Sample records for learning rule derived

  1. Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.

    PubMed

    Quintián, Héctor; Corchado, Emilio

    2017-09-01

    In this research, a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly investigated to extract information from high-dimensional datasets by projecting the data onto low-dimensional (typically two dimensional) subspaces, improving the existing exploratory methods by providing a clear representation of data's internal structure. BHL applies a family of learning rules derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural network with some function of the residuals after feedback. The derived learning rules can be linked to an adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as the theory suggests they should: the use of different learning rules derived from different PDFs allows the identification of "interesting" dimensions (as far from the Gaussian distribution as possible) in high-dimensional datasets. This novel algorithm, BHL, has been tested over seven artificial datasets to study the behavior of BHL parameters, and was later applied successfully over four real datasets, comparing its results, in terms of performance, with other well-known Exploratory and projection models such as Maximum Likelihood Hebbian Learning (MLHL), Locally-Linear Embedding (LLE), Curvilinear Component Analysis (CCA), Isomap and Neural Principal Component Analysis (Neural PCA).

  2. The use of morphological knowledge in spelling derived forms by learning-disabled and normal students.

    PubMed

    Carlisle, J F

    1987-01-01

    Currently popular systems for classification of spelling words or errors emphasize the learning of phoneme-grapheme correspondences and memorization of irregular words, but do not take into account the morphophonemic nature of the English language. This study is based on the premise that knowledge of the morphological rules of derivational morphology is acquired developmentally and is related to the spelling abilities of both normal and learning-disabled (LD) students. It addresses three issues: 1) how the learning of derivational morphology and the spelling of derived words by LD students compares to that of normal students; 2) whether LD students learn derived forms rulefully; and 3) the extent to which LD and normal students use knowledge of relationships between base and derived forms to spell derived words (e.g. "magic" and "magician"). The results showed that LD ninth graders' knowledge of derivational morphology was equivalent to that of normal sixth graders, following similar patterns of mastery of orthographic and phonological rules, but that their spelling of derived forms was equivalent to that of the fourth graders. Thus, they know more about derivational morphology than they use in spelling. In addition, they were significantly more apt to spell derived words as whole words, without regard for morphemic structure, than even the fourth graders. Nonetheless, most of the LD spelling errors were phonetically acceptable, suggesting that their misspellings cannot be attributed primarily to poor knowledge of phoneme-grapheme correspondences.

  3. DCS-Neural-Network Program for Aircraft Control and Testing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  4. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  5. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  6. Attentional effects on rule extraction and consolidation from speech.

    PubMed

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-07-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Attentional effects on rule extraction and consolidation from speech

    PubMed Central

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-01-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24 h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. PMID:27031495

  8. The use of misclassification costs to learn rule-based decision support models for cost-effective hospital admission strategies.

    PubMed

    Ambrosino, R; Buchanan, B G; Cooper, G F; Fine, M J

    1995-01-01

    Cost-effective health care is at the forefront of today's important health-related issues. A research team at the University of Pittsburgh has been interested in lowering the cost of medical care by attempting to define a subset of patients with community-acquire pneumonia for whom outpatient therapy is appropriate and safe. Sensitivity and specificity requirements for this domain make it difficult to use rule-based learning algorithms with standard measures of performance based on accuracy. This paper describes the use of misclassification costs to assist a rule-based machine-learning program in deriving a decision-support aid for choosing outpatient therapy for patients with community-acquired pneumonia.

  9. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  10. Learning and inference in a nonequilibrium Ising model with hidden nodes.

    PubMed

    Dunn, Benjamin; Roudi, Yasser

    2013-02-01

    We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.

  11. Topic categorisation of statements in suicide notes with integrated rules and machine learning.

    PubMed

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.

  12. The Convallis Rule for Unsupervised Learning in Cortical Networks

    PubMed Central

    Yger, Pierre; Harris, Kenneth D.

    2013-01-01

    The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224

  13. Inferring Metadata for a Semantic Web Peer-to-Peer Environment

    ERIC Educational Resources Information Center

    Brase, Jan; Painter, Mark

    2004-01-01

    Learning Objects Metadata (LOM) aims at describing educational resources in order to allow better reusability and retrieval. In this article we show how additional inference rules allows us to derive additional metadata from existing ones. Additionally, using these rules as integrity constraints helps us to define the constraints on LOM elements,…

  14. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study.

    PubMed

    A Santos, Jose C; Nassif, Houssam; Page, David; Muggleton, Stephen H; E Sternberg, Michael J

    2012-07-11

    There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.

  15. Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuhiko; Hoshina, Akemi

    This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.

  16. A Multistep Maturity Model for the Implementation of Electronic and Computable Diagnostic Clinical Prediction Rules (eCPRs).

    PubMed

    Corrigan, Derek; McDonnell, Ronan; Zarabzadeh, Atieh; Fahey, Tom

    2015-01-01

    The use of Clinical Prediction Rules (CPRs) has been advocated as one way of implementing actionable evidence-based rules in clinical practice. The current highly manual nature of deriving CPRs makes them difficult to use and maintain. Addressing the known limitations of CPRs requires implementing more flexible and dynamic models of CPR development. We describe the application of Information and Communication Technology (ICT) to provide a platform for the derivation and dissemination of CPRs derived through analysis and continual learning from electronic patient data. We propose a multistep maturity model for constructing electronic and computable CPRs (eCPRs). The model has six levels - from the lowest level of CPR maturity (literaturebased CPRs) to a fully electronic and computable service-oriented model of CPRs that are sensitive to specific demographic patient populations. We describe examples of implementations of the core model components - focusing on CPR representation, interoperability, electronic dissemination, CPR learning, and user interface requirements. The traditional focus on derivation and narrow validation of CPRs has severely limited their wider acceptance. The evolution and maturity model described here outlines a progression toward eCPRs consistent with the vision of a learning health system (LHS) - using central repositories of CPR knowledge, accessible open standards, and generalizable models to avoid repetition of previous work. This is useful for developing more ambitious strategies to address limitations of the traditional CPR development life cycle. The model described here is a starting point for promoting discussion about what a more dynamic CPR development process should look like.

  17. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study

    PubMed Central

    2012-01-01

    Background There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. Results The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. Conclusions In addition to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners. PMID:22783946

  18. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites

    PubMed Central

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-01-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  19. Dynamical analysis of contrastive divergence learning: Restricted Boltzmann machines with Gaussian visible units.

    PubMed

    Karakida, Ryo; Okada, Masato; Amari, Shun-Ichi

    2016-07-01

    The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also reveal that larger principal components of the input data are extracted at the stable points. Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract independent components at one of stable points. Our analysis demonstrates that the same feature components as those extracted by ML learning are extracted simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD learning in other types of RBMs or in deep networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A regularization approach to continuous learning with an application to financial derivatives pricing.

    PubMed

    Ormoneit, D

    1999-12-01

    We consider the training of neural networks in cases where the nonlinear relationship of interest gradually changes over time. One possibility to deal with this problem is by regularization where a variation penalty is added to the usual mean squared error criterion. To learn the regularized network weights we suggest the Iterative Extended Kalman Filter (IEKF) as a learning rule, which may be derived from a Bayesian perspective on the regularization problem. A primary application of our algorithm is in financial derivatives pricing, where neural networks may be used to model the dependency of the derivatives' price on one or several underlying assets. After giving a brief introduction to the problem of derivatives pricing we present experiments with German stock index options data showing that a regularized neural network trained with the IEKF outperforms several benchmark models and alternative learning procedures. In particular, the performance may be greatly improved using a newly designed neural network architecture that accounts for no-arbitrage pricing restrictions.

  1. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.

    PubMed

    Tanaka, Takuma; Aoyagi, Toshio; Kaneko, Takeshi

    2012-10-01

    We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.

  2. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.

  3. Learning pattern recognition and decision making in the insect brain

    NASA Astrophysics Data System (ADS)

    Huerta, R.

    2013-01-01

    We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.

  4. Rules and mechanisms for efficient two-stage learning in neural circuits.

    PubMed

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-04-04

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  5. Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy.

    PubMed

    Dutra, I; Nassif, H; Page, D; Shavlik, J; Strigel, R M; Wu, Y; Elezaby, M E; Burnside, E

    2011-01-01

    In this work we show that combining physician rules and machine learned rules may improve the performance of a classifier that predicts whether a breast cancer is missed on percutaneous, image-guided breast core needle biopsy (subsequently referred to as "breast core biopsy"). Specifically, we show how advice in the form of logical rules, derived by a sub-specialty, i.e. fellowship trained breast radiologists (subsequently referred to as "our physicians") can guide the search in an inductive logic programming system, and improve the performance of a learned classifier. Our dataset of 890 consecutive benign breast core biopsy results along with corresponding mammographic findings contains 94 cases that were deemed non-definitive by a multidisciplinary panel of physicians, from which 15 were upgraded to malignant disease at surgery. Our goal is to predict upgrade prospectively and avoid surgery in women who do not have breast cancer. Our results, some of which trended toward significance, show evidence that inductive logic programming may produce better results for this task than traditional propositional algorithms with default parameters. Moreover, we show that adding knowledge from our physicians into the learning process may improve the performance of the learned classifier trained only on data.

  6. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  7. Structure identification in fuzzy inference using reinforcement learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  8. Measuring strategic control in artificial grammar learning.

    PubMed

    Norman, Elisabeth; Price, Mark C; Jones, Emma

    2011-12-01

    In response to concerns with existing procedures for measuring strategic control over implicit knowledge in artificial grammar learning (AGL), we introduce a more stringent measurement procedure. After two separate training blocks which each consisted of letter strings derived from a different grammar, participants either judged the grammaticality of novel letter strings with respect to only one of these two grammars (pure-block condition), or had the target grammar varying randomly from trial to trial (novel mixed-block condition) which required a higher degree of conscious flexible control. Random variation in the colour and font of letters was introduced to disguise the nature of the rule and reduce explicit learning. Strategic control was observed both in the pure-block and mixed-block conditions, and even among participants who did not realise the rule was based on letter identity. This indicated detailed strategic control in the absence of explicit learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Rules and mechanisms for efficient two-stage learning in neural circuits

    PubMed Central

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-01-01

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning. DOI: http://dx.doi.org/10.7554/eLife.20944.001 PMID:28374674

  10. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  11. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  12. Neural Network Computing and Natural Language Processing.

    ERIC Educational Resources Information Center

    Borchardt, Frank

    1988-01-01

    Considers the application of neural network concepts to traditional natural language processing and demonstrates that neural network computing architecture can: (1) learn from actual spoken language; (2) observe rules of pronunciation; and (3) reproduce sounds from the patterns derived by its own processes. (Author/CB)

  13. Learning Semantic Tags from Big Data for Clinical Text Representation.

    PubMed

    Li, Yanpeng; Liu, Hongfang

    2015-01-01

    In clinical text mining, it is one of the biggest challenges to represent medical terminologies and n-gram terms in sparse medical reports using either supervised or unsupervised methods. Addressing this issue, we propose a novel method for word and n-gram representation at semantic level. We first represent each word by its distance with a set of reference features calculated by reference distance estimator (RDE) learned from labeled and unlabeled data, and then generate new features using simple techniques of discretization, random sampling and merging. The new features are a set of binary rules that can be interpreted as semantic tags derived from word and n-grams. We show that the new features significantly outperform classical bag-of-words and n-grams in the task of heart disease risk factor extraction in i2b2 2014 challenge. It is promising to see that semantics tags can be used to replace the original text entirely with even better prediction performance as well as derive new rules beyond lexical level.

  14. ChemStable: a web server for rule-embedded naïve Bayesian learning approach to predict compound stability.

    PubMed

    Liu, Zhihong; Zheng, Minghao; Yan, Xin; Gu, Qiong; Gasteiger, Johann; Tijhuis, Johan; Maas, Peter; Li, Jiabo; Xu, Jun

    2014-09-01

    Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.

  15. Recursive least-squares learning algorithms for neural networks

    NASA Astrophysics Data System (ADS)

    Lewis, Paul S.; Hwang, Jenq N.

    1990-11-01

    This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].

  16. Reducing the computational footprint for real-time BCPNN learning

    PubMed Central

    Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian

    2015-01-01

    The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware. PMID:25657618

  17. Reducing the computational footprint for real-time BCPNN learning.

    PubMed

    Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian

    2015-01-01

    The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware.

  18. Combining human and machine intelligence to derive agents' behavioral rules for groundwater irrigation

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.

    2017-11-01

    For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.

  19. A new proof of the generalized Hamiltonian–Real calculus

    PubMed Central

    Gao, Hua; Mandic, Danilo P.

    2016-01-01

    The recently introduced generalized Hamiltonian–Real (GHR) calculus comprises, for the first time, the product and chain rules that makes it a powerful tool for quaternion-based optimization and adaptive signal processing. In this paper, we introduce novel dual relationships between the GHR calculus and multivariate real calculus, in order to provide a new, simpler proof of the GHR derivative rules. This further reinforces the theoretical foundation of the GHR calculus and provides a convenient methodology for generic extensions of real- and complex-valued learning algorithms to the quaternion domain.

  20. Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level

    NASA Astrophysics Data System (ADS)

    Fakhrazari, Amin; Boroushaki, Mehrdad

    2008-06-01

    In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.

  1. Self-learning fuzzy controllers based on temporal back propagation

    NASA Technical Reports Server (NTRS)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  2. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    PubMed

    Zenke, Friedemann; Ganguli, Surya

    2018-06-01

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  3. Automatic Learning of Fine Operating Rules for Online Power System Security Control.

    PubMed

    Sun, Hongbin; Zhao, Feng; Wang, Hao; Wang, Kang; Jiang, Weiyong; Guo, Qinglai; Zhang, Boming; Wehenkel, Louis

    2016-08-01

    Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.

  4. Backpropagation and ordered derivatives in the time scales calculus.

    PubMed

    Seiffertt, John; Wunsch, Donald C

    2010-08-01

    Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.

  5. Diverse strategy-learning styles promote cooperation in evolutionary spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Jia, Chun-Xiao; Rong, Zhihai

    2015-11-01

    Observational learning and practice learning are two important learning styles and play important roles in our information acquisition. In this paper, we study a spacial evolutionary prisoner's dilemma game, where players can choose the observational learning rule or the practice learning rule when updating their strategies. In the proposed model, we use a parameter p controlling the preference of players choosing the observational learning rule, and found that there exists an optimal value of p leading to the highest cooperation level, which indicates that the cooperation can be promoted by these two learning rules collaboratively and one single learning rule is not favor the promotion of cooperation. By analysing the dynamical behavior of the system, we find that the observational learning rule can make the players residing on cooperative clusters more easily realize the bad sequence of mutual defection. However, a too high observational learning probability suppresses the players to form compact cooperative clusters. Our results highlight the importance of a strategy-updating rule, more importantly, the observational learning rule in the evolutionary cooperation.

  6. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    PubMed Central

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502

  7. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    NASA Astrophysics Data System (ADS)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  8. A multilayer perceptron solution to the match phase problem in rule-based artificial intelligence systems

    NASA Technical Reports Server (NTRS)

    Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.

    1992-01-01

    In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.

  9. Developmental changes in automatic rule-learning mechanisms across early childhood.

    PubMed

    Mueller, Jutta L; Friederici, Angela D; Männel, Claudia

    2018-06-27

    Infants' ability to learn complex linguistic regularities from early on has been revealed by electrophysiological studies indicating that 3-month-olds, but not adults, can automatically detect non-adjacent dependencies between syllables. While different ERP responses in adults and infants suggest that both linguistic rule learning and its link to basic auditory processing undergo developmental changes, systematic investigations of the developmental trajectories are scarce. In the present study, we assessed 2- and 4-year-olds' ERP indicators of pitch discrimination and linguistic rule learning in a syllable-based oddball design. To test for the relation between auditory discrimination and rule learning, ERP responses to pitch changes were used as predictor for potential linguistic rule-learning effects. Results revealed that 2-year-olds, but not 4-year-olds, showed ERP markers of rule learning. Although, 2-year-olds' rule learning was not dependent on differences in pitch perception, 4-year-old children demonstrated a dependency, such that those children who showed more pronounced responses to pitch changes still showed an effect of rule learning. These results narrow down the developmental decline of the ability for automatic linguistic rule learning to the age between 2 and 4 years, and, moreover, point towards a strong modification of this change by auditory processes. At an age when the ability of automatic linguistic rule learning phases out, rule learning can still be observed in children with enhanced auditory responses. The observed interrelations are plausible causes for age-of-acquisition effects and inter-individual differences in language learning. © 2018 John Wiley & Sons Ltd.

  10. Evolution of social versus individual learning in a subdivided population revisited: comparative analysis of three coexistence mechanisms using the inclusive-fitness method.

    PubMed

    Kobayashi, Yutaka; Ohtsuki, Hisashi

    2014-03-01

    Learning abilities are categorized into social (learning from others) and individual learning (learning on one's own). Despite the typically higher cost of individual learning, there are mechanisms that allow stable coexistence of both learning modes in a single population. In this paper, we investigate by means of mathematical modeling how the effect of spatial structure on evolutionary outcomes of pure social and individual learning strategies depends on the mechanisms for coexistence. We model a spatially structured population based on the infinite-island framework and consider three scenarios that differ in coexistence mechanisms. Using the inclusive-fitness method, we derive the equilibrium frequency of social learners and the genetic load of social learning (defined as average fecundity reduction caused by the presence of social learning) in terms of some summary statistics, such as relatedness, for each of the three scenarios and compare the results. This comparative analysis not only reconciles previous models that made contradictory predictions as to the effect of spatial structure on the equilibrium frequency of social learners but also derives a simple mathematical rule that determines the sign of the genetic load (i.e. whether or not social learning contributes to the mean fecundity of the population). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Using the Chain Rule as the Key Link in Deriving the General Rules for Differentiation

    ERIC Educational Resources Information Center

    Sprows, David

    2011-01-01

    The standard approach to the general rules for differentiation is to first derive the power, product, and quotient rules and then derive the chain rule. In this short article we give an approach to these rules which uses the chain rule as the main tool in deriving the power, product, and quotient rules in a manner which is more student-friendly…

  12. Rule learning in autism: the role of reward type and social context.

    PubMed

    Jones, E J H; Webb, S J; Estes, A; Dawson, G

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts.

  13. A theory of local learning, the learning channel, and the optimality of backpropagation.

    PubMed

    Baldi, Pierre; Sadowski, Peter

    2016-11-01

    In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. For any learning algorithm, the capacity of the learning channel can be defined as the number of bits provided about the error gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost. This result is also shown to be true for recurrent networks, by unfolding them in time. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.

  15. Metric learning for automatic sleep stage classification.

    PubMed

    Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung

    2013-01-01

    We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

  16. Design of a universal two-layered neural network derived from the PLI theory

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Lun J.

    2004-05-01

    The if-and-only-if (IFF) condition that a set of M analog-to-digital vector-mapping relations can be learned by a one-layered-feed-forward neural network (OLNN) is that all the input analog vectors dichotomized by the i-th output bit must be positively, linearly independent, or PLI. If they are not PLI, then the OLNN just cannot learn no matter what learning rules is employed because the solution of the connection matrix does not exist mathematically. However, in this case, one can still design a parallel-cascaded, two-layered, perceptron (PCTLP) to acheive this general mapping goal. The design principle of this "universal" neural network is derived from the major mathematical properties of the PLI theory - changing the output bits of the dependent relations existing among the dichotomized input vectors to make the PLD relations PLI. Then with a vector concatenation technique, the required mapping can still be learned by this PCTLP system with very high efficiency. This paper will report in detail the mathematical derivation of the general design principle and the design procedures of the PCTLP neural network system. It then will be verified in general by a practical numerical example.

  17. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  18. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  19. Rule Learning in Autism: The Role of Reward Type and Social Context

    PubMed Central

    Jones, E. J. H.; Webb, S. J.; Estes, A.; Dawson, G.

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts. PMID:23311315

  20. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  1. A "Sweet 16" of Rules About Teamwork

    NASA Technical Reports Server (NTRS)

    Laufer, Alexander (Editor)

    2002-01-01

    The following "Sweet 16" rules included in this paper derive from a longer paper by APPL Director Dr. Edward Hoffman and myself entitled " 99 Rules for Managing Faster, Better, Cheaper Projects." Our sources consisted mainly of "war stories" told by master project managers in my book Simultaneous Management: Managing Projects in a Dynamic Environment (AMACOM, The American Management Association, 1996). The Simultaneous Management model was a result of 10 years of intensive research and testing conducted with the active participation of master project managers from leading private organizations such as AT&T, DuPont, Exxon, General Motors, IBM, Motorola and Procter & Gamble. In a more recent study, led by Dr. Hoffman, we learned that master project managers in leading public organizations employ most of these rules as well. Both studies, in private and public organizations, found that a dynamic environment calls for dynamic management, and that is especially clear in how successful project managers think about their teams.

  2. Analysis and Synthesis of Adaptive Neural Elements and Assembles

    DTIC Science & Technology

    1992-02-17

    effects of neuromodulators on electrically activity. Based on the simulations it appears that there are potentially novel mechanisms with which modulatory...and Byrne, J.H. A learning rule based on empirically-derived activity-dependent neuromodulation supports operant conditioning in a small network...dependent neuromodulation can support operant conditioning in a small oscillatory network". 2. Society for Neuroscience Short Course on Neural

  3. Concurrence of rule- and similarity-based mechanisms in artificial grammar learning.

    PubMed

    Opitz, Bertram; Hofmann, Juliane

    2015-03-01

    A current theoretical debate regards whether rule-based or similarity-based learning prevails during artificial grammar learning (AGL). Although the majority of findings are consistent with a similarity-based account of AGL it has been argued that these results were obtained only after limited exposure to study exemplars, and performance on subsequent grammaticality judgment tests has often been barely above chance level. In three experiments the conditions were investigated under which rule- and similarity-based learning could be applied. Participants were exposed to exemplars of an artificial grammar under different (implicit and explicit) learning instructions. The analysis of receiver operating characteristics (ROC) during a final grammaticality judgment test revealed that explicit but not implicit learning led to rule knowledge. It also demonstrated that this knowledge base is built up gradually while similarity knowledge governed the initial state of learning. Together these results indicate that rule- and similarity-based mechanisms concur during AGL. Moreover, it could be speculated that two different rule processes might operate in parallel; bottom-up learning via gradual rule extraction and top-down learning via rule testing. Crucially, the latter is facilitated by performance feedback that encourages explicit hypothesis testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Local Learning Rule for Independent Component Analysis

    PubMed Central

    Isomura, Takuya; Toyoizumi, Taro

    2016-01-01

    Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering. PMID:27323661

  5. The evolutionary basis of human social learning

    PubMed Central

    Morgan, T. J. H.; Rendell, L. E.; Ehn, M.; Hoppitt, W.; Laland, K. N.

    2012-01-01

    Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules. PMID:21795267

  6. The evolutionary basis of human social learning.

    PubMed

    Morgan, T J H; Rendell, L E; Ehn, M; Hoppitt, W; Laland, K N

    2012-02-22

    Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules.

  7. Brain networks for confidence weighting and hierarchical inference during probabilistic learning.

    PubMed

    Meyniel, Florent; Dehaene, Stanislas

    2017-05-09

    Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.

  8. Learning in the machine: The symmetries of the deep learning channel.

    PubMed

    Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin

    2017-11-01

    In a physical neural system, learning rules must be local both in space and time. In order for learning to occur, non-local information must be communicated to the deep synapses through a communication channel, the deep learning channel. We identify several possible architectures for this learning channel (Bidirectional, Conjoined, Twin, Distinct) and six symmetry challenges: (1) symmetry of architectures; (2) symmetry of weights; (3) symmetry of neurons; (4) symmetry of derivatives; (5) symmetry of processing; and (6) symmetry of learning rules. Random backpropagation (RBP) addresses the second and third symmetry, and some of its variations, such as skipped RBP (SRBP) address the first and the fourth symmetry. Here we address the last two desirable symmetries showing through simulations that they can be achieved and that the learning channel is particularly robust to symmetry variations. Specifically, random backpropagation and its variations can be performed with the same non-linear neurons used in the main input-output forward channel, and the connections in the learning channel can be adapted using the same algorithm used in the forward channel, removing the need for any specialized hardware in the learning channel. Finally, we provide mathematical results in simple cases showing that the learning equations in the forward and backward channels converge to fixed points, for almost any initial conditions. In symmetric architectures, if the weights in both channels are small at initialization, adaptation in both channels leads to weights that are essentially symmetric during and after learning. Biological connections are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Brain networks for confidence weighting and hierarchical inference during probabilistic learning

    PubMed Central

    Meyniel, Florent; Dehaene, Stanislas

    2017-01-01

    Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This “confidence weighting” implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain’s learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences. PMID:28439014

  10. Striatal degeneration impairs language learning: evidence from Huntington's disease.

    PubMed

    De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C

    2008-11-01

    Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly correlated with the bicaudate ratio. The overall results support striatal involvement in rule extraction from speech and suggest that language acquisition requires several aspects of memory and executive functions for word and rule learning.

  11. Moral empiricism and the bias for act-based rules.

    PubMed

    Ayars, Alisabeth; Nichols, Shaun

    2017-10-01

    Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    PubMed

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  13. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  14. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.

  16. On the number of independent cultural traits carried by individuals and populations.

    PubMed

    Lehmann, Laurent; Aoki, Kenichi; Feldman, Marcus W

    2011-02-12

    In species subject to individual and social learning, each individual is likely to express a certain number of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission reaches a steady state in the population, the number of different cultural traits carried by an individual converges to some stationary distribution. We call this the trait-number distribution. In this paper, we derive the trait-number distributions for both individuals and populations when cultural traits are independent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-number distributions approach Poisson distributions so that their means characterize cultural diversity in the population. We then analyse how the mean trait number varies at both the individual and population levels as a function of various demographic features, such as population size and subdivision, and social learning rules, such as conformism and anti-conformism. Diversity at the individual and population levels, as well as at the level of cultural homogeneity within groups, depends critically on the details of population demography and the individual and social learning rules.

  17. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.

  18. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants.

    PubMed

    Werchan, Denise M; Collins, Anne G E; Frank, Michael J; Amso, Dima

    2016-10-05

    Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object-label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. Copyright © 2016 the authors 0270-6474/16/3610314-09$15.00/0.

  19. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants

    PubMed Central

    Werchan, Denise M.; Collins, Anne G.E.; Frank, Michael J.

    2016-01-01

    Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object–label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. SIGNIFICANCE STATEMENT Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. PMID:27707968

  20. Rule induction performance in amnestic mild cognitive impairment and Alzheimer's dementia: examining the role of simple and biconditional rule learning processes.

    PubMed

    Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther

    2017-04-01

    Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.

  1. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  2. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  3. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  4. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  5. When more is less: Feedback effects in perceptual category learning ☆

    PubMed Central

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155

  6. Learning general phonological rules from distributional information: a computational model.

    PubMed

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  7. Communicative signals support abstract rule learning by 7-month-old infants

    PubMed Central

    Ferguson, Brock; Lew-Williams, Casey

    2016-01-01

    The mechanisms underlying the discovery of abstract rules like those found in natural language may be evolutionarily tuned to speech, according to previous research. When infants hear speech sounds, they can learn rules that govern their combination, but when they hear non-speech sounds such as sine-wave tones, they fail to do so. Here we show that infants’ rule learning is not tied to speech per se, but is instead enhanced more broadly by communicative signals. In two experiments, infants succeeded in learning and generalizing rules from tones that were introduced as if they could be used to communicate. In two control experiments, infants failed to learn the very same rules when familiarized to tones outside of a communicative exchange. These results reveal that infants’ attention to social agents and communication catalyzes a fundamental achievement of human learning. PMID:27150270

  8. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  9. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    PubMed

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  10. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  11. Infants learn a rule predicated on the relation same but fail to simultaneously learn a rule predicated on the relation different.

    PubMed

    Hochmann, Jean-Rémy; Carey, Susan; Mehler, Jacques

    2018-08-01

    In two experiments, we assessed whether infants are able to learn rules predicated on two abstract relations linked by negation: same and different (not same). In an anticipatory looking paradigm, the relation between successive colored geometrical shapes predicted the location where a puppet would appear next. In Experiment 1, 7-month-olds learned and generalized a rule predicated on the relation same, but not a rule predicated on the relation different. Similarly, in Experiment 2, 12-month-olds learned a rule predicated on the relation same-shape, but not a rule predicated on the relation different-shape. Comparing our data with that from previous experiments in the speech domain, we found no effect of age, modality or rule complexity. We conclude that, in the first year of life, infants already possess a representation of the abstract relation same, which serves as input to a rule. In contrast, we find no evidence that they represent the relation different. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rule-Based and Information-Integration Category Learning in Normal Aging

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…

  13. One Giant Leap for Categorizers: One Small Step for Categorization Theory

    PubMed Central

    Smith, J. David; Ell, Shawn W.

    2015-01-01

    We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587

  14. Dissociable roles of medial and lateral PFC in rule learning.

    PubMed

    Cao, Bihua; Li, Wei; Li, Fuhong; Li, Hong

    2016-11-01

    Although the neural basis of rule learning is of great interest to cognitive neuroscientists, the pattern of transient brain activation during rule discovery remains to be investigated. In this study, we measured event-related functional magnetic resonance imaging (fMRI) during distinct phases of rule learning. Twenty-one healthy human volunteers were presented with a series of cards, each containing a clock-like display of 12 circles numbered sequentially. Participants were instructed that a fictitious animal would move from one circle to another either in a regular pattern (according to a rule hidden in consecutive trials) or randomly. Participants were then asked to judge whether a given step followed a rule. While the rule-search phase evoked more activation in the posterior lateral prefrontal cortex (LPFC), the rule-following phase caused stronger activation in the anterior medial prefrontal cortex (MPFC). Importantly, the intermediate phase, the rule-discovery phase evoked more activations in MPFC and dorsal anterior cingulate cortex (dACC) than rule search, and more activations in LPFC than rule following. Therefore, we can conclude that the medial and lateral PFC have dissociable contributions in rule learning.

  15. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    PubMed

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.

  16. Differential Modifications of Synaptic Weights During Odor Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and Higher Brain Areas

    PubMed Central

    Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi

    2015-01-01

    Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200

  17. Information-driven self-organization: the dynamical system approach to autonomous robot behavior.

    PubMed

    Ay, Nihat; Bernigau, Holger; Der, Ralf; Prokopenko, Mikhail

    2012-09-01

    In recent years, information theory has come into the focus of researchers interested in the sensorimotor dynamics of both robots and living beings. One root for these approaches is the idea that living beings are information processing systems and that the optimization of these processes should be an evolutionary advantage. Apart from these more fundamental questions, there is much interest recently in the question how a robot can be equipped with an internal drive for innovation or curiosity that may serve as a drive for an open-ended, self-determined development of the robot. The success of these approaches depends essentially on the choice of a convenient measure for the information. This article studies in some detail the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process. The PI of a process quantifies the total information of past experience that can be used for predicting future events. However, the application of information theoretic measures in robotics mostly is restricted to the case of a finite, discrete state-action space. This article aims at applying the PI in the dynamical systems approach to robot control. We study linear systems as a first step and derive exact results for the PI together with explicit learning rules for the parameters of the controller. Interestingly, these learning rules are of Hebbian nature and local in the sense that the synaptic update is given by the product of activities available directly at the pertinent synaptic ports. The general findings are exemplified by a number of case studies. In particular, in a two-dimensional system, designed at mimicking embodied systems with latent oscillatory locomotion patterns, it is shown that maximizing the PI means to recognize and amplify the latent modes of the robotic system. This and many other examples show that the learning rules derived from the maximum PI principle are a versatile tool for the self-organization of behavior in complex robotic systems.

  18. Search for Minimal and Semi-Minimal Rule Sets in Incremental Learning of Context-Free and Definite Clause Grammars

    NASA Astrophysics Data System (ADS)

    Imada, Keita; Nakamura, Katsuhiko

    This paper describes recent improvements to Synapse system for incremental learning of general context-free grammars (CFGs) and definite clause grammars (DCGs) from positive and negative sample strings. An important feature of our approach is incremental learning, which is realized by a rule generation mechanism called “bridging” based on bottom-up parsing for positive samples and the search for rule sets. The sizes of rule sets and the computation time depend on the search strategies. In addition to the global search for synthesizing minimal rule sets and serial search, another method for synthesizing semi-optimum rule sets, we incorporate beam search to the system for synthesizing semi-minimal rule sets. The paper shows several experimental results on learning CFGs and DCGs, and we analyze the sizes of rule sets and the computation time.

  19. Learned saliency transformations for gaze guidance

    NASA Astrophysics Data System (ADS)

    Vig, Eleonora; Dorr, Michael; Barth, Erhardt

    2011-03-01

    The saliency of an image or video region indicates how likely it is that the viewer of the image or video fixates that region due to its conspicuity. An intriguing question is how we can change the video region to make it more or less salient. Here, we address this problem by using a machine learning framework to learn from a large set of eye movements collected on real-world dynamic scenes how to alter the saliency level of the video locally. We derive saliency transformation rules by performing spatio-temporal contrast manipulations (on a spatio-temporal Laplacian pyramid) on the particular video region. Our goal is to improve visual communication by designing gaze-contingent interactive displays that change, in real time, the saliency distribution of the scene.

  20. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    PubMed Central

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  1. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Results Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. Conclusions The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences. PMID:23815266

  2. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients.

    PubMed

    Cangelosi, Davide; Blengio, Fabiola; Versteeg, Rogier; Eggert, Angelika; Garaventa, Alberto; Gambini, Claudio; Conte, Massimo; Eva, Alessandra; Muselli, Marco; Varesio, Luigi

    2013-01-01

    Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences.

  3. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092

  4. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 17 CFR 39.4 - Procedures for implementing derivatives clearing organization rules and clearing new products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... derivatives clearing organization rules and clearing new products. 39.4 Section 39.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS § 39.4 Procedures for implementing derivatives clearing organization rules and clearing new products. (a) Request for approval of...

  6. 12 CFR 223.33 - What rules apply to derivative transactions?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false What rules apply to derivative transactions... Requirements Under Section 23A § 223.33 What rules apply to derivative transactions? (a) Market terms requirement. Derivative transactions between a member bank and its affiliates (other than depository...

  7. On-line Gibbs learning. II. Application to perceptron and multilayer networks

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Sompolinsky, H.

    1998-08-01

    In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.

  8. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.

  9. The Role of Age and Executive Function in Auditory Category Learning

    PubMed Central

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  10. Bimodal Emotion Congruency Is Critical to Preverbal Infants' Abstract Rule Learning

    ERIC Educational Resources Information Center

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-01-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of…

  11. Event-Triggered Distributed Control of Nonlinear Interconnected Systems Using Online Reinforcement Learning With Exploration.

    PubMed

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-09-07

    In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.

  12. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning

    PubMed Central

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794

  13. Learning General Phonological Rules from Distributional Information: A Computational Model

    ERIC Educational Resources Information Center

    Calamaro, Shira; Jarosz, Gaja

    2015-01-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony…

  14. 12 CFR 223.33 - What rules apply to derivative transactions?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Requirements Under Section 23A § 223.33 What rules apply to derivative transactions? (a) Market terms... with affiliates comply with the market terms requirement of § 223.51. (c) Credit derivatives. A credit... 12 Banks and Banking 3 2010-01-01 2010-01-01 false What rules apply to derivative transactions...

  15. Ellipsoidal fuzzy learning for smart car platoons

    NASA Astrophysics Data System (ADS)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  16. The Interactive Effects of the Availability of Objectives and/or Rules on Computer-Based Learning: A Replication.

    ERIC Educational Resources Information Center

    Merrill, Paul F.; And Others

    To replicate and extend the results of a previous study, this project investigated the effects of behavioral objectives and/or rules on computer-based learning task performance. The 133 subjects were randomly assigned to an example-only, objective-example, rule example, or objective-rule example group. The availability of rules and/or objectives…

  17. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition

    PubMed Central

    Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert

    2015-01-01

    During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input. PMID:26284370

  18. When More Is Less: Feedback Effects in Perceptual Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether…

  19. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    PubMed

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  20. E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.

    PubMed

    Trapp, Philip; Echeveste, Rodrigo; Gros, Claudius

    2018-06-12

    Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

  1. User-Centred Design Using Gamestorming.

    PubMed

    Currie, Leanne

    2016-01-01

    User-centered design (UX) is becoming a standard in software engineering and has tremendous potential in healthcare. The purpose of this tutorial will be to demonstrate and provide participants with practice in user-centred design methods that involve 'Gamestorming', a form of brainstorming where 'the rules of life are temporarily suspended'. Participants will learn and apply gamestorming methods including persona development via empathy mapping and methods to translate artefacts derived from participatory design sessions into functional and design requirements.

  2. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  3. Cognitive changes in conjunctive rule-based category learning: An ERP approach.

    PubMed

    Rabi, Rahel; Joanisse, Marc F; Zhu, Tianshu; Minda, John Paul

    2018-06-25

    When learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule ("easy" stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule ("difficult" stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared with easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning.

  4. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    PubMed

    Burbank, Kendra S

    2015-12-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.

  5. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons

    PubMed Central

    Burbank, Kendra S.

    2015-01-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645

  6. Learning Problem-Solving Rules as Search through a Hypothesis Space

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2016-01-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem…

  7. Students Learn by Doing: Teaching about Rules of Thumb.

    ERIC Educational Resources Information Center

    Cude, Brenda J.

    1990-01-01

    Identifies situation in which consumers are likely to substitute rules of thumb for research, reviews rules of thumb often used as substitutes, and identifies teaching activities to help students learn when substitution is appropriate. (JOW)

  8. Mission Impossible: Learning How a Classroom Works before It's Too Late!

    ERIC Educational Resources Information Center

    Tattershall, Sandra

    1987-01-01

    The article looks at the implicit rules of classroom functioning and the importance of students learning these rules, either through osmosis or direct rule instruction, during the first few weeks of school. Speech language pathologists can help at risk students identify critical components of teacher behavior and classroom rules. (DB)

  9. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  10. Learning to Learn about Uncertain Feedback

    ERIC Educational Resources Information Center

    Faraut, Mailys C. M.; Procyk, Emmanuel; Wilson, Charles R. E.

    2016-01-01

    Unexpected outcomes can reflect noise in the environment or a change in the current rules. We should ignore noise but shift strategy after rule changes. How we learn to do this is unclear, but one possibility is that it relies on learning to learn in uncertain environments. We propose that acquisition of latent task structure during learning to…

  11. Applications of Machine Learning and Rule Induction,

    DTIC Science & Technology

    1995-02-15

    An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic

  12. Minimum Equipment Lists, Flight Rules and ... Past, Present and Future of Safety Pre-Determined Decisions for Operations

    NASA Astrophysics Data System (ADS)

    Herd, A.; Wolff, M.

    2012-01-01

    Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.

  13. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    PubMed Central

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262

  14. Learning to predict chemical reactions.

    PubMed

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal ( http://cdb.ics.uci.edu) under the Toolkits section.

  15. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139

  16. The Effects of Concurrent Verbal and Visual Tasks on Category Learning

    ERIC Educational Resources Information Center

    Miles, Sarah J.; Minda, John Paul

    2011-01-01

    Current theories of category learning posit separate verbal and nonverbal learning systems. Past research suggests that the verbal system relies on verbal working memory and executive functioning and learns rule-defined categories; the nonverbal system does not rely on verbal working memory and learns non-rule-defined categories (E. M. Waldron…

  17. Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition

    ERIC Educational Resources Information Center

    Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.

    2006-01-01

    Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…

  18. The effect of negative performance stereotypes on learning.

    PubMed

    Rydell, Robert J; Rydell, Michael T; Boucher, Kathryn L

    2010-12-01

    Stereotype threat (ST) research has focused exclusively on how negative group stereotypes reduce performance. The present work examines if pejorative stereotypes about women in math inhibit their ability to learn the mathematical rules and operations necessary to solve math problems. In Experiment 1, women experiencing ST had difficulty encoding math-related information into memory and, therefore, learned fewer mathematical rules and showed poorer math performance than did controls. In Experiment 2, women experiencing ST while learning modular arithmetic (MA) performed more poorly than did controls on easy MA problems; this effect was due to reduced learning of the mathematical operations underlying MA. In Experiment 3, ST reduced women's, but not men's, ability to learn abstract mathematical rules and to transfer these rules to a second, isomorphic task. This work provides the first evidence that negative stereotypes about women in math reduce their level of mathematical learning and demonstrates that reduced learning due to stereotype threat can lead to poorer performance in negatively stereotyped domains. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  19. Rule Breaking in the Child Care Centre: Tensions for Children and Teachers

    ERIC Educational Resources Information Center

    Brennan, Margaret

    2016-01-01

    Research suggests that young children transgress conventional rules in every culture and society. In this article, the argument is made that rule teaching and learning provide insight into how children learn to be part of a group. The research question addressed is, "Why do some children transgress the rules if their actions risk jeopardising…

  20. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  1. Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization

    PubMed Central

    Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.

    2016-01-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225

  2. A Machine Learning Approach to Student Modeling.

    DTIC Science & Technology

    1984-05-01

    machine learning , and describe ACN, a student modeling system that incorporates this approach. This system begins with a set of overly general rules, which it uses to search a problem space until it arrives at the same answer as the student. The ACM computer program then uses the solution path it has discovered to determine positive and negative instances of its initial rules, and employs a discrimination learning mechanism to place additional conditions on these rules. The revised rules will reproduce the solution path without search, and constitute a cognitive model of

  3. Controlling a robot with intention derived from motion.

    PubMed

    Crick, Christopher; Scassellati, Brian

    2010-01-01

    We present a novel, sophisticated intention-based control system for a mobile robot built from an extremely inexpensive webcam and radio-controlled toy vehicle. The system visually observes humans participating in various playground games and infers their goals and intentions through analyzing their spatiotemporal activity in relation to itself and each other, and then builds a coherent narrative out of the succession of these intentional states. Starting from zero information about the room, the rules of the games, or even which vehicle it controls, it learns rich relationships between players, their goals and intentions, probing uncertain situations with its own behavior. The robot is able to watch people playing various playground games, learn the roles and rules that apply to specific games, and participate in the play. The narratives it constructs capture essential information about the observed social roles and types of activity. After watching play for a short while, the system is able to participate appropriately in the games. We demonstrate how the system acts appropriately in scenarios such as chasing, follow-the-leader, and variants of tag. Copyright © 2009 Cognitive Science Society, Inc.

  4. A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules

    PubMed Central

    Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.

    2013-01-01

    Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082

  5. The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens).

    PubMed

    Zakrzewski, Alexandria C; Church, Barbara A; Smith, J David

    2018-02-01

    Cognitive psychologists distinguish implicit, procedural category learning (stimulus-response associations learned outside declarative cognition) from explicit-declarative category learning (conscious category rules). These systems are dissociated by category learning tasks with either a multidimensional, information-integration (II) solution or a unidimensional, rule-based (RB) solution. In the present experiments, humans and two monkeys learned II and RB category tasks fostering implicit and explicit learning, respectively. Then they received occasional transfer trials-never directly reinforced-drawn from untrained regions of the stimulus space. We hypothesized that implicit-procedural category learning-allied to associative learning-would transfer weakly because it is yoked to the training stimuli. This result was confirmed for humans and monkeys. We hypothesized that explicit category learning-allied to abstract category rules-would transfer robustly. This result was confirmed only for humans. That is, humans displayed explicit category knowledge that transferred flawlessly. Monkeys did not. This result illuminates the distinctive abstractness, stimulus independence, and representational portability of humans' explicit category rules. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Sleep facilitates learning a new linguistic rule

    PubMed Central

    Batterink, Laura J.; Oudiette, Delphine; Reber, Paul J.; Paller, Ken A.

    2014-01-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. PMID:25447376

  7. Explanation-based learning in infancy.

    PubMed

    Baillargeon, Renée; DeJong, Gerald F

    2017-10-01

    In explanation-based learning (EBL), domain knowledge is leveraged in order to learn general rules from few examples. An explanation is constructed for initial exemplars and is then generalized into a candidate rule that uses only the relevant features specified in the explanation; if the rule proves accurate for a few additional exemplars, it is adopted. EBL is thus highly efficient because it combines both analytic and empirical evidence. EBL has been proposed as one of the mechanisms that help infants acquire and revise their physical rules. To evaluate this proposal, 11- and 12-month-olds (n = 260) were taught to replace their current support rule (that an object is stable when half or more of its bottom surface is supported) with a more sophisticated rule (that an object is stable when half or more of the entire object is supported). Infants saw teaching events in which asymmetrical objects were placed on a base, followed by static test displays involving a novel asymmetrical object and a novel base. When the teaching events were designed to facilitate EBL, infants learned the new rule with as few as two (12-month-olds) or three (11-month-olds) exemplars. When the teaching events were designed to impede EBL, however, infants failed to learn the rule. Together, these results demonstrate that even infants, with their limited knowledge about the world, benefit from the knowledge-based approach of EBL.

  8. Rule Based Category Learning in Patients with Parkinson’s Disease

    PubMed Central

    Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd

    2009-01-01

    Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385

  9. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  10. Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account.

    PubMed

    Janciauskas, Marius; Chang, Franklin

    2017-07-26

    Language learning requires linguistic input, but several studies have found that knowledge of second language (L2) rules does not seem to improve with more language exposure (e.g., Johnson & Newport, 1989). One reason for this is that previous studies did not factor out variation due to the different rules tested. To examine this issue, we reanalyzed grammaticality judgment scores in Flege, Yeni-Komshian, and Liu's (1999) study of L2 learners using rule-related predictors and found that, in addition to the overall drop in performance due to a sensitive period, L2 knowledge increased with years of input. Knowledge of different grammar rules was negatively associated with input frequency of those rules. To better understand these effects, we modeled the results using a connectionist model that was trained using Korean as a first language (L1) and then English as an L2. To explain the sensitive period in L2 learning, the model's learning rate was reduced in an age-related manner. By assigning different learning rates for syntax and lexical learning, we were able to model the difference between early and late L2 learners in input sensitivity. The model's learning mechanism allowed transfer between the L1 and L2, and this helped to explain the differences between different rules in the grammaticality judgment task. This work demonstrates that an L1 model of learning and processing can be adapted to provide an explicit account of how the input and the sensitive period interact in L2 learning. © 2017 The Authors. Cognitive Science - A Multidisciplinary Journal published by Wiley Periodicals, Inc.

  11. A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems

    DTIC Science & Technology

    1990-11-01

    Intelligence Systems," in Distributed Artifcial Intelligence , vol. II, L. Gasser and M. Huhns (eds), Pitman, London, 1989, pp. 413-430. Shaw, M. Harrow, B...IDTIC FILE COPY A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems N Michael I. Shaw...SUBTITLE 5. FUNDING NUMBERS A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems 6

  12. Improving Predictions of Multiple Binary Models in ILP

    PubMed Central

    2014-01-01

    Despite the success of ILP systems in learning first-order rules from small number of examples and complexly structured data in various domains, they struggle in dealing with multiclass problems. In most cases they boil down a multiclass problem into multiple black-box binary problems following the one-versus-one or one-versus-rest binarisation techniques and learn a theory for each one. When evaluating the learned theories of multiple class problems in one-versus-rest paradigm particularly, there is a bias caused by the default rule toward the negative classes leading to an unrealistic high performance beside the lack of prediction integrity between the theories. Here we discuss the problem of using one-versus-rest binarisation technique when it comes to evaluating multiclass data and propose several methods to remedy this problem. We also illustrate the methods and highlight their link to binary tree and Formal Concept Analysis (FCA). Our methods allow learning of a simple, consistent, and reliable multiclass theory by combining the rules of the multiple one-versus-rest theories into one rule list or rule set theory. Empirical evaluation over a number of data sets shows that our proposed methods produce coherent and accurate rule models from the rules learned by the ILP system of Aleph. PMID:24696657

  13. A processing architecture for associative short-term memory in electronic noses

    NASA Astrophysics Data System (ADS)

    Pioggia, G.; Ferro, M.; Di Francesco, F.; DeRossi, D.

    2006-11-01

    Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.

  14. Refining Linear Fuzzy Rules by Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  15. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  16. 75 FR 67282 - Provisions Common to Registered Entities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ...The Commodity Futures Trading Commission (``Commission'' or ``CFTC'') is proposing rules to implement new statutory provisions enacted under Title VII of the Dodd-Frank Wall Street Reform and Consumer Protection Act (``Dodd-Frank Act'') and amend existing rules affected by the passage of the Dodd-Frank Act. These proposed rules apply to designated contract markets (``DCMs''), derivatives clearing organizations (``DCOs''), swap execution facilities (``SEFs'') and swap data repositories (``SDRs''). The proposed rules implement the new statutory framework for certification and approval for new products, new rules and rule amendments submitted to the Commission by registered entities. Furthermore, the proposed rules prohibit event contracts based on certain excluded commodities, establish special procedures for certain rule changes proposed by systemically important derivatives clearing organizations (``SIDCOs''), and provide for the tolling of review periods for certain novel derivative products pending the resolution of jurisdictional determinations.

  17. 78 FR 70368 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... transparency for over-the-counter derivatives markets, promoting the prompt and accurate clearance of... Proposed Rule Change CME is filing a proposed rule change that is limited to its business as a derivatives... the Purpose of, and Statutory Basis for, the Proposed Rule Change CME is registered as a derivatives...

  18. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    USDA-ARS?s Scientific Manuscript database

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  19. The Utility of Implicit Learning in the Teaching of Rules

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Reber, Rolf; Sannum, Petter

    2006-01-01

    The potential impact of implicit learning on education has been repeatedly stressed, though little research has examined this connection directly. The current paper describes two experiments that, inspired by artificial grammar learning experiments, examine the utility of implicit learning as a method for teaching atomic bonding rules to 11-12…

  20. Ego depletion interferes with rule-defined category learning but not non-rule-defined category learning.

    PubMed

    Minda, John P; Rabi, Rahel

    2015-01-01

    Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants' executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory.

  1. Implicit learning and reading: insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm.

    PubMed

    Pavlidou, Elpis V; Williams, Joanne M

    2014-07-01

    We examined implicit learning in school-aged children with and without developmental dyslexia based on the proposal that implicit learning plays a significant role in mastering fluent reading. We ran two experiments with 16 typically developing children (9 to 11-years-old) and 16 age-matched children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. In Experiment 1 (non-transfer task), children were trained on stimuli that followed patterns (rules) unknown to them. Subsequently, they were asked to decide from a novel set which stimuli follow the same rules (grammaticality judgments). In Experiment 2 (transfer task), training and testing stimuli differed in their superficial characteristics but followed the same rules. Again, children were asked to make grammaticality judgments. Our findings expand upon previous research by showing that children with developmental dyslexia show difficulties in implicit learning that are most likely specific to higher-order rule-like learning. These findings are discussed in relation to current theories of developmental dyslexia and of implicit learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ego depletion interferes with rule-defined category learning but not non-rule-defined category learning

    PubMed Central

    Minda, John P.; Rabi, Rahel

    2015-01-01

    Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants’ executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory. PMID:25688220

  3. SAMS--a systems architecture for developing intelligent health information systems.

    PubMed

    Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa

    2013-12-01

    In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.

  4. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  5. Learning and disrupting invariance in visual recognition with a temporal association rule

    PubMed Central

    Isik, Leyla; Leibo, Joel Z.; Poggio, Tomaso

    2012-01-01

    Learning by temporal association rules such as Foldiak's trace rule is an attractive hypothesis that explains the development of invariance in visual recognition. Consistent with these rules, several recent experiments have shown that invariance can be broken at both the psychophysical and single cell levels. We show (1) that temporal association learning provides appropriate invariance in models of object recognition inspired by the visual cortex, (2) that we can replicate the “invariance disruption” experiments using these models with a temporal association learning rule to develop and maintain invariance, and (3) that despite dramatic single cell effects, a population of cells is very robust to these disruptions. We argue that these models account for the stability of perceptual invariance despite the underlying plasticity of the system, the variability of the visual world and expected noise in the biological mechanisms. PMID:22754523

  6. Information from multiple modalities helps 5-month-olds learn abstract rules.

    PubMed

    Frank, Michael C; Slemmer, Jonathan A; Marcus, Gary F; Johnson, Scott P

    2009-07-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli (Marcus et al., 1999), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract rules. We habituated 5-month-olds to simple abstract patterns (ABA or ABB) instantiated in coordinated looming visual shapes and speech sounds (Experiment 1), shapes alone (Experiment 2), and speech sounds accompanied by uninformative but coordinated shapes (Experiment 3). Infants showed evidence of rule learning only in the presence of the informative multimodal cues. We hypothesize that the additional evidence present in these multimodal displays was responsible for the success of younger infants in learning rules, congruent with both a Bayesian account and with the Intersensory Redundancy Hypothesis.

  7. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  8. How synapses can enhance sensibility of a neural network

    NASA Astrophysics Data System (ADS)

    Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.

    2018-02-01

    In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.

  9. Sleep facilitates learning a new linguistic rule.

    PubMed

    Batterink, Laura J; Oudiette, Delphine; Reber, Paul J; Paller, Ken A

    2014-12-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  11. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.

    PubMed

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-05-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. © 2015 John Wiley & Sons Ltd.

  12. Learning a New Selection Rule in Visual and Frontal Cortex.

    PubMed

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  13. Learning and innovative elements of strategy adoption rules expand cooperative network topologies.

    PubMed

    Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter

    2008-04-09

    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.

  14. TEES 2.2: Biomedical Event Extraction for Diverse Corpora

    PubMed Central

    2015-01-01

    Background The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. Results The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. Conclusions The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented. PMID:26551925

  15. TEES 2.2: Biomedical Event Extraction for Diverse Corpora.

    PubMed

    Björne, Jari; Salakoski, Tapio

    2015-01-01

    The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented.

  16. Phonological Concept Learning.

    PubMed

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  17. Who Knows? Metacognitive Social Learning Strategies.

    PubMed

    Heyes, Cecilia

    2016-03-01

    To make good use of learning from others (social learning), we need to learn from the right others; from agents who know better than we do. Research on social learning strategies (SLSs) has identified rules that focus social learning on the right agents, and has shown that the behaviour of many animals conforms to these rules. However, it has not asked what the rules are made of, that is, about the cognitive processes implementing SLSs. Here, I suggest that most SLSs depend on domain-general, sensorimotor processes. However, some SLSs have the characteristics tacitly ascribed to all of them. These metacognitive SLSs represent 'who knows' in a conscious, reportable way, and have the power to promote cultural evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Instructional Variables in Meaningful Learning of Computer Programming.

    ERIC Educational Resources Information Center

    Mayer, Richard E.

    Some 120 undergraduate students participated in experiments to learn how novice computer programers learn to interact with the computer. Two instructional booklets were used: A "rule" booklet consisted of definitions and examples of seven modified FORTRAN statements and appropriate grammar rules; the "model" booklet was…

  19. Individual differences in learning and transfer: stable tendencies for learning exemplars versus abstracting rules.

    PubMed

    McDaniel, Mark A; Cahill, Michael J; Robbins, Mathew; Wiener, Chelsea

    2014-04-01

    We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants displayed an extrapolation profile reflecting either acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by operation span [Ospan]) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency.

  20. Individual Differences in Learning and Transfer: Stable Tendencies for Learning Exemplars versus Abstracting Rules

    PubMed Central

    McDaniel, Mark A.; Cahill, Michael J.; Robbins, Mathew; Wiener, Chelsea

    2013-01-01

    We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants either displayed an extrapolation profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by Ospan) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency. PMID:23750912

  1. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.

  2. Electrophysiological responses to feedback during the application of abstract rules.

    PubMed

    Walsh, Matthew M; Anderson, John R

    2013-11-01

    Much research focuses on how people acquire concrete stimulus-response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individual's representation of a task's states and actions shapes behavior as well as the FRN.

  3. Electrophysiological Responses to Feedback during the Application of Abstract Rules

    PubMed Central

    Walsh, Matthew M.; Anderson, John R.

    2017-01-01

    Much research focuses on how people acquire concrete stimulus–response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individualʼs representation of a taskʼs states and actions shapes behavior as well as the FRN. PMID:23915052

  4. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  5. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System

    PubMed Central

    Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.

    2018-01-01

    SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600

  6. Concreteness Fading of Algebraic Instruction: Effects on Learning

    ERIC Educational Resources Information Center

    Ottmar, Erin; Landy, David

    2017-01-01

    Learning algebra is difficult for many students in part because of an emphasis on the memorization of abstract rules. Algebraic reasoners across expertise levels often rely on perceptual-motor strategies to make these rules meaningful and memorable. However, in many cases, rules are provided as patterns to be memorized verbally, with little overt…

  7. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  8. Towards application of rule learning to the meta-analysis of clinical data: an example of the metabolic syndrome.

    PubMed

    Wojtusiak, Janusz; Michalski, Ryszard S; Simanivanh, Thipkesone; Baranova, Ancha V

    2009-12-01

    Systematic reviews and meta-analysis of published clinical datasets are important part of medical research. By combining results of multiple studies, meta-analysis is able to increase confidence in its conclusions, validate particular study results, and sometimes lead to new findings. Extensive theory has been built on how to aggregate results from multiple studies and arrive to the statistically valid conclusions. Surprisingly, very little has been done to adopt advanced machine learning methods to support meta-analysis. In this paper we describe a novel machine learning methodology that is capable of inducing accurate and easy to understand attributional rules from aggregated data. Thus, the methodology can be used to support traditional meta-analysis in systematic reviews. Most machine learning applications give primary attention to predictive accuracy of the learned knowledge, and lesser attention to its understandability. Here we employed attributional rules, the special form of rules that are relatively easy to interpret for medical experts who are not necessarily trained in statistics and meta-analysis. The methodology has been implemented and initially tested on a set of publicly available clinical data describing patients with metabolic syndrome (MS). The objective of this application was to determine rules describing combinations of clinical parameters used for metabolic syndrome diagnosis, and to develop rules for predicting whether particular patients are likely to develop secondary complications of MS. The aggregated clinical data was retrieved from 20 separate hospital cohorts that included 12 groups of patients with present liver disease symptoms and 8 control groups of healthy subjects. The total of 152 attributes were used, most of which were measured, however, in different studies. Twenty most common attributes were selected for the rule learning process. By applying the developed rule learning methodology we arrived at several different possible rulesets that can be used to predict three considered complications of MS, namely nonalcoholic fatty liver disease (NAFLD), simple steatosis (SS), and nonalcoholic steatohepatitis (NASH).

  9. The light-front gauge-invariant energy-momentum tensor

    DOE PAGES

    Lorce, Cedric

    2015-08-11

    In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbitalmore » angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions.« less

  10. Learning Universal Computations with Spikes

    PubMed Central

    Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin

    2016-01-01

    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381

  11. Improving drivers' knowledge of road rules using digital games.

    PubMed

    Li, Qing; Tay, Richard

    2014-04-01

    Although a proficient knowledge of the road rules is important to safe driving, many drivers do not retain the knowledge acquired after they have obtained their licenses. Hence, more innovative and appealing methods are needed to improve drivers' knowledge of the road rules. This study examines the effect of game based learning on drivers' knowledge acquisition and retention. We find that playing an entertaining game that is designed to impart knowledge of the road rules not only improves players' knowledge but also helps them retain such knowledge. Hence, learning by gaming appears to be a promising learning approach for driver education. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Category learning strategies in younger and older adults: Rule abstraction and memorization.

    PubMed

    Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L

    2016-06-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Contributions of Lateral and Orbital Frontal Regions to Abstract Rule Acquisition and Reversal in Monkeys

    PubMed Central

    La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.

    2018-01-01

    The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854

  14. Rule-Based Category Learning in Children: The Role of Age and Executive Functioning

    PubMed Central

    Rabi, Rahel; Minda, John Paul

    2014-01-01

    Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658

  15. Evolving fuzzy rules in a learning classifier system

    NASA Technical Reports Server (NTRS)

    Valenzuela-Rendon, Manuel

    1993-01-01

    The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.

  16. Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals.

    PubMed

    Hotz, Christine S; Templeton, Steven J; Christopher, Mary M

    2005-03-01

    A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.

  17. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…

  18. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  19. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  20. A Rational Analysis of Rule-Based Concept Learning

    ERIC Educational Resources Information Center

    Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.

    2008-01-01

    This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…

  1. Thermodynamic efficiency of learning a rule in neural networks

    NASA Astrophysics Data System (ADS)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  2. Developmental Changes in Children's Normative Reasoning across Learning Contexts and Collaborative Roles

    ERIC Educational Resources Information Center

    Riggs, Anne E.; Young, Andrew G.

    2016-01-01

    What influences children's normative judgments of conventional rules at different points in development? The current study explored the effects of two contextual factors on children's normative reasoning: the way in which the rules were learned and whether the rules apply to the self or others. Peer dyads practiced a novel collaborative board game…

  3. Cerebellar Deep Nuclei Involvement in Cognitive Adaptation and Automaticity

    ERIC Educational Resources Information Center

    Callu, Delphine; Lopez, Joelle; El Massioui, Nicole

    2013-01-01

    To determine the role of the interpositus nuclei of cerebellum in rule-based learning and optimization processes, we studied (1) successive transfers of an initially acquired response rule in a cross maze and (2) behavioral strategies in learning a simple response rule in a T maze in interpositus lesioned rats (neurotoxic or electrolytic lesions).…

  4. Aqui y Alla (Here and There) Information-Based Learning Corridors between Tennessee and Puerto Rico: The Five Golden Rules in Intercultural Education

    ERIC Educational Resources Information Center

    Mehra, Bharat; Allard, Suzie; Qayyum, M. Asim; Barclay-McLaughlin, Gina

    2008-01-01

    This article proposes five information-based Golden Rules in intercultural education that represent a holistic approach to creating learning corridors across geographically dispersed academic communities. The Golden Rules are generated through qualitative analysis, grounded theory application, reflective practice, and critical research to…

  5. Developing a Learning Progression for Number Sense Based on the Rule Space Model in China

    ERIC Educational Resources Information Center

    Chen, Fu; Yan, Yue; Xin, Tao

    2017-01-01

    The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…

  6. Module Six: Parallel Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn the rules that govern the characteristics of parallel circuits; the relationships between voltage, current, resistance and power; and the results of common troubles in parallel circuits. The module is divided into four lessons: rules of voltage and current, rules for resistance and power, variational analysis,…

  7. Fuzzy Q-Learning for Generalization of Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.

  8. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics

    PubMed Central

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645

  9. Automatic learning of rules. A practical example of using artificial intelligence to improve computer-based detection of myocardial infarction and left ventricular hypertrophy in the 12-lead ECG.

    PubMed

    Kaiser, W; Faber, T S; Findeis, M

    1996-01-01

    The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.

  10. Neural Synchronization and Cryptography

    NASA Astrophysics Data System (ADS)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  11. Learning temporal rules to forecast instability in continuously monitored patients

    PubMed Central

    Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R

    2017-01-01

    Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020

  12. A requirement for memory retrieval during and after long-term extinction learning

    PubMed Central

    Ouyang, Ming; Thomas, Steven A.

    2005-01-01

    Current learning theories are based on the idea that learning is driven by the difference between expectations and experience (the delta rule). In extinction, one learns that certain expectations no longer apply. Here, we test the potential validity of the delta rule by manipulating memory retrieval (and thus expectations) during extinction learning. Adrenergic signaling is critical for the time-limited retrieval (but not acquisition or consolidation) of contextual fear. Using genetic and pharmacologic approaches to manipulate adrenergic signaling, we find that long-term extinction requires memory retrieval but not conditioned responding. Identical manipulations of the adrenergic system that do not affect memory retrieval do not alter extinction. The results provide substantial support for the delta rule of learning theory. In addition, the timing over which extinction is sensitive to adrenergic manipulation suggests a model whereby memory retrieval occurs during, and several hours after, extinction learning to consolidate long-term extinction memory. PMID:15947076

  13. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    ERIC Educational Resources Information Center

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-01-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we…

  14. Bayesian Learning and the Psychology of Rule Induction

    ERIC Educational Resources Information Center

    Endress, Ansgar D.

    2013-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…

  15. Characterizing Rule-Based Category Learning Deficits in Patients with Parkinson's Disease

    ERIC Educational Resources Information Center

    Filoteo, J. Vincent; Maddox, W. Todd; Ing, A. David; Song, David D.

    2007-01-01

    Parkinson's disease (PD) patients and normal controls were tested in three category learning experiments to determine if previously observed rule-based category learning impairments in PD patients were due to deficits in selective attention or working memory. In Experiment 1, optimal categorization required participants to base their decision on a…

  16. Infant Learning Is Influenced by Local Spurious Generalizations

    ERIC Educational Resources Information Center

    Gerken, LouAnn; Quam, Carolyn

    2017-01-01

    In previous work, 11-month-old infants were able to learn rules about the relation of the consonants in CVCV words from just four examples. The rules involved phonetic feature relations (same voicing or same place of articulation), and infants' learning was impeded when pairs of words allowed alternative possible generalizations (e.g. two words…

  17. Learning "Rules" of Practice within the Context of the Practicum Triad: A Case Study of Learning to Teach

    ERIC Educational Resources Information Center

    Chalies, Sebastien; Escalie, Guillaume; Stefano, Bertone; Clarke, Anthony

    2012-01-01

    This case study sought to determine the professional development circumstances in which a preservice teacher learned rules of practice (Wittgenstein, 1996) on practicum while interacting with a cooperating teacher and university supervisor. Borrowing from a theoretical conceptualization of teacher professional development based on the postulates…

  18. 76 FR 57787 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... securities product (``UTP Derivative Security'') that derives its value from one or more currencies or..., proposed EDGA Rule 14.1(c)(5)(A) provides that a Restricted Market Maker in a UTP Derivative Security on... Reference Asset of that UTP Derivative Security, or any derivative instrument based on a Reference Asset of...

  19. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.

    PubMed

    Grouin, Cyril; Zweigenbaum, Pierre

    2013-01-01

    In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.

  20. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  1. Adaptive structured dictionary learning for image fusion based on group-sparse-representation

    NASA Astrophysics Data System (ADS)

    Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei

    2018-04-01

    Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.

  2. The role of feedback contingency in perceptual category learning.

    PubMed

    Ashby, F Gregory; Vucovich, Lauren E

    2016-11-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from 2 or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all 4 conditions, and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects, as well as their theoretical implications, are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. The Role of Feedback Contingency in Perceptual Category Learning

    PubMed Central

    Ashby, F. Gregory; Vucovich, Lauren E.

    2016-01-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from two or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all four conditions and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects are discussed, as well as their theoretical implications. PMID:27149393

  4. Knowledge-rich temporal relation identification and classification in clinical notes

    PubMed Central

    D’Souza, Jennifer; Ng, Vincent

    2014-01-01

    Motivation: We examine the task of temporal relation classification for the clinical domain. Our approach to this task departs from existing ones in that it is (i) ‘knowledge-rich’, employing sophisticated knowledge derived from discourse relations as well as both domain-independent and domain-dependent semantic relations, and (ii) ‘hybrid’, combining the strengths of rule-based and learning-based approaches. Evaluation results on the i2b2 Clinical Temporal Relations Challenge corpus show that our approach yields a 17–24% and 8–14% relative reduction in error over a state-of-the-art learning-based baseline system when gold-standard and automatically identified temporal relations are used, respectively. Database URL: http://www.hlt.utdallas.edu/~jld082000/temporal-relations/ PMID:25414383

  5. Phonology, reading, and Chomsky and Halle's optimal orthography.

    PubMed

    Steinberg, D D

    1973-09-01

    Chomsky and Halle claim that an orthography based on their underlying phonological representations (UPR) of lexical items would be optimal for English. This paper challenges three of C & H's basic phonological assumptions, that their vowel shift rule is valid, that the UPR is the only sound representation to be listed in the lexicon, and that derived words do not appear as wholes in the lexicon. A less abstract phonological representation level based on the conscious perceptions of speakers, the surface phonemic (SPR), is proposed. An SPR-based orthography has advantages which a UPR-based orthography would not: it is easy to learn and teach, it can be learned at an early age, and it permits rapid detection of rhyme. It is concluded that an orthography based on SPRs, and not UPRs, would be optimal.

  6. A network model of behavioural performance in a rule learning task.

    PubMed

    Hasselmo, Michael E; Stern, Chantal E

    2018-04-19

    Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).

  7. Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats

    PubMed Central

    Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal

    2012-01-01

    Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551

  8. Discovering Fine-grained Sentiment in Suicide Notes

    PubMed Central

    Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.

    2012-01-01

    This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770

  9. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  10. SKOLAR MD: A Model for Self-Directed, In-Context Continuing Medical Education

    PubMed Central

    Strasberg, Howard R.; Rindfleisch, Thomas C.; Hardy, Steven

    2003-01-01

    INTRODUCTION SKOLAR has implemented a web-based CME program with which physicians can earn AMA Category 1 credit for self-directed learning. METHODS Physicians researched their questions in SKOLAR and applied for CME. Physician auditors reviewed all requests across two phases of the project. A selection rule set was derived from phase one and used in phase two to flag a subset of requests for detailed review. The selection rule set is described. RESULTS In phase one, SKOLAR received 1039 CME applications. Applicants frequently found their answer (94%) and would apply it clinically (93%). A linear regression analysis comparing time awarded to time requested (capped at actual time spent) had R2=0.79. DISCUSSION We believe that hat this self-directed approach to CME is effective and an important complement to traditional CME programs. However, selective audit of self-directed CME requests is necessary to ensure validity of credits awarded. PMID:14728250

  11. How Do Infants and Toddlers Learn the Rules? Family Discipline and Young Children

    ERIC Educational Resources Information Center

    Smith, Anne B.

    2004-01-01

    This paper examines the issue of how under three year-olds learn the rules of appropriate behaviour in the light of sociocultural, attachment, social learning, ecological theory and sociology of childhood theories. Discipline involves teaching children how to behave acceptably in their family and society, while physical punishment is the use of…

  12. Cognitive Diffusion Model: Facilitating EFL Learning in an Authentic Environment

    ERIC Educational Resources Information Center

    Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu

    2017-01-01

    For this study, we designed learning activities in which students applied newly acquired knowledge to solve meaningful daily life problems in their local community--a real, familiar, and relevant environment for students. For example, students learned about signs and rules in class and then applied this new knowledge to create their own rules for…

  13. A hybrid learning method for constructing compact rule-based fuzzy models.

    PubMed

    Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W

    2013-12-01

    The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.

  14. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  15. A Short Note on Rules and Higher Order Rules.

    ERIC Educational Resources Information Center

    Scandura, Joseph M.

    This brief paper argues that structural analysis--an extended form of cognitive task analysis--demonstrates that both domain dependent and domain independent knowledge can be derived from specific content domains. It is noted that the major difference between the two is that lower order rules (specific knowledge) are derived directly from specific…

  16. Interpretable Decision Sets: A Joint Framework for Description and Prediction

    PubMed Central

    Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec

    2016-01-01

    One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627

  17. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  18. Brain signatures of early lexical and morphological learning of a new language.

    PubMed

    Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni

    2017-07-01

    Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Exact sum rules for inhomogeneous strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-11-15

    We derive explicit expressions for the sum rules of the eigenvalues of inhomogeneous strings with arbitrary density and with different boundary conditions. We show that the sum rule of order N may be obtained in terms of a diagrammatic expansion, with (N−1)!/2 independent diagrams. These sum rules are used to derive upper and lower bounds to the energy of the fundamental mode of an inhomogeneous string; we also show that it is possible to improve these approximations taking into account the asymptotic behavior of the spectrum and applying the Shanks transformation to the sequence of approximations obtained to the differentmore » orders. We discuss three applications of these results. -- Highlights: •We derive an explicit expression for the sum rules of an inhomogeneous string. •We obtain a diagrammatic representation for the sum rules of a given order. •We obtain precise bounds on the lowest eigenvalue of the string.« less

  20. Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia)

    PubMed Central

    Stobbe, Nina; Westphal-Fitch, Gesche; Aust, Ulrike; Fitch, W. Tecumseh

    2012-01-01

    Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training. PMID:22688635

  1. Learning Object-Level and Meta-Level Knowledge in Expert Systems.

    DTIC Science & Technology

    1985-11-01

    usually a misdiagnosed one). 1.2.2. Efficiency Consideration Learning becomes a complicated issue in a complex domain like medicine where there may... misdiagnosed cases are often due to missing rules. Therefore, we would rather view this problem as a learning problem. A strategy called "retrospective...inspection after learning" is described in Chapter 5. With this strategy, rules that can make the misdiagnosed case diagnosed correctly are first found; then

  2. Learning and tuning fuzzy logic controllers through reinforcements.

    PubMed

    Berenji, H R; Khedkar, P

    1992-01-01

    A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  3. Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.

    PubMed

    Aparin, Vladimir

    2012-03-01

    This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.

  4. Prospective Coding by Spiking Neurons

    PubMed Central

    Brea, Johanni; Gaál, Alexisz Tamás; Senn, Walter

    2016-01-01

    Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100

  5. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  6. Assessing the uniqueness of language: Animal grammatical abilities take center stage.

    PubMed

    Ten Cate, Carel

    2017-02-01

    Questions related to the uniqueness of language can only be addressed properly by referring to sound knowledge of the relevant cognitive abilities of nonhuman animals. A key question concerns the nature and extent of animal rule-learning abilities. I discuss two approaches used to assess these abilities. One is comparing the structures of animal vocalizations to linguistic ones, and another is addressing the grammatical rule- and pattern-learning abilities of animals through experiments using artificial grammars. Neither of these approaches has so far provided unambiguous evidence of advanced animal abilities. However, when we consider how animal vocalizations are analyzed, the types of stimuli and tasks that are used in artificial grammar learning experiments, the limited number of species examined, and the groups to which these belong, I argue that the currently available evidence is insufficient to arrive at firm conclusions concerning the limitations of animal grammatical abilities. As a consequence, the gap between human linguistic rule-learning abilities and those of nonhuman animals may be smaller and less clear than is currently assumed. This means that it is still an open question whether a difference in the rule-learning and rule abstraction abilities between animals and humans played the key role in the evolution of language.

  7. Dog Is a Dog Is a Dog: Infant Rule Learning Is Not Specific to Language

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Pollak, Seth D.; Seibel, Rebecca L.; Shkolnik, Anna

    2007-01-01

    Human infants possess powerful learning mechanisms used for the acquisition of language. To what extent are these mechanisms domain specific? One well-known infant language learning mechanism is the ability to detect and generalize rule-like similarity patterns, such as ABA or ABB [Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999).…

  8. Dopamine neurons modulate pheromone responses in Drosophila courtship learning.

    PubMed

    Keleman, Krystyna; Vrontou, Eleftheria; Krüttner, Sebastian; Yu, Jai Y; Kurtovic-Kozaric, Amina; Dickson, Barry J

    2012-09-06

    Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.

  9. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    PubMed

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.

  10. Expert networks in CLIPS

    NASA Technical Reports Server (NTRS)

    Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.

    1991-01-01

    Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.

  11. Deficits in Category Learning in Older Adults: Rule-Based Versus Clustering Accounts

    PubMed Central

    2017-01-01

    Memory research has long been one of the key areas of investigation for cognitive aging researchers but only in the last decade or so has categorization been used to understand age differences in cognition. Categorization tasks focus more heavily on the grouping and organization of items in memory, and often on the process of learning relationships through trial and error. Categorization studies allow researchers to more accurately characterize age differences in cognition: whether older adults show declines in the way in which they represent categories with simple rules or declines in representing categories by similarity to past examples. In the current study, young and older adults participated in a set of classic category learning problems, which allowed us to distinguish between three hypotheses: (a) rule-complexity: categories were represented exclusively with rules and older adults had differential difficulty when more complex rules were required, (b) rule-specific: categories could be represented either by rules or by similarity, and there were age deficits in using rules, and (c) clustering: similarity was mainly used and older adults constructed a less-detailed representation by lumping more items into fewer clusters. The ordinal levels of performance across different conditions argued against rule-complexity, as older adults showed greater deficits on less complex categories. The data also provided evidence against rule-specificity, as single-dimensional rules could not explain age declines. Instead, computational modeling of the data indicated that older adults utilized fewer conceptual clusters of items in memory than did young adults. PMID:28816474

  12. 78 FR 64038 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... transparency for over-the-counter derivatives markets, promoting the prompt and accurate clearance of... a derivatives clearing organization. The new CME rule simply specifies that CME will discharge any... Proposed Rule Change CME is registered as a derivatives clearing organization (``DCO'') with the Commodity...

  13. Pareto 80/20 Law: Derivation via Random Partitioning

    ERIC Educational Resources Information Center

    Lipovetsky, Stan

    2009-01-01

    The Pareto 80/20 Rule, also known as the Pareto principle or law, states that a small number of causes (20%) is responsible for a large percentage (80%) of the effect. Although widely recognized as a heuristic rule, this proportion has not been theoretically based. The article considers derivation of this 80/20 rule and some other standard…

  14. Single neurons in prefrontal cortex encode abstract rules.

    PubMed

    Wallis, J D; Anderson, K C; Miller, E K

    2001-06-21

    The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.

  15. The Product and Quotient Rules Revisited

    ERIC Educational Resources Information Center

    Eggleton, Roger; Kustov, Vladimir

    2011-01-01

    Mathematical elegance is illustrated by strikingly parallel versions of the product and quotient rules of basic calculus, with some applications. Corresponding rules for second derivatives are given: the product rule is familiar, but the quotient rule is less so.

  16. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  17. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music.

    PubMed

    Giraldo, Sergio I; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.

  18. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

    PubMed Central

    Giraldo, Sergio I.; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules. PMID:28066290

  19. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  20. Developmental changes in children's normative reasoning across learning contexts and collaborative roles.

    PubMed

    Riggs, Anne E; Young, Andrew G

    2016-08-01

    What influences children's normative judgments of conventional rules at different points in development? The current study explored the effects of two contextual factors on children's normative reasoning: the way in which the rules were learned and whether the rules apply to the self or others. Peer dyads practiced a novel collaborative board game comprising two complementary roles. Dyads were either taught both the prescriptive (i.e., what to do) and proscriptive (i.e., what not to do) forms of the rules, taught only the prescriptive form of the rules, or created the rules themselves. Children then judged whether third parties were violating or conforming to the rules governing their own roles and their partner's roles. Early school-aged children's (6- to 7-year-olds; N = 60) normative judgments were strongest when they had been taught the rules (with or without the proscriptive form), but were more flexible for rules they created themselves. Preschool-aged children's (4- to 5-year-olds; N = 60) normative judgments, however, were strongest when they were taught both the prescriptive and proscriptive forms of the rules. Additionally, preschoolers exhibited stronger normative judgments when the rules governed their own roles rather than their partner's roles, whereas school-aged children treated all rules as equally normative. These results demonstrate that children's normative reasoning is contingent on contextual factors of the learning environment and, moreover, highlight 2 specific areas in which children's inferences about the normativity of conventions strengthen over development. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.

  2. Polymeric Coating of Supporting Substrates Facilities: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn more about the New Source Performance Standards (NSPS) rule for polymeric coating by reading the rule summary, rule history and the code of federal regulations subpart. Information on related rules is also on this page.

  3. Effects of neonatal inferior prefrontal and medial temporal lesions on learning the rule for delayed nonmatching-to-sample.

    PubMed

    Málková, L; Bachevalier, J; Webster, M; Mishkin, M

    2000-01-01

    The ability of rhesus monkeys to master the rule for delayed nonmatching-to-sample (DNMS) has a protracted ontogenetic development, reaching adult levels of proficiency around 4 to 5 years of age (Bachevalier, 1990). To test the possibility that this slow development could be due, at least in part, to immaturity of the prefrontal component of a temporo-prefrontal circuit important for DNMS rule learning (Kowalska, Bachevalier, & Mishkin, 1991; Weinstein, Saunders, & Mishkin, 1988), monkeys with neonatal lesions of the inferior prefrontal convexity were compared on DNMS with both normal controls and animals given neonatal lesions of the medial temporal lobe. Consistent with our previous results (Bachevalier & Mishkin, 1994; Málková, Mishkin, & Bachevalier, 1995), the neonatal medial temporal lesions led to marked impairment in rule learning (as well as in recognition memory with long delays and list lengths) at both 3 months and 2 years of age. By contrast, the neonatal inferior convexity lesions yielded no impairment in rule-learning at 3 months and only a mild impairment at 2 years, a finding that also contrasts sharply with the marked effects of the same lesion made in adulthood. This pattern of sparing closely resembles the one found earlier after neonatal lesions to the cortical visual area TE (Bachevalier & Mishkin, 1994; Málková et al., 1995). The functional sparing at 3 months probably reflects the fact that the temporo-prefrontal circuit is nonfunctional at this early age, resulting in a total dependency on medial temporal contributions to rule learning. With further development, however, this circuit begins to provide a supplementary route for learning.

  4. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  5. Continuous executive function disruption interferes with application of an information integration categorization strategy.

    PubMed

    Miles, Sarah J; Matsuki, Kazunaga; Minda, John Paul

    2014-07-01

    Category learning is often characterized as being supported by two separate learning systems. A verbal system learns rule-defined (RD) categories that can be described using a verbal rule and relies on executive functions (EFs) to learn via hypothesis testing. A nonverbal system learns non-rule-defined (NRD) categories that cannot be described by a verbal rule and uses automatic, procedural learning. The verbal system is dominant in that adults tend to use it during initial learning but may switch to the nonverbal system when the verbal system is unsuccessful. The nonverbal system has traditionally been thought to operate independently of EFs, but recent studies suggest that EFs may play a role in the nonverbal system-specifically, to facilitate the transition away from the verbal system. Accordingly, continuously interfering with EFs during the categorization process, so that EFs are never fully available to facilitate the transition, may be more detrimental to the nonverbal system than is temporary EF interference. Participants learned an NRD or an RD category while EFs were untaxed, taxed temporarily, or taxed continuously. When EFs were continuously taxed during NRD categorization, participants were less likely to use a nonverbal categorization strategy than when EFs were temporarily taxed, suggesting that when EFs were unavailable, the transition to the nonverbal system was hindered. For the verbal system, temporary and continuous interference had similar effects on categorization performance and on strategy use, illustrating that EFs play an important but different role in each of the category-learning systems.

  6. Designing boosting ensemble of relational fuzzy systems.

    PubMed

    Scherer, Rafał

    2010-10-01

    A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.

  7. 17 CFR 39.4 - Procedures for implementing derivatives clearing organization rules and clearing new products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Procedures for implementing derivatives clearing organization rules and clearing new products. 39.4 Section 39.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION DERIVATIVES CLEARING ORGANIZATIONS § 39.4 Procedures for...

  8. 78 FR 29162 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... list and trade a new derivative securities product without submitting a proposed rule change pursuant... derivative securities products traded on the SROs, Rule 19b-4(e) requires an SRO to file a summary form, Form 19b- 4(e), to notify the Commission when the SRO begins trading a new derivative securities product...

  9. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.

    PubMed

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.

  10. Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding

    PubMed Central

    Guise, Kevin G.; Shapiro, Matthew L.

    2017-01-01

    Summary The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances. PMID:28343868

  11. Learning temporal rules to forecast instability in continuously monitored patients.

    PubMed

    Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R

    2017-01-01

    Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.

    PubMed

    Juang, C F; Lin, J Y; Lin, C T

    2000-01-01

    An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.

  13. Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation

    PubMed Central

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359

  14. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation.

    PubMed

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A; Levi, Dennis M; Yu, Cong

    2014-04-01

    We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.

  15. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    NASA Astrophysics Data System (ADS)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  16. Timely Diagnostic Feedback for Database Concept Learning

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng; Chuang, Yuh-Shy

    2013-01-01

    To efficiently learn database concepts, this work adopts association rules to provide diagnostic feedback for drawing an Entity-Relationship Diagram (ERD). Using association rules and Asynchronous JavaScript and XML (AJAX) techniques, this work implements a novel Web-based Timely Diagnosis System (WTDS), which provides timely diagnostic feedback…

  17. Bayesian learning and the psychology of rule induction

    PubMed Central

    Endress, Ansgar D.

    2014-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791

  18. Reinforcement Learning in a Nonstationary Environment: The El Farol Problem

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria

    1999-01-01

    This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.

  19. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  20. Discontinuous categories affect information-integration but not rule-based category learning.

    PubMed

    Maddox, W Todd; Filoteo, J Vincent; Lauritzen, J Scott; Connally, Emily; Hejl, Kelli D

    2005-07-01

    Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system. ((c) 2005 APA, all rights reserved).

  1. [The Amsterdam wrist rules: the multicenter prospective derivation and external validation of a clinical decision rule for the use of radiography in acute wrist trauma].

    PubMed

    Walenkamp, Monique M J; Bentohami, Abdelali; Slaar, Annelie; Beerekamp, M S H Suzan; Maas, Mario; Jager, L C Cara; Sosef, Nico L; van Velde, Romuald; Ultee, Jan M; Steyerberg, Ewout W; Goslings, J C Carel; Schep, Niels W L

    2016-01-01

    Although only 39% of patients with wrist trauma have sustained a fracture, the majority of patients is routinely referred for radiography. The purpose of this study was to derive and externally validate a clinical decision rule that selects patients with acute wrist trauma in the Emergency Department (ED) for radiography. This multicenter prospective study consisted of three components: (1) derivation of a clinical prediction model for detecting wrist fractures in patients following wrist trauma; (2) external validation of this model; and (3) design of a clinical decision rule. The study was conducted in the EDs of five Dutch hospitals: one academic hospital (derivation cohort) and four regional hospitals (external validation cohort). We included all adult patients with acute wrist trauma. The main outcome was fracture of the wrist (distal radius, distal ulna or carpal bones) diagnosed on conventional X-rays. A total of 882 patients were analyzed; 487 in the derivation cohort and 395 in the validation cohort. We derived a clinical prediction model with eight variables: age; sex, swelling of the wrist; swelling of the anatomical snuffbox, visible deformation; distal radius tender to palpation; pain on radial deviation and painful axial compression of the thumb. The Area Under the Curve at external validation of this model was 0.81 (95% CI: 0.77-0.85). The sensitivity and specificity of the Amsterdam Wrist Rules (AWR) in the external validation cohort were 98% (95% CI: 95-99%) and 21% (95% CI: 15%-28). The negative predictive value was 90% (95% CI: 81-99%). The Amsterdam Wrist Rules is a clinical prediction rule with a high sensitivity and negative predictive value for fractures of the wrist. Although external validation showed low specificity and 100 % sensitivity could not be achieved, the Amsterdam Wrist Rules can provide physicians in the Emergency Department with a useful screening tool to select patients with acute wrist trauma for radiography. The upcoming implementation study will further reveal the impact of the Amsterdam Wrist Rules on the anticipated reduction of X-rays requested, missed fractures, Emergency Department waiting times and health care costs.

  2. A Role Calculus for ORM

    NASA Astrophysics Data System (ADS)

    Curland, Matthew; Halpin, Terry; Stirewalt, Kurt

    A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.

  3. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    PubMed

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Social inference and social anxiety: evidence of a fear-congruent self-referential learning bias.

    PubMed

    Button, Katherine S; Browning, Michael; Munafò, Marcus R; Lewis, Glyn

    2012-12-01

    Fears of negative evaluation characterise social anxiety, and preferential processing of fear-relevant information is implicated in maintaining symptoms. Little is known, however, about the relationship between social anxiety and the process of inferring negative evaluation. The ability to use social information to learn what others think about one, referred to here as self-referential learning, is fundamental for effective social interaction. The aim of this research was to examine whether social anxiety is associated with self-referential learning. 102 Females with either high (n = 52) or low (n = 50) self-reported social anxiety completed a novel probabilistic social learning task. Using trial and error, the task required participants to learn two self-referential rules, 'I am liked' and 'I am disliked'. Participants across the sample were better at learning the positive rule 'I am liked' than the negative rule 'I am disliked', β = -6.4, 95% CI [-8.0, -4.7], p < 0.001. This preference for learning positive self-referential information was strongest in the lowest socially anxious and was abolished in the most symptomatic participants. Relative to the low group, the high anxiety group were better at learning they were disliked and worse at learning they were liked, social anxiety by rule interaction β = 3.6; 95% CI [+0.3, +7.0], p = 0.03. The specificity of the results to self-referential processing requires further research. Healthy individuals show a robust preference for learning that they are liked relative to disliked. This positive self-referential bias is reduced in social anxiety in a way that would be expected to exacerbate anxiety symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Chain Rule Approach for Calculating the Time-Derivative of Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbrunner, James R.; Booker, Jane M.

    The reaction history (gamma-flux observable) is mathematically studied by using the chain rule for taking the total-time derivatives. That is, the total time-derivative of flux is written as the product of the ion temperature derivative with respect to time and the derivative of the flux with respect to ion temperature. Some equations are derived using the further simplification that the fusion reactivity is a parametrized function of ion temperature, T. Deuterium-tritium (D-T) fusion is used as the application with reactivity calculations from three established reactivity parametrizations.

  6. Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation

    PubMed Central

    Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S

    2016-01-01

    Background: Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. Methods: For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Results: Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Conclusions: Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. PMID:27380750

  7. Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation.

    PubMed

    Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S

    2016-10-01

    Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. © The Author(s) 2016.

  8. Equations for Scoring Rules When Data Are Missing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A document presents equations for scoring rules in a diagnostic and/or prognostic artificial-intelligence software system of the rule-based inference-engine type. The equations define a set of metrics that characterize the evaluation of a rule when data required for the antecedence clause(s) of the rule are missing. The metrics include a primary measure denoted the rule completeness metric (RCM) plus a number of subsidiary measures that contribute to the RCM. The RCM is derived from an analysis of a rule with respect to its truth and a measure of the completeness of its input data. The derivation is such that the truth value of an antecedent is independent of the measure of its completeness. The RCM can be used to compare the degree of completeness of two or more rules with respect to a given set of data. Hence, the RCM can be used as a guide to choosing among rules during the rule-selection phase of operation of the artificial-intelligence system..

  9. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning

    PubMed Central

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction. PMID:26065018

  10. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.

    PubMed

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.

  11. Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    PubMed Central

    Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.

    2011-01-01

    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519

  12. Analytical formulation of cellular automata rules using data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.

    2009-05-01

    We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.

  13. Developing an International Register of Clinical Prediction Rules for Use in Primary Care: A Descriptive Analysis

    PubMed Central

    Keogh, Claire; Wallace, Emma; O’Brien, Kirsty K.; Galvin, Rose; Smith, Susan M.; Lewis, Cliona; Cummins, Anthony; Cousins, Grainne; Dimitrov, Borislav D.; Fahey, Tom

    2014-01-01

    PURPOSE We describe the methodology used to create a register of clinical prediction rules relevant to primary care. We also summarize the rules included in the register according to various characteristics. METHODS To identify relevant articles, we searched the MEDLINE database (PubMed) for the years 1980 to 2009 and supplemented the results with searches of secondary sources (books on clinical prediction rules) and personal resources (eg, experts in the field). The rules described in relevant articles were classified according to their clinical domain, the stage of development, and the clinical setting in which they were studied. RESULTS Our search identified clinical prediction rules reported between 1965 and 2009. The largest share of rules (37.2%) were retrieved from PubMed. The number of published rules increased substantially over the study decades. We included 745 articles in the register; many contained more than 1 clinical prediction rule study (eg, both a derivation study and a validation study), resulting in 989 individual studies. In all, 434 unique rules had gone through derivation; however, only 54.8% had been validated and merely 2.8% had undergone analysis of their impact on either the process or outcome of clinical care. The rules most commonly pertained to cardiovascular disease, respiratory, and musculoskeletal conditions. They had most often been studied in the primary care or emergency department settings. CONCLUSIONS Many clinical prediction rules have been derived, but only about half have been validated and few have been assessed for clinical impact. This lack of thorough evaluation for many rules makes it difficult to retrieve and identify those that are ready for use at the point of patient care. We plan to develop an international web-based register of clinical prediction rules and computer-based clinical decision support systems. PMID:25024245

  14. Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques

    PubMed Central

    Mande, Sharmila S.

    2016-01-01

    The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm. PMID:27124399

  15. Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques.

    PubMed

    Tandon, Disha; Haque, Mohammed Monzoorul; Mande, Sharmila S

    2016-01-01

    The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.

  16. A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement

    PubMed Central

    Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J

    2007-01-01

    Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130

  17. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia.

    PubMed

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-12-12

    Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  18. Experiments on individual strategy updating in iterated snowdrift game under random rematching.

    PubMed

    Qi, Hang; Ma, Shoufeng; Jia, Ning; Wang, Guangchao

    2015-03-07

    How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 26 CFR 1.1445-5 - Special rules concerning distributions and other transactions by corporations, partnerships...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...

  20. 26 CFR 1.1445-5 - Special rules concerning distributions and other transactions by corporations, partnerships...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...

  1. 26 CFR 1.1445-5 - Special rules concerning distributions and other transactions by corporations, partnerships...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...

  2. 26 CFR 1.1445-5 - Special rules concerning distributions and other transactions by corporations, partnerships...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...

  3. The impact of safety rules revisions on safety culture, incident rates, and liability claims in the U.S. railroad industry : a summary of lessons-learned

    DOT National Transportation Integrated Search

    2003-01-01

    The Federal Railroad Administration (FRA) Human Factors Research and Development (R&D) Program sponsored a lessons-learned study to examine the impact of safety rules revision on safety culture, incident rates, and liability claims in the railroad in...

  4. Acquisition of Inductive Biconditional Reasoning Skills: Training of Simultaneous and Sequential Processing.

    ERIC Educational Resources Information Center

    Lee, Seong-Soo

    1982-01-01

    Tenth-grade students (n=144) received training on one of three processing methods: coding-mapping (simultaneous), coding only, or decision tree (sequential). The induced simultaneous processing strategy worked optimally under rule learning, while the sequential strategy was difficult to induce and/or not optimal for rule-learning operations.…

  5. Binary translation using peephole translation rules

    DOEpatents

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  6. [Knowing without remembering: the contribution of developmental amnesia].

    PubMed

    Lebrun-Givois, C; Guillery-Girard, B; Thomas-Anterion, C; Laurent, B

    2008-05-01

    The organization of episodic and semantic memory is currently debated, and especially the rule of the hippocampus in the functioning of these two systems. Since theories derived from the observation of the famous patient HM, that highlighted the involvement of this structure in these two systems, numerous studies questioned the implication of the hippocampus in learning a new semantic knowledge. Among these studies, we found Vargha-Kadem's cases of developmental amnesia. In spite of their clear hippocampal atrophy and a massive impairment of episodic memory, these children were able to acquire de novo new semantic knowledge. In the present paper, we describe a new case of developmental amnesia characteristic of this syndrome. In conclusion, the whole published data question the implication of the hippocampus in every semantic learning and suggest the existence of a neocortical network, slower and that needs more exposures to semantic stimuli than the hippocampal one, which can supply a massive hippocampal impairment.

  7. Transfer between local and global processing levels by pigeons (Columba livia) and humans (Homo sapiens) in exemplar- and rule-based categorization tasks.

    PubMed

    Aust, Ulrike; Braunöder, Elisabeth

    2015-02-01

    The present experiment investigated pigeons' and humans' processing styles-local or global-in an exemplar-based visual categorization task in which category membership of every stimulus had to be learned individually, and in a rule-based task in which category membership was defined by a perceptual rule. Group Intact was trained with the original pictures (providing both intact local and global information), Group Scrambled was trained with scrambled versions of the same pictures (impairing global information), and Group Blurred was trained with blurred versions (impairing local information). Subsequently, all subjects were tested for transfer to the 2 untrained presentation modes. Humans outperformed pigeons regarding learning speed and accuracy as well as transfer performance and showed good learning irrespective of group assignment, whereas the pigeons of Group Blurred needed longer to learn the training tasks than the pigeons of Groups Intact and Scrambled. Also, whereas humans generalized equally well to any novel presentation mode, pigeons' transfer from and to blurred stimuli was impaired. Both species showed faster learning and, for the most part, better transfer in the rule-based than in the exemplar-based task, but there was no evidence of the used processing mode depending on the type of task (exemplar- or rule-based). Whereas pigeons relied on local information throughout, humans did not show a preference for either processing level. Additional tests with grayscale versions of the training stimuli, with versions that were both blurred and scrambled, and with novel instances of the rule-based task confirmed and further extended these findings. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  8. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.

    PubMed

    Olde Scheper, Tjeerd V; Meredith, Rhiannon M; Mansvelder, Huibert D; van Pelt, Jaap; van Ooyen, Arjen

    2017-01-01

    Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.

  9. Flexible Vinyl and Urethane Coating and Printing: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the New Source Performance Standards (NSPS) for flexible vinyl and urethane coating and printing by reading the rule summary, the rule history, the code of federal regulations subpart and related rules

  10. Ethylene Oxide Emissions Standards for Sterilization Facilities: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the NESHAP for ethylene oxide emissions for sterilization facilities. Find the rule history information, federal register citations, legal authority, and related rules as well as a rule summary.

  11. On some new properties of fractional derivatives with Mittag-Leffler kernel

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Fernandez, Arran

    2018-06-01

    We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics.

  12. 78 FR 32191 - Derivatives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...This proposed rule permits credit unions to engage in limited derivatives activities for the purpose of mitigating interest rate risk. This proposed rule applies to federal credit unions and any federally insured, state-chartered credit unions that are permitted under applicable state law to engage in derivatives transactions. It requires any credit union seeking derivatives authority to submit an application for one of two levels of authority. Level I and Level II authority differ on the permissible levels of transactions as well as the application, expertise, and systems requirements associated with operating a derivatives program.

  13. Transfer Learning of Classification Rules for Biomarker Discovery and Verification from Molecular Profiling Studies

    PubMed Central

    Ganchev, Philip; Malehorn, David; Bigbee, William L.; Gopalakrishnan, Vanathi

    2013-01-01

    We present a novel framework for integrative biomarker discovery from related but separate data sets created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable, modular rules, and uses them during the learning of rules on a new data set. The framework consists of two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic. We used standard measures of classification performance and three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer improves classification performance over using the target data alone, especially when there is more source data than target data. It also improves performance over using the union of the data sets. PMID:21571094

  14. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  16. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    PubMed Central

    Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387

  17. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.

    PubMed

    Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  18. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGES

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  19. Toward a dual-learning systems model of speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Koslov, Seth R.; Maddox, W. T.

    2014-01-01

    More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions. PMID:25132827

  20. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  1. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  2. Learning and transfer of category knowledge in an indirect categorization task.

    PubMed

    Helie, Sebastien; Ashby, F Gregory

    2012-05-01

    Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.

  3. Group learning versus local learning: Which is prefer for public cooperation?

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Han; Song, Qi-Qing

    2018-01-01

    We study the evolution of cooperation in public goods games on various graphs, focusing on the effects that are brought by different kinds of strategy donors. This highlights a basic feature of a public good game, for which there exists a remarkable difference between the interactive players and the players who are imitated. A player can learn from all the groups where the player is a member or from the typically local nearest neighbors, and the results show that the group learning rules have better performance in promoting cooperation on many networks than the local learning rules. The heterogeneity of networks' degree may be an effective mechanism for harvesting the cooperation expectation in many cases, however, we find that heterogeneity does not definitely mean the high frequency of cooperators in a population under group learning rules. It was shown that cooperators always hardly evolve whenever the interaction and the replacement do not coincide for evolutionary pairwise dilemmas on graphs, while for PG games we find that breaking the symmetry is conducive to the survival of cooperators.

  4. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  5. Exact sum rules for inhomogeneous drums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-09-15

    We derive general expressions for the sum rules of the eigenvalues of drums of arbitrary shape and arbitrary density, obeying different boundary conditions. The formulas that we present are a generalization of the analogous formulas for one dimensional inhomogeneous systems that we have obtained in a previous paper. We also discuss the extension of these formulas to higher dimensions. We show that in the special case of a density depending only on one variable the sum rules of any integer order can be expressed in terms of a single series. As an application of our result we derive exact summore » rules for the homogeneous circular annulus with different boundary conditions, for a homogeneous circular sector and for a radially inhomogeneous circular annulus with Dirichlet boundary conditions. -- Highlights: •We derive an explicit expression for the sum rules of inhomogeneous drums. •We discuss the extension to higher dimensions. •We discuss the special case of an inhomogeneity only along one direction.« less

  6. The Amsterdam wrist rules: the multicenter prospective derivation and external validation of a clinical decision rule for the use of radiography in acute wrist trauma.

    PubMed

    Walenkamp, Monique M J; Bentohami, Abdelali; Slaar, Annelie; Beerekamp, M Suzan H; Maas, Mario; Jager, L Cara; Sosef, Nico L; van Velde, Romuald; Ultee, Jan M; Steyerberg, Ewout W; Goslings, J Carel; Schep, Niels W L

    2015-12-18

    Although only 39 % of patients with wrist trauma have sustained a fracture, the majority of patients is routinely referred for radiography. The purpose of this study was to derive and externally validate a clinical decision rule that selects patients with acute wrist trauma in the Emergency Department (ED) for radiography. This multicenter prospective study consisted of three components: (1) derivation of a clinical prediction model for detecting wrist fractures in patients following wrist trauma; (2) external validation of this model; and (3) design of a clinical decision rule. The study was conducted in the EDs of five Dutch hospitals: one academic hospital (derivation cohort) and four regional hospitals (external validation cohort). We included all adult patients with acute wrist trauma. The main outcome was fracture of the wrist (distal radius, distal ulna or carpal bones) diagnosed on conventional X-rays. A total of 882 patients were analyzed; 487 in the derivation cohort and 395 in the validation cohort. We derived a clinical prediction model with eight variables: age; sex, swelling of the wrist; swelling of the anatomical snuffbox, visible deformation; distal radius tender to palpation; pain on radial deviation and painful axial compression of the thumb. The Area Under the Curve at external validation of this model was 0.81 (95 % CI: 0.77-0.85). The sensitivity and specificity of the Amsterdam Wrist Rules (AWR) in the external validation cohort were 98 % (95 % CI: 95-99 %) and 21 % (95 % CI: 15 %-28). The negative predictive value was 90 % (95 % CI: 81-99 %). The Amsterdam Wrist Rules is a clinical prediction rule with a high sensitivity and negative predictive value for fractures of the wrist. Although external validation showed low specificity and 100 % sensitivity could not be achieved, the Amsterdam Wrist Rules can provide physicians in the Emergency Department with a useful screening tool to select patients with acute wrist trauma for radiography. The upcoming implementation study will further reveal the impact of the Amsterdam Wrist Rules on the anticipated reduction of X-rays requested, missed fractures, Emergency Department waiting times and health care costs. This study was registered in the Dutch Trial Registry, reference number NTR2544 on October 1(st), 2010.

  7. Municipal Solid Waste Landfills: New Source Performance Standards (NSPS), Emission Guidelines (EG) and Compliance Times

    EPA Pesticide Factsheets

    learn about the NSPS for municipal solid waste landfills by reading the rule summary, rule history, code of federal regulations text, fact sheets, background information documents, related rules and compliance information.

  8. Teaching with Procedural Variation: A Chinese Way of Promoting Deep Understanding of Mathematics

    ERIC Educational Resources Information Center

    Lai, Mun Yee; Murray, Sara

    2012-01-01

    In mathematics education, there has been tension between deep learning and repetitive learning. Western educators often emphasize the need for students to construct a conceptual understanding of mathematical symbols and rules before they practise the rules (Li, 2006). On the other hand, Chinese learners tend to be oriented towards rote learning…

  9. Analysis and Synthesis of Adaptive Neural Elements and Assemblies

    DTIC Science & Technology

    1992-12-14

    network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning , was...activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was demonstrated to support many...network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was

  10. ARI Basic Research Program FY 1999-2000

    DTIC Science & Technology

    1999-06-01

    visual cues, reinforcement, and instruction concerning abstract , general rules. In our future research, we plan to examine the learning of novel...Watch, • Graduate student apprenticeship program - Consortium Research Fellows Program- with the Consortium of Metropolitan Washington Universities...do learn complex rules involving different levels of abstraction when given sufficient specific examples but that they also benefit from explicit

  11. Learning of Monotonic and Nonmonotonic Sequences in Domesticated Horses ("Equus Callabus") and Chickens ("Gallus Domesticus")

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; Strandell, Brittany; Mathis, Heather; Rowan, James D.

    2010-01-01

    (Hulse and Dorsky, 1977) and (Hulse and Dorsky, 1979) found that rats, like humans, learn sequences following a simple rule-based structure more quickly than those lacking a rule-based structure. Through two experiments, we explored whether two additional species--domesticated horses ("Equus callabus") and chickens ("Gallus domesticus")--would…

  12. Quest for the Golden Rule: An Effective Social Skills Promotion and Bullying Prevention Program

    ERIC Educational Resources Information Center

    Rubin-Vaughan, Alice; Pepler, Debra; Brown, Steven; Craig, Wendy

    2011-01-01

    Everyday many students face bullying situations that they are ill equipped to manage. E-learning has recently emerged as a potentially effective tool in teaching children social skills, in addition to academic subject matter. Quest for the Golden Rule is one of the first bullying prevention e-learning programs available, designed by the…

  13. Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task

    ERIC Educational Resources Information Center

    Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2010-01-01

    Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…

  14. Supreme Court's Patent Ruling Could Spell Trouble For Blackboard and Others

    ERIC Educational Resources Information Center

    Carnevale, Dan

    2007-01-01

    Many college officials have criticized Blackboard Inc. for its patent on its course-management system, arguing that the patent is overly broad and seems to cover the entire concept of online learning. Critics of Blackboard and other companies that have patents on learning technology are welcoming a recent Supreme Court ruling that they hope may…

  15. Strategy Selection for Cognitive Skill Acquisition Depends on Task Demands and Working Memory Capacity

    ERIC Educational Resources Information Center

    Hinze, Scott R.; Bunting, Michael F; Pellegrino, James W.

    2009-01-01

    The involvement of working memory capacity (WMC) in ruled-based cognitive skill acquisition is well-established, but the duration of its involvement and its role in learning strategy selection are less certain. Participants (N=610) learned four logic rules, their corresponding symbols, or logic gates, and the appropriate input-output combinations…

  16. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    NASA Astrophysics Data System (ADS)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  17. The effects of cumulative practice on mathematics problem solving.

    PubMed

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  18. Reimagining the learned intermediary rule for the new pharmaceutical marketplace.

    PubMed

    Hall, Timothy S

    2004-01-01

    For the past decade, the learned intermediary rule--the rule of tort law that provides that drug manufacturers may satisfy their duty to warn of a drug's dangers by warning the prescribing physician rather than the end user of the drug--has been the subject of vigorous academic debate. That debate has been largely moot, however, as the courts have proven reluctant to make significant inroads on the protection offered by the Rule to drug manufacturers. This Article proposes a new approach to the Rule. Part I discusses the history and overwhelming adoption of the Rule pursuant to the Restatement (Second) of Torts. Part II argues that changes in the health care delivery system have resulted in a legal system that introduces market distortions by effectively immunizing the pharmaceutical industry from the legal and social consequences of its own actions. Part III then sets forth a reconceptualization of the Rule, which preserves the Rule's benefits with respect to the drug industry, the health care system, and the goals of tort law, while also strengthening the protection the tort system offers to individuals injured by prescription drugs.

  19. The effects of cumulative practice on mathematics problem solving.

    PubMed Central

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132

  20. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    PubMed

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optimization of RET flow using test layout

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Sethi, Satyendra; Lucas, Kevin

    2008-11-01

    At advanced technology nodes with extremely low k1 lithography, it is very hard to achieve image fidelity requirements and process window for some layout configurations. Quite often these layouts are within simple design rule constraints for a given technology node. It is important to have these layouts included during early RET flow development. Most of RET developments are based on shrunk layout from the previous technology node, which is possibly not good enough. A better methodology in creating test layout is required for optical proximity correction (OPC) recipe and assists feature development. In this paper we demonstrate the application of programmable test layouts in RET development. Layout pattern libraries are developed and embedded in a layout tool (ICWB). Assessment gauges are generated together with patterns for quick correction accuracy assessment. Several groups of test pattern libraries have been developed based on learning from product patterns and a layout DOE approach. The interaction between layout patterns and OPC recipe has been studied. Correction of a contact layer is quite challenge because of poor convergence and low process window. We developed test pattern library with many different contact configurations. Different OPC schemes are studied on these test layouts. The worst process window patterns are pinpointed for a given illumination condition. Assist features (AF) are frequently placed according to pre-determined rules to improve lithography process window. These rules are usually derived from lithographic models and experiments. Direct validation of AF rules is required at development phase. We use the test layout approach to determine rules in order to eliminate AF printability problem.

  2. Machine Learning Techniques in Optimal Design

    NASA Technical Reports Server (NTRS)

    Cerbone, Giuseppe

    1992-01-01

    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems.

  3. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  4. Quantum probability rule: a generalization of the theorems of Gleason and Busch

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Cresser, James D.; Jeffers, John; Pegg, David T.

    2014-04-01

    Busch's theorem deriving the standard quantum probability rule can be regarded as a more general form of Gleason's theorem. Here we show that a further generalization is possible by reducing the number of quantum postulates used by Busch. We do not assume that the positive measurement outcome operators are effects or that they form a probability operator measure. We derive a more general probability rule from which the standard rule can be obtained from the normal laws of probability when there is no measurement outcome information available, without the need for further quantum postulates. Our general probability rule has prediction-retrodiction symmetry and we show how it may be applied in quantum communications and in retrodictive quantum theory.

  5. Query construction, entropy, and generalization in neural-network models

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  6. 17 CFR 240.16b-6 - Derivative securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Derivative securities. 240.16b-6 Section 240.16b-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  7. 17 CFR 240.16b-6 - Derivative securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Derivative securities. 240.16b-6 Section 240.16b-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  8. 17 CFR 240.16c-4 - Derivative securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Derivative securities. 240.16c-4 Section 240.16c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  9. 17 CFR 240.16a-4 - Derivative securities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Derivative securities. 240.16a-4 Section 240.16a-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  10. 17 CFR 240.16a-4 - Derivative securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Derivative securities. 240.16a-4 Section 240.16a-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  11. 17 CFR 240.16a-4 - Derivative securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Derivative securities. 240.16a-4 Section 240.16a-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  12. 17 CFR 240.16c-4 - Derivative securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Derivative securities. 240.16c-4 Section 240.16c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  13. 17 CFR 240.16a-4 - Derivative securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Derivative securities. 240.16a-4 Section 240.16a-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  14. 17 CFR 240.16c-4 - Derivative securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Derivative securities. 240.16c-4 Section 240.16c-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  15. 17 CFR 240.16b-6 - Derivative securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Derivative securities. 240.16b-6 Section 240.16b-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the Securities...

  16. Machine learning with quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  17. Compensatory processing during rule-based category learning in older adults.

    PubMed

    Bharani, Krishna L; Paller, Ken A; Reber, Paul J; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G

    2016-01-01

    Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex.

  18. An agent-based model of dialect evolution in killer whales.

    PubMed

    Filatova, Olga A; Miller, Patrick J O

    2015-05-21

    The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Compensatory Processing During Rule-Based Category Learning in Older Adults

    PubMed Central

    Bharani, Krishna L.; Paller, Ken A.; Reber, Paul J.; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G.

    2016-01-01

    Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex. PMID:26422522

  20. Video Self-Modeling to Teach Classroom Rules to Two Students with Asperger's

    ERIC Educational Resources Information Center

    Lang, Russell; Shogren, Karrie A.; Machalicek, Wendy; Rispoli, Mandy; O'Reilly, Mark; Baker, Sonia; Regester, April

    2009-01-01

    Classroom rules are an integral part of classroom management. Children with Asperger's may require systematic instruction to learn classroom rules, but may be placed in classrooms in which the rules are not explicitly taught. A multiple baseline design across students with probes for maintenance after the intervention ceased was used to evaluate…

  1. A Simple Computer-Aided Three-Dimensional Molecular Modeling for the Octant Rule

    ERIC Educational Resources Information Center

    Kang, Yinan; Kang, Fu-An

    2011-01-01

    The Moffitt-Woodward-Moscowitz-Klyne-Djerassi octant rule is one of the most successful empirical rules in organic chemistry. However, the lack of a simple effective modeling method for the octant rule in the past 50 years has posed constant difficulties for researchers, teachers, and students, particularly the young generations, to learn and…

  2. Rules, Technique, and Practical Knowledge: A Wittgensteinian Exploration of Vocational Learning

    ERIC Educational Resources Information Center

    Winch, Christopher

    2006-01-01

    In this essay, Christopher Winch explores the relevance of Ludwig Wittgenstein's account of rule-following to vocational education with particular reference to the often-made claim that any account of an activity in terms of rule-following implies rigidity and inflexibility. He argues that most rule-following is only successful when it involves a…

  3. Changing Profile of Teachers in the Digital Age

    ERIC Educational Resources Information Center

    Malik, Kamna

    2009-01-01

    Teacher has a new role in the digital age. Call him facilitator or mentor. He is expected to help learners learn at their own pace rather than push concepts and rules onto them. Though such roles have been around for years, e-learning is forcing them in letter and spirit and changing many a rules for the teacher and the taught. Profile and…

  4. Making Implicit Metalevel Rules of the Discourse on Function Explicit Topics of Reflection in the Classroom to Foster Student Learning

    ERIC Educational Resources Information Center

    Güçler, Beste

    2016-01-01

    Despite the existence of extensive literature on functions, fewer studies used sociocultural views to explore the development of student learning about the concept. This study uses a discursive lens to examine whether an instructional approach that specifically attends to particular metalevel rules in the mathematical discourse on functions…

  5. Information from Multiple Modalities Helps 5-Month-Olds Learn Abstract Rules

    ERIC Educational Resources Information Center

    Frank, Michael C.; Slemmer, Jonathan A.; Marcus, Gary F.; Johnson, Scott P.

    2009-01-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli ( Marcus et al., 1999 ), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract…

  6. Inorganic Arsenic Emissions from Glass Manufacturing Plants: National Emission Standards for Hazardous Air Pollutants (NESHAP) -- 40 CFR Part 61 Subpart N

    EPA Pesticide Factsheets

    Learn about the NESHAP for inorganic arsenic from glass manufacturing plants by reading the rule summary, the rule history, the code of federal regulations text, additional resources and related rules

  7. Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.

    PubMed

    Nguyen, M N

    2010-04-01

    Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.

  8. Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials.

    PubMed

    Wilmes, Katharina Anna; Schleimer, Jan-Hendrik; Schreiber, Susanne

    2017-04-01

    Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Procrastinating Behavior in Computer-Based Learning Environments to Predict Performance: A Case Study in Moodle

    PubMed Central

    Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C.

    2017-01-01

    Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs). Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages. PMID:28883801

  10. Procrastinating Behavior in Computer-Based Learning Environments to Predict Performance: A Case Study in Moodle.

    PubMed

    Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C

    2017-01-01

    Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs) . Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages.

  11. How children perceive fractals: Hierarchical self-similarity and cognitive development

    PubMed Central

    Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh

    2014-01-01

    The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884

  12. Statistical Origin of the Meyer-Neldel Rule in Amorphous Semiconductor Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Minoru

    1990-09-01

    The origin of the Meyer-Neldel (MN) rule [G0{\\propto}\\exp (AEσ)] in the dc conductance of amorphous semiconductor thin-film transistors (TFT) is investigated based on the statistical model. We analyzed the temperature derivative of the band bending energy eVs(T) at the semiconductor interface as a function of Vs. It is shown that the condition for the validity of the rule, i.e., the linearity of the derivative deVs/dkT to Vs, certainly holds as a natural consequence of the interplay between the steep tail states and the low gap density of states spectrum. An expression is derived which relates the parameter A in the rule to the gap states spectrum. Model calculations show a magnitude of A in fair agreement with the experimental observations. The effects of the Fermi level position and the magnitude of the midgap density of states are also discussed.

  13. A hierarchical structure for representing and learning fuzzy rules

    NASA Technical Reports Server (NTRS)

    Yager, Ronald R.

    1993-01-01

    Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.

  14. 76 FR 79258 - Self-Regulatory Organizations; Chicago Mercantile Exchange, Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... to amend rules related to existing cleared-only foreign exchange (``FX'') currency derivatives... SR-CME-2011-12 to establish rules to expand its cleared-only, foreign currency (``FX'') swaps offering to support the introduction of (1) twenty-six new foreign FX currency derivatives for over-the...

  15. 78 FR 9754 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Adopt a Supplementary Schedule for Derivatives and Other Off-Balance Sheet Items Pursuant to FINRA Rule... for derivatives and other off-balance sheet items pursuant to FINRA Rule 4524 (Supplemental FOCUS... reported on certain firms' balance sheets. To that end, the proposal would require all carrying or clearing...

  16. 77 FR 26062 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... transparency for derivatives markets, promoting the prompt and accurate clearance of transactions and... text of the proposed rule change is available at the CME's Web site at http://www.cmegroup.com/market... for, the Proposed Rule Change CME is registered as a derivatives clearing organization with the...

  17. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    NASA Astrophysics Data System (ADS)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  18. Proof Rules for Automated Compositional Verification through Learning

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Giannakopoulou, Dimitra; Pasareanu, Corina S.

    2003-01-01

    Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compositionality. However, this style of reasoning is often non-trivial, typically requiring human input to determine appropriate assumptions. In this paper, we present novel assume- guarantee rules in the setting of finite labelled transition systems with blocking communication. We show how these rules can be applied in an iterative and fully automated fashion within a framework based on learning.

  19. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  20. Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.

    PubMed

    Bono, Jacopo; Clopath, Claudia

    2017-09-26

    Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.

  1. A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea.

    PubMed

    Rodsutti, Julvit; Hensley, Michael; Thakkinstian, Ammarin; D'Este, Catherine; Attia, John

    2004-06-15

    To derive and validate a clinical decision rule that can help to prioritize patients who are on waiting lists for polysomnography, Prospective data collection on consecutive patients referred to a sleep center. The Newcastle Sleep Disorders Centre, University of Newcastle, NSW, Australia. Consecutive adult patients who had been scheduled for initial diagnostic polysomnography. Eight hundred and thirty-seven patients were used for derivation of the decision rule. An apnea-hypopnoea index of at least 5 was used as the cutoff point to diagnose sleep apnea. Fifteen clinical features were included in the analyses using logistic regression to construct a model from the derivation data set. Only 5 variables--age, sex, body mass index, snoring, and stopping breathing during sleep--were significantly associated with sleep apnea. A scoring scheme based on regression coefficients was developed, and the total score was trichotomized into low-, moderate-, and high-risk groups with prevalence of sleep apnea of 8%, 51%, and 82%, respectively. Color-coded tables were developed for ease of use. The clinical decision rule was validated on a separate set of 243 patients. Receiver operating characteristic analysis confirmed that the decision rule performed well, with the area under the curve being similar for both the derivation and validation sets: 0.81 and 0.79, P =.612. We conclude that this decision rule was able to accurately classify the risk of sleep apnea and will be useful for prioritizing patients with suspected sleep apnea who are on waiting lists for polysomnography.

  2. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.

    PubMed

    Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen

    2015-01-01

    Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated potentiation--in this case, from STDP in the presence of correlated pre- and post-synaptic activity--naturally leads to an alignment of parallel synapses.

  3. On the applicability of STDP-based learning mechanisms to spiking neuron network models

    NASA Astrophysics Data System (ADS)

    Sboev, A.; Vlasov, D.; Serenko, A.; Rybka, R.; Moloshnikov, I.

    2016-11-01

    The ways to creating practically effective method for spiking neuron networks learning, that would be appropriate for implementing in neuromorphic hardware and at the same time based on the biologically plausible plasticity rules, namely, on STDP, are discussed. The influence of the amount of correlation between input and output spike trains on the learnability by different STDP rules is evaluated. A usability of alternative combined learning schemes, involving artificial and spiking neuron models is demonstrated on the iris benchmark task and on the practical task of gender recognition.

  4. Learning stage-dependent effect of M1 disruption on value-based motor decisions.

    PubMed

    Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie

    2017-11-15

    The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  6. DEEP: a general computational framework for predicting enhancers

    PubMed Central

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/. PMID:25378307

  7. A comparison of scoring weights for the EuroQol derived from patients and the general public.

    PubMed

    Polsky, D; Willke, R J; Scott, K; Schulman, K A; Glick, H A

    2001-01-01

    General health state classification systems, such as the EuroQol instrument, have been developed to improve the systematic measurement and comparability of health state preferences. In this paper we generate valuations for EuroQol health states using responses to this instrument's visual analogue scale made by patients enrolled in a randomized clinical trial evaluating tirilazad mesylate, a new drug used to treat subarachnoid haemorrhage. We then compare these valuations derived from patients with published valuations derived from responses made by a sample from the general public. The data were derived from two sources: (1) responses to the EuroQol instrument from 649 patients 3 months after enrollment in the clinical trial, and (2) from a published study reporting a scoring rule for the EuroQol instrument that was based upon responses made by the general public. We used a linear regression model to develop an additive scoring rule. This rule enables direct valuation of all 243 EuroQol health states using patients' scores for their own health states elicited using a visual analogue scale. We then compared predicted scores generated using our scoring rule with predicted scores derived from a sample from the general public. The predicted scores derived using the additive scoring rules met convergent validity criteria and explained a substantial amount of the variation in visual analogue scale scores (R(2)=0.57). In the pairwise comparison of the predicted scores derived from the study sample with those derived from the general public, we found that the former set of scores were higher for 223 of the 243 states. Despite the low level of correspondence in the pairwise comparison, the overall correlation between the two sets of scores was 87%. The model presented in this paper demonstrated that scoring weights for the EuroQol instrument can be derived directly from patient responses from a clinical trial and that these weights can explain a substantial amount of variation in health valuations. Scoring weights based on patient responses are significantly higher than those derived from the general public. Further research is required to understand the source of these differences. Copyright 2001 John Wiley & Sons, Ltd.

  8. A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.

    PubMed

    Jankovic, M V

    2003-01-01

    A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.

  9. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  10. Finding Influential Users in Social Media Using Association Rule Learning

    NASA Astrophysics Data System (ADS)

    Erlandsson, Fredrik; Bródka, Piotr; Borg, Anton; Johnson, Henric

    2016-04-01

    Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

  11. A cluster version of the GGT sum rule

    NASA Astrophysics Data System (ADS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2004-03-01

    We discuss the derivation of a "cluster sum rule" from the Gellmann-Goldberger-Thirring (GGT) sum rule as an alternative to the Thomas-Reiche-Kuhn (TRK) sum rule, which was used as the basis up to now. We compare differences in the assumptions and approximations. Some applications of the sum rule for halo nuclei, as well as, nuclei with a pronounced cluster structure are discussed.

  12. Prediction of High-Grade Vesicoureteral Reflux after Pediatric Urinary Tract Infection: External Validation Study of Procalcitonin-Based Decision Rule

    PubMed Central

    Leroy, Sandrine; Bouissou, François; Fernandez-Lopez, Anna; Gurgoze, Metin K.; Karavanaki, Kyriaki; Ulinski, Tim; Bressan, Silvia; Vaos, Geogios; Leblond, Pierre; Coulais, Yvon; Cubells, Carlos Luaces; Aygun, A. Denizmen; Stefanidis, Constantinos J.; Bensman, Albert; DaDalt, Liviana; Gardikis, Stefanos; Bigot, Sandra; Gendrel, Dominique; Bréart, Gérard; Chalumeau, Martin

    2011-01-01

    Background Predicting vesico-ureteral reflux (VUR) ≥3 at the time of the first urinary tract infection (UTI) would make it possible to restrict cystography to high-risk children. We previously derived the following clinical decision rule for that purpose: cystography should be performed in cases with ureteral dilation and a serum procalcitonin level ≥0.17 ng/mL, or without ureteral dilatation when the serum procalcitonin level ≥0.63 ng/mL. The rule yielded a 86% sensitivity with a 46% specificity. We aimed to test its reproducibility. Study Design A secondary analysis of prospective series of children with a first UTI. The rule was applied, and predictive ability was calculated. Results The study included 413 patients (157 boys, VUR ≥3 in 11%) from eight centers in five countries. The rule offered a 46% specificity (95% CI, 41–52), not different from the one in the derivation study. However, the sensitivity significantly decreased to 64% (95%CI, 50–76), leading to a difference of 20% (95%CI, 17–36). In all, 16 (34%) patients among the 47 with VUR ≥3 were misdiagnosed by the rule. This lack of reproducibility might result primarily from a difference between derivation and validation populations regarding inflammatory parameters (CRP, PCT); the validation set samples may have been collected earlier than for the derivation one. Conclusions The rule built to predict VUR ≥3 had a stable specificity (ie. 46%), but a decreased sensitivity (ie. 64%) because of the time variability of PCT measurement. Some refinement may be warranted. PMID:22216314

  13. Exploring the limits of learning: Segregation of information integration and response selection is required for learning a serial reversal task

    PubMed Central

    Zanutto, B. Silvano

    2017-01-01

    Animals are proposed to learn the latent rules governing their environment in order to maximize their chances of survival. However, rules may change without notice, forcing animals to keep a memory of which one is currently at work. Rule switching can lead to situations in which the same stimulus/response pairing is positively and negatively rewarded in the long run, depending on variables that are not accessible to the animal. This fact raises questions on how neural systems are capable of reinforcement learning in environments where the reinforcement is inconsistent. Here we address this issue by asking about which aspects of connectivity, neural excitability and synaptic plasticity are key for a very general, stochastic spiking neural network model to solve a task in which rules change without being cued, taking the serial reversal task (SRT) as paradigm. Contrary to what could be expected, we found strong limitations for biologically plausible networks to solve the SRT. Especially, we proved that no network of neurons can learn a SRT if it is a single neural population that integrates stimuli information and at the same time is responsible of choosing the behavioural response. This limitation is independent of the number of neurons, neuronal dynamics or plasticity rules, and arises from the fact that plasticity is locally computed at each synapse, and that synaptic changes and neuronal activity are mutually dependent processes. We propose and characterize a spiking neural network model that solves the SRT, which relies on separating the functions of stimuli integration and response selection. The model suggests that experimental efforts to understand neural function should focus on the characterization of neural circuits according to their connectivity, neural dynamics, and the degree of modulation of synaptic plasticity with reward. PMID:29077735

  14. Discrimination Learning, Reversal, and Set-Shifting in First-Episode Schizophrenia: Stability Over Six Years and Specific Associations with Medication Type and Disorganization Syndrome

    PubMed Central

    Leeson, Verity C.; Robbins, Trevor W.; Matheson, Elizabeth; Hutton, Samuel B.; Ron, María A.; Barnes, Thomas R.E.; Joyce, Eileen M.

    2009-01-01

    Background The intradimensional/extradimensional (IDED) task assesses different forms of learning from feedback. Limited evidence suggests that attentional set-shifting deteriorates over time in schizophrenia. We tested this hypothesis and examined the specificity of learning impairments identified by this task. Method Two hundred sixty-two first-episode patients and 76 healthy control subjects, matched for age and premorbid IQ, were tested; 104 patients and 25 control subjects were reassessed 1 and 3 years later, and 31 patients were reassessed additionally 6 years later. Results Patients showed impaired set-shifting that correlated with current IQ and working memory, but there were no impairments when subgroups were matched on current IQ. In contrast, patients showed marked impairments in rule reversal learning that survived correction for IQ, were present in the context of intact rule abstraction, and correlated with disorganization symptoms. Patients prescribed second-generation antipsychotics were worse on set-shifting compared with first-generation, a finding not explained by demographic data, illness characteristics, or IQ. Patients and control subjects showed stable IDED performance over the first 6 years of illness, although set-shifting was inconsistent over the first year. Those with residual negative symptoms were more likely to fail the set-shifting stage at follow-up. Conclusions First-episode schizophrenia patients can learn and generalize rules but are inflexible when rules change, reflecting reduced responsiveness to negative feedback and difficulty in switching attention. Rule-reversal is a promising target for translational studies, because it is specific, clinically relevant, and might reflect orbitofrontal dysfunction. Set-shifting is related to poor function more generally but might be sensitive to medication effects and valuable for clinical trials. PMID:19576575

  15. Mario Becomes Cognitive.

    PubMed

    Schrodt, Fabian; Kneissler, Jan; Ehrenfeld, Stephan; Butz, Martin V

    2017-04-01

    In line with Allen Newell's challenge to develop complete cognitive architectures, and motivated by a recent proposal for a unifying subsymbolic computational theory of cognition, we introduce the cognitive control architecture SEMLINCS. SEMLINCS models the development of an embodied cognitive agent that learns discrete production rule-like structures from its own, autonomously gathered, continuous sensorimotor experiences. Moreover, the agent uses the developing knowledge to plan and control environmental interactions in a versatile, goal-directed, and self-motivated manner. Thus, in contrast to several well-known symbolic cognitive architectures, SEMLINCS is not provided with production rules and the involved symbols, but it learns them. In this paper, the actual implementation of SEMLINCS causes learning and self-motivated, autonomous behavioral control of the game figure Mario in a clone of the computer game Super Mario Bros. Our evaluations highlight the successful development of behavioral versatility as well as the learning of suitable production rules and the involved symbols from sensorimotor experiences. Moreover, knowledge- and motivation-dependent individualizations of the agents' behavioral tendencies are shown. Finally, interaction sequences can be planned on the sensorimotor-grounded production rule level. Current limitations directly point toward the need for several further enhancements, which may be integrated into SEMLINCS in the near future. Overall, SEMLINCS may be viewed as an architecture that allows the functional and computational modeling of embodied cognitive development, whereby the current main focus lies on the development of production rules from sensorimotor experiences. Copyright © 2017 Cognitive Science Society, Inc.

  16. A forecast-based STDP rule suitable for neuromorphic implementation.

    PubMed

    Davies, S; Galluppi, F; Rast, A D; Furber, S B

    2012-08-01

    Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 78 FR 29187 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... disseminated as required (Rule 4120(a)(9)); a halt in a Derivative Securities Product (as defined in Rule 4120... trading halt in a Derivative Security Product traded pursuant to unlisted trading privileges for which a... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69563; File No. SR-NASDAQ-2013-073] Self...

  18. 17 CFR 240.36a1-2 - Exemption from SIPA for OTC derivatives dealers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Exemption from SIPA for OTC derivatives dealers. 240.36a1-2 Section 240.36a1-2 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations...

  19. Multimedia Football Viewing: Embedded Rules, Practice, and Video Context in IVD Procedural Learning.

    ERIC Educational Resources Information Center

    Kim, Eunsoon; Young, Michael F.

    This study investigated the effects of interactive video (IVD) instruction with embedded rules (production system rules) and practice with feedback on learners' academic achievement and perceived self efficacy in the domain of procedural knowledge for watching professional football. Subjects were 71 female volunteers from undergraduate education…

  20. Learning the Rules: The Anatomy of Children's Relationships.

    ERIC Educational Resources Information Center

    Bigelow, Brian J.; Tesson, Geoffrey; Lewko, John H.

    This book explores the process and characteristics of children's personal and social relationships. To determine what relationships mean to children and how children manage those relationships, a recursive interviewing technique was used with nearly a thousand children to detail children's social rules. Those rules cover a range of social issues,…

  1. Women with Intellectual Disabilities Talk about Their Perceptions of Sex

    ERIC Educational Resources Information Center

    Bernert, D. J.; Ogletree, R. J.

    2013-01-01

    Background: Sexuality is learned through sexual socialisation that women with intellectual disabilities (IDs) understand and express. Rules of sexual engagement for these women can include barriers for their socialisation, intimate partner selection, and sexual expression. These rules can become more limiting when coupled with rules of femininity…

  2. Learning Non-Local Dependencies

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  3. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  4. Synchrony detection and amplification by silicon neurons with STDP synapses.

    PubMed

    Bofill-i-petit, Adria; Murray, Alan F

    2004-09-01

    Spike-timing dependent synaptic plasticity (STDP) is a form of plasticity driven by precise spike-timing differences between presynaptic and postsynaptic spikes. Thus, the learning rules underlying STDP are suitable for learning neuronal temporal phenomena such as spike-timing synchrony. It is well known that weight-independent STDP creates unstable learning processes resulting in balanced bimodal weight distributions. In this paper, we present a neuromorphic analog very large scale integration (VLSI) circuit that contains a feedforward network of silicon neurons with STDP synapses. The learning rule implemented can be tuned to have a moderate level of weight dependence. This helps stabilise the learning process and still generates binary weight distributions. From on-chip learning experiments we show that the chip can detect and amplify hierarchical spike-timing synchrony structures embedded in noisy spike trains. The weight distributions of the network emerging from learning are bimodal.

  5. Competitive STDP Learning of Overlapping Spatial Patterns.

    PubMed

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  6. Spiking neuron network Helmholtz machine.

    PubMed

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  7. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  8. Mining Formative Evaluation Rules Using Web-Based Learning Portfolios for Web-Based Learning Systems

    ERIC Educational Resources Information Center

    Chen, Chih-Ming; Hong, Chin-Ming; Chen, Shyuan-Yi; Liu, Chao-Yu

    2006-01-01

    Learning performance assessment aims to evaluate what knowledge learners have acquired from teaching activities. Objective technical measures of learning performance are difficult to develop, but are extremely important for both teachers and learners. Learning performance assessment using learning portfolios or web server log data is becoming an…

  9. Service Learning in the Middle Grades: Learning by Doing and Caring

    ERIC Educational Resources Information Center

    Farber, Katy; Bishop, Penny

    2018-01-01

    Although service learning has been documented as a promising pedagogy for middle grades learners, it remains the exception rather than the rule in many middle schools. This qualitative study examined fifth grade students' experience of a service-learning class. Using the tenets of service learning and experiential learning theory as the…

  10. The Implementation of "The n-term" Formula to Improve Student Ability in Determining the Rules of a Numeric Sequence

    ERIC Educational Resources Information Center

    In'am, Akhsanul; Hajar, Siti

    2013-01-01

    A good-quality teacher may determines a good-quality learning, thus good-quality students will be the results. In order to have a good-quality learning, a lot of strategies and methods can be adopted. The objective of this research is to improve students' ability in determining the rules of a numeric sequence and analysing the effectiveness of the…

  11. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  12. Evaluation of rules to distinguish unique female grizzly bears with cubs in Yellowstone

    USGS Publications Warehouse

    Schwartz, C.C.; Haroldson, M.A.; Cherry, S.; Keating, K.A.

    2008-01-01

    The United States Fish and Wildlife Service uses counts of unduplicated female grizzly bears (Ursus arctos) with cubs-of-the-year to establish limits of sustainable mortality in the Greater Yellowstone Ecosystem, USA. Sightings are dustered into observations of unique bears based on an empirically derived rule set. The method has never been tested or verified. To evaluate the rule set, we used data from radiocollared females obtained during 1975-2004 to simulate populations under varying densities, distributions, and sighting frequencies. We tested individual rules and rule-set performance, using custom software to apply the rule-set and duster sightings. Results indicated most rules were violated to some degree, and rule-based dustering consistently underestimated the minimum number of females and total population size derived from a nonparametric estimator (Chao2). We conclude that the current rule set returns conservative estimates, but with minor improvements, counts of unduplicated females-with-cubs can serve as a reasonable index of population size useful for establishing annual mortality limits. For the Yellowstone population, the index is more practical and cost-effective than capture-mark-recapture using either DNA hair snagging or aerial surveys with radiomarked bears. The method has useful application in other ecosystems, but we recommend rules used to distinguish unique females be adapted to local conditions and tested.

  13. Pattern Storage, Bifurcations, and Groupwise Correlation Structure of an Exactly Solvable Asymmetric Neural Network Model.

    PubMed

    Fasoli, Diego; Cattani, Anna; Panzeri, Stefano

    2018-05-01

    Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.

  14. Empirical Derivation and Validation of a Clinical Case Definition for Neuropsychological Impairment in Children and Adolescents.

    PubMed

    Beauchamp, Miriam H; Brooks, Brian L; Barrowman, Nick; Aglipay, Mary; Keightley, Michelle; Anderson, Peter; Yeates, Keith O; Osmond, Martin H; Zemek, Roger

    2015-09-01

    Neuropsychological assessment aims to identify individual performance profiles in multiple domains of cognitive functioning; however, substantial variation exists in how deficits are defined and what cutoffs are used, and there is no universally accepted definition of neuropsychological impairment. The aim of this study was to derive and validate a clinical case definition rule to identify neuropsychological impairment in children and adolescents. An existing normative pediatric sample was used to calculate base rates of abnormal functioning on eight measures covering six domains of neuropsychological functioning. The dataset was analyzed by varying the range of cutoff levels [1, 1.5, and 2 standard deviations (SDs) below the mean] and number of indicators of impairment. The derived rule was evaluated by bootstrap, internal and external clinical validation (orthopedic and traumatic brain injury). Our neuropsychological impairment (NPI) rule was defined as "two or more test scores that fall 1.5 SDs below the mean." The rule identifies 5.1% of the total sample as impaired in the assessment battery and consistently targets between 3 and 7% of the population as impaired even when age, domains, and number of tests are varied. The NPI rate increases in groups known to exhibit cognitive deficits. The NPI rule provides a psychometrically derived method for interpreting performance across multiple tests and may be used in children 6-18 years. The rule may be useful to clinicians and scientists who wish to establish whether specific individuals or clinical populations present within expected norms versus impaired function across a battery of neuropsychological tests.

  15. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both modalities, with students who built models not incorporating slippage explanations in responses. Study 3 compares these modalities with a control using traditional activities. Pre and posttests reveal that the two modalities manifested greater facility with accessing and assembling rules than the control. The dissertation offers implications for the design of learning environments for evolutionary change, design of the two modalities based on their strengths and weaknesses, and teacher training for the same.

  16. An Analysis Pipeline with Statistical and Visualization-Guided Knowledge Discovery for Michigan-Style Learning Classifier Systems

    PubMed Central

    Urbanowicz, Ryan J.; Granizo-Mackenzie, Ambrose; Moore, Jason H.

    2014-01-01

    Michigan-style learning classifier systems (M-LCSs) represent an adaptive and powerful class of evolutionary algorithms which distribute the learned solution over a sizable population of rules. However their application to complex real world data mining problems, such as genetic association studies, has been limited. Traditional knowledge discovery strategies for M-LCS rule populations involve sorting and manual rule inspection. While this approach may be sufficient for simpler problems, the confounding influence of noise and the need to discriminate between predictive and non-predictive attributes calls for additional strategies. Additionally, tests of significance must be adapted to M-LCS analyses in order to make them a viable option within fields that require such analyses to assess confidence. In this work we introduce an M-LCS analysis pipeline that combines uniquely applied visualizations with objective statistical evaluation for the identification of predictive attributes, and reliable rule generalizations in noisy single-step data mining problems. This work considers an alternative paradigm for knowledge discovery in M-LCSs, shifting the focus from individual rules to a global, population-wide perspective. We demonstrate the efficacy of this pipeline applied to the identification of epistasis (i.e., attribute interaction) and heterogeneity in noisy simulated genetic association data. PMID:25431544

  17. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.

  18. Inductive learning of thyroid functional states using the ID3 algorithm. The effect of poor examples on the learning result.

    PubMed

    Forsström, J

    1992-01-01

    The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.

  19. Phonological bases for L2 morphological learning.

    PubMed

    Hu, Chieh-Fang

    2010-08-01

    Two experiments examined the hypothesis that L1 phonological awareness plays a role in children's ability to extract morphological patterns of English as L2 from the auditory input. In Experiment 1, 84 Chinese-speaking third graders were tested on whether they extracted the alternation pattern between the base and the derived form (e.g., inflate - inflation) from multiple exposures. Experiment 2 further assessed children's ability to use morphological cues for syntactic categorization through exposures to novel morphologically varying forms (e.g., lutate vs. lutant) presented in the corresponding sentential positions (noun vs. verb). The third-grade EFL learners revealed emergent sensitivity to the morphological cues in the input but failed in fully processing intraword variations. The learners with poorer L1 PA were likely to encounter difficulties in identifying morphological alternation rules and in discovering the syntactic properties of L2 morphology. In addition to L1 PA, L2 vocabulary knowledge also contributed significantly to L2 morphological learning.

  20. Distributed synaptic weights in a LIF neural network and learning rules

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Salort, Delphine; Wainrib, Gilles

    2017-09-01

    Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connectivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorize a learned signal.

  1. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  2. New QCD sum rules based on canonical commutation relations

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2012-04-01

    New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.

  3. Mathematics and Structural Learning. Final Report.

    ERIC Educational Resources Information Center

    Scandura, Joseph M.

    This report contains four papers describing research based on the view of mathematical knowledge as a hierarchy of "rules." The first paper: "The Role of Rules in Behavior" was abstracted in ED 040 036 (October 1970). The second paper: "A Theory of Mathematical Knowledge" defends the thesis that rules are the basic building blocks of mathematical…

  4. 31 CFR 210.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... had a reasonable opportunity to act on such information or that the RDFI would have learned of the...) Applicable ACH Rules means the ACH Rules with an effective date on or before September 18, 2009, as published... “Effective Entry Date” in Appendix Two); (6) ACH Rule 2.12.2.3 (requiring that originating depository...

  5. Debate as Encapsulated Conflict: Ruled Controversy as an Approach to Learning Conflict Management Skills.

    ERIC Educational Resources Information Center

    Lee, David G.; Hensley, Carl Wayne

    Debate can provide a format for the development of communication skills to aid students in managing conflicts, because an understanding of rule-governed communication in conflict situations is invaluable in constructive conflict management. Since in debate procedural rules restrict discussion primarily to substantive and procedural topics, debate…

  6. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  7. Effective Instructional Practice

    ERIC Educational Resources Information Center

    Paulsel, Michelle L.

    2004-01-01

    Prospective teachers often take a course in classroom management to learn how to create an environment conducive to student learning. Typically, prospective teachers learn how to establish routines, develop rules to maintain classroom order, and arrange the classroom to facilitate learning. Many teachers graduate from college, however, with only…

  8. Do Training Institutions Learn from Experience?

    ERIC Educational Resources Information Center

    Castro, Claudio de Moura

    2011-01-01

    This essay is concerned with organisational learning and, in particular, policy learning. Sometimes, organisations learn; sometimes they do not. Sometimes they use their acquired knowledge, but this is, not always the case. Inside organisations, particular values, rules and incentive systems are developed. In addition, organisations need to…

  9. Adiabatic quantum optimization for associative memory recall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seddiqi, Hadayat; Humble, Travis S.

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  10. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boukharouba, Abdelhak; Bennia, Abdelhak

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descentmore » learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.« less

  11. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  12. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2003-08-01

    This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.

  13. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  14. Stationary Combustion Turbines: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the NESHAP for stationary combustion turbines by reading the rule history, the rule summary, additional resources, docket folder documents, the economic impact analysis, fact sheet and more

  15. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.

    PubMed

    Cyr, André; Boukadoum, Mounir

    2013-03-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.

  16. Cerebellar tDCS Does Not Enhance Performance in an Implicit Categorization Learning Task.

    PubMed

    Verhage, Marie C; Avila, Eric O; Frens, Maarten A; Donchin, Opher; van der Geest, Jos N

    2017-01-01

    Background: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates learning, but the few studies investigating cerebellar tDCS, however, are inconsistent. Objective: We investigate the effect of cerebellar tDCS on performance of an implicit categorization learning task. Methods: Forty participants performed a computerized version of an implicit categorization learning task where squares had to be sorted into two categories, according to an unknown but fixed rule that integrated both the size and luminance of the square. Participants did one round of categorization to familiarize themselves with the task and to provide a baseline of performance. After that, 20 participants received anodal tDCS (20 min, 1.5 mA) over the right cerebellum, and 19 participants received sham stimulation and simultaneously started a second session of the categorization task using a new rule. Results: As expected, subjects performed better in the second session than in the first, baseline session, showing increased accuracy scores and reduced reaction times. Over trials, participants learned the categorization rule, improving their accuracy and reaction times. However, we observed no effect of anodal tDCS stimulation on overall performance or on learning, compared to sham stimulation. Conclusion: These results suggest that cerebellar tDCS does not modulate performance and learning on an implicit categorization task.

  17. The Meyer-Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Minoru

    1988-11-01

    The statistical model is used to study the origin of the Meyer-Neldel (MN) rule [σ0∝exp(AEσ)] in a tetrahedral amorphous system. It is shown that a deep minimum in the gap density of states spectrum can lead to the linearity of the Fermi energy F(T) to the derivative (dF/dkT), as required from the rule. An expression is derived which relates the constant A in the rule to the gap density of states spectrum. The dispersion ranges of σ0 and Eσ are found to be related with the constant A. Model calculations show a magnitude of A and a wide dispersion of σ0 and Eσ in fair agreement with the experimental observations. A discussion is given to what extent the MN rule is dependent on the gap density of states spectrum.

  18. Aspects of QCD current algebra on a null plane

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Hobbs, T. J.

    2016-09-01

    Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.

  19. Simplification rules for birdtrack operators

    NASA Astrophysics Data System (ADS)

    Alcock-Zeilinger, J.; Weigert, H.

    2017-05-01

    This paper derives a set of easy-to-use tools designed to simplify calculations with birdtrack operators comprised of symmetrizers and antisymmetrizers. In particular, we present cancellation rules allowing one to shorten the birdtrack expressions of operators and propagation rules identifying the circumstances under which it is possible to propagate symmetrizers past antisymmetrizers and vice versa. We exhibit the power of these simplification rules by means of a short example in which we apply the tools derived in this paper on a typical operator that can be encountered in the representation theory of 𝖲𝖴 (N ) over the product space V⊗m. These rules form the basis for the construction of compact Hermitian Young projection operators and their transition operators addressed in companion papers [J. Alcock-Zeilinger and H. Weigert, "Compact Hermitian Young projection operators," e-print arXiv:1610.10088 [math-ph] and J. Alcock-Zeilinger and H. Weigert, "Transition operators," e-print arXiv:1610.08802 [math-ph

  20. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    PubMed

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  1. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.

    PubMed

    Seiter, J; Derungs, A; Schuster-Amft, C; Amft, O; Tröster, G

    2015-01-01

    Monitoring natural behavior and activity routines of hemiparetic rehabilitation patients across the day can provide valuable progress information for therapists and patients and contribute to an optimized rehabilitation process. In particular, continuous patient monitoring could add type, frequency and duration of daily life activity routines and hence complement standard clinical scores that are assessed for particular tasks only. Machine learning methods have been applied to infer activity routines from sensor data. However, supervised methods require activity annotations to build recognition models and thus require extensive patient supervision. Discovery methods, including topic models could provide patient routine information and deal with variability in activity and movement performance across patients. Topic models have been used to discover characteristic activity routine patterns of healthy individuals using activity primitives recognized from supervised sensor data. Yet, the applicability of topic models for hemiparetic rehabilitation patients and techniques to derive activity primitives without supervision needs to be addressed. We investigate, 1) whether a topic model-based activity routine discovery framework can infer activity routines of rehabilitation patients from wearable motion sensor data. 2) We compare the performance of our topic model-based activity routine discovery using rule-based and clustering-based activity vocabulary. We analyze the activity routine discovery in a dataset recorded with 11 hemiparetic rehabilitation patients during up to ten full recording days per individual in an ambulatory daycare rehabilitation center using wearable motion sensors attached to both wrists and the non-affected thigh. We introduce and compare rule-based and clustering-based activity vocabulary to process statistical and frequency acceleration features to activity words. Activity words were used for activity routine pattern discovery using topic models based on Latent Dirichlet Allocation. Discovered activity routine patterns were then mapped to six categorized activity routines. Using the rule-based approach, activity routines could be discovered with an average accuracy of 76% across all patients. The rule-based approach outperformed clustering by 10% and showed less confusions for predicted activity routines. Topic models are suitable to discover daily life activity routines in hemiparetic rehabilitation patients without trained classifiers and activity annotations. Activity routines show characteristic patterns regarding activity primitives including body and extremity postures and movement. A patient-independent rule set can be derived. Including expert knowledge supports successful activity routine discovery over completely data-driven clustering.

  2. Derivation and Validation of a Clostridium difficile Infection Recurrence Prediction Rule in a National Cohort of Veterans.

    PubMed

    Reveles, Kelly R; Mortensen, Eric M; Koeller, Jim M; Lawson, Kenneth A; Pugh, Mary Jo V; Rumbellow, Sarah A; Argamany, Jacqueline R; Frei, Christopher R

    2018-03-01

    Prior studies have identified risk factors for recurrent Clostridium difficile infection (CDI), but few studies have integrated these factors into a clinical prediction rule that can aid clinical decision-making. The objectives of this study were to derive and validate a CDI recurrence prediction rule to identify patients at risk for first recurrence in a national cohort of veterans. Retrospective cohort study. Veterans Affairs Informatics and Computing Infrastructure. A total of 22,615 adult Veterans Health Administration beneficiaries with first-episode CDI between October 1, 2002, and September 30, 2014; of these patients, 7538 were assigned to the derivation cohort and 15,077 to the validation cohort. A 60-day CDI recurrence prediction rule was created in a derivation cohort using backward logistic regression. Those variables significant at p<0.01 were assigned an integer score proportional to the regression coefficient. The model was then validated in the derivation cohort and a separate validation cohort. Patients were then split into three risk categories, and rates of recurrence were described for each category. The CDI recurrence prediction rule included the following predictor variables with their respective point values: prior third- and fourth-generation cephalosporins (1 point), prior proton pump inhibitors (1 point), prior antidiarrheals (1 point), nonsevere CDI (2 points), and community-onset CDI (3 points). In the derivation cohort, the 60-day CDI recurrence risk for each score ranged from 7.5% (0 points) to 57.9% (8 points). The risk score was strongly correlated with recurrence (R 2  = 0.94). Patients were split into low-risk (0-2 points), medium-risk (3-5 points), and high-risk (6-8 points) classes and had the following recurrence rates: 8.9%, 20.2%, and 35.0%, respectively. Findings were similar in the validation cohort. Several CDI and patient-specific factors were independently associated with 60-day CDI recurrence risk. When integrated into a clinical prediction rule, higher risk scores and risk classes were strongly correlated with CDI recurrence. This clinical prediction rule can be used by providers to identify patients at high risk for CDI recurrence and help guide preventive strategy decisions, while accounting for clinical judgment. © 2018 Pharmacotherapy Publications, Inc.

  3. Rapid Learning of Syllable Classes from a Perceptually Continuous Speech Stream

    ERIC Educational Resources Information Center

    Endress, Ansgar D.; Bonatti, Luca L.

    2007-01-01

    To learn a language, speakers must learn its words and rules from fluent speech; in particular, they must learn dependencies among linguistic classes. We show that when familiarized with a short artificial, subliminally bracketed stream, participants can learn relations about the structure of its words, which specify the classes of syllables…

  4. Learning multiple rules simultaneously: Affixes are more salient than reduplications.

    PubMed

    Gervain, Judit; Endress, Ansgar D

    2017-04-01

    Language learners encounter numerous opportunities to learn regularities, but need to decide which of these regularities to learn, because some are not productive in their native language. Here, we present an account of rule learning based on perceptual and memory primitives (Endress, Dehaene-Lambertz, & Mehler, Cognition, 105(3), 577-614, 2007; Endress, Nespor, & Mehler, Trends in Cognitive Sciences, 13(8), 348-353, 2009), suggesting that learners preferentially learn regularities that are more salient to them, and that the pattern of salience reflects the frequency of language features across languages. We contrast this view with previous artificial grammar learning research, which suggests that infants "choose" the regularities they learn based on rational, Bayesian criteria (Frank & Tenenbaum, Cognition, 120(3), 360-371, 2013; Gerken, Cognition, 98(3)B67-B74, 2006, Cognition, 115(2), 362-366, 2010). In our experiments, adult participants listened to syllable strings starting with a syllable reduplication and always ending with the same "affix" syllable, or to syllable strings starting with this "affix" syllable and ending with the "reduplication". Both affixation and reduplication are frequently used for morphological marking across languages. We find three crucial results. First, participants learned both regularities simultaneously. Second, affixation regularities seemed easier to learn than reduplication regularities. Third, regularities in sequence offsets were easier to learn than regularities at sequence onsets. We show that these results are inconsistent with previous Bayesian rule learning models, but mesh well with the perceptual or memory primitives view. Further, we show that the pattern of salience revealed in our experiments reflects the distribution of regularities across languages. Ease of acquisition might thus be one determinant of the frequency of regularities across languages.

  5. 17 CFR 41.24 - Rule amendments to security futures products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... rule amendment relating to a security futures product if the registered derivatives transaction... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Rule amendments to security futures products. 41.24 Section 41.24 Commodity and Securities Exchanges COMMODITY FUTURES TRADING...

  6. A Bayesian model averaging method for the derivation of reservoir operating rules

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai

    2015-09-01

    Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.

  7. Theories of Artificial Grammar Learning

    ERIC Educational Resources Information Center

    Pothos, Emmanuel M.

    2007-01-01

    Artificial grammar learning (AGL) is one of the most commonly used paradigms for the study of implicit learning and the contrast between rules, similarity, and associative learning. Despite five decades of extensive research, however, a satisfactory theoretical consensus has not been forthcoming. Theoretical accounts of AGL are reviewed, together…

  8. Automated concept-level information extraction to reduce the need for custom software and rules development.

    PubMed

    D'Avolio, Leonard W; Nguyen, Thien M; Goryachev, Sergey; Fiore, Louis D

    2011-01-01

    Despite at least 40 years of promising empirical performance, very few clinical natural language processing (NLP) or information extraction systems currently contribute to medical science or care. The authors address this gap by reducing the need for custom software and rules development with a graphical user interface-driven, highly generalizable approach to concept-level retrieval. A 'learn by example' approach combines features derived from open-source NLP pipelines with open-source machine learning classifiers to automatically and iteratively evaluate top-performing configurations. The Fourth i2b2/VA Shared Task Challenge's concept extraction task provided the data sets and metrics used to evaluate performance. Top F-measure scores for each of the tasks were medical problems (0.83), treatments (0.82), and tests (0.83). Recall lagged precision in all experiments. Precision was near or above 0.90 in all tasks. Discussion With no customization for the tasks and less than 5 min of end-user time to configure and launch each experiment, the average F-measure was 0.83, one point behind the mean F-measure of the 22 entrants in the competition. Strong precision scores indicate the potential of applying the approach for more specific clinical information extraction tasks. There was not one best configuration, supporting an iterative approach to model creation. Acceptable levels of performance can be achieved using fully automated and generalizable approaches to concept-level information extraction. The described implementation and related documentation is available for download.

  9. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  10. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  11. 17 CFR 240.15c3-4 - Internal risk management control systems for OTC derivatives dealers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Internal risk management control systems for OTC derivatives dealers. 240.15c3-4 Section 240.15c3-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the...

  12. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  13. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

    PubMed

    Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam

    2016-01-01

    The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.

  14. Coal Preparation and Processing Plants New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn about the NSPS regulation for coal preparation and processing plants by reading the rule summary, the rule history, the code of federal regulation text, the federal register, and additional docket documents

  15. Large Municipal Waste Combustors (LMWC): New Source Performance Standards (NSPS) and Emissions Guidelines

    EPA Pesticide Factsheets

    Learn about the NSPS, emission guidelines and compliance times for large municipal waste combustors (MWC) by reading the rule summary, rule history and the federal register citations and supporting documents

  16. Clay Ceramics Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the NESHAP regulation for clay ceramic manufacturing by reading the rule summary, rule history, code of federal regulations, and the additional resources like fact sheets and background information documents

  17. Playing by the Rules: Instruction and Acculturation in Role-Playing Games

    ERIC Educational Resources Information Center

    Neuenschwander, Bryn

    2008-01-01

    The open-ended, informal, and socially negotiated nature of role-playing games creates a distinct learning challenge for newcomers to the hobby. The explicit rules of the game provide only an incomplete framework for structuring the actions of players, and the expectations and mores of a given group will add other, unspoken rules that discourage…

  18. What's Special about Human Imitation? A Comparison with Enculturated Apes.

    PubMed

    Subiaul, Francys

    2016-07-07

    What, if anything, is special about human imitation? An evaluation of enculturated apes' imitation skills, a "best case scenario" of non-human apes' imitation performance, reveals important similarities and differences between this special population of apes and human children. Candidates for shared imitation mechanisms include the ability to imitate various familiar transitive responses and object-object actions that involve familiar tools. Candidates for uniquely derived imitation mechanisms include: imitating novel transitive actions and novel tool-using responses as well as imitating opaque or intransitive gestures, regardless of familiarity. While the evidence demonstrates that enculturated apes outperform non-enculturated apes and perform more like human children, all apes, regardless of rearing history, generally excel at imitating familiar, over-rehearsed responses and are poor, relative to human children, at imitating novel, opaque or intransitive responses. Given the similarities between the sensory and motor systems of preschool age human children and non-human apes, it is unlikely that differences in sensory input and/or motor-output alone explain the observed discontinuities in imitation performance. The special rearing history of enculturated apes-including imitation-specific training-further diminishes arguments suggesting that differences are experience-dependent. Here, it is argued that such differences are best explained by distinct, specialized mechanisms that have evolved for copying rules and responses in particular content domains. Uniquely derived social and imitation learning mechanisms may represent adaptations for learning novel communicative gestures and complex tool-use. Given our species' dependence on both language and tools, mechanisms that accelerated learning in these domains are likely to have faced intense selective pressures, starting with the earliest of human ancestors.

  19. Applying cognitive developmental psychology to middle school physics learning: The rule assessment method

    NASA Astrophysics Data System (ADS)

    Hallinen, Nicole R.; Chi, Min; Chin, Doris B.; Prempeh, Joe; Blair, Kristen P.; Schwartz, Daniel L.

    2013-01-01

    Cognitive developmental psychology often describes children's growing qualitative understanding of the physical world. Physics educators may be able to use the relevant methods to advantage for characterizing changes in students' qualitative reasoning. Siegler developed the "rule assessment" method for characterizing levels of qualitative understanding for two factor situations (e.g., volume and mass for density). The method assigns children to rule levels that correspond to the degree they notice and coordinate the two factors. Here, we provide a brief tutorial plus a demonstration of how we have used this method to evaluate instructional outcomes with middle-school students who learned about torque, projectile motion, and collisions using different instructional methods with simulations.

  20. Visual perceptual learning by operant conditioning training follows rules of contingency.

    PubMed

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning.

  1. Visual perceptual learning by operant conditioning training follows rules of contingency

    PubMed Central

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning. PMID:26028984

  2. Simulating Category Learning and Set Shifting Deficits in Patients Weight-Restored from Anorexia Nervosa

    DTIC Science & Technology

    2014-01-01

    Neuropsychology, in press     Simulating Category Learning and Set Shifting Deficits in Patients Weight-Restored from Anorexia Nervosa J...University   Objective: To examine set shifting in a group of women previously diagnosed with anorexia nervosa (AN) who are now weight-restored (AN-WR...participant fails to switch to the new rule but rather persists with the previously correct rule. Adult patients with Anorexia Nervosa (AN) are often impaired

  3. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  4. Cognitive Control over Learning: Creating, Clustering, and Generalizing Task-Set Structure

    ERIC Educational Resources Information Center

    Collins, Anne G. E.; Frank, Michael J.

    2013-01-01

    Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for…

  5. On the Role of Concepts in Learning and Instructional Design

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2006-01-01

    The field of instructional design has traditionally treated concepts as discrete learning outcomes. Theoretically, learning concepts requires correctly isolating and applying attributes of specific objects into their correct categories. Similarity views of concept learning are unable to account for all of the rules governing concept formation,…

  6. Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury.

    PubMed

    Newgard, C D; Hedges, J R; Stone, J V; Lenfesty, B; Diggs, B; Arthur, M; Mullins, R J

    2005-12-01

    To derive a clinical decision rule for people with traumatic brain injury (TBI) that enables early identification of patients requiring specialised trauma care. We collected data from 1999 through 2003 on a retrospective cohort of consecutive people aged 18-65 years with a serious head injury (AIS > or =3), transported directly from the scene of injury, and evaluated in the ED. Information on 22 demographical, physiological, radiographic, and lab variables was collected. Resource based "high therapeutic intensity" measures occurring within 72 hours of ED arrival (the outcome measure) were identified a priori and included: neurosurgical intervention, exploratory laparotomy, intensive care interventions, or death. We used classification and regression tree analysis to derive and cross validate the decision rule. 504 consecutive trauma patients were identified as having a serious head injury: 246 (49%) required at least one of the HTI measures. Five ED variables (GCS, respiratory rate, age, temperature, and pulse rate) identified subjects requiring at least one of the HTI measures with 94% sensitivity (95% CI 91 to 97%) and 63% specificity (95% CI 57 to 69%) in the derivation sample, and 90% sensitivity and 55% specificity using cross validation. This decision rule identified among a cohort of head injured patients evaluated in the ED the majority of those who urgently required specialised trauma care. The rule will require prospective validation in injured people presenting to non-tertiary care hospitals before implementation can be recommended.

  7. Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.

    PubMed

    Cantley, Kurtis D; Subramaniam, Anand; Stiegler, Harvey J; Chapman, Richard A; Vogel, Eric M

    2012-04-01

    Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology. Changes in the average firing rate learning rule depending on various circuit parameters are also presented. The subcircuits are then connected into larger neural networks that demonstrate fundamental properties including associative learning and pulse coincidence detection. Learned extraction of a fundamental frequency component from noisy inputs is demonstrated. It is then shown that if the fundamental sinusoid of one neuron input is out of phase with the rest, its synaptic connection changes differently than the others. Such behavior indicates that the system can learn to detect which signals are important in the general population, and that there is a spike-timing-dependent component of the learning mechanism. Finally, future circuit design and considerations are discussed, including requirements for the memristive device.

  8. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    PubMed

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  9. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically. PMID:29173280

  10. The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns

    PubMed Central

    Florian, Răzvan V.

    2012-01-01

    In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876

  11. Learning of Rule Ensembles for Multiple Attribute Ranking Problems

    NASA Astrophysics Data System (ADS)

    Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin

    In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.

  12. Identifying relevant data for a biological database: handcrafted rules versus machine learning.

    PubMed

    Sehgal, Aditya Kumar; Das, Sanmay; Noto, Keith; Saier, Milton H; Elkan, Charles

    2011-01-01

    With well over 1,000 specialized biological databases in use today, the task of automatically identifying novel, relevant data for such databases is increasingly important. In this paper, we describe practical machine learning approaches for identifying MEDLINE documents and Swiss-Prot/TrEMBL protein records, for incorporation into a specialized biological database of transport proteins named TCDB. We show that both learning approaches outperform rules created by hand by a human expert. As one of the first case studies involving two different approaches to updating a deployed database, both the methods compared and the results will be of interest to curators of many specialized databases.

  13. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces.

    PubMed

    Huertas, Marco A; Schwettmann, Sarah E; Shouval, Harel Z

    2016-01-01

    The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL) refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment), and how to stop learning once the target behaviors are attained (stopping rule). To address the first problem synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although, these were mere theoretical constructs, recent experiments have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward nucleus cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP) and one for long-term depression (LTD), each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although, the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different neuromodulators for expressing the LTP and LTD traces? Here we expand on our previous model to include several neuromodulators, and illustrate through various examples how different these contribute to learning reward-timing within a wide set of training paradigms and propose further roles that multiple neuromodulators can play in encoding additional information of the rewarding signal.

  14. Approaches to Streamline Air Permitting for Combined Heat and Power: Permits by Rule and General Permits

    EPA Pesticide Factsheets

    This factsheet provides information about permit by rule (PBR) and general permit (GP) processes, including the factors that contributed to their development and lessons learned from their implementation.

  15. Grammatical Arthritis.

    ERIC Educational Resources Information Center

    Bush, Don

    1994-01-01

    Discusses grammatical arthritis (an internal buildup of rules that hinders writing flexibility); four new "rules" (concerning "data is,""none are,""hopefully," and the restrictive "which"); attitudes toward English grammar; how to be a helpful editor; and where to learn about grammar. (SR)

  16. Broca's area and the language instinct.

    PubMed

    Musso, Mariacristina; Moro, Andrea; Glauche, Volkmar; Rijntjes, Michel; Reichenbach, Jürgen; Büchel, Christian; Weiller, Cornelius

    2003-07-01

    Language acquisition in humans relies on abilities like abstraction and use of syntactic rules, which are absent in other animals. The neural correlate of acquiring new linguistic competence was investigated with two functional magnetic resonance imaging (fMRI) studies. German native speakers learned a sample of 'real' grammatical rules of different languages (Italian or Japanese), which, although parametrically different, follow the universal principles of grammar (UG). Activity during this task was compared with that during a task that involved learning 'unreal' rules of language. 'Unreal' rules were obtained manipulating the original two languages; they used the same lexicon as Italian or Japanese, but were linguistically illegal, as they violated the principles of UG. Increase of activation over time in Broca's area was specific for 'real' language acquisition only, independent of the kind of language. Thus, in Broca's area, biological constraints and language experience interact to enable linguistic competence for a new language.

  17. Intelligent virtual teacher

    NASA Astrophysics Data System (ADS)

    Takács, Ondřej; Kostolányová, Kateřina

    2016-06-01

    This paper describes the Virtual Teacher that uses a set of rules to automatically adapt the way of teaching. These rules compose of two parts: conditions on various students' properties or learning situation; conclusions that specify different adaptation parameters. The rules can be used for general adaptation of each subject or they can be specific to some subject. The rule based system of Virtual Teacher is dedicated to be used in pedagogical experiments in adaptive e-learning and is therefore designed for users without education in computer science. The Virtual Teacher was used in dissertation theses of two students, who executed two pedagogical experiments. This paper also describes the phase of simulating and modeling of the theoretically prepared adaptive process in the modeling tool, which has all the required parameters and has been created especially for the occasion. The experiments are being conducted on groups of virtual students and by using a virtual study material.

  18. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning

    PubMed Central

    Marks, Michał; Glinicki, Michał A.; Gibas, Karolina

    2015-01-01

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration. PMID:28793740

  19. Processing advantages for consonance: A comparison between rats (Rattus norvegicus) and humans (Homo sapiens).

    PubMed

    Crespo-Bojorque, Paola; Toro, Juan M

    2016-05-01

    Consonance is a salient perceptual feature in harmonic music associated with pleasantness. Besides being deeply rooted in how we experience music, research suggests consonant intervals are more easily processed than dissonant intervals. In the present work we explore from a comparative perspective if such processing advantage extends to more complex tasks such as the detection of abstract rules. We ran experiments on rule learning over consonant and dissonant intervals with nonhuman animals and human participants. Results show differences across species regarding the extent to which they benefit from differences in consonance. Animals learn abstract rules with the same ease independently of whether they are implemented over consonant intervals (Experiment 1), dissonant intervals (Experiment 2), or over a combination of them (Experiment 3). Humans, on the contrary, learn an abstract rule better when it is implemented over consonant (Experiment 4) than over dissonant intervals (Experiment 5). Moreover, their performance improves when there is a mapping between abstract categories defining a rule and consonant and dissonant intervals (Experiments 6 and 7). Results suggest that for humans, consonance might be used as a perceptual anchor for other cognitive processes as to facilitate the detection of abstract patterns. Lacking extensive experience with harmonic stimuli, nonhuman animals tested here do not seem to benefit from a processing advantage for consonant intervals. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. On Interestingness Measures for Mining Statistically Significant and Novel Clinical Associations from EMRs

    PubMed Central

    Abar, Orhan; Charnigo, Richard J.; Rayapati, Abner

    2017-01-01

    Association rule mining has received significant attention from both the data mining and machine learning communities. While data mining researchers focus more on designing efficient algorithms to mine rules from large datasets, the learning community has explored applications of rule mining to classification. A major problem with rule mining algorithms is the explosion of rules even for moderate sized datasets making it very difficult for end users to identify both statistically significant and potentially novel rules that could lead to interesting new insights and hypotheses. Researchers have proposed many domain independent interestingness measures using which, one can rank the rules and potentially glean useful rules from the top ranked ones. However, these measures have not been fully explored for rule mining in clinical datasets owing to the relatively large sizes of the datasets often encountered in healthcare and also due to limited access to domain experts for review/analysis. In this paper, using an electronic medical record (EMR) dataset of diagnoses and medications from over three million patient visits to the University of Kentucky medical center and affiliated clinics, we conduct a thorough evaluation of dozens of interestingness measures proposed in data mining literature, including some new composite measures. Using cumulative relevance metrics from information retrieval, we compare these interestingness measures against human judgments obtained from a practicing psychiatrist for association rules involving the depressive disorders class as the consequent. Our results not only surface new interesting associations for depressive disorders but also indicate classes of interestingness measures that weight rule novelty and statistical strength in contrasting ways, offering new insights for end users in identifying interesting rules. PMID:28736771

  1. Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.

    PubMed

    Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G

    2018-03-28

    To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.

  2. Fear of negative evaluation biases social evaluation inference: evidence from a probabilistic learning task.

    PubMed

    Button, Katherine S; Kounali, Daphne; Stapinski, Lexine; Rapee, Ronald M; Lewis, Glyn; Munafò, Marcus R

    2015-01-01

    Fear of negative evaluation (FNE) defines social anxiety yet the process of inferring social evaluation, and its potential role in maintaining social anxiety, is poorly understood. We developed an instrumental learning task to model social evaluation learning, predicting that FNE would specifically bias learning about the self but not others. During six test blocks (3 self-referential, 3 other-referential), participants (n = 100) met six personas and selected a word from a positive/negative pair to finish their social evaluation sentences "I think [you are / George is]…". Feedback contingencies corresponded to 3 rules, liked, neutral and disliked, with P[positive word correct] = 0.8, 0.5 and 0.2, respectively. As FNE increased participants selected fewer positive words (β = -0.4, 95% CI -0.7, -0.2, p = 0.001), which was strongest in the self-referential condition (FNE × condition 0.28, 95% CI 0.01, 0.54, p = 0.04), and the neutral and dislike rules (FNE × condition × rule, p = 0.07). At low FNE the proportion of positive words selected for self-neutral and self-disliked greatly exceeded the feedback contingency, indicating poor learning, which improved as FNE increased. FNE is associated with differences in processing social-evaluative information specifically about the self. At low FNE this manifests as insensitivity to learning negative self-referential evaluation. High FNE individuals are equally sensitive to learning positive or negative evaluation, which although objectively more accurate, may have detrimental effects on mental health.

  3. Relativistic corrections to a generalized sum rule

    NASA Astrophysics Data System (ADS)

    Sinky, H.; Leung, P. T.

    2006-09-01

    Relativistic corrections to a previously established generalized sum rule are obtained using the Foldy-Wouthysen transformation. This sum rule derived previously by Wang [Phys. Rev. A 60, 262 (1999)] for a nonrelativistic system contains both the well-known Thomas-Reiche-Kuhn and Bethe sum rules, for which relativistic corrections have been obtained in the literature. Our results for the generalized formula will be applied to recover several results obtained previously in the literature, as well as to another sum rule whose relativistic corrections will be obtained.

  4. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2004-01-01

    The effect of Richard T. Cox's contribution to probability theory was to generalize Boolean implication among logical statements to degrees of implication, which are manipulated using rules derived from consistency with Boolean algebra. These rules are known as the sum rule, the product rule and Bayes Theorem, and the measure resulting from this generalization is probability. In this paper, I will describe how Cox s technique can be further generalized to include other algebras and hence other problems in science and mathematics. The result is a methodology that can be used to generalize an algebra to a calculus by relying on consistency with order theory to derive the laws of the calculus. My goals are to clear up the mysteries as to why the same basic structure found in probability theory appears in other contexts, to better understand the foundations of probability theory, and to extend these ideas to other areas by developing new mathematics and new physics. The relevance of this methodology will be demonstrated using examples from probability theory, number theory, geometry, information theory, and quantum mechanics.

  5. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  6. 75 FR 50711 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Final Approval and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... conditional approval of portions of OAC rule 3745-21-09. You can learn more information about the rule...). ACTION: Final rule. SUMMARY: Under section 110(k)(3) of the Clean Air Act (CAA), EPA is disapproving an...) of the CAA, we are also conditionally approving a revision of paragraph (BBB)(1) of OAC 3745-21-09...

  7. How Can Students Generalize the Chain Rule? The Roles of Abduction in Mathematical Modeling

    ERIC Educational Resources Information Center

    Park, Jin Hyeong; Lee, Kyeong-Hwa

    2016-01-01

    The purpose of this study is to design a modeling task to facilitate students' inquiries into the chain rule in calculus and to analyze the results after implementation of the task. In this study, we take a modeling approach to the teaching and learning of the chain rule by facilitating the generalization of students' models and modeling…

  8. Editor in Chief[R] Beginning: Grammar Disasters and Punctuation Faux Pas.

    ERIC Educational Resources Information Center

    Beckwith, Carrie; Block, Cheryl; Broz, Christine; Hockett, Margaret; White, David

    This workbook is designed as an introduction to the "Editor in Chief" series, which reinforces the rules of written English. In this workbook, student first review the rules of grammar and mechanics using multiple-choice questions; then the students learn to apply these rules in context by editing stories in a variety of formats. This "Beginning"…

  9. Learning CAD at University through Summaries of the Rules of Design Intent

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Samperio, Raúl Zamora

    2017-01-01

    The ease with which 3D CAD models may be modified and reused are two key aspects that improve the design-intent variable and that can significantly shorten the development timelines of a product. A set of rules are gathered from various authors that take different 3D modelling strategies into account. These rules are then applied to CAD…

  10. Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    DTIC Science & Technology

    2015-03-26

    7 VRT Vulnerability Research Team...and the Talos (formerly the Vulnerability Research Team ( VRT )) [7] 7 ruleset libraries are the two leading rulesets in use. Both libraries offer paid...rule sets to load for the signature-based IDS. Snort is selected as the IDS engine using the “ VRT and ET No/GPL” rule set. The total rule count in the

  11. Multistrategy learning: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingos, P.

    1996-12-31

    Two of the most popular approaches to induction are instance-based learning (IBL) and rule generation. Their strengths and weaknesses are largely complementary. IBL methods are able to identify small details in the instance space, but have trouble with attributes that are relevant in some parts of the space but not others. Conversely, rule induction methods may overlook small exception regions, but are able to select different attributes in different parts of the instance space. The two methods have been unified in the RISE algorithm. RISE views instances as maximally specific rules, forms more general rules by gradually clustering instances ofmore » the same class, and classifies a test example by letting the nearest rule win. This approach potentially combines the advantages of rule induction and IBL, and has indeed been observed to be more accurate than each on a large number of bench-mark datasets. However, it is important to determine if this performance is indeed due to the hypothesized advantages, and to define the situations in which RISE`s bias will and will not be preferable to those of the individual approaches. This abstract reports experiments to this end in artificial domains.« less

  12. Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure.

    PubMed

    Lustgarten, Jonathan Lyle; Balasubramanian, Jeya Balaji; Visweswaran, Shyam; Gopalakrishnan, Vanathi

    2017-03-01

    The comprehensibility of good predictive models learned from high-dimensional gene expression data is attractive because it can lead to biomarker discovery. Several good classifiers provide comparable predictive performance but differ in their abilities to summarize the observed data. We extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly better predictor than other classical approaches in this domain. It searches a space of Bayesian networks using a decision tree representation of its parameters with global constraints, and infers a set of IF-THEN rules. The number of parameters and therefore the number of rules are combinatorial to the number of predictor variables in the model. We relax these global constraints to a more generalizable local structure (BRL-LSS). BRL-LSS entails more parsimonious set of rules because it does not have to generate all combinatorial rules. The search space of local structures is much richer than the space of global structures. We design the BRL-LSS with the same worst-case time-complexity as BRL-GSS while exploring a richer and more complex model space. We measure predictive performance using Area Under the ROC curve (AUC) and Accuracy. We measure model parsimony performance by noting the average number of rules and variables needed to describe the observed data. We evaluate the predictive and parsimony performance of BRL-GSS, BRL-LSS and the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-validation using ten microarray gene-expression diagnostic datasets. In these experiments, we observe that BRL-LSS is similar to BRL-GSS in terms of predictive performance, while generating a much more parsimonious set of rules to explain the same observed data. BRL-LSS also needs fewer variables than C4.5 to explain the data with similar predictive performance. We also conduct a feasibility study to demonstrate the general applicability of our BRL methods on the newer RNA sequencing gene-expression data.

  13. 78 FR 14870 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Proposed Rule Change Regarding Acceptance of Additional Interest Rate Swaps for Clearing March 1, 2013... amend rules related to its business as a derivatives clearing organization offering interest rate swap... this notice to solicit comments on the proposed rule change from interested persons and to approve the...

  14. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

    PubMed Central

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608

  15. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

    PubMed

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-08-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.

  16. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    PubMed Central

    Leibo, Joel Z.; Liao, Qianli; Freiwald, Winrich A.; Anselmi, Fabio; Poggio, Tomaso

    2017-01-01

    SUMMARY The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations like depth-rotations [1, 2]. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations [3, 4, 5, 6]. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules generate approximate invariance to identity-preserving transformations at the top level of the processing hierarchy. However, all past models tested failed to reproduce the most salient property of an intermediate representation of a three-level face-processing hierarchy in the brain: mirror-symmetric tuning to head orientation [7]. Here we demonstrate that one specific biologically-plausible Hebb-type learning rule generates mirror-symmetric tuning to bilaterally symmetric stimuli like faces at intermediate levels of the architecture and show why it does so. Thus the tuning properties of individual cells inside the visual stream appear to result from group properties of the stimuli they encode and to reflect the learning rules that sculpted the information-processing system within which they reside. PMID:27916522

  17. Mixing Languages during Learning? Testing the One Subject-One Language Rule.

    PubMed

    Antón, Eneko; Thierry, Guillaume; Duñabeitia, Jon Andoni

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish-adults (Experiment 1) and children (Experiment 2)-learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject-one language rule.

  18. Mixing Languages during Learning? Testing the One Subject—One Language Rule

    PubMed Central

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish—adults (Experiment 1) and children (Experiment 2)—learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject—one language rule. PMID:26107624

  19. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    PubMed

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  20. Compartmental and Spatial Rule-Based Modeling with Virtual Cell.

    PubMed

    Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M

    2017-10-03

    In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top