ERIC Educational Resources Information Center
Felix, Elliot
2011-01-01
Much progress has been made in creating informal learning spaces that incorporate technology and flexibly support a variety of activities. This progress has been principally in designing the right combination of furniture, technology, and space. However, colleges and universities do not design services within learning spaces with nearly the same…
ERIC Educational Resources Information Center
Nicholls, Jennifer; Philip, Robyn
2012-01-01
This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for…
Lost in Space: Designing for Learning
ERIC Educational Resources Information Center
La Marca, Susan
2010-01-01
The design of a learning space, and the many factors that come together to create that space, impact on how we feel and behave in that space and ultimately how we learn. This paper will discuss the importance of mission statements, policy and planning in light of how we create spaces that are learning-driven, human-centred and flexible. Of…
From E-Learning Space to E-Learning Place
ERIC Educational Resources Information Center
Wahlstedt, Ari; Pekkola, Samuli; Niemela, Marketta
2008-01-01
In this paper, it is argued that e-learning environments are currently more like "buildings", i.e., learning spaces, rather than "schools", i.e., places for learning. The concepts originated from architecture and urban design, where they are used both to distinguish static spaces from inhabited places, and more importantly, as design objectives.…
Ambience in Social Learning: Student Engagement with New Designs for Learning Spaces
ERIC Educational Resources Information Center
Crook, Charles; Mitchell, Gemma
2012-01-01
An imperative to develop the social experience of learning has led to the design of informal learning spaces within libraries. Yet little is known about how these spaces are used by students or how students perceive them. Field work in one such space is reported. The general private study practice of undergraduates was captured through audio…
Designing Informal Learning Spaces Using Student Perspectives
ERIC Educational Resources Information Center
Riddle, Matthew David; Souter, Kay
2012-01-01
This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning…
ERIC Educational Resources Information Center
Casanova, Diogo; Mitchell, Paul
2017-01-01
This paper presents an alternative method for learning space design that is driven by user input. An exploratory study was undertaken at an English university with the aim of redesigning technology-enhanced learning spaces. Two provocative concepts were presented through participatory design workshops during which students and teachers reflected…
Instructors as Architects-Designing Learning Spaces for Discussion-Based Online Courses
ERIC Educational Resources Information Center
Wang, Yu-Mei; Chen, Derthanq Victor
2011-01-01
Online learning space design becomes a significant issue with the proliferation of online learning in higher education. Never before has the instructor been given such a privilege in building and molding the learning space to fulfill his/her instructional aspirations. However, enormous challenges are present to the instructor in taking advantage…
Models of Learning Space: Integrating Research on Space, Place and Learning in Higher Education
ERIC Educational Resources Information Center
Ellis, R. A.; Goodyear, P.
2016-01-01
Learning space research is a relatively new field of study that seeks to inform the design, evaluation and management of learning spaces. This paper reviews a dispersed and fragmented literature relevant to understanding connections between university learning spaces and student learning activities. From this review, the paper distils a number of…
ERIC Educational Resources Information Center
Arndt, Petra A.
2012-01-01
The design of learning spaces is rightly gaining more and more pedagogical attention, as they influence the learning climate and learning results in multiple ways. General structural characteristics influence the willingness to learn through emotional well-being and a sense of security. Specific structural characteristics influence cognitive…
Research-Informed Principles for (Re)Designing Teaching and Learning Spaces
ERIC Educational Resources Information Center
Finkelstein, Adam; Ferris, Jennie; Weston, Cynthia; Winer, Laura
2016-01-01
Designing physical learning environments that connect to indicators of effective educational practice reflects a university's pedagogical commitment to student success. This article describes an approach to teaching and learning space design based on research-informed pedagogical principles successfully implemented at our university. It then…
Learning Theory Expertise in the Design of Learning Spaces: Who Needs a Seat at the Table?
ERIC Educational Resources Information Center
Rook, Michael M.; Choi, Koun; McDonald, Scott P.
2015-01-01
This study highlights the impact of including stakeholders with expertise in learning theory in a learning space design process. We present the decision-making process during the design of the Krause Innovation Studio on the campus of the Pennsylvania State University to draw a distinction between the architect and faculty member's decision-making…
Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"
ERIC Educational Resources Information Center
Minocha, Shailey; Reeves, Ahmad John
2010-01-01
"Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or…
Pedagogy and Space: Design Inspirations for Early Childhood Classrooms
ERIC Educational Resources Information Center
Zane, Linda M.
2015-01-01
The intersection of design and learning is a new and burgeoning area of interest in all levels of education. "Pedagogy and Space" combines architectural design information with early childhood theory to enhance children's learning and educators' experience within the space. Filled with colorful, inspiring photographs of intentionally…
Strategies to Assess Studio Spaces Designed to Enhance Student Learning
ERIC Educational Resources Information Center
Ahmadi, Reza; Saiki, Diana
2017-01-01
Teachers are not always aware of how the classroom design influences teaching, particularly in many family and consumer sciences (FCS) classes that require studio space, such as apparel and interior design classes. The purpose of this paper is to introduce strategies to assess studio spaces that are designed for enhancement of student learning.…
ERIC Educational Resources Information Center
Wise, Alyssa Friend; Vytasek, Jovita Maria; Hausknecht, Simone; Zhao, Yuting
2016-01-01
This paper addresses a relatively unexplored area in the field of learning analytics: how analytics are taken up and used as part of teaching and learning processes. Initial steps are taken towards developing design knowledge for this "middle space," with a focus on students as analytics users. First, a core set of challenges for…
Learning Spaces and Pedagogy: Towards the Development of a Shared Understanding
ERIC Educational Resources Information Center
McNeil, Jane; Borg, Michaela
2018-01-01
Although there is considerable interest in learning spaces in higher education, the relationship between spaces and learning is complex and not well-understood. Despite challenges, such as the lack of comparability between studies, we need to learn more about the interaction of space design and learning. A crucial step towards this is the creation…
Utilizing Emergency Departments as Learning Spaces through a Post-Occupancy Evaluation
ERIC Educational Resources Information Center
Guinther, Lindsey Lawry; Carll-White, Allison
2014-01-01
This case study describes the use of an emergency department as a learning space for interior design students. Kolb's (1984; 2005) framework identifies the characteristics of experiential learning and learning spaces, serving as the bridge to unify learning styles and the learning environment. A post-occupancy evaluation was conducted with…
Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design
ERIC Educational Resources Information Center
Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie
2018-01-01
To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…
Feel the Fear: Learning Graphic Design in Affective Places and Online Spaces
ERIC Educational Resources Information Center
Nottingham, Anitra
2017-01-01
This article explores the idea of pedagogic affect in both onsite and online graphic design learning spaces, and speculates on the role that this affect plays in the formation of the design student. I argue that embodied design knowledge is built by interactions with design professionals, activities that mimic the daily work of designers, and…
Mapping Next Generation Learning Spaces as a Designed Quality Enhancement Process
ERIC Educational Resources Information Center
Leonard, Simon N.; Fitzgerald, Robert N.; Bacon, Matt; Munnerley, Danny
2017-01-01
The learning spaces of higher education are changing with collaborative, agile and technology-enabled spaces ever more popular. Despite the massive investment required to create these new spaces, current quality systems are poorly placed to account for the value they create. Such learning spaces are typically popular with students but the impact…
ERIC Educational Resources Information Center
Zheng, Dongping; Schmidt, Matthew; Hu, Ying; Liu, Min; Hsu, Jesse
2017-01-01
The purpose of this research was to explore the relationships between design, learning, and translanguaging in a 3D collaborative virtual learning environment for adolescent learners of Chinese and English. We designed an open-ended space congruent with ecological and dialogical perspectives on second language acquisition. In such a space,…
Learning Spaces in Higher Education: An Under-Researched Topic
ERIC Educational Resources Information Center
Temple, Paul
2008-01-01
The connections between the design and use of space in higher education, and the production of teaching and learning, and of research, are not well understood. This paper reports on a literature review on these topics, and shows that higher education spaces can be considered in various ways: in terms of campus design, in terms of how space can…
Learning Spaces Framework: Learning in an Online World
ERIC Educational Resources Information Center
Ministerial Council on Education, Employment, Training and Youth Affairs (NJ1), 2008
2008-01-01
"Contemporary learning--learning in an online world" describes the integrated nature of the highly technological world in which young people live and learn. A key priority is to design learning spaces that integrate technologies: engaging students in ways not previously possible; creating new learning and teaching possibilities;…
ERIC Educational Resources Information Center
Zavala, Miguel
2016-01-01
While a science of design (and theory of learning) is certainly useful in design-based research, a participatory design research framework presents an opening for learning scientists to rethink design and learning as processes. Grounded in the autoethnographic investigation of a grassroots organization's design of a local campaign, the author…
Making the Case for Space: The Effect of Learning Spaces on Teaching and Learning
ERIC Educational Resources Information Center
Byers, Terry; Imms, Wesley; Hartnell-Young, Elizabeth
2014-01-01
An explanatory, mixed method study examined the impact of learning spaces on teachers' pedagogy, student engagement and student learning outcomes in a technology-rich school setting. Its quasi-experimental design allowed examination of differences in these variables between two settings--'traditional' classrooms, and 'new generation learning…
ERIC Educational Resources Information Center
Deed, Craig; Alterator, Scott
2017-01-01
Evaluating informal learning spaces in higher education institutions needs to respond to the complex conceptual orientation underpinning their intention and design. This article outlines a model of participatory analysis that accounts for the conceptual complexity, lived experience and broad intentions of informal learning space. Further, the…
Lessons Learned and Technical Standards: A Logical Marriage for Future Space Systems Design
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)
2002-01-01
A comprehensive database of engineering lessons learned that corresponds with relevant technical standards will be a valuable asset to those engaged in studies on future space vehicle developments, especially for structures, materials, propulsion, control, operations and associated elements. In addition, this will enable the capturing of technology developments applicable to the design, development, and operation of future space vehicles as planned in the Space Launch Initiative. Using the time-honored tradition of passing on lessons learned while utilizing the newest information technology, NASA has launched an intensive effort to link lessons learned acquired through various Internet databases with applicable technical standards. This paper will discuss the importance of lessons learned, the difficulty in finding relevant lessons learned while engaged in a space vehicle development, and the new NASA effort to relate them to technical standards that can help alleviate this difficulty.
Academic Library Spaces: Advancing Student Success and Helping Students Thrive
ERIC Educational Resources Information Center
Spencer, Mary Ellen; Watstein, Sarah Barbara
2017-01-01
Are today's academic libraries really designed for learning? Do library spaces impact student learning? Intending to spark broader and more informed dialogue about the relationship between the quality of learning and the quality of academic library spaces in higher education, the authors consider the concept of space as service; student learning…
History and Evolution of Active Learning Spaces
ERIC Educational Resources Information Center
Beichner, Robert J.
2014-01-01
This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.
Using an Outdoor Learning Space to Teach Sustainability and Material Processes in HE Product Design
ERIC Educational Resources Information Center
Firth, Richard; Stoltenberg, Einar; Jennings, Trent
2016-01-01
This "case study" of two jewellery workshops, used outdoor learning spaces to explore both its impact on learning outcomes and to introduce some key principles of sustainable working methodologies and practices. Using the beach as the classroom, academics and students from a Norwegian and Scottish (HE) product design exchange programme…
"Space and Consequences": The Influence of the Roundtable Classroom Design on Student Dialogue
ERIC Educational Resources Information Center
Parsons, Caroline S.
2016-01-01
This study sought to explore how the design of both physical and virtual learning spaces influence student dialogue in a modern university. Qualitative analysis of the learning spaces in an undergraduate liberal arts program was conducted. Interview and focus group data from students and faculty, in addition to classroom observations, resulted in…
Designerly Talk in Non-Pedagogical Social Spaces
ERIC Educational Resources Information Center
Gray, Colin M.; Howard, Craig D.
2014-01-01
Students live and work in worlds where virtual communities, such as those created via social network sites (e.g. Facebook) may interplay with their formal learning, but scholars of design pedagogy know little about how these spaces can support design learning. In this study, we describe how a set of informal communications, encapsulated in five…
ERIC Educational Resources Information Center
Perkinson, Betty J.
2009-01-01
The view that community college developmental studies educators have about the space in which they teach, any renovated or new spaces they were involved in designing, and the type of space in which they would like to teach is examined. The developmental studies educators are experts in their field, having completed The Kellogg Institute at…
ERIC Educational Resources Information Center
Robertson, Greg; Baumann, Christoph; Bilgin, Ayse A.; Bulger, David; Coutts, Pamela M.; Engel, Roger M.; Giuriato, Rosemary; Gudlaugsdottir, Sigurbjorg; Rigney, Curtis; Tomossy, George F.
2012-01-01
Universities in Australia and worldwide, are building a new generation of learning and teaching spaces which are designed to encourage and support active and collaborative modes of learning and teaching. However, there is little evidence to show that students will recognise the contribution these spaces make to their learning. Temple (2008) argued…
ERIC Educational Resources Information Center
Magruder, Lewis
2016-01-01
Learning how to transform an empty space into one alive with dramatic possibilities is one of the challenges facing students in several disciplines--for example, graphic design, filmmaking, gaming, architecture, interior design, visual arts, and designing and directing for the theatre. The author, a professor of directing for the theatre,…
Learning Studios for Introductory Accounting
ERIC Educational Resources Information Center
Yourstone, Steven A.; Tepper, Robert J.
2014-01-01
Although originally designed for science courses, learning studios have been introduced at over 100 college campuses in a variety of disciplines. Our study focuses on the differences between classrooms designed as lecture spaces versus classrooms designed as learning studios. The impetus is the growing number of learning studios and…
Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.
Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew
2016-08-01
This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.
NASA Astrophysics Data System (ADS)
Kuda Malwathumullage, Chamathca Priyanwada
Recent advancements in instructional technology and interactive learning space designs have transformed how undergraduate classrooms are envisioned and conducted today. Large number of research studies have documented the impact of instructional technology and interactive learning spaces on elevated student learning gains, positive attitudes, and increased student engagement in undergraduate classrooms across nation. These research findings combined with the movement towards student-centered instructional strategies have motivated college professors to explore the unfamiliar territories of instructional technology and interactive learning spaces. Only a limited number of research studies that explored college professors' perspective on instructional technology and interactive learning space use in undergraduate classrooms exist in the education research literature. Since college professors are an essential factor in undergraduate students' academic success, investigating how college professors perceive and utilize instructional technology and interactive learning environments can provide insights into designing effective professional development programs for college professors across undergraduate institutions. Therefore, the purpose of this study was to investigate college professors' pedagogical reasoning behind incorporating different types of instructional technologies and teaching strategies to foster student learning in technology-infused interactive learning environments. Furthermore, this study explored the extent to which college professors' instructional decisions and practices are affected by teaching in an interactive learning space along with their overall perception of instructional technology and interactive learning spaces. Four college professors from a large public Midwestern university who taught undergraduate science courses in a classroom based on the 'SCALE-UP model' participated in this study. Major data sources included classroom observations, interviews and questionnaires. An enumerative approach and the constant comparative method were utilized to analyze the data. According to the results obtained, all the participating college professors of this study employed a variety of instructional technologies and learning space features to actively engage their students in classroom activities. Participants were largely influenced by the instructional technology and the learning space features at lesson planning and execution stages whereas this influence was less notable at the student assessment stage. Overall, college professors perceive technology-infused interactive learning environments to be advantageous in terms of enabling flexibility and creativity along with easy facilitation of classroom activities. However, they felt challenged when designing effective classroom activities and preferred continuous professional development support. Overall, college professors' pedagogical decision making process, their perceived benefits and challenges seemed to be interrelated and centered on the learners and the learning process. Primary implication of this study is to implement effective professional development programs for college professors which enable them to familiarize themselves with student-centered pedagogy and effective classroom activity design along with the novel trends in learning space design and instructional technologies. Furthermore, higher education institutions need to devise incentives and recognition measures to appreciate college professors' contributions to advance scholarship of teaching and learning.
The Implementation and Evaluation of a New Learning Space: A Pilot Study
ERIC Educational Resources Information Center
Wilson, Gail; Randall, Marcus
2012-01-01
A dramatic, pedagogical shift has occurred in recent years in educational environments in higher education, supported largely by the use of ubiquitous technologies. Increasingly, emphasis is being placed on the design of new learning spaces, often referred to as "Next Generation Learning Spaces" (NGLS) and their impact on pedagogy. The…
The Influence of Hierarchy and Layout Geometry in the Design of Learning Spaces
ERIC Educational Resources Information Center
Smith, Charlie
2017-01-01
For a number of years, higher education has moved away from didactic teaching toward collaborative and self-directed learning. This paper discusses how the configuration and spatial geometry of learning spaces influences engagement and interaction, with a particular focus on hierarchies between people within the space. Layouts, presented as…
Goverover, Yael; Basso, Michael; Wood, Hali; Chiaravalloti, Nancy; DeLuca, John
2011-12-01
Forgetfulness occurs commonly in people with multiple sclerosis (MS), but few treatments alleviate this problem. This study examined the combined effect of two cognitive rehabilitation strategies to improve learning and memory in MS: self-generation and spaced learning. The hypothesis was that the combination of spaced learning and self-generation would yield better learning and memory recall performance than spaced learning alone. Using a within groups design, 20 participants with MS and 18 healthy controls (HC) were presented with three tasks (learning names, appointment, and object location), each in three learning conditions (Massed, Spaced Learning, and combination of spaced and generated information). Participants were required to recall the information they learned in each of these conditions immediately and 30 min following the initial presentation. The combination of spaced learning and self-generation yielded better recall than did spaced learning alone. In turn, spaced learning resulted in better recall than the massed rehearsal condition. These findings reveal that the combination of these two learning strategies may possess utility as a cognitive rehabilitation strategy.
ERIC Educational Resources Information Center
Tevaniemi, Johanna; Poutanen, Jenni; Lähdemäki, Riitta
2015-01-01
This article presents a case of co-designed temporary learning spaces at a Finnish academic library, together with the results of a user-survey. The experimental development of the multifunctional spaces offered an opportunity for the library to collaborate with its parent organisation thus broadening the role of the library. Hence, library can be…
Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.
ERIC Educational Resources Information Center
Emmons, Mark; Wilkinson, Frances C.
2001-01-01
Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)
Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data
NASA Astrophysics Data System (ADS)
Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar
2017-04-01
A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions.
NASA Astrophysics Data System (ADS)
Maheran, Y.; Fadzidah, A.; Nur Fadhilah, R.; Farha, S.
2017-12-01
A proper design outdoor environment in higher institutions contributes to the students’ learning performances and produce better learning outcomes. Campus surrounding has the potential to provide an informal outdoor learning environment, especially when it has the existing physical element, like open spaces and natural features, that may support the learning process. However, scholarly discourses on environmental aspects in tertiary education have minimal environmental inputs to fulfill students’ needs for outdoor exposure. Universities have always emphasized on traditional instructional methods in classroom settings, without concerning the importance of outdoor classroom towards students’ learning needs. Moreover, the inconvenience and discomfort outdoor surrounding in campus environment offers a minimal opportunity for students to study outside the classroom, and students eventually do not favor to utilize the spaces because no learning facility is provided. Hence, the objective of this study is to identify the appropriate criteria of outdoor areas that could be converted to be outdoor classrooms in tertiary institutions. This paper presents a review of scholars’ work in regards to the characteristics of the outdoor classrooms that could be designed as part of contemporary effective learning space, for the development of students’ learning performances. The information gathered from this study will become useful knowledge in promoting effective outdoor classroom and create successful outdoor learning space in landscape campus design. It I hoped that the finding of this study could provide guidelines on how outdoor classrooms should be designed to improve students’ academic achievement.
Designing Learning Spaces for Interprofessional Education in the Anatomical Sciences
ERIC Educational Resources Information Center
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which…
Bines, Julie E; Jamieson, Peter
2013-09-01
Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.
Lessons learned from the design of chemical space networks and opportunities for new applications.
Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen
2016-03-01
The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.
Lessons learned from the design of chemical space networks and opportunities for new applications
NASA Astrophysics Data System (ADS)
Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen
2016-03-01
The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.
Learning Bridges: A Role for Mobile Technologies in Education
ERIC Educational Resources Information Center
Vavoula, Giasemi; Sharples, Mike; Lonsdale, Peter; Rudman, Paul; Meek, Julia
2007-01-01
MyArtSpace is a service for children to spread their learning between schools and museums using mobile phones linked to a personal Web space. Using MyArtSpace as an example, the authors discuss the possibilities for mobile technology to form bridges between formal and informal learning. They also offer guidelines for designing such bridges.…
A Study Exploring Learners' Informal Learning Space Behaviors, Attitudes, and Preferences
ERIC Educational Resources Information Center
Harrop, Deborah; Turpin, Bea
2013-01-01
What makes a successful informal learning space is a topic in need of further research. The body of discourse on informal space design is drawn from learning theory, placemaking, and architecture, with a need for understanding of the synergy between the three. Findings from a longitudinal, quantitative, and qualitative study at Sheffield Hallam…
Student Perceptions of a 21st Century Learning Space
ERIC Educational Resources Information Center
Adedokun, Omolola A.; Henke, Jacqueline N.; Parker, Loran Carleton; Burgess, Wilella D.
2017-01-01
Higher education institutions are increasingly building or remodeling classrooms to be flexible spaces that support learner-centered instruction. However, little is known about the actual impact of these spaces on student outcomes. Using a mixed method design, this study examined student perceptions of a flexible learning space on student learning…
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
ERIC Educational Resources Information Center
Stansberry, Susan L.
2016-01-01
This design case (Boling, 2010) includes the challenges, considerations, and decisions associated with the design and development of a learning space/place (Dourish, 2006; Harrison & Dourish, 1996) focused on innovative, creative, and imaginative ways to transform teaching and learning with technology. The T.E.C.H. Playground in the College of…
Common Mobile Learning Characteristics--An Analysis of Mobile Learning Models and Frameworks
ERIC Educational Resources Information Center
Imtinan, Umera; Chang, Vanessa; Issa, Tomayess
2013-01-01
Mobile learning offers learning opportunities to learners without the limitations of time and space. Mobile learning has introduced a number of flexible options to the learners across disciplines and at different educational levels. However, designing mobile learning content is an equally challenging task for the instructional designers.…
Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds
NASA Astrophysics Data System (ADS)
Minocha, Shailey; Reeves, Ahmad John
Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.
ERIC Educational Resources Information Center
Hauf, Harold D.; And Others
Colleges need appropriate large group instructional facilities for effective and efficient use of instructional aids and media. A well planned system of facilities must provide space for learning; production, origination, and support; storage and retrieval. Design begins with a building plan--a statement, made jointly by the administrator and…
Open the Windows: Design New Spaces for Learning
ERIC Educational Resources Information Center
Johnson, Christopher
2011-01-01
As a technologist, the author is interested in how the digital world is changing the educational landscape. As he began to research effective learning spaces, he discovered that the architecture, design, and school facilities communities are making a great deal of progress in creating better classrooms and school buildings. Unfortunately, many in…
Designing and Instructing Hybrid Open Learning Spaces Model to Support Lifelong Learning Engagement
ERIC Educational Resources Information Center
Crawford, Caroline M.
2016-01-01
With a focus upon open and lifelong learning understanding, the real world delineation between formalized higher education graduate school efforts and professional career position lines may be suggested as being blurred. This case study offers an analysis of one university instructor's efforts towards developing hybrid learning spaces that…
Learning in the Liminal Space: A Semiotic Approach to Threshold Concepts
ERIC Educational Resources Information Center
Land, Ray; Rattray, Julie; Vivian, Peter
2014-01-01
The threshold concepts approach to student learning and curriculum design now informs an empirical research base comprising over 170 disciplinary and professional contexts. It draws extensively on the notion of troublesomeness in a "liminal" space of learning. The latter is a transformative state in the process of learning in which there…
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Albright, John D.; D'Amico, Stephen J.; Brewer, John M.; Melcher, John C., IV
2011-01-01
The Space Shuttle Integrated Main Propulsion System (IMPS) consists of the External Tank (ET), Orbiter Main Propulsion System (MPS), and Space Shuttle Main Engines (SSMEs). The IMPS is tasked with the storage, conditioning, distribution, and combustion of cryogenic liquid hydrogen (LH2) and liquid oxygen (LO2) propellants to provide first and second stage thrust for achieving orbital velocity. The design, certification, and operation of the associated IMPS hardware have produced many lessons learned over the course of the Space Shuttle Program (SSP). A subset of these items will be discussed in this paper for consideration when designing, building, and operating future spacecraft propulsion systems. This paper will focus on lessons learned related to Orbiter MPS and is the first of a planned series to address the subject matter.
The Critical Importance of Retrieval--and Spacing--for Learning.
Soderstrom, Nicholas C; Kerr, Tyson K; Bjork, Robert A
2016-02-01
We examined the impact of repeated testing and repeated studying on long-term learning. In Experiment 1, we replicated Karpicke and Roediger's (2008) influential results showing that once information can be recalled, repeated testing on that information enhances learning, whereas restudying that information does not. We then examined whether the apparent ineffectiveness of restudying might be attributable to the spacing differences between items that were inherent in the between-subjects design employed by Karpicke and Roediger. When we controlled for these spacing differences by manipulating the various learning conditions within subjects in Experiment 2, we found that both repeated testing and restudying improved learning, and that learners' awareness of the relative mnemonic benefits of these strategies was enhanced. These findings contribute to understanding how two important factors in learning-test-induced retrieval processes and spacing-can interact, and they illustrate that such interactions can play out differently in between-subjects and within-subjects experimental designs. © The Author(s) 2015.
Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data
Stoecklein, Daniel; Lore, Kin Gwn; Davies, Michael; Sarkar, Soumik; Ganapathysubramanian, Baskar
2017-01-01
A new technique for shaping microfluid flow, known as flow sculpting, offers an unprecedented level of passive fluid flow control, with potential breakthrough applications in advancing manufacturing, biology, and chemistry research at the microscale. However, efficiently solving the inverse problem of designing a flow sculpting device for a desired fluid flow shape remains a challenge. Current approaches struggle with the many-to-one design space, requiring substantial user interaction and the necessity of building intuition, all of which are time and resource intensive. Deep learning has emerged as an efficient function approximation technique for high-dimensional spaces, and presents a fast solution to the inverse problem, yet the science of its implementation in similarly defined problems remains largely unexplored. We propose that deep learning methods can completely outpace current approaches for scientific inverse problems while delivering comparable designs. To this end, we show how intelligent sampling of the design space inputs can make deep learning methods more competitive in accuracy, while illustrating their generalization capability to out-of-sample predictions. PMID:28402332
A Space-Based Learning Service for Schools Worldwide
NASA Astrophysics Data System (ADS)
White, Norman A.; Gibson, Alan
2002-01-01
This paper outlines a scheme for international collaboration to enrich the use of space in school education, to improve students' learning about science and related subjects and to enhance the continuity of science-related studies after the age of 16. Guidelines are presented for the design of an on-line learning service to provide schools worldwide with:- interactive curriculum-related learning resources for teaching about space and through - access to a purpose-designed education satellite or satellites; - opportunities for hands-on work by students in out-of-school hours; - news about space developments to attract, widen and deepen initial interest among teachers - support services to enable teachers to make effective use of the learning service. The Learning Service is the product of almost twenty years of experience by a significant number of UK schools in experimenting with, and in using, satellites and space to aid learning; and over four years of study and development by the SpaceLink Learning Foundation - a private-sector, not- for-profit UK registered charity, which is dedicated to help in increasing both the supply of scientists and engineers and the public understanding of science. This initiative provides scope for, and could benefit from, the involvement of relevant/interested organisations drawn from different countries. The Foundation would be ready, from its UK base, to be among such a group of initiating organisations.
Space: the final frontier in the learning of science?
NASA Astrophysics Data System (ADS)
Milne, Catherine
2014-03-01
In Space, relations, and the learning of science, Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research laboratory, can be structured as smart spaces to create a workflow (learning flow) so that shoptalk and shopwork can projectively organize the actions of interns even in new and unfamiliar settings. Using these findings they explore implications for the design of curriculum and learning spaces more broadly. The Forum papers of Erica Blatt and Cassie Quigley complement this analysis. Blatt expands the discussion on space as an active component of learning with an examination of teaching settings, beyond laboratory spaces, as active participants of education. Quigley examines smart spaces as authentic learning spaces while acknowledging how internship experiences all empirical elements of authentic learning including open-ended inquiry and empowerment. In this paper I synthesize these ideas and propose that a narrative structure might better support workflow, student agency and democratic decision making.
Redesigning Learning Spaces: What Do Teachers Want for Future Classrooms?
ERIC Educational Resources Information Center
Pedro, Neuza
2017-01-01
The concepts of future classrooms, multimedia labs or active learning space has recently gained prominence in educational research. Evidence-based research has found that well-designed primary school classrooms can boost students' learning. Also, schools' principals, teachers and students are requesting for more flexible, reconfigurable and modern…
Instructional Facilities for the Information Age. An ERIC Information Analysis Product.
ERIC Educational Resources Information Center
Knirk, Frederick G.
Intended to assist educators and trainers who must make recommendations about facilities to architects and school authorities, this ERIC information analysis project summarizes research on the design of both classrooms and individualized learning spaces that will optimize learning. Six teaching/learning space topics are considered: (1) light and…
ERIC Educational Resources Information Center
Fleischmann, Katja
2014-01-01
Technology has not only changed the work practice of designers but also how design is taught and learned. The emergence of digital technology has made computer labs a central learning space for design students. Since this change, studio-based learning in its traditional sense appears to be in decline in higher education institutions. This is in…
Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned
NASA Technical Reports Server (NTRS)
Graves, Stan R.; McCool, Alex (Technical Monitor)
2001-01-01
An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).
ERIC Educational Resources Information Center
Head, Alison J.
2016-01-01
This paper identifies approaches, challenges, and best practices related to planning and designing today's academic library learning spaces. As part of the Project Information Literacy (PIL) Practitioner Series, qualitative data is presented from 49 interviews conducted with a sample of academic librarians, architects, and library consultants.…
ERIC Educational Resources Information Center
Schimanke, Florian; Mertens, Robert; Vornberger, Oliver
2017-01-01
Learning games are an ideal vessel for many kinds of learning content. Playful interaction with the subject matter makes the human mind more receptive and thus learning itself more effective. Well designed games also come with an addictive game-play that makes users want to play the game over and over. This is intended in fun games but it can be…
Collaborating with Users to Design Learning Spaces: Playing Nicely in the Sandbox
ERIC Educational Resources Information Center
Weaver, Barbara
2009-01-01
What should a campus do when it needs more learning spaces but can't construct new buildings? Dr. Benjamin Sill's first task when he became the director of Clemson University's general engineering program was to find space for classrooms and for the advising program. His search ended in the old YMCA building (Holtzendorff Hall), where space was…
ERIC Educational Resources Information Center
O'Hare, Liam; Stark, Patrick; McGuinness, Carol; Biggart, Andy; Thurston, Allen
2017-01-01
This report describes the development and pilot evaluation of SMART Spaces. This programme aims to boost GCSE science outcomes by applying the principle that information is more easily learnt when it is repeated multiple times, with time passing between the repetitions. This approach is known as "spaced learning" and is contrasted with a…
Quest to Learn: Developing the School for Digital Kids
ERIC Educational Resources Information Center
Salen, Katie; Torres, Robert; Wolozin, Loretta; Rufo-Tepper, Rebecca; Shapiro, Arana
2011-01-01
Quest to Learn, an innovative school for grades 6 to 12 in New York City, grew out of the idea that gaming and game design offer a promising new paradigm for curriculum and learning. The designers of Quest to Learn developed an approach to learning that draws from what games do best: drop kids into inquiry-based, complex problem spaces that are…
Young, Lauren M; Machado, Connie K; Clark, Susan B
2015-01-01
When the University of Mississippi Medical Center embraced a didactic shift to patient-centered, interprofessional education of its medical, dental, nursing, pharmacy, and allied health students, the Rowland Medical Library repurposed space to support the cause and created a collaborative learning space designated for campus-wide utility.
Yang, Peng; Kajiwara, Riki; Tonoki, Ayako; Itoh, Motoyuki
2018-05-01
We designed an automated device to study active avoidance learning abilities of zebrafish. Open source tools were used for the device control, statistical computing, and graphic outputs of data. Using the system, we developed active avoidance tests to examine the effects of trial spacing and aging on learning. Seven-month-old fish showed stronger avoidance behavior as measured by color preference index with discrete spaced training as compared to successive spaced training. Fifteen-month-old fish showed a similar trend, but with reduced cognitive abilities compared with 7-month-old fish. Further, in 7-month-old fish, an increase in learning ability during trials was observed with discrete, but not successive, spaced training. In contrast, 15-month-old fish did not show increase in learning ability during trials. Therefore, these data suggest that discrete spacing is more effective for learning than successive spacing, with the zebrafish active avoidance paradigm, and that the time course analysis of active avoidance using discrete spaced training is useful to detect age-related learning impairment. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Active learning in the space engineering education at Technical University of Madrid
NASA Astrophysics Data System (ADS)
Rodríguez, Jacobo; Laverón-Simavilla, Ana; Lapuerta, Victoria; Ezquerro Navarro, Jose Miguel; Cordero-Gracia, Marta
This work describes the innovative activities performed in the field of space education at the Technical University of Madrid (UPM), in collaboration with the center engaged by the European Space Agency (ESA) in Spain to support the operations for scientific experiments on board the International Space Station (E-USOC). These activities have been integrated along the last academic year of the Aerospatiale Engineering degree. A laboratory has been created, where the students have to validate and integrate the subsystems of a microsatellite by using demonstrator satellites. With the acquired skills, the students participate in a training process centered on Project Based Learning, where the students work in groups to perform the conceptual design of a space mission, being each student responsible for the design of a subsystem of the satellite and another one responsible of the mission design. In parallel, the students perform a training using a ground station, installed at the E-USOC building, which allow them to learn how to communicate with satellites, how to download telemetry and how to process the data. This also allows students to learn how the E-USOC works. Two surveys have been conducted to evaluate the impact of these techniques in the student engineering skills and to know the degree of satisfaction of students with respect to the use of these learning methodologies.
Designing learning spaces for interprofessional education in the anatomical sciences.
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.
Assessing the Learning Value of Campus Open Spaces through Post-Occupancy Evaluations
ERIC Educational Resources Information Center
Spooner, David
2008-01-01
The idea that the physical design and configuration of a campus can elicit and support studying behavior has important ramifications, as all academic institutions underscore learning in their mission statements. This article evaluates the learning value, or ability of a campus space to support studying behavior, through the use of a post-occupancy…
From Libraries to Learning "Libratories:" The New ABC's of 21st-Century School Libraries
ERIC Educational Resources Information Center
Trilling, Bernie
2010-01-01
Libraries are evolving into learning laboratories or "libratories"--environments where a wide variety of learning activities and projects can take place. Part project space, part design studio, part community meeting and presentation space, and part research and development lab, libraries of the future will have a new alphabet of services--the new…
Designing the Learning Context in School for Talent Development
ERIC Educational Resources Information Center
Hertzog, Nancy B.
2017-01-01
This article explores the learning context for talent development in public schools. Total aspects of the environment from physical space, affective elements, and pedagogical approaches affect learning. How teachers believe and perceive their roles as teachers influence instructional design and decision making. In this article, the optimal…
"From Bricks to Clicks": Hybrid Commercial Spaces in the Landscape of Early Literacy and Learning
ERIC Educational Resources Information Center
Nixon, Helen
2011-01-01
In their quest for resources to support children's early literacy learning and development, parents encounter and traverse different spaces in which discourses and artifacts are produced and circulated. This paper uses conceptual tools from the field of geosemiotics to examine some commercial spaces designed for parents and children that…
Entering the Interaction Age: Implementing a Future Vision for Campus Learning Spaces...Today
ERIC Educational Resources Information Center
Milne, Andrew J.
2007-01-01
Learning space design for higher education has become a popular topic of discussion as institutions attempt to chart a course for the future of their campuses. Several authors in EDUCAUSE publications have forecast the future for such spaces, a future infused with new and sometimes exotic-sounding technologies. Indeed, some discussions in the…
The Role of Informal Learning Spaces in Enhancing Student Engagement with Mathematical Sciences
ERIC Educational Resources Information Center
Waldock, Jeff; Rowlett, Peter; Cornock, Claire; Robinson, Mike; Bartholomew, Hannah
2017-01-01
By helping create a shared, supportive, learning community, the creative use of custom-designed spaces outside the classroom has a major impact on student engagement. The intention is to create spaces that promote peer interaction within and across year groups, encourage closer working relationships between staff and students and support specific…
Space Station Control Moment Gyroscope Lessons Learned
NASA Technical Reports Server (NTRS)
Gurrisi, Charles; Seidel, Raymond; Dickerson, Scott; Didziulis, Stephen; Frantz, Peter; Ferguson, Kevin
2010-01-01
Four 4760 Nms (3510 ft-lbf-s) Double Gimbal Control Moment Gyroscopes (DGCMG) with unlimited gimbal freedom about each axis were adopted by the International Space Station (ISS) Program as the non-propulsive solution for continuous attitude control. These CMGs with a life expectancy of approximately 10 years contain a flywheel spinning at 691 rad/s (6600 rpm) and can produce an output torque of 258 Nm (190 ft-lbf)1. One CMG unexpectedly failed after approximately 1.3 years and one developed anomalous behavior after approximately six years. Both units were returned to earth for failure investigation. This paper describes the Space Station Double Gimbal Control Moment Gyroscope design, on-orbit telemetry signatures and a summary of the results of both failure investigations. The lessons learned from these combined sources have lead to improvements in the design that will provide CMGs with greater reliability to assure the success of the Space Station. These lessons learned and design improvements are not only applicable to CMGs but can be applied to spacecraft mechanisms in general.
NASA Space Mechanisms Handbook: Lessons Learned Documented
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1999-01-01
The need to improve space mechanism reliability is underscored by a long history of flight failures and anomalies caused by malfunctioning mechanisms on spacecraft and launch vehicles. Some examples of these failures are listed in a table. Because much experience has been gained over the years, many specialized design practices have evolved and many unsatisfactory design approaches have been identified.NASA and the NASA Lewis Research Center conducted a Lessons Learned Study (refs. 1 and 2) and wrote a handbook to document what has been learned in the past. The primary goals of the handbook were to identify desirable and undesirable design practices for space mechanisms and to reduce the number of failures caused by the repetition of past design errors. Another goal was to identify a variety of design approaches for specific applications and to provide the associated considerations and caveats for each approach in an effort to help designers choose the approach most suitable for each application. This technical summary outlines the goals and objectives of the handbook and study as well as the contents of the handbook.
Switching Reinforcement Learning for Continuous Action Space
NASA Astrophysics Data System (ADS)
Nagayoshi, Masato; Murao, Hajime; Tamaki, Hisashi
Reinforcement Learning (RL) attracts much attention as a technique of realizing computational intelligence such as adaptive and autonomous decentralized systems. In general, however, it is not easy to put RL into practical use. This difficulty includes a problem of designing a suitable action space of an agent, i.e., satisfying two requirements in trade-off: (i) to keep the characteristics (or structure) of an original search space as much as possible in order to seek strategies that lie close to the optimal, and (ii) to reduce the search space as much as possible in order to expedite the learning process. In order to design a suitable action space adaptively, we propose switching RL model to mimic a process of an infant's motor development in which gross motor skills develop before fine motor skills. Then, a method for switching controllers is constructed by introducing and referring to the “entropy”. Further, through computational experiments by using robot navigation problems with one and two-dimensional continuous action space, the validity of the proposed method has been confirmed.
ERIC Educational Resources Information Center
Steinø, Nicolai; Khalid, Md. Saufuddin
2017-01-01
Much architecture and design teaching is based on the studio format, where the co-presence in time and space of students, instructors and physical learning artefacts form a triangle from which the learning emerges. Yet with the advent of online communication platforms and learning management systems (LMS), there is reason to study how these…
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
The Cooperative Satellite Learning Project.
ERIC Educational Resources Information Center
Caler, Michelle
This document describes the Cooperative Satellite Learning Project (CSLP) which is designed to educate students in the areas of space science, engineering, and technology in a business-like atmosphere. The project is a partnership between the National Aeronautics and Space Association (NASA), Allied Signal Technical Services Corporation, and…
ERIC Educational Resources Information Center
MacPhee, Larry
2009-01-01
The opportunity to design a learning space does not come along often. Usually, it involves the construction of a new building or the complete remodel of an old one, and both of these require a lot of money. Smaller projects, such as renovation of a single room or a defined space, can be the best way to test ideas and establish a model for…
Designing Online Learning Communities of Practice: A Democratic Perspective
ERIC Educational Resources Information Center
Sorensen, Elsebeth Korsgaard; Murchu, Daithi O.
2004-01-01
This study addresses the problem of designing an appropriate learning space or architecture for distributed online courses using net-based communication technologies. We apply Wenger's criteria to explore, identify and discuss the design architectures of two online courses from two comparable online Master's programmes, developed and delivered in…
Lessons learned for improving spacecraft ground operations
NASA Astrophysics Data System (ADS)
Bell, Michael; Stambolian, Damon; Henderson, Gena
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.
2012-01-01
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
An Online Learning Space Facilitating Supervision Pedagogies in Science
ERIC Educational Resources Information Center
Picard, M. Y.; Wilkinson, K.; Wirthensohn, M.
2011-01-01
Quality research supervision leading to timely completion and student satisfaction involves explicit pedagogy and effective communication. This article describes the development within an action research cycle of an online learning space designed to achieve these goals. The research "spirals" involved interventions in the form of instructive…
ERIC Educational Resources Information Center
Meskill, Carla; Swan, Karen
A pilot study describes the prototype design and classroom implementation of "Kid's Space," a response-based multimedia application for literature teaching and learning. "Kid's Space" was designed around the metaphor of a universe populated by the individual student's world. Each world supports a variety of personal spaces in…
NASA Space Mechanisms Handbook and Reference Guide Expanded Into CD-ROM Set
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
2002-01-01
Several NASA missions suffered failures and anomalies due to problems in applying space mechanisms technology to specific projects. Research shows that engineers often lack either adequate knowledge of mechanism design or sufficient understanding of how mechanisms affect sensitive systems. The Space Mechanisms Project conducted a Lessons Learned study and published a Space Mechanisms Handbook to help space industry engineers avoid recurring design, qualification, and application problems. The Space Mechanisms Handbook written at the NASA Glenn Research Center details the state-of-the-art in space mechanisms design as of 1998. NASA's objective in developing this Space Mechanisms Handbook was to provide readily accessible information on such areas as space mechanisms design, mechanical component availability and use, testing and qualification of mechanical systems, and a listing of worldwide space mechanisms experts and testing facilities in the United States. This handbook has been expanded into a two-volume CD-ROM set in an Adobe Acrobat format. In addition to the handbook, the CD's include (1) the two volume Space Mechanisms Lessons Learned Study, (2) proceedings from all the NASA hosted Aerospace Mechanisms Symposia held through the year 2000, (3) the Space Materials Handbook, (4) the Lubrication Handbook for the Space Industry, (5) the Structural & Mechanical Systems Long-Life Assurance Design Guidelines, (6) the Space Environments and Effects Source-Book, (7) the Spacecraft Deployable Appendages manual, (8) the Fastener Design Manual, (9) A Manual for Pyrotechnic Design, Development and Qualification, (10) the Report on Alternative Devices to Pyrotechnics on Spacecraft, and (11) Gearing (a manual). In addition, numerous other papers on tribology and lubrication are included.This technical summary of the project provides information on how to obtain the handbook and related information.
Habitability and Human Factors: Lessons Learned in Long Duration Space Flight
NASA Technical Reports Server (NTRS)
Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.
2006-01-01
This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.
NASA Technical Reports Server (NTRS)
Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.
2004-01-01
An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.
Tabletop Support for Collaborative Design: An Initial Evaluation of IdeaSpace
ERIC Educational Resources Information Center
Ioannou, Andri; Loizides, Fernando; Vasiliou, Christina; Zaphiris, Panayiotis; Parmaxi, Antigoni
2015-01-01
With the increasing availability of interactive tabletops, researchers and practitioners have the opportunity to expand the learning environment and provide further support for collaboration and reflective conversations around design problems. In this manuscript, we present IdeaSpace, a tabletop application designed to support collaborative design…
The NASA/USRA ADP at the University of Central Florida
NASA Technical Reports Server (NTRS)
Anderson, L. A.; Armitage, P. K.
1992-01-01
An approach to learning engineering design is discussed with particular attention given to the impact of the NASA/Universities Space Research Association (USRA) Advanced Design Program (ADP) on that process. Attention is also given to a teaching method stressing science discipline and creativity and various selected space related designs.
Espresso and Ambiance: What Public Libraries Can Learn from Bookstores.
ERIC Educational Resources Information Center
Sannwald, William
1998-01-01
Looks at what makes bookstores so successful today. Examines why exterior and interior spaces are important to libraries; how spaces support the library's mission, goals, and objectives; what libraries can learn from the retail market regarding bookstore merchandising and design; and how this information can benefit libraries. (Author/AEF)
Examining Mathematics Teacher Educators' Emerging Practices in Online Environments
ERIC Educational Resources Information Center
Kastberg, Signe; Lynch-Davis, Kathleen; D'Ambrosio, Beatriz
2014-01-01
Teacher professional development and course work using asynchronous online environments seems promising, yet little is known about how mathematics teacher educators (MTEs) develop practices for such spaces. Research has shown that views of learning impact design of online learning spaces, enabling and constraining particular student action. More…
Transformation of Classroom Spaces: Traditional versus Active Learning Classroom in Colleges
ERIC Educational Resources Information Center
Park, Elisa L.; Choi, Bo Keum
2014-01-01
Educational environment influences students' learning attitudes, and the classroom conveys the educational philosophy. The traditional college classroom design is based on the educational space that first appeared in medieval universities. Since then classrooms have not changed except in their size. In an attempt to develop a different perspective…
Qualification and Lessons Learned with Space Flight Fiber Optic Components
NASA Technical Reports Server (NTRS)
Ott, Melanie
2007-01-01
This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.
Lessons Learned in Engineering
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.
Problem Solving Learning Environments and Assessment: A Knowledge Space Theory Approach
ERIC Educational Resources Information Center
Reimann, Peter; Kickmeier-Rust, Michael; Albert, Dietrich
2013-01-01
This paper explores the relation between problem solving learning environments (PSLEs) and assessment concepts. The general framework of evidence-centered assessment design is used to describe PSLEs in terms of assessment concepts, and to identify similarities between the process of assessment design and of PSLE design. We use a recently developed…
The spacing effect in immediate and delayed free recall.
Godbole, Namrata R; Delaney, Peter F; Verkoeijen, Peter P J L
2014-01-01
Spacing repetitions improves learning relative to massing repetitions (the spacing effect). While most studies have examined the spacing effect at short retention intervals, there are contradictory claims about its fate at a delay. Certain empirical findings suggest that the spacing effect persists at a delay. However, a recent theoretical account proposes that in free recall the spacing effect should disappear at a delay. The few studies that have examined the spacing effect at a delay are sub-optimally designed, preventing an unbiased conclusion. The current study used incidental learning and controlled recency and encoding strategy in order to examine the effect of delay on the recall of spaced items within a free recall paradigm. The results demonstrated that the spacing effect persists after a delay. The results point to an important dissociation between intentional forgetting and context-change designs (which produce more forgetting of spaced than massed items) and the passage of time (which produces similar forgetting of spaced and massed items).
An Australian Approach to School Design
ERIC Educational Resources Information Center
Robinson, Leigh; Robinson, Taylor
2009-01-01
Contemporary education design strongly emphasises stimulating, adaptable learning environments, with spaces able to support various styles of teaching and learning. Delivering successful school buildings requires a close collaborative relationship between the architect and all key stakeholders from initial briefing through to project handover. The…
A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits
NASA Astrophysics Data System (ADS)
Moradi, Behzad; Mirzaei, Abdolreza
2016-11-01
A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.
Towards a Theory of Learning for Naming Rehabilitation: Retrieval Practice and Spacing Effects
Schwartz, Myrna F.; Rawson, Katherine A.; Traut, Hilary; Verkuilen, Jay
2016-01-01
Purpose The purpose of this article was to examine how different types of learning experiences affect naming impairment in aphasia. Methods In 4 people with aphasia with naming impairment, we compared the benefits of naming treatment that emphasized retrieval practice (practice retrieving target names from long-term memory) with errorless learning (repetition training, which preempts retrieval practice) according to different schedules of learning. The design was within subjects. Items were administered for multiple training trials for retrieval practice or repetition in a spaced schedule (an item's trials were separated by multiple unrelated trials) or massed schedule (1 trial intervened between an item's trials). In the spaced condition, we studied 3 magnitudes of spacing to evaluate the impact of effortful retrieval during training on the ultimate benefits conferred by retrieval practice naming treatment. The primary outcome was performance on a retention test of naming after 1 day, with a follow-up test after 1 week. Results Group analyses revealed that retrieval practice outperformed errorless learning, and spaced learning outperformed massed learning at retention test and at follow-up. Increases in spacing in the retrieval practice condition yielded more robust learning of retrieved information. Conclusion This study delineates the importance of retrieval practice and spacing for treating naming impairment in aphasia. PMID:27716858
NASA Astrophysics Data System (ADS)
Tong, Y. G.; Abu Bakar, H.; Mohd. Sari, K. A.; Ewon, U.; Labeni, M. N.; Fauzan, N. F. A.
2017-11-01
Classrooms and laboratories are important spaces that use for teaching and learning process in the school. Therefore, good acoustical performances of these spaces are essential to ensure the speech or message from the teacher can be delivered to the students effectively and clearly. The aims of this study is to determine the acoustical performance of the teaching and learning spaces in public school that situated near to the traffic roads. The acoustical performance of the classrooms and laboratories at Sekolah Menengah Kebangsaan Convent Batu Pahat was evaluated in this study. The reverberation time and ambient noise of these learning spaces which are the main parameters for classroom design criteria were evaluated. Field measurements were carried out inside six classrooms and four laboratories unoccupied furnished according to the international standards. The acoustical performances of the tested learning spaces were poor where the noise criteria and reverberation times inside the measured classrooms and laboratories were higher than recommended values.
Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club
NASA Astrophysics Data System (ADS)
Hagenah, Sara
This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.
An Ecological Approach to Learning Dynamics
ERIC Educational Resources Information Center
Normak, Peeter; Pata, Kai; Kaipainen, Mauri
2012-01-01
New approaches to emergent learner-directed learning design can be strengthened with a theoretical framework that considers learning as a dynamic process. We propose an approach that models a learning process using a set of spatial concepts: learning space, position of a learner, niche, perspective, step, path, direction of a step and step…
Redesigning Space for Interdisciplinary Connections: The Puget Sound Science Center
ERIC Educational Resources Information Center
DeMarais, Alyce; Narum, Jeanne L.; Wolfson, Adele J.
2013-01-01
Mindful design of learning spaces can provide an avenue for supporting student engagement in STEM subjects. Thoughtful planning and wide participation in the design process were key in shaping new and renovated spaces for the STEM community at the University of Puget Sound. The finished project incorporated Puget Sound's mission and goals as well…
Dimensions of Learning: Community College Students and Their Perceptions of Learning Spaces
ERIC Educational Resources Information Center
Bowers, Hugh Hawes, III
2016-01-01
Classrooms, both by design and by accident, have been used to teach and reinforce certain ethics and ideologies. Examining the actual structures of a classroom one can recognize forces often hidden or considered background revealing how students and instructors together are culturally bound by educational spaces. Considerable research exists that…
ERIC Educational Resources Information Center
Justin, J. Karl
Variables and parameters affecting architectural planning and audiovisual systems selection for lecture halls and other learning spaces are surveyed. Interrelationships of factors are discussed, including--(1) design requirements for modern educational techniques as differentiated from cinema, theater or auditorium design, (2) general hall…
Space Human Factors: Research to Application
NASA Technical Reports Server (NTRS)
Woolford, Barbara
2008-01-01
Human Factors has been instrumental in preventing potential on-orbit hazards and increasing overall crew safety. Poor performance & operational learning curves on-orbit are mitigated. Human-centered design is applied to optimize design and minimize potentially hazardous conditions, especially with larger crew sizes and habitat constraints. Lunar and Mars requirements and design developments are enhanced, based on ISS Lessons Learned.
Technology & School Design: Creating Spaces for Learning.
ERIC Educational Resources Information Center
Hardt, Richard W.; Wisniewski, John, Ed.; Horner, Kirk C.; Ficklen, Ellen, Ed.; Ward, Anne W.
Schools facing deteriorating conditions, high costs, and outdated building designs are tapping into the special capabilities of information technology to address the learning needs of their students. This book guides school leaders through school facility planning and technology systems planning, describing the importance of long-range planning…
Interplay of Entrepreneurial Learning Forms: A Case Study of Experiential Learning Settings
ERIC Educational Resources Information Center
Ramsgaard, Michael Breum; Christensen, Marie Ernst
2018-01-01
This paper explores the concept of learning in a setting of experiential knowledge acquisition. The main focus is how facilitators of learning processes can design learning spaces, where the boundaries of what is expected from the learner are challenged. The aim is to explore the action-based learning processes occurring in experiential learning…
ERIC Educational Resources Information Center
Hawkins, Donald S.
2016-01-01
Mobile devices have become increasingly more visible within classrooms and informal learning spaces. The purpose of this dissertation is to examine the impact of mobile learning (m-learning) tools to support student learning during teacher-led field trips. Specifically, the research questions for this study are: (a) What conditions affect student…
A Study of the Effects of Digital Learning on Learning Motivation and Learning Outcome
ERIC Educational Resources Information Center
Lin, Ming-Hung; Chen, Huang-Cheng; Liu, Kuang-Sheng
2017-01-01
In the modern society when intelligent mobile devices become popular, the Internet breaks through the restrictions on time and space and becomes a ubiquitous learning tool. Designing teaching activity for digital learning and flexibly applying technology tools are the key issues for current information technology integrated education. In this…
Reflection on "Designerly Talk in Non-Pedagogical Social Spaces"
ERIC Educational Resources Information Center
Gray, Colin M.; Howard, Craig D.
2015-01-01
"Designerly Talk in Non-Pedagogical Social Spaces" (Gray and Howard, 2014) is a paper on a study that was conducted as an early attempt to understand the kinds of talk students engaged in outside of the formal curriculum in student-run communities that enhanced their design learning. While the paper has only been available for a…
Heritage Meets Social Media: Designing a Virtual Museum Space for Young People
ERIC Educational Resources Information Center
Shaw, Ashley; Krug, Don
2013-01-01
This research was conducted as part of a project designed to offer guidance on the development of a youth oriented online space for a popular Canadian museum of heritage and immigration. This space would allow young people to learn about heritage, ethnicity, and cultural identity, and, ideally, aid in the development of a positive ethnic identity.…
Welding in Space: Lessons Learned for Future In Space Repair Development
NASA Technical Reports Server (NTRS)
Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.
2005-01-01
Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.
Alpbach Summer School - a unique learning experience
NASA Astrophysics Data System (ADS)
Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.
2011-12-01
The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.
ERIC Educational Resources Information Center
Faysse, Nicolas; Srairi, Mohamed Taher; Errahj, Mostafa
2012-01-01
Purpose: The study investigated to what extent local farmers' organisations are spaces where farmers discuss, learn and innovate. Design/methodology/approach: Two milk collection cooperatives in Morocco were studied. The study analysed the discussion networks, their impacts on farmers' knowledge and innovation, and the performance of collective…
Designing an Educator Toolkit for the Mobile Learning Age
ERIC Educational Resources Information Center
Burden, Kevin; Kearney, Matthew
2018-01-01
Mobile technologies have been described as 'boundary' objects which enable teachers and learners to transcend many of the barriers such as rigid schedules and spaces which have hitherto characterised traditional forms of education. However, educators need to better understand how to design learning scenarios which genuinely exploit the unique…
ERIC Educational Resources Information Center
Marshalsey, Lorraine
2015-01-01
The studio is the primary site for learning in specialist Communication Design education worldwide. Differing higher education institutions, including art schools and university campuses, have developed a varied range of studio environments. These diverse learning spaces inherently create a complex fabric of affects. In addition, Communication…
Lessons Learned in Engineering. Supplement
NASA Technical Reports Server (NTRS)
Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.
2011-01-01
This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.
Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces
ERIC Educational Resources Information Center
Stoltzfus, Jon R.; Libarkin, Julie
2016-01-01
SCALE-UP-type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well…
Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2017-01-01
This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general.
Cultivating Collaborations: Site Specific Design for Embodied Science Learning.
Gill, Katherine; Glazier, Jocelyn; Towns, Betsy
2018-05-21
Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.
Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
NASA Astrophysics Data System (ADS)
Bykov, Tikhon
2010-03-01
In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.
ERIC Educational Resources Information Center
Lee, Dabae; Morrone, Anastasia S.; Siering, Greg
2018-01-01
To promote student learning and bolster student success, higher education institutions are increasingly creating large active learning classrooms to replace traditional lecture halls. Although there have been many efforts to examine the effects of those classrooms on learning outcomes, there is paucity of research that can inform the design and…
Machine-Learning Approach for Design of Nanomagnetic-Based Antennas
NASA Astrophysics Data System (ADS)
Gianfagna, Carmine; Yu, Huan; Swaminathan, Madhavan; Pulugurtha, Raj; Tummala, Rao; Antonini, Giulio
2017-08-01
We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.
Comparative Studies of Prediction Strategies for Solar X-ray Time Series
NASA Astrophysics Data System (ADS)
Muranushi, T.; Hattori, T.; Jin, Q.; Hishinuma, T.; Tominaga, M.; Nakagawa, K.; Fujiwara, Y.; Nakamura, T.; Sakaue, T.; Takahashi, T.; Seki, D.; Namekata, K.; Tei, A.; Ban, M.; Kawamura, A. D.; Hada-Muranushi, Y.; Asai, A.; Nemoto, S.; Shibata, K.
2016-12-01
Crucial virtues for operational space weather forecast are real-timeforecast ability, forecast precision and customizability to userneeds. The recent development of deep-learning makes it veryattractive to space weather, because (1) it learns gradually incomingdata, (2) it exhibits superior accuracy over conventional algorithmsin many fields, and (3) it makes the customization of the forecasteasier because it accepts raw images.However, the best deep-learning applications are only attainable bycareful human designers that understands both the mechanism of deeplearning and the application field. Therefore, we need to foster youngresearchers to enter the field of machine-learning aided forecast. So,we have held a seminar every Monday with undergraduate and graduatestudents from May to August 2016.We will review the current status of space weather science and theautomated real-time space weather forecast engine UFCORIN. Then, weintroduce the deep-learning space weather forecast environments wehave set up using Python and Chainer on students' laptop computers.We have started from simple image classification neural network, thenimplemented space-weather neural network that predicts future X-rayflux of the Sun based on the past X-ray lightcurve and magnetic fieldline-of-sight images.In order to perform each forecast faster, we have focused on simplelightcurve-to-lightcurve forecast, and performed comparative surveysby changing following parameters: The size and topology of the neural network Batchsize Neural network hyperparameters such as learning rates to optimize the preduction accuracy, and time for prediction.We have found how to design compact, fast but accurate neural networkto perform forecast. Our forecasters can perform predictionexperiment for four-year timespan in a few minutes, and achieveslog-scale errors of the order of 1. Our studies is ongoing, and inour talk we will review our progress till December.
Space-Centred English Language Learning: The Cyprus Case
ERIC Educational Resources Information Center
Kurt, Mustafa; Kurt, Sevinc
2013-01-01
This paper discusses a study conducted in the Ledra/Lokmaci Milieu in Cyprus, the area in the centre of the divided walled city of Nicosia where Greek and Turkish Cypriots have to use English to communicate with one another. The aim of the study was to locate the effects of a learning space on language learners, teachers and syllabus designers.…
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2009-01-01
This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.
Active Learning Methods and Technology: Strategies for Design Education
ERIC Educational Resources Information Center
Coorey, Jillian
2016-01-01
The demands in higher education are on the rise. Charged with teaching more content, increased class sizes and engaging students, educators face numerous challenges. In design education, educators are often torn between the teaching of technology and the teaching of theory. Learning the formal concepts of hierarchy, contrast and space provide the…
ERIC Educational Resources Information Center
Best, Marnie; MacGregor, Denise
2017-01-01
Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding…
Promoting Effective E-Learning Practices through the Constructivist Pedagogy
ERIC Educational Resources Information Center
Keengwe, Jared; Onchwari, Grace; Agamba, Joachim
2014-01-01
Although rapid advances in technology has allowed for the growth of collaborative e-learning experiences unconstrained by time and space, technology has not been heavily infused in the activities of teaching and learning. This article examines the theory of constructivism as well as the design of e-learning activities using constructivist…
Best Practices in Learning Space Design: Engaging Users
ERIC Educational Resources Information Center
Grummon, Phyllis T. H.
2009-01-01
Conceptions of the learning process have varied over time, from seeing learners as "blank slates" for a teacher to fill to the view that, unless a learner is engaged in actively constructing knowledge, little will be learned or retained. As research on the physiological aspects of learning has revealed, active engagement with the learning…
Technologies, Learning and Culture: Some Emerging Themes
ERIC Educational Resources Information Center
Lally, Vic; Sclater, Madeleine; Brown, Ken
2018-01-01
This paper reflects on some of the themes emerging from a consideration of recent research at the nexus of technologies, learning and culture. The authors comment on the expansive nature of the concept of learning spaces in papers featuring an investigation of technology enhanced learning (TEL) and communication design studios in the UK and…
STEM-Focused Academies in Urban Schools: Tensions and Possibilities
ERIC Educational Resources Information Center
Nasir, Na'ilah Suad; Vakil, Sepehr
2017-01-01
Drawing on data from a study of learning, race, and equity in an urban high school organized around specialized learning academies, we examine the ways in which the design, framing, construction, and organization of learning spaces deeply influences the types of access to rigorous learning that students experience. We draw on the notion of…
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
Delta clipper lessons learned for increased operability in reusable space vehicles
NASA Astrophysics Data System (ADS)
Charette, Ray O.; Steinmeyer, Don A.; Smiljanic, Ray R.
1998-01-01
Important lessons were learned from the design, development, and test (DD&T), and operation of the Delta Clipper Experimental (DC-X/XA) Reusable Launch Vehicle (RLV) which apply to increased operability for the operational Reusable Space Vehicles (RSVs). Boeing maintains a continuous process improvement program that provides the opportunity to ``institutionalize'' the results from projects such as Delta Clipper for application to product improvement in future programs. During the design phase, operations and supportability (O&S) were emphasized to ensure aircraft-like operations, traceable to an operational RSV. The operations personnel, flight, and ground crew and crew chief were actively involved in the design, manufacture, and checkout of the systems. Changes and additions to capability were implemented as they evolved from knowledge gained in each phase of development. This paper presents key lessons learned with respect to design and implementation of flight systems, propulsion, airframe, hydraulics, avionics, and ground operations. Information was obtained from discussions with personnel associated with this program concerning their experience and lessons learned. Additionally, field process records and operations timelines were evaluated for applicability to RSVs. The DC-X program pursued reusability in all aspects of the design, a unique approach in rocket system development.
International Space Station Materials: Selected Lessons Learned
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
2007-01-01
The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.
Understanding Mechanical Design with Respect to Manufacturability
NASA Technical Reports Server (NTRS)
Mondell, Skyler
2010-01-01
At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.
Liberated Spaces: Purposeful School Design Says Goodbye to Cells and Bells
ERIC Educational Resources Information Center
Lewington, Jennifer
2012-01-01
School districts in Canada are part of a growing international movement that puts strong emphasis on school design to serve the diverse needs and learning styles of students for the 21st century economy. Diverse, purposeful spaces for individual and group activities, "schools within schools," support for cross-disciplinary collaboration…
ERIC Educational Resources Information Center
Held, John
2012-01-01
As educators consider designing excellent spaces for education, it is helpful to take a broader look and talk about their approach to design the questions they need to ask. Rather than talk about specific designs of school buildings, the author suggests that they should refocus their vision and look at how ideas of citizenship, the home and…
ERIC Educational Resources Information Center
Kim Hassell,
2011-01-01
Classroom design for the 21st-century learning environment should accommodate a variety of learning skills and needs. The space should be large enough so it can be configured to accommodate a number of learning activities. This also includes furniture that provides flexibility and accommodates collaboration and interactive work among students and…
ERIC Educational Resources Information Center
American Electric Power System, New York, NY.
The basic factors in personal comfort, the nature of the processes of teaching and learning, and the effects of environment on these functions are discussed. The role of climate conditioning and space conditioning as interpreted by sensory factors during the learning process gives guidelines for design solutions. Technical supplements on climate…
How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.
2016-01-01
How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.
NASA Technical Reports Server (NTRS)
1995-01-01
In this educational video series, 'Liftoff to Learning', astronauts from the STS-37 Space Shuttle Mission (Jay Apt, Jerry Ross, Ken Cameron, Steve Nagel, and Linda Godwin) show what EVA (extravehicular activity) means, talk about the history and design of the space suits and why they are designed the way they are, describe different ways they are used (payload work, testing and maintenance of equipment, space environment experiments) in EVA work, and briefly discuss the future applications of the space suits. Computer graphics and animation is included.
Lessons learned from the Space Flyer Unit (SFU) mission.
Kuriki, Kyoichi; Ninomiya, Keiken; Takei, Mitsuru; Matsuoka, Shinobu
2002-11-01
The Space Flyer Unit (SFU) system and mission chronology are briefly introduced. Lessons learned from the SFU mission are categorized as programmatic and engineering lessons. In the programmatic category are dealt with both international and domestic collaborations. As for the engineering lessons safety design, orbital operation, in-flight anomaly, and post flight analyses are the major topics reviewed. c2002 Elsevier Science Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hock, Tan Tong; Tarmizi, Rohani Ahmad; Yunus, Aida Suraya Md.; Ayub, Ahmad Fauzi
2015-01-01
This study was conducted using a new hybrid method of research which combined qualitative and quantitative designs to investigate the viewpoints of primary school students' conceptual understanding in learning geometry from the aspect of shapes and spaces according to van Hiele theory. Q-methodology is used in this research to find out what…
ERIC Educational Resources Information Center
Deni, Adriano
2012-01-01
The brief from local government called for an environmentally sustainable school that establishes new models for excellence in curriculum, teaching, and learning. With its visionary sine wave design concept, flexible learning areas, shared community spaces and "extensive" green roof system--a first for an Australian school--the new $33…
Trainee Teachers' Conceptions of Teaching and Learning, Classroom Layout and Exam Design
ERIC Educational Resources Information Center
Betoret, Fernando Domenech; Artiga, Amparo Gomez
2004-01-01
The objective of this study centres on identifying and classifying the conceptions of teaching and learning held by future secondary school teachers, and on analysing the relationship between these conceptions and the way classroom space is organized and exams are designed. The test instruments used were applied to a sample of 138 graduates, who…
Place-People-Practice-Process: Using Sociomateriality in University Physical Spaces Research
ERIC Educational Resources Information Center
Acton, Renae
2017-01-01
Pedagogy is an inherently spatial practice. Implicit in much of the rhetoric of physical space designed for teaching and learning is an ontological position that assumes material space as distinct from human practice, often conceptualising space as causally (and simplistically) impacting upon people's behaviours. An alternative, and growing,…
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry
2014-01-01
Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.
ERIC Educational Resources Information Center
Sneider, Cary; DeVore, Edna
1986-01-01
Reviews software packages under these headings: (1) simulations of experiments; (2) space flight simulators; (3) planetariums; (4) space adventure games; and (5) drill and practice packages (designed for testing purposes or for helping students learn basic astronomy vocabulary). (JN)
Legerton, Graham
2013-09-01
The refurbishment and extension of existing university buildings is a critical consideration for many universities. This article details an architect's perspective of an innovative and collaborative design approach to transforming an existing library into a futuristic and student-centric interactive learning environment. The design is responsive to people, place, the community and the environment, due, in part, to the enhanced physical permeability of the building. Associated user-group forums comprised the end user client, the university's facilities body, the builder, lead architectural consultants, the Centre for Indigenous Students (Gumurrii Centre) and architectural sub-consultants. This article discusses five key design moves--"triangulate", "unique geometries and spaces", "learning aviary", "sky lounge" and "understanding flexibility". It goes on to discuss these elements in relation to designing spaces to enhance interprofessional education and collaboration. In summary, this article identifies how it is possible to maximise the value and characteristics of an existing library whilst creating a series of innovative spaces that offer choice, encourage serendipity and embrace experimentation.
Revisualising Innovative Online Learning Spaces in an Early Childhood Teacher Education Programme
ERIC Educational Resources Information Center
Pohio, Lesley; Lee, Maryann
2012-01-01
This paper presents a descriptive analysis of the challenges and rewards of revisualising and designing an innovative online space for a first-year Bachelor of Education Early Childhood Education course, Visual Arts in the Early Years. The perspectives offered are drawn from a design project involving collaboration between the course lecturer and…
Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control
NASA Astrophysics Data System (ADS)
Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi
Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.
NASA Astrophysics Data System (ADS)
Anbar, Ariel; Center for Education Through eXploration
2018-01-01
Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education that benefits students through adaptative personalization and enhanced access. Building this bridge requires close partnerships among scientists, technologists, and educators.The Infiniscope project fosters such partnerships to produce exploration-driven online learning experiences that teach basic science concepts using a combination of authentic space science narratives, data, and images, and a personalized guided inquiry approach. Infiniscope includes a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Infiniscope experiences are built around a new theory of digital learning design that we call “education through exploration” (ETX) developed during the creation of successful online, interactive science courses offered at ASU and other institutions. ETX builds on the research-based practices of active learning and guided inquiry to provide a set of design principles that aim to develop higher order thinking skills in addition to understanding of content. It is employed in these experiences by asking students to solve problems and actively discover relationships, supported by an intelligent tutoring system which provides immediate, personalized feedback and scaffolds scientific thinking and methods. The project is led by ASU’s School of Earth and Space Exploration working with learning designers in the Center for Education Through eXploration, with support from NASA’s Science Mission Directorate as part of the NASA Exploration Connection program.We will present an overview of ETX design, the Infinscope project, and emerging evidence of effectiveness.
Lessons Learned from Ares I Upper Stage Structures and Thermal Design
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq
2012-01-01
The Ares 1 Upper Stage was part of the vehicle intended to succeed the Space Shuttle as the United States manned spaceflight vehicle. Although the Upper Stage project was cancelled, there were many lessons learned that are applicable to future vehicle design. Lessons learned that are briefly detailed in this Technical Memorandum are for specific technical areas such as tank design, common bulkhead design, thrust oscillation, control of flight and slosh loads, purge and hazardous gas system. In addition, lessons learned from a systems engineering and vehicle integration perspective are also included, such as computer aided design and engineering, scheduling, and data management. The need for detailed systems engineering in the early stages of a project is emphasized throughout this report. The intent is that future projects will be able to apply these lessons learned to keep costs down, schedules brief, and deliver products that perform to the expectations of their customers.
Space Science News: from archive to teaching resource, the secret life of newspapers
NASA Astrophysics Data System (ADS)
McClune, Billy; Jarman, Ruth
2004-03-01
This article illustrates the use of newspapers as a resource for teaching and learning about science. Science teachers in Northern Ireland have produced a special edition news magazine, Space Science News, to support the teaching and learning of aspects of space science in secondary school. The resource is based on authentic newspaper articles and was developed in partnership with a local newspaper and with the support of the Particle Physics and Astronomy Research Council (PPARC). Articles have been grouped into curriculum-related 'themes' and are accompanied by a range of classroom activities designed to support learning in this area, to develop literacy skills and to promote awareness of media- and citizenship-related issues.
ERIC Educational Resources Information Center
White, Steven; White, Su
2016-01-01
Massive Open Online Courses (MOOCs) are frequently portrayed as "agents of change" in higher education (HE), impacting on institutional practices, processes and structures throughout HE. However, these courses do not "fit" neatly with the established aims and functions of universities, and accounts of technology-led change in…
NASA Technical Reports Server (NTRS)
Williams, David E.
2006-01-01
This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.
Scobee Curricular Units: A Focus on Studies of Space.
ERIC Educational Resources Information Center
Robinson, Paul; And Others
The three units of study presented are designed to promote space-related learning opportunities for gifted students and were prepared by recipients of the Scobee curriculum awards. In "Galactic Colonization for Our Future Astronauts" (Jacqueline Shimonauff), elementary-level students simulate a space experience in which a ship carries materials…
ERIC Educational Resources Information Center
Galica, Carol
1997-01-01
Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…
Designing Digital Game-Based Learning Environments
ERIC Educational Resources Information Center
An, Yun-Jo; Bonk, Curtis J.
2009-01-01
With the emergence of the Web 2.0 and other technologies for learning, there are a variety of special places that did not exist previously in which to pursue learning. Not just a few dozen more but millions more. Many of these are not the physical learning spaces one might envision but entirely virtual or digital ones. As an example, the area of…
Developing an e-pedagogy for interprofessional learning: Lecturers' thinking on curriculum design.
Gordon, Frances; Booth, Karen; Bywater, Helen
2010-09-01
E-learning is seen as offering possible solutions to the barriers of large scale interprofessional education. This paper discusses a study that explored the underlying pedagogical thinking employed by lecturers when planning e-learning materials for interprofessional education. The themes uncovered in the data were: "reflective spaces for creativity"; "from logistics to learner autonomy"; "authentic"; "constructivist approaches"; "inter-active learning to promote collaboration" and "bringing the patient/service user into the classroom". Discussions about e-learning can focus on the technological aspects of design and delivery. However the findings of this study revealed that technology was not a consideration for the lecturers who saw e-learning as a vehicle to promote interactive learning. Their prime focus was revealed as the application of learning theory to the design of materials that would support students' acquisition of collaborative skills and the generation of new interprofessional knowledge.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
ERIC Educational Resources Information Center
Barrett, Angeline M.; Bainton, David
2016-01-01
The 2030 education goal privileges "relevant learning outcomes" as the evaluative space for quality improvement. Whilst the goal was designed for global level monitoring, its influence cuts across different scales. Implementation of the goal involves reinterpreting "relevant learning" at the local level. One way that small…
The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment
ERIC Educational Resources Information Center
Dragon, Toby
2013-01-01
This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…
ERIC Educational Resources Information Center
Johnson, Paul
2017-01-01
Compelling evidence links childhood experiences in quasi-natural settings with learning and wellbeing, but, as cities grow, children's activities have been increasingly restricted to de-natured spaces that are designed or controlled by adults. In recent years, academics and education practitioners have campaigned to reverse this trend, and one…
ERIC Educational Resources Information Center
Tharp, D. Scott
2017-01-01
Online learning, defined as the use of Web-based technology to facilitate some or all learning experiences, continues to interest many universities. While technology shapes the landscape of higher education, questions remain regarding the ability and appropriateness of online learning spaces for social justice education (Dominique, 2016). This…
Reforming the Environment: The Influence of the Roundtable Classroom Design on Interactive Learning
ERIC Educational Resources Information Center
Parsons, Caroline S.
2017-01-01
This study investigated the influence of physical and virtual learning spaces on interactive learning in a college and university setting. Qualitative analysis of an undergraduate liberal arts program that employs the use of roundtable classrooms was conducted. Interview and focus group data from students and faculty, along with classroom…
Being "(T)Here": Mobilisin "Mediaspaces" of Learning
ERIC Educational Resources Information Center
Enriquez, Judith
2013-01-01
The mobile learning literature, particularly studies that focus on interaction or context, has the tendency to be top-down and highly scripted. Mobility is designed into learning scenarios and spaces. In this article, I proposed a practice perspective for research as an alternative starting point to "set in motion" all modes of learning…
NASA Astrophysics Data System (ADS)
Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta
2015-10-01
This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
Installation of TVC Actuators in a Two Axis Inertial Load Simulator Test Stand
NASA Technical Reports Server (NTRS)
Dziubanek, Adam
2013-01-01
This paper is about the installation of Space Shuttle Main Engines (SSME) actuators in the new Two Axis Inertial Load Simulator (ILS) at MSFC. The new test stand will support the core stage of the Space Launch System (SLS). Because of the unique geometry of the new test stand standard actuator installation procedures will not work. I have been asked to develop a design on how to install the actuators into the new test stand. After speaking with the engineers and technicians I have created a possible design solution. Using Pro Engineer design software and running my own stress calculations I have proven my design is feasible. I have learned how to calculate the stresses my design will see from this task. From the calculations I have learned I have over built the apparatus. I have also expanded my knowledge of Pro Engineer and was able to create a model of my idea.
Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership
NASA Technical Reports Server (NTRS)
Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan
2003-01-01
With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will suggest a possible future for the NASA - National Guard Bureau partnership, one potentially to include live multi-party interaction of hundreds of students in several countries with astronauts, scientists, engineers and designers. To inspire the next generation of explorers as only NASA can!
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience needs and using evaluation to support a dedicated user base across the country.
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomes, William J.; Day, Lance W.; MacMurphy, Shawn
2017-11-01
The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.
Web-Based Learning Information System for Web 3.0
NASA Astrophysics Data System (ADS)
Rego, Hugo; Moreira, Tiago; García-Peñalvo, Francisco Jose
With the emergence of Web/eLearning 3.0 we have been developing/adjusting AHKME in order to face this great challenge. One of our goals is to allow the instructional designer and teacher to access standardized resources and evaluate the possibility of integration and reuse in eLearning systems, not only content but also the learning strategy. We have also integrated some collaborative tools for the adaptation of resources, as well as the collection of feedback from users to provide feedback to the system. We also provide tools for the instructional designer to create/customize specifications/ontologies to give structure and meaning to resources, manual and automatic search with recommendation of resources and instructional design based on the context, as well as recommendation of adaptations in learning resources. We also consider the concept of mobility and mobile technology applied to eLearning, allowing access by teachers and students to learning resources, regardless of time and space.
Demonstrating and Evaluating an Action Learning Approach to Building Project Management Competence
NASA Technical Reports Server (NTRS)
Kotnour, Tim; Starr, Stan; Steinrock, T. (Technical Monitor)
2001-01-01
This paper contributes a description of an action-learning approach to building project management competence. This approach was designed, implemented, and evaluated for use with the Dynacs Engineering Development Contract at the Kennedy Space Center. The aim of the approach was to improve three levels of competence within the organization: individual project management skills, project team performance. and organizational capabilities such as the project management process and tools. The overall steps to the approach, evaluation results, and lessons learned are presented. Managers can use this paper to design a specific action-learning approach for their organization.
ERIC Educational Resources Information Center
Turvey, Keith
2010-01-01
This paper argues that if new communications technologies and online spaces are to yield "new relationship[s] with learners" then research that is tuned to recognize, capture and explain the pedagogical processes at the center of such interactions is vital. This has implications for the design of pedagogical activities within Initial…
ERIC Educational Resources Information Center
Hoel, Tore; Chen, Weiqin
2016-01-01
Studies have shown that issues of privacy, control of data, and trust are essential to implementation of learning analytics systems. If these issues are not addressed appropriately, systems will tend to collapse due to a legitimacy crisis, or they will not be implemented in the first place due to resistance from learners, their parents, or their…
ERIC Educational Resources Information Center
Piazzoli, Erika
2011-01-01
This paper describes a research project designed to find out what happens when process drama strategies are applied to an advanced level of additional language learning. In order to answer this question, the author designed and facilitated six process drama workshops as part of a third-year course of Italian at a university in Brisbane, Australia.…
The spacing effect and metacognitive control.
Mulligan, Neil W; Peterson, Daniel J
2014-01-01
Research suggests that spaced learning, compared with massed learning, results in superior long-term retention (the spacing effect). Son (2010) identified a potentially important moderator of the spacing effect: metacognitive control. Specifically, when participants chose massed restudy but were instead forced to space the restudy, the spacing effect disappeared in adults (or was reduced in children). This suggests spacing is less effective (or possibly ineffective) if implemented against the wishes of the learner. A closer examination of this paradigm, however, reveals that item-selection issues might alternatively explain the disappearance of the spacing effect. In the current experiments, we replicated the original design demonstrating that an item-selection confound is operating. Furthermore, relative to a more appropriate baseline, the spacing effect was significant and of the same size whether participants' restudy choices were honored or violated. In this paradigm, metacognitive control does not appear to moderate the spacing effect.
Acerbi, Alberto; Tennie, Claudio; Mesoudi, Alex
2016-09-01
The extensive use of social learning is considered a major reason for the ecological success of humans. Theoretical considerations, models and experiments have explored the evolutionary basis of social learning, showing the conditions under which learning from others is more adaptive than individual learning. Here we present an extension of a previous experimental set-up, in which individuals go on simulated 'hunts' and their success depends on the features of a 'virtual arrowhead' they design. Individuals can modify their arrowhead either by individual trial and error or by copying others. We study how, in a multimodal adaptive landscape, the smoothness of the peaks influences learning. We compare narrow peaks, in which solutions close to optima do not provide useful feedback to individuals, to wide peaks, where smooth landscapes allow an effective hill-climbing individual learning strategy. We show that individual learning is more difficult in narrow-peaked landscapes, but that social learners perform almost equally well in both narrow- and wide-peaked search spaces. There was a weak trend for more copying in the narrow than wide condition, although as in previous experiments social information was generally underutilized. Our results highlight the importance of tasks' design space when studying the adaptiveness of high-fidelity social learning.
"A Really Nice Spot": Evaluating Place, Space, and Technology in Academic Libraries
ERIC Educational Resources Information Center
Khoo, Michael J.; Rozaklis, Lily; Hall, Catherine; Kusunoki, Diana
2016-01-01
This article describes a qualitative mixed-method study of students' perceptions of place and space in an academic library. The approach is informed by Scott Bennett's model of library design, which posits a shift from a "book-centered" to a technology supported "learning centered" paradigm of library space. Two surveys…
Comparing Interaction and Use of Space in Traditional and Innovative Classrooms
ERIC Educational Resources Information Center
Gurzynski-Weiss, Laura; Long, Avizia Y.; Solon, Megan
2015-01-01
Despite myriad changes to language teaching methods over time, university-level classroom spaces have largely remained the same--until now. Recent innovations in classroom space design center on technological advances, include movable furniture and coffee-shop style rooms, and are believed to facilitate language learning in several ways.…
Lessons Learned From Atomic Oxygen Interaction With Spacecraft Materials in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; deGroh, Kim, K.; Miller, Sharon K.; Waters, Deborah L.
2008-01-01
There have been five Materials International Space Station Experiment (MISSE) passive experiment carriers (PECs) (MISSE 1-5) to date that have been launched, exposed in space on the exterior of International Space Station (ISS) and then returned to Earth for analysis. An additional four MISSE PECs (MISSE 6A, 6B, 7A, and 7B) are in various stages of completion. The PECs are two-sided suitcase to size sample carriers that are intended to provide information on the effects of the low Earth orbital environment on a wide variety of materials and components. As a result of post retrieval analyses of the retrieved MISSE 2 experiments and numerous prior space experiments, there have been valuable lessons learned and needs identified that are worthy of being documented so that planning, design, and analysis of future space environment experiments can benefit from the experience in order to maximize the knowledge gained. Some of the lessons learned involve the techniques, concepts, and issues associated with measuring atomic oxygen erosion yields. These are presented along with several issues to be considered when designing experiments, such as the uncertainty in mission duration, scattering and contamination effects on results, and the accuracy of measuring atomic oxygen erosion.
Alignment achieved? The learning landscape and curricula in health profession education.
Nordquist, Jonas
2016-01-01
The overall aim of this review is to map the area around the topic of the relationship between physical space and learning and to then draw further potential implications from this for the specific area of health profession education. The nature of the review is a scoping review following a 5-step-model by Arksey & O'Malley. The charting of the data has been conducted with the help of the networked learning landscape framework from Nordquist and Laing. The majority of the research studies on classroom-scale level have focused on how technology may enable active learning. There are no identified research studies on the building-scale level. Hence, the alignment of curricula and physical learning spaces has scarcely been addressed in research from other sectors. In order to 'create a field', conclusions from both case studies and research in related areas must be identified and taken into account to provide insights into health profession education. Four areas have been identified as having potential for future development in health profession education: (i) active involvement of faculty members in the early stages of physical space development; (ii) further development of the assessment strategies for evaluating how physical space impacts learning; (iii) exploration of how informal spaces are being developed in other sectors; and (iv) initiating research projects in HPE to study how informal spaces impact on students' learning. Potentially, the results of this scoping review will result in better future research questions and better-designed studies in this new and upcoming academic field of aligning physical learning spaces and curricula in health profession education. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Dittoe, William; Porter, Nat
2007-01-01
For more than a decade, educators and designers have been moving tentatively into uncharted waters. This article reports that administrators, faculty, and planners now recognize that learning spaces should be developed for reasons beyond utilization numbers. With declining retention and graduation rates, education institutions are acknowledging…
ERIC Educational Resources Information Center
Veloso, Luísa; Marques, Joana S.
2017-01-01
This article on secondary schools science laboratories in Portugal focuses on how school space functions as a pedagogical and political instrument by contributing to shape the conditions for teaching and learning dynamics. The article places the impact of changes to school layouts within the larger context of a public school renovation programme,…
ERIC Educational Resources Information Center
Sorensen, Elsebeth Korsgaard
2007-01-01
Purpose: The purpose of this paper is to address the challenge and potential of online higher and continuing education, of fostering and promoting, in a global perspective across time and space, democratic values working for a better world. Design/methodology/approach: The paper presents a generalized dialogic learning architecture of networked…
The Space for Social Media in Structured Online Learning
ERIC Educational Resources Information Center
Salmon, Gilly; Ross, Bella; Pechenkina, Ekaterina; Chase, Anne-Marie
2015-01-01
In this paper, we explore the benefits of using social media in an online educational setting, with a particular focus on the use of Facebook and Twitter by participants in a Massive Open Online Course (MOOC) developed to enable educators to learn about the Carpe Diem learning design process. We define social media as digital social tools and…
A Storyville Education: Spatial Practices and the Learned Sex Trade in the City That Care Forgot
ERIC Educational Resources Information Center
Platt, R. Eric; Hill, Lilian H.
2014-01-01
Storyville, the legalized red-light district of New Orleans (1897-1917), was a designated space containing informal opportunities for learning in which its residents practiced the sex trade. Although Storyville was created to regulate prostitution, prostitutes and madams learned the city's legal system, politics, and economics to survive in a…
The Tree of Knowledge Project: Organic Designs as Virtual Learning Spaces
ERIC Educational Resources Information Center
Gui, Dean A. F.; AuYeung, Gigi
2013-01-01
The virtual Department of English at the Hong Kong Polytechnic University, also known as the Tree of Knowledge, is a project premised upon using ecology and organic forms to promote language learning in Second Life (SL). Inspired by Salmon's (2010) Tree of Learning concept this study examines how an interactive ecological environment--in this…
NASA Technical Reports Server (NTRS)
Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
Re-Imagining the 21st Century School Library: From Storage Space to Active Learning Space
ERIC Educational Resources Information Center
Grigsby, Susan K. S.
2015-01-01
As libraries adjust to the needs of the 21st century, there needs to be a different way of thinking in regards to its design. School libraries have traditionally been designed as large rooms for the storage of materials for research and pleasure reading. As more and more districts focus their attention on digital acquisitions, the need for storage…
Mission Possible: BioMedical Experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Bopp, E.; Kreutzberg, K.
2011-01-01
Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.
Technical assessment of Mir-1 life support hardware for the international space station
NASA Technical Reports Server (NTRS)
Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.
1994-01-01
NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.
ERIC Educational Resources Information Center
Selmer, Sarah; Valentine, Keri; Luna, Melissa; Rummel, Sarah; Rye, James
2016-01-01
Using Garden Based Learning (GBL) as an integrated mathematics and science unit, this article describes the mathematical journey of students as they work through the process of designing their own garden beds.
ERIC Educational Resources Information Center
Fisher, Kenn; Newton, Clare
2014-01-01
The twenty-first century has seen the rapid emergence of wireless broadband and mobile communications devices which are inexorably changing the way people communicate, collaborate, create and transfer knowledge. Yet many higher education campus learning environments were designed and built in the nineteenth and twentieth centuries prior to…
Fifty Years of Observing Hardware and Human Behavior
NASA Technical Reports Server (NTRS)
McMann, Joe
2011-01-01
During this half-day workshop, Joe McMann presented the lessons learned during his 50 years of experience in both industry and government, which included all U.S. manned space programs, from Mercury to the ISS. He shared his thoughts about hardware and people and what he has learned from first-hand experience. Included were such topics as design, testing, design changes, development, failures, crew expectations, hardware, requirements, and meetings.
Machine learning and data science in soft materials engineering
NASA Astrophysics Data System (ADS)
Ferguson, Andrew L.
2018-01-01
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
Machine learning and data science in soft materials engineering.
Ferguson, Andrew L
2018-01-31
In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.
ERIC Educational Resources Information Center
Smith, Sylvia
1990-01-01
Designs a lesson to help secondary art students overcome the fear of a threatening blank page. Students learned proportional enlargement, how to evaluate objectively, and gained experience with visual balance. Displays three examples of student's artwork generated by geometric design problems. (DB)
ERIC Educational Resources Information Center
James, Darren L.; Infanzon, Nestor
2010-01-01
Each educational environment exhibits a distinct personality that supports and influences the student body. As educational institutions develop new spaces and buildings for university and college campuses nationwide, the need increasingly arises to provide spaces that both help fulfill each school's educational mission and reinforce the vitality…
2012-10-20
John C. Stennis Space Center educators and area teachers partnered together during a professional development workshop Oct. 20 to learn about the LEGO Bricks in Space curriculum issued by NASA. The curriculum is designed to encourage students in areas of science, technology, engineering and mathematics. The Stennis Space Center Educator Resource Center hosted the workshop to equip teachers of grades 3-12.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Anderson, B. Jeffrey
2005-01-01
In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.
NASA Technical Reports Server (NTRS)
Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.
2005-01-01
Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.
Passion play: Will Wright and games for science learning
NASA Astrophysics Data System (ADS)
Ching, Dixie
2012-12-01
Researchers and instructional designers are exploring the possibilities of using video games to support STEM education in the U.S., not only because they are a popular media form among youth, but also because well-designed games often leverage the best features of inquiry learning. Those interested in using games in an educational capacity may benefit from an examination of the work of video game designer Will Wright. Wright designs through a constructivist lens and his open-ended, sandbox games ( SimCity, The Sims, Spore) present wide "possibility spaces" that allow players to exercise their critical thinking and problem solving skills. His games invoke a delight in discovery that inspire creative acts and interest-driven learning both during and outside of the game. Finally, he reminds us that failure-based learning is a viable strategy for building expertise and understanding.
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
First Spacelab mission status and lessons learned
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.; Smith, M. J.; Mullinger, D.
1982-01-01
There are 38 experiments and/or facilities currently under development, or undergoing testing, which will be incorporated into Spacelab for its first mission. These experiments cover a range of scientific disciplines which includes atmospheric research, life sciences, space plasma research, materials science, and space industrialization technology. In addition to the full development of individual experiments, the final design of the integrated payload and the development of all requisite integration hardware have been accomplished. Attention is given to the project management lessons learned during payload integration development.
Learning from near-misses to avoid future catastrophes
NASA Astrophysics Data System (ADS)
Dillon, Robin L.
2014-11-01
Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
Determining sociability, social space, and social presence in (a)synchronous collaborative groups.
Kreijns, Karel; Kirschner, Paul A; Jochems, Wim; Van Buuren, Hans
2004-04-01
The effectiveness of group learning in asynchronous distributed learning groups depends on the social interaction that takes place. This social interaction affects both cognitive and socioemotional processes that take place during learning, group forming, establishment of group structures, and group dynamics. Though now known to be important, this aspect is often ignored, denied or forgotten by educators and researchers who tend to concentrate on cognitive processes and on-task contexts. This "one-sided" educational focus largely determines the set of requirements in the design of computer-supported collaborative learning (CSCL) environments resulting in functional CSCL environments. In contrast, our research is aimed at the design and implementation of sociable CSCL environments which may increase the likelihood that a sound social space will emerge. We use a theoretical framework that is based upon an ecological approach to social interaction, centering on the concept of social affordances, the concept of the sociability of CSCL environments, and social presence theory. The hypothesis is that the higher the sociability, the more likely that social interaction will take place or will increase, and the more likely that this will result in an emerging sound social space. In the present research, the variables of interest are sociability, social space, and social presence. This study deals with the construction and validation of three instruments to determine sociability, social space, and social presence in (a)synchronous collaborating groups. The findings suggest that the instruments have potential to be useful as measures for the respective variables. However, it must be realized that these measures are "first steps."
System Engineering the Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.
The X-15 airplane - Lessons learned
NASA Technical Reports Server (NTRS)
Dana, William H.
1993-01-01
The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
Spacecraft Design Considerations for Piloted Reentry and Landing
NASA Technical Reports Server (NTRS)
Stroud, Kenneth J.; Klaus, David M.
2006-01-01
With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.
Ross, J L
1994-01-01
Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.
Loss of Signal, Aeromedical Lessons Learned for the STS-I07 Columbia Space Shuttle Mishap
NASA Technical Reports Server (NTRS)
Patlach, Robert; Stepaniak, Philip C.; Lane, Helen W.
2014-01-01
Loss of Signal, a NASA publication to be available in May 2014, presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goals of this book are to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews.
Defining Learning Space in a Serious Game in Terms of Operative and Resultant Actions
NASA Technical Reports Server (NTRS)
Martin, Michael W.; Shen, Yuzhong
2012-01-01
This paper explores the distinction between operative and resultant actions in games, and proposes that the learning space created by a serious game is a function of these actions. Further, it suggests a possible relationship between these actions and the forms of cognitive load imposed upon the game player. Association of specific types of cognitive load with respective forms of actions in game mechanics also presents some heuristics for integrating learning content into serious games. Research indicates that different balances of these types of actions are more suitable for novice or experienced learners. By examining these relationships, we can develop a few basic principles of game design which have an increased potential to promote positive learning outcomes.
SpaceBuoy: A University Nanosat Space Weather Mission
2012-03-26
for all four-side panels. One design and one machine set-up allows a CNC mill to build them almost automatically. Lessons learned from components...in a dual probe configuration, for in situ plasma density) and interfacing with the spacecraft has been completed. Engineering development is
Discriminative graph embedding for label propagation.
Nguyen, Canh Hao; Mamitsuka, Hiroshi
2011-09-01
In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.
Designing worked examples for learning tangent lines to circles
NASA Astrophysics Data System (ADS)
Retnowati, E.; Marissa
2018-03-01
Geometry is a branch of mathematics that deals with shape and space, including the circle. A difficult topic in the circle may be the tangent line to circle. This is considered a complex material since students have to simultaneously apply several principles to solve the problems, these are the property of circle, definition of the tangent, measurement and Pythagorean theorem. This paper discusses designs of worked examples for learning tangent line to circles and how to apply this design to an effective and efficient instructional activity. When students do not have sufficient prior knowledge, solving tangent problems might be clumsy, and as a consequence, the problem-solving activity hinders learning. According to a Cognitive Load Theory, learning occurs when students can construct new knowledge based on the relevant knowledge previously learned. When the relevant knowledge is unavailable, providing students with the worked example is suggested. Worked example may reduce unproductive process during learning that causes extraneous cognitive load. Nevertheless, worked examples must be created in such a way facilitate learning.
Planning Learning Environments for Library Media Programs: An Introduction.
ERIC Educational Resources Information Center
Klasing, Jane P.; Callison, Daniel
1992-01-01
Klasing discusses the inability of school library facilities to meet current challenges for the delivery of programs and information. Callison then provides an overview of this issue on planning learning environments for school media centers, which contains four articles covering space requirements, ergonomic design, legislation on equal access,…
ERIC Educational Resources Information Center
Burke, James P.
The practicum designed a perceptual activities program for learning disabled second graders using computer-assisted instruction. The program develops skills involving visual motor coordination, figure-ground differentiation, form constancy, position in space, and spatial relationships. Five behavioral objectives for each developmental area were…
New Blueprints for K-12 Schools
ERIC Educational Resources Information Center
Kearns, Larry
2017-01-01
Blended Learning uses school time in a unique way, combining online instruction with traditional methods and giving students more agency over how, when, and where they learn. That third variable, the "where," calls for some serious rethinking of how school space is organized and deployed. Design either supports or frustrates a school's…
Dilemmas of Blended Language Learning: Learner and Teacher Experiences
ERIC Educational Resources Information Center
Gleason, Jesse
2013-01-01
Rapidly advancing technology continues to change the landscape of blended foreign language education. Pinpointing the differences between blended language (BL) learning environments and understanding how stakeholders experience such spaces is complex. However, learner experiences can provide a roadmap for the design and development of BL courses.…
Technology-Enhanced Learning and Community with Market Appeal.
ERIC Educational Resources Information Center
Young, Brian Alexander
2000-01-01
Describes the University of Dayton's Personalized Virtual Room. This Web interface to a virtual space that looks and feels like a campus residence was designed to encourage communication and connectivity among first-year students before they arrive on campus. Discusses the initiative's goals and successes, student reaction, and lessons learned.…
ERIC Educational Resources Information Center
Mehli, Hanne; Bungum, Berit
2013-01-01
Background: Science teachers need a deep understanding of how science works in modern society. Purpose: This article reports a case study investigating the ways in which a short-term in-service course on a research site of space technology contributes to this understanding. Design and method: The study is performed in three steps: an evaluation…
Adaptivity in Agent-Based Routing for Data Networks
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan
2000-01-01
Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.
Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1983-01-01
The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.
Cutting More than Metal: Breaking Through the Development Cycle
NASA Technical Reports Server (NTRS)
Singer, Christopher E.; Onken, Jay
2014-01-01
NASA is advancing a new development approach and new technologies in the design construction, and testing of the next great launch vehicle for space exploration. The ability to use these new tools is made possible by a learning culture able to embrace innovation, flexibility, and prudent risk tolerance, while retaining the hard-won lessons learned through the successes and failures of the past. This paper provides an overview of the Marshall Space Flight Center's new approach to launch vehicle development, as well as examples of how that approach has been leveraged by NASA's Space Launch System (SLS) Program to achieve its key goals to safety, affordability, and sustainability.
In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John
2011-11-01
In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.
Learning organisations: the challenge of finding a safe space in a climate of accountability.
McKee, Anne
2017-03-01
The effects of health policy reforms over a twenty-five year period have changed the NHS as a place in which to work and learn. Some of these changes have had unintentional consequences for learning in the workplace. A recent King's Fund contribution to quality improvement debates included an extensive review of NHS policies encouraging change 'from within' the NHS and renewed calls to develop learning organisations there. I draw upon an action research project designed to develop learning organisations in primary care to locate quality improvement debates amid the realities of practice. The project identified key challenges primary care practices encountered to protect time and space for this form of work based learning, even when they recognised the need for it and wanted to engage in it. Implications for policy makers, primary care practices and health professional educationalists are identified.
ERIC Educational Resources Information Center
Andrews, Jane; Jones, Mark
2015-01-01
The changing nature of teaching and learning in an age of accessible technologies provides challenges and opportunities for the design of learning events. Working with a sample of undergraduate students of education in one UK higher education institution we use an exploratory, qualitative approach to investigate students' spontaneous uses of their…
ERIC Educational Resources Information Center
Pennypacker Hill, Ashley
2013-01-01
The purpose of this study was to understand self-regulated learning as it developed in 4th and 5th grade learners that received intensive instructional supports in reading within a newly designed 21st century learning space. The study was conducted in an elementary school building that utilizes innovative architecture to support 21st century…
Design concepts for bioreactors in space
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.
1986-01-01
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Didactical Design Enrichment of Angle in Geometry
NASA Astrophysics Data System (ADS)
Setiadi, D. R.; Suryadi, D.; Mulyana, E.
2017-09-01
The underlying problem of this research is the lack of student’s competencies in understanding the concept of angle in geometry as the results of the teaching and learning pattern that only to receive the topic rather than to construct the topic and has not paid attention to the learning trajectory. The purpose of this research is to develop the didactical design of angle in space learning activity. The used research method is a method of qualitative research in the form of a didactical design research through three phases of analysis i.e. didactical situation analysis, metapedadidactical analysis, and retrospective analysis, which conducted in students from 10th grade at one of private schools in Bandung. Based on the results of research and discussion, the didactical design that has been made, is capable to change student’s learning habit and quite capable to develop student’s competencies although not optimal.
Design for Thinking: Engagement in an Innovation Project
ERIC Educational Resources Information Center
Benson, Joy; Dresdow, Sally
2015-01-01
This article discusses the use of design thinking in an undergraduate decision-making course. The spaces of design are linked to the dimensions of liberal learning in a way that allows students to engage in the design of an organization that supports a new product created in a collaborative team. The article provides an overview of how the…
ERIC Educational Resources Information Center
Holbert, Nathan Ryan
2013-01-01
Video games have recently become a popular space for educational design due to their interactive and engaging nature and the ubiquity of the gaming experience among youth. Though many researchers argue video games can provide opportunities for learning, educational game design has focused on the classroom rather than the informal settings where…
Individualized Instruction in Science, Earth-Space Project, Self-Directed Activities.
ERIC Educational Resources Information Center
Kuczma, R. M.
As a supplement to Learning Activity Packages (LAP) of the earth-space project, this manual presents self-directed activities especially designed for individualized instruction. Besides an introduction to LAP characteristics, sets of instructions are given in connection with the metric system, the earth's dimensions, indirect evidence for atomic…
ERIC Educational Resources Information Center
Hourihan, Peter; Berry, Millard, III
2006-01-01
When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…
Learning Spaces and Collaborative Work: Barriers or Supports?
ERIC Educational Resources Information Center
King, Hayley
2016-01-01
Drawing on 18 months of fieldwork, this article discusses the use of physical, virtual and social space to support collaborative work in translator education programs. The study adopted a contrastive ethnography approach that incorporated single- and multiple-case design rationales for site selection. Extended observation, informal chats and…
Lessons Learned from the Advanced Topographic Laser Altimeter System
NASA Technical Reports Server (NTRS)
Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave
2016-01-01
The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.
Building a GPS Receiver for Space Lessons Learned
NASA Technical Reports Server (NTRS)
Sirotzky, Steve; Heckler, G. W.; Boegner, G.; Roman, J.; Wennersten, M.; Butler, R.; Davis, M.; Lanham, A.; Winternitz, L.; Thompson, W.;
2008-01-01
Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis.
NASA Astrophysics Data System (ADS)
MacCallum, T.; Poynter, J.; Bearden, D.
A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues
ERIC Educational Resources Information Center
Cheng, Wan-Lee
This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…
The study of selective property of college student’s learning space
NASA Astrophysics Data System (ADS)
Nagai, Mizuki; Matsumoto, Yuji; Naka, Ryusuke
2018-05-01
These days, college students study not only at places designed for learning such as libraries in colleges, but also cafes in downtown while the number of facilities for learning run by colleges is increasing. Then I have researched facilities in college and those in downtown to find selective properties of college students’ learning space. First, I found by questionnaire survey that students chose “3rd place” such as cafes and fast food shops, second to their houses and libraries in college. Next, I found “psychological factor” were also affected their choice. Furthermore, they studied different subjects at different places. In experiments, I researched how effectively they studied each subject at every place. The results show that I find that places you like and places where learning efficiency is good are different. They learned the least effective at “3d place” regardless of what they learned. The result of how long they kept high-level intellectual activity at each place shows that they could work on the study with more motivation at their favorite place and 3rd place. On the other hand, at the 2nd place, they could study rather effectively, but could not keep concentration and motivation for a long time. In this way, college students have 2 patterns of choosing learning space.
Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin
2016-05-01
Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45.2% over the state-of-the-art. To our knowledge, this is the first successful demonstration of the DL potential to detection and segmentation in full 3D data with parametrized representations.
Space Operations Learning Center
NASA Technical Reports Server (NTRS)
Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng
2012-01-01
The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.
Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.
2001-01-01
Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.
Machine learning strategy for accelerated design of polymer dielectrics
Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; ...
2016-02-15
The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less
Designing for competence: spaces that enhance collaboration readiness in healthcare.
Lamb, Gerri; Shraiky, James
2013-09-01
Many universities in the United States are investing in classrooms and campuses designed to increase collaboration and teamwork among the health professions. To date, we know little about whether these learning spaces are having the intended impact on student performance. Recent advances in the identification of interprofessional teamwork competencies provide a much-needed step toward a defined outcome metric. Rigorous study of the relationship between design and student competence in collaboration also requires clear specification of design concepts and development of testable frameworks. Such theory-based evaluation is crucial for design to become an integral part of interprofessional education strategies and initiatives. Current classroom and campus designs were analyzed for common themes and features in collaborative spaces as a starting place for specification of design concepts and model development. Four major themes were identified: flexibility, visual transparency/proximity, technology and environmental infrastructure. Potential models linking this preliminary set of design concepts to student competencies are proposed and used to generate hypotheses for future study of the impact of collaborative design spaces on student outcomes.
ERIC Educational Resources Information Center
Hackett, Jacob
2016-01-01
Collaborative (Co-)teaching is a complex instructional delivery model used to improve teaching practice in inclusive settings. The model involves multiple certified teachers--representing both special and general education--sharing the same space and presenting material to classrooms with a wide variance in learning needs. Co-teaching has become…
ERIC Educational Resources Information Center
Triggs, Riley; Jarmon, Leslie; Villareal, Tracy A.
2010-01-01
Virtual environments can resolve many practical and pedagogical challenges within higher education. Economic considerations, accessibility issues, and safety concerns can all be somewhat alleviated by creating learning activities in a virtual space. Because of the removal of real-world physical limitations like gravity, durability and scope,…
Reading Rocks: Creating a Space for Preservice Teachers to Become Responsive Teachers
ERIC Educational Resources Information Center
Assaf, Lori Czop; Lopez, Minda
2012-01-01
Set in a yearlong, school-based tutoring program, designed as a community of practice, we use qualitative methodology to examine how 14 preservice teachers learned to become responsive teachers. We focus on one question: In what ways does participating in a yearlong, supervised tutoring program mediate preservice teachers' learning about…
Shared Campus Smooths Post-Secondary Pathways
ERIC Educational Resources Information Center
Pearson, George
2012-01-01
At the opening of Olds High School, Principal Tom Christensen held his breath as he watched students inspect the new facilities designed with a new approach to learning in mind. The Alberta school is divided into four so-called "quads," each housing one-quarter of the school's 800 students, with flexible learning spaces to accommodate…
ERIC Educational Resources Information Center
Holley, Debbie; Dobson, Caroline
2008-01-01
Research shows that some non-traditional students find the university environment alienating, impersonal and unsupportive. The "Quickstart' project combines traditional lectures and seminars with a sequence of carefully designed online tasks, aimed at lessening the impact of the start of year uncertainties for new students. One thousand students…
Creating a Collaborative Learning Community in the CIS Sandbox
ERIC Educational Resources Information Center
Frydenberg, Mark
2013-01-01
Purpose: The purpose of this paper is to investigate the impact of transforming a traditional university computer lab to create a collaborative learning community known as the CIS Sandbox, by remodeling a physical space and supporting it with a virtual presence through the use of social media tools. The discussion applies Selander's "designs for…
ERIC Educational Resources Information Center
Vallance, Michael; Martin, Stewart; Wiz, Charles; van Schaik, Paul
2010-01-01
Science education is concerned with the meaningful pursuit of comprehension, knowledge and understanding of scientific concepts and processes. In Vygotskian social constructivist learning, personal interpretation, decision-making and community cooperation fosters long-term understanding and transference of learned concepts. The construction of…
ERIC Educational Resources Information Center
Fluri, Jennifer L.; Trauger, Amy
2011-01-01
In response to recent articles and ideas for experiential learning activities in human geography, this paper outlines a particular approach to learning about the body, difference, mobility and geographic space through experience. The Corporeal Marker Project designed and implemented by the authors provides a spatial experience of difference for…
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
NASA Technical Reports Server (NTRS)
Taylor, Gary O.
2001-01-01
John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.
The challenge of logistics facilities development
NASA Technical Reports Server (NTRS)
Davis, James R.
1987-01-01
The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.
Wang, Shuang; Yue, Bo; Liang, Xuefeng; Jiao, Licheng
2018-03-01
Wisely utilizing the internal and external learning methods is a new challenge in super-resolution problem. To address this issue, we analyze the attributes of two methodologies and find two observations of their recovered details: 1) they are complementary in both feature space and image plane and 2) they distribute sparsely in the spatial space. These inspire us to propose a low-rank solution which effectively integrates two learning methods and then achieves a superior result. To fit this solution, the internal learning method and the external learning method are tailored to produce multiple preliminary results. Our theoretical analysis and experiment prove that the proposed low-rank solution does not require massive inputs to guarantee the performance, and thereby simplifying the design of two learning methods for the solution. Intensive experiments show the proposed solution improves the single learning method in both qualitative and quantitative assessments. Surprisingly, it shows more superior capability on noisy images and outperforms state-of-the-art methods.
Automatic Satellite Telemetry Analysis for SSA using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Stottler, R.; Mao, J.
In April 2016, General Hyten, commander of Air Force Space Command, announced the Space Enterprise Vision (SEV) (http://www.af.mil/News/Article-Display/Article/719941/hyten-announces-space-enterprise-vision/). The SEV addresses increasing threats to space-related systems. The vision includes an integrated approach across all mission areas (communications, positioning, navigation and timing, missile warning, and weather data) and emphasizes improved access to data across the entire enterprise and the ability to protect space-related assets and capabilities. "The future space enterprise will maintain our nation's ability to deliver critical space effects throughout all phases of conflict," Hyten said. Satellite telemetry is going to become available to a new audience. While that telemetry information should be valuable for achieving Space Situational Awareness (SSA), these new satellite telemetry data consumers will not know how to utilize it. We were tasked with applying AI techniques to build an infrastructure to process satellite telemetry into higher abstraction level symbolic space situational awareness and to initially populate that infrastructure with useful data analysis methods. We are working with two organizations, Montana State University (MSU) and the Air Force Academy, both of whom control satellites and therefore currently analyze satellite telemetry to assess the health and circumstances of their satellites. The design which has resulted from our knowledge elicitation and cognitive task analysis is a hybrid approach which combines symbolic processing techniques of Case-Based Reasoning (CBR) and Behavior Transition Networks (BTNs) with current Machine Learning approaches. BTNs are used to represent the process and associated formulas to check telemetry values against anticipated problems and issues. CBR is used to represent and retrieve BTNs that represent an investigative process that should be applied to the telemetry in certain circumstances. Machine Learning is used to learn normal patterns of telemetry, learn pre-mission simulated telemetry patterns that represent known problems, and detect both pre-trained known and unknown abnormalities in real-time. The operational system is currently being implemented and applied to real satellite telemetry data. This paper presents the design, examples, and results of the first version as well as planned future work.
Antennas for 20/30 GHz and beyond
NASA Technical Reports Server (NTRS)
Chen, C. Harry; Wong, William C.; Hamada, S. Jim
1989-01-01
Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications.
High performance flight computer developed for deep space applications
NASA Technical Reports Server (NTRS)
Bunker, Robert L.
1993-01-01
The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.
Learning Environment: An Architectural Interpretation of a New Designs Archetype High School.
ERIC Educational Resources Information Center
Jilk, Bruce A.; And Others
The New Designs for the Comprehensive High School project used the break-the-mold design-down process to develop a prototype high school. The basic building block of this design is the personal workstation, not the classroom. Combining the personal workstation with the desire for teaming leads to the idea of a small, flexible group space that…
NASA Astrophysics Data System (ADS)
Gitsch, Michaela; Manoharan, Periasamy K.
2015-02-01
Sixty young, highly qualified European science and engineering students converge annually for stimulating 10 days of work in the Austrian Alps. Four teams are formed, each of which designs a space mission, which are then judged by a jury of experts. Students learn how to approach the design of a satellite mission and explore new and startling ideas supported by experts. The Summer School Alpbach enjoys more than 30 years of tradition in providing in-depth teaching on different topics of space science and space technology, featuring lectures and concentrated working sessions on mission studies in self-organised working groups. The Summer School is organised by the Austrian Research Promotion Agency (FFG) and co-sponsored by the European Space Agency (ESA), the International Space Science Institute (ISSI), and the national space authorities of its member and cooperating states.
Baumes, Laurent A
2006-01-01
One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1999-01-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1998-09-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less
KSC Education Technology Research and Development Plan
NASA Technical Reports Server (NTRS)
Odell, Michael R. L.
2003-01-01
Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The materials in this guide were designed to help teachers and other adults maximize the learning experiences and other educational events scheduled on space shuttle Mission 51-L. They include: (1) a description of the live lessons to be conducted by Christa McAuliffe; (2) teaching-related events of Mission 51-L; (3) a list of key mission-related…
Pedestrian Utterances on Space/less Green Awareness: Visualizing the Process
ERIC Educational Resources Information Center
Kosmala, Katarzyna; Imas, J. Miguel
2011-01-01
In the arts-informed teaching and learning spaces, knowledge is potentially produced and shared based on resonance that can involve a whole person. Concerned with educational processes enveloped in relational aesthetics, the authors designed a workshop to reconnect with green awareness, based as much as possible on the methodology that is located…
Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches
ERIC Educational Resources Information Center
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2016-01-01
In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…
Enhancement of Spatial Thinking with Virtual Spaces 1.0
ERIC Educational Resources Information Center
Hauptman, Hanoch
2010-01-01
Developing a software environment to enhance 3D geometric proficiency demands the consideration of theoretical views of the learning process. Simultaneously, this effort requires taking into account the range of tools that technology offers, as well as their limitations. In this paper, we report on the design of Virtual Spaces 1.0 software, a…
Earth/Space Science Course No. 2001310. [Student Guide and] Teacher's Guide.
ERIC Educational Resources Information Center
Atkinson, Missy
These documents contain instructional materials for the Earth/Space Science curriculum designed by the Florida Department of Education. The student guide is adapted for students with disabilities or diverse learning needs. The content of Parallel Alternative Strategies for Students (PASS) differs from standard textbooks with its simplified text,…
Human Spaceflight. Activities for the Primary Student. Aerospace Education Services Project.
ERIC Educational Resources Information Center
Hartsfield, John W.; Hartsfield, Kendra J.
Since its beginning, the space program has caught the attention of young people. This space science activity booklet was designed to provide information and learning activities for students in elementary grades. It contains chapters on: (1) primitive beliefs about flight; (2) early fantasies of flight; (3) the United States human spaceflight…
Space Shuttle GN and C Development History and Evolution
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don
2011-01-01
Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
Designing for Uncertainty: Three Approaches
ERIC Educational Resources Information Center
Bennett, Scott
2007-01-01
Higher education wishes to get long life and good returns on its investment in learning spaces. Doing this has become difficult because rapid changes in information technology have created fundamental uncertainties about the future in which capital investments must deliver value. Three approaches to designing for this uncertainty are described…
Design as a Social Practice: The Design of New Build Schools
ERIC Educational Resources Information Center
Daniels, Harry; Tse, Hau Ming; Stables, Andrew; Cox, Sarah
2017-01-01
In this paper we present the findings of an investigation into the ways in which the discourses and practices of school design produce educational spaces which influence the discourses and practices of teaching and learning when the building is occupied. It expands notions of post occupancy evaluation (POE) research by exploring how the…
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Johnson Space Center fly a remote-controlled helicopter equipped with a unique set of sensors and software during a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory
NASA Technical Reports Server (NTRS)
Linde, Charlotte
2005-01-01
Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.
Space Mechanisms Lessons Learned Study. Volume 2: Literature Review
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert
1995-01-01
Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of an extensive literature review that included both government contractor reports and technical journals, communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts), requests for unpublished information to NASA and industry, and a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lesson learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities, and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.
NASA Astrophysics Data System (ADS)
Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong
2017-10-01
This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.
Space Mechanisms Lessons Learned Study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Murray, Frank; Howarth, Roy; Fusaro, Robert
1995-01-01
Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of: (1) an extensive literature review that included both government contractor reports and technical journals; (2) communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts); (3) requests for unpublished information to NASA and industry; and (4) a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lessons learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities and a compilation of references. Volume 2 contains a compilation of the literature review synopsis.
ERIC Educational Resources Information Center
Korres, Maria Pavlis
2017-01-01
The General Secretariat for Lifelong Learning and Youth (GSLLLY), the strategic national entity for Adult Education in Greece, has designed and implemented various e-learning courses offering flexibility beyond time and space restrictions. The courses run in two consecutive periods, the first one from 2008 to 2011 and the second one from 2014 to…
NASA Astrophysics Data System (ADS)
Foster, J.; Connolly, R.
2017-12-01
WGBH's "Bringing the Universe to America's Classrooms" project is a 5-year effort to design, produce and evaluate digital media tools and resources that support scientific practice skills in diverse K-12 learners. Resources leverage data and content from NASA and WGBH signature programs, like NOVA, into sound instructional experiences that provide K-12 STEM teachers with free, quality resources for teaching topics in the Earth and Space Sciences. Resources address the content and practices in the new K-12 Framework for Science Education and are aligned with the NGSS. Participants will learn about design strategies, findings from our evaluation efforts, and how to access free resources on PBS LearningMedia.
A Model for the Design of Puzzle-Based Games Including Virtual and Physical Objects
ERIC Educational Resources Information Center
Melero, Javier; Hernandez-Leo, Davinia
2014-01-01
Multiple evidences in the Technology-Enhanced Learning domain indicate that Game-Based Learning can lead to positive effects in students' performance and motivation. Educational games can be completely virtual or can combine the use of physical objects or spaces in the real world. However, the potential effectiveness of these approaches…
Intentionally Designed Thinking and Experience Spaces: What We Learned at Summer Camp
ERIC Educational Resources Information Center
Dahl, Tove I.; Sethre-Hofstad, Lisa; Salomon, Gavriel
2013-01-01
How do young people experience camp, and how might that experience help us expand our understanding of what is possible in non-formal learning environments? In-depth interviews consisting of forced-choice and open-ended questions were conducted with 59 Concordia Language Villages residential camp participants who partake in a linguistically and…
The Collaboratory Notebook: A Networked Knowledge-Building Environment for Project Learning.
ERIC Educational Resources Information Center
O'Neill, D. Kevin; Gomez, Louis M.
The Collaboratory Notebook, developed as part of the Learning Through Collaborative Visualization Project (CoVis), is a networked, multimedia knowledge-building environment which has been designed to help students, teachers and scientists share inquiry over the boundaries of time and space. CoVis is an attempt to change the way that science is…
An Evidence Centered Design for Learning and Assessment in the Digital World. CRESST Report 778
ERIC Educational Resources Information Center
Behrens, John T.; Mislevy, Robert J.; DiCerbo, Kristen E.; Levy, Roy
2010-01-01
The world in which learning and assessment must take place is rapidly changing. The digital revolution has created a vast space of interconnected information, communication, and interaction. Functioning effectively in this environment requires so-called 21st century skills such as technological fluency, complex problem solving, and the ability to…
Building an Online Academic Learning Community among Undergraduate Students
ERIC Educational Resources Information Center
Nye, Adele
2015-01-01
Online learning communities are frequently created for higher education students; however, these are most often designed to cater to a particular unit or subject. In an effort to strengthen the Bachelor of Arts course at the University of New England, the author sought to create an online space that would promote an interdisciplinary and collegial…
Design and Testing of Space Telemetry SCA Waveform
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
NASA Astrophysics Data System (ADS)
Fried, B.; Levy, M.; Reyes, C.; Austin, S.
2003-05-01
A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This program has been well received by both students and parents and has motivated some students to consider careers in the field of space science and related areas. [This program is partially supported by NASA MU-SPIN NCC5-330 and NASA Space Science/Minority Initiative NAG5-10142
What People Talk About in Virtual Worlds
NASA Astrophysics Data System (ADS)
Maher, Mary Lou
This chapter examines what people talk about in virtual worlds, employing protocol analysis. Each of two scenario studies was developed to assess the impact of virtual worlds as a collaborative environment for a specific purpose: one for learning and one for designing. The first designed a place in Active Worlds for a course on Web Site Design, having group learning spaces surrounded by individual student galleries. Student text chat was analyzed through a coding scheme with four major categories: control, technology, learning, and place. The second studied expert architects in a Second Life environment called DesignWorld that combined 3D modeling and sketching tools. Video and audio recordings were coded in terms of four categories of communication content (designing, representation of the model, awareness of each other, and software features), and in terms of synthesis comparing alternative designs versus analysis of how well the proposed solution satisfies the given design task. Both studies found that people talk about their avatars, identity, and location in the virtual world. However, the discussion is chiefly about the task and not about the virtual world, implying that virtual worlds provide a viable environment for learning and designing that does not distract people from their task.
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
Space Station Freedom - A resource for aerospace education
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1988-01-01
The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
2003-01-01
Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.
Changing classroom designs: Easy; Changing instructors' pedagogies: Not so easy...
NASA Astrophysics Data System (ADS)
Lasry, Nathaniel; Charles, Elizabeth; Whittaker, Chris; Dedic, Helena; Rosenfield, Steven
2013-01-01
Technology-rich student-centered classrooms such as SCALE-UP and TEAL are designed to actively engage students. We examine what happens when instructors adopt the classroom but not the pedagogy that goes with it. We measure the effect of using socio-technological spaces on students' conceptual change and compare learning gains made in groups using different pedagogies (active learning vs. conventional instruction). We also correlate instructors' self-reported instructional approach (teacher-centered, student-centered) with their classes' normalized FCI gains. We find that technology-rich spaces are only effective when implemented with student-centered active pedagogies. In their absence, the technology-rich classroom is not significantly different from conventional teacher-centered classrooms. We also find that instructors' self-reported perception of student-centeredness accounts for a large fraction of the variance (r2 = 0.83) in their class' average normalized gain. Adopting student-centered pedagogies appears to be a necessary condition for the effective use of technology-rich spaces. However, adopting a new pedagogy seems more difficult than adopting new technology.
NASA Technical Reports Server (NTRS)
Spencer, Thomas; Berry, Brandon
2012-01-01
In developing understanding of technological systems - modeling and simulation tools aid significantly in the learning and visualization processes. In design courses we sketch , extrude, shape, refine and animate with virtual tools in 3D. Final designs are built using a 3D printer. Aspiring architects create spaces with realistic materials and lighting schemes rendered on model surfaces to create breathtaking walk-throughs of virtual spaces. Digital Electronics students design systems that address real-world needs. Designs are simulated in virtual circuits to provide proof of concept before physical construction. This vastly increases students' ability to design and build complex systems. We find students using modeling and simulation in the learning process, assimilate information at a much faster pace and engage more deeply in learning. As Pre-Engineering educators within the Career and Technical Education program at our school division's Technology Academy our task is to help learners in their quest to develop deep understanding of complex technological systems in a variety of engineering disciplines. Today's young learners have vast opportunities to learn with tools that many of us only dreamed about a decade or so ago when we were engaged in engineering and other technical studies. Today's learner paints with a virtual brush - scenes that can aid significantly in the learning and visualization processes. Modeling and simulation systems have become the new standard tool set in the technical classroom [1-5]. Modeling and simulation systems are now applied as feedback loops in the learning environment. Much of the study of behavior change through the use of feedback loops can be attributed to Stanford Psychologist Alfred Bandura. "Drawing on several education experiments involving children, Bandura observed that giving individuals a clear goal and a means to evaluate their progress toward that goal greatly increased the likelihood that they would achieve it."
Towards a Framework for Modeling Space Systems Architectures
NASA Technical Reports Server (NTRS)
Shames, Peter; Skipper, Joseph
2006-01-01
Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.
Unpressurized Logistics Carriers for the International Space Station: Lessons Learned
NASA Technical Reports Server (NTRS)
Robbins, William W., Jr.
1999-01-01
The International Space Station has been in development since 1984, and has recently begun on orbit assembly. Most of the hardware for the Space Station has been manufactured and the rest is well along in design. The major sets of hardware that are still to be developed for Space Station are the pallets and interfacing hardware for resupply of unpressurized spares and scientific payloads. Over the last ten years, there have been numerous starts, stops, difficulties and challenges encountered in this effort. The Space Station program is now entering the beginning of orbital operations. The Program is only now addressing plans to design and build the carriers that will be needed to carry the unpressurized cargo for the Space Station lifetime. Unpressurized carrier development has been stalled due to a broad range of problems that occurred over the years. These problems were not in any single area, but encompassed budgetary, programmatic, and technical difficulties. Some lessons of hindsight can be applied to developing carriers for the Space Station. Space Station teams are now attempting to incorporate the knowledge gained into the current development efforts for external carriers. In some cases, the impacts of these lessons are unrecoverable for Space Station, but can and should be applied to future programs. This paper examines the progress and problems to date with unpressurized carrier development identifies the lessons to be learned, and charts the course for finally accomplishing the delivery of these critical hardware sets.
SchNet - A deep learning architecture for molecules and materials
NASA Astrophysics Data System (ADS)
Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.
2018-06-01
Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.
Learning to Predict Combinatorial Structures
NASA Astrophysics Data System (ADS)
Vembu, Shankar
2009-12-01
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.
When Teacher-Centered Instructors Are Assigned to Student-Centered Classrooms
ERIC Educational Resources Information Center
Lasry, Nathaniel; Charles, Elizabeth; Whittaker, Chris
2014-01-01
Technology-rich student-centered classrooms such as SCALE-UP and TEAL are designed to actively engage students. We examine what happens when the design of the classroom (conventional or teacher-centered versus student-centered classroom spaces) is consistent or inconsistent with the teacher's epistemic beliefs about learning and teaching…
The Duke Engineering Living Technology Advancement (DELTA) Project began as a multidisciplinary endeavor to engage engineering students by having them design aspects/attributes of a new learning and living space. In the next few years, the vision will be realized when the DEL...
School Building Design and Audio-Visual Resources.
ERIC Educational Resources Information Center
National Committee for Audio-Visual Aids in Education, London (England).
The design of new schools should facilitate the use of audiovisual resources by ensuring that the materials used in the construction of the buildings provide adequate sound insulation and acoustical and viewing conditions in all learning spaces. The facilities to be considered are: electrical services; electronic services; light control and…
The Room Itself is Active: How Classroom Design Impacts Student Engagement
ERIC Educational Resources Information Center
Rands, Melissa L.; Gansemer-Topf, Ann M.
2017-01-01
A responsive case study evaluation approach utilizing interviews and focus groups collected student and faculty perspectives on examined how instructors and students utilized a newly redesigned active learning space at Iowa State University and the relationship of this design with environmental and behavioral factors of student engagement. The…
Challenges in Technology Implementation for Learning Spaces in Higher Education
ERIC Educational Resources Information Center
Lewis, Bryan; Starsia, Gerald
2009-01-01
The design and implementation of technology can prove a particularly daunting challenge for campus planners and project designers. Specialization is required for the selection and implementation of technologies including the familiar network, telecommunications, and data-processing functions, and also the more esoteric emerging technology labs and…
Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C; Chee, Michael W L; Gooley, Joshua J
2016-09-01
The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15-19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. © 2016 Associated Professional Sleep Societies, LLC.
Socio/psychological issues for a Mars mission
NASA Technical Reports Server (NTRS)
Bluth, B. J.
1986-01-01
Some of the socio/psychological problems expected to accompany such a long duration mission as the trip to Mars are addressed. The emphasis is on those issues which are expected to have a bearing on crew performance. Results from research into aircraft accidents, particularly those related to pilot performance, are discussed briefly, as a limited analog to space flight. Significant comparisons are also made to some aspects of long duration Antarctic stays, submarine missions, and oceanographic vessel voyages. Appropriate lessons learned from U.S. and Russian space flight experiences are provided. Design of space missions and systems to enhance crew performance is discussed at length, considering factors external and internal to the crew. The importance of incorporating such design factors early in the design process is stressed.
Satellite Servicing in Mission Design Studies at the NASA GSFC
NASA Technical Reports Server (NTRS)
Leete, Stephen J.
2003-01-01
Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.
Learning to Control Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Subramanian, Devika
2004-01-01
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.
The Holistic Impact of Classroom Spaces on Learning in Specific Subjects
Barrett, Peter; Davies, Fay; Zhang, Yufan; Barrett, Lucinda
2016-01-01
The Holistic Evidence and Design (HEAD) study of U.K. primary schools sought to isolate the impact of the physical design of classrooms on the learning progress of pupils aged from 5 to 11 years (U.S. kindergarten to fifth grade). One hundred fifty-three classrooms were assessed and links made to the learning of the 3,766 pupils in them. Through multilevel modeling, the role of physical design was isolated from the influences of the pupils’ characteristics. This article presents analyses for the three main subjects assessed, namely, reading, writing, and math. Variations in the importance of the physical design parameters are revealed for the learning of each subject. In addition to some common factors, such as lighting, a heavy salience for Individualization in relation to math becomes apparent and the importance emerges of Connection for reading and of Links to Nature for writing. Possible explanations are suggested. These results provide a stimulus for additional finesse in practice and for further investigation by researchers. PMID:28458394
ERIC Educational Resources Information Center
Byers, Terry; Hartnell-Young, Elizabeth; Imms, Wesley
2018-01-01
This study explored the effect of different classroom spatial layouts on student perceptions of digital technology in a secondary schooling environment. A quasi-experimental approach facilitated by a Single Subject research design (SSRD) isolated the impact of two learning spaces--"traditional classrooms," and "new generation…
ERIC Educational Resources Information Center
Mallavarapu, Aditi; Lyons, Leilah; Shelley, Tia; Minor, Emily; Slattery, Brian; Zellner, Moria
2015-01-01
Interactive learning environments can provide learners with opportunities to explore rich, real-world problem spaces, but the nature of these problem spaces can make assessing learner progress difficult. Such assessment can be useful for providing formative and summative feedback to the learners, to educators, and to the designers of the…
Opening Spaces for Critical Literacy: Introducing Books to Young Readers
ERIC Educational Resources Information Center
Labadie, Meredith; Wetzel, Melissa Mosley; Rogers, Rebecca
2012-01-01
How might book introductions open up spaces for critical literacy? This is the research question we asked while examining the records of teaching and learning within a yearlong teacher-research project in a second grade classroom. We designed a series of literacy units focused on themes of human rights, freedom, peace, and civil rights. Our focus…
We're in This Together: Creating Synergies with Collaborative Ventures
ERIC Educational Resources Information Center
Fulton, Tara Lynn
2012-01-01
Academic libraries by nature serve as spaces for communities of learners to gather. Careful design and marketing of spaces to meet specific needs, staffed by experts to facilitate and guide such learning, enhance the impact of "library as place." In this article, the author shares two examples of collaborations that have resulted from partnerships…
Understanding How Families Use Magnifiers During Nature Center Walks
NASA Astrophysics Data System (ADS)
Zimmerman, Heather Toomey; McClain, Lucy Richardson; Crowl, Michele
2013-10-01
This analysis uses a sociocultural learning theory and parent-child interaction framework to understand families' interactions with one type of scientific tool, the magnifier, during nature walks offered by a nature center. Families were video recorded to observe how they organized their activities where they used magnifiers to explore in the outdoors. Findings include that families used magnifiers for scientific inquiry as well as for playful exploration. Using the concept of guided facilitation where families develop roles to support their joint endeavor, three roles to support family thinking were found to be: (a) tool suggester, (b) teacher, and (c) exploration ender. Some families struggled to use magnifiers and often, parents and older siblings provided support for younger children in using magnifying lenses. Implications to informal science learning theory are drawn and suggestions for future family learning research are offered: (a) inclusion of sociocultural and situated perspectives as theories to study informal learning in outdoor spaces, (b) further study on the role of siblings in family interactions, (c) design-based research is needed to encourage family role-taking when engaging in science practices, and (d) new conceptualizations on how to design informal programs that support science learning while leaving space for visitors' personal agendas and interests that can guide the families' activities.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
NASA Technical Reports Server (NTRS)
Roark, J. H.; Masuoka, C. M.; Frey, H. V.; Keller, J.; Williams, S.
2005-01-01
The Planetary Geodynamics Laboratory (http://geodynamics.gsfc.nasa.gov) of NASA s Goddard Space Flight Center designed, produced and recently delivered a "museum-friendly" version of GRIDVIEW, a grid visualization and analysis application, to the Smithsonian's National Air and Space Museum where it will be used in a guided comparative planetology education exhibit. The software was designed to enable museum visitors to interact with the same Earth and Mars topographic data and tools typically used by planetary scientists, and experience the thrill of discovery while learning about the geologic differences between Earth and Mars.
Commercial Orbital Transportation Services (COTS) Program Lessons Learned
NASA Technical Reports Server (NTRS)
Lindenmoyer, Alan; Horkachuck, Mike; Shotwell, Gwynne; Manners, Bruce; Culbertson, Frank
2015-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the COTS Program. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.
Healthy eating design guidelines for school architecture.
Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly; Trowbridge, Matthew J
2013-01-01
We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools' ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research.
Reaching beyond an Online/Offline Divide: Invoking the Rhizome in Higher Education Course Design
ERIC Educational Resources Information Center
Jones, Angela; Bennett, Rebecca
2017-01-01
In the rush to digitise aspects of higher education to cater to an increasingly diverse and wide-ranging university market, there is a concern that best-practice teaching and learning based on sound pedagogy may be left behind. This article addresses this concern by offering a conceptual reimagining of the learning space that reaches beyond a…
ERIC Educational Resources Information Center
Calkins, Susanna; Harris, Muveddet
2017-01-01
For many faculty, critical reflection on teaching and learning requires space and time that is not readily available. For fifteen years, we have run a substantial year-long faculty development program designed to help participants: (1) reflect critically on their teaching and their students' learning; and (2) develop a project related to their…
The Library of Birmingham Project: Lifelong Learning for the Digital Age
ERIC Educational Resources Information Center
Blewitt, John; Gambles, Brian
2010-01-01
The Library of Birmingham (LoB) is a 193 million British pounds project designed to provide a new space for lifelong learning and knowledge growth, a physical and virtual portal for Birmingham's citizens to the wider world. In cooperation with a range of private, public, and third-sector bodies, as well as individual citizens, the library, due to…
ERIC Educational Resources Information Center
Moni, Roger W.; Depaz, Iris; Lluka, Lesley J.
2008-01-01
We report findings from a case study of co-operative, group-based assessment in Pharmacology for second-year undergraduates at The University of Queensland, Australia. Students enrolled in the 2005 Bachelor of Science and 2006 Bachelor of Pharmacy degree programs, were early users of the university's new Collaborative Teaching and Learning Centre…
ERIC Educational Resources Information Center
Cassidy, Alice L. E. V.; Wright, W. Alan; Strean, William B.; Watson, Gavan P. L.
2015-01-01
In this paper, we use a day-long professional development workshop for higher education faculty conducted in an outdoor setting as the starting point for an examination of the value of such activities. We explore the potential benefits, in terms of learning and holistic well-being, of educational activities designed to provide participants with…
A Learning Place: Ten Years in the Life of a New Kind of Campus Center
ERIC Educational Resources Information Center
Misencik, Karen E.; O'Connor, John S.; Young, James
2005-01-01
When George Mason University's Johnson Center opened a decade ago, it was on the leading edge of architectural design and innovative thinking about spaces for learning. Over time, the building has retained many of its revolutionary aspects even as it has accepted encroachments of conventionality. With its four floors and central atrium, twenty-two…
ERIC Educational Resources Information Center
Morreale, Cathleen; Van Zile-Tamsen, Carol; Emerson, Cheryl A.; Herzog, Matthew
2017-01-01
A capstone ePortfolio is a digital space where students can gather and integrate their learning experiences from their undergraduate careers into a meaningful whole, demonstrate their growth as learners, and connect their learning to the world. The process of creating a capstone ePortfolio equips students with the digital composition skills…
Designing After-School Learning Using the Massively Multiplayer Online Role-Playing Game
ERIC Educational Resources Information Center
King, Elizabeth M.
2015-01-01
Digital games have become popular for engaging students in a range of learning goals, both in the classroom and the after-school space. In this article, I discuss a specific genre of video game, the massively multiplayer online role-playing game (MMO), which has been identified as a dynamic environment for encountering 21st-century workplace…
Structural Design of Glass and Ceramic Components for Space System Safety
NASA Technical Reports Server (NTRS)
Bernstein, Karen S.
2007-01-01
Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.
Compact Deep-Space Optical Communications Transceiver
NASA Technical Reports Server (NTRS)
Roberts, W. Thomas; Charles, Jeffrey R.
2009-01-01
Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.
NASA Astrophysics Data System (ADS)
Wei, Caisheng; Luo, Jianjun; Dai, Honghua; Bian, Zilin; Yuan, Jianping
2018-05-01
In this paper, a novel learning-based adaptive attitude takeover control method is investigated for the postcapture space robot-target combination with guaranteed prescribed performance in the presence of unknown inertial properties and external disturbance. First, a new static prescribed performance controller is developed to guarantee that all the involved attitude tracking errors are uniformly ultimately bounded by quantitatively characterizing the transient and steady-state performance of the combination. Then, a learning-based supplementary adaptive strategy based on adaptive dynamic programming is introduced to improve the tracking performance of static controller in terms of robustness and adaptiveness only utilizing the input/output data of the combination. Compared with the existing works, the prominent advantage is that the unknown inertial properties are not required to identify in the development of learning-based adaptive control law, which dramatically decreases the complexity and difficulty of the relevant controller design. Moreover, the transient and steady-state performance is guaranteed a priori by designer-specialized performance functions without resorting to repeated regulations of the controller parameters. Finally, the three groups of illustrative examples are employed to verify the effectiveness of the proposed control method.
Grand Prize Winner Profile: Manassas Park High School.
ERIC Educational Resources Information Center
Learning By Design, 2000
2000-01-01
Profiles the award-winning Manassas Park High School design that took a small school with limited land space and created small-scale learning communities from it. Interior and exterior photos are included. (GR)
Loss of Signal, Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap
NASA Technical Reports Server (NTRS)
Stepaniak, Phillip C.; Patlach, Robert
2014-01-01
Loss of Signal, a NASA publication to be available in May 2014 presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goal of this book is to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews. This poster presents an outline of Loss of Signal contents and highlights from each of five sections - the mission and mishap, the response, the investigation, the analysis and the future.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.
Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems
NASA Technical Reports Server (NTRS)
Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank
2011-01-01
Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
Innovation in Higher Education: The Influence of Classroom Design and Instructional Technology
ERIC Educational Resources Information Center
Siegel, Christine; Claydon, Jennifer
2016-01-01
The current work seeks to explore University professors' perspectives on teaching and learning in an innovative classroom characterized by flexible design of space, furniture and technology. The study took place during the 2015-2016 academic year at Fairfield University, a Masters comprehensive university in the Northeastern United States.…
Making Space for the Act of Making: Creativity in the Engineering Design Classroom
ERIC Educational Resources Information Center
Lasky, Dorothea; Yoon, Susan A.
2011-01-01
Creativity continues to be an important goal for 21st century learning. However, teachers often have difficulties fostering creativity in their classrooms. Current creativity research suggests that the act of making can enhance the teaching of creativity. Hands-on engineering design lessons are ideal contexts for studying this effect. Through…
Learning Embedded Software Design in an Open 3A Multiuser Laboratory
ERIC Educational Resources Information Center
Shih, Chien-Chou; Hwang, Lain-Jinn
2011-01-01
The need for professional programmers in embedded applications has become critical for industry growth. This need has increased the popularity of embedded software design courses, which are resource-intensive and space-limited in traditional real lab-based instruction. To overcome geographic and time barriers in enhancing practical skills that…
Learning Space Attributes: Reflections on Academic Library Design and Its Use
ERIC Educational Resources Information Center
Cunningham, Heather V.; Tabur, Susanne
2012-01-01
Even though students are not using the print collection, they still choose to go to the library for academic pursuits. The continuing preferences of students for library space can be examined in the light of a hierarchy of needs made up of layers of access and linkages, of uses and activities, of sociability, and of comfort and image. A space…
A Web-Based Self-Testing System with Some Features of Web 2.0: Design and Primary Implementation
ERIC Educational Resources Information Center
Liu, Xiaolei; Liu, Haitao; Bao, Zhen; Ju, Bo; Wang, Zhenghong
2010-01-01
Self-testing is a means to check learning effect. Besides time-space restriction, there are many deficiencies in traditional offline self-testing. With the development of information technology, learners can have self-testing on the Internet. Self-testing on Internet, namely, web-based self-testing, overcomes time-space limitation of traditional…
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.
2005-01-01
In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center prepares to fly in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
ERIC Educational Resources Information Center
Magalhaes, Rebecca; Stone-Jimenez, Maryanne; Allen de Smith, Paulina; Smith, Natalia
These magazine-sized booklets, one in English, one in Spanish, are in cartoon format and designed to be used by people with limited literacy in English or Spanish. They explain how breastfeeding can be used to help space pregnancies, the limitations of its effectiveness as a pregnancy-avoiding method, and that the spacing of pregnancies can be…
Evolution of Space Shuttle Range Safety Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan; Davis, Jerel; Glenn, Christopher
2011-01-01
For every space vehicle launch from the Eastern Range in Florida, the range user must provide specific Range Safety (RS) data products to the Air Force's 45th Space Wing in order to obtain flight plan approval. One of these data products is a set of RS ascent flight envelope trajectories that define the normal operating region of the vehicle during powered flight. With the Shuttle Program launching 135 manned missions over a 30-year period, 135 envelope sets were delivered to the range. During this time, the envelope methodology and design process evolved to support mission changes, maintain high data quality, and reduce costs. The purpose of this document is to outline the shuttle envelope design evolution and capture the lessons learned that could apply to future spaceflight endeavors.
Design for learning - a case study of blended learning in a science unit.
Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa
2015-01-01
Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the 'real' teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a 'question of the week', a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university's teaching and learning into the 21 (st) century.
Systems Engineering Lessons Learned from Solar Array Structures and Mechanisms Deployment
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin; Kraft, Thomas
2013-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the Engineering Directorate at LaRC. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.
Learning-based position control of a closed-kinematic chain robot end-effector
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.
Clean access platform for orbiter
NASA Technical Reports Server (NTRS)
Morrison, H.; Harris, J.
1990-01-01
The design of the Clean Access Platform at the Kennedy Space Center, beginning with the design requirements and tracing the effort throughout development and manufacturing is described. Also examined are: (1) A system description; (2) Testing requirements and conclusions; (3) Safety and reliability features; (4) Major problems experienced during the project; and (5) Lessons learned, including features necessary for the effective design of mechanisms used in clean systems.
Logistics Lessons Learned in NASA Space Flight
NASA Technical Reports Server (NTRS)
Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah
2006-01-01
The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.
Computer-based teaching module design: principles derived from learning theories.
Lau, K H Vincent
2014-03-01
The computer-based teaching module (CBTM), which has recently gained prominence in medical education, is a teaching format in which a multimedia program serves as a single source for knowledge acquisition rather than playing an adjunctive role as it does in computer-assisted learning (CAL). Despite empirical validation in the past decade, there is limited research into the optimisation of CBTM design. This review aims to summarise research in classic and modern multimedia-specific learning theories applied to computer learning, and to collapse the findings into a set of design principles to guide the development of CBTMs. Scopus was searched for: (i) studies of classic cognitivism, constructivism and behaviourism theories (search terms: 'cognitive theory' OR 'constructivism theory' OR 'behaviourism theory' AND 'e-learning' OR 'web-based learning') and their sub-theories applied to computer learning, and (ii) recent studies of modern learning theories applied to computer learning (search terms: 'learning theory' AND 'e-learning' OR 'web-based learning') for articles published between 1990 and 2012. The first search identified 29 studies, dominated in topic by the cognitive load, elaboration and scaffolding theories. The second search identified 139 studies, with diverse topics in connectivism, discovery and technical scaffolding. Based on their relative representation in the literature, the applications of these theories were collapsed into a list of CBTM design principles. Ten principles were identified and categorised into three levels of design: the global level (managing objectives, framing, minimising technical load); the rhetoric level (optimising modality, making modality explicit, scaffolding, elaboration, spaced repeating), and the detail level (managing text, managing devices). This review examined the literature in the application of learning theories to CAL to develop a set of principles that guide CBTM design. Further research will enable educators to take advantage of this unique teaching format as it gains increasing importance in medical education. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Johnson, Teresa A.
2006-01-01
Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center watches the landing of remote-controlled aircraft. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined a Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned
NASA Technical Reports Server (NTRS)
Trevino, Robert C.
2010-01-01
The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.
ERIC Educational Resources Information Center
Downs, Edward; Erickson, Sarah; Borrett, Jacqueline
2017-01-01
A 2 × 2, fully-crossed, quasi-experimental design was employed to determine if type of media (rich media vs. lean media) and social prompting (presence of prompts vs. absence of prompts) would differentially impact learning outcomes for patrons interacting with an aquatic invasive species exhibit. Results indicated that the lean-media condition…
Merging Computer Writing & Collaborative Learning: The Role of Space in Room N779.
ERIC Educational Resources Information Center
Moberg, Goran
At Borough of Manhattan Community College in New York City about a dozen teachers teach English composition in a special room (N779): 25 computers along the 4 walls frame the large arena in the center which holds several work tables, each one surrounded by 6 chairs. The room is an eco-system designed for learning about text production. The most…
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2010-01-01
This slide presentation reviews some of the lessons learned in the sphere of international cooperation during the development, assembly and operation of the International Space Station. From the begining all Partners shared a common objective to build, operate and utilize a crewed laboratory in low orbit as an international partnership. The importance of standards is emphasized.
Ares I-X: First Flight of a New Era
NASA Technical Reports Server (NTRS)
Davis, Stephen R.; Askins, Bruce R.
2010-01-01
Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.
Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies
NASA Technical Reports Server (NTRS)
Di Pietro, David A.
2015-01-01
Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.
McCormack, Jane; Easton, Catherine; Morkel-Kingsbury, Lenni
2014-01-01
The landscape of tertiary education is changing. Developments in information and communications technology have created new ways of engaging with subject material and supporting students on their learning journeys. Therefore, it is timely to reconsider and re-imagine the education of speech-language pathology (SLP) students within this new learning space. In this paper, we outline the design of a new Master of Speech Pathology course being offered by distance education at Charles Sturt University (CSU) in Australia. We discuss the catalyst for the course and the commitments of the SLP team at CSU, then describe the curriculum design process, focusing on the pedagogical approach and the learning and teaching strategies utilised in the course delivery. We explain how the learning and teaching strategies have been selected to support students' online learning experience and enable greater interaction between students and the subject material, with students and subject experts, and among student groups. Finally, we highlight some of the challenges in designing and delivering a distance education SLP program and identify future directions for educating students in an online world. © 2015 S. Karger AG, Basel.
Healthy Eating Design Guidelines for School Architecture
Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly
2013-01-01
We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools’ ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research. PMID:23449281
Mission to Mars: Connecting Diverse Student Groups with NASA Experts
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Jones, David; Sadowski-Fugitt, Leslie; Kowrach, Nicole
2012-01-01
The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael; Henderson, Gena; Stambolian, Damon
2013-01-01
NASA policy requires each Program or Project to develop a plan for how they will address Lessons Learned. Projects have the flexibility to determine how best to promote and implement lessons learned. A large project might budget for a lessons learned position to coordinate elicitation, documentation and archival of the project lessons. The lessons learned process crosses all NASA Centers and includes the contactor community. o The Office of The Chief Engineer at NASA Headquarters in Washington D.C., is the overall process owner, and field locations manage the local implementation. One tool used to transfer knowledge between program and projects is the Lessons Learned Information System (LLIS). Most lessons come from NASA in partnership with support contractors. A search for lessons that might impact a new design is often performed by a contractor team member. Knowledge is not found with only one person, one project team, or one organization. Sometimes, another project team, or person, knows something that can help your project or your task. Knowledge sharing is an everyday activity at the Kennedy Space Center through storytelling, Kennedy Engineering Academy presentations and through searching the Lessons Learned Information system. o Project teams search the lessons repository to ensure the best possible results are delivered. o The ideas from the past are not always directly applicable but usually spark new ideas and innovations. Teams have a great responsibility to collect and disseminate these lessons so that they are shared with future generations of space systems designers. o Leaders should set a goal for themselves to host a set numbers of lesson learned events each year and do more to promote multiple methods of lessons learned activities. o High performing employees are expected to share their lessons, however formal knowledge sharing presentation are not the norm for many employees.
Finding Our Origins with the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2003-01-01
NASA's Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.
Finding our Origins with the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2004-01-01
NASA s Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.
Research into the development of a knowledge acquisition taxonomy
NASA Technical Reports Server (NTRS)
Fink, Pamela K.
1991-01-01
Monthly progress reports for September 1990 to January 1991 are given. Topics that are briefly covered include problem solving and learning taxonomies, knowledge acquisition techniques, software design, air traffic control, and space shuttle flight control.
Telescience testbed pilot program, volume 2: Program results
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.
UD and UDL: Paving the Way toward Inclusion and Independence in the School Library
ERIC Educational Resources Information Center
Blue, Elfreda V.; Pace, Darra
2011-01-01
Universal Design (UD) is widely used in architecture. It is evidenced in public and private spaces to ensure environmental access (facilities and equipment) to the broadest range of users. Universal Design for Learning (UDL) is a research-based set of principles that provide a practical framework for using technology to maximize learning…
Hybrid Placemaking in the Library: Designing Digital Technology to Enhance Users' On-Site Experience
ERIC Educational Resources Information Center
Bilandzic, Mark; Johnson, Daniel
2013-01-01
This paper presents research findings and design strategies that illustrate how digital technology can be applied as a tool for "hybrid" placemaking in ways that would not be possible in purely digital or physical spaces. Digital technology has revolutionised the way people learn and gather new information. This trend has challenged the…
ERIC Educational Resources Information Center
Zheng, Dongping
2012-01-01
This study provides concrete evidence of ecological, dialogical views of languaging within the dynamics of coordination and cooperation in a virtual world. Beginning level second language learners of Chinese engaged in cooperative activities designed to provide them opportunities to refine linguistic actions by way of caring for others, for the…
Critical Perspectives on TEL: Art and Design Education, Theory, Communities and Space
ERIC Educational Resources Information Center
Sclater, Madeleine; Lally, Vic
2016-01-01
This paper explores three themes, emerging from the Inter-Life project, an Art and Design education and social skills project set in a virtual world. We argue that they connect with the concerns raised by critical Technology-Enhanced Learning (TEL) researchers at the Alpine Rendezvous workshop entitled "TEL: the Crisis and the Response."…
Successes and Failures Teaching Visual Ethics: A Class Study
ERIC Educational Resources Information Center
Roundtree, Aimee Kendall
2010-01-01
This article discusses and evaluates the inclusion of ethics learning modules in a graduate- level visual design theory course. Modules were designed as a part of an NEH grant. Students grappled with case studies that probed the ethics of visuals at the crux of the BP oil refinery accident, NASA space shuttle disasters, the Enron collapse, and…
STS-47 Payload Specialist Mohri conducts visual stability experiment in SLJ
1992-09-20
STS047-204-006 (12 - 20 Sept 1992) --- Dr. Mamoru Mohri, payload specialist representing Japan's National Space Development Agency (NASDA), participates in an experiment designed to learn more about Space Adaptation Syndrome (SAS). The experiment is titled, "Comparative Measurement of Visual Stability in Earth and Cosmic Space." During the experiment, Dr. Mohri tracked a flickering light target while eye movements and neck muscle tension were measured. This 45-degree angle position was one of four studied during the eight-day Spacelab-J mission.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – Engineers fine-tune a remote-controlled helicopter before it takes off. The helicopter is equipped with a unique set of sensors and software and was assembled by a team of engineers from NASA's Johnson Space Center for a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Marshall Space Flight Center. Teams from Johnson Space Center, Kennedy Space Center and Marshall competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft takes off during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
Implementation and Qualifications Lessons Learned for Space Flight Photonic Components
NASA Technical Reports Server (NTRS)
Ott, Melanie N.
2010-01-01
This slide presentation reviews the process for implementation and qualification of space flight photonic components. It discusses the causes for most common anomalies for the space flight components, design compatibility, a specific failure analysis of optical fiber that occurred in a cable in 1999-2000, and another ExPCA connector anomaly involving pins that broke off. It reviews issues around material selection, quality processes and documentation, and current projects that the Photonics group is involved in. The importance of good documentation is stressed.
Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2012-01-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression. PMID:20617892
Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2011-07-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression.
Rasch family models in e-learning: analyzing architectural sketching with a digital pen.
Scalise, Kathleen; Cheng, Nancy Yen-Wen; Oskui, Nargas
2009-01-01
Since architecture students studying design drawing are usually assessed qualitatively on the basis of their final products, the challenges and stages of their learning have remained masked. To clarify the challenges in design drawing, we have been using the BEAR Assessment System and Rasch family models to measure levels of understanding for individuals and groups, in order to correct pedagogical assumptions and tune teaching materials. This chapter discusses the analysis of 81 drawings created by architectural students to solve a space layout problem, collected and analyzed with digital pen-and-paper technology. The approach allows us to map developmental performance criteria and perceive achievement overlaps in learning domains assumed separate, and then re-conceptualize a three-part framework to represent learning in architectural drawing. Results and measurement evidence from the assessment and Rasch modeling are discussed.
USA Science and Engineering Festival
2010-10-23
Young visitors to the inaugural USA Science and Engineering Festival at the National Mall in Washington, D.C., learn about the life cycle of a star at an exhibit sponsored by the John C. Stennis Space Center Education Office. Stennis personnel participated in the final weekend of the Oct. 10-24 festival with education activities and to present information on its new Spaced Out Sports Design Challenge.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 5 to 8 explore the concepts of functions and statistics in the context of the International Space Station (ISS). The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each…
When teacher-centered instructors are assigned to student-centered classrooms
NASA Astrophysics Data System (ADS)
Lasry, Nathaniel; Charles, Elizabeth; Whittaker, Chris
2014-06-01
Technology-rich student-centered classrooms such as SCALE-UP and TEAL are designed to actively engage students. We examine what happens when the design of the classroom (conventional or teacher-centered versus student-centered classroom spaces) is consistent or inconsistent with the teacher's epistemic beliefs about learning and teaching (traditional or teacher-centered versus student-centered pedagogies). We compare two types of pedagogical approaches and two types of classroom settings through a quasiexperimental 2×2 factorial design. We collected data from 214 students registered in eight sections of an introductory calculus-based mechanics course given at a Canadian publicly funded two-year college. All students were given the Force Concept Inventory at the beginning and at the end of the 15-week-long course. We then focused on six teachers assigned to teach in the student-centered classroom spaces. We used qualitative observations and the Approaches to Teaching Inventory (ATI), a self-reported questionnaire, to determine the teachers' epistemic beliefs (teacher-centered or student-centered) and how these beliefs affected their use of the space and their students' conceptual learning. We report four main findings. First, the student-centered classroom spaces are most effective when used with student-centered pedagogies. Second, student-centered classrooms are ineffective when used with teacher-centered pedagogies and may have negative effects for students with low prior knowledge. Third, we find a strong correlation between six instructors' self-reported epistemic beliefs of student centeredness and their classes' average normalized gain (r =0.91; p =0.012). Last, we find that some instructors are more willing to adopt student-centered teaching practices after using student-centered classroom spaces. These data suggest that student-centered classrooms are effective only when instructors' epistemic framework of teaching and learning is consistent with a student-centered pedagogy. However, the use of the student-centered classrooms may change instructors' epistemic frameworks over time. Further research should focus on how to better support teachers with shifting epistemic frameworks as well as helping students with lower prior knowledge in student-centered classroom spaces.
Learning Problem-Solving Rules as Search Through a Hypothesis Space.
Lee, Hee Seung; Betts, Shawn; Anderson, John R
2016-07-01
Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Solomon, D.; van Dijk, A.
The "2002 ESA Lunar Architecture Workshop" (June 3-16) ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL) is the first-of-its-kind workshop for exploring the design of extra-terrestrial (infra) structures for human exploration of the Moon and Earth-like planets introducing 'architecture's current line of research', and adopting an architec- tural criteria. The workshop intends to inspire, engage and challenge 30-40 European masters students from the fields of aerospace engineering, civil engineering, archi- tecture, and art to design, validate and build models of (infra) structures for Lunar exploration. The workshop also aims to open up new physical and conceptual terrain for an architectural agenda within the field of space exploration. A sound introduc- tion to the issues, conditions, resources, technologies, and architectural strategies will initiate the workshop participants into the context of lunar architecture scenarios. In my paper and presentation about the development of the ideology behind this work- shop, I will comment on the following questions: * Can the contemporary architectural agenda offer solutions that affect the scope of space exploration? It certainly has had an impression on urbanization and colonization of previously sparsely populated parts of Earth. * Does the current line of research in architecture offer any useful strategies for com- bining scientific interests, commercial opportunity, and public space? What can be learned from 'state of the art' architecture that blends commercial and public pro- grammes within one location? * Should commercial 'colonisation' projects in space be required to provide public space in a location where all humans present are likely to be there in a commercial context? Is the wave in Koolhaas' new Prada flagship store just a gesture to public space, or does this new concept in architecture and shopping evolve the public space? * What can we learn about designing (infra-) structures on the Moon or any other space context that will be useful on Earth on a conceptual and practical level? * In what ways could architecture's field of reference offer building on the Moon (and other celestial bodies) a paradigm shift? 1 In addition to their models and designs, workshop participants will begin authoring a design recommendation for the building of (infra-) structures and habitats on celestial bodies in particular the Moon and Mars. The design recommendation, a substantiated aesthetic code of conduct (not legally binding) will address long term planning and incorporate issues of sustainability, durability, bio-diversity, infrastructure, CHANGE, and techniques that lend themselves to Earth-bound applications. It will also address the cultural implications of architectural design might have within the context of space exploration. The design recommendation will ultimately be presented for peer review to both the space and architecture communities. What would the endorsement from the architectural community of such a document mean to the space community? The Lunar Architecture Workshop is conceptualised, produced and organised by(in alphabetical order): Alexander van Dijk, Art Race in Space, Barbara Imhof; ES- CAPE*spHERE, Vienna, University of Technology, Institute for Design and Building Construction, Vienna, Bernard Foing; ESA SMART1 Project Scientist, Susmita Mo- hanty; MoonFront, LLC, Hans Schartner' Vienna University of Technology, Institute for Design and Building Construction, Debra Solomon; Art Race in Space, Dutch Art Institute, Paul van Susante; Lunar Explorers Society. Workshop locations: ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL Workshop dates: June 3-16, 2002 (a Call for Participation will be made in March -April 2002.) 2
Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C.; Chee, Michael W.L.; Gooley, Joshua J.
2016-01-01
Study Objectives: The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. Methods: In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15–19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. Results: For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Conclusions: Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. Citation: Huang S, Deshpande A, Yeo SC, Lo JC, Chee MW, Gooley JJ. Sleep restriction impairs vocabulary learning when adolescents cram for exams: the Need for Sleep Study. SLEEP 2016;39(9):1681–1690. PMID:27253768
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1991-01-01
The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.
Launch Control Network Engineer
NASA Technical Reports Server (NTRS)
Medeiros, Samantha
2017-01-01
The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.
International Space Station: becoming a reality.
David, L
1999-07-01
An overview of the development of the International Space Station (ISS) is presented starting with a brief history of space station concepts from the 1960's to the decision to build the present ISS. Other topics discussed include partnerships with Japan, Canada, ESA countries, and Russia; design changes to the ISS modules, the use of the ISS for scientific purposes and the application of space research to medicine on Earth; building ISS modules on Earth, international funding for Russian components, and the political aspects of including Russia in critical building plans. Sidebar articles examine commercialization of the ISS, multinational efforts in the design and building of the ISS, emergency transport to Earth, the use of robotics in ISS assembly, application of lessons learned from the Skylab project to the ISS, initial ISS assembly in May 1999, planned ISS science facilities, and an overview of space stations in science fiction.
Space-Hotel Early Bird - Visions for a Commercial Space Hotel
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.; Apel, U.
2002-01-01
rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the designs as a vision of a future space hotel and will deal with and summarize the outcome of the 17 designs, which may trigger the development of technologies required for a space station dedicated to tourism. www.spacehotel.org
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Recognition of strong earthquake-prone areas with a single learning class
NASA Astrophysics Data System (ADS)
Gvishiani, A. D.; Agayan, S. M.; Dzeboev, B. A.; Belov, I. O.
2017-05-01
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one "pure" high-seismic class. The new algorithm operates in the space of absolute values of the geological-geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with M ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
New Educational Video Series From AGU
NASA Astrophysics Data System (ADS)
Adamec, Bethany Holm; Sollosi, Derek
2013-04-01
A new video series entitled Live Education Activity Resource Network (LEARN) With AGU was recently launched. This series of short Earth and space science-related videos is designed to give K-12 formal and informal educators the tools they need to try new hands-on activities with their students. Research indicates that hands-on learning and problem solving are important ways for students to learn, but educators do not always know where to begin or think that they need a lot of materials to do a hands-on activity (which often is not the case).
Design for learning – a case study of blended learning in a science unit
Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa
2015-01-01
Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the ‘real’ teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a ‘question of the week’, a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university’s teaching and learning into the 21 st century. PMID:26594348
Science is Cool with NASA's "Space School Musical"
NASA Astrophysics Data System (ADS)
Asplund, S.
2011-12-01
To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery Program collaborated with KidTribe to create "Space School Musical," an innovative approach to teaching about the solar system that combines science content with music, fun lyrics, and choreography. It's an educational "hip-hopera" that moves and grooves its way into the minds and memories of students and educators alike. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. "Space School Musical" captures students attention as it brings the solar system to life, introducing the planets, moons, asteroids and more. The musical uses many different learning styles, helping to assure retention. Offering students an engaging, creative, and interdisciplinary learning opportunity helps them remember the content and may lead them to wonder about the universe around them and even inspire children to want to learn more, to dare to consider they can be the scientists, technologists, engineers or mathematicians of tomorrow. The unique Activity Guide created that accompanies "Space School Musical" includes 36 academic, fitness, art, and life skills lessons, all based on the content in the songs. The activities are designed to be highly engaging while helping students interact with the information. Whether students absorb information best with their eyes, ears, or body, each lesson allows for their learning preferences and encourages them to interact with both the content and each other. A guide on How to Perform the Play helps instructors lead students in performing their own version of the musical. The guide has suggestions to help with casting, auditions, rehearsing, creating the set and costumes, and performing. The musical is totally flexible - the entire play can be performed or just a few selected numbers; students can sing to the karaoke versions or lip-sync to the original cast. After learning about the solar system, students can even write their own lyrics. The play is not about perfection! It's designed to be inclusive and fun, to give every child a chance to shine. "Space School Musical" commands attention! It is a great tool for scientists who are visiting classrooms or afterschool programs, addressing school assemblies, or offering professional development workshops. Showing one or more videos brings engagement, smiles, and information to all. Specific songs can be shown to reinforce space science topics. The "Planetary Posse" introduces the planets and dwarf planets. "The Asteroids Gang" can initiate a discussion about accretion and why small bodies are so important to understanding the origin and evolution of our solar system. "MoonDance" provides compelling information about our moon and can introduce lunar missions. "We're the Scientists" is intended to build self confidence. "Space School Musical" is an innovative, universal, and timeless approach to teaching about the solar system, making it a valuable addition to programs and presentations for students and the public. The videos, lyrics, and guides are all available free on the Internet.
Fourth Conference on Artificial Intelligence for Space Applications
NASA Technical Reports Server (NTRS)
Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)
1988-01-01
Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.
Use of a position-sensitive multi-anode photomultiplier tube for finding gamma-ray source direction
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul
2014-09-01
Organizations that fail to use known near-miss data when making operational decisions may be inadvertently rewarding risky behavior. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance [1,2,3]). History from the space shuttle program shows that only the occasional large failure increases attention to anomalies again. This paper discusses prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve the lesson learning process for space missions. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.
Divine Design: How to Create the 21st-Century School Library of Your Dreams
ERIC Educational Resources Information Center
Sullivan, Margaret
2011-01-01
Things are changing. For starters, ebooks, apps, and the web are now a part of students' daily lives. So how do school librarians determine the best way to turn their library space into a learning center that is right for today's rapidly changing digital world? In this article, the author suggests five design considerations that school librarians…
Tiered Classrooms at St. Olaf College: Faculty and Student Perceptions of Three Different Designs
ERIC Educational Resources Information Center
Walczak, Mary M.; Van Wylen, David G. L.
2014-01-01
In designing St. Olaf College's Regents Hall of Natural and Mathematical Sciences, we attempted to create learning spaces to accommodate classes of 50-100 students and a variety of teaching pedagogies. In this study, we compared three different 72-seat classrooms furnished with half-round tables for four, straight tables, or a serpentine shaped…
Virtual Worlds; Real Learning: Design Principles for Engaging Immersive Environments
NASA Technical Reports Server (NTRS)
Wu (u. Sjarpm)
2012-01-01
The EMDT master's program at Full Sail University embarked on a small project to use a virtual environment to teach graduate students. The property used for this project has evolved our several iterations and has yielded some basic design principles and pedagogy for virtual spaces. As a result, students are emerging from the program with a better grasp of future possibilities.
Impact of Classroom Design on Teacher Pedagogy and Student Engagement and Performance in Mathematics
ERIC Educational Resources Information Center
Imms, Wesley; Byers, Terry
2017-01-01
A resurgence in interest in classroom and school design has highlighted how little we know about the impact of learning environments on student and teacher performance. This is partly because of a lack of research methods capable of controlling the complex variables inherent to space and education. In a unique study that overcame such difficulties…
ERIC Educational Resources Information Center
Conway, Maureen; Bear, Marshall
Asian Neighborhood Design (AND) was established by a group of student architects in 1973 to rehabilitate houses and revitalize community spaces in the crowded neighborhoods of San Francisco's Chinatown. Despite its growth and development in response to changes in economic conditions, the policy environment, and its own clientele, AND has retained…
David N. Bengston; Jennifer O. Fletcher
2003-01-01
The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...
A predictive machine learning approach for microstructure optimization and materials design
NASA Astrophysics Data System (ADS)
Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; Agrawal, Ankit; Sundararaghavan, Veera; Choudhary, Alok
2015-06-01
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.
Consider the category: The effect of spacing depends on individual learning histories.
Slone, Lauren K; Sandhofer, Catherine M
2017-07-01
The spacing effect refers to increased retention following learning instances that are spaced out in time compared with massed together in time. By one account, the advantages of spaced learning should be independent of task particulars and previous learning experiences given that spacing effects have been demonstrated in a variety of tasks across the lifespan. However, by another account, spaced learning should be affected by previous learning because past learning affects the memory and attention processes that form the crux of the spacing effect. The current study investigated whether individuals' learning histories affect the role of spacing in category learning. We examined the effect of spacing on 24 2- to 3.5-year-old children's learning of categories organized by properties to which children's previous learning experiences have biased them to attend (i.e., shape) and properties to which children are less biased to attend (i.e., texture and color). Spaced presentations led to significantly better learning of shape categories, but not of texture or color categories, compared with massed presentations. In addition, generalized estimating equations analyses revealed positive relations between the size of children's "shape-side" productive vocabularies and their shape category learning and between the size of children's "against-the-system" productive vocabularies and their texture category learning. These results suggest that children's attention to and memory for novel object categories are strongly related to their individual word-learning histories. Moreover, children's learned attentional biases affected the types of categories for which spacing facilitated learning. These findings highlight the importance of considering how learners' previous experiences may influence future learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Machine learning with quantum relative entropy
NASA Astrophysics Data System (ADS)
Tsuda, Koji
2009-12-01
Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.
Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Davis, Stephan R.
2007-01-01
The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.
Transformational System Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2004-01-01
Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
Beyond information and utility: Transforming public spaces with media facades.
Fischer, Patrick Tobias; Zöllner, Christian; Hoffmann, Thilo; Piatza, Sebastian; Hornecker, Eva
2013-01-01
Media facades (often characterized as a building's digital skin) are public displays that substitute dynamic details and information for usually static structures. SMSlingshot is a media facade system at the confluence of art, architecture, and technology design in the context of urban human-computer interaction. It represents a participative approach to public displays that enlivens public spaces and fosters civic and social dialogue as an alternative to advertising and service-oriented information displays. Observations from SMSlingshot's implementation at festival exhibitions provide insight into the roles of scale, distance, and the spatial situation of media facade contexts. The lessons learned apply to most public-display situations and will be useful for designers and developers of this new medium in urban spaces.
The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn
2008-01-01
The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.
NASA Astrophysics Data System (ADS)
Shimoyama, Norihisa; Mita, Akira
2008-03-01
In Japan's rapidly aging society, the number of elderly people living alone increases every year. Theses elderly people require more and more to maintain as independent a life as possible in their own homes. It is necessary to make living spaces that assist in providing safe and comfortable lives. "Biofication of Living Spaces" is proposed with the concept of creating save and pleasant living environments. It implies learning from biological systems, and applying to living spaces features such as high adaptability and excellent tolerance to environmental changes. As a first step towards realizing "Biofied Spaces", a system for acquisition and storing information must be developed. This system is similar to the five human senses. The information acquired includes environmental information such as temperature, human behavior, psychological state and location of furniture. This study addresses human behavior as it is the most important factor in design of a living space. In the present study, pyroelectric infrared sensors were chosen for human behavior recognition. The pyroelectric infrared sensor is advantageous in that it has no limitation on the number of sensors put in a single space because sensors do not interfere with each other. Wavelet analysis was applied to the output time histories of the pyroelectric infrared sensors. The system successfully classified walking patterns with 99.5% accuracy of walking direction (from right or left) and 85.7% accuracy of distance for 440 patterns pre-learned and an accuracy of over 80% accuracy of walking direction for 720 non-learned patterns.
Development of Constellation's Launch Control System
NASA Technical Reports Server (NTRS)
Lougheed, Kirk D.; Peaden, Cary J.
2010-01-01
The paper focuses on the National Aeronautics and Space Administration (NASA) Constellation Program's Launch Control System (LCS) development effort at Kennedy Space Center (KSC). It provides a brief history of some preceding efforts to provide launch control and ground processing systems for other NASA programs, and some lessons learned from those experiences. It then provides high level descriptions of the LCS mission, objectives, organization, architecture, and progress. It discusses some of our development tenets, including our use of standards based design and use of off-the-shelf products whenever possible, incremental development cycles, and highly reliable, available, and supportable enterprise class system servers. It concludes with some new lessons learned and our plans for the future.
NASA Technical Reports Server (NTRS)
Holder, Donald W., Jr.; Bagdigian, Robert M.
1992-01-01
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.
2009-01-01
Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.
Interactive Machine Learning at Scale with CHISSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin L.; Grace, Emily A.; Volkova, Svitlana
We demonstrate CHISSL, a scalable client-server system for real-time interactive machine learning. Our system is capa- ble of incorporating user feedback incrementally and imme- diately without a structured or pre-defined prediction task. Computation is partitioned between a lightweight web-client and a heavyweight server. The server relies on representation learning and agglomerative clustering to learn a dendrogram, a hierarchical approximation of a representation space. The client uses only this dendrogram to incorporate user feedback into the model via transduction. Distances and predictions for each unlabeled instance are updated incrementally and deter- ministically, with O(n) space and time complexity. Our al- gorithmmore » is implemented in a functional prototype, designed to be easy to use by non-experts. The prototype organizes the large amounts of data into recommendations. This allows the user to interact with actual instances by dragging and drop- ping to provide feedback in an intuitive manner. We applied CHISSL to several domains including cyber, social media, and geo-temporal analysis.« less
Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops
NASA Technical Reports Server (NTRS)
Steele, John W.
2016-01-01
John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.
NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.
Batch Mode Reinforcement Learning based on the Synthesis of Artificial Trajectories
Fonteneau, Raphael; Murphy, Susan A.; Wehenkel, Louis; Ernst, Damien
2013-01-01
In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of “artificial trajectories” from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning. PMID:24049244
Experimental demonstration of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.
1990-01-01
Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.
Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.
2002-01-01
rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used technologies which are currently in a development phase (e.g. tether technology, inflatable habitats). But during the design process requirements for the development of new technologies have been defined as well (e.g. multifunctional surfaces, smart materials etc.). The paper will deal with and summarize the outcome of the design study which may trigger the development of technologies required for a space station which will be dedicated to tourism. www.spacehotel.org
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
NASA Technical Reports Server (NTRS)
Heizer, Barbara L.
1992-01-01
The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.
GMI Spin Mechanism Assembly Design, Development, and Test Results
NASA Technical Reports Server (NTRS)
Woolaway, Scott; Kubitschek, Michael; Berdanier, Barry; Newell, David; Dayton, Chris; Pellicciotti, Joseph W.
2012-01-01
The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on orbit and has recently surpassed 8 years of Flight operation.
NASA Technical Reports Server (NTRS)
Kubitschek, Michael; Woolaway, Scott; Guy, Larry; Dayton, Chris; Berdanier, Barry; Newell, David; Pellicciotti, Joseph W.
2011-01-01
The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on-orbit and has recently surpassed 8 years of Flight operation.
ESTEC/Geovusie/ILEWG planetary student design workshop: a teacher training perspective
NASA Astrophysics Data System (ADS)
Preusterink, Jolanda; Foing, Bernard H.; Kaskes, Pim
An important role for education is to inform and create the right skills for people to develop their own vision, using their talents to the utmost and inspire others to learn to explore in the future. Great effort has been taken to prepare this interactive design workshop thoroughly. Three days in a row, starting with presentations of Artscience The Hague to ESA colleagues, followed by a Planetary research Symposium in Amsterdam and a student design workshop at the end complemented a rich environment with the focus on Planetary exploration. The design workshop was organised by GeoVUsie students, with ESTEC and ILEWG support for tutors and inviting regional and international students to participate in an interactive workshop to design 5 Planetary Missions, with experts sharing their expertise and knowhow on specific challenging items: 1. Mercury - Post BepiColombo (with Sébastien Besse, ESA) 2. Moon South Pole Mission (with Bernard Foing, ESA) 3. Post-ExoMars - In search for Life on Mars (with Jorge Vago, ESA) 4. Humans in Space - Mars One investigated(with Arno Wielders, Space Horizon) 5. Europa - life on the icy moon of Jupiter? (with Bert Vermeersen, TU Delft) Lectures were given for more than 150 geology students at the symposium “Moon, Mars and More” at VU university, Amsterdam (organized by GeoVUsie earth science students). All students were provided with information before and at start for designing their mission. After the morning session there was a visit to the exhibition at The Erasmus Facility - ESTEC to inspire them even more with real artifacts of earlier and future missions into space. After this visit they prepared their final presentations, with original results, with innovative ideas and a good start to work out further in the future. A telescope session for geology students had been organized indoor due to rain. A follow-up visit to the nearby public Copernicus observatory was planned for another clear sky occasion. The interactive character of this setting was inspirational and motivating. A good method with vision to modernize school education and bring innovation to educators: they are the key promoters and facilitators for change in the culture of education. Tutors and mentors are very important to pave the way with more modern interactive learning, including: 1. Social Media 2. Online Learning 3. Creator Society 4. Data-driven learning 5. Virtual Assistance The great importance of emerging technologies and their potential impact on and use in teaching, learning, and creative inquiry in pre-college education environments offer good prospects. The International Lunar Exploration Working Group (ILEWG) has given support to emphasize their vision, goal to "international cooperation towards a world strategy for the exploration and utilization of the Moon” by organizing and facilitating students, teachers, schools and universities with relevant material, ready to use in the classroom and inform the greater audience. This underlines the vision of the importance and responsibility to “draw in” education for primary, secondary and higher education on a more regular base and to implant space exploration on its widest scale and on a more sustainable way in the future. Developing and building a stronger network is crucial to gain technical personal for future Moon missions, samples return and research on other planets, moons or asteroids. This workshop helped to give more outreach about current space projects and will have a follow-up. The international and cooperative character was an innovative experience with enriching information and great promising students for more science and future space exploration. Acknowledgements: we thank the volunteer organiser students from VU GeoVUsie, the participants and the tutors. A video of highlights is available on " 2. Planetary Design student workshop organised by VU Amsterdam GeoVusie/ESTEC/ILEWG" http://www.youtube.com/watch?v=NJxvHKcNeKo
NASA/MOD Operations Impacts from Shuttle Program
NASA Technical Reports Server (NTRS)
Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly
2011-01-01
Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.
NASA Technical Reports Server (NTRS)
Gupta, U. K.; Ali, M.
1989-01-01
The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.
Energy landscapes for a machine-learning prediction of patient discharge
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2016-06-01
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
Service-Learning in the Environmental Sciences for Teaching Sustainability Science
NASA Astrophysics Data System (ADS)
Truebe, S.; Strong, A. L.
2016-12-01
Understanding and developing effective strategies for the use of community-engaged learning (service-learning) approaches in the environmental geosciences is an important research need in curricular and pedagogical innovation for sustainability. In 2015, we designed and implemented a new community-engaged learning practicum course through the Earth Systems Program in the School of Earth, Energy and Environmental Sciences at Stanford University focused on regional open space management and land stewardship. Undergraduate and graduate students partnered with three different regional land trust and environmental stewardship organizations to conduct quarter-long research projects ranging from remote sensing studies of historical land use, to fire ecology, to ranchland management, to volunteer retention strategies. Throughout the course, students reflected on the decision-making processes and stewardship actions of the organizations. Two iterations of the course were run in Winter and Fall 2015. Using coded and analyzed pre- and post-course student surveys from the two course iterations, we evaluate undergraduate and graduate student learning outcomes and changes in perceptions and understanding of sustainability science. We find that engagement with community partners to conduct research projects on a wide variety of aspects of open space management, land management, and environmental stewardship (1) increased an understanding of trade-offs inherent in sustainability and resource management and (2) altered student perceptions of the role of scientific information and research in environmental management and decision-making. Furthermore, students initially conceived of open space as purely ecological/biophysical, but by the end of the course, (3) their understanding was of open space as a coupled human/ecological system. This shift is crucial for student development as sustainability scientists.
Digital communication constraints in prior space missions
NASA Technical Reports Server (NTRS)
Yassine, Nathan K.
2004-01-01
Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.
TES: A modular systems approach to expert system development for real time space applications
NASA Technical Reports Server (NTRS)
England, Brenda; Cacace, Ralph
1987-01-01
A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.
An Integrated Science Glovebox for the Gateway Habitat
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.
2018-01-01
Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.
Attitudes and learning difficulties in middle school science in South Korea
NASA Astrophysics Data System (ADS)
Jung, Eun Sook
The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is difference of opinions related to various aspects of learning science between age 13 and 15, and between high and middle and low working memory capacity groups, students responses were compared by just looking at the distribution of percentages without doing more statistics. Correlation coefficients were calculated to see if student's working memory capacity is linked with attitudes. As a result of data analyses from the working memory test and the questionnaire, it is seen that working memory space is related to some student attitudes towards science and their way of studying. Compared to students with high working memory capacity, students who have low working memory capacity are likely to lose their interest in science, feel science is difficult, and have low confidence about studying science. In addition, they tend to depend on memorization when they study science, consider science as a future career less, and are less motivated to study science by attitudinal factors such as "I really enjoy studying science", "Science is useful in my life". This exploratory study has suggested some important issues which need addressed in developing positive attitudes as well as encouraging meaningful learning.
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Early Bird Visions and Telchnology for Space Hotel
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.
2002-01-01
The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito, visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of . Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term 2001 fifty students from the university occupied themselves with the topic, "Design of a hotel for space". During this time seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present an overview of the 17 designs as a vision of a future space station. The designs used technologies which are currently in a development phase (e.g. tether technology, inflatable habitats). But the during the design process requirements for the development of technologies have been defined as well (e.g. multifunctional surfaces, smart materials etc.). This paper will deal with the concepts basing on the today technologies and the definition of new technologies for future large space stations. www.spacehotel.org
The history of in-flight exercise in the US manned space program
NASA Technical Reports Server (NTRS)
Moore, Thomas P.
1989-01-01
A historical perspective on in-flight exercise in the U.S. manned space program is given. We have learned a great deal in the 25 years since the inception of Project Mercury. But, as we look forward to a Space Station and long-duration space flight, we must recognize the challenge that lies ahead. The importance of maintenance of the crewmember's physical condition during long stays in weightlessness is a prime concern that should not be minimized. The challenge lies in the design and development of exercise equipment and protocols that will prevent or minimize the deleterious sequelae of long-duration space flight while maximizing valuable on-orbit crew time.
NASA Technical Reports Server (NTRS)
Bazley, Jesse
2015-01-01
The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
ERIC Educational Resources Information Center
Kersh, Natasha
2015-01-01
This paper focuses on the notion of the learning space at work and discusses the extent to which its different configurations allow employees to exercise personal agency within a range of learning spaces. Although the learning space at work is already the subject of extensive research, the continuous development of the learning society and the…
Ares Knowledge Capture: Summary and Key Themes Presentation
NASA Technical Reports Server (NTRS)
Coates, Ralph H.
2011-01-01
This report has been developed by the National Aeronautics and Space Administration (NASA) Human Exploration and Operations Mission Directorate (HEOMD) Risk Management team in close coordination with the MSFC Chief Engineers Office. This document provides a point-in-time, cumulative, summary of actionable key lessons learned derived from the design project. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.
How Does Evolution Design a Brain Capable of Learning Language?
ERIC Educational Resources Information Center
Savage-Rumbaugh, E. Sue
1993-01-01
Discusses methods of assessing language comprehension in apes. Considers the possible effect of brain physiology on the differences between productive and receptive language skills. Examines the possibility that differences between synaptic transmission and volume transmission, or transmission across extracellular spaces, of neurological impulses…
Everyday Innovation--Pushing Boundaries While Maintaining Stability
ERIC Educational Resources Information Center
Lippke, Lena; Wegener, Charlotte
2014-01-01
Purpose: The purpose of this paper is to explore how vocational teachers' everyday practices can constitute innovative learning spaces that help students to experience engagement and commitment towards education and thus increase their possibilities for completing their studies despite notable difficulties. Design/methodology/approach: Based on…
ERIC Educational Resources Information Center
Puck, Susan
1971-01-01
Aviation and transportation students of Mt. San Antonio College (California) gained first hand experience of commercial airline operations while learning science, geography, and history on a 39-hour trip on a United Airlines jet. This year's program was designed to acquaint students with the Apollo Space program. (CA)
Education Facilities for Young Children
ERIC Educational Resources Information Center
Meade, Anne; Ross, Fiona
2006-01-01
Educational buildings and grounds can provide a supportive and stimulating environment for the learning process as well as contribute to greater community needs. These issues were addressed at an international conference entitled "Making Space: Architecture and Design for Young Children". Described here are the importance of outdoor…
Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)
NASA Technical Reports Server (NTRS)
Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff
2004-01-01
Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.
A Coarse Pointing Assembly for Optical Communication
NASA Technical Reports Server (NTRS)
Szekely, G.; Blum, D.; Humphries, M.; Koller, A.; Mussett, D.; Schuler, S.; Vogt, P.
2010-01-01
In the framework of a contract with the European Space Agency, RUAG Space are developing a Coarse Pointing Assembly for an Optical Communication Terminal with the goal to enable high-bandwidth data exchange between GEO and/or LEO satellites as well as to earth-bound ground stations. This paper describes some development and testing aspects of such a high precision opto-mechanical device, with emphasis on the influence of requirements on the final design, the usage of a Bearing Active Preload System, some of the lessons learned on the BAPS implementation, the selection of a flex print design as rotary harness and some aspects of functional and environmental testing.
Failure of the Trailing Umbilical System Disconnect Actuator on the International Space Station
NASA Technical Reports Server (NTRS)
Gilmore, Adam; Schmitt, Chris; Merritt, Laura; Bolton, V. J.
2008-01-01
In December of 2005, one of two trailing umbilical cables used on the International Space Station (ISS) Mobile Transporter (MT) was inadvertently severed by an internal cutter system designed to free a snagged cable or jammed reel while transporting hazardous payloads. The mechanism s intended means of actuation is electrical; however, troubleshooting revealed a mechanical actuation occurred. The investigation of the failed component revealed several lessons learned in developing hardware requirements, understanding and following the rationale behind the requirements throughout the design life cycle, understanding the impacts of gaps and tolerances in a mechanism, and the importance of identifying critical steps during assembly.
Failure of the Trailing Umbilical System Disconnect Actuator on the International Space Station
NASA Technical Reports Server (NTRS)
Gilmore, Adam; Schmitt, Chris; Merritt, Laura; Bolton, V. J.
2008-01-01
In December of 2005, one of two trailing umbilical cables used on the International Space Station (ISS) Mobile Transporter (MT) was inadvertently severed by an internal cutter system designed to free a snagged cable or jammed reel while transporting hazardous payloads. The mechanism s intended means of actuation is electrical; however, troubleshooting revealed a mechanical actuation occurred. The investigation of the failed component revealed several lessons learned in developing hardware requirements, understanding and following the rationale behind the requirements throughout the design life cycle, understanding the impacts of gaps and tolerances in a mechanism, and the importance of identifying critical steps during assembly
Finding our Origins with the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2009-01-01
NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.
Finding our Origins with the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan
2008-01-01
NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2013, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.
Finding our Origins with the Hubble and James Webb Space Telescopes
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2007-01-01
NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 201 3, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.
CanSat Competition: Contributing to the Development of NASA's Vision for Robotic Space Exploration
NASA Technical Reports Server (NTRS)
Berman, Joshua; Berman, Timothy; Billheimer, Thomas; Biclmer. Elizabeth; Hood, Stuart; Neas, Charles
2007-01-01
CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL) and the National Aeronautics and Space Administration (NASA). The CanSat competition is designed for college, university and high school students wanting to participate in an applicable space-related competition. The objective of the CanSat competition is to complete space exploration missions by designing a specific system for a small sounding rocket payload which will follow and perform to a specific set of rules and guidelines for each year's competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, judging and competition. The mission guidelines are based from space exploration missions and include bonus requirement options which teams may choose to participate in. The fundamental goal of the competition is to educate future engineers and scientists. This is accomplished by students applying systems engineering practices to a development project that incorporates an end-to-end life cycle, from requirements analysis, through preliminary design, integration and testing, an actual flight of the CanSat, and concluding with a post-mission debrief. This is done specifically with space related missions to bring a unique aspect of engineering and design to the competition. The competition has been progressing since its creation in 2005. The competition was originally meant to purely convey the engineering and design process to its participants, but through many experiences the competition has also undergone a learning experience with respect to systems engineering process and design. According
An application of machine learning to the organization of institutional software repositories
NASA Technical Reports Server (NTRS)
Bailin, Sidney; Henderson, Scott; Truszkowski, Walt
1993-01-01
Software reuse has become a major goal in the development of space systems, as a recent NASA-wide workshop on the subject made clear. The Data Systems Technology Division of Goddard Space Flight Center has been working on tools and techniques for promoting reuse, in particular in the development of satellite ground support software. One of these tools is the Experiment in Libraries via Incremental Schemata and Cobweb (ElvisC). ElvisC applies machine learning to the problem of organizing a reusable software component library for efficient and reliable retrieval. In this paper we describe the background factors that have motivated this work, present the design of the system, and evaluate the results of its application.
Learning Spaces as a Strategic Priority
ERIC Educational Resources Information Center
George, Gene; Erwin, Tom; Barnes, Briony
2009-01-01
In April 2007 Butler Community College made learning spaces one of its five strategic priorities. The college had just completed a major renovation of the work spaces for the IT division and had started a project to build a student union and create informal learning spaces at the Andover campus. With learning spaces becoming a strategic priority,…
Very Similar Spacing-Effect Patterns in Very Different Learning/Practice Domains
Kornmeier, Jürgen; Spitzer, Manfred; Sosic-Vasic, Zrinka
2014-01-01
Temporally distributed (“spaced”) learning can be twice as efficient as massed learning. This “spacing effect” occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work (“generality”). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this “spacing effect” (“nonlinearity”) with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level. PMID:24609081
Lessons Learned from the Fukushima Nuclear Accident due to Tohoku Region Pacific Coast Earthquake
NASA Astrophysics Data System (ADS)
Miki, M.; Wada, M.; Takeuchi, N.
2012-01-01
On March 11 2011, Great Eastern Japan Earthquake hit Japan and caused the devastating damage. Fukushima Nuclear Power Station (NPS) also suffered damages and provided the environmental effect with radioactive products. The situation has been settled to some extent about two months after the accidents, and currently, the cooling of reactor is continuing towards settling the situation. Japanese NPSs are designed based on safety requirements and have multiple-folds of hazard controls. However, according to publicly available information, due to the lager-than-anticipated Tsunami, all the power supply were lost, which resulted in loss of hazard controls. Also, although nuclear power plants are equipped with system/procedure in case of loss of all controls, recovery was not made as planned in Fukushima NPSs because assumptions for hazard controls became impractical or found insufficient. In consequence, a state of emergency was declared. Through this accident, many lessons learned have been obtained from the several perspectives. There are many commonality between nuclear safety and space safety. Both industries perform thorough hazard assessments because hazards in both industries can result in loss of life. Therefore, space industry must learn from this accident and reconsider more robust space safety. This paper will introduce lessons learned from Fukushima nuclear accident described in the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [1], and discuss the considerations to establish more robust safety in the space systems. Detailed information of Fukushima Dai-ichi NPS are referred to this report.
NASA Technical Reports Server (NTRS)
O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn
2017-01-01
NASA's Sample Cartridge Assembly (SCA) project is responsible for designing and validating a payload that contains materials research samples in a sealed environment. The SCA will be heated in the European Space Agency's (ESA) Low Gradient Furnace (LGF) that is housed inside the Material Science Research Rack (MSRR) located on the International Space Station (ISS). The first Principle Investigator (PI) to utilize the SCA will focus on Gravitational Effects on Distortion in Sintering (GEDS) research. This paper will give a summary of the design and development test effort for the GEDS SCA and will discuss the role of thermal analysis in developing test profiles to meet the science and engineering requirements. Lessons learned will be reviewed and salient design features that may differ for each PI will be discussed.
Microbiological Lessons Learned from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.
2011-01-01
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.
Space flight requirements for fiber optic components: qualification testing and lessons learned
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2006-04-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2007-01-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
2015-01-31
VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, a United Launch Alliance Delta II rocket roars to life. The liftoff will boost NASA's Soil Moisture Active Passive satellite, or SMAP, to orbit. Liftoff was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett
2015-01-31
VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, a United Launch Alliance Delta II rocket springs to life. The liftoff will boost NASA's Soil Moisture Active Passive satellite, or SMAP, to orbit. Liftoff was at 9:22 a.m. EST. SMAP is designed to produce the highest-resolution maps of soil moisture ever obtained from space. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.
The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.
Are "New Building" Learning Gains Sustainable?
ERIC Educational Resources Information Center
Walczak, Mary M.; Van Wylen, David G. L.
2015-01-01
New science facilities have become a reality on many college campuses in the last few decades. Large time investments in creating shared programmatic vision and designing flexible spaces, partnered with large fiscal investments, have created a new generation of science building. Unfortunately, few studies provide evidence about whether the…