and final exams. Utilizing a taxonomy table of physics concepts, we will look at student performance broken down by topic, while also examining possible correlations between FCI post-test scores and other course assessments. College of Liberal Arts and Sciences (CLAS), UConn.
ERIC Educational Resources Information Center
Bautista, Romiro G.
2015-01-01
This study ascertains that the students' affordance of teleologic explanations and anthropomorphic language in eliciting concepts in Physics is influenced by their age and learning exposure and experience. Using Explicative-Reductive Method of Descriptive Research, this study focused on the determinants of students' affordance of…
ERIC Educational Resources Information Center
Luchembe, Dennis; Chinyama, Kaumba; Jumbe, Jack
2014-01-01
The study was conducted to show the effectiveness of concept mapping as a teaching strategy to undergraduate students taking introductory physics course. A number of researchers have investigated the effectiveness of concept mapping on student academic achievement. The main focus of these studies have been on comparing the effectiveness of concept…
Open Source Software in Teaching Physics: A Case Study on Vector Algebra and Visual Representations
ERIC Educational Resources Information Center
Cataloglu, Erdat
2006-01-01
This study aims to report the effort on teaching vector algebra using free open source software (FOSS). Recent studies showed that students have difficulties in learning basic physics concepts. Constructivist learning theories suggest the use of visual and hands-on activities in learning. We will report on the software used for this purpose. The…
Comparison of normalized gain and Cohen's d for analyzing gains on concept inventories
NASA Astrophysics Data System (ADS)
Nissen, Jayson M.; Talbot, Robert M.; Nasim Thompson, Amreen; Van Dusen, Ben
2018-06-01
Measuring student learning is a complicated but necessary task for understanding the effectiveness of instruction and issues of equity in college science, technology, engineering, and mathematics (STEM) courses. Our investigation focused on the implications on claims about student learning that result from choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The metrics are normalized gain (g ), which is the most common method used in physics education research and other discipline based education research fields, and Cohen's d , which is broadly used in education research and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes (LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math concept inventories from 89 courses at 17 institutions from across the United States. We compared the two metrics across all the concept inventories. The results showed that the two metrics lead to different inferences about student learning and equity due to the finding that g is biased in favor of high pretest populations. We discuss recommendations for the analysis and reporting of findings on student learning data.
Learning motion concepts using real-time microcomputer-based laboratory tools
NASA Astrophysics Data System (ADS)
Thornton, Ronald K.; Sokoloff, David R.
1990-09-01
Microcomputer-based laboratory (MBL) tools have been developed which interface to Apple II and Macintosh computers. Students use these tools to collect physical data that are graphed in real time and then can be manipulated and analyzed. The MBL tools have made possible discovery-based laboratory curricula that embody results from educational research. These curricula allow students to take an active role in their learning and encourage them to construct physical knowledge from observation of the physical world. The curricula encourage collaborative learning by taking advantage of the fact that MBL tools present data in an immediately understandable graphical form. This article describes one of the tools—the motion detector (hardware and software)—and the kinematics curriculum. The effectiveness of this curriculum compared to traditional college and university methods for helping students learn basic kinematics concepts has been evaluated by pre- and post-testing and by observation. There is strong evidence for significantly improved learning and retention by students who used the MBL materials, compared to those taught in lecture.
NASA Astrophysics Data System (ADS)
Yoda, I. K.
2017-03-01
The purpose of this research is to develop a cooperative learning model based on local wisdom (PKBKL) of Bali (Tri Pramana’s concept), for physical education, sport, and health learning in VII grade of Junior High School in Singaraja-Buleleng Bali. This research is the development research of the development design chosen refers to the development proposed by Dick and Carey. The development of model and learning devices was conducted through four stages, namely: (1) identification and needs analysis stage (2) the development of design and draft of PKBKL and RPP models, (3) testing stage (expert review, try out, and implementation). Small group try out was conducted on VII-3 grade of Undiksha Laboratory Junior High School in the academic year 2013/2014, large group try out was conducted on VIIb of Santo Paulus Junior High School Singaraja in the academic year 2014/2015, and the implementation of the model was conducted on three (3) schools namely SMPN 2 Singaraja, SMPN 3 Singaraja, and Undiksha laboratory Junior High School in the academic year 2014/2015. Data were collected using documentation, testing, non-testing, questionnaire, and observation. The data were analyzed descriptively. The findings of this research indicate that: (1) PKBKL model has met the criteria of the operation of a learning model namely: syntax, social system, principles of reaction, support system, as well as instructional and nurturing effects, (2) PKBKL model is a valid, practical, and effective model, (3) the practicality of the learning devices (RPP), is at the high category. Based on the research results, there are two things recommended: (1) in order that learning stages (syntax) of PKBKL model can be performed well, then teachers need to have an understanding of the cooperative learning model of Student Team Achievement Division (STAD) type and the concepts of scientifically approach well, (2) PKBKL model can be performed well on physical education, sport and health learning, if the teachers understand the concept of Tri Pramana, therefore if the physical education, sport and health teachers want to apply this PKBKL model, they must first learn and master the concept of Tri Pramana well.
NASA Astrophysics Data System (ADS)
Close, Eleanor
2016-03-01
The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.
NASA Astrophysics Data System (ADS)
Selçuk, Gamze S.; Çalişkan, Serap; Erol, Mustafa
2007-04-01
Learning strategy concept was introduced in the education field from the development of cognitive psychology. Learning strategies are behaviors and thoughts that a learner engages in during learning which are intended to influence the learner's encoding process. Literature on learning strategies in physics field is very scarce. Participants of the research consist of teacher candidates (n=137) from 1st, 2nd, 3rd, 4th and 5th grade attending Department of Physics Education, Education Faculty of Buca, Dokuz Eylül University in Turkey. Data of this research was collected by ``Scale of Learning Strategies Usage in Physics'' (Cronbach's Alpha=0.93). Mean, Standard Deviation, Analysis of Variance were used to analyze the research data. This paper reports on teacher candidates' learning strategies used in physics education The paper investigates the relationships between learning strategies and physics achievement, class level. Some important outcomes of the research are presented, discussed and certain suggestions are made.
ERIC Educational Resources Information Center
Vo, Phong T.
2013-01-01
Hands-on learning is very effective in teaching physical concepts to students. Applying the principles they learn to a real-life situation, students are more likely to retain this knowledge, especially when it is presented in a stimulating format. With this in mind, we present here a high school physics project in which students apply basic…
Role of Epistemic Beliefs and Scientific Argumentation in Science Learning
ERIC Educational Resources Information Center
Nussbaum, E. Michael; Sinatra, Gale M.; Poliquin, Anne
2008-01-01
We hypothesized that instruction in the criteria of scientific arguments, in combination with constructivist epistemic beliefs, would produce greater learning about physics concepts. The study was a randomized experiment, where college undergraduates (n = 88) discussed, in pairs over the Web, several physics problems related to gravity and air…
Imagery, intuition and imagination in quantum physics education
NASA Astrophysics Data System (ADS)
Stapleton, Andrew J.
2018-03-01
In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area of contemporary physics—special relativity—I highlight concepts that require an ontological change, namely a shift beyond the reality of everyday Newtonian experience such as time dilation and length contraction, as being troublesome concepts that can present barriers to learning with students often asking "is it real?". Similarly, the domain of quantum physics requires students to move beyond "common sense" perception as it brings into sharp focus the difference between what is experienced via the sense perceptions and the mental abstraction of phenomena. And it's this issue that highlights the important role imagery and creativity have both in quantum physics and in the evolution of physics more generally, and lies in stark contrast to the apparent mathematical focus and lack of opportunity for students to explore ontological issues evident in the authors' research. By reflecting on the authors' observations of a focus on mathematical formalisms and problem solving at the expense of alternative approaches, I explore the dialectic between Heisenberg's highly mathematical approach and Schrödinger's mechanical wave view of the atom, together with its conceptual imagery, at the heart of the evolution of quantum mechanics. In turn, I highlight the significance of imagery, imagination and intuition in quantum physics, together with the importance of adopting an epistemological pluralism—multiple ways of knowing and thinking—in physics education. Again drawing parallels with the authors' work and my own, I identify the role thought experiments have in both quantum physics education and in physics more generally. By introducing the notion of play, I advocate adopting and celebrating multiple approaches of teaching and learning, including thought experiments, play, dialogue and a more conceptual approach inclusive of multiple forms of representation, that complements the current instructional, mathematical approach so as to provide better balance to learning, teaching and the curriculum.
Second teaching: An exploration of cognitive factors in small group physics learning
NASA Astrophysics Data System (ADS)
Novemsky, Lisa Forman
This inquiry was focused on an exploration of introductory physics teaching. Alan Van Heuvelen's Overview Case Study (OCS) physics was the pedagogical approach involving guided small group problem solving and stressing concepts first, before mathematics. Second teaching is a new pedagogical construct based on Vygotsky's ideas. Structured small group activity follows traditional instruction facilitating learning for non-traditional students. It is a model of structured small group activity designed to follow traditional instruction to facilitate the learning process for students who find a physics optic (way of seeing) and physics language foreign. In informal small group settins students describe, explain, elaborate, test, and defend ideas in their own familiar vernacular as they collaborate in solving problems. Collective wisdom of a collaborative group, somewhat beyond the level for each individual member, is created then recreated through self-correction. Students improved significantly in physics knowledge. In a classroom setting, small groups of non-traditional physics students engaged in second teaching were observed. Written explanations to conceptual physics questions were analyzed. Development of language usage in relationship to introductory physics concept learning was studied. Overall physics learning correlated positively with gains in language clarity thus confirming the hypothesis that language development can be linked with gains in physics knowledge. Males and females were found to be significantly different in this respect. Male gains in language clarity were closely coupled with physics learning whereas female gains in the two measures were not coupled. Physics discourse, particularly in relationship to force and motion, seems to resonate with natural developmentally acquired sex-typical male but not female discourse. Thus, for males but not for females, physics learning proceeds in a seamless fashion wherein knowledge gains are coupled with language development. Average frequency in use of the indeterminate pronoun it per person decreased. Reificiation of qualifying terms appeared in the form of a word-form problem. In the process of reifying adjectival properties students may be recapitulating the language-bound history of natural science.
Physics Education Research and its Impact on Classroom Instruction
NASA Astrophysics Data System (ADS)
Meltzer, David E.
2006-05-01
In recent years systematic investigations into student learning of physics have been carried out at an increasing pace, particularly at the undergraduate level. This work, broadly known as ``physics education research,'' involves exploring the process by which students come to understand physics concepts, and uncovering the difficulties and obstacles encountered by students as they learn. The ultimate outcome of this work is the development of new and more effective instructional materials and pedagogical strategies. I will outline the principal goals and methods of this research and show how it can lead to improved learning in the classroom. I will illustrate the process by discussing an ongoing investigation into student learning of thermal physics.
ERIC Educational Resources Information Center
Soong, Benson; Mercer, Neil
2011-01-01
In this paper, we describe and discuss an information and communication technology (ICT)-based intervention designed to improve secondary school students' "revision" (in contrast to "learning") of physics concepts. We show that students' engagement in joint activities via our ICT-based intervention can provide them (and their…
ERIC Educational Resources Information Center
Baser, Mustafa; Geban, Omer
2007-01-01
This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…
Energy: Between Physics and Metaphysics
NASA Astrophysics Data System (ADS)
Bunge, Mario
The general concept of energy is somewhat unclear as long as it is confined to physics, since every chapter of it defines its own particular concept of energy. The general concept can be elucidated in terms of the hypergeneral (philosophical) concepts of concrete thing and changeability. In this way one succeeds in crafting a minitheory that identifies energy with mutability, and that regards it, as well as its conservation, as a universal property of concrete things. The moral is that physicists and philosophers can learn from one another.
NASA Astrophysics Data System (ADS)
Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen
2016-06-01
In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.
Brain-Based Teaching/Learning and Implications for Religious Education.
ERIC Educational Resources Information Center
Weber, Jean Marie
2002-01-01
Argues that physical activity and water can increase brain activity, and hence, learning. Findings of neuroscientists regarding the brain can inform educators. Brain-based teaching emphasizes teamwork, cooperative learning, and global responsibility. Argues against gathering information without relevance. Connects brain-based learning concepts to…
Students' Conceptions of Basic Ideas of the Second Law of Thermodynamics.
ERIC Educational Resources Information Center
Duit, Reinders; Kesidou, Sofia
The focus of this study was to portray the ideas that students with four years experience in learning physics developed in regard to the second law of thermodynamics. Data were obtained through 34 clinical interviews with grade 10 students. An analysis of student arguments revealed deeply rooted difficulties in using concepts that were learned in…
ERIC Educational Resources Information Center
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-01-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed…
Motivating Students To Read Physics Content.
ERIC Educational Resources Information Center
Sprague, Marsha M.; Cotturone, Jennifer
2003-01-01
Describes effective projects that made students effectively read scientific materials in the physics content area. Suggests using trade books in science to enhance student learning of basic physics concepts and comprehension of technical reading matter. (KHR)
ERIC Educational Resources Information Center
Roberts, Dar; Bradley, Eliza; Roth, Keely; Eckmann, Ted; Still, Christopher
2010-01-01
Geographic education is more effective when students actively participate by developing hypotheses, designing experiments, collecting and analyzing data, and discussing results. We describe an innovative pedagogical approach, in which students learn physical geography concepts by analyzing environmental data collected in contrasting environments…
The Twin Twin Paradox: Exploring Student Approaches to Understanding Relativistic Concepts
ERIC Educational Resources Information Center
Cormier, Sebastien; Steinberg, Richard
2010-01-01
A great deal has long been known about student difficulties connecting real-world experiences with what they are learning in their physics classes, making learning basic ideas of classical physics challenging. Understanding these difficulties has led to the development of many instructional approaches that have been shown to help students make…
NASA Astrophysics Data System (ADS)
Adams, Kenneth Mark
The purpose of this research was to investigate the relationship between the learning style perceptual preferences of fourth grade urban students and the attainment of selected physical science concepts for three simple machines as taught using learning cycle methodology. The sample included all fourth grade children from one urban elementary school (N = 91). The research design followed a quasi-experimental format with a single group, equivalent teacher demonstration and student investigation materials, and identical learning cycle instructional treatment. All subjects completed the Understanding Simple Machines Test (USMT) prior to instructional treatment, and at the conclusion of treatment to measure student concept attainment related to the pendulum, the lever and fulcrum, and the inclined plane. USMT pre and post-test scores, California Achievement Test (CAT-5) percentile scores, and Learning Style Inventory (LSI) standard scores for four perceptual elements for each subject were held in a double blind until completion of the USMT post-test. The hypothesis tested in this study was: Learning style perceptual preferences of fourth grade students as measured by the Dunn, Dunn, and Price Learning Style Inventory (LSI) are significant predictors of success in the acquisition of physical science concepts taught through use of the learning cycle. Analysis of pre and post USMT scores, 18.18 and 30.20 respectively, yielded a significant mean gain of +12.02. A controlled stepwise regression was employed to identify significant predictors of success on the USMT post-test from among USMT pre-test, four CAT-5 percentile scores, and four LSI perceptual standard scores. The CAT -5 Total Math and Total Reading accounted for 64.06% of the variance in the USMT post-test score. The only perceptual element to act as a significant predictor was the Kinesthetic standard score, accounting for 1.72% of the variance. The study revealed that learning cycle instruction does not appear to be sensitive to different perceptual preferences. Students with different preferences for auditory, visual, and tactile modalities, when learning, seem to benefit equally from learning cycle exposure. Increased use of a double blind for future learning styles research was recommended.
ERIC Educational Resources Information Center
Kocakaya, Serhat; Gonen, Selahattin
2010-01-01
The purpose of this study was to investigate the effects of a Computer-Assisted Instruction designed according to 7E model of constructivist learning(CAI7E) related to "electrostatic'' topic on physics student teachers' cognitive development, misconceptions, self-efficacy perceptions and attitudes. The study was conducted in 2006-2007…
Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry
ERIC Educational Resources Information Center
Zielinski, Theresa Julia
2004-01-01
The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.
Why Teach Physical Education History?
ERIC Educational Resources Information Center
Patterson, Jan
2004-01-01
The physical education discipline has had a long development, incorporating concepts learned and appreciated from ancient and modern Olympics, exercise and training, physical activity and sport, and the history of physical education itself. Nevertheless, it continues to evolve as educators improve their instructional methods, medical experts…
The role of language in learning physics
NASA Astrophysics Data System (ADS)
Brookes, David T.
Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics concepts; this categorization of physics concepts plays a key role in students' ability to solve physics problems. In summary, I present a theoretical framework that provides a possible explanation of the role that language plays in learning physics. The framework also attempts to account for how and why physicists' language influences students in the way that it does.
Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value
ERIC Educational Resources Information Center
Besson, Ugo; De Ambrosis, Anna
2014-01-01
Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…
Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept
ERIC Educational Resources Information Center
Kawam, Alae; Kouh, Minjoon
2011-01-01
In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…
SU-E-E-07: When the Old Ways Are the Best Ways: In Defense of Didactic Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sensakovic, W
2014-06-01
Purpose: Physics education for residents has taken on a more prominent role due to the new ABR examination format. We present a curriculum for a new radiology residency entering its second year. This curriculum favors an extensive traditional didactic teaching approach. The curriculum is designed to minimize the amount of independent learning that is necessary outside the classroom Methods and Materials: idactic training repeats yearly for all four years of residency and consists of two 1-hour lectures per week and several in-class tests. The impact of physics on clinical practice is introduced gradually throughout the residency using specific clinical cases.more » The extensive time spent with the residents allows lectures to be taught at a deep (almost physicist) level and reduces the necessity of learning base concepts outside of lecture. This frees the resident to use resources (e.g., AAPM/RSNA physics modules) to cement concepts through repetition or to learn a slightly confusing concept from a different teaching perspective. Consistent testing reduces the traditional resident studying technique of physics “cramming.” Results: On average, the first year residents scored in the 98th percentile on the American College of Radiology Diagnostic Radiology In-Service Training Exam (ACR DXIT). Feedback from the new first year residents was very positive and suggestions are constantly solicited and incorporated. For example, based on resident feedback, short-format quizzes each lecture were eliminated and replaced interactive questions during lecture. Residents felt they have advanced rapidly and have a better understanding of radiologic physics, though they have expressed concern that the 1-hour lecture block may not be optimal for learning physics. Conclusion: An extensive, physicist-led series of didactic lectures is effective in the teaching of physics to residents.« less
ERIC Educational Resources Information Center
Lee, Hee-Sun; Liu, Ou Lydia
2010-01-01
We use a construct-based assessment approach to measure learning progression of energy concepts across physical, life, and earth science contexts in middle school grades. We model the knowledge integration construct in six levels in terms of the numbers of ideas and links used in student-generated explanations. For this study, we selected 10 items…
Applying Brain-Based Learning Principles to Athletic Training Education
ERIC Educational Resources Information Center
Craig, Debbie I.
2007-01-01
Objective: To present different concepts and techniques related to the application of brain-based learning principles to Athletic Training clinical education. Background: The body of knowledge concerning how our brains physically learn continues to grow. Brain-based learning principles, developed by numerous authors, offer advice on how to…
ERIC Educational Resources Information Center
Mantyla, Terhi
2012-01-01
In physics teacher education, two central goals are first to learn the structures of physics knowledge, and second the processes of its construction. To know the structure is to know the framework of concepts and laws; to know the processes is to know where the knowledge comes from, how the framework is constructed, and how it can be justified.…
How Games are Designed to Increase Students’ Motivation in Learning Physics? A Literature Review
NASA Astrophysics Data System (ADS)
Tinedi, V.; Yohandri, Y.; Djamas, D.
2018-04-01
Game is a promising tool to help students in understanding physics concept. It can motivate and provide the opportunities for students to become independent in learning. In order to fulfil these functions, games should be carefully designed. Thus, the objective of this paper is to present how games are designed to increase students’ motivation in learning physics based on several literature reviews. The results showed that there are several ways to increase students’ motivation in learning physics and to achieve that, game dimensions are needed to be considered when designing a game. This literature review may have useful to assist teachers and contribute in improving the design of games.
The Kinematic Learning Model using Video and Interfaces Analysis
NASA Astrophysics Data System (ADS)
Firdaus, T.; Setiawan, W.; Hamidah, I.
2017-09-01
An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
2015-02-17
this study, course exams were used to measure student learning rather than research -based concept tests like the Force Concept Inventory [ 19), the...Release Information: This art icles has been accepted by Physical Review Special Topics -- Physics Education Research fo r publication. Previous...portraying official policy. II signed // MONTE D. ANDERSON, Lt Col, USAF Deputy Department Head for Research Department of Physics Tabs 1
Young Children's Learning of Water Physics by Constructing Working Systems
ERIC Educational Resources Information Center
Levy, Sharona T.
2013-01-01
The present study explored young 5-6-year old children's design-based learning of science through building working physical systems and examined their evolving conceptions of water flow. Fifteen children in an experimental group individually built water-pipe systems during four sessions that included end-of-session interviews. In addition,…
ERIC Educational Resources Information Center
Gok, Tolga
2012-01-01
The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…
The Implications of Assessment for Learning in Physical Education and Health
ERIC Educational Resources Information Center
Tolgfors, Bjorn; Öhman, Marie
2016-01-01
This article deals with the implications of assessment for learning (AfL) in upper secondary physical education and health (PEH). Inspired by the research field that emanates from the concept of governmentality, the study is concerned with how AfL guides teachers' and students' actions in certain directions. Based on teachers' descriptions of how…
Search Family Open House Join us for an afternoon of science fun. The Fermilab Family Open House is a party for children of all ages to learn about the world of physics. The Open House is supported by Open House? Check out our YouTube video to learn more! Explore physics concepts with hands-on
Moodle as a Learning Environment in Promoting Conceptual Understanding for Secondary School Students
ERIC Educational Resources Information Center
Psycharis, Sarantos; Chalatzoglidis, Georgios; Kalogiannakis, Michail
2013-01-01
The purpose of this study was to investigate the role of e-learning, as a pedagogical tool, for changing initial conceptions when learning about physics by using the learning management System of the Moodle platform. Our study provides an empirical exploration of the pedagogical use of Moodle Learning Management System (LMS) in order to…
Teaching Scientific Concepts with Transparent Detector Models: An Example from Optics.
ERIC Educational Resources Information Center
Allen, Sue; And Others
This paper describes an attempt to facilitate students' learning of scientific concepts by using detectors that take as input physical information and output an instantiation of the concept. The principle hypothesis was that students would have a better understanding of the concept of image if they were taught to use a simplified, runnable model…
A Framework for Laboratory Pre-Work Based on the Concepts, Tools and Techniques Questioning Method
ERIC Educational Resources Information Center
Huntula, J.; Sharma, M. D.; Johnston, I.; Chitaree, R.
2011-01-01
Learning in the laboratory is different from learning in other contexts because students have to engage with various aspects of the practice of science. They have to use many skills and knowledge in parallel--not only to understand the concepts of physics but also to use the tools and analyse the data. The question arises, how to best guide…
NASA Astrophysics Data System (ADS)
Lira, Matthew
This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students shift from recognizing one influence to recognizing both the chemical and the electrical gradients as responsible for a cell's membrane potential reaching dynamic equilibrium. Together, the studies illustrate that to coordinate knowledge, students need opportunities to reflect upon relations between representations of mathematical and physical models as well as distinguish between physical quantities such as molarities for ions and transmembrane voltages.
Computer Science Concept Inventories: Past and Future
ERIC Educational Resources Information Center
Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.
2014-01-01
Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…
ERIC Educational Resources Information Center
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2012-01-01
Previous physics education research has raised the question of "hidden variables" behind students' success in learning certain concepts. In the context of the force concept, it has been suggested that students' reasoning ability is one such variable. Strong positive correlations between students' preinstruction scores for reasoning…
ERIC Educational Resources Information Center
Marinopoulos, Dimitrios; Stavridou, Heleni
2002-01-01
Investigates primary students' conceptions of acid rain formation and its consequences to people and the environment before and after a 10-hour constructivist teaching intervention. Reports improvement in conceptions of physical and chemical phenomena among the experimental group participants. (Contains 23 references.) (Author/YDS)
Specificity, transfer, and the development of expertise
NASA Astrophysics Data System (ADS)
Brookes, David T.; Ross, Brian H.; Mestre, José P.
2011-06-01
In this paper we present the results of two experiments designed to understand how physics students’ learning of the concept of refraction is influenced by the cognitive phenomenon of “specificity.” In both experiments participants learned why light bends as it travels from one optical medium to another with an analogy made to a car driving from paved road into mud and vice versa. They then learned how to qualitatively draw the direction of refracted light rays with an example of a glass prism. One group learned with a rectangular prism example while a second group learned with a triangular prism example. In a transfer test, the participants revealed how, even when they seemed able to implement the refraction concept, their responses were biased by the example they had seen. Participants frequently violated the refraction principle they had just learned (reversing the bend direction) in order to make sure their response matched the surface features of their learning example. This tended to happen when their test question looked superficially similar to their learning example. We discuss the implications of these results for physics instruction.
Learning Abstract Physical Concepts from Experience: Design and Use of an RC Circuit
NASA Astrophysics Data System (ADS)
Parra, Alfredo; Ordenes, Jorge; de la Fuente, Milton
2018-05-01
Science learning for undergraduate students requires grasping a great number of theoretical concepts in a rather short time. In our experience, this is especially difficult when students are required to simultaneously use abstract concepts, mathematical reasoning, and graphical analysis, such as occurs when learning about RC circuits. We present a simple experimental model in this work that allows students to easily design, build, and analyze RC circuits, thus providing an opportunity to test personal ideas, build graphical descriptions, and explore the meaning of the respective mathematical models, ultimately gaining a better grasp of the concepts involved. The result suggests that the simple setup indeed helps untrained students to visualize the essential points of this kind of circuit.
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2017-09-01
We discuss an investigation of the difficulties that students in a university introductory physics course have with the electric field and superposition principle and how that research was used as a guide in the development and evaluation of a research-validated tutorial on these topics to help students learn these concepts better. The tutorial uses a guided enquiry-based approach to learning and involved an iterative process of development and evaluation. During its development, we obtained feedback both from physics instructors who regularly teach introductory physics in which these concepts are taught and from students for whom the tutorial is intended. The iterative process continued and the feedback was incorporated in the later versions of the tutorial until the researchers were satisfied with the performance of a diverse group of introductory physics students on the post-test after they worked on the tutorial in an individual one-on-one interview situation. Then the final version of the tutorial was administered in several sections of the university physics course after traditional instruction in relevant concepts. We discuss the performance of students in individual interviews and on the pre-test administered before the tutorial (but after traditional lecture-based instruction) and on the post-test administered after the tutorial. We also compare student performance in sections of the class in which students worked on the tutorial with other similar sections of the class in which students only learned via traditional instruction. We find that students performed significantly better in the sections of the class in which the tutorial was used compared to when students learned the material via only lecture-based instruction.
PhET: Interactive Simulations for Teaching and Learning Physics
NASA Astrophysics Data System (ADS)
Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron
2006-01-01
The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.
City of Physics--Analogies to Increase Cognitive Coherence in Physics Learning
ERIC Educational Resources Information Center
Tabor-Morris, A. E.; Froriep, K. A.; Briles, T. M.; McGuire, C. M.
2009-01-01
Physics educators and researchers can be concerned with how students attain cognitive coherence: specifically, how students understand and intra-connect the whole of their knowledge of the "field of physics". Starting instead with the metaphor "city of physics", the implication of applying architectural concepts for the human acquisition of mental…
Formation of readiness for future physics teachers by using interactive learning tools
NASA Astrophysics Data System (ADS)
Kulikova, N. U.; Danilchuk, E. V.; Zhidkova, A. V.
2017-01-01
In this article we give the reviewing of approaches to the preparedness of future physics teachers for the usage of interactive means of education as an important part of their professional activity. We discuss the key concepts such as interactivity, an interactive dialogue, and interactive means of education. The conception of interactive means of education as a tool of teachers' professional activity, which provides a way for the students to intensify their learning in class by using interactive tools and electronic educational resources, is validated. Furthermore, it is proved that interactive means of education allow the students to intensify their learning in the course of an interactive dialogue by means of organization different types of feedback in electronic educational resources (the program behavior depending on a user actions in the form of comments, prompts, elements of arrangement of objects, etc, the control and correction of students' actions by the program, providing with recommendations for further learning, carrying out constant access to reference information, etc), involving in different types of educational activity (modeling, investigation, etc), self-selection of time, speed, content of learning, complexity and priority of the usage of educational information on the screen, etc. By training students - future teachers of physics authors consider technological aspects, methodical features and examples of creation of these resources for physics lesson.
NASA Astrophysics Data System (ADS)
Ding, Lin
2013-01-01
Previous studies of student epistemological beliefs about physics and learning physics focused on college and post-college students in Western countries. However, little is known about early-grade students in Asian countries. This paper reports Chinese middle and high school students' views about the nature of physics and learning physics, measured by the Colorado Learning Attitudes Survey about Science (CLASS). Two variables—school level and gender—are examined for a series of comparative analyses. Results show that although middle school students received fewer years of education in physics, they demonstrated more expert-like conceptions about this subject matter than high school students. Also, male students in general exhibited more expert-like views than their female counterparts. While such a gender difference remained constant across both middle and high schools, for the most part it was a small-size difference.
Using Game Play Scenarios to Go beyond the Traditional Written Test
ERIC Educational Resources Information Center
Pagnano-Richardson, Karen; Henninger, Mary L.
2010-01-01
The cognitive domain in physical education is an important component of quality physical education as demonstrated through Standard 2 of the National Standards for Physical Education which state that the physically educated person "demonstrates understanding of movement concepts, principles, strategies, and tactics as they apply to learning and…
How Computer-Assisted Teaching in Physics Can Enhance Student Learning
ERIC Educational Resources Information Center
Karamustafaoglu, O.
2012-01-01
Simple harmonic motion (SHM) is an important topic for physics or science students and has wide applications all over the world. Computer simulations are applications of special interest in physics teaching because they support powerful modeling environments involving physics concepts. This article is aimed to compare the effect of…
Making Visual Illustrations of Physics Accessible to Blind Students
ERIC Educational Resources Information Center
Pereira Torres, Josiane; Gonçalves Mendes, Enicéia
2017-01-01
The teaching of physics often involves the use of illustrations that complement and assist the understanding of a particular situation or physical phenomenon. Overall, the proper use of illustrations can maximize the learning and understanding of concepts and phenomena related to the teaching of science (physics, chemistry, biology) and…
A Conceptual Model of Observed Physical Literacy
ERIC Educational Resources Information Center
Dudley, Dean A.
2015-01-01
Physical literacy is a concept that is gaining greater acceptance around the world with the United Nations Educational, Cultural, and Scientific Organization (2013) recognizing it as one of several central tenets in a quality physical education framework. However, previous attempts to understand progression in physical literacy learning have been…
NASA Astrophysics Data System (ADS)
Hill, M.; Sharma, M. D.; Johnston, H.
2015-07-01
The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware of their learning processes. In particular, the representations-focussed modules offer more advantages.
A Proposal for a Research-based Constructivist Physics-and-Pedagogy Course
NASA Astrophysics Data System (ADS)
Zirbel, Esther
2006-12-01
This poster proposes a research-based science-and-pedagogy course that will combine the learning of fundamental physics concepts with methods of how to teach these concepts. Entitled “Understanding the Cosmos: From Antiquity to the Modern Day,” the course will explore how people learn science concepts through the ages, and from childhood through adulthood. This course will use the historical-constructivist approach to illustrate how our understanding of scientific phenomena advanced as we progressed from simple 2-dimensional thinking (starting with the flat Earth concept) to 3-D thinking (learning about the structure of the solar system) to 4-D thinking (understanding space-time and theories about the Big Bang). While transitioning from Impetus to Aristotelian to Newtonian to Einsteinian thinking, students will learn the essence of scientific thinking and inquiry. The overall goal of this course is to excite students in the process of scientific discovery, help them develop scientific reasoning skills, and provide them with fulfilling experiences of truly understanding science concepts. This will be done by employing active engagement techniques (e.g., peer tutoring, Socratic dialogue, and think/pair/share methods) and by challenging students to articulate their thoughts clearly and persuasively. This course could be of value for anybody wanting to enter the teaching profession or simply for anybody who would like to deepen their science understanding.
Different Versions of Assessment "for" Learning in the Subject of Physical Education
ERIC Educational Resources Information Center
Tolgfors, Björn
2018-01-01
Background: Assessment "for" learning (AfL) is now marketed across the Western world as a key to an improved goal attainment in most school subjects. The concept has also attracted increased interest in the international research field of physical education (PE) in recent years. According to (Chan, K., P. J. Hay, and R. Tinning. 2011.…
Spraker, Matthew B; Nyflot, Matthew; Hendrickson, Kristi; Ford, Eric; Kane, Gabrielle; Zeng, Jing
The safety and quality of radiation therapy have recently garnered increased attention in radiation oncology (RO). Although patient safety guidelines expect physicians and physicists to lead clinical safety and quality improvement (QI) programs, trainees' level of exposure to patient safety concepts during training is unknown. We surveyed active medical and physics RO residents in North America in February 2016. Survey questions involved demographics and program characteristics, exposure to patient safety topics, and residents' attitude regarding their safety education. Responses were collected from 139 of 690 (20%) medical and 56 of 248 (23%) physics RO residents. More than 60% of residents had no exposure or only informal exposure to incident learning systems (ILS), root cause analysis, failure mode and effects analysis (FMEA), and the concepts of human factors engineering. Medical residents had less exposure to FMEA than physics residents, and fewer medical than physics residents felt confident in leading FMEA in clinic. Only 27% of residents felt that patient safety training was adequate in their program. Experiential learning through practical workshops was the most desired educational modality, preferred over web-based learning. Residents training in departments with ILS had greater exposure to patient safety concepts and felt more confident leading clinical patient safety and QI programs than residents training in departments without an ILS. The survey results show that most residents have no or only informal exposure to important patient safety and QI concepts and do not feel confident leading clinical safety programs. This represents a gaping need in RO resident education. Educational programs such as these can be naturally developed as part of an incident learning program that focuses on near-miss events. Future research should assess the needs of RO program directors to develop effective RO patient safety and QI training programs. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
Quantum Mechanics for Everyone: Can it be done with Technology?
NASA Astrophysics Data System (ADS)
Zollman, Dean
2004-10-01
The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.
The clinical learning environment in nursing education: a concept analysis.
Flott, Elizabeth A; Linden, Lois
2016-03-01
The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.
The Web-based Module of Changes in Objects
NASA Astrophysics Data System (ADS)
Triayomi, R.
2017-09-01
To understand the changes of substances contained in such a kind of substance and substance characteristics then need a deep study of the concept. In this concept is expected to understand the changes of objects such as substance type and substance characteristics. Types of substances and characteristics of substances through physical changes and chemical changes and means of separation consisting of two or more substances. The principle of separation of the mixture is based on differences in physical properties of its constituents, such as substances, particle size, melting point, boiling point, magnetic properties, solubility, and so forth. This study aims to produce a web-based module of changes in objects that are valid, practical, and have effectiveness of student learning outcomes and activities on natural science learning. The experiment was conducted on 30 children in South Sumatera. The case of the development of the learning module of change of the object is influenced by the child’s understanding of the concept. Expected to be adapted by world teachers.
Assessing Learning in Small Sized Physics Courses
ERIC Educational Resources Information Center
Ene, Emanuela; Ackerson, Bruce J.
2018-01-01
We describe the construction, validation, and testing of a concept inventory for an "Introduction to Physics of Semiconductors" course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive…
Competency based teaching of college physics: The philosophy and the practice
NASA Astrophysics Data System (ADS)
Rajapaksha, Ajith; Hirsch, Andrew S.
2017-12-01
The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.
Method for Analyzing Students' Utilization of Prior Physics Learning in New Contexts
ERIC Educational Resources Information Center
McBride, Dyan L.; Zollman, Dean; Rebello, N. Sanjay
2010-01-01
In prior research, the classification of concepts into three types--descriptive, hypothetical and theoretical--has allowed for the association of students' use of different concept types with their level of understanding. Previous studies have also examined the ways in which students link concepts to determine whether students have a meaningful…
Reasoning, Attitudes, and Learning: What matters in Introductory Physics?
NASA Astrophysics Data System (ADS)
Bateman, Melissa; Pyper, Brian
2009-05-01
Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.
Development and evaluation of clicker methodology for introductory physics courses
NASA Astrophysics Data System (ADS)
Lee, Albert H.
Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments. Finally, we discovered that students need to have full access to the question sequences after lectures to reap the maximum benefit. Chapter 1 provides an introduction to our research. Chapter 2 provides a literature review relevant for our research. Chapter 3 discusses the creation of the clicker question sequences. Chapter 4 provides a picture of the validation process involving both physics experts and the introductory physics students. Chapter 5 describes how the sequences have been used with clickers in lectures. Chapter 6 provides the evaluation of the effectiveness of the clicker methodology. Chapter 7 contains a brief summary of research results and conclusions.
Neural Representations of Physics Concepts.
Mason, Robert A; Just, Marcel Adam
2016-06-01
We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.
Conceptual learning by miniature brains
Avarguès-Weber, Aurore; Giurfa, Martin
2013-01-01
Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as ‘same’, ‘different’, ‘larger than’, ‘better than’, among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as ‘same’, ‘different’, ‘above/below of’ or ‘left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations. PMID:24107530
NASA Astrophysics Data System (ADS)
Bonner, David
This teacher research study examined multimodality in relation to teaching and learning of waves in a high school physics class from a sociocultural perspective. Qualitative analysis of classroom multimodal discourse, using ethnographic and grounded theory techniques, was used to explore and document the co-construction of concepts and the grammatical aspects of the modalities in which these concepts were developed. The findings centered on the evolution of form and function of two prevalent modes that emerged--gesturing and diagramming, --and on the evolution of two major thematic patterns across various modes--understanding and measuring wave characteristics, as well as learning about relationships between various wave characteristics from experimental data. The study revealed that students developed conceptual understandings using different modalities that shaped their meaning making and articulation of ideas. Students' conceptions of the grammar (form and function) of a particular mode co-developed with both the concepts and the grammars of other modes. Each mode's meaning was not developed in isolation from each other; instead, the intertwining, transduction, combination, and hybridization of modes offered powerful opportunities for meaning making. As students transduced among modalities, each mode afforded unique meaning-making opportunities that contributed to the class's collective meaning and development of ideas. However, the sequence of students' transduction represented a learned practice developed discursively throughout the unit. Students' engagement in one mode influenced the ways in which students called upon and utilized other modes, and in some cases, modes were combined while retaining their individual grammars (combination), or blended together into new modes with their own grammar (hybridization). The findings of this study suggest several implications for practice. Availability of, and access to, multimodality, modeling the grammars of various modalities, and a teacher's careful planning and consideration of the sequence of transduction among modes are especially important to physics teaching and learning. Students' multimodal engagement with science ideas and the role that grammars of modes play in constructing meaning represent potentially fruitful areas for future science education research.
NASA Astrophysics Data System (ADS)
Utami, D. N.; Wulandari, H. R. T.
2016-11-01
The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
Using NASA Science News Articles to Enhance Learning in the Classroom
ERIC Educational Resources Information Center
Singh, Vandana
2011-01-01
In this author's experience, students of introductory physics and physical science courses are often under-confident of their ability to master physics concepts, many of them believing they simply cannot "get physics," however hard they might work at it. In addition, they have an impression that physics is not only dry and boring but also static…
NASA Astrophysics Data System (ADS)
Webb, D. J.
2017-08-01
Two active learning physics courses were taught and compared. The "concepts first" course was organized to teach only concepts in the first part of the class, the ultimate goal being to increase students' problem-solving abilities much later in the class. The other course was taught in the same quarter by the same instructor using the same curricular materials, but covered material in the standard (chapter-by-chapter) order. After accounting for incoming student characteristics, students from the concepts-first course scored significantly better in two outcome measures: their grade on the final exam and the grade received in their subsequent physics course. Moreover, in the concepts-first class course, students from groups underrepresented in physics had final exam scores and class grades that were indistinguishable from other students. Finally, students who took at least one concepts-first course in introductory physics were found to have significantly higher rates of graduation with a STEM major than students from this cohort who did not.
NASA Astrophysics Data System (ADS)
Agrest, Mikhail
2001-11-01
Presented work is dedicated to improvement of teaching-learning process and classroom time utilization. What should students carry with them from the classroom? Enthusiasm of their teacher, understanding of the basic concepts, understanding of what they should work on at home and, of course, some notes Teaching materials, which relate concepts of Physics to each other and to a variety of concepts in other areas of knowledge and human activity were developed. This approach is based on my experience of interacting with students with diversity of backgrounds, educational goals and objectives. Those include Business and Politics, Literature and Media, everyday family and College life, etc. A supplement workbook based on teaching materials was developed to be available for students to make notes during the lectures. This method was tested in Introductory Physics classes at the College of Charleston during some past years. The teaching-learning effectiveness has been increased and positive feedback was received from students and faculty at the College and some other Universities.
ERIC Educational Resources Information Center
Maivorsdotter, Ninitha; Lundvall, Suzanne
2009-01-01
In this article we explore aesthetic experience as an aspect of embodied learning with focus on the moving body. Our theoretical framework is mainly based on the work of John Dewey. In the first part of the article we identify our understanding of central concepts and draw some lines to their implication for physical education (PE). In the second…
Evolution of Theoretical Perspectives in My Research
NASA Astrophysics Data System (ADS)
Otero, Valerie K.
2009-11-01
Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.
ERIC Educational Resources Information Center
Okita, Sandra Y.
2014-01-01
This study examined whether developing earlier forms of knowledge in specific learning environments prepares students better for future learning when they are placed in an unfamiliar learning environment. Forty-one students in the fifth and sixth grades learned to program robot movements using abstract concepts of speed, distance and direction.…
ERIC Educational Resources Information Center
Anderson, Steven W.; Libarkin, Julie C.
2016-01-01
Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…
Problem based learning approaches to the technology education of physical therapy students.
Castro-Sánchez, Adelaida M; Aguilar-Ferrándiz, María Encarnación M E; Matarán-Peñarrocha, Guillermo A Ga; Iglesias-Alonso, Alberto A; Fernández-Fernández, Maria Jesus M J; Moreno-Lorenzo, Carmen C
2012-01-01
Problem-Based Learning (PBL) is a whole-curriculum concept. This study aimed to compare learning preferences and strategies between physical therapy students taught by PBL and those receiving conventional lectures on massage therapy, trauma physical therapy, and electrotherapy, hydrotherapy, and thermotherapy. This quasi-experimental study included 182 male and female students on physical therapy diploma courses at three universities in Andalusia (Spain). The Canfield Learning Skills Inventory (CLSI) was used to assess learning strategies and the Approaches to Study Skills Inventory for Students (ASSIST) to analyze study preferences. At the end of the academic year 2009/10, physical therapy students taught by PBL considered the most important learning strategies to be group work, study organization, relationship of ideas, and academic results. In comparison to conventionally taught counterparts, they considered that PBL reduced lack of purpose, memorizing without relating, the law of minimum effort, and fear of failure. Among these PBL students, the most highly rated study preferences were: organization of course tasks, cordial interaction with the teacher, learning by reading and images, and direct hands-on experience. For these physical therapy students, PBL facilitates learning strategies and study preferences in comparison to conventional teaching.
NASA Astrophysics Data System (ADS)
Handhika, J.; Cari, C.; Sunarno, W.; Suparmi, A.; Kurniadi, E.
2018-05-01
This research revealed the influence of project-based learning (PjBL) to increasing the level of the conception. The research method used the pre-experimental design with one group pre-test post-test. PjBL applied to students of physics education program of IKIP PGRI Madiun (23 Students). The test used to determine the level of conception is multiple choice tests and index of certainty. Activities on PjBL described. Obtained that the PjBL model can increase the level of conception and Critical thinking skills with the average normalized gain 0.49 and 0.57 (Medium category). It can be concluded that the PjBL could improve the level of conception and critical thinking ability of the students. Implementation of each model phase following learning objectives and needs analysis is the key to improve both.
Bioplasmic Forces: A New Concept of Readiness
ERIC Educational Resources Information Center
Ogletree, Earl J.
1973-01-01
Discusses the concept of bioplasmic forces--the foundation of human growth, regeneration of cells, and life energy--and the relationship between physical and mental development of the child, focusing on the theory that premature or forced learning may cause intellectual or academic retardation. (TO)
ERIC Educational Resources Information Center
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
ERIC Educational Resources Information Center
Tscholl, Michael; Lindgren, Robb
2016-01-01
This research investigates the social learning affordances of a room-sized, immersive, and interactive augmented reality simulation environment designed to support children's understanding of basic physics concepts in a science center. Conversations between 97 parent-child pairs were analyzed in relation to categories of talk through which…
Feel, Imagine and Learn!--Haptic Augmented Simulation and Embodied Instruction in Physics Learning
ERIC Educational Resources Information Center
Han, In Sook
2010-01-01
The purpose of this study was to investigate the potentials and effects of an embodied instructional model in abstract concept learning. This embodied instructional process included haptic augmented educational simulation as an instructional tool to provide perceptual experiences as well as further instruction to activate those previous…
Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies
ERIC Educational Resources Information Center
Johnson-Glenberg, Mina C.; Birchfield, David A.; Tolentino, Lisa; Koziupa, Tatyana
2014-01-01
These 2 studies investigate the extent to which an Embodied Mixed Reality Learning Environment (EMRELE) can enhance science learning compared to regular classroom instruction. Mixed reality means that physical tangible and digital components were present. The content for the EMRELE required that students map abstract concepts and relations onto…
Conceptual Change through Vicarious Learning in an Authentic Physics Setting
ERIC Educational Resources Information Center
Muller, Derek A.; Sharma, Manjula D.; Eklund, John; Reimann, Peter
2007-01-01
Recent research on principles of best practice for designing effective multimedia instruction has rarely taken into account students' alternative conceptions, which are known to strongly influence learning. The goal of this study was to determine how well students of quantum mechanics could learn "vicariously" by watching a student-tutor dialogue…
Using Tangible Companions for Enhancing Learning English Conversation
ERIC Educational Resources Information Center
Wang, Yi Hsuan; Young, Shelley S.-C.; Jang, Jyh-Shing Roger
2013-01-01
In this study, the researchers attempted to extend the concept of learning companions from the virtual world to the real physical environment and made a breakthrough in technique development of tangible learning robots. The aim of this study was to explore an innovative way by combining the speech recognition technology with educational robots in…
Physical Models that Provide Guidance in Visualization Deconstruction in an Inorganic Context
ERIC Educational Resources Information Center
Schiltz, Holly K.; Oliver-Hoyo, Maria T.
2012-01-01
Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…
Test of Understanding of Vectors: A Reliable Multiple-Choice Vector Concept Test
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2014-01-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended…
NASA Astrophysics Data System (ADS)
Ramsey, Gordon P.
2015-10-01
The uniting of two seemingly disparate subjects in the classroom provides an interesting motivation for learning. Students are interested in how these subjects can possibly be integrated into related ideas. Such is the mixture of physics and music. Both are based upon mathematics, which becomes the interlocking theme. The connecting physical properties of sound and music are waves and harmonics. The introduction of instruments, including the voice, to the musical discussion allows the introduction of more advanced physical concepts such as energy, force, pressure, fluid dynamics, and properties of materials. Suggestions on how to teach physics concepts in the context of music at many levels are presented in this paper.
NASA Astrophysics Data System (ADS)
Vo, Phong T.
2013-11-01
Hands-on learning is very effective in teaching physical concepts to students. Applying the principles they learn to a real-life situation, students are more likely to retain this knowledge, especially when it is presented in a stimulating format. With this in mind, we present here a high school physics project in which students apply basic hydrostatics to construct corrugated cardboard boats capable of supporting two individuals across the length of a high school pool.
Test of understanding of vectors: A reliable multiple-choice vector concept test
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2014-06-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.
NASA Astrophysics Data System (ADS)
Zhou, Qiaoying
Academic achievement and student participation in physics are lower than desired. Research has shown that there is a shortage of college students entering science and technology fields such as physics. E-learning may provide the technology-oriented Net Generation learner an option for taking courses such as physics in a course modality with which they are most comfortable thus garnering more participation and higher academic achievement. A quantitative ex-post facto study was performed to compare face-to-face and E-learning modalities on course completion and physics achievement for an entire introductory physics course. The theoretical framework for this study was based on the constructivist theory of education that implies a student-centered learning process. The sample consisted of 116 students enrolled in introductory physics courses at four 2-year community colleges in Texas. Course completion, SAT scores, Force Concept Inventory examination scores, as well as demographic information and employment information were examined. Linear and ordinal multiple regression analysis were used to determine if course modality is predictive of physics achievement while controlling for general scholastic aptitude, current employment, the presence of children in the home, and teacher evaluations. The results showed that students in the E-learning course performed better on the Force Concept Inventory than those in the traditional course both in the multiple regression analysis, beta = .61, p < .001, and in the ordinal regression analysis, Wald(1) = 18.83, p < .001. A chi-square test was used to determine if course completion rates differ between students in the two course modalities. The results showed no difference in course completion rates between students in the two course modalities, chi 2(1, n = 116) = 1.02, p = .312. It was concluded that students in an E-learning course modality had higher physics achievement but were no more likely to complete the introductory physics course than students were in a face-to-face modality. It was recommended that other colleges and universities should develop and test E-learning courses for introductory physics, that larger sample sizes should be used in future studies, and that additional outcome variables including the likelihood that a student chooses physics as a major or the likelihood that a student completes a physics degree should be examined.
Evaluating learning and teaching using the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Zitzewitz, Paul
1997-04-01
Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.
A Taxonomy of Introductory Physics Concepts.
NASA Astrophysics Data System (ADS)
Mokaya, Fridah; Savkar, Amit; Valente, Diego
We have designed and implemented a hierarchical taxonomic classification of physics concepts for our introductory physics for engineers course sequence taught at the University of Connecticut. This classification can be used to provide a mechanism to measure student progress in learning at the level of individual concepts or clusters of concepts, and also as part of a tool to measure effectiveness of teaching pedagogy. We examine our pre- and post-test FCI results broken down by topics using Hestenes et al.'s taxonomy classification for the FCI, and compare these results with those found using our own taxonomy classification. In addition, we expand this taxonomic classification to measure performance in our other course exams, investigating possible correlations in results achieved across different assessments at the individual topic level. UCONN CLAS(College of Liberal Arts and Science).
Creativity and Introductory Physics
NASA Astrophysics Data System (ADS)
Guilaran, Ildefonso (Fonsie) J.
2012-01-01
When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal creativity assignment in my physics education did not come until well into my graduate years when my graduate advisor demanded that I write a prospectus for my dissertation. I have often lamented the fact that the first formal assignment in which I was required to be creative, take responsibility for my own learning and research objectives, and see them to completion during my physics education came so late, considering the degree to which creative attributes are celebrated in the personalities of great physicists. In this essay I will apply some of the basic concepts as defined by creativity-related psychology literature to physics pedagogy, relate these concepts to the exchanges in this journal concerning Michael Sobel's paper "Physics for the Non-Scientist: A Middle Way," and provide the framework for a low-overhead creativity assignment that can easily be implemented at all levels of physics education.
Students’ profile of heat and temperature using HTCE in undergraduate physics
NASA Astrophysics Data System (ADS)
Arya Nugraha, Dewanta; Suparmi, A.; Winarni, Retno; Suciati
2017-11-01
Understanding heat and temperature are important to make strong fundamental of physics before understanding the other subject materials. This research aims to describe the students’ conception of heat and temperature using Heat and Temperature Conceptual Evaluation (HTCE) developed by Thornton and Sokoloff. This research subjects are 10 students of 3rd semester and 24 students of 5th semester Bachelor of Physics. The data collection methods are test and interview. The result are the students’ conception of heat and temperature, rate of cooling, calorimetry, rate of heat transfer, perception of hotness, specific heat capacity, change of phase, thermal conductivity. Students are getting difficult on understanding the concept of heat and temperature especially the concept of rate of cooling, change of phase, and rate of heat transfer. The average students’ correct answer is 44.88% of 34 students. The lowest mean score is the concept of RHT with the percentage of 17.65%. This research could be used to develop learning media on basic physics course.
NASA Astrophysics Data System (ADS)
Usmeldi
2018-05-01
The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.
Expanding the Basic Science Debate: The Role of Physics Knowledge in Interpreting Clinical Findings
ERIC Educational Resources Information Center
Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L.; Skye, Aimee L.; Woods, Nicole N.
2012-01-01
Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical…
ERIC Educational Resources Information Center
Ramlo, Susan
2012-01-01
Teacher attitudes affect their instruction such that positive teacher attitudes enhance the teaching and learning process. The purpose of this study was to explore inservice science teachers' views of learning physics within the context of a professional development experience and to investigate the relationship between those views and the…
ERIC Educational Resources Information Center
Nikolaki, Evi; Koutsouba, Maria I.
2012-01-01
In distance education both the physical separation between learner and instructor, and the use of technology create an educational environment that is characterized by learning autonomy and the learner's active involvement. Because of these, self-regulated learning constitutes an inseparable concept of distance education. This study explores the…
Hybrid E-Textbooks as Comprehensive Interactive Learning Environments
ERIC Educational Resources Information Center
Ghaem Sigarchian, Hajar; Logghe, Sara; Verborgh, Ruben; de Neve, Wesley; Salliau, Frank; Mannens, Erik; Van de Walle, Rik; Schuurman, Dimitri
2018-01-01
An e-TextBook can serve as an interactive learning environment (ILE), facilitating more effective teaching and learning processes. In this paper, we propose the novel concept of an EPUB 3-based Hybrid e-TextBook, which allows for interaction between the digital and the physical world. In that regard, we first investigated the gap between the…
Physical experience enhances science learning.
Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L
2015-06-01
Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.
Authentic Teaching of Fitness Concepts to Children.
ERIC Educational Resources Information Center
Sander, Allan N.; Ratliffe, Thomas; Kane, Jennifer
This paper stresses the importance of teaching aerobic and muscle fitness concepts as part of a health-related fitness curriculum in physical education, recommending outcomes for teaching aerobic endurance and muscle/strength endurance in kindergarten through sixth grade. It describes important learning aid materials and presents national…
The Earth's Magnetic Field Fuels Inter-Disciplinary Education
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq; Biller, R. Dale; Wilson, Thomas H.
2015-01-01
There is no doubt that integrated concepts inspire students and take learning to a new level. As we fly, we fly through the magnetic field of the Earth. We used the concepts involved in flying to develop an exercise that bonds geology, physics and life sciences.
ERIC Educational Resources Information Center
Yeung, Alexander Seeshing; Kuppan, Loganantham; Foong, See Kit; Wong, Darren Jon Sien; Kadir, Munirah Shaik; Lee, Paul Choon Keat; Yau, Che Ming
2010-01-01
Background: Students' academic self-concepts are known to be domain specific. Researchers have also identified two related components of self-concept:cognitive (how competent students feel about a subject domain) and affective (their interest in the subject). This paper examines whether both components are domain specific. Research has also shown…
Teaching the Concept of Resonance with the Help of a Classical Guitar
NASA Astrophysics Data System (ADS)
Kasar, M. Kaan; Yurumezoglu, Kemal; Sengoren, Serap Kaya
2012-12-01
Resonance refers to the vibrations of larger amplitude that are produced under the effect of a harmonic driving force. Although resonance is an essential concept behind many events happening in nature, students usually have difficulty in learning and explaining the phenomenon. Various demonstrations are carried out in physics classes to clarify the concept of resonance.2-6
Critical Thinking in Physical Geography: Linking Concepts of Content and Applicability
ERIC Educational Resources Information Center
Wolf, Joy; Stanton, Michael; Gellott, Laura
2010-01-01
This study investigates critical thinking in a Physical Geography course and illustrates how students can understand physical geography in the context of their world. As a general education science course, most students are in non-science disciplines and feel disconnected from the material. By using exercises that challenge learning and concept…
Engagement with Physics across Diverse Festival Audiences
ERIC Educational Resources Information Center
Roche, Joseph; Stanley, Jessica; Davis, Nicola
2016-01-01
Science shows provide a method of introducing large public audiences to physics concepts in a nonformal learning environment. While these shows have the potential to provide novel means of educational engagement, it is often difficult to measure that engagement. We present a method of producing an interactive physics show that seeks to provide…
A Personalized Study Method for Learning University Physics
ERIC Educational Resources Information Center
Aravind, Vasudeva Rao; Croyle, Kevin
2017-01-01
Students learn scientific concepts and mathematical calculations relating to scientific principles by repetition and reinforcement. Teachers and instructors cannot practically spend the long time required during tutorials to patiently teach students the calculations. Usually, teachers assign homework to provide practice to students, hoping that…
Beyond Concepts: Transfer From Inquiry-Based Physics To Elementary Classrooms
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.; Otero, Valerie K.
2007-01-01
Physics education researchers have created specialized physics courses to meet the needs of elementary teachers. While there is evidence that such courses help teachers develop physics content knowledge, little is known about what teachers transfer from such courses into their teaching practices. In this study, we examine how one elementary teacher changed her questioning strategies after learning physics in a course for elementary teachers.
How Effective Is Our Teaching?
NASA Astrophysics Data System (ADS)
Wyckoff, S.
2002-05-01
More than 90% of U.S. university introductory physics courses are taught using lecture methods in spite of the large amount of research indicating that interactive teaching is considerably more effective. A brief overview of physics education research will be given, together with relevant connections with astronomy education research. Large enrollment classrooms have in the past presented obstacles to converting from lecture to interactive teaching. However, classroom communication systems (CCS) now provide a cost-effective way to convert any science classroom into an interactive learning environment. A pretest-posttest study using control groups of ten large enrollment introductory physics courses will be described. A new instrument, the Physics Concept Survey (PCS), developed to measure student understanding of basic concepts will be described, together with a classroom observation instrument, the Reformed Teaching Observation Protocol (RTOP), for measuring the extent that interactive teaching is used in a science classroom. We find that student conceptual understanding was enhanced by a factor of three in the interactive classrooms compared with the traditional lecture (control) courses. Moreover, a correlation between the PCS normalized gains and the RTOP scores is indicative that the interaction in the classrooms is the cause of the students' improved learning of basic physics concepts. This research was funded by the NSF (DUE 9453610).
NASA Astrophysics Data System (ADS)
Oktavianty, E.; Haratua, T. M. S.; Anuru, M.
2018-05-01
The purpose of this study is to compare the effects of various remediation practices in reducing the number of student misconceptions on physics concepts. This research synthesizes 68 thesis undergraduate students of physics education which are published in Tanjungpura University library 2009-2016 period. In this study, the guidance in the form of checklist in conducting the study arranged to facilitate the understanding and assessment of the scientific work. Based on the analysis result, the average of effect size of all the synthesized thesis is 1.13. There are six forms of remedial misconceptions performed by physics education students, such as re-learning, feedback, integration of remediation in learning, physical activity, utilization of other learning resources and interviews. In addition, sampling techniques and test reliability were have contributed to the effect size of the study. Therefore, it is expected that the results of this study can be considered in preparing the remediation of misconceptions on physics learning in the future.
ERIC Educational Resources Information Center
Spevak, Arlene
2008-01-01
The algebraic concepts and major ideas that govern Newton's laws of motion can often be a challenge for the majority of ninth-grade students. Therefore, to make learning these concepts less task-oriented and more enjoyable, the author developed lessons that allow students to construct and express their understanding of these ideas through…
Mikhail Geraskov (1874-1957): Methodological Concepts of Learning Physics
ERIC Educational Resources Information Center
Ilieva, Mariyana
2014-01-01
Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions…
Do Concept Inventories Actually Measure Anything?
ERIC Educational Resources Information Center
Wallace, Colin S.; Bailey, Janelle M.
2010-01-01
Although concept inventories are among the most frequently used tools in the physics and astronomy education communities, they are rarely evaluated using item response theory (IRT). When IRT models fit the data, they offer sample-independent estimates of item and person parameters. IRT may also provide a way to measure students' learning gains…
Diagnosing Alternative Conceptions of Fermi Energy among Undergraduate Students
ERIC Educational Resources Information Center
Sharma, Sapna; Ahluwalia, Pardeep Kumar
2012-01-01
Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher…
A Qualitative Approach to Electricity.
ERIC Educational Resources Information Center
Haertel, Hermann
In the teaching of physics, the study of electricity and magnetism typically follows the introduction of the basic concepts of mechanics. However, there are some new concepts associated with electromagnetic fields that seem at first to the student to be unrelated to, or even incompatible with, Newton's third law as learned in mechanics.…
Helping Students Understand Challenging Topics in Science through Ontology Training
ERIC Educational Resources Information Center
Slotta, James D.; Chi, Michelene T. H.
2006-01-01
Chi (2005) proposed that students experience difficulty in learning about physics concepts such as light, heat, or electric current because they attribute to these concepts an inappropriate ontological status of material substances rather than the more veridical status of emergent processes. Conceptual change could thus be facilitated by training…
Concept confusion and concept discernment in basic magnetism using analogical reasoning
NASA Astrophysics Data System (ADS)
Lemmer, Miriam; Nicodimus Morabe, Olebogeng
2017-07-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.
A Tangible Approach to Concept Mapping
NASA Astrophysics Data System (ADS)
Tanenbaum, Karen; Antle, Alissa N.
2009-05-01
The Tangible Concept Mapping project investigates using a tangible user interface to engage learners in concept map creation. This paper describes a prototype implementation of the system, presents some preliminary analysis of its ease of use and effectiveness, and discusses how elements of tangible interaction support concept mapping by helping users organize and structure their knowledge about a domain. The role of physical engagement and embodiment in supporting the mental activity of creating the concept map is explored as one of the benefits of a tangible approach to learning.
Physical-Education Facilities/Recreation Centers.
ERIC Educational Resources Information Center
American School & University, 2003
2003-01-01
Presents K-12 and college physical education/recreation facilities considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting unique concepts and ideas. For each citation, the article offers information on the firm,…
Learning Physics in a Water Park
ERIC Educational Resources Information Center
Cabeza, Cecilia; Rubido, Nicolás; Martí, Arturo C.
2014-01-01
Entertaining and educational experiments that can be conducted in a water park, illustrating physics concepts, principles and fundamental laws, are described. These experiments are suitable for students ranging from senior secondary school to junior university level. Newton's laws of motion, Bernoulli's equation, based on the conservation of…
NASA Astrophysics Data System (ADS)
Franco, Gina M.
The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing and conceptual change when learning about physics concepts through text. Specifically, I manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with individuals' epistemic beliefs to facilitate or constrain learning. In accordance with definitions from Royce's (1983) framework of psychological epistemology, texts were developed to present Newtonian concepts in either a rational or a metaphorical format. Seventy-five undergraduate students completed questionnaires designed to measure their epistemic beliefs and their misconceptions about Newton's laws of motion. Participants then read the first of two instructional texts (in either a rational or metaphorical format), and were asked to think aloud while reading. After reading the text, participants completed a recall task and a post-test of selected items regarding Newtonian concepts. These steps were repeated with a second instructional text (in either a rational or metaphorical format, depending on which format was assigned previously). Participants' think-aloud sessions were audio-recorded, transcribed, and then blindly coded, and their recalls were scored for total number of correctly recalled ideas from the text. Changes in misconceptions were analyzed by examining changes in participants' responses to selected questions about Newtonian concepts from pretest to posttest. Results revealed that when individuals' epistemic beliefs were congruent with the knowledge representations in their assigned texts, they performed better on both online measures of learning (e.g., use of processing strategies) and offline products of learning (e.g., text recall, changes in misconceptions) than when their epistemic beliefs were incongruent with the knowledge representations. These results have implications for how researchers conceptualize epistemic beliefs and are in line with contemporary views regarding the context sensitivity of individuals' epistemic beliefs. Moreover, the findings from this study not only support current theory about the dynamic and interactive nature of conceptual change, but also advance empirical work in this area by identifying knowledge representations as a text characteristic that may play an important role in the change process.
NASA Astrophysics Data System (ADS)
Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew
2014-06-01
We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the course primarily for their own interest outperformed students who took the course primarily because it was required, both on the Force Concept Inventory and on the final examination; students who took a senior-level high school physics course outperformed students who did not, also both on the Force Concept Inventory and on the final exam. Students who took the course for their own interest and took high school physics outperformed students who took the course because it was required and did not take high school physics by a wide margin. However, the normalized gain on the Force Concept Inventory was the same within uncertainties for all groups and subgroups of students.
ASSOCIATIVE CONCEPT LEARNING IN ANIMALS
Zentall, Thomas R.; Wasserman, Edward A.; Urcuioli, Peter J.
2014-01-01
Nonhuman animals show evidence for three types of concept learning: perceptual or similarity-based in which objects/stimuli are categorized based on physical similarity; relational in which one object/stimulus is categorized relative to another (e.g., same/different); and associative in which arbitrary stimuli become interchangeable with one another by virtue of a common association with another stimulus, outcome, or response. In this article, we focus on various methods for establishing associative concepts in nonhuman animals and evaluate data documenting the development of associative classes of stimuli. We also examine the nature of the common within-class representation of samples that have been associated with the same reinforced comparison response (i.e., many-to-one matching) by describing manipulations for distinguishing possible representations. Associative concepts provide one foundation for human language such that spoken and written words and the objects they represent become members of a class of interchangeable stimuli. The mechanisms of associative concept learning and the behavioral flexibility it allows, however, are also evident in the adaptive behaviors of animals lacking language. PMID:24170540
ERIC Educational Resources Information Center
Kearney, Matthew
2004-01-01
This paper focuses on the use of multimedia-based predict--observe--explain (POE) tasks to facilitate small group learning conversations. Although the tasks were given to pairs of students as a diagnostic tool to elicit their pre-instructional physics conceptions, they also provided a peer learning opportunity for students. The study adopted a…
ERIC Educational Resources Information Center
Light, Richard L.; Kentel, Jeanne Adéle
2015-01-01
Background: Interest in the use of learning theory to inform sport and physical-education pedagogy over the past decade beyond games and team sports has been limited. Purpose: Following on from recent interest within the literature in Eastern philosophic traditions, this article draws on the Japanese concept of "mushin" and complex…
ERIC Educational Resources Information Center
Bruun, Jesper; Brewe, Eric
2013-01-01
The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the…
ERIC Educational Resources Information Center
Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John
2014-01-01
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…
ERIC Educational Resources Information Center
Alias, Norlidah; Siraj, Saedah; DeWitt, Dorothy; Attaran, Mohammad; Nordin, Abu Bakar
2013-01-01
The main objective of this study is to implement and evaluate the Physics module based on technology and learning style using students' retrospective evaluation. Physics has always been thought of as the most difficult subject as it involves abstract concepts. Research has shown that technology has the potential to increase understanding of…
Perceptions and Practices of Adapted Physical Educators on the Teaching of Social Skills
ERIC Educational Resources Information Center
Samalot-Rivera, Amaury; Porretta, David L.
2009-01-01
The purpose of this study was to determine adapted physical educators' perceptions and practices about teaching social skills to students with disabilities. A questionnaire based on Bandura's social learning theory concept of modeling was developed and mailed to an entire frame of 426 adapted physical education teachers in the state of Ohio. Face…
Relativity in a Rock Field: A Study of Physics Learning with a Computer Game
ERIC Educational Resources Information Center
Carr, David; Bossomaier, Terry
2011-01-01
The "Theory of Special Relativity" is widely regarded as a difficult topic for learners in physics to grasp, as it reformulates fundamental conceptions of space, time and motion, and predominantly deals with situations outside of everyday experience. In this paper, we describe embedding the physics of relativity into a computer game, and…
The Use of Metacognitive Knowledge Patterns to Compose Physics Higher Order Thinking Problems
ERIC Educational Resources Information Center
Abdullah, Helmi; Malago, Jasruddin D.; Bundu, Patta; Thalib, Syamsul Bachri
2013-01-01
The main aspect in physics learning is the use of equation in problem solving. Equation is a mathematical form of theoretical statements, principles, and laws in physics, and describes a relationship between one concept to another by using a specific symbol. In a context of knowledge dimension, equation is a procedural knowledge. Students are…
Physical terms and leisure time activities
NASA Astrophysics Data System (ADS)
Valovičová, Ľubomíra; Siptáková, Mária; ŠtubÅa, Martin
2017-01-01
People have to educate not only in school but also outside it. One approach to acquire new knowledge are leisure activities such as hobby groups or camps. Leisure activities, more and more seem to be the appropriate form for informal learning of physics concepts. Within leisure activities pupils have the possibility to acquire new concepts in unusual and interesting way. It is possible to inspire their intrinsic motivation on the matter or the phenomenon which is the aim of all teachers. This article deals with the description of and insights on acquisition of the concept of uniform and non-uniform rectilinear movement during a physics camp where pupils had the opportunity to use modern technologies which are despite of modernization of education still unconventional teaching methods in our schools.
An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris
2011-01-01
This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…
ERIC Educational Resources Information Center
Koul, Ravinder; Roy, Laura; Lerdpornkulrat, Thanita
2012-01-01
Researchers have reported persuasive evidence that students' perceptions of their classroom learning environment account for significant variance in cognitive and affective outcomes (e.g. intrinsic motivation, self-concept, liking for particular subjects and students' intention to drop out). The study reported in this paper investigated the…
ERIC Educational Resources Information Center
Liang, Ling L.; Gabel, Dorothy L.
2005-01-01
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science) in improving prospective teachers' understanding of science concepts, in fostering a learning environment supporting conceptual understanding, and in promoting positive attitudes toward learning and teaching science and chemistry in…
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.
Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew
2016-08-01
This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.
The use of Virtual Analogy Simulation (VAS) in physics learning
NASA Astrophysics Data System (ADS)
Faizin, M. Noor; Samsudin, A.
2018-05-01
The purpose of this research is to explore the use of VAS software in electrical dynamic learning in junior high student, so as to obtain an overview of this software consistency in help students build a scientific conception. This research was administered via research and Development (R & D) with the design of embedded experimental models. The respondents which were involved in this research were 60 students of ninth grade in one of junior high schools in Kudus central java. The improving process of students’ concept is examined based on normalized gain analysis from pretest and posttest scores. The result of this research shows that there was difference between learning using conventional learning (power point software) with VAS software. VAS is more effective to assist students in understanding the electrical dynamic concept shown with N-gain of 0.36, or 36 % were included in the medium category, whereas the conventional learning with N-gain of 0.28, or 28%.
Important learning factors in high- and low-achieving students in undergraduate biomechanics.
Hsieh, ChengTu; Knudson, Duane
2017-07-21
The purpose of the present study was to document crucial factors associated with students' learning of biomechanical concepts, particularly between high- and-low achieving students. Students (N = 113) from three introductory biomechanics classes at two public universities volunteered for the study. Two measures of students' learning were obtained, final course grade and improvement on the Biomechanics Concept Inventory version 3 administered before and after the course. Participants also completed a 15-item questionnaire documenting student learning characteristics, effort, and confidence. Partial correlations controlling for all other variables in the study, confirmed previous studies that students' grade point average (p < 0.01), interest in biomechanics, (p < 0.05), and physics credits passed (p < 0.05) are factors uniquely associated with learning biomechanics concepts. Students' confidence when encountering difficult biomechanics concepts was also significantly (p < 0.05) associated with final grade. There were significant differences between top 15% and bottom 15% achievers on these variables (p < 0.05), as well as on readings completed, work to pay for college per week, and learning epistemology. Consequently, instructors should consider strategies to promote students' interest in biomechanics and confidence in solving relevant professional problems in order to improve learning for both low- and high-ability students.
Cookbook Procedures in MBL Physics Exercises.
ERIC Educational Resources Information Center
Royuk, Brent; Brooks, David W.
2003-01-01
Presents results of a controlled experiment comparing the conceptual mechanics learning gains as measured by the Force Concept Inventory (FCI) between two laboratory groups. One group completed cookbook labs while the other completed Interactive-Engagement (IE) labs in RealTime Physics. Suggests that laboratory activities should engage students in…
Project Physics Teacher Guide 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Teaching procedures of Project Physics Unit 1 are presented in this manual to help teachers make effective use of learning materials. Curriculum objectives are discussed in connection with instructional materials, suggested year time schedules, multi-media schedules, schedule blocks, resource charts, and experiment summaries. Brief analyses are…
Factors Influencing Learning of Classical Mechanics.
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
Beginning college physics students' misconceptions about moving objects, their mathematics skills, and formal reasoning ability, are all believed to be related to their achievement in physics. It is hypothesized that students whose knowledge structures include misconceptions that are in conflict with concepts in the lectures and text will have…
The DIAGNOSER project: combining assessment and learning.
Thissen-Roe, Anne; Hunt, Earl; Minstrell, Jim
2004-05-01
DIAGNOSER is an Internet-based tool for classroom instruction. It delivers continuous formative assessment and feedback to high school physics students and their teachers about the correct and incorrect concepts and ideas the students may hold regarding physical situations. That is, it diagnoses misconceptions that underlie wrong answers of students, such as a confusion of velocity with acceleration. We use data about patterns of student responses, particularly consistency of errors from question to question, to improve the system's understanding of student concepts.
Inquiry learning: Students' perception of light wave phenomena in an informal environment
NASA Astrophysics Data System (ADS)
Ford, Ken
This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the science concepts of light wave phenomena by the way they responded to the researcher's interview questions. Implications from the study suggested that further study be carried out on the learning process in an informal science setting and should be supported by corporations, businesses, educational institutions, and organizations. Although the findings from this study aided in the development of a structured approach that enhanced student motivation, interest, and learning about light waves in physics/physical science there is still a need to do more research in this area.
Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change
NASA Astrophysics Data System (ADS)
Taylor, Dale L.; Booth, Shirley
2015-05-01
Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.
NASA Astrophysics Data System (ADS)
Manurung, Sondang; Demonta Pangabean, Deo
2017-05-01
The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.
Uncovering the Hidden Meaning of Cross-Curriculum Comparison Results on the Force Concept Inventory
ERIC Educational Resources Information Center
Ding, Lin; Caballero, Marcos D.
2014-01-01
In a recent study, Caballero and colleagues conducted a large-scale evaluation using the Force Concept Inventory (FCI) to compare student learning outcomes between two introductory physics curricula: the Matter and Interactions (M&I) mechanics course and a pedagogically-reformed-traditional-content (PRTC) mechanics course. Using a conventional…
Development of Three-Tier Heat, Temperature and Internal Energy Diagnostic Test
ERIC Educational Resources Information Center
Gurcay, Deniz; Gulbas, Etna
2015-01-01
Background: Misconceptions are major obstacles to learning physics, and the concepts of heat and temperature are some of the common misconceptions that are encountered in daily life. Therefore, it is important to develop valid and reliable tools to determine students' misconceptions about basic thermodynamics concepts. Three-tier tests are…
Teaching the Concept of Resonance with the Help of a Classical Guitar
ERIC Educational Resources Information Center
Kasar, M. Kaan; Yurumezoglu, Kemal; Sengoren, Serap Kaya
2012-01-01
Resonance refers to the vibrations of larger amplitude that are produced under the effect of a harmonic driving force. Although resonance is an essential concept behind many events happening in nature, students usually have difficulty in learning and explaining the phenomenon. Various demonstrations are carried out in physics classes to clarify…
NASA Astrophysics Data System (ADS)
Schwindling, Jerome
2010-04-01
This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Spherical Rare-Earth Magnets in Introductory Physics
ERIC Educational Resources Information Center
Adams, Al
2007-01-01
Permanent magnets have long been used in both traditional laboratory exercises and in inquiry-based learning activities. These pedagogical applications are typically timed to correspond to the early coverage of magnetism in the second-semester sequence of introductory physics. At the initial level the concepts relate to the magnetic field of the…
Evaluation of Virtual Laboratory Package on Nigerian Secondary School Physics Concepts
ERIC Educational Resources Information Center
Falode, Oluwole Caleb; Gambari, Amosa Isiaka
2017-01-01
The study evaluated accessibility, flexibility, cost and learning effectiveness of researchers-developed virtual laboratory package for Nigerian secondary school physics. Based on these issues, four research questions were raised and answered. The study was a quantitative-based evaluation research. Sample for the study included 24 physics…
Health and Physical Activity Content Knowledge of Pima Children
ERIC Educational Resources Information Center
Brusseau, Timothy; Kulinna, Pamela H.; Cothran, Donetta J.
2011-01-01
This study grounded in constructivist theory and the public health literature investigated Native American children's knowledge related to physical activity and healthy behavior concepts. Learning tends to be more meaningful and relevant when teachers take into consideration the students' knowledge and experiences. Therefore it is important to…
Strategies for Facilitating Conceptual Change in School Physics
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Akhilesh, P. T.
2010-01-01
Learning occurs through various processes. Among these processes, conceptual change has a pivotal part. This article discusses briefly conceptual change in physics. Anchoring on Kuhn's original explanation of theory change in science, this article elaborates especially on the influence of children's science concepts in general, and pre-conceptions…
Hundertmark, Jan; Apondo, Sandra Karina; Schultz, Jobst-Hendrik
2018-01-01
Background: Direct patient contact is crucial in learning important interactional and examination skills. However, medical students have limited opportunity to self-responsibly practise these skills in authentic clinical settings and typically receive insufficient feedback on their performance. We developed a novel single-session ambulatory teaching concept (Heidelberg Student Ambulatory training, "HeiSA") to prepare students more adequately for clinical-practical responsibilities. Methods: To identify challenges and target group needs, we reviewed current literature and consulted an expert group of faculty lecturers and training researchers. The resulting course concept was put into practice at the University Hospital's general-internistic outpatient department and evaluated in a pilot phase (winter term 2010, ten participants) and a main project phase (summer and winter terms 2011, 14 and 21 participants, respectively). Third and fourth-year students autonomously take a new patient's medical history and conduct a complete physical examination in one hour under supervision, followed by extensive preceptor feedback. To assess learning achievements, participants and a control group self-rated their communication and examination skills before and (participants only) after the session on six-point Likert scales (1=completely able, 6=completely unable). The preceptor also evaluated the participants' performance. Finally, all stakeholders re-evaluated the course concept. Results: HeiSA is a feasible training concept and accepted by staff members and students. It provides opportunities to practise clinical skills in a relevant, authentic learning environment with extensive feedback. Participants report improved anamnesis (0.27±0.51, p =.003) and physical examination (0.25±0.41, p =.008) skills. The preceptor evaluated students' performance to be generally high, with ratings ranging from 1.40±0.55 (item: the student does not interrupt the patient) to 2.51±0.89 (item: psychosocial anamnesis). Conclusions: HeiSA is a viable course concept for teaching anamnesis and physical examination skills. It integrates student teaching into routine care and can potentially be adapted to other outpatient departments.
ERIC Educational Resources Information Center
Larsson, Håkan; Nyberg, Gunn
2017-01-01
Background: Movement is key in physical education, but the educational value of moving is sometimes obscure. In Sweden, recent school reforms have endeavoured to introduce social constructionist concepts of knowledge and learning into physical education, where the movement capabilities of students are in focus. However, this means introducing a…
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
Investigating and improving introductory physics students’ understanding of symmetry and Gauss’s law
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2018-01-01
We discuss an investigation of student difficulties with symmetry and Gauss’s law and how the research on students’ difficulties was used as a guide to develop a tutorial related to these topics to help students in the calculus-based introductory physics courses learn these concepts. During the development of the tutorial, we interviewed students individually at various stages of development and administered written tests in the free-response and multiple-choice formats on these concepts to learn about common student difficulties. We also obtained feedback from physics instructors who teach introductory physics courses regularly in which these concepts were covered. The students in several ‘equivalent’ sections worked on the tutorial after traditional lecture-based instruction. We discuss the performance of students on the written pre-test (administered after lecture-based instruction in relevant concepts) and post-test given after students worked on the tutorial. We find that on the pre-test, all sections of the course performed comparably regardless of the instructor. Also, on average, student performance on the post-test after working on the tutorial is significantly better than on the pre-test after lecture-based instruction. We also compare the post-test performance of introductory students in sections of the course in which the tutorial was used versus not used and find that sections in which students engaged with the tutorial outperformed those in which students did not engage with it.
When Physical and Digital Worlds Collide: A Tool for Early Childhood Learners
ERIC Educational Resources Information Center
Parton, Becky Sue; Hancock, Robert
2008-01-01
Very young children learn by exploring their surroundings, mostly by playing, during which they construct mental representations of the world. In fact, prior to Piaget's formal operational stage, children need concrete, hands-on experiences rather than abstract concepts to support more natural learning, developing, and thinking. In terms of…
Impact of Engaging Teaching Model (ETM) on Students' Attendance
ERIC Educational Resources Information Center
Bukoye, Oyegoke Teslim; Shegunshi, Anjali
2016-01-01
Non-attendance in Higher Education is not a new concept. In recent years with the exponential growth in digital learning, physical attendance has become a more complex issue. Educators are continually advocating an engaging teaching approach for students as a means of enhancing learning. This on-going study focuses on exploring the existing issues…
ERIC Educational Resources Information Center
Peng, Hsinyi; Chou, Chien; Chang, Chun-Yu
2008-01-01
Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is evolving. In this study, we re-visit the interactivity concept and its applications for interactive function design in a ubiquitous-learning system (ULS). Further, we compare interactivity dimensions and…
Specificity, Transfer, and the Development of Expertise
ERIC Educational Resources Information Center
Brookes, David T.; Ross, Brian H.; Mestre, Jose P.
2011-01-01
In this paper we present the results of two experiments designed to understand how physics students' learning of the concept of refraction is influenced by the cognitive phenomenon of "specificity." In both experiments participants learned why light bends as it travels from one optical medium to another with an analogy made to a car…
NASA Astrophysics Data System (ADS)
Zulfikar, Aldi; Girsang, Denni Yulius; Saepuzaman, Duden; Samsudin, Achmad
2017-05-01
Conceptual understanding is one of the most important aspects in the study of Physics because of it useful to understand principles behind certain phenomenon which happened. An innovative method was needed to strengthen and enhance student's conceptual understanding, especially regarding the abstract subject such as magnetic field. For this reason, worksheet and exploration sheet based on PDEODE*E (Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) that uses Gauss Meter application as the smartphone technology has been designed to answer the problem. The magnetic field strength in different mediums is the physics subject which covered in this research. The research was conducted with the aim to know how effective smartphone technology-based PDEODE*E could be implemented as a physics learning strategy. The result of this research shows that students could show improvements in conceptual understanding that shown by the conclusion that was constructed during the learning process. Based on this result, PDEODE*E could become a solution to strengthen students' conceptual understanding regarding physics subject, especially those that requires abstract thinking. This result also has shown that the application ofsmartphone technology could be used to support physics learning processes in the classroom, such as Gauss Meter in this research which used to measure the magnetic field, Light Meter which could be used in the concept of light, and Harmonicity Meter for the context of the sound wave.
Physics teacher use of the history of science
NASA Astrophysics Data System (ADS)
Winrich, Charles
The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics (CHOP). ITOP participants self-report changes to their teaching practices as a result of their participation in ITOP. The purpose of this study was to verify and characterize those changes in the specific area of the participants' use of history after their study of CHOP. Ten recent ITOP participants were observed, interviewed, and asked to provide lesson plans and samples of student work from their classes. Case studies of each participant's teaching were constructed from the data. The individual cases were synthesized to characterize the impact of CHOP on the ITOP participants. The results show that the participants integrate CHOP into their pedagogical content knowledge (PCK) to inform their understanding of: (1) the relationship between physics and other disciplines, (2) the relationship between specific physics concepts, (3) student understanding of physics concepts, (4) student difficulties in learning physics concepts, and (5) methods for teaching physics concepts. The participants use history to teach a variety of topics, although the most common were mechanics and electromagnetism. All of the participants used history to teach aspects of the nature of science (NOS) and to increase student interest in physics, while eight participants taught physics concepts through history. The predominant mode of incorporating history was through adding anecdotes about the scientists who worked on the concepts, but seven participants had their students study the historical development of physical concepts. All the participants discussed a lack of time as a factor that inhibits a greater use of history in their courses. Eight participants discussed a lack of appropriate resources for using history in high school physics classes. Two participants said they did not feel that explicit study of the history of physics would benefit their students until they had better mastery of physics concepts.
Reimagining professional competence in physical education
Ennis, Catherine D.
2015-01-01
Physical educators have critical roles to play in assisting communities and schools to increase physical activity for all citizens. They can assist classroom teachers in increasing physical activity in the academic school day and can serve as school wellness directors to increase the amount of physical activity students and school staff members receive during the day. Additionally, physical educators can implement innovative approaches to physical education curricula to enhance students’ opportunities to be active and to learn concepts to assist them to be physically active now and for a lifetime. When implementing evidence-based approaches to physical education, teachers need to teach the curriculum coherently and with fidelity. New programs such as Science, PE, & Me! and the Science of Healthful Living provide opportunities for students to examine the effects of exercise on their bodies in a physically active, learning-oriented approach to physical education. PMID:26617976
NASA Astrophysics Data System (ADS)
Muambalane Baquete, Aguiar; Grayson, Diane; Vasco Mutimucuio, Inocente
2016-01-01
Indigenous knowledge is at risk of being lost in many parts of the world. It is important to find ways to preserve it for both cultural and practical reasons, since it is often well-suited to addressing local needs using available resources. If indigenous knowledge can be incorporated into school science curricula, it can also provide familiar contexts within which to learn scientific concepts, as well as helping the younger generation to recognise its value. The purpose of this study was to identify indigenous knowledge that could be related to physics concepts, with a view to integrating it into school curricula. Twenty-nine senior citizens from Chókwé, a rural village in Mozambique, volunteered to participate in two sets of in-depth interviews. The first set of interviews was individual and unstructured in order to explore which aspects of indigenous knowledge might be related to physics concepts. The second set was semi-structured and conducted in small groups in order to probe participants' understanding and application of the identified physics concepts. The results showed that participants had indigenous knowledge that was useful to them in their daily lives and that were applications of thermal physics, static electricity and mechanics concepts. In some cases participants' explanations were aligned to physics explanations, in some cases they were similar to students' alternative conceptions identified in the literature, and in other cases they referred to supernatural phenomena.
NASA Astrophysics Data System (ADS)
Svedholm, Annika M.; Lindeman, Marjaana
2013-03-01
Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.
Using Role-Playing Game Dice to Teach the Concepts of Symmetry
ERIC Educational Resources Information Center
Grafton, Anthony K.
2011-01-01
Finding and describing the location of symmetry elements in complex objects is often a difficult skill to learn. Introducing the concepts of symmetry using high-symmetry game dice is one way of helping students overcome this difficulty in introductory physical chemistry classes. The dice are inexpensive, reusable, and come in a variety of shapes…
ERIC Educational Resources Information Center
Antwi, Victor
2015-01-01
Most Ghanaian university physics students depend on rote learning and rote problem solving, without having the conceptual knowledge of concepts that are being studied. This is so because the Ghanaian style of setting and answering of questions favour those students who have the ability to do rote memorization of learning. The instructors start…
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
NASA Astrophysics Data System (ADS)
Kaniawati, I.; Samsudin, A.; Hasopa, Y.; Sutrisno, A. D.; Suhendi, E.
2016-08-01
This research is based on students’ lack of mastery of physics abstract concepts. Thus, this study aims to improve senior high school students’ mastery of momentum and impulse concepts with the use of computer simulation. To achieve these objectives, the research method employed was pre experimental design with one group pre-test post-test. A total of 36 science students of grade 11 in one of public senior high school in Bandung became the sample in this study. The instruments utilized to determine the increase of students’ concept mastery were pretest and posttest in the form of multiple choices. After using computer simulations in physics learning, students’ mastery of momentum and impulse concept has increased as indicated by the normalized gain
NASA Astrophysics Data System (ADS)
Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana
2017-08-01
Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.
Motion sensors in mathematics teaching: learning tools for understanding general math concepts?
NASA Astrophysics Data System (ADS)
Urban-Woldron, Hildegard
2015-05-01
Incorporating technology tools into the mathematics classroom adds a new dimension to the teaching of mathematics concepts and establishes a whole new approach to mathematics learning. In particular, gathering data in a hands-on and real-time method helps classrooms coming alive. The focus of this paper is on bringing forward important mathematics concepts such as functions and rate of change with the motion detector. Findings from the author's studies suggest that the motion detector can be introduced from a very early age and used to enliven classes at any level. Using real-world data to present the main functions invites an experimental approach to mathematics and encourages students to engage actively in their learning. By emphasizing learning experiences with computer-based motion detectors and aiming to involve students in mathematical representations of real-world phenomena, six learning activities, which were developed in previous research studies, will be presented. Students use motion sensors to collect physical data that are graphed in real time and then manipulate and analyse them. Because data are presented in an immediately understandable graphical form, students are allowed to take an active role in their learning by constructing mathematical knowledge from observation of the physical world. By utilizing a predict-observe-explain format, students learn about slope, determining slope and distance vs. time graphs through motion-filled activities. Furthermore, exploring the meaning of slope, viewed as the rate of change, students acquire competencies for reading, understanding and interpreting kinematics graphs involving a multitude of mathematical representations. Consequently, the students are empowered to efficiently move among tabular, graphical and symbolic representation to analyse patterns and discover the relationships between different representations of motion. In fact, there is a need for further research to explore how mathematics teachers can integrate motion sensors into their classrooms.
Light-Emitting Diodes: Learning New Physics
ERIC Educational Resources Information Center
Planinšic, Gorazd; Etkina, Eugenia
2015-01-01
This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…
Leaps and Bounds. A Guide for ETV Movement Education Series.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.
In physical education at the elementary level, students are taught to move with efficiency in all situations, to have knowledge about movement, and to value movement as an essential part of life. Teachers stress problem solving, discovery, and concept learning in teaching physical education to young children. To assist teachers and students,…
Enhancing Mechanics Learning through Cognitively Appropriate Instruction
ERIC Educational Resources Information Center
Espinoza, Fernando
2004-01-01
The unquestionably central role of physics in the development of scientific literacy is undermined by its perceived difficulty. An investigation of high school students' use of the concepts of momentum and force suggests that, in the case of mechanics, the reason for physics' unpopularity and image as a "hard" subject is largely due to an…
English Skills for Life Sciences: Problem Solving in Biology. Tutor Version [and] Student Version.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Language Education and Research.
This manual is part of a series of materials designed to reinforce essential concepts in physical science through interactive, language-sensitive, problem-solving exercises emphasizing cooperative learning. The materials are intended for limited-English-proficient (LEP) students in beginning physical science classes. The materials are for teams of…
ERIC Educational Resources Information Center
Boukhechem, Mohamed-Salah; Dumon, Alain; Zouikri, Mohamed
2011-01-01
In this work we evaluated the level of difficulty found in learning stereochemistry concepts, by students intending to teach physical sciences at the Ecole Normale Superieure (ENS) Kouba (Algeria). A paper and pencil questionnaire was administered to 170 students to evaluate: their familiarity with Newman representations; their ability of linking…
ERIC Educational Resources Information Center
Anderson, David; Nashon, Samson
2007-01-01
It is recognized widely that learning is a dynamic and idiosyncratic process of construction and reconstruction of concepts in response to new experiences. It is influenced by the learner's prior knowledge, motivation, and sociocultural context. This study investigated how year 11 and 12 physics students' metacognition influences the development…
"Slow Science": Building Scientific Concepts in Physics in High School
ERIC Educational Resources Information Center
Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo
2014-01-01
In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…
ERIC Educational Resources Information Center
Harlow, Jason J.?B.; Harrison, David M.; Meyertholen, Andrew
2014-01-01
We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the…
ERIC Educational Resources Information Center
Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook
2009-01-01
A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…
Development of Thermal Radiation Experiments Kit Based on Data Logger for Physics Learning Media
NASA Astrophysics Data System (ADS)
Permana, H.; Iswanto, B. H.
2018-04-01
Thermal Radiation Experiments Kit (TREK) based on data logger for physics learning media was developed. TREK will be used as a learning medium on the subject of Temperature and Heat to explain the concept of emissivity of a material in grade XI so that it can add variations of experiments which are commonly done such as thermal expansion, transfer of thermal energy (conduction, convection, and radiation), and specific heat capacity. DHT11 sensor is used to measure temperature and microcontroller Arduino-uno used as data logger. The object tested are in the form of coated glass thin films and aluminum with different colors. TREK comes with a user manual and student worksheet (LKS) to make it easier for teachers and students to use. TREK was developed using the ADDIE Development Model (Analyze, Design, Development, Implementation, and Evaluation). And validated by experts, physics teachers, and students. Validation instrument is a questionnaire with a five-item Likert response scale with reviewed aspect coverage: appropriate content and concepts, design, and user friendly. The results showed that TREK was excellent (experts 88.13%, science teachers 95.68%, and students 85.77%).
NASA Astrophysics Data System (ADS)
Elmesky, Rowhea
This critical ethnography focused on five urban African American students, coming from economically disadvantaged homes in Philadelphia, who were considered at risk with regard to their position within society as well as within the small learning community of their low-academically performing school. As participants in the study, they were employed from June 11, 2001 from 9:00 AM until 1:00 PM and continuing until September 7, 2001 at $7.50 per hour under research grants from the Spencer Foundation and the National Science Foundation. Through this study, these five youth were provided with traditional and nontraditional opportunities to build understandings of some of the most essential concepts of physics as learners. Moreover, they also had the chance to work as research assistants, teacher educators and curriculum developers. The findings of the research conclusively reveal that African American, urban youth from some of the most challenging situations are capable of learning physics concepts. Moreover, the most success resulted when students' strategies of action were directed towards the objective of learning although, in the process of meaning-making, their personal goals unrelated to science were also met. In addition, the research results show that urban African American students come to school with strategies of action replete with cultural practices, symbols and their underlying meanings from fields outside of school including both the home and the neighborhood. These cultural resources, when triggered, then become apparent within learning environments and can powerfully assist learning when the desired outcomes of the student(s) are in tune with the objective of learning physics. Through the physics teaching and learning that occurred within this study, as well as their work as researchers, teacher educators and curriculum developers, April, Ebony, Markist, Pierre and Ya-Meer had opportunities to utilize their cultural capital to build new knowledge schemas and to develop access to new resources. Consequently, evidence of agency on multiple levels was found to arise as they have shown demonstrated that poverty stricken African American urban youth can be changed by science and science too can be changed by them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelson, A.S.; Weisbuch, G.
1997-10-01
The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less
Teaching weight to explicitly address language ambiguities and conceptual difficulties
NASA Astrophysics Data System (ADS)
Taibu, Rex; Schuster, David; Rudge, David
2017-06-01
Language ambiguities in concept meanings can exacerbate student learning difficulties and conceptual understanding of physics concepts. This is especially true for the concept of "weight," which has multiple meanings in both scientific and everyday usage. The term weight has been defined in several different ways, with nuances, but in textbooks and teaching the term is almost always defined in one of two ways: operationally either as the contact force between an object and a measuring scale or as the gravitational force on an object due to some other body such as Earth. The use of the same name for different concepts leads to much confusion, especially in accelerating situations, and to conflicting notions of "weightlessness" in free fall situations. In the present paper, we share an innovative approach that initially avoids the term weight entirely while teaching the physics of each situation, and then teaches the language ambiguities explicitly. We developed an instructional module with this approach and implemented it over two terms in three sections of an introductory physics course for preservice elementary teachers. Learning gains for content understanding were assessed using pretests and post-tests. Participants achieved remarkably high gains for both static and accelerating situations. Surveys pre- and postinstruction showed substantially improved appreciation of language issues and ambiguities associated with weight, weightlessness, and free fall. Interviews with instructors teaching the module provided additional insight into the advantages and teaching demands of the new approach.
ERIC Educational Resources Information Center
Radovanovic, Jelena; Sliško, Josip
2014-01-01
This paper describes investigative homework with apples, aiming to contribute to the primary-school students' understanding of density and conditions leading to floating and sinking. The assignment represents an opportunity for individual autonomous learning of physics and adoption of established scientific concepts through practical activities…
ERIC Educational Resources Information Center
White, Barbara Y.; Frederiksen, John R.
This report discusses the importance of presenting qualitative, causally consistent models in the initial stages of learning so that students can gain an understanding of basic electrical circuit concepts and principles that builds on their preexisting ways of reasoning about physical phenomena, and it argues that tutoring environments must help…
ERIC Educational Resources Information Center
Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram
2016-01-01
The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert
2015-02-01
Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.
The Impact of NSF-funded Physics Education Research at the University of Washington
NASA Astrophysics Data System (ADS)
Heron, Paula
2015-03-01
It is now well known that many students who complete introductory physics courses are unable to apply fundamental concepts in situations that involve qualitative reasoning. Systematic investigations have helped researchers understand why so many students fail to develop robust and coherent conceptual frameworks, and have led to the development of new teaching practices and materials that are far more effective than conventional ones. The Physics Education Group at the University of Washington has played a leading role in raising awareness of the need to improve instruction, and in supporting physics faculty in their efforts to do so. With support from the National Science Foundation, the group has helped build a research base that instructors can draw on, and has produced practical, flexible instructional materials that promote deeper learning in physics classrooms. Both ``Tutorials in Introductory Physics'' (Pearson, 2002) and ``Physics by Inquiry'' (Wiley, 1996) have been developed in an iterative process in which ongoing assessment of student learning plays an integral role. These materials have had a widespread and significant impact on physics teaching and on student learning from kindergarten through graduate school. In this talk I will describe the role of research in curriculum development, and speculate on the next generation of tools and resources to support physics teaching and learning.
A few ideas for teaching environmental physics
NASA Astrophysics Data System (ADS)
Forinash, Kyle
2016-11-01
Unlike a typical university physics course there is no standardised syllabus for environmental physics. The topics covered also range beyond what is normally part of the physics curriculum, requiring the instructor to become knowledgeable about fields outside of physics. Some of these issues are complex and, unlike the laws of physics, change rapidly over time. This paper, based on 15 years experience teaching undergraduate environmental physics courses, both for non-science students and for students with strong backgrounds in the sciences, attempts to present a reasonable range of concepts and educational resources which could be included in an environmental physics course or added to an existing physics course as motivation for learning traditional physics concepts. An additional goal is to warn the reader of pitfalls they may encounter in trying to include material with which they may not be familiar. The approach is different from environmental courses taught in the social sciences in that the focus of an environmental physics course is on physical constraints to environmental solutions rather than limitations imposed by culture or politics.
Towards a new paradigm for innovative training methods for capacity building in remote sensing
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Manikavelu, P. M. Bala; Vijayan, D.; Prasad, T. S.
2006-01-01
Everybody uses a bulb to illustrate an idea but nobody shows where the current comes from. Majority of remote sensing user community comes from natural and social sciences domain while remote sensing technology evolves from physical and engineering sciences. To ensure inculcation and internalization of remote sensing technology by application/resource scientists, trainer needs to transfer physical and engineering concepts in geometric manner. Here, the steering for the transfer of knowledge (facts, procedures, concepts and principles) and skills (thinking, acting, reacting and interacting) needs to take the trainees from Known to Unknown, Concrete to Abstract, Observation to Theory and Simple to Complex. In the initial stage of training/education, experiential learning by instructor led exploring of thematic details in false colour composite (FCC) as well as in individual black and white spectral band(s) imagery by trainees not only creates interest, confidence build-up and orientation towards purposeful learning but also helps them to overcome their inhibitions towards the physical and engineering basal. The methodology to be adopted has to inculcate productive learning, emphasizing more on thinking and trial and error aspects as opposed to reproductive learning based dominantly on being told and imitation. The delivery by trainer needs to ensure dynamic, stimulating and effective discussions through deluging questions pertaining to analysis, synthesis and evaluation nature. This would ensure proactive participation from trainees. Hands-on module leads to creative concretization of concepts. To keep the trainees inspired to learn in an auto mode during post-training period, they need to consciously swim in the current and emerging knowledge pool during training programme. This is achieved through assignment of seminar delivery task to the trainees. During the delivery of seminar, peers and co-trainees drive the trainee to communicate the seminar content not only in what but also in how and why mode. The interest culminated in this manner keeps the entropy of the trainee minimized even during post-training professional life. So, such germinated trainee would always generate positive induction among colleagues; thus, helping in realizing multiplier effect. Based upon above thought process(es), the paper discusses the concept of "thinking curricula" and associated cares needed in training deliveries.
Speaking the same language in physics and math
NASA Astrophysics Data System (ADS)
Harvey, Marci
2012-02-01
"Hey, is that the same thing as a derivative from calculus?" "Isn't that a quadratic equation?" These are some of the math-related questions my physics students ask every year. Some students realize that determining velocity from a position-time graph is the same thing as taking the first derivative in calculus or they recognize a quadratic equation has a t2 term. Why can all students not make the connection between the two? I wonder if we, as teachers of two different subjects, are making this learning more difficult because we have different terminology for identical concepts. We have an opportunity to create a learning environment that offers multiple opportunities to improve student comprehension. Teachers can connect the concepts from various classes into a cohesive set of information that can be used for higher-level thinking and processing skills.
Motivation and learning physics
NASA Astrophysics Data System (ADS)
Fischer, Hans Ernst; Horstendahl, Michaela
1997-09-01
Being involved in science education we cannot avoid confronting the problem of students' waning interest in physics. Therefore, we want to focus on arguments developed by new theoretical work in the field of motivation. Especially, we are attracted by the theory of motivation featured by Deci and Ryan, because it is related to an assumptions of human development similar to our own approach. Beneath elements of cognitive development, motivation is seen as a basic concept to describe students' learning in a physics classroom. German students at lower and upper secondary level regard physics as very difficult to learn, very abstract and dominated by male students. As a result physics at school continuously loses importance and acceptance although a lot of work has been done to modernise and develop the related physics courses. We assume that knowing about the influence of motivation on learning physics may lead to new insights in the design of classroom settings. Referring to Deci and Ryan, we use a model of motivation to describe the influence of two different teaching strategies (teacher and discourse oriented) on learning. Electrostatics was taught in year 8. The outcomes of a questionnaire which is able to evaluate defined, motivational states are compared with the interpretation of the same student's interaction in the related situation of the physics classroom. The scales of the questionnaire and the categories of analysis of the video-recording are derived from the same model of motivation.
The Learning Cycle: A Reintroduction
NASA Astrophysics Data System (ADS)
Maier, Steven J.; Marek, Edmund A.
2006-02-01
The learning cycle is an inquiry approach to instruction that continues to demonstrate significant effectiveness in the classroom.1-3 Rooted in Piaget's theory of intellectual development, learning cycles provide a structured means for students to construct concepts from direct experiences with science phenomena. Learning cycles have been the subject of numerous articles in science practitioner periodicals as well as the focus of much research in science education journals.4 This paper reintroduces the learning cycle by giving a brief description, followed by an example suitable for a range of physics classrooms.
NASA Astrophysics Data System (ADS)
Chaumklang, Kawin
During the past two decades, the student-centered approach has been widely promoted and accepted by the educational community as one of the most effective instructional approaches. It has been continually developed and revised to match our current understanding of how humans learn (American Psychological Association, 1997). It is based upon the belief that students should take responsibility for their own learning. Thus, curriculum, instruction, and assessment should be carefully designed to stimulate, facilitate, and accelerate students' learning as much as possible. In order to do so, the teacher needs to take the following factors into consideration: students' cognitive structures, metacognitive and regulative skills, motivation and affective states, developmental and individual differences, and social supports. However, the term student-centered has been defined and described by researchers and scholars in many different ways. Little is known about how practicing teachers conceptualize this term and how they perceive their classroom practices in relation to these conceptions. The purpose of this study was to utilize a qualitative multiple-case study approach to investigate teachers' conceptions of the student-centered approach and their perceptions of their classroom practices. Four Thai high school physics teachers, who were considered products of the current student-centered educational reform movement in Thailand, participated in this study. Data were collected for one learning unit (three to eight weeks) through classroom observations, semi-structured interviews, and document analysis. The data analysis revealed that teachers' conceptions of student-centered curriculum, instruction, and assessment had three common characteristics: (a) students' active participation; (b) special emphasis on students' background knowledge, understanding, motivation, affective states, and learning capability; and (c) benefits to students. The results also indicated that there were some similarities and differences between teachers' conceptions of the student-centered approach and the underlying principles of the student-centered approach. Moreover, this study showed that teachers' conceptions of the student-centered approach were not always consistent with their classroom practices. In addition, these teachers used various instructional activities perceived by them as being non-student-centered, such as developing curriculum based on the national high school physics textbooks and teacher's experiences, delivering knowledge through lecture, and assessing students' understanding by using teacher-constructed test questions. Furthermore, findings from this study provide implications for researchers, teacher educators, and policy makers with regards to successfully implement the reform-based, student-centered approach in the actual science classroom.
Light. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Why does light behave the way it does? How does it travel from its source to the objects it illuminates and then to human eyes? Students will learn about waves, including the concepts of reflection, absorption, refraction and how light is related to the colors that can be seen. With a hands-on activity and real-life examples, these concepts are…
The Juxtaposition of Maori Words with English Concepts. 'Hauora, Well-Being' as Philosophy
ERIC Educational Resources Information Center
Heaton, Sharyn
2018-01-01
Within the New Zealand curriculum, hauora has been co-opted as an underlying and interdependent concept at the heart of the learning area of health and physical education. Hauora is identified as a Maori philosophy of well-being, advocating a Maori world view of hauora. Contemporary understandings of hauora as a Maori philosophy of health are…
ERIC Educational Resources Information Center
Wenno, Hendrik
2014-01-01
In designing the lesson teachers have to adapt the method or learning model with the material to be taught. In the teaching of measuring concept, students frequently faced with measuring instruments, micrometer, screw, scale, and so on. Direct Instruction Model would be suitable for teaching the measurement concepts specifically the skill of using…
ERIC Educational Resources Information Center
Stern, Luli; Roseman, Jo Ellen
2004-01-01
The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the "Benchmarks for Science Literacy" (American Association for the Advancement of Science, [1993]), the "National Science Education Standards"…
ERIC Educational Resources Information Center
Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno
2013-01-01
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric…
Access to ICT for Teaching and Learning: From Single Artefact to Interrelated Resources
ERIC Educational Resources Information Center
Czerniewicz, Laura; Brown, Cheryl
2005-01-01
In the past few years, concepts of the digital divide and theories of access to ICT have evolved beyond a focus on the separation of the "haves" and the "have nots" to include more than just physical access to computers. Researchers have started considering the conditions or criteria for access and broadened the concept by…
ERIC Educational Resources Information Center
Hand, Brian; Gunel, Murat; Ulu, Cuneyt
2009-01-01
In the study of science topics especially in physics students are expected to move between different modes of representation when dealing with a particular concept as any science concept can be represented in several different modes. The difficulty for students is that they are often unable to move between these multi-modal representations and…
1994-08-01
Laboratory, Infrared Grating Spectra, 19~77. 30. Serway , Raymond A . Physics for Scientists and Engineers. New York: McGraw-Hill 1986. 31. Hecht Eugene. Optics...Without him, this thesis could not have been done. I have learned a lot about laboratory research as well as several physics concepts form him. I...guidance, and encouragement. His tips, feedback, and great ideas made the accomplishment of this thesis possible and much easier. I learned a lot from him
Successful model for cooperative student learning centers in physics and astronomy
NASA Astrophysics Data System (ADS)
Bieniek, Ronald J.; Johnson, John A.
2003-04-01
We have established successful problem-based learning centers for introductory courses in physics [1] and astronomy [2] that fully implement the Seven Principles of Good Practice in Undergraduate Education [3] without increased demand on faculty time. Large percentages of students at our two institutions voluntarily utilize these learning venues. Course instructors guide self-forming groups of students to mastery of technical concepts and skills, building greater student self-confidence through direct interaction and feedback. The approach's immediacy helps students recognize ambiguities in their understanding, thereby increasing impact at teachable moments. Underperforming students are assisted along side students who wish to hone their skills. The format also facilitates racial and gender mixing within learning center camaraderie. Specific pedagogical and operational techniques for running learning centers will be presented. [1] http://www.umr.edu/ physics/plc [2] http://astron.berkeley.edu/talc.html [3] A.W. Chickering & Z.F. Gamson, Am. Assoc. Higher Ed. Bulletin, 1987, 39(7) 3-7.
Using computer simulations to facilitate conceptual understanding of electromagnetic induction
NASA Astrophysics Data System (ADS)
Lee, Yu-Fen
This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.
Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering
NASA Astrophysics Data System (ADS)
Benito, R. M.; Cámara, M. E.; Arranz, F. J.
2009-04-01
In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.
The Effects of Instruction of Creative Invention on Students' Situational Interest in Physics Lesson
NASA Astrophysics Data System (ADS)
Leung, Tim
There are a few empirical studies (Palmer, 2008; Dohn, 2010) or intervention programs (Hidi & Harackiewicz, 2000) about students' situational interest in physics lessons, although the declining interest in physics among students has been well documented in the research literature (Gardner, 1998 ; International Bureau for Education, 2001; European Commission, 2007; Oon & Subramaniam, 2011). Even in the research area of science education, yet little is known about how to trigger students' catching and holding situational interest in a physics lesson. In this study, five intervention lessons of creative invention were developed. Each lesson consists of three parts including Eberle's (1971, 1972) SCAMPER technique on the creative thinking, knowledge and concepts of physics curriculum, hands-on activities related to both SCAMPER technique and physics concepts. Two surveys were developed and used to measure the situational interest and individual interest of students in physics lessons. Qualitative conversational interviews were used to interpret the sources of situational interest of students in physics lessons. Results in this study indicate that new inventive products and television programs or films related to SCAMPER can trigger the catching interest in physics lessons. Meaningful hands-on activities related to both SCAMPER technique and physics concepts can trigger the holding interest in physics lessons. There is no significant difference in situational interest among students with different academic abilities except in the topic related to electronic components. The students with lower academic ability have greater situational interest than the students with higher academic ability in learning the topic related to electronic components. There is no significant difference in situational interest between boys and girls except in the topic related to revolving paper lantern. Girls have higher situational interest than boys in learning the topic related to revolving paper lantern. The findings in this study suggest that educators can use instruction of creative invention to trigger students' situational interest and enhance students' individual interest in physics lessons.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Implementation of an Intelligent Tutorial System for Socioenvironmental Management Projects
ERIC Educational Resources Information Center
Vera, Gil; Daniel, Víctor; Awad, Gabriel
2015-01-01
The agents responsible of execution of physical infrastructure projects of the Government of Antioquia must know the theories and concepts related to the socio-environmental management of physical infrastructure projects. In the absence of tools and the little information on the subject, it is necessary to build a m-learning tool to facilitate to…
Swept Away: Exploring the Physics of Curling
ERIC Educational Resources Information Center
Esser, Liza
2011-01-01
Studying the Olympic sport of curling is a fun and engaging way to learn about the concepts of friction, forces, momentum, and Newton's laws. Each winter, the author takes her eighth-grade physical science class on a field trip to experience curling firsthand. This field trip has become a favorite of the eighth graders at Capitol Hill Day School…
Teachers' Manual: Using Teams-Games-Tournament (TGT) in the Physical Science Classroom.
ERIC Educational Resources Information Center
Hollifield, John H.; Leavey, Marshall B.
This teacher's manual provides general and specific guidelines for use of Teams-Games-Tournaments (TGT) Physical Science Curriculum materials at the junior high-middle school level. TGT is an innovative instructional model which focuses on the learning of basic skills, information, and concepts, rewarding students in small teams rather than at the…
Using Outdoor Adventure Settings to Teach Physics
ERIC Educational Resources Information Center
Aspinall, Claire
2016-01-01
A key challenge when teaching physics is to equip students with the ability to apply the concepts to real-life situations. Students do not learn by information alone; they are affected by their environment, their social setting, how their body and mind feel and the interactions between these different aspects. This may explain why wild places and…
ERIC Educational Resources Information Center
Berge, Maria; Danielsson, Anna T.
2013-01-01
The purpose of this article is to explore how a group of four university physics students addressed mechanics problems, in terms of student direction of attention, problem solving strategies and their establishment of and ways of interacting. Adapted from positioning theory, the concepts "positioning" and "storyline" are used to describe and to…
NASA Astrophysics Data System (ADS)
Lark, Adam
Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.
Physics & Preservice Teachers Partnership Project (P4): An interdisciplinary peer learning tool
NASA Astrophysics Data System (ADS)
Simmonds, Paul J.; Wenner, Julianne A.
Physics graduate students (PGs) and teacher candidates (TCs) often graduate with specific weaknesses. PGs frequently lack training in teaching and effective communication. TCs are typically underprepared for teaching science, and physics in particular. In response to these challenges, we created P4 . P4 is an innovative model for peer learning, creating interdisciplinary partnerships that help college physics instructors train their students in the ``soft skills'' prized in both academia and industry, while helping teacher educators infuse more content knowledge into science methods courses. In P4, PGs plan a lesson and deliver physics content to TCs. TCs then use this content to design and execute a 15-minute elementary science lesson. Framed by the concept of peer learning, we expected P4 would help PGs develop their teaching and communication skills, and TCs learn more physics. We studied the affordances and constraints of P4 to inform future iterations. Overall, P4 was successful, with both PGs and TCs reporting benefits. Affordances for PGs included the chance to plan and teach a class; TCs benefitted from working with experts to increase content knowledge. We will share the full findings and implications of our study, and outline next steps for P4.
A Hierarchical Biology Concept Framework: A Tool for Course Design
Khodor, Julia; Halme, Dina Gould; Walker, Graham C.
2004-01-01
A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult for novices to grasp. Our BCF is also cross-referenced, highlighting interconnections between concepts. We have found our BCF to be a versatile tool for design, evaluation, and revision of course goals and materials. There has been a call for creating Biology Concept Inventories, multiple-choice exams that test important biology concepts, analogous to those in physics, astronomy, and chemistry. We argue that the community of researchers and educators must first reach consensus about not only what concepts are important to test, but also how the concepts should be organized and how that organization might influence teaching and learning. We think that our BCF can serve as a catalyst for community-wide discussion on organizing the vast number of concepts in biology, as a model for others to formulate their own BCFs and as a contribution toward the creation of a comprehensive BCF. PMID:15257339
Impact of Teacher Value Orientations on Student Learning in Physical Education
Chen, Ang; Zhang, Tan; Wells, Stephanie L.; Schweighardt, Ray; Ennis, Catherine D.
2017-01-01
Based on the value orientation theory, the purpose of this study was to determine the impact of value orientation incongruence between physical education teachers and an externally designed curriculum on student learning in a concept-based fitness-centered physical education curriculum. Physical education teachers (n = 15) with different value orientations taught an externally designed, standards-based fitness/healthful living curriculum to their middle school students (n = 3,827) in 155 sixth, seventh, and eighth grade intact classes. A pre-post assessment design was used to determine whether student fitness/healthful living knowledge gains differed in terms of teachers’ value orientations. An ANOVA on class means of residual-adjusted knowledge gain scores revealed no statistically significant differences based on value orientations. The evidence suggests that teacher value orientation impact may be mediated by curriculum impact. This finding supports the observation that a well-designed physical education curriculum may minimize the impact of teachers’ diverse value orientations on the curriculum implementation and student learning. PMID:29200587
Impact of Teacher Value Orientations on Student Learning in Physical Education.
Chen, Ang; Zhang, Tan; Wells, Stephanie L; Schweighardt, Ray; Ennis, Catherine D
2017-04-01
Based on the value orientation theory, the purpose of this study was to determine the impact of value orientation incongruence between physical education teachers and an externally designed curriculum on student learning in a concept-based fitness-centered physical education curriculum. Physical education teachers ( n = 15) with different value orientations taught an externally designed, standards-based fitness/healthful living curriculum to their middle school students ( n = 3,827) in 155 sixth, seventh, and eighth grade intact classes. A pre-post assessment design was used to determine whether student fitness/healthful living knowledge gains differed in terms of teachers' value orientations. An ANOVA on class means of residual-adjusted knowledge gain scores revealed no statistically significant differences based on value orientations. The evidence suggests that teacher value orientation impact may be mediated by curriculum impact. This finding supports the observation that a well-designed physical education curriculum may minimize the impact of teachers' diverse value orientations on the curriculum implementation and student learning.
AMI: Augmented Michelson Interferometer
NASA Astrophysics Data System (ADS)
Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel
2015-10-01
Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.
Gender-based performance differences in an introductory physics course
NASA Astrophysics Data System (ADS)
McKinnon, Mark Lee
Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.
ERIC Educational Resources Information Center
Stevens-Smith, Deborah A.
2016-01-01
Educators often struggle daily with the issue of how to engage students for learning. Many instructional strategies are devoted to the concept of engagement to keep students interested and on task to enhance learning, but defining the term is difficult. Engagement may involve a combination of terms that relates to the effort of students when they…
Mind Boggling! Considering the Possibilities of Brain Gym in Learning to Play an Instrument
ERIC Educational Resources Information Center
Moore, Hilary; Hibbert, Fiona
2005-01-01
This paper is one of the first presentations of research into brain gym's effectiveness in learning musical instruments. Brain gym (or Edu-K) is the popular, over-arching name for a system of exercises, approaches, and techniques intended to improve mental and physical performance. We explain the basic concepts and activities of brain gym and…
ERIC Educational Resources Information Center
Halkyard, Shannon
2012-01-01
Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…
The Value of Campus in Contemporary Higher Education. Issues and Ideas Paper
ERIC Educational Resources Information Center
French, Sarah; Kennedy, Gregor
2015-01-01
The idea of "going to university" is integrally tied to the concept of the university campus as a physical place. The campus is both the location in which learning occurs and a place that gives meaning to the learning experience. It is a setting that provides the opportunity for social and intellectual engagement with a scholarly…
ERIC Educational Resources Information Center
Ng, Wan; Nguyen, Van Thanh
2006-01-01
Making science relevant in students' learning is an important aspect of science education. This involves the ability to draw in examples from daily contexts to begin with the learning or to apply concepts learnt into familiar everyday phenomena that students observe and experience around them. Another important aspect of science education is the…
ERIC Educational Resources Information Center
Olaogun, Matthew O. B.
1986-01-01
J. Adams' application of the closed-loop theory (involving feedback and correction) on human learning and motor performance is described. The theory's applicability to behavioral kinesiology (the science of human movement) is discussed in the context of physical therapy, stressing the importance of knowledge of results as a motivating factor.…
ERIC Educational Resources Information Center
Scherr, Rachel E.; Hammer, David
2009-01-01
The concept of framing from anthropology and sociolinguistics is useful for understanding student reasoning. For example, a student may frame a learning activity as an opportunity for sensemaking or as an assignment to fill out a worksheet. The student's framing affects what she notices, what knowledge she accesses, and how she thinks to act. We…
Interactive Engagement in the Large Lecture Environment
NASA Astrophysics Data System (ADS)
Dubson, Michael
Watching a great physics lecture is like watching a great piano performance. It is can be inspiring, and it can give you insights, but it doesn't teach you to play piano. Students don't learn physics by watching expert professors perform at the board; they can only learn by practicing it themselves. Learning physics involves high-level thinking like formulating problem-solving strategies or explaining concepts to other humans. Learning is always messy, involving struggle, trial-and-error, and paradigm shifts. That learning struggle cannot be overcome with a more eloquent lecture; it can only be surmounted with prolonged, determined, active engagement by the student. I will demonstrate some techniques of active engagement, including clicker questions and in-class activities, which are designed to activate the student's higher-level thinking, get them actively involved in their learning, and start them on the path of productive struggle. These techniques are scalable; they work in classrooms with 30 or 300 students. This talk about audience participation will involve audience participation, so please put down your phone and be ready for a challenge.
Bioliteracy and Teaching Efficacy: What Biologists Can Learn from Physicists
Klymkowsky, Michael W.; Garvin-Doxas, Kathy; Zeilik, Michael
2003-01-01
The introduction of the Force Concept Inventory (FCI) by David Hestenes and colleagues in 1992 produced a remarkable impact within the community of physics teachers. An instrument to measure student comprehension of the Newtonian concept of force, the FCI demonstrates that active learning leads to far superior student conceptual learning than didactic lectures. Compared to a working knowledge of physics, biological literacy and illiteracy have an even more direct, dramatic, and personal impact. They shape public research and reproductive health policies, the acceptance or rejection of technological advances, such as vaccinations, genetically modified foods and gene therapies, and, on the personal front, the reasoned evaluation of product claims and lifestyle choices. While many students take biology courses at both the secondary and the college levels, there is little in the way of reliable and valid assessment of the effectiveness of biological education. This lack has important consequences in terms of general bioliteracy and, in turn, for our society. Here we describe the beginning of a community effort to define what a bioliterate person needs to know and to develop, validate, and disseminate a tiered series of instruments collectively known as the Biology Concept Inventory (BCI), which accurately measures student comprehension of concepts in introductory, genetic, molecular, cell, and developmental biology. The BCI should serve as a lever for moving our current educational system in a direction that delivers a deeper conceptual understanding of the fundamental ideas upon which biology and biomedical sciences are based. PMID:14506504
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha
2017-12-01
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed interactive tutorials which strive to help students learn these concepts. Two such tutorials, focused on the Mach-Zehnder interferometer (MZI) and the double-slit experiment (DSE), help students learn how to use the concept of "which-path" information to reason about the presence or absence of interference in these two experiments in different situations. After working on a pretest that asked students to predict interference in the MZI with single photons and polarizers of various orientations placed in one or both paths of the MZI, students worked on the MZI tutorial which, among other things, guided them to reason in terms of which-path information in order to predict interference in similar situations. We investigated the extent to which students were able to use reasoning related to which-path information learned in the MZI tutorial to answer analogous questions on the DSE (before working on the DSE tutorial). After students worked on the DSE pretest they worked on a DSE tutorial in which they learned to use the concept of which-path information to answer questions about interference in the DSE with single particles with mass sent through the two slits and a monochromatic lamp placed between the slits and the screen. We investigated if this additional exposure to the concept of which-path information promoted improved learning and performance on the DSE questions with single photons and polarizers placed after one or both slits. We find evidence that both tutorials promoted which-path information reasoning and helped students use this reasoning appropriately in contexts different from the ones in which they had learned it.
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-07-01
Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.
All about Flight. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Up, up and away! A hot air balloon, an airplane and even the space shuttle all defy the force of gravity, but they all do it in different ways. Children will learn about the basic concepts that make flight possible. With clear demonstrations and a hands-on project, students will be able to understand more easily the basic concepts behind various…
ERIC Educational Resources Information Center
Svedholm, Annika M.; Lindeman, Marjaana
2013-01-01
Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused…
Physics thematic paths: laboratorial activities and historical scientific instruments
NASA Astrophysics Data System (ADS)
Pantano, O.; Talas, S.
2010-03-01
The Physics Department of Padua University keeps an important collection of historical physics instruments which alludes to the fruitful scientific activity of Padua through the centuries. This heritage led to the suggestion of setting up laboratory activities connected to the Museum collection for secondary school students. This article shows how different thematic paths have been developed, reflecting on the importance of historical perspectives in science teaching. We also show how a scientific historical museum can play a central role in improving the learning of physics concepts.
NASA Astrophysics Data System (ADS)
Brookes, David T.; Etkina, Eugenia
2007-06-01
This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists’ language encodes different varieties of analogical models through the use of grammar and conceptual metaphor. We hypothesize that students categorize concepts into ontological categories based on the grammatical structure of physicists’ language. We also hypothesize that students overextend and misapply conceptual metaphors in physicists’ speech and writing. Using our theory, we will show how, in some cases, we can explain student difficulties in quantum mechanics as difficulties with language.
NASA Astrophysics Data System (ADS)
Astra, I. M.; Saputra, F.
2018-05-01
This study aims to develop a physics knowledge enrichment book which is provided with augmented reality focusing on the proper optical instruments as the subject to improve students’ learning outcomes. This physics knowledge enrichment book entitled “Alat Optikyang dilengkapi dengan Augmented Reality” discusses some optical instruments seeing from its history, physics concepts, and types. This study used method Research and Development which is developed as Model Pengembangan Instruksional. In the previous study has been done feasibility test to the material and media experts with the percentage by each experts are 88,50% and 88,90%. In this study, we did the trial run of product use was carried out to a physics teacher and 25 students of SMAN 33 Jakarta. This trial run got the average percentage of 88.10% from the physics teacher while the result of the students was 82.80% and the gain normalized test result of 0.71 which meant the students’ learning outcomes had increased in cognitive domain with high interpretation. Based on the result of this study, the physics knowledge enrichment book entitled “Alat Optik yang dilengkapi dengan Augmented Reality” is a proper book in order to improve students’ learning outcomes in cognitive domain with high interpretation.
NASA Astrophysics Data System (ADS)
Droui, Mohamed
The educational innovation itself is sometimes debatable but it is justified when the teachers confront the learning difficulties of their students. In particular, some notions of physics are notoriously hard for students to understand, as is the case for the photoelectric effect which is not often comprehended by the students at the college level. This research tries to determine if, as part of a physics course, the simulation of the photoelectric effect and the use of mobile devices in collaborative situations facilitate an evolution of the student's conceptions about the concept of light. We have proceeded to develop a scenario of collaborative learning by integrating a simulation of the photoelectric effect on handheld devices (Pocket PC). The design of scenario was first influenced by our socioconstructivist vision of learning. We conducted two preliminary studies to complete our scenario of learning and to validate the platform " MobileSim " and the interface of the simulator used in our experiment. The first studies were completed with a simulation on computers and the second with a simulation on Pocket PC. After that, we carried out the experimentation with two groups of students. The control group was assigned to the traditional approach of teaching and the experimental group was assigned to the approach based on the developed scenario of collaborative learning. We have conducted a test twice to assess a conceptual change about the nature of light and about the phenomenon of the photoelectric effect and related concepts. The first test (pre-test) before the students are involved in the course and the second (post-test) after completion of experiments. Our results in the pre-test and post-test were completed by conducting semi-structured individual interviews with all students, by video recordings and recovered traces (on log files or on paper). Students in the experimental group obtained good results in the test compared to those of the control group. We noted an average gain of learning qualified at a moderate level according to Hake (1998). Interview results were used to identify some conceptual difficulties of student learning. Analysis of collected data from video sequences, questionnaires and recovered tracks allowed us to better understand the process of collaborative learning and has revealed that the number and the time of interactions between students are strongly correlated with the gain of learning. At first, this research project is a success in the designing of a learning scenario of a phenomenon as complex as the photoelectric effect and respects many criteria (collaboration, simulation, mobile devices, etc.) that it seemed for us extremely utopian to combine them in an effective learning situation in the classroom. For instance, this scenario could be adapted to the learning of other concepts in physics. It could also be considered for the design of collaborative environments for innovative mobile learning focused on the needs of learners that integrate the technologies at the right time and for the right activity. Keywords : collaborative learning, simulation, mobile learning, conceptual change, photoelectric effect.
Belcher, Don; Lee, Amelia M; Solmon, Melinda A; Harrison, Louis
2003-06-01
The purpose of this study was to determine the influence of beliefs about gender appropriateness and conceptions of ability on perceived and actual competene and patterns of behavior during practice of the hockey wrist shot. Sixty-eight undergraduate women formed four treatment conditions based on their beliefs about gender appropriateness and conceptions of ability. Four teachers taught across the treatment conditions for a total of 16 learning groups. Data were collected through a three-part questionnaire and from audio-video taping of the entire episode to ascertain the paticipants' competency beliefs, effort, and performance. Gender appropriateness impacted the participants' perceptions of competence and actual performance in the study, while beliefs about conceptions of ability did not produce a significant difference. This study reaffirms that educators must work diligently to combat the stereotypical beliefs many hold with respect to the gender appropriateness of physical activities.
The Physics Learning Center at the University of Wisconsin-Madison
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.
2013-03-01
The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors
Using DVI To Teach Physics: Making the Abstract More Concrete.
ERIC Educational Resources Information Center
Knupfer, Nancy Nelson; Zollman, Dean
The ways in which Digital Video Interactive (DVI), a new video technology, can help students learn concepts of physics were studied in a project that included software design and production as well as formative and summative evaluation. DVI provides real-time motion, with the full-motion image contained to a window on part of the screen so that…
ERIC Educational Resources Information Center
Liang, Xiaoping; Smith, Sara W.
2012-01-01
The present research analyzes instructional strategies used to integrate the learning of content and English as a foreign language in a bilingual physics class at a university in Shanghai, China. It examines how the instructor handles meaning and form of new English science vocabulary in concept-focused physics lectures and the strategies he used…
ERIC Educational Resources Information Center
Mikaels, Jonas
2018-01-01
This study explores the educational potential of a place-responsive pedagogy to teaching and learning in "friluftsliv" within the Swedish physical education and health (PEH) curriculum. The study draws on qualitative empirical materials from a yearlong research project, together with a group of high school PEH teachers working in seventh…
ERIC Educational Resources Information Center
Hse, Shun-Yi
1991-01-01
The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…
NASA Astrophysics Data System (ADS)
Zavala, Genaro; Alarcón, Hugo; Benegas, Julio
2007-08-01
In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy “Tutorials in Introductory Physics,” developed by the Physics Education Research Group at the University of Washington. The course was organized in a constructivist, active learning environment, so that teachers have first to experience, as regular students, the whole Tutorial sequence of activities: Tutorial pre-test, Tutorial, and Tutorial Homework. After each Tutorial, teachers reflect on, and recognize their own students’ learning difficulties, discussing their teaching experiences with their colleagues in small collaborative groups first and the whole class later. Finally they read and discuss specific Physics Education Research literature, where these learning difficulties have been extensively studied by researchers. At the beginning and at the end of the course the participants were given the conceptual multiple-choice test Force Concept Inventory (FCI). The pre-/post-instruction FCI data were presented as a practical example of the use of a research-based test widely used in educational research and in formative assessment processes designed to improve instruction.
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
Applying Authentic Data Analysis in Learning Earth Atmosphere
NASA Astrophysics Data System (ADS)
Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.
2017-09-01
The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.
Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material
NASA Astrophysics Data System (ADS)
Hesti, R.; Maknun, J.; Feranie, S.
2017-09-01
Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.
ERIC Educational Resources Information Center
Stewart, Phillip Michael, Jr.
2013-01-01
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…
ERIC Educational Resources Information Center
Chin, Doris B.; Chi, Min; Schwartz, Daniel L.
2016-01-01
A common approach for introducing students to a new science concept is to present them with multiple cases of the phenomenon and ask them to explore. The expectation is that students will naturally take advantage of the multiple cases to support their learning and seek an underlying principle for the phenomenon. However, the success of such tasks…
Motion and Balance. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Motion allows things to get done, to communicate and to travel. But is motion controlled? Students will learn about the universal laws that apply to motion, the forces that cause it and how it is related to balance. They will also discover why motion occurs when forces are out of control and learn more about this interesting concept by viewing…
Simulating Technology Processes to Foster Learning.
ERIC Educational Resources Information Center
Krumholtz, Nira
1998-01-01
Based on a spiral model of technology evolution, elementary students used LOGO computer software to become both developers and users of technology. The computerized environment enabled 87% to reach intuitive understanding of physical concepts; 24% expressed more formal scientific understanding. (SK)
Precursor model and preschool science learning about shadows formation
NASA Astrophysics Data System (ADS)
Delserieys, Alice; Jégou, Corinne; Boilevin, Jean-Marie; Ravanis, Konstantinos
2018-04-01
This work is based on the idea that young children benefit from early introduction of scientific concepts. Few researches describe didactical strategies focusing on physics understanding for young children and analyse their effectiveness in standard classroom environments.
Experimental College Physics Course Based on Ausubel's Learning Theory.
ERIC Educational Resources Information Center
Moreira, Marco Antonio
1978-01-01
Compares the Ausubelian approach and the traditional one to the content organization of an introductory course in electromagnetism. States the differences between these approaches in terms of the student's ability to apply, relate, and differentiate electromagnetic concepts. (GA)
Focusing on Concepts by Covering Them Simultaneously
NASA Astrophysics Data System (ADS)
Schwartz, Pete
2017-05-01
"Parallel" pedagogy covers the four mechanics concepts of momentum, energy, forces, and kinematics simultaneously instead of building each concept on an understanding of the previous one. Course content is delivered through interactive videos, allowing class time for group work and student-centered activities. We start with simple examples, building complexity throughout the course with the introduction of springs, two dimensions, vectors, energy diagrams, universal gravitation, and rotation. Success means that students ponder underlying physics concepts rather than hunt for formulas. Surveys indicate that students accept this learning model well and have considerable improvement in applied conceptual understanding.
The FAMULATUR PLUS as an innovative approach for teaching physical examination skills.
Jerg, Achim; Öchsner, Wolfgang; Wander, Henriette; Traue, Harald C; Jerg-Bretzke, Lucia
2016-01-01
The FAMULATUR PLUS is an innovative approach to teaching physical examination skills. The concept is aimed at medical students during the clinical part of their studies and includes a clinical traineeship (English for "Famulatur") extended to include various courses ("PLUS"). The courses are divided into clinical examination courses and problembased-learning (PBL) seminars. The concept's special feature is the full integration of these courses into a 30-day hospital traineeship. The aim is to facilitate the transfer of knowledge from the courses into daily practice. Each week of the FAMULATUR PLUS is structured in line with the courses and focuses on a particular part of the body (e.g., abdomen). A physical examination course under the supervision of a physician is offered at the beginning of the week. Here, medical students learn the relevant examination techniques by practicing on each other (partner exercises). Subsequently, the techniques taught are applied independently during everyday work on the ward, corrected by the supervisor, if necessary, and thereby reinforced. The final POL seminar takes place towards the end of the week. Possible differential diagnoses are developed based on a clinical case study. The goal is to check these by taking a fictitious medical history and performing a physical examination, as well as to make a preliminary diagnosis. Finally, during the PBL seminar, medical students will be shown how physical examination techniques can be efficiently applied in the diagnosis of common cardinal symptoms (e.g., abdominal pain). The initial implementation of the FAMULATUR PLUS proved the practical feasibility of the concept. In addition, the accompanying evaluation showed that the participants of the pilot project improved with regard to their practical physical examination skills.
NASA Astrophysics Data System (ADS)
Kjeldsen, Tinne Hoff; Lützen, Jesper
2015-07-01
In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.
Assessing learning in small sized physics courses
NASA Astrophysics Data System (ADS)
Ene, Emanuela; Ackerson, Bruce J.
2018-01-01
We describe the construction, validation, and testing of a concept inventory for an Introduction to Physics of Semiconductors course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive processes outlined in Bloom's revised taxonomy. The primary challenge comes from the low number of test takers. We describe the Rasch modeling analysis for this concept inventory, and the results of the calibration on a small sample size, with the intention of providing a useful blueprint to other instructors. Our study involved 101 students from Oklahoma State University and fourteen faculty teaching or doing research in the field of semiconductors at seven universities. The items were written in four-option multiple-choice format. It was possible to calibrate a 30-item unidimensional scale precisely enough to characterize the student population enrolled each semester and, therefore, to allow the tailoring of the learning activities of each class. We show that this scale can be employed as an item bank from which instructors could extract short testlets and where we can add new items fitting the existing calibration.
Darrah, Johanna; Loomis, Joan; Manns, Patricia; Norton, Barbara; May, Laura
2006-11-01
The Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada, recently implemented a Master of Physical Therapy (MPT) entry-level degree program. As part of the curriculum design, two models were developed, a Model of Best Practice and the Clinical Decision-Making Model. Both models incorporate four key concepts of the new curriculum: 1) the concept that theory, research, and clinical practice are interdependent and inform each other; 2) the importance of client-centered practice; 3) the terminology and philosophical framework of the World Health Organization's International Classification of Functioning, Disability, and Health; and 4) the importance of evidence-based practice. In this article the general purposes of models for learning are described; the two models developed for the MPT program are described; and examples of their use with curriculum design and teaching are provided. Our experiences with both the development and use of models of practice have been positive. The models have provided both faculty and students with a simple, systematic structured framework to organize teaching and learning in the MPT program.
ERIC Educational Resources Information Center
Hsu, Shun-Yi
An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…
ERIC Educational Resources Information Center
Oh, Elisabeth Yian Yian; Treagust, David F.; Koh, Thiam Seng; Phang, Wei Lian; Ng, Shuh Lit; Sim, Gary; Chandrasegaran, A. L.
2012-01-01
An instructional program using four simulation applets was used to facilitate understanding of gas and liquid pressure concepts among twenty-two students in a Year 9 class from an independent secondary school in Singapore. A comparison group consisting of twenty-two students was taught using traditional didactic, chalk-and-talk instruction.…
Children's reasoning about physics within and across ontological kinds.
Heyman, Gail D; Phillips, Ann T; Gelman, Susan A
2003-08-01
Reasoning about seven physics principles within and across ontological kinds was examined among 188 5- and 7-year-olds and 59 adults. Individuals in all age groups tended to appropriately generalize what they learned across ontological kinds. However, children also showed sensitivity to ontological kind in their projections: when learning principles with reference to people they were more likely to assume that the principles apply to another person than to an inanimate object, and when learning with reference to an inanimate object they were more likely to assume that the principles apply to another inanimate object than to a person. Five-year-olds, but not 7-year-olds, projected concepts learned about people to a greater extent than principles learned about inanimate objects, closely paralleling the findings of Carey for the biological domain (Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press). Results from a separate sample of 22 5-year-olds suggest that the primary findings cannot be explained by response perseveration. The present findings indicate that children understand physics principles that apply to both animate and inanimate objects, but distinguish between these ontological kinds.
Schmidt, Cathrine
2013-09-01
This article, written from the stance of a public planner and a policy maker, explores the challenges and potential in creating future learning environments through the concept of a new learning landscape. It is based on the belief that physical planning can support the strategic goals of universities. In Denmark, a political focus on education as a mean to improve national capacity for innovation and growth are redefining the universities role in society. This is in turn changing the circumstances for the physical planning. Drawing on examples of physical initiatives in three different scales--city, building and room scale, the paper highlights how space and place matters on an interpersonal, an interprofessional and a political level. The article suggests that a wider understanding of how new learning landscapes are created--both as a material reality and a political discourse--can help frame an emerging community of practice. This involves university leaders, faculty and students, architects, designers and urban planners, citizens and policy makers with the common goal of creating future learning environments today.
NASA Astrophysics Data System (ADS)
Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh
2017-05-01
Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.
Activity-Based Introductory Physics Reform *
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2004-05-01
Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to those of good traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). RealTime Physics promotes interaction among students in a laboratory setting and makes use of powerful real-time data logging tools to teach concepts as well as quantitative relationships. An active learning environment is often difficult to achieve in large lecture sessions and Workshop Physics and Scale-Up largely eliminate lectures in favor of collaborative student activities. Peer Instruction, Just in Time Teaching, and Interactive Lecture Demonstrations (ILDs) make lectures more interactive in complementary ways. This presentation will introduce these reforms and use Interactive Lecture Demonstrations (ILDs) with the audience to illustrate the types of curricula and tools used in the curricula above. ILDs make use real experiments, real-time data logging tools and student interaction to create an active learning environment in large lecture classes. A short video of students involved in interactive lecture demonstrations will be shown. The results of research studies at various institutions to measure the effectiveness of these methods will be presented.
NASA Astrophysics Data System (ADS)
Mason, Andrew J.; Bertram, Charles A.
2018-06-01
When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.
NASA Astrophysics Data System (ADS)
Gunel, Murat; Hand, Brian; Gunduz, Sevket
2006-11-01
Physics as a subject for school students requires an understanding and ability to move between different modes of representation for the concepts under review. However, the inability of students to have a multimodal understanding of the concepts is seen as restricting their understandings of the concepts. The aim of this study was to explore the effectiveness of using writing-to-learn strategies that required students to embed multimodal representations of the concepts. In particular, the study compared a presentation format with a summary report format for students learning quantum theory. A pre-post test design was used to compare performances of these two groups across two units. For unit 1, students' scores from groups that completed either a presentation format (PowerPoint presentation) or a summary report format (chapter summary) were compared. No limits were placed on the amount of text or the number of representations used. For unit 2, products of both groups were constructed for an audience of year 10 students. The presentation format group (PowerPoint) was limited to 15 slides, with a maximum of 10 words displayed per slide; a script was written to accompany the presentation. Slides could include graphical and mathematical formulae; however, the text could not. The summary report format group that wrote out its explanations was limited to four pages and was required to incorporate multimodal representations. Results indicated that for both units students using the presentation format group scored significantly better on tests than the summary report format group. The effect size difference between the groups increased for the second unit, indicating that more practice was leading to better student understanding of the physics concepts.
NASA Astrophysics Data System (ADS)
Gamor, Keysha Ingram
This paper contains a research study that investigated the relative efficacy of using both a traditional paper-and-pencil assessment instrument and an alternative, virtual reality (VR) assessment instrument to assist educators and/or instructional designers in measuring learning in a virtual reality learning environment. To this end, this research study investigated assessment in VR, with the goal of analyzing aspects of student learning in VR that are feasible to access or capture by traditional assessments and alternative assessments. The researcher also examined what additional types of learning alternative assessments may offer. More specifically, this study compared the effectiveness of a traditional method with an alternative (performance-based) method of assessment that was used to examine the ability of the tools to accurately evidence the levels of students' understanding and learning. The domain area was electrostatics, a complex, abstract multidimensional concept, with which students often experience difficulty. Outcomes of the study suggest that, in the evaluation of learning in an immersive VR learning environment, assessments would most accurately manifest student learning if the assessment measure matched the learning environment itself. In this study, learning and assessing in the VR environment yielded higher final test scores than learning in VR and testing with traditional paper-and-pencil. Being able to transfer knowledge from a VR environment to other situations is critical in demonstrating the overall level of understanding of a concept. For this reason, the researcher recommends a combination of testing measures to enhance understanding of complex, abstract concepts.
NASA Astrophysics Data System (ADS)
Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.
2008-12-01
A new curriculum for an introductory geology course, Geology and Everyday Thinking (GET), incorporates the key research findings of How People Learn (NAS, 1999), and is based on the pedagogical approach of Physics and Everyday Thinking (PET; http://petproject.sdsu.edu/). These key findings have profound implications for developing teaching strategies that promote student learning. They suggest that for learning to occur: 1) students' preconceptions must be engaged, 2) students must be able to build their own conceptual framework, and 3) students must be given an opportunity to reflect on their learning (metacognition). Our curriculum has been carefully constructed into cycles that apply these key findings while exploring a key geologic concept. Each cycle engages students' 'Initial Ideas' about these concepts (and continuously revisits those Initial Ideas), sequentially builds upon concepts in a logical framework, and requires reflective writing. The curriculum employs questioning, small group work, and small and large class discussions. Students construct concepts by doing inquiry lab activities, but embedded group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The questioning and discourse occur throughout each module so that students' preconceptions about a particular concept are brought out early on, and are revisited and challenged again as students construct their new understanding. Whiteboarding, or the process of sharing small-group ideas to a larger group, is the primary method of generating discussion. The instructor's role as facilitator and questioner is the cornerstone in this process. The primary audience for this course is future elementary teachers, who are required take a year-long science sequence. The year-long sequence includes physics (PET), geology (GET), and a correlative new curriculum in biology (BET). Class size is limited to 24 students, and the sequence is taught at a 4-year university as well as at four regional feeder community colleges. These courses model an inquiry-based teaching methodology that our pre-service teachers will use to teach science to their future students. Both quantitative and qualitative assessment data collected from our students show impressive gains both in attitudes about science and science content, especially compared to larger lecture-based introductory courses.
NASA Astrophysics Data System (ADS)
Myneni, Lakshman Sundeep
Students in middle school science classes have difficulty mastering physics concepts such as energy and work, taught in the context of simple machines. Moreover, students' naive conceptions of physics often remain unchanged after completing a science class. To address this problem, I developed an intelligent tutoring system, called the Virtual Physics System (ViPS), which coaches students through problem solving with one class of simple machines, pulley systems. The tutor uses a unique cognitive based approach to teaching simple machines, and includes innovations in three areas. (1) It employs a teaching strategy that focuses on highlighting links among concepts of the domain that are essential for conceptual understanding yet are seldom learned by students. (2) Concepts are taught through a combination of effective human tutoring techniques (e.g., hinting) and simulations. (3) For each student, the system identifies which misconceptions he or she has, from a common set of student misconceptions gathered from domain experts, and tailors tutoring to match the correct line of scientific reasoning regarding the misconceptions. ViPS was implemented as a platform on which students can design and simulate pulley system experiments, integrated with a constraint-based tutor that intervenes when students make errors during problem solving to teach them and to help them. ViPS has a web-based client-server architecture, and has been implemented using Java technologies. ViPS is different from existing physics simulations and tutoring systems due to several original features. (1). It is the first system to integrate a simulation based virtual experimentation platform with an intelligent tutoring component. (2) It uses a novel approach, based on Bayesian networks, to help students construct correct pulley systems for experimental simulation. (3) It identifies student misconceptions based on a novel decision tree applied to student pretest scores, and tailors tutoring to individual students based on detected misconceptions. ViPS has been evaluated through usability and usefulness experiments with undergraduate engineering students taking their first college-level engineering physics course and undergraduate pre-service teachers taking their first college-level physics course. These experiments demonstrated that ViPS is highly usable and effective. Students using ViPS reduced their misconceptions, and students conducting virtual experiments in ViPS learned more than students who conducted experiments with physical pulley systems. Interestingly, it was also found that college students exhibited many of the same misconceptions that have been identified in middle school students.
NASA Astrophysics Data System (ADS)
Orlaineta-Agüero, S.; Del Sol-Fernández, S.; Sánchez-Guzmán, D.; García-Salcedo, R.
2017-01-01
In the present work we show the implementation of a learning sequence based on an active learning methodology for teaching Physics, this proposal tends to promote a better learning in high school students with the use of a comic book and it combines the use of different low-cost experimental activities for teaching the electrical concepts of Current, Resistance and Voltage. We consider that this kind of strategy can be easily extrapolated to higher-education levels like Engineering-college/university level and other disciplines of Science. To evaluate this proposal, we used some conceptual questions from the Electric Circuits Concept Evaluation survey developed by Sokoloff and the results from this survey was analysed with the Normalized Conceptual Gain proposed by Hake and the Concentration Factor that was proposed by Bao and Redish, to identify the effectiveness of the methodology and the models that the students presented after and before the instruction, respectively. We found that this methodology was more effective than only the implementation of traditional lectures, we consider that these results cannot be generalized but gave us the opportunity to view many important approaches in Physics Education; finally, we will continue to apply the same experiment with more students, in the same and upper levels of education, to confirm and validate the effectiveness of this methodology proposal.
ERIC Educational Resources Information Center
Eshach, Haim
2010-01-01
One essential skill that students who learn physics should possess is the ability to create and interpret kinematic graphs. However, it is well documented in the literature that students show lack of competence in these abilities. They have problems in connecting graphs and physics concepts, as well as graphs and the real world. The present paper…
ERIC Educational Resources Information Center
Brown, David
2005-01-01
This paper draws on Pierre Bourdieu's embodied sociology to construct a conceptual view of gender relations in Physical Education (PE) in England and Wales as one of a cultural economy of gendered practice. The argument presented retains, considers, and applies the interdependent concepts of field, habitus and capital that lie at the heart of…
ERIC Educational Resources Information Center
Corten-Gualtieri, Pascale; Ritter, Christian; Plumat, Jim; Keunings, Roland; Lebrun, Marcel; Raucent, Benoit
2016-01-01
Most students enter their first university physics course with a system of beliefs and intuitions which are often inconsistent with the Newtonian frame of reference. This article presents an experiment of collaborative learning aiming at helping first-year students in an engineering programme to transition from their naïve intuition about dynamics…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapur, A
Purpose: The increasing complexity in the field of radiation medicine and concomitant rise in patient safety concerns call for enhanced systems-level training for future medical physicists and thus commensurate innovations in existing educational program curricula. In this work we report on the introduction of three learning opportunities to augment medical physics educational programs towards building systems-based practice and practice-based learning competencies. Methods: All initiatives were introduced for senior -level graduate students and physics residents in an institution with a newly established medical-physics graduate program and therapeutic-physics residency program. The first, centered on incident learning, was based on a spreadsheet toolmore » that incorporated the reporting structure of the Radiation Oncology-incident Learning System (ROILS), included 120 narratives of published incidents and enabled inter-rater variability calculations. The second, centered on best-practices, was a zero-credit seminar course, where students summarized select presentations from the AAPM virtual library on a weekly basis and moderated class discussions using a point/counterpoint approach. Presentation styles were critiqued. The third; centered on learning-by-teaching, required physics residents to regularly explain fundamental concepts in radiological physics from standard textbooks to board certified physics faculty members. Results: Use of the incident-learning system spreadsheet provided a platform to recast known accidents into the framework of ROILS, thereby increasing awareness of factors contributing to unsafe practice and appreciation for inter-rater variability. The seminar course enhanced awareness of best practices, the effectiveness of presentation styles and encouraged critical thinking. The learn-by-teaching rotation allowed residents to stay abreast of and deepen their knowledge of relevant subjects. Conclusion: The incorporation of systems-driven initiatives broadens comprehension of the wider systems context of medical physics, enhances awareness of resources for innovation, communication and sustained learning while maintaining a metric-driven focus on patient safety within the formative phase of student careers. The initiatives were well-received, feasible, and utilized available or shared-resources translatable across educational programs.« less
MO-DE-BRA-01: Enhancing Radiation Physics Instruction Through Gamification and E-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driewer, J; Lei, Y; Morgan, B
Purpose: This project sought to “gamify” the instruction of radiation interaction physics concepts for technology students. Gamification applies game mechanics and user interactions in active learning contexts. In one part of this project, a self-guided eModule was developed for conceptual radiation interaction instruction. In a second part, a web-based game, Particle Launch (http://particle-launcher.ist.unomaha.edu), was created to challenge students to quickly apply radiation interaction concepts in a way that is stimulating and motivating. Methods: The eModule, focused on conceptual interaction physics, was designed in Adobe Captivate and incorporates animation, web videos, and assessment questions in order to generate student interest. Navigatingmore » the whole module takes 40 minutes for beginners. Assessments after three main sections are comprised of 3–4 questions randomly selected from a question pool. In collaboration with the University of Nebraska at Omaha’s College of Information Science and Technology, the Particle Launch game was created with the Unity gaming engine and designed with a game-play look and feel. The object of the game is to utilize different particles, energies, and directions to destroy a target given a limited number of resources and time to complete the task. A rewards system encourages accurate shots. Results: The eModule part of the project encourages a flipped classroom model in which class time is devoted to application of concepts rather than information-based lectures. Currently, eModule assessments are not tracked but this feature could be incorporated to encourage participation. Furthermore, in a class of five technology students, the game was found to be fun and engaging and had the effect of reinforcing basic concepts from the eModule. Conclusion: Gamification has significant potential to alter medical physics instruction. Game-play feedback is an important part of the learning process. Students found Particle Launch inviting and challenging and further research could help game design. This project was generously supported by the Office of the Vice-Chancellor for Academic Affairs and the University of Nebraska Medical Center.« less
Secondary analysis of teaching methods in introductory physics: A 50 k-student study
NASA Astrophysics Data System (ADS)
Von Korff, Joshua; Archibeque, Benjamin; Gomez, K. Alison; Heckendorf, Tyrel; McKagan, Sarah B.; Sayre, Eleanor C.; Schenk, Edward W.; Shepherd, Chase; Sorell, Lane
2016-12-01
Physics education researchers have developed many evidence-based instructional strategies to enhance conceptual learning of students in introductory physics courses. These strategies have historically been tested using assessments such as the Force Concept Inventory (FCI) and the Force and Motion Conceptual Evaluation (FMCE). We have performed a review and analysis of FCI and FMCE data published between 1995 and 2014. We confirm previous findings that interactive engagement teaching techniques are significantly more likely to produce high student learning gains than traditional lecture-based instruction. We also establish that interactive engagement instruction works in many settings, including those with students having a high and low level of prior knowledge, at liberal arts and research universities, and enrolled in both small and large classes.
NASA Astrophysics Data System (ADS)
Romli, S.; Abdurrahman; Riyadi, B.
2018-01-01
This study aimed at designing an open-ended worksheet to enhance students’ creative thinking skills. The study was conducted at one private school in Bandar Lampung, Indonesia. The participants of the study were twenty students of tenth grade students and two physics teachers. This study used descriptive data. Data were collected by analyzing qualitative data, literature and focus group discussion to gain information about students’ conceptions of physics in the context of open-ended learning. The result showed that students needed innovative learning resources in form of open ended-based worksheet which could give the students an opportunity to develop various solutions related to physics problem. Therefore, students’ creative thinking skill could be improved.
Informal physics learning from video games: a case study using gameplay videos
NASA Astrophysics Data System (ADS)
Croxton, DeVaughn; Kortemeyer, Gerd
2018-01-01
Researching informal gameplay can be challenging, since as soon as a formal study design is imposed, it becomes neither casual nor self-motivated. As a case study of a non-invasive design, we analyze publicly posted gameplay videos to assess the effectiveness of a physics educational video game on special relativity. These videos offer unique insights into informal learning through gaming, as players do not only describe the gameplay mechanics, but also explore physics concepts in a think-aloud fashion while they ponder the experience and effects. We find that while this methodology has substantial limitations, it is complementary when it comes to assessing motivations and attitudes, as well as to gathering data on conceptual hurdles.
Students’ conceptions analysis on several electricity concepts
NASA Astrophysics Data System (ADS)
Saputro, D. E.; Sarwanto, S.; Sukarmin, S.; Ratnasari, D.
2018-05-01
This research is aimed to analyse students’ conceptions on several electricity concept. This is a descriptive research with the subjects of new students of Sebelas Maret University. The numbers of the subject were 279 students that consisted of several departments such as science education, physics education, chemistry education, biology education and mathematics education in the academic year of 2017/2018. The instrument used in this research was the multiple-choice test with arguments. Based on the result of the research and analysis, it can be concluded that most of the students still find misconceptions and do not understand electricity concept on sub-topics such as electric current characteristic in the series and parallel arrangement, the value of capacitor capacitance, the influence of the capacitor charge and discharge towards the loads, and the amount of capacitor series arrangement. For the future research, it is suggested to improve students’ conceptual understanding with appropriate learning method and assessment instrument because electricity is one of physics material that closely related with students’ daily life.
Students’ Conception on Heat and Temperature toward Science Process Skill
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.
2017-09-01
This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.
NASA Astrophysics Data System (ADS)
Bruun, Jesper; Brewe, Eric
2013-12-01
The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.
NASA Astrophysics Data System (ADS)
Tosa, Sachiko; Qian, Lingbo
This study examines the extent to which inquiry-based teaching is practiced in Chinese high-school physics in comparison with US high schools. Data were collected through lesson observations and the administration of a teacher survey (N = 19). Results show that both US and Chinese teachers are well aware of the importance of the elements that are associated with inquiry-based teaching. However, in practice, little inquiry-based teaching was observed in either of the countries by different reasons. US physics lessons often lacked rigorous content development to help students understand physics concepts, while many of the Chinese lessons failed to include opportunities for students to present and test their own thoughts. It is advocated that the implementation of active learning strategies at the college level physics would help the situation in both of the countries.
NASA Astrophysics Data System (ADS)
Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran
2017-08-01
Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7
Gender, identity and culture in learning physics
NASA Astrophysics Data System (ADS)
Corbett, Katelin
2016-06-01
Student engagement in science, as defined by Iva Gurgel, Mauricio Pietrocola, and Graciella Watanabe, is of great importance because a student's perceived compatibility with science learning is highly influenced by personal identities, or how students see themselves in relations to the world. This can greatly impact their learning experiences. In this forum, I build on the work of Gurgel, Pietrocola, and Watanabe by exploring the relationships between engagement in physics and gender, and by looking at the expansive nature of the concept of culture. I expand the conversation by investigating ways in which learning science has impacted my own identity/worldview, particularly how it affects my personal teaching and learning experiences. I focus the conversation around the relationship between gender and the experience of learning science to further the dialogue concerning identity and how it impacts engagement in science. I also look at the role of didactic transposition in the perceived disconnect with science. I reveal my experiences and analysis through a personal narrative.
NASA Astrophysics Data System (ADS)
Purba, Siska Wati Dewi; Hwang, Wu-Yuin
2017-06-01
In this study, we designed and developed an app called Ubiquitous-Physics (U-Physics) for mobile devices like tablet PC or smart phones to help students learn the principles behind a simple pendulum in Physics. The unique characteristic of U-Physics is the use of sensors on mobile devices to collect acceleration and velocity data during pendulum swings. The data collected are transformed to facilitate students' understanding of the pendulum time period. U-Physics helped students understand the effects of pendulum mass, length, and angle in relation to its time period. In addition, U-Physics was equipped with an annotation function such as textual annotation to help students interpret and understand the concepts and phenomena of the simple pendulum. U-Physics also generated graphs automatically to demonstrate the time period during which the pendulum was swinging. Results showed a significant positive correlation between interpreting graphs and applying formula. This finding indicated that the ability to interpret graphs has an important role in scientific learning. Therefore, we strongly recommend that physics teachers use graphs to enrich students' information content and understanding and negative correlation between pair coherence and interpreting graphs. It may be that most of the participants (vocational high school students) have limited skill or confidence in physics problem solving; so, they often seek help from teachers or their high-achieving peers. In addition, the findings also indicated that U-Physics can enhance students' achievement during a 3-week time period. We hope that this app can be globally used to learn physics in the future.
Culturally Framing Aboriginal Literacy and Learning.
ERIC Educational Resources Information Center
Antone, Eileen
2003-01-01
More than just the development of reading and writing skills, Aboriginal literacy is a wholistic concept, with spiritual, physical, mental, and emotional aspects, involving relationships between self, community, nation, and creation. Models are presented for incorporating traditional Aboriginal knowledge and methodologies into Aboriginal learning…
ERIC Educational Resources Information Center
Scarlatos, Lori L.
2006-01-01
Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…
Childhood Obesity: The Caregiver's Role.
ERIC Educational Resources Information Center
Haschke, Bernadette
2003-01-01
Describes the role caregivers play in helping young children dealing with obesity. Examines: (1) causes of childhood obesity; (2) caregiver's position; (3) learning nutrition concepts; (4) preparing and serving healthy foods; (5) encouraging physical activity; (6) working with parents; and (7) assisting an obese child. (SD)
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course
NASA Astrophysics Data System (ADS)
Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel
2018-03-01
Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.
Improving physics teaching materials on sound for visually impaired students in high school
NASA Astrophysics Data System (ADS)
Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry
2017-09-01
When visually impaired students attend regular high school, additional materials are necessary to help them understand physics concepts. The time for teachers to develop teaching materials for such students is scarce. Visually impaired students in regular high school physics classes often use a braille version of the physics textbook. Previously, we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. In this research we evaluate the use of a revised braille textbook, relief drawings and 3D models. The research focussed on the topic of sound in grade 10.
Concept of coherence of learning physical optics
NASA Astrophysics Data System (ADS)
Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.
1995-10-01
The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it is easier to recognize limitations of the model of light. For example, in the interpretation of the effect of retarding plates on polarizated light. When the plate is wider than the coherence length of the wavetrain of light, the effect disappears.
NASA Astrophysics Data System (ADS)
Lehto, H.; Vacher, H. L.
2013-12-01
Educators have used spreadsheets to teach math concepts for years. However, when spreadsheet-based modules began to be used to teach math and geology concepts at USF students found them difficult to use. Most often students expressed frustration that learning how to use Excel took precedence over learning the concepts presented in the modules. Was the Excel was getting in the way? To investigate this question, we placed students in Physical Geology courses into two groups: one group was given a set of modules that instructed them to use Excel for their calculations, while the modules given to the other group simple instructed them to do the calculations but they were not told what method to use. Our expectation was that students in the Non-Excel group would be less frustrated and thus attain a higher level of learning of the concepts presented in the modules. However, our results show that students had high gains for both the math and geology concepts presented in the modules whether Excel was used or not. We also tested the students' attitudes about the modules and the knowledge they gained and found that overall students were comfortable with the math and geology concepts presented in the modules, and most felt that the modules were worth their time; however they did not wish to complete any more modules. The only observed difference in gains was that students in the course led by the author of the modules had larger gains in knowledge versus those in the course led by another instructor. This difference may have been the result of differences in teaching style, such as the module author's mention and linking of the modules with lecture materials throughout the course. We believe that spreadsheet-based modules are a good tool for teaching math and geology concepts, as overall the students were confident in their new knowledge. We also found that the use of Excel within the module did not affect the learning outcomes. The one downside of this study was that after completing the modules the students did not wish to do any more, which may have to do with a strong tendency towards math avoidance.
High school students' physical education conceptual knowledge.
Ayers, Suzan F
2004-09-01
The value of conceptual physical education knowledge has long been acknowledged (American Alliance for Health, Physical Education, and Recreation, 1969; Kneer, 1981; NASPE, 1995) yet has not been formally measured or assessed. Seven multiple choice tests with established validity and reliability (Ayers, 2001b) were used to assess the concepts identified in Mohnsen's text (1998). Tests were administered to 3,263 high school students at the schools of 17 NASPE Teachers of the Year in 16 states. On all tests, girls outscored boys, and Caucasians outscored all other racial groups. Examinees' average performance on each test was: motor development (65%), exercise physiology (62%), social psychology (60%), biomechanics (57%), aesthetic experiences (56%), motor learning (53%), and historical perspectives (49%). Analyses of each area determined concepts students knew and did not know.
Virtual Jupiter - Real Learning
NASA Astrophysics Data System (ADS)
Ruzhitskaya, Lanika; Speck, A.; Laffey, J.
2010-01-01
How many earthlings went to visit Jupiter? None. How many students visited virtual Jupiter to fulfill their introductory astronomy courses’ requirements? Within next six months over 100 students from University of Missouri will get a chance to explore the planet and its Galilean Moons using a 3D virtual environment created especially for them to learn Kepler's and Newton's laws, eclipses, parallax, and other concepts in astronomy. The virtual world of Jupiter system is a unique 3D environment that allows students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The virtual learning environment let students to work individually or collaborate with their teammates. The 3D world is also a great opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of 3D environment is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3-dimensional environment.
Students conception and perception of simple electrical circuit
NASA Astrophysics Data System (ADS)
Setyani, ND; Suparmi; Sarwanto; Handhika, J.
2017-11-01
This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.
NASA Astrophysics Data System (ADS)
Kattoula, Ehsan Habib
Recent reform efforts in science education have culminated in National Science Education Standards (NSES), which include the nature of science and science inquiry themes across all grade levels. Consideration must be given to pre-service science teachers' nature of science conceptions and their perceived roles in implementing the nature of science in the science classroom. This qualitative study investigates how pre-service science teachers' views about the nature of science develop and change when learning a college physics unit on waves in an urban university. The study uses case study methodology with four pre-service science teachers as individual units of analysis. Data regarding the participants' views about the nature of science were collected before and after the instruction on the physics of waves unit. The research design used 'The Views of Nature of Science/Views of Scientific Inquiry-Physics Questionnaire' followed by structured interviews throughout the wave unit. In addition, the participants responded to daily questions that incorporated nature of science themes and constructed concept maps regarding the physics content and their nature of science understanding. After completing the VNOS/VOSI-PHYS questionnaire the pre-service science teachers' views of the nature of science were found to be mainly naive and transitional before the instruction. At the end of the wave unit instruction, the data indicated that conceptual change occurred in participants' nature of science views, shifting toward informed views. The findings of this study provide evidence that using explicit instruction with specific activities, such as experiments and concept mapping, shifted the pre-service science teachers' views away from naive and toward informed.
Modellus: Learning Physics with Mathematical Modelling
NASA Astrophysics Data System (ADS)
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations--differential equations--are the most important mathematical objects used for modelling Natural phenomena. In traditional approaches, they are introduced only at advanced level, because it takes a long time for students to be introduced to the fundamental principles of Calculus. With the new proposed approach, rates of change can be introduced also at early stages on learning if teachers stress semi-quantitative reasoning and use adequate computer tools. In this thesis, there is also presented Modellus, a computer tool for modelling and experimentation. This computer tool has a user interface that allows students to start doing meaningful conceptual and empirical experiments without the need to learn new syntax, as is usual with established tools. The different steps in the process of constructing and exploring models can be done with Modellus, both from physical points of view and from mathematical points of view. Modellus activities show how mathematics and physics have a unity that is very difficult to see with traditional approaches. Mathematical models are treated as concrete-abstract objects: concrete in the sense that they can be manipulated directly with a computer and abstract in the sense that they are representations of relations between variables. Data gathered from two case studies, one with secondary school students and another with first year undergraduate students support the main ideas of the thesis. Also data gathered from teachers (from college and secondary schools), mainly through an email structured questionnaire, shows that teachers agree on the potential of modelling in the learning of physics (and mathematics) and of the most important aspects of the proposed framework to integrate modelling as an essential component of the curriculum. Schools, as all institutions, change at a very slow rate. There are a multitude of reasons for this. And traditional curricula, where the emphasis is on rote learning of facts, can only be changed if schools have access to new and powerful views of learning and to new tools, that support meaningful conceptual learning and are as common and easy to use as pencil and paper.
NASA Astrophysics Data System (ADS)
Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.
2016-06-01
Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.
Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding
NASA Astrophysics Data System (ADS)
Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.
2018-04-01
The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.
Investigating and improving introductory physics students’ understanding of electric flux
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2018-07-01
A solid grasp of the concept of electric flux is an important pre-requisite for appropriate use of Gauss’s law in solving electrostatics problems. As part of a broader investigation focusing on improving understanding of electrostatics concepts, we investigated the conceptual difficulties of college students in a traditionally taught calculus-based introductory physics course with the concept of electric flux and then the research on student difficulties was used as a guide in the development and evaluation of a research-validated tutorial which strives to help students learn this concept better. During the investigation of difficulties and the design and validation of the guided inquiry-based tutorial, college students in a calculus-based introductory physics course were given written questions to probe the common conceptual difficulties with the electric flux related concepts, and we also interviewed a subset of those students to get an in-depth account of the reasons behind the conceptual difficulties. The guided inquiry-based learning sequences in the tutorial were also iterated several times with instructors who regularly teach these courses. Here we discuss the common student difficulties with the electric flux found in our investigations, and the development and validation of a tutorial that strives to improve student understanding. We analyse how students performed on the pre-test (administered before the electric flux tutorial but after traditional instruction in the electric flux concepts) and on the post-test (administered after students in the tutorial group had engaged with the electric flux related tutorial). The performance of students in all sections of the course was comparable on the pre-test regardless of who taught that section. However, on the post-test, the performance of those in the sections of the course in which students engaged with the tutorial is significantly better that the section in which the tutorial was not used.
NASA Astrophysics Data System (ADS)
Vallett, David Bruce
This study examined the relationships among visuospatial ability, motivation to learn science, and learner conceptions of force across commonly measured demographics with university undergraduates with the aim of examining the support for an evolved sense of force and motion. Demographic variables of interest included age, ethnicity, and gender, which served to determine the ubiquity of the effects of the exogenous variables. Participants (n=91) self selected from introductory physics courses at a large public university in the Mid-Atlantic region of the United States. Utilizing a single-group exploratory design, all participants completed a series of anonymous online instruments to assess the variables of interest. Analysis consisted of an ANOVA for significance testing of demographic variables and a single-level structural equation model (SEM) to ascertain the causal influence of visuospatial ability and affect in the form of motivation on learner conceptions of force. Results of the SEM indicated that while motivation had a nonsignificant (p>.05) impact with this sample, visuospatial ability had a strong (.5 unit change in physics achievement per unit of VSA, p<.05) influence on Newtonian conceptions of mechanics. The results of this study inform physics educators as to the factors underlying conceptual change in Newtonian physics and generate hypotheses regarding the cognitive processes and corresponding neural substrates associated with successful Newtonian reasoning.
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Balamanikavelu, P. M.; Vijayan, D.; Prasad, T. S.
Everybody uses a bulb to illustrate an idea but nobody shows where the current comes from. Majority of remote sensing user community comes from natural and social sciences domain while remote sensing technology evolves from physical and engineering sciences. To ensure inculcation and internalization of remote sensing technology by application/resource scientists, trainer needs to transfer physical and engineering concepts in geometric manner. Here, the steering for the transfer of knowledge (facts, procedures, concepts and principles) and skills (thinking, acting, reacting and interacting) needs to take the trainees from Known to Unknown, Concrete to Abstract, Observation to Theory and Simple to Complex. In the initial stage of training/education, experiential learning by instructor led exploring of thematic details in false colour composite (FCC) as well as in individual black and white spectral band(s) imagery by trainees not only creates interest, confidence build-up and orientation towards purposeful learning but also helps them to overcome their inhibitions towards the physical and engineering basal. The methodology to be adopted has to inculcate productive learning, emphasizing more on thinking and trial and error aspects as opposed to reproductive learning based dominantly on being told and imitation. The delivery by trainer needs to ensure dynamic, stimulating and effective discussions through deluging questions pertaining to analysis, synthesis and evaluation nature. This would ensure proactive participation from trainees. Hands-on module leads to creative concretization of concepts. To keep the trainees inspired to learn in an auto mode during post-training period, they need to consciously swim in the current and emerging knowledge pool during training programme. This is achieved through assignment of seminar delivery task to the trainees. During the delivery of seminar, peers and co-trainees drive the trainee to communicate the seminar content not only in what but also in how and why mode. The interest culminated in this manner keeps the entropy of the trainee minimized even during post-training professional life. So, such germinated trainee would always generate positive induction among colleagues; thus, helping in realising multiplier effect.
Web-based Homework and Quiz Systems
NASA Astrophysics Data System (ADS)
Pritchard, David
2005-05-01
Mastering Physics is a Socratic tutor designed to help students learn introductory physics. The tutor poses problems and then comments specifically on about 1/2 of all wrong answers, even though most responses demanded are analytic expressions. Students can request hints (some of which are sub-problems), and work through the list of hint titles at random. In a typical problem there are 10 round trip interactions between tutor and student, raising the percentage of students who get the answer from ˜60% on the first try to over 90% after tutoring. This is Mastery Learning where student time and effort are increased to achieve learning rather than the grade decreased to indicate that the learning is incomplete. Mastering Physics is also a homework administration system that aids the instructor in preparing an assignment by indicating (in the problem library) the difficulty and duration of each problem and of the overall assignment. At MIT doing Mastering Physics has been shown to correlate much better than written homework or going to recitation with scoring better on the final exam in May than that student did on the final in December (which is why the student was repeating the course in the spring). At Arizona State, Mastering Physics increased the class' normalized gain on the Force Concept Inventory from 21% to 40% the year it was introduced.
NASA Astrophysics Data System (ADS)
Knipp, D. J.
2013-12-01
An undergraduate course in solar and geospace (helio) physics should link fundamental principles from introductory physics and astronomy courses to concepts that appear unique, or are uniquely named in the heliophysics course. This paper discusses short topics and activities that can be addressed in an approximately 15-min class segment, that introduce students to aspects of solar, solar wind, and geospace storms that are a step beyond, or a special application of, an introductory physics concept. Some of these activities could be assigned as pre- or post- class activities as well. Many of the actives are aligned with images or diagrams in textbook, "Understanding Space Weather and the Physics Behind It," but could be easily adapted to other texts. We also address activities that link to information from space weather forecasting and/or modeling websites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S.
Vic Montemayor - No one has been more passionate about improving the quality and effectiveness of the teaching of Medical Physics than Bill Hendee. It was in August of 2008 that the first AAPM Workshop on Becoming a Better Teacher of Medical Physics was held, organized and run by Bill Hendee. This was followed up in July of 2010 with a summer school on the same topic, again organized by Bill. There has been continued interest in alternate approaches to teaching medical physics since those initial gatherings. The momentum established by these workshops is made clear each year in themore » annual Innovation in Medical Physics Education session, which highlights work being done in all forms of medical physics education, from one-on-one residencies or classroom presentations to large-scale program revisions and on-line resources for international audiences. This symposium, presented on behalf of the Education Council, highlights the work of three finalists from past Innovation in Education sessions. Each will be presenting their approaches to and innovations in teaching medical physics. It is hoped that audience members interested in trying something new in their teaching of medical physics will find some of these ideas and approaches readily applicable to their own classrooms. Rebecca Howell - The presentation will discuss ways to maximize classroom learning, i.e., increasing the amount of material covered while also enhancing students’ understanding of the broader implications of the course topics. Specifically, the presentation will focus on two teaching methodologies, project based learning and flip learning. These teaching methods will be illustrated using an example of graduate medical physics course where both are used in conjunction with traditional lectures. Additionally, the presentation will focus on our experience implementing these methods including challenges that were overcome. Jay Burmeister - My presentation will discuss the incorporation of active learning techniques into a traditional medical physics classroom course. I will describe these techniques and how they were implemented as well as student performance before and after implementation. Student feedback indicated that these course changes improved their ability to actively assimilate the course content, thus improving their understanding of the material. Shahid Naqvi - My talk will focus on ways to help students visualize crucial concepts that lie at the core of radiation physics. Although particle tracks generated by Monte Carlo simulations have served as an indispensable visualization tool, students often struggle to resolve the underlying physics from a simultaneous jumble of tracks. We can clarify the physics by “coding” the tracks, e.g., by coloring the tracks according to their “starting” or “crossing” regions. The regionally-coded tracks when overlaid with dose distributions help the students see the elusive connection between dose, kerma and electronic disequilibrium. Tracks coded according to local energy or energy-loss rate can illustrate the need for stopping power corrections in electron beams and explain the Bragg peak in a proton beam. Coding tracks according to parent interaction type and order can clarify the often misunderstood distinction between primary and scatter dose. The students can thus see the “whole” simultaneously with the “sum of the parts,” which enhances their physical insight and creates a sustainable foundation for further learning. After the presentations the speakers and moderator will be open to questions and discussion with the audience members. Learning Objectives: Be able to explain Project-Based Learning and how can it be incorporated into a Medical Physics classroom. Be able to explain Flipped Learning and how can it be incorporated into a Medical Physics classroom. Be able to explain active-learning strategies for the teaching of Medical Physics. Be able to explain how Monte Carlo simulations can be used to deepen a student’s understanding of radiation physics and dosimetry.« less
NASA Astrophysics Data System (ADS)
Ward, R. Bruce; Sadler, Philip M.; Shapiro, Irwin I.
We report on an evaluation of the effectiveness of Project ARIES, an astronomy- based physical science curriculum for upper elementary and middle school children. ARIES students use innovative, simple, and affordable apparatus to carry out a wide range of indoor and outdoor hands-on, discovery- based activities. Student journals and comprehensive teacher materials aid in making the science content accessible to students based on their shared experiences and observations. Approximately 750 Grades 3 6 students in ARIES (or treatment) classrooms are compared with approximately 650 Grades 4 6 students in control classrooms through a series of open-ended assessment measures, using a pretest and posttest format. A detailed analysis by item measures the gain in treatment and control groups. We identify concepts where the ARIES approach is more effective, where both are equally effective, and where neither results in much learning. (The ARIES approach was never less effective.) Although learning is in evidence for both control and treatment groups, overall, the ARIES students achieve roughly four times the gain of their control counterparts. In particular, ARIES students had much greater gains for the concepts that the control students found most difficult.
ERIC Educational Resources Information Center
Fitzgerald, Mike
2004-01-01
In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…
Two-Year Community: Resolving Misconceptions through Student Reflections
ERIC Educational Resources Information Center
Tawde, Mangala; Boccio, Dona; Kolack, Kevin
2017-01-01
Students arrive in college with significant prior knowledge including misconceptions that hinder their ability to learn new concepts correctly. Misconceptions, or "alternative beliefs," have been widely studied in the physical sciences at higher education institutions; however, there is a paucity of research concerning the community…
NASA Astrophysics Data System (ADS)
McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.
2016-12-01
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
Introducing 12 year-olds to elementary particles
NASA Astrophysics Data System (ADS)
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-07-01
We present a new learning unit, which introduces 12 year-olds to the subatomic structure of matter. The learning unit was iteratively developed as a design-based research project using the technique of probing acceptance. We give a brief overview of the unit’s final version, discuss its key ideas and main concepts, and conclude by highlighting the main implications of our research, which we consider to be most promising for use in the physics classroom.
Science and Cooking: Motivating the Study of Freshman Physics
NASA Astrophysics Data System (ADS)
Weitz, David
2011-03-01
This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.
NASA Astrophysics Data System (ADS)
Siahaan, P.; Suryani, A.; Kaniawati, I.; Suhendi, E.; Samsudin, A.
2017-02-01
The purpose of this research is to identify the development of students’ science process skills (SPS) on linear motion concept by utilizing simple computer simulation. In order to simplify the learning process, the concept is able to be divided into three sub-concepts: 1) the definition of motion, 2) the uniform linear motion and 3) the uniformly accelerated motion. This research was administered via pre-experimental method with one group pretest-posttest design. The respondents which were involved in this research were 23 students of seventh grade in one of junior high schools in Bandung City. The improving process of students’ science process skill is examined based on normalized gain analysis from pretest and posttest scores for all sub-concepts. The result of this research shows that students’ science process skills are dramatically improved by 47% (moderate) on observation skill; 43% (moderate) on summarizing skill, 70% (high) on prediction skill, 44% (moderate) on communication skill and 49% (moderate) on classification skill. These results clarify that the utilizing simple computer simulations in physics learning is be able to improve overall science skills at moderate level.
NASA Astrophysics Data System (ADS)
Fredriksson, Alexandra; Pelger, Susanne
2018-03-01
The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.
Smith, Jay; Laskowski, Edward R; Newcomer-Aney, Karen L; Thompson, Jeffrey M; Schaefer, Michael P; Morfe, Erasmus G
2005-04-01
To develop and implement formal learning objectives during a physical medicine and rehabilitation sports medicine rotation and characterize resident experiences with the objectives over a 16-mo period. Prospective, including learning objective development, implementation, and postrotation survey. A total of 69 learning objectives were developed by physical medicine and rehabilitation staff physician consensus, including 39 core objectives. Eighteen residents completed 4-wk sports medicine rotations from January 2003 through April 2004. Residents completed an average of 31 total objectives (45%; range, 3-52), of which 24 (62%; range, 3-35) were core. Residents completed the highest percentage of knee (60%), shoulder (57%), and ankle-foot (57%) objectives and reported that objectives related to these areas were most effective to facilitate learning. In general, residents reported that objective content was good and that the objectives delineated important concepts to learn during the rotation. Seventeen of 18 residents indicated that the objectives should be permanently implemented into the sports rotation and that similar objectives should be developed for other rotations. Based on our experience and the recommendations of residents, the average resident should be able to complete approximately 30 objectives during a typical 4-wk rotation. Successful implementation of specific, consensus-derived learning objectives is possible within the context of a busy clinical practice. Our initial physician staff and resident experience with the objectives suggests that this model may be useful as a supplementary educational tool in physical medicine and rehabilitation residency programs.
Talking Physics: Two Case Studies on Short Answers and Self-explanation in Learning Physics
NASA Astrophysics Data System (ADS)
Badeau, Ryan C.
This thesis explores two case studies into the use of short answers and self-explanation to improve student learning in physics. The first set of experiments focuses on the role of short answer questions in the context of computer-based instruction. Through a series of six experiments, we compare and evaluate the performance of computer-assessed short answer questions versus multiple choice for training conceptual topics in physics, controlling for feedback between the two formats. In addition to finding overall similar improvements on subsequent student performance and retention, we identify unique differences in how students interact with the treatments in terms of time spent on feedback and performance on follow-up short answer assessment. In addition, we identify interactions between the level of interactivity of the training, question format, and student attitudinal ratings of each respective training. The second case study focuses on the use of worked examples in the context of multi-concept physics problems - which we call "synthesis problems." For this part of the thesis, four experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. As such, the work presented here represents a novel focus on extending these two techniques to this class of more complicated physics problem. Across the four experiments, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time-on-task.
NASA Astrophysics Data System (ADS)
May, David B.
2002-11-01
To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting the conceptual learning of physics students. Also, getting students to reflect meaningfully on their knowledge and learning is difficult and requires consistent feedback. Research into the epistemological beliefs of physics students in different contexts and from different populations can help us develop more complete models of epistemological beliefs, and ultimately improve the conceptual and epistemological knowledge of all students.
Heart smart: a multifaceted cardiovascular risk reduction program for grade school students.
Hunter, S M; Johnson, C C; Little-Christian, S; Nicklas, T A; Harsha, D; Arbeit, M L; Webber, L S; Berenson, G S
1990-05-01
Abstract Heart Smart Program is a health education intervention for grades kindergarten through six which encourages the acquisition and maintenance of health-enhancing behaviors. These include nutritious eating habits; physical fitness and exercise; saying "no" to cigarette smoking, alcohol, and drugs; and control of stress. Social Cognitive Theory is used to derive the necessary training concepts for children with reinforcement of these concepts occurring in six areas: the curriculum, school lunch, staff development, physical activity, environment, and parental support. The necessary training mechanisms provide mastery experiences, knowledge transfer, role modeling, and emotional and physiological feedback. The program incorporates the influence of the social environment on learning and builds support from parents, teachers and school staff.
Improved method in distance teaching of physics
NASA Astrophysics Data System (ADS)
Gustafsson, Peter
2004-03-01
Results of introducing cooperative working methods on a distance learning course in physics are reported. This has increased the throughput of students in the course as measured in the number of ECTS points generated by the students. There is no significant indication that students more experienced in academic studies manage to complete the course more often than those with less experience. In student groups where the cooperative concept was fully realized a larger gain of knowledge was achieved, as measured by the force concept inventory test. Hence, it is important for the tutor to monitor activities in the groups by follow-up questions during the course and to stress the importance of all students participating actively.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria
2014-11-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.
Urban Elementary STEM Initiative
ERIC Educational Resources Information Center
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
Inquiry-Based Pre-Engineering Activities for K-4 Students
ERIC Educational Resources Information Center
Perrin, Michele
2004-01-01
This paper uses inquiry-based learning to introduce primary students to the concepts and terminology found in four introductory engineering courses: Differential Equations, Circuit Analysis, Thermodynamics, and Dynamics. Simple electronic sensors coupled with everyday objects, such as a troll doll, demonstrate and reinforce the physical principles…
ERIC Educational Resources Information Center
Rubin, Lucille S., Ed.
Fourteen brief articles deal with training actors to use their bodies effectively on stage. The articles discuss the following topics: the concept of succession-sequential movement (movement that passes through the body joint by joint); learning physical action through staged fight sequences; techniques of empty-handed combat; protecting students…
Research on Mathematical Techniques in Psychology. Final Report.
ERIC Educational Resources Information Center
Gulliksen, Harold
Mathematical techniques are developed for studying psychological problems in three fields: (1) psychological scaling, (2) learning and concept formation, and (3) mental measurement. Psychological scaling procedures are demonstrated to be useful in many areas, ranging from sensory discrimination of physical stimuli, such as colors, sounds, etc.,…
Learning to Apply Numbers to Nature.
ERIC Educational Resources Information Center
Watson, Helen
1987-01-01
Discussed are the results of interviews with 63 Australian children (interviewed in English) and 62 Nigerian children (62 interviewed in English and 60 interviewed in Yoruba) to determine how they used number concepts in discussing five demonstrations manipulating physical matter. Differences between the two groups are considered. (RH)
Analysis of Student Learning Ability in Science Teaching Based on Mid Semester Examination
NASA Astrophysics Data System (ADS)
Yurnetti, Y.
2017-09-01
This Research tried to make description about student ability in science concept that had been being touch by the teacher based on mid semester examination. The population of research is the 8th grade of students taken place at Public School in Padang academic year 2016/2017. Then the sample is 3 (three) Sekolah Menengah Pertama (SMP) with 2 (two) categories are: average and the better category. The result of these studies is the ability of the student in science only in average 60% below to the criteria mastery level for student Kota Padang. Based on analysis of the result, some misconception occurred in 4 (four) concepts of Physic and 2 (two) concepts of Biology. This result have to be followed by the other research that which can provide a how to overcome the problem of learning science among
Learning From Where Students Look While Observing Simulated Physical Phenomena
NASA Astrophysics Data System (ADS)
Demaree, Dedra
2005-04-01
The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.
NASA Astrophysics Data System (ADS)
Resita, I.; Ertikanto, C.
2018-05-01
This study aims to develop electronic module design based on Learning Content Development System (LCDS) to foster students’ multi representation skills in physics subject material. This study uses research and development method to the product design. This study involves 90 students and 6 physics teachers who were randomly chosen from 3 different Senior High Schools in Lampung Province. The data were collected by using questionnaires and analyzed by using quantitative descriptive method. Based on the data, 95% of the students only use one form of representation in solving physics problems. Representation which is tend to be used by students is symbolic representation. Students are considered to understand the concept of physics if they are able to change from one form to the other forms of representation. Product design of LCDS-based electronic module presents text, image, symbolic, video, and animation representation.
Mutual information, neural networks and the renormalization group
NASA Astrophysics Data System (ADS)
Koch-Janusz, Maciej; Ringel, Zohar
2018-06-01
Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
The Role of Students and Content in Teacher Effectiveness
Ennis, Catherine D.
2015-01-01
The process of effective teaching—teaching that directly leads to student learning of standards-based content—is tenuous at best and easily disrupted by contextual and behavioral factors. In this commentary, I discuss the role of student support and mediation in teacher effectiveness and curricular reform. The most vocal students in physical education classes appear to thrive in the current multiactivity, recreation-oriented sport culture that dominates many U.S. physical education programs. They expect lessons with minimal skill and tactical instruction and with maximum opportunities to play ball. I also comment on Ward’s emphasis on the value of content-rich definitions of teaching effectiveness and argue for additional disciplinary-based, concept-rich cognitive outcomes for physical education to complement and enrich skill, sport, and physical activity performance. I lend my voice to Rink’s call for comprehensive measures of teacher accountability as the most critical next step in physical education reform. I conclude by contesting McKenzie and Lounsbery’s accusation of “muddled goals” in physical education. Although physical education advocates may present diverse content perspectives, student learning is the primary goal of physical education. PMID:24749230
Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept
NASA Astrophysics Data System (ADS)
Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.
2017-09-01
This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.
A simple magic cup to inject excitement and curiosity in physics
NASA Astrophysics Data System (ADS)
Amir, Nazir
2018-05-01
This article highlights a simple demonstration kit that can be easily fabricated in Design & Technology (D&T) workshops to inject excitement and curiosity into students’ learning of physics concepts such as density and optics. Using an ice cream cup from a fast food restaurant and a transparent circular acrylic piece, students can be guided to make a ‘magic’ cup, while at the same time get inquisitive about the physics behind the magic. The project highlights a way of linking physics to D&T in a feasible manner which can motivate and engage students.
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf
2015-01-01
We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.
NASA Technical Reports Server (NTRS)
Herbert, Dexter (Editor)
1992-01-01
In this 'Liftoff to Learning' series video, astronauts (Charles Veach, Gregory Harbaugh, Donald McMonagle, Michael Coats, L. Blaine Hammond, Guion Bluford, Richard Hieb) from the STS-39 Mission use physical experiments and computer animation to explain how weightlessness and gravity affects everything and everyone onboard the Space Shuttle. The physics behind the differences between weight and mass, and the concepts of 'free fall', are demonstrated along with explanations and experiments of Sir Issac Newton's three laws of motion.
NASA Astrophysics Data System (ADS)
Lübbecke, Joke; Glessmer, Mirjam
2017-04-01
An important learning outcome of a Master of Sciences program is to empower students to understand which information they need, how they can gain the required knowledge and skills, and how to apply those to solve a given scientific problem. In designing a class on the El-Nino-Southern-Oscillation (ENSO) for students in the Climate Physics program at Kiel University, Germany, we have implemented various active learning strategies to meet this goal. The course is guided by an overarching question, embedded in a short story: What would we need to know to successfully predict ENSO? The students identify desired learning outcomes and collaboratively construct a concept map which then serves as a structure for the 12 weeks of the course, where each individual topic is situated in the larger context of the students' own concept map. Each learning outcome of the course is therefore directly motivated by a need to know expressed by the students themselves. During each session, students are actively involved in the learning process. They work individually or in small groups, for example testing different index definitions, analyzing data sets, setting up simple numerical models and planning and constructing hands-on experiments to demonstrate physical processes involved in the formation of El Niño events. The instructor's role is to provide the necessary background information and guide the students where it is needed. Insights are shared between groups as students present their findings to each other and combine the information, for example by cooperatively constructing a world map displaying the impacts of ENSO or by exchanging experts on different ENSO oscillator theories between groups. Development of this course was supported by the PerLe Fonds for teaching innovations at Kiel University. A preliminary evaluation has been very positive with students in particular appreciating their active involvement in the class.
Ready to learn physics: a team-based learning model for first year university
NASA Astrophysics Data System (ADS)
Parappilly, Maria; Schmidt, Lisa; De Ritter, Samantha
2015-09-01
Team-based learning (TBL) is an established model of group work which aims to improve students' ability to apply discipline-related content. TBL consists of a readiness assurance process (RAP), student groups and application activities. While TBL has not been implemented widely in science, technology, engineering and mathematics disciplines, it has been effective in improving student learning in other disciplines. This paper describes the incorporation of TBL activities into a non-calculus based introductory level physics topic—Physics for the Modern World. Students were given pre-class preparation materials and an individual RAP online test before the workshops. The pre-workshop individual RAP test ensured that all students were exposed to concept-based questions before their workshops and motivated them to use the preparatory materials in readiness for the workshop. The students were placed into random teams and during the first part of the workshop, the teams went through a subset of the quiz questions (team RAP test) and in the remaining time, teams completed an in-class assignment. After the workshop students were allowed another attempt at the individual RAP test to see if their knowledge had improved. The ability of TBL to promote student learning of key concepts was evaluated by experiment using pre- and post- testing. The students’ perception of TBL was monitored by discussion posts and survey responses. Finally, the ability of TBL to support peer-peer interaction was evaluated by video analysis of the class. We found that the TBL process improved student learning; students did interact with each other in class; and the students had a positive view of TBL. To assess the transferability of this model to other topics, we conducted a comparison study with an environmental science topic which produced similar results. Our study supports the use of this TBL model in science topics.
The "Finding Physics" Project: Recognizing and Exploring Physics Outside the Classroom
NASA Astrophysics Data System (ADS)
Beck, Judith; Perkins, James
2016-11-01
Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives. Encouraging students to apply physics to their own surroundings helps them develop the critical analysis skills of a scientifically literate and competent citizen. Fink, in his book Creating Significant Learning Experiences, emphasizes the importance of constructing opportunities to help students connect what they learn in their academic courses with past and current life experiences and link them to possible future life experiences. Several excellent papers in this journal have presented labs and activities that address this concern by encouraging teachers to bring real-world examples into the classroom or to take students into the field for data collection and observation. Alternatively, Smith suggests a writing exercise in which his students identify and explain an event in terms of their understanding of physics. In this paper we present a multiphase exercise that challenges students to find their own examples of physics from outside the classroom and analyze them using the conceptual understanding and quantitative skills which they are developing in the classroom. The ultimate goal of the "Finding Physics" project is to improve students' learning through enhancing their recognition that, to quote one participant's end-of-course survey, "Physics is everywhere!"
NASA Astrophysics Data System (ADS)
Liang, Ling L.; Gabel, Dorothy L.
2005-08-01
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science) in improving prospective teachers’ understanding of science concepts, in fostering a learning environment supporting conceptual understanding, and in promoting positive attitudes toward learning and teaching science and chemistry in particular. A non-equivalent pretest post-test control-group design was employed. Analysis of covariance and repeated-measures analyses of variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of laboratory sessions and interviews of prospective teachers were analyzed by employing a naturalistic inquiry method to provide insights into the process of science learning and teaching for the teacher trainees. The interpretations were made based on the findings that could be corroborated by both methodologies. Conclusions and limitations of the present study as well as recommendations for future implementation of constructivist science curriculum in general are also included.
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
Conceptual Change from the Framework Theory Side of the Fence
NASA Astrophysics Data System (ADS)
Vosniadou, Stella; Skopeliti, Irini
2014-07-01
We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively coherent conceptual system—i.e., a framework theory—that can be used as a basis for explanation and prediction of everyday phenomena. Learning science requires fundamental ontological, epistemological, and representational changes in naive physics. These conceptual changes take a long time to be achieved, giving rise to fragmentation and synthetic conceptions. We also argue that both fragmentation and synthetic conceptions can be explained to result from learners' attempts assimilate scientific information into their existing but incompatible naive physics.
Logistical Support for the Heavy-Light Mix,
1988-01-20
determination to learn from history. While the physical ability to support this force is marginal, the logistical procedures, concepts of support, and a...others. £ They emphasized arni-or and mechanized in 4 antry which could keep pace with the tanks. 2 -- t. - - - - *i . h -I. -o, ., . i. . -. rJIPT...Army received a costly review of the combined arms lessons learned during WW II. In June. 1950, the North Korean Army launched an all-out attack into
Whiteboarding: A Tool for Moving Classroom Discourse from Answer-Making to Sense-Making
NASA Astrophysics Data System (ADS)
Megowan-Romanowicz, Colleen
2016-02-01
In 1998 I had been teaching science for 13 years. I was a good teacher: I had the plaques and certificates to prove it. But often I felt like an impostor (which I have since learned is not unusual—70% of all people feel like a fake at one time or another). While my students could solve problems and ace tests, every June when I sat down to look at their Force Concept Inventory (FCI) results, I was confronted by how little they had actually learned in my physics classes. It was this annual reality check that drove me to pursue my first Modeling Workshop in summer of 1998. For four weeks I was a physics student again—every day, for six to eight hours a day. I (re)learned to think aloud, to "speak physics" and to listen to how I and others (students) spoke physics. That summer changed everything. When I returned to my high school physics classroom equipped with a new way of teaching in September of 1998, I was excited. I felt like I had the key to the perfect year—I wouldn't be an impostor anymore.
NASA Astrophysics Data System (ADS)
Alexakos, Konstantinos; Jones, Jayson K.; Rodriguez, Victor H.
2011-12-01
In this hermeneutic study we explore how fictive kinship (kin-like close personal friendship) amongst high school students of color mediated their resiliency, perseverance, and success in a college physics class. These freely chosen, processual friendships were based on emotional and material support, motivation, and caring for each other, as well as trust, common interests, and goals. Such close bonds contributed in creating a safe and supportive emotional space and allowed for friendly, cooperative competition within the physics classroom. Friends became the role models, source of support, and motivation for the fictive kinship group as well as for each other, as the group became the role model, source of support, and motivation for the individuals in it. Because of their friendships with one another, physics talk was extended and made part of their personal interactions outside the classroom. These social relationships and safe spaces helped the students cope and persevere despite their initial conflicting expectations of their success in physics. Our research thus expands on the concept of social learning by exploring student friendships and how they frame and mediate such a process.
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
NASA Astrophysics Data System (ADS)
Iradat, R. D.; Alatas, F.
2017-09-01
Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.
NASA Astrophysics Data System (ADS)
Oglesby, Michael L.
This study examines the efficacy in correcting student misconceptions about science concepts by using the pedagogical method of asking students to make a prediction in science laboratory lessons for students within pre-formal, transitional, or formal stages of cognitive development. The subjects were students (n = 235) enrolled in ninth grade physical science classes (n=15) in one high school of an urban profile school district. The four freshmen physical science teachers who were part of the study routinely taught the concepts in the study as a part of the normal curriculum during the time of the school year in which the research was conducted. Classrooms representing approximately half of the students were presented with a prediction phase at the start of each of ten learning cycle lesson. The other classrooms were not presented with a prediction phase. Students were pre and post tested using a 40 question instrument based on the Force Concept Inventory augmented with questions on the concepts taught during the period of the study. Students were also tested using the Test of Scientific Reasoning to determine their cognitive developmental level. Results showed 182 of the students to be cognitively pre-formal, 50 to be transitional, and only 3 to be cognitively formal. There were significantly higher gains (p < .05) for the formal group over the transitional group and for the transitional group over the Pre-formal group. However, there were not significantly higher gains (p > .05) for the total students having a prediction phase compared to those not having a prediction phase. Neither were there significant gains (p > .05) within the pre-formal group or within the transitional group. There were too few students within the formal group for meaningful results.
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Klein, P.; Lukowicz, P.; Knierim, P.; Schmidt, A.; Kuhn, J.
2018-05-01
Fundamental concepts of thermodynamics rely on abstract physical quantities such as energy, heat and entropy, which play an important role in the process of interpreting thermal phenomena and statistical mechanics. However, these quantities are not covered by human visual perception, and since heat sensation is purely qualitative and easy to deceive, an intuitive understanding often is lacking. Today immersive technologies like head-mounted displays of the newest generation, especially HoloLens, allow for high-quality augmented reality learning experiences, which can overcome this gap in human perception by presenting different representations of otherwise invisible quantities directly in the field of view of the user on the experimental apparatus, which simultaneously avoids a split-attention effect. In a mixed reality (MR) scenario as presented in this paper—which we call a holo.lab—human perception can be extended to the thermal regime by presenting false-color representations of the temperature of objects as a virtual augmentation directly on the real object itself in real-time. Direct feedback to experimental actions of the users in the form of different representations allows for immediate comparison to theoretical principles and predictions and therefore is supposed to intensify the theory–experiment interactions and to increase students’ conceptual understanding. We tested this technology for an experiment on thermal conduction of metals in the framework of undergraduate laboratories. A pilot study with treatment and control groups (N = 59) showed a small positive effect of MR on students’ performance measured with a standardized concept test for thermodynamics, pointing to an improvement of the understanding of the underlying physical concepts. These findings indicate that complex experiments could benefit even more from augmentation. This motivates us to enrich further experiments with MR.
Digital education reform for improving interaction between students and instructors
NASA Astrophysics Data System (ADS)
Deng, Qiansong; Li, Yuanjie; Zheng, Lixin
2017-08-01
Nowadays it is difficult to attract undergraduate students' interesting to put sufficient time to learn major courses in China, which are too hard for them to quick grasp and fully understanding. Here we report a digital education reform for improving interactions between students and instructors, in which we transform the abstract, obscure and boring knowledge, such as physical, mathematical, electronic or optical concepts into direct and dynamic 3-D model and flash. Therefore, this method can convert theoretical concepts into easy understanding pictures. Our several years' experience shows that this education mode can make students' willing to think and practice, then it is helpful for attracting their learning interests. Most students benefit from this education mode which can greatly enhance their understanding abilities.
An Empirical Investigation of Student Satisfaction with College Courses
ERIC Educational Resources Information Center
Sinclaire, Jollean K.
2014-01-01
This paper explores the relationship between the organizational behavior concept of job satisfaction and student satisfaction with college courses. It reports on a survey of 560 students on attitudes related to aspects of college courses including views on faculty, interaction and communication, the course, the physical learning environment, and…
Physical Education for Tomorrow.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
The learning experiences in the teacher's guide are built on the concept of movement exploration. Self-awareness is realized as students discover potentials for performing basic motor skills and explore creative movement. Intended for use at the preschool and primary levels, the guide suggests and describes ways for the teacher to introduce and…
Learning and Retention of Quantum Concepts with Different Teaching Methods
ERIC Educational Resources Information Center
Deslauriers, Louis; Wieman, Carl
2011-01-01
We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…
Developing & Using Interaction Geography in a Museum
ERIC Educational Resources Information Center
Shapiro, Ben Rydal; Hall, Rogers P.; Owens, David A.
2017-01-01
There are many approaches that support studies of learning in relation to the physical environment, people's interaction with one another, or people's movement. However, what these approaches achieve in granularity of description, they tend to lose in synthesis and integration, and to date, there are not effective methods and concepts to study…
A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6.
ERIC Educational Resources Information Center
Lincoln Public Schools, NE.
THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT…
Modeling-Mainstreaming: A Teacher Training Proposal.
ERIC Educational Resources Information Center
Bireley, Marlene; Mahan, Virginia
This document presents a learning model for training teachers to effectively deal with physically handicapped and mildly retarded children in their regular classroom. The modules are organized in the following fashion: Phase One; Development of an awareness of the concept of mainstreaming, of labels and their consequences, and of the psychological…
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
ERIC Educational Resources Information Center
Mendiburo, Maria; Hasselbring, Ted
2011-01-01
Fractions are among the most difficult mathematical concepts for elementary school students to master (Behr, Harel, Post, & Lesh, 1992; Bezuk & Cramer, 1989; Moss & Case, 1999). Research indicates that manipulatives (e.g. fractions circles, fractions strips) positively impact students' conceptual and procedural understanding of…
Teaching Thermodynamics with Physlets[R] in Introductory Physics
ERIC Educational Resources Information Center
Cox, Anne J.; Belloni, Mario; Dancy, Melissa; Christian, Wolfgang
2003-01-01
This paper describes the use of interactive, Physlet[R]-based curricular material designed to help students learn concepts of thermodynamics with a particular focus on the use of kinetic theory models. These exercises help students visualize ideal gas particle dynamics and engine cycles, make concrete connections between mechanics and…
Precursor Model and Preschool Science Learning about Shadows Formation
ERIC Educational Resources Information Center
Delserieys, Alice; Jégou, Corinne; Boilevin, Jean-Marie; Ravanis, Konstantinos
2018-01-01
Background: This work is based on the idea that young children benefit from early introduction of scientific concepts. Few researches describe didactical strategies focusing on physics understanding for young children and analyse their effectiveness in standard classroom environments. Purpose: The aim is to identify whether didactical strategies…
The Habitability Framework: Linking Human Behavior and Physical Environment in Special Education.
ERIC Educational Resources Information Center
Preiser, Wolfgang F. E.; Taylor, Anne
1983-01-01
The concept of environmental design cybernetics is explained, and its use by special educators and architects in creating learning environments is discussed. A proposed habitability framework is defined, and its applications to buildings and building occupants/users are offered. Research on architectural design applied to special education…
Building Dynamic Conceptual Physics Understanding
ERIC Educational Resources Information Center
Trout, Charlotte; Sinex, Scott A.; Ragan, Susan
2011-01-01
Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks include them in their common themes chapter. Hyerle and Marzano argue for…
Career Activities in Science: Grades 7-12.
ERIC Educational Resources Information Center
Sleep, Gerald; And Others
The curriculum guide attempts to assemble select activities that represent skills related to careers in science. These learning activities are designed to give junior and senior high school students opportunities to explore concepts and processes in many science-related careers. The broad areas covered are biology, chemistry, physics, and earth…
Always-on Education and Hybrid Learning Spaces
ERIC Educational Resources Information Center
Trentin, Guglielmo
2016-01-01
The possibility of being always connected to the Internet and/or the mobile network (hence the term "always-on") is increasingly blurring the borderline between physical and digital spaces, introducing a new concept of space, known as "hybrid." Innovative forms of teaching have been developing in hybrid spaces for some time…
ERIC Educational Resources Information Center
DeBuvitz, William
2014-01-01
I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…
Sport Nutritionist: A New Sport Education Role
ERIC Educational Resources Information Center
Martin, Matthew R.; Zimmerman, Ryan; Ciotto, Carol
2015-01-01
Considering the challenges associated with adolescent obesity and the need for innovative and meaningful physical education curricula, the authors of this article decided to create a new sport education role to help students learn about the fundamental nutritional concepts and practices that contribute to a healthy and active lifestyle. The new…
Dance of the Chromosomes: A Kinetic Learning Approach to Mitosis and Meiosis
ERIC Educational Resources Information Center
Kreiser, Brian; Hairston, Rosalina
2007-01-01
Understanding mitosis and meiosis is fundamental to understanding the basics of Mendelian inheritance, yet many students find these concepts challenging or confusing. Here we present a visually and physically stimulating activity using minimal supplies to supplement traditional instruction in order to engage the students and facilitate…
A demonstration experiment for studying the properties of saturated vapor
NASA Astrophysics Data System (ADS)
Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.
2017-11-01
The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.
School Readiness and Rudolf Steiner's Theory of Learning.
ERIC Educational Resources Information Center
Ogletree, Earl J.; Ujlaki, Vilma
This paper presents Rudolf Steiner's maturational readiness theory of human physiopsychology and comments on education in the Waldorf Schools. Discussion asserts that Steiner's concept of human development is complex and that intensive study is required for even a superficial understanding of "the four members of man": the physical,…
ERIC Educational Resources Information Center
Whittaker, Jeff
2013-01-01
Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…
The Ecology of the Gym: Reconceptualized and Extended
ERIC Educational Resources Information Center
McCaughtry, Nate; Tischler, Amy; Flory, Sara B.
2008-01-01
The ecological paradigm has become a powerful framework for understanding how teachers and students negotiate the learning environment. This article articulates the ecological paradigm into a more cohesive framework and expands it using influential work from the sociology of physical education. First, we explain several core concepts of ecological…
NASA Astrophysics Data System (ADS)
Barbera, Jack
2007-12-01
This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.
Science-based occupations and the science curriculum: Concepts of evidence
NASA Astrophysics Data System (ADS)
Aikenhead, Glen S.
2005-03-01
What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.
A Study on Contingency Learning in Introductory Physics Concepts
NASA Astrophysics Data System (ADS)
Scaife, Thomas M.
Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the investigation of their behavior, students were asked what rule they used when answering questions. Although the self-reported rules might not be congruent with their behavior, training with specific examples might affect how students explicitly think about physics problems. In addition to exploring the effectiveness of various training examples, the results were also compared to a cognitive theory of causality: the contingency model. Physical concepts can often be expressed in terms of causal relations (e.g., a net force causes an object to accelerate), and a large body of work has found that people make many decisions that are consistent with causal reasoning. The contingency model, in particular, explains how certain statistical regularities in the co-occurrence of two events can be interpreted by individuals as causal relations, and was chosen primarily because it of its robust results and simple, parsimonious form. The empirical results demonstrate that different categories of training examples did affect student answers differently. Furthermore, these effects were mostly consistent with the predictions made by the contingency model. When rule use was explored, the self-reported rules were consistent with contingency model predictions, but indicated that examples alone were insufficient to teach complex functional relationships between physical dimensions, such as torque.
Trans-algorithmic nature of learning in biological systems.
Shimansky, Yury P
2018-05-02
Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.
CONCEPT LEARNING AND CONCEPT TEACHING.
ERIC Educational Resources Information Center
GLASER, ROBERT
REVIEWED ARE THE PSYCHOLOGICAL STUDIES OF CONCEPT LEARNING AS THEY RELATE TO CONCEPT TEACHING. AN ANALYSIS IS MADE OF THE NATURE OF CONCEPT LEARNING AS IT IS STUDIED IN THE PSYCHOLOGIST'S LABORATORY, INCLUDING THE NATURE OF CONCEPT TASKS AS THEY APPEAR IN SUBJECT MATTER LEARNING. THE PRIMARY KINDS OF CONCEPT LEARNING SITUATIONS, INCLUDING THE…
Motions of Celestial Bodies; Computer simulations
NASA Astrophysics Data System (ADS)
Butikov, Eugene
2014-10-01
This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.
Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus
2012-01-01
Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.
NASA Astrophysics Data System (ADS)
Hansen, Pil; Oxoby, Robert J.
2017-01-01
In this article, we articulate preliminary insights from two pilot studies. These studies contribute to an ongoing process of developing empirical, cross-disciplinary measures to understand the cognitive and learning effects of complex artistic practices - effects that we situate between theory of embodied concepts and conceptually calibrated physical attention and action. The stage of this process that we report on here was led by the cognitive performance studies scholar and dramaturge, Pil Hansen, and undertaken in collaboration with the experimental psychologist, Vina Goghari, and the behavioural economist, Robert Oxoby, assisted by four research assistants from Drama, Music, and Psychology at the University of Calgary. Our team set out to test the following hypothesis: Active participation in performance generating systems has a positive effect on advanced student performers' working memory capacity, executive functions, and learning. Our results have implications, in particular, for understandings of embodied learning in the educational sector, however a perhaps more significant contribution is a better understanding of the measures and constructs needed to arrive at a more complex, yet operational concept of embodied learning and forward the experimental study of relationships between performing arts practices, cognition, and learning.
Nontraditional approach to algebra-based general physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.
1997-03-01
In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.
Using isomorphic problems to learn introductory physics
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2011-12-01
In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.
NASA Astrophysics Data System (ADS)
Rincke, Karsten
2011-01-01
Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research goal was to investigate and understand how students develop an understanding of the concept of force and how they use and understand the term 'force'. Therefore, we make relation to the research field of students' preconceptions and the field of second language learning. Two classes of students (N = 47) were videotaped during a time period of nine lessons, each transcribed and analysed using a category system. Additional data were obtained via written tasks, logs kept by the students, and tests. The detailed analysis of the talk and the results of the tests indicate that students face difficulties in using the term 'force' scientifically similar to those in a foreign language instruction. Vygotsky already recognised a relationship between learning in science and learning a language. In this paper, important aspects of this relationship are discussed based upon empirical data. We conclude that in some respects it might be useful to make reference to the research related to language learning when thinking about improving science education. In particular, according to Selinker's concept of interlanguage describing language-learning processes within language instruction, the language used by the students during physics lessons can be viewed as a 'scientific interlanguage'.