Motor learning and working memory in children born preterm: a systematic review.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2012-04-01
Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Schweppe, Judith; Rummer, Ralf
2014-01-01
Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…
Chiaravalloti, Nancy D; Stojanovic-Radic, Jelena; DeLuca, John
2013-01-01
The most common cognitive impairments in multiple sclerosis (MS) have been documented in specific domains, including new learning and memory, working memory, and information processing speed. However, little attempt has been made to increase our understanding of their relationship to one another. While recent studies have shown that processing speed impacts new learning and memory abilities in MS, the role of working memory in this relationship has received less attention. The present study examines the relative contribution of impaired working memory versus processing speed in new learning and memory functions in MS. Participants consisted of 51 individuals with clinically definite MS. Participants completed two measures of processing speed, two measures of working memory, and two measures of episodic memory. Data were analyzed via correlational and multiple regression analysis. Results indicate that the variance in new learning abilities in this sample was primarily associated with processing speed, with working memory exerting much less of an influence. Results are discussed in terms of the role of cognitive rehabilitation of new learning and memory abilities in persons with MS.
The Relationship between Learning Style Preferences and Memory Strategy use in Adults.
Dirette, Diane Powers; Anderson, Michele A
2016-07-01
Deficits in working memory are pervasive, resistant to remediation and significantly impact a persons ability to perform activities of daily living. Internal strategies are effective for improving working memory. Learning style preferences may influence the use of various internal working memory strategies. This study compares the use of internal working memory strategies among four different learning style preferences; converger, diverger, assimilator and accommodator. A non-experimental group design was used to compare the use of internal working memory strategies and learning style preferences among 110 adults. There were some significant differences in the types of strategies used according to learning style preferences. Knowing the learning style preference of clients may help occupational therapists better tailor cognitive rehabilitation treatments to meet the client's needs.
Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment
ERIC Educational Resources Information Center
Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia
2013-01-01
Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…
Can Interactive Working Memory Training Improve Learning?
ERIC Educational Resources Information Center
Alloway, Tracy
2012-01-01
Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…
Individual Differences in Learning Talker Categories: The Role of Working Memory
Levi, Susannah V.
2016-01-01
The current study explores the question of how an auditory category is learned by having school-age listeners learn to categorize speech not in terms of linguistic categories, but instead in terms of talker categories (i.e., who is talking). Findings from visual-category learning indicate that working memory skills affect learning, but the literature is equivocal: sometimes better working memory is advantageous, and sometimes not. The current study examined the role of different components of working memory to test which component skills benefit, and which hinder, learning talker categories. Results revealed that the short-term storage component positively predicted learning, but that the Central Executive and Episodic Buffer negatively predicted learning. As with visual categories, better working memory is not always an advantage. PMID:25721393
Working Memory, Motivation, and Teacher-Initiated Learning
NASA Astrophysics Data System (ADS)
Brooks, David W.; Shell, Duane F.
2006-03-01
Working memory is where we "think" as we learn. A notion that emerges as a synthesis from several threads in the research literatures of cognition, motivation, and connectionism is that motivation in learning is the process whereby working memory resource allocation is instigated and sustained. This paper reviews much literature on motivation and working memory, and concludes that the apparent novelty of the proposal offered to describe motivation in terms of working memory results from the apparent lack of cross-channel exchange among these research traditions. The relation between working memory and motivation is explored in the context of the interactive compensatory model of learning (ICML) in which learning is considered to result from the interaction of ability, motivation, and prior learning. The ICML is recast in light of the revised definition of motivation offered here. This paper goes on to suggest ways in which a range of teaching and learning issues and activities may be reconceptualized in the context of a model emphasizing a learner's working memory that makes use of chunks of previously acquired knowledge.
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
Domain-specific and domain-general constraints on word and sequence learning.
Archibald, Lisa M D; Joanisse, Marc F
2013-02-01
The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.
Liebel, Spencer W; Nelson, Jason M
2017-12-01
We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Roles of Phonological Short-Term Memory and Working Memory in L2 Grammar and Vocabulary Learning
ERIC Educational Resources Information Center
Martin, Katherine I.; Ellis, Nick C.
2012-01-01
This study analyzed phonological short-term memory (PSTM) and working memory (WM) and their relationship with vocabulary and grammar learning in an artificial foreign language. Nonword repetition, nonword recognition, and listening span were used as memory measures. Participants learned the singular forms of vocabulary for an artificial foreign…
Working memory and reward association learning impairments in obesity.
Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M
2014-12-01
Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evidence for a Role of Executive Functions in Learning Biology
ERIC Educational Resources Information Center
Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela
2014-01-01
Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…
Vocabulary Learning in Primary School Children: Working Memory and Long-Term Memory Components
ERIC Educational Resources Information Center
Morra, Sergio; Camba, Roberta
2009-01-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short,…
ERIC Educational Resources Information Center
Doolittle, Peter E.; Mariano, Gina J.
2008-01-01
The present study examined the effects of individual differences in working memory capacity (WMC) on learning from an historical inquiry multimedia tutorial in stationary versus mobile learning environments using a portable digital media player (i.e., iPod). Students with low (n = 44) and high (n = 40) working memory capacity, as measured by the…
ERIC Educational Resources Information Center
Naumann, Johannes; Richter, Tobias; Christmann, Ursula; Groeben, Norbert
2008-01-01
Cognitive and metacognitive strategies are particularly important for learning with hypertext. The effectiveness of strategy training, however, depends on available working memory resources. Thus, especially learners high on working memory capacity can profit from strategy training, while learners low on working memory capacity might easily be…
Working memory supports inference learning just like classification learning.
Craig, Stewart; Lewandowsky, Stephan
2013-08-01
Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.
Lehmann, Janina A M; Seufert, Tina
2017-01-01
This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner's working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners' working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption.
Lehmann, Janina A. M.; Seufert, Tina
2017-01-01
This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner’s working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners’ working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption. PMID:29163283
ERIC Educational Resources Information Center
Schuler, Anne; Scheiter, Katharina; van Genuchten, Erlijn
2011-01-01
A lot of research has focused on the beneficial effects of using multimedia, that is, text and pictures, for learning. Theories of multimedia learning are based on Baddeley's working memory model (Baddeley 1999). Despite this theoretical foundation, there is only little research that aims at empirically testing whether and more importantly how…
Working Memory, Motivation, and Teacher-Initiated Learning
ERIC Educational Resources Information Center
Brooks, David W.; Shell, Duane F.
2006-01-01
Working memory is where we "think" as we learn. A notion that emerges as a synthesis from several threads in the research literatures of cognition, motivation, and connectionism is that motivation in learning is the process whereby working memory resource allocation is instigated and sustained. This paper reviews much literature on motivation and…
Working Memory and Learning: A Practical Guide for Teachers
ERIC Educational Resources Information Center
Gathercole, Susan E.; Alloway, Tracy Packiam
2008-01-01
A good working memory is crucial to becoming a successful leaner, yet there is very little material available in an easy-to-use format that explains the concept and offers practitioners ways to support children with poor working memory in the classroom. This book provides a coherent overview of the role played by working memory in learning during…
The contribution of temporary storage and executive processes to category learning.
Wang, Tengfei; Ren, Xuezhu; Schweizer, Karl
2015-09-01
Three distinctly different working memory processes, temporary storage, mental shifting and inhibition, were proposed to account for individual differences in category learning. A sample of 213 participants completed a classic category learning task and two working memory tasks that were experimentally manipulated for tapping specific working memory processes. Fixed-links models were used to decompose data of the category learning task into two independent components representing basic performance and improvement in performance in category learning. Processes of working memory were also represented by fixed-links models. In a next step the three working memory processes were linked to components of category learning. Results from modeling analyses indicated that temporary storage had a significant effect on basic performance and shifting had a moderate effect on improvement in performance. In contrast, inhibition showed no effect on any component of the category learning task. These results suggest that temporary storage and the shifting process play different roles in the course of acquiring new categories. Copyright © 2015 Elsevier B.V. All rights reserved.
Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing
Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis
2009-01-01
Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928
Swanson, H L; Trahan, M
1996-09-01
The present study investigates (a) whether learning disabled readers' working memory deficits that underlie poor reading comprehension are related to a general system, and (b) whether metacognition contributes to comprehension beyond what is predicted by working memory and word knowledge. To this end, performance between learning and disabled (N = 60) and average readers (N = 60) was compared on the reading comprehension, reading rate, and vocabulary subtests of the Nelson Skills Reading Test, Sentence Span test composed of high and low imagery words, and a Metacognitive Questionnaire. As expected, differences between groups in working memory, vocabulary, and reading measures emerged, whereas ability groups were statistically comparable on the Metacognitive Questionnaire. A within-group analysis indicated that the correlation patterns between working memory, vocabulary, metacognition, and reading comprehension were not the same between ability groups. For predicting reading comprehension, the metacognitive questionnaire best predicted learning disabled readers' performance, whereas the working memory span measure that included low-imagery words best predicted average achieving readers' comprehension. Overall, the results suggest that the relationship between learning disabled readers' generalised working memory deficits and poor reading comprehension may be mediated by metacognition.
Working Memory Underpins Cognitive Development, Learning, and Education
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585
ERIC Educational Resources Information Center
Oberauer, Klaus; Awh, Edward; Sutterer, David W.
2017-01-01
We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
How Does Working Memory Work in the Classroom?
ERIC Educational Resources Information Center
Alloway, Tracy Packiam
2006-01-01
Working memory plays a key role in supporting children's learning over the school years, and beyond this into adulthood. It is proposed here that working memory is crucially required to store information while other material is being mentally manipulated during the classroom learning activities that form the foundations for the acquisition of…
Segers, Elien; Beckers, Tom; Geurts, Hilde; Claes, Laurence; Danckaerts, Marina; van der Oord, Saskia
2018-01-01
Introduction: Behavioral Parent Training (BPT) is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF) extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously) and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children. Methods: Ninety-seven children (age 6–10) completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials), followed by an extinction phase (80 trials). Data of 88 children were used for analysis. Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF) condition. Working memory was negatively related to acquisition but not extinction performance. Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement. PMID:29643822
Linking Working Memory and Long-Term Memory: A Computational Model of the Learning of New Words
ERIC Educational Resources Information Center
Jones, Gary; Gobet, Fernand; Pine, Julian M.
2007-01-01
The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory…
Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood
Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.
2015-01-01
HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans. PMID:26696849
Working Memory and Cognitive Styles in Adolescents' Attainment
ERIC Educational Resources Information Center
Packiam Alloway, Tracy; Banner, Gloria E.; Smith, Patrick
2010-01-01
Background: Working memory, the ability to store and process information, is strongly related to learning outcomes. Aims: The aim of the present study is to extend previous research on early learning and investigate the relationship between working memory, cognitive styles, and attainment in adolescents using both national curriculum tests and…
Spatial context learning survives interference from working memory load
Vickery, Timothy J.; Sussman, Rachel S.; Jiang, Yuhong V.
2010-01-01
The human visual system is constantly confronted with an overwhelming amount of information, only a subset of which can be processed in complete detail. Attention and implicit learning are two important mechanisms that optimize vision. This study addresses the relationship between these two mechanisms. Specifically we ask: Is implicit learning of spatial context affected by the amount of working memory load devoted to an irrelevant task? We tested observers in visual search tasks where search displays occasionally repeated. Observers became faster searching repeated displays than unrepeated ones, showing contextual cueing. We found that the size of contextual cueing was unaffected by whether observers learned repeated displays under unitary attention or when their attention was divided using working memory manipulations. These results held when working memory was loaded by colors, dot patterns, individual dot locations, or multiple potential targets. We conclude that spatial context learning is robust to interference from manipulations that limit the availability of attention and working memory. PMID:20853996
Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.
Brocken, J E A; Kal, E C; van der Kamp, J
2016-01-01
The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.
ERIC Educational Resources Information Center
Isaki, Emi; Spaulding, Tammie J.; Plante, Elena
2008-01-01
The purpose of this study is to investigate the performance of adults with language-based learning disorders (L/LD) and normal language controls on verbal short-term and verbal working memory tasks. Eighteen adults with L/LD and 18 normal language controls were compared on verbal short-term memory and verbal working memory tasks under low,…
Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan
2013-02-15
Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Swanson, H. Lee
1999-01-01
Investigated the contribution of two working-memory systems (the articulatory loop and the central executive) to the performance differences between learning-disabled and skilled readers. Found that, compared to skilled readers, learning-disabled readers experienced constraints in the articulatory and long-term memory system, and suffered…
When Delays Improve Memory: Stabilizing Memory in Children May Require Time.
Darby, Kevin P; Sloutsky, Vladimir M
2015-12-01
Memory is critical for learning, cognition, and cognitive development. Recent work has suggested that preschool-age children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. In the work reported here, we investigated the effects of consolidation on children's memory by introducing a 48-hr delay between learning and testing. In Experiment 1, the delay improved children's memory and eliminated interference. Results of Experiment 2 suggest that the benefit of this delay is limited to situations in which children are given enough information to form complex memory structures. These findings have important implications for understanding consolidation processes and memory development. © The Author(s) 2015.
Kazerounian, Sohrob; Grossberg, Stephen
2014-01-01
How are sequences of events that are temporarily stored in a cognitive working memory unitized, or chunked, through learning? Such sequential learning is needed by the brain in order to enable language, spatial understanding, and motor skills to develop. In particular, how does the brain learn categories, or list chunks, that become selectively tuned to different temporal sequences of items in lists of variable length as they are stored in working memory, and how does this learning process occur in real time? The present article introduces a neural model that simulates learning of such list chunks. In this model, sequences of items are temporarily stored in an Item-and-Order, or competitive queuing, working memory before learning categorizes them using a categorization network, called a Masking Field, which is a self-similar, multiple-scale, recurrent on-center off-surround network that can weigh the evidence for variable-length sequences of items as they are stored in the working memory through time. A Masking Field hereby activates the learned list chunks that represent the most predictive item groupings at any time, while suppressing less predictive chunks. In a network with a given number of input items, all possible ordered sets of these item sequences, up to a fixed length, can be learned with unsupervised or supervised learning. The self-similar multiple-scale properties of Masking Fields interacting with an Item-and-Order working memory provide a natural explanation of George Miller's Magical Number Seven and Nelson Cowan's Magical Number Four. The article explains why linguistic, spatial, and action event sequences may all be stored by Item-and-Order working memories that obey similar design principles, and thus how the current results may apply across modalities. Item-and-Order properties may readily be extended to Item-Order-Rank working memories in which the same item can be stored in multiple list positions, or ranks, as in the list ABADBD. Comparisons with other models, including TRACE, MERGE, and TISK, are made. PMID:25339918
The Roles of Working Memory and Cognitive Load in Geoscience Learning
ERIC Educational Resources Information Center
Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.
2017-01-01
Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…
ERIC Educational Resources Information Center
Jung, Eun Sook; Reid, Norman
2009-01-01
Working memory capacity has been shown to be an important factor in controlling understanding in the sciences. Attitudes related to studies in the sciences are also known to be important in relation to success in learning. It might be argued that if working memory capacity is a rate controlling feature of learning and success in understanding…
The Effects of Concurrent Verbal and Visual Tasks on Category Learning
ERIC Educational Resources Information Center
Miles, Sarah J.; Minda, John Paul
2011-01-01
Current theories of category learning posit separate verbal and nonverbal learning systems. Past research suggests that the verbal system relies on verbal working memory and executive functioning and learns rule-defined categories; the nonverbal system does not rely on verbal working memory and learns non-rule-defined categories (E. M. Waldron…
ERIC Educational Resources Information Center
Lusk, Danielle L.; Evans, Amber D.; Jeffrey, Thomas R.; Palmer, Keith R.; Wikstrom, Chris S.; Doolittle, Peter E.
2009-01-01
Research in multimedia learning lacks an emphasis on individual difference variables, such as working memory capacity (WMC). The effects of WMC and the segmentation of multimedia instruction were examined by assessing the recall and application of low (n = 66) and high (n = 67) working memory capacity students randomly assigned to either a…
Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance
ERIC Educational Resources Information Center
Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay
2013-01-01
When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training.
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-12-01
Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float.
Linking working memory and long-term memory: a computational model of the learning of new words.
Jones, Gary; Gobet, Fernand; Pine, Julian M
2007-11-01
The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children's vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model's behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
ERIC Educational Resources Information Center
Desoete, Annemie; De Weerdt, Frauke
2013-01-01
Working memory, inhibition and naming speed was assessed in 22 children with mathematical learning disorders (MD), 17 children with a reading learning disorder (RD), and 45 children without any learning problems between 8 and 12 years old. All subjects with learning disorders performed poorly on working memory tasks, providing evidence that they…
ERIC Educational Resources Information Center
Mammarella, Irene C.; Cornoldi, Cesare; Pazzaglia, Francesca; Toso, Cristina; Grimoldi, Mario; Vio, Claudio
2006-01-01
The paper describes the performance of three children with specific visuospatial working memory (VSWM) impairments (Study 1) and three children with visuospatial (nonverbal) learning disabilities (Study 2) assessed with a battery of working memory (WM) tests and with a number of school achievement tasks. Overall, performance on WM tests provides…
The Role of Statistical Learning and Working Memory in L2 Speakers' Pattern Learning
ERIC Educational Resources Information Center
McDonough, Kim; Trofimovich, Pavel
2016-01-01
This study investigated whether second language (L2) speakers' morphosyntactic pattern learning was predicted by their statistical learning and working memory abilities. Across three experiments, Thai English as a Foreign Language (EFL) university students (N = 140) were exposed to either the transitive construction in Esperanto (e.g., "tauro…
Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C
2016-02-01
Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.
Does learning to read shape verbal working memory?
Demoulin, Catherine; Kolinsky, Régine
2016-06-01
Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-01-01
Background Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. Methods In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Results Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Conclusions Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float. PMID:24455014
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
Linking Developmental Working Memory and Early Academic Skills
ERIC Educational Resources Information Center
Decker, Janice E.
2011-01-01
Brain-based initiatives and school readiness mandates in education have prompted researchers to examine the biological mechanisms associated with learning in the hope that understanding empirical evidence can maximize learning potential. Current research has examined working memory skills in relationship to early learning. The function of working…
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.
Won, Bo-Yeong; Jiang, Yuhong V
2015-05-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention
Won, Bo-Yeong; Jiang, Yuhong V.
2014-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460
ERIC Educational Resources Information Center
Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.
2008-01-01
Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…
ERIC Educational Resources Information Center
Kalish, Michael L.; Newell, Ben R.; Dunn, John C.
2017-01-01
It is sometimes supposed that category learning involves competing explicit and procedural systems, with only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be learned procedurally) category…
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M
2015-08-15
Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing and enhancing cognitive functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Bosman, Anna M T; Janssen, Marije
2017-01-01
In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was to investigate the relationship between language skills and working memory in Turkish-Dutch and native-Dutch children from low-income families. The findings revealed reduced Dutch language and Dutch working-memory skills for Turkish-Dutch children compared to native-Dutch children. Working memory in native-Dutch children was unrelated to their language skills, whereas in Turkish-Dutch children strong correlations were found both between Turkish language skills and Turkish working-memory performance and between Dutch language skills and Dutch working-memory performance. Reduced language proficiencies and reduced working-memory skills appear to manifest itself in strong relationships between working memory and language skills in Turkish-Dutch children. The findings seem to indicate that limited verbal working-memory and language deficiencies in bilingual children may have reciprocal effects that strongly warrants adequate language education.
Attitudes and learning difficulties in middle school science in South Korea
NASA Astrophysics Data System (ADS)
Jung, Eun Sook
The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is difference of opinions related to various aspects of learning science between age 13 and 15, and between high and middle and low working memory capacity groups, students responses were compared by just looking at the distribution of percentages without doing more statistics. Correlation coefficients were calculated to see if student's working memory capacity is linked with attitudes. As a result of data analyses from the working memory test and the questionnaire, it is seen that working memory space is related to some student attitudes towards science and their way of studying. Compared to students with high working memory capacity, students who have low working memory capacity are likely to lose their interest in science, feel science is difficult, and have low confidence about studying science. In addition, they tend to depend on memorization when they study science, consider science as a future career less, and are less motivated to study science by attitudinal factors such as "I really enjoy studying science", "Science is useful in my life". This exploratory study has suggested some important issues which need addressed in developing positive attitudes as well as encouraging meaningful learning.
Working memory plasticity and aging.
Rhodes, Rebecca E; Katz, Benjamin
2017-02-01
The present research explores how the trajectory of learning on a working memory task changes throughout the life span, and whether gains in working memory performance are exclusively a question of initial working memory capacity (WMC) or whether age exerts an independent effect. In a large, cross-sectional study of younger, middle-aged, and older adults, we examined learning on a widely used working memory task-the dual n-back task-over 20 sessions of practice. We found that, while all age groups improved on the task, older adults demonstrated less improvement on the task, and also reached a lower asymptotic maximum performance than younger adults. After controlling for initial WMC, we found that age exerted independent effects on training gains and asymptotic performance; older adults tended to improve less and reached lower levels of performance than younger adults. The difference between younger and older adults' rates of learning depended in part on initial WMC. These results suggest that age-related effects on working memory include not only effects on capacity, but also plasticity and the ability to improve on a task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Alloway, Tracy Packiam; Archibald, Lisa
2008-01-01
The authors compared 6- to 11-year-olds with developmental coordination disorder (DCD) and those with specific language impairment (SLI) on measures of memory (verbal and visuospatial short-term and working memory) and learning (reading and mathematics). Children with DCD with typical language skills were impaired in all four areas of memory…
ERIC Educational Resources Information Center
Canner, Marc T.
2013-01-01
The purpose of this dissertation was to examine the relationships between working memory (WM) and three commonly used learning strategies or conditions in the nature of proficiency among adult L2 Russian learners. Based on the aptitude-learning condition interaction framework articulated by Robinson (2002b), the study identifies two types of…
ERIC Educational Resources Information Center
Peng, Peng; Fuchs, Douglas
2016-01-01
Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…
The spatial learning and memory performance in methamphetamine–sensitized and withdrawn rats
Bigdeli, Imanollah; Asia, Masomeh Nikfarjam- Haft; Miladi-Gorji, Hossein; Fadaei, Atefeh
2015-01-01
Objective(s): There is controversial evidence about the effect of methamphetamine (METH) on spatial memory. We tested the time- dependent effects of METH on spatial short-term (working) and long-term (reference) memory in METH –sensitized and withdrawn rats in the Morris water maze. Materials and Methods: Rats were sensitized to METH (2 mg/kg, daily/5 days, SC). Rats were trained in water maze (4 trials/day/for 5 days). Probe test was performed 24 hr after training. Two days after probe test, working memory training (2 trials/day/for 5 days) was conducted. Acquisition–retention interval was 75 min. The treatment was continued per day 30 and 120 min before the test. Two groups of METH –sensitized rats were trained in reference memory after a longer period of withdrawal (30 days). Results: Sensitized rats exhibited significantly longer escape latencies on the training, spent significantly less time in the target zone (all, P<0.05), and their working memory impaired 30 min after injection. While, METH has no effect on the spatial learning process 120 min after injection, and rats spent significantly less time in the target zone (P<0.05), as well it has no effect on working memory. Also, impairment of reference memory persisted after prolonged abstinence. Conclusion: Our findings indicated that METH impaired spatial learning and memory 30 min after injection, but spared spatial learning, either acquisition or retention of spatial working, but partially impaired retention of spatial reference memory following 120 min after injection in sensitized rats, which persisted even after prolonged abstinence. PMID:25945235
Cabrera-Pastor, Andrea; Hernandez-Rabaza, Vicente; Taoro-Gonzalez, Lucas; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-10-01
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Does Tracing Worked Examples Enhance Geometry Learning?
ERIC Educational Resources Information Center
Hu, Fang-Tzu; Ginns, Paul; Bobis, Janette
2014-01-01
Cognitive load theory seeks to generate novel instructional designs through a focus on human cognitive architecture including a limited working memory; however, the potential for enhancing learning through non-visual or non-auditory working memory channels is yet to be evaluated. This exploratory experiment tested whether explicit instructions to…
On the role of working memory in spatial contextual cueing.
Travis, Susan L; Mattingley, Jason B; Dux, Paul E
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.
Association between exposure to work stressors and cognitive performance.
Vuori, Marko; Akila, Ritva; Kalakoski, Virpi; Pentti, Jaana; Kivimäki, Mika; Vahtera, Jussi; Härmä, Mikko; Puttonen, Sampsa
2014-04-01
To examine the association between work stress and cognitive performance. Cognitive performance of a total of 99 women (mean age = 47.3 years) working in hospital wards at either the top or bottom quartiles of job strain was assessed using validated tests that measured learning, short-term memory, and speed of memory retrieval. The high job strain group (n = 43) had lower performance than the low job strain group (n = 56) in learning (P = 0.025), short-term memory (P = 0.027), and speed of memory retrieval (P = 0.003). After controlling for education level, only the difference in speed of memory retrieval remained statistically significant (P = 0.010). The association found between job strain and speed of memory retrieval might be one important factor explaining the effect of stress on work performance.
Mackenzie, Corey S; Wiprzycka, Ursula J; Hasher, Lynn; Goldstein, David
2009-11-01
Family caregivers of older adults experience high levels of chronic stress and psychological distress, which are known to impair cognition. Very little research, however, has assessed the impact of caregiving on key cognitive outcomes such as learning and memory. This study compared 16 spouse caregivers with 16 matched controls using standardized neuropsychological measures of learning, episodic memory, and working memory. Analyses compared groups on these cognitive outcomes and examined whether psychological distress mediated group differences in cognition. Results indicated that caregivers were significantly more distressed than non-caregivers and exhibited deficits in learning, recall of episodic information after short and long delays, and working memory. Furthermore, the majority of group differences in cognitive outcomes were mediated by psychological distress. This study adds to a small body of literature demonstrating impaired cognitive functioning among family caregivers. It also suggests that distress is one of a number of possible underlying mechanisms leading to disruptions in learning and memory in this population.
Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children
Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita
2016-01-01
In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914
Spatial Working Memory and Arithmetic Deficits in Children with Nonverbal Learning Difficulties
ERIC Educational Resources Information Center
Mammarella, Irene Cristina; Lucangeli, Daniela; Cornoldi, Cesare
2010-01-01
Visuospatial working memory and its involvement in arithmetic were examined in two groups of 7- to 11-year-olds: one comprising children described by teachers as displaying symptoms of nonverbal learning difficulties (N = 21), the other a control group without learning disabilities (N = 21). The two groups were matched for verbal abilities, age,…
Ittig, S; Studerus, E; Papmeyer, M; Uttinger, M; Koranyi, S; Ramyead, A; Riecher-Rössler, A
2015-02-01
Several sex differences in schizophrenia have been reported including differences in cognitive functioning. Studies with schizophrenia patients and healthy controls (HC) indicate that the sex advantage for women in verbal domains is also present in schizophrenia patients. However, findings have been inconsistent. No study focused on sex-related cognitive performance differences in at-risk mental state for psychosis (ARMS) individuals yet. Thus, the aim of the present study was to investigate sex differences in cognitive functioning in ARMS, first episode psychosis (FEP) and HC subjects. We expected a better verbal learning and memory performance of women in all groups. The neuropsychological data analysed in this study were collected within the prospective Früherkennung von Psychosen (FePsy) study. In total, 118 ARMS, 88 FEP individuals and 86 HC completed a cognitive test battery covering the domains of executive functions, attention, working memory, verbal learning and memory, IQ and speed of processing. Women performed better in verbal learning and memory regardless of diagnostic group. By contrast, men as compared to women showed a shorter reaction time during the working memory task across all groups. The results provide evidence that women generally perform better in verbal learning and memory, independent of diagnostic group (ARMS, FEP, HC). The finding of a shorter reaction time for men in the working memory task could indicate that men have a superior working memory performance since they responded faster during the target trials, while maintaining a comparable overall working memory performance level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Vocabulary learning in primary school children: working memory and long-term memory components.
Morra, Sergio; Camba, Roberta
2009-10-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short, phonologically native nonwords were learned best, whereas learning long nonwords leveled off after a few presentation cycles. Linear structural equation analyses showed an influence of three constructs-phonological sensitivity, vocabulary knowledge, and central attentional resources (M capacity)-on nonword learning, but the extent of their contributions depended on specific characteristics of the nonwords to be learned. Phonological sensitivity predicted learning of all nonword types except short native nonwords, vocabulary predicted learning of only short native nonwords, and M capacity predicted learning of short nonwords but not long nonwords. The discussion considers three learning processes-effortful activation of phonological representations, lexical mediation, and passive associative learning-that use different cognitive resources and could be involved in learning different nonword types.
Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène
2007-02-01
Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with controls, they seem to use more costly learning strategies, which are nonetheless less efficient. These learning disabilities need to be considered when treatment requiring the acquisition of complex novel information is envisaged.
Hassett, Thomas C; Hampton, Robert R
2017-05-01
Functionally distinct memory systems likely evolved in response to incompatible demands placed on learning by distinct environmental conditions. Working memory appears adapted, in part, for conditions that change frequently, making rapid acquisition and brief retention of information appropriate. In contrast, habits form gradually over many experiences, adapting organisms to contingencies of reinforcement that are stable over relatively long intervals. Serial reversal learning provides an opportunity to simultaneously examine the processes involved in adapting to rapidly changing and relatively stable contingencies. In serial reversal learning, selecting one of the two simultaneously presented stimuli is positively reinforced, while selection of the other is not. After a preference for the positive stimulus develops, the contingencies of reinforcement reverse. Naïve subjects adapt to such reversals gradually, perseverating in selection of the previously rewarded stimulus. Experts reverse rapidly according to a win-stay, lose-shift response pattern. We assessed whether a change in the relative control of choice by habit and working memory accounts for the development of serial reversal learning expertise. Across three experiments, we applied manipulations intended to attenuate the contribution of working memory but leave the contribution of habit intact. We contrasted performance following long and short intervals in Experiments 1 and 2, and we interposed a competing cognitive load between trials in Experiment 3. These manipulations slowed the acquisition of reversals in expert subjects, but not naïve subjects, indicating that serial reversal learning expertise is facilitated by a shift in the control of choice from passively acquired habit to actively maintained working memory.
How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks
Rombouts, Jaldert O.; Bohte, Sander M.; Roelfsema, Pieter R.
2015-01-01
Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions. PMID:25742003
Executive functions predict conceptual learning of science.
Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J
2016-06-01
We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.
Hierarchical Traces for Reduced NSM Memory Requirements
NASA Astrophysics Data System (ADS)
Dahl, Torbjørn S.
This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.
Dockery, Colleen A; Wesierska, Malgorzata J
2010-08-30
We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Early handling effect on female rat spatial and non-spatial learning and memory.
Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla
2014-03-01
This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.
Maehler, Claudia; Schuchardt, Kirsten
2016-11-01
Given the well-known relation between intelligence and school achievement we expect children with normal intelligence to perform well at school and those with intelligence deficits to meet learning problems. But, contrary to these expectations, some children do not perform according to these predictions: children with normal intelligence but sub-average school achievement and children with lower intelligence but average success at school. Yet, it is an open question how the unexpected failure or success can be explained. This study examined the role of working memory sensu Baddeley (1986) for school achievement, especially for unexpected failure or success. An extensive working memory battery with a total of 14 tasks for the phonological loop, the visual-spatial sketchpad and central executive skills was presented in individual sessions to four groups of children differing in IQ (normal vs. low) and school success (good vs. poor). Results reveal that children with sub-average school achievement showed deficits in working memory functioning, irrespective of intelligence. By contrast, children with regular school achievement did not show deficits in working memory, again irrespective of intelligence. Therefore working memory should be considered an important predictor of academic success that can lead both to unexpected overachievement and failure at school. Individual working memory competencies should be taken into account with regard to diagnosis and intervention for children with learning problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chauvel, Guillaume; Maquestiaux, François; Didierjean, André; Joubert, Sven; Dieudonné, Bénédicte; Verny, Marc
2011-12-01
Does normal aging inexorably lead to diminished motor learning abilities? This article provides an overview of the literature on the question, with particular emphasis on the functional dissociation between two sets of memory processes: declarative, effortful processes, and non-declarative, automatic processes. There is abundant evidence suggesting that aging does impair learning when past memories of former actions are required (episodic memory) and recollected through controlled processing (working memory). However, other studies have shown that aging does not impair learning when motor actions are performed non verbally and automatically (tapping procedural memory). These findings led us to hypothesize that one can minimize the impact of aging on the ability to learn new motor actions by favouring procedural learning. Recent data validating this hypothesis are presented. Our findings underline the importance of developing new motor learning strategies, which "bypass" declarative, effortful memory processes.
Investigating the Predictive Roles of Working Memory and IQ in Academic Attainment
ERIC Educational Resources Information Center
Alloway, Tracy Packiam; Alloway, Ross G.
2010-01-01
There is growing evidence for the relationship between working memory and academic attainment. The aim of the current study was to investigate whether working memory is simply a proxy for IQ or whether there is a unique contribution to learning outcomes. The findings indicate that children's working memory skills at 5 years of age were the best…
Short-Term Memory, Executive Control, and Children's Route Learning
ERIC Educational Resources Information Center
Purser, Harry R. M.; Farran, Emily K.; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark
2012-01-01
The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11 years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and…
Cognitive and psychomotor effects of risperidone in schizophrenia and schizoaffective disorder.
Houthoofd, Sofie A M K; Morrens, Manuel; Sabbe, Bernard G C
2008-09-01
The aim of this review was to discuss data from double-blind, randomized controlled trials (RCTs) that have investigated the effects of oral and long-acting injectable risperidone on cognitive and psychomotor functioning in patients with schizophrenia or schizoaffective disorder. PubMed/MEDLINE and the Institute of Scientific Information Web of Science database were searched for relevant English-language double-blind RCTs published between March 2000 and July 2008, using the terms schizophrenia, schizoaffective disorder, cognition, risperidone, psychomotor, processing speed, attention, vigilance, working memory, verbal learning, visual learning, reasoning, problem solving, social cognition, MATRICS, and long-acting. Relevant studies included patients with schizophrenia or schizoaffective disorder. Cognitive domains were delineated at the Consensus Conferences of the National Institute of Mental Health-Measurement And Treatment Research to Improve Cognition in Schizophrenia (NIMH-MATRICS). The tests employed to assess each domain and psychomotor functioning, and the within-group and between-group comparisons of risperidone with haloperidol and other atypical antipsychotics, are presented. The results of individual tests were included when they were individually presented and interpretable for either drug; outcomes that were presented as cluster scores or factor structures were excluded. A total of 12 articles were included in this review. Results suggested that the use of oral risperidone appeared to be associated with within-group improvements on the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Risperidone and haloperidol seemed to generate similar beneficial effects (on the domains of processing speed, attention/vigilance, [verbal and nonverbal] working memory, and visual learning and memory, as well as psychomotor functioning), although the results for verbal fluency, verbal learning and memory, and reasoning and problem solving were not unanimous, and no comparative data on social cognition were available. Similar cognitive effects were found with risperidone, olanzapine, and quetiapine on the domains of verbal working memory and reasoning and problem solving, as well as verbal fluency. More research is needed on the domains in which study results were contradictory. For olanzapine versus risperidone, these were verbal and visual learning and memory and psychomotor functioning. No comparative data for olanzapine and risperidone were available for the social cognition domain. For quetiapine versus risperidone, the domains in which no unanimity was found were processing speed, attention/vigilance, nonverbal working memory, and verbal learning and memory. The limited available reports on risperidone versus clozapine suggest that: risperidone was associated with improved, and clozapine with worsened, performance on the nonverbal working memory domain; risperidone improved and clozapine did not improve reasoning and problem-solving performance; clozapine improved, and risperidone did not improve, social cognition performance. Use of long-acting injectable risperidone seemed to be associated with improved performance in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning. The results for the nonverbal working memory domain were indeterminate, and no clear improvement was seen in the social cognition domain. The domains of processing speed, verbal working memory, and visual learning and memory, as well as verbal fluency, were not assessed. The results of this review of within-group comparisons of oral risperidone suggest that the agent appeared to be associated with improved functioning in the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Long-acting injectable risperidone seemed to be associated with improved functioning in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning, in patients with schizophrenia or schizoaffective disorder.
Beatty, Erin L; Muller-Gass, Alexandra; Wojtarowicz, Dorothy; Jobidon, Marie-Eve; Smith, Ingrid; Lam, Quan; Vartanian, Oshin
2018-04-11
Humans rely on topographical memory to encode information about spatial aspects of environments. However, even though people adopt different strategies when learning new maps, little is known about the impact of those strategies on topographical memory, and their neural correlates. To examine that issue, we presented participants with 40 unfamiliar maps, each of which displayed one major route and three landmarks. Half were instructed to memorize the maps by focusing on the route, whereas the other half memorized the maps by focusing on the landmarks. One day later, the participants were tested on their ability to distinguish previously studied 'old' maps from completely unfamiliar 'new' maps under conditions of high and low working memory load in the functional MRI scanner. Viewing old versus new maps was associated with relatively greater activation in a distributed set of regions including bilateral inferior temporal gyrus - an important region for recognizing visual objects. Critically, whereas the performance of participants who had followed a route-based strategy dropped to chance level under high working memory load, participants who had followed a landmark-based strategy performed at above chance levels under both high and low working memory load - reflected by relatively greater activation in the left inferior parietal lobule (i.e. rostral part of the supramarginal gyrus known as area PFt). Our findings suggest that landmark-based learning may buffer against the effects of working memory load during recognition, and that this effect is represented by the greater involvement of a brain region implicated in both topographical and working memory.
Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
Csicsvari, Jozsef; Dupret, David
2014-02-05
Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.
Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia
Brown, Jaime K.; Gold, James M.; Waltz, James A.; Frank, Michael J.
2014-01-01
Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learning curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory (WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited) mechanisms in healthy adult human subjects. Here, we used this task to assess patients' specific sources of impairments in learning. In 15 separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared. These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia. PMID:25297101
To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.
Basak, Chandramallika; O'Connell, Margaret A
2016-01-01
It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.
Zimprich, Daniel; Kurtz, Tanja
2013-01-01
The goal of the present study was to examine whether individual differences in basic cognitive abilities, processing speed, and working memory, are reliable predictors of individual differences in forgetting rates in old age. The sample for the present study comprised 364 participants aged between 65 and 80 years from the Zurich Longitudinal Study on Cognitive Aging. The impact of basic cognitive abilities on forgetting was analyzed by modeling working memory and processing speed as predictors of the amount of forgetting of 27 words, which had been learned across five trials. Forgetting was measured over a 30-minute interval by using parceling and a latent change model, in which the latent difference between recall performance after five learning trials and a delayed recall was modeled. Results implied reliable individual differences in forgetting. These individual differences in forgetting were strongly related to processing speed and working memory. Moreover, an age-related effect, which was significantly stronger for forgetting than for learning, emerged even after controlling effects of processing speed and working memory.
ERIC Educational Resources Information Center
Oberauer, Klauss; Lange, Elke B.
2009-01-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Kurtz, Tanja; Mogle, Jacqueline; Sliwinski, Martin J.; Hofer, Scott M.
2013-01-01
Background The role of processing speed and working memory was investigated in terms of individual differences in task-specific paired associates learning in a sample of older adults. Task-specific learning, as distinct from content-oriented item-specific learning, refers to gains in performance due to repeated practice on a learning task in which the to-be-learned material changes over trials. Methods Learning trajectories were modeled within an intensive repeated-measures design based on participants obtained from an opt-in internet-based sampling service (Mage = 65.3, SD = 4.81). Participants completed an eight-item paired associates task daily over a seven-day period. Results Results indicated that a three-parameter hyperbolic model (i.e., initial level, learning rate, and asymptotic performance) best described learning trajectory. After controlling for age-related effects, both higher working memory and higher processing speed had a positive effect on all three learning parameters. Conclusion These results emphasize the role of cognitive abilities for individual differences in task-specific learning of older adults. PMID:24151913
ERIC Educational Resources Information Center
Tharp, Ian J.; Pickering, Alan D.
2009-01-01
DeCaro et al. [DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). "Individual differences in category learning: Sometimes less working memory capacity is better than more." "Cognition, 107"(1), 284-294] explored how individual differences in working memory capacity differentially mediate the learning of distinct category structures.…
Lum, Jarrad A. G.; Conti-Ramsden, Gina
2014-01-01
This review examined the status of long-term memory systems in specific language impairment (SLI), in particular declarative memory and aspects of procedural memory. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed individuals with SLI are poorer than age matched controls in the learning and retrieval of verbal information from the declarative memory. However, there is evidence to suggest that the problems with declarative learning and memory for verbal information in SLI might be due to difficulties with verbal working memory and language. The learning and retrieval of non-verbal information from declarative memory appears relatively intact. In relation to procedural learning and memory, evidence indicates poor implicit learning of verbal information. Findings pertaining to nonverbal information have been mixed. This review of the literature indicates there are now substantial grounds for suspecting that multiple memory systems may be implicated in the impairment. PMID:24748707
Brandenburg, Janin; Klesczewski, Julia; Fischbach, Anne; Schuchardt, Kirsten; Büttner, Gerhard; Hasselhorn, Marcus
2015-01-01
In transparent orthographies like German, isolated learning disabilities in either reading or spelling are common and occur as often as a combined reading and spelling disability. However, most issues surrounding the cognitive causes of these isolated or combined literacy difficulties are yet unresolved. Recently, working memory dysfunctions have been demonstrated to be promising in explaining the emergence of literacy difficulties. Thus, we applied a 2 (reading disability: yes vs. no) × 2 (spelling disability: yes vs. no) factorial design to examine distinct and overlapping working memory profiles associated with learning disabilities in reading versus spelling. Working memory was assessed in 204 third graders, and multivariate analyses of variance were conducted for each working memory component. Children with spelling disability suffered from more pronounced phonological loop impairments than those with reading disability. In contrast, domain-general central-executive dysfunctions were solely associated with reading disability, but not with spelling disability. Concerning the visuospatial sketchpad, no impairments were found. In sum, children with reading disability and those with spelling disability seem to be characterized by different working memory profiles. Thus, it is important to take both reading and spelling into account when investigating cognitive factors of literacy difficulties in transparent orthographies. © Hammill Institute on Disabilities 2014.
The influence of shift work on cognitive functions and oxidative stress.
Özdemir, Pınar Güzel; Selvi, Yavuz; Özkol, Halil; Aydın, Adem; Tülüce, Yasin; Boysan, Murat; Beşiroğlu, Lütfullah
2013-12-30
Shift work influences health, performance, activity, and social relationships, and it causes impairment in cognitive functions. In this study, we investigated the effects of shift work on participants' cognitive functions in terms of memory, attention, and learning, and we measured the effects on oxidative stress. Additionally, we investigated whether there were significant relationships between cognitive functions and whole blood oxidant/antioxidant status of participants. A total of 90 health care workers participated in the study, of whom 45 subjects were night-shift workers. Neuropsychological tests were administered to the participants to assess cognitive function, and blood samples were taken to detect total antioxidant capacity and total oxidant status at 08:00. Differences in anxiety, depression, and chronotype characteristics between shift work groups were not significant. Shift workers achieved significantly lower scores on verbal memory, attention-concentration, and the digit span forward sub-scales of the Wechsler Memory Scale-Revised (WMS-R), as well as on the immediate memory and total learning sub-scales of the Auditory Verbal Learning Test (AVLT). Oxidative stress parameters were significantly associated with some types of cognitive function, including attention-concentration, recognition, and long-term memory. These findings suggest that night shift work may result in significantly poorer cognitive performance, particularly working memory. © 2013 Elsevier Ireland Ltd. All rights reserved.
Effect of harmane, an endogenous β-carboline, on learning and memory in rats.
Celikyurt, Ipek Komsuoglu; Utkan, Tijen; Gocmez, Semil Selcen; Hudson, Alan; Aricioglu, Feyza
2013-01-01
Our aim was to investigate the effects of acute harmane administration upon learning and memory performance of rats using the three-panel runway paradigm and passive avoidance test. Male rats received harmane (2.5, 5, and 7.5mg/kg, i.p.) or saline 30 min. before each session of experiments. In the three panel runway paradigm, harmane did not affect the number of errors and latency in reference memory. The effect of harmane on the errors of working memory was significantly higher following the doses of 5mg/kg and 7.5mg/kg. The latency was changed significantly at only 7.5mg/kg in comparison to control group. Animals were given pre-training injection of harmane in the passive avoidance test in order to determine the learning function. Harmane treatment decreased the retention latency significantly and dose dependently, which indicates an impairment in learning. In this study, harmane impaired working memory in three panel runway test and learning in passive avoidance test. As an endogenous bioactive molecule, harmane might have a critical role in the modulation of learning and memory functions. Copyright © 2012 Elsevier Inc. All rights reserved.
Short-term memory, executive control, and children's route learning.
Purser, Harry R M; Farran, Emily K; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark
2012-10-01
The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and visuospatial long-term memory; the route-learning task was conducted using a maze in a virtual environment. In contrast to previous research, correlations were found between both visuospatial and verbal memory tasks-the Corsi task, short-term pattern span, digit span, and visuospatial long-term memory-and route-learning performance. However, further analyses indicated that these relationships were mediated by executive control demands that were common to the tasks, with long-term memory explaining additional unique variance in route learning. Copyright © 2012 Elsevier Inc. All rights reserved.
Working Memory Capacity, Confidence and Scientific Thinking
ERIC Educational Resources Information Center
Al-Ahmadi, Fatheya; Oraif, Fatima
2009-01-01
Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…
Appetitive learning: memories need calories.
Wright, Geraldine A
2011-05-10
Recent studies of the way animals learn challenge the idea that food learning relies mainly on how food tastes. Work on Drosophila has now shown that flies must ingest food with a metabolic benefit to form a lasting memory for a learned odour. Copyright © 2011 Elsevier Ltd. All rights reserved.
Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G
2014-09-01
Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.
Memory and cognitive control circuits in mathematical cognition and learning.
Menon, V
2016-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.
Memory and cognitive control circuits in mathematical cognition and learning
Menon, V.
2018-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012
Working Memory Underpins Cognitive Development, Learning, and Education
ERIC Educational Resources Information Center
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…
Working Memory, Visual-Spatial-Intelligence and Their Relationship to Problem-Solving
ERIC Educational Resources Information Center
Buhner, Markus; Kroner, Stephan; Ziegler, Matthias
2008-01-01
The relationship between working memory, intelligence and problem-solving is explored. Wittmann and Suss [Wittmann, W.W., & Suss, H.M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P.L. Ackerman, R.D. Roberts (Ed.), "Learning and individual…
The Impact of Persistent Pain on Working Memory and Learning
ERIC Educational Resources Information Center
Smith, Alexander; Ayres, Paul
2014-01-01
The study reviewed the evidence that persistent pain has the capacity to interrupt and consume working memory resources. It was argued that individuals with persistent pain essentially operate within a compromised neurocognitive paradigm of limited working memory resources that impairs task performance. Using cognitive load theory as a theoretical…
Working Memory Intervention: A Reading Comprehension Approach
ERIC Educational Resources Information Center
Perry, Tracy L.; Malaia, Evguenia
2013-01-01
For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…
Presentation Media, Information Complexity, and Learning Outcomes
ERIC Educational Resources Information Center
Andres, Hayward P.; Petersen, Candice
2002-01-01
Cognitive processing limitations restrict the number of complex information items held and processed in human working memory. To overcome such limitations, a verbal working memory channel is used to construct an if-then proposition representation of facts and a visual working memory channel is used to construct a visual imagery of geometric…
Working Memory Weaknesses in Students with ADHD: Implications for Instruction
ERIC Educational Resources Information Center
Martinussen, Rhonda; Major, Ashley
2011-01-01
Students with attention deficit hyperactivity disorder (ADHD) are at risk for academic underachievement. Children and youth with ADHD have been found to exhibit impairments on neuropsychological measures of executive functions, including working memory. Working memory is important to attentional control and learning. This article defines working…
Working Memory Capacity and Categorization: Individual Differences and Modeling
ERIC Educational Resources Information Center
Lewandowsky, Stephan
2011-01-01
Working memory is crucial for many higher-level cognitive functions, ranging from mental arithmetic to reasoning and problem solving. Likewise, the ability to learn and categorize novel concepts forms an indispensable part of human cognition. However, very little is known about the relationship between working memory and categorization, and…
Sleep and memory in healthy children and adolescents - a critical review.
Kopasz, Marta; Loessl, Barbara; Hornyak, Magdolna; Riemann, Dieter; Nissen, Christoph; Piosczyk, Hannah; Voderholzer, Ulrich
2010-06-01
There is mounting evidence that sleep is important for learning, memory and the underlying neural plasticity. This article aims to review published studies that evaluate the association between sleep, its distinct stages and memory systems in healthy children and adolescents. Furthermore it intends to suggest directions for future research. A computerised search of the literature for relevant articles published between 1966 and March 2008 was performed using the keywords "sleep", "memory", "learn", "child", "adolescents", "adolescence" and "teenager". Fifteen studies met the inclusion criteria. Published studies focused on the impact of sleep on working memory and memory consolidation. In summary, most studies support the hypothesis that sleep facilitates working memory as well as memory consolidation in children and adolescents. There is evidence that performance in abstract and complex tasks involving higher brain functions declines more strongly after sleep deprivation than the performance in simple memory tasks. Future studies are needed to better understand the impact of a variety of variables potentially modulating the interplay between sleep and memory, such as developmental stage, socioeconomic burden, circadian factors, or the level of post-learning sensory and motor activity (interference). This line of research can provide valuable input relevant to teaching, learning and public health policy. Copyright 2009 Elsevier Ltd. All rights reserved.
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Measures of Working Memory, Sequence Learning, and Speech Recognition in the Elderly.
ERIC Educational Resources Information Center
Humes, Larry E.; Floyd, Shari S.
2005-01-01
This study describes the measurement of 2 cognitive functions, working-memory capacity and sequence learning, in 2 groups of listeners: young adults with normal hearing and elderly adults with impaired hearing. The measurement of these 2 cognitive abilities with a unique, nonverbal technique capable of auditory, visual, and auditory-visual…
ERIC Educational Resources Information Center
Kyndt, Eva; Cascallar, Eduardo; Dochy, Filip
2012-01-01
Past research has shown that working memory capacity, attention and students' approaches to learning are all important predictors for educational achievement. In this study the interrelations between these three variables are investigated. Participants were 128 university students. Results show a negative relationship between attention and deep…
Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning
van der Schaaf, Marieke E; Fallon, Sean J; ter Huurne, Niels; Buitelaar, Jan; Cools, Roshan
2013-01-01
Increased use of stimulant medication, such as methylphenidate, by healthy college students has raised questions about its cognitive-enhancing effects. Methylphenidate acts by increasing extracellular catecholamine levels and is generally accepted to remediate cognitive and reward deficits in patients with attention deficit hyperactivity disorder. However, the cognitive-enhancing effects of such ‘smart drugs' in the healthy population are still unclear. Here, we investigated effects of methylphenidate (Ritalin, 20 mg) on reward and punishment learning in healthy students (N=19) in a within-subject, double-blind, placebo-controlled cross-over design. Results revealed that methylphenidate effects varied both as a function of task demands and as a function of baseline working memory capacity. Specifically, methylphenidate improved reward vs punishment learning in high-working memory subjects, whereas it impaired reward vs punishment learning in low-working memory subjects. These results contribute to our understanding of individual differences in the cognitive-enhancing effects of methylphenidate in the healthy population. Moreover, they highlight the importance of taking into account both inter- and intra-individual differences in dopaminergic drug research. PMID:23612436
Verhagen, Josje; Leseman, Paul
2016-01-01
Previous studies show that verbal short-term memory (VSTM) is related to vocabulary learning, whereas verbal working memory (VWM) is related to grammar learning in children learning a second language (L2) in the classroom. In this study, we investigated whether the same relationships apply to children learning an L2 in a naturalistic setting and to monolingual children. We also investigated whether relationships with verbal memory differ depending on the type of grammar skill investigated (i.e., morphology vs. syntax). Participants were 63 Turkish children who learned Dutch as an L2 and 45 Dutch monolingual children (mean age = 5 years). Children completed a series of VSTM and VWM tasks, a Dutch vocabulary task, and a Dutch grammar task. A confirmatory factor analysis showed that VSTM and VWM represented two separate latent factors in both groups. Structural equation modeling showed that VSTM, treated as a latent factor, significantly predicted vocabulary and grammar. VWM, treated as a latent factor, predicted only grammar. Both memory factors were significantly related to the acquisition of morphology and syntax. There were no differences between the two groups. These results show that (a) VSTM and VWM are differentially associated with language learning and (b) the same memory mechanisms are employed for learning vocabulary and grammar in L1 children and in L2 children who learn their L2 naturalistically. Copyright © 2015 Elsevier Inc. All rights reserved.
Cognitive effects of methylphenidate and levodopa in healthy volunteers.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-02-01
Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.
Working memory contributions to reinforcement learning impairments in schizophrenia.
Collins, Anne G E; Brown, Jaime K; Gold, James M; Waltz, James A; Frank, Michael J
2014-10-08
Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learning curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory (WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited) mechanisms in healthy adult human subjects. Here, we used this task to assess patients' specific sources of impairments in learning. In 15 separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared. These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia. Copyright © 2014 the authors 0270-6474/14/3413747-10$15.00/0.
Interference due to shared features between action plans is influenced by working memory span.
Fournier, Lisa R; Behmer, Lawrence P; Stubblefield, Alexandra M
2014-12-01
In this study, we examined the interactions between the action plans that we hold in memory and the actions that we carry out, asking whether the interference due to shared features between action plans is due to selection demands imposed on working memory. Individuals with low and high working memory spans learned arbitrary motor actions in response to two different visual events (A and B), presented in a serial order. They planned a response to the first event (A) and while maintaining this action plan in memory they then executed a speeded response to the second event (B). Afterward, they executed the action plan for the first event (A) maintained in memory. Speeded responses to the second event (B) were delayed when it shared an action feature (feature overlap) with the first event (A), relative to when it did not (no feature overlap). The size of the feature-overlap delay was greater for low-span than for high-span participants. This indicates that interference due to overlapping action plans is greater when fewer working memory resources are available, suggesting that this interference is due to selection demands imposed on working memory. Thus, working memory plays an important role in managing current and upcoming action plans, at least for newly learned tasks. Also, managing multiple action plans is compromised in individuals who have low versus high working memory spans.
ERIC Educational Resources Information Center
Dahlin, Karin I. E.
2013-01-01
Working Memory (WM) has a central role in learning. It is suggested to be malleable and is considered necessary for several aspects of mathematical functioning. This study investigated whether work with an interactive computerised working memory training programme at school could affect the mathematical performance of young children. Fifty-seven…
Dynamics of the cognitive procedural learning in alcoholics with Korsakoff's syndrome.
Beaunieux, Hélène; Pitel, Anne L; Witkowski, Thomas; Vabret, François; Viader, Fausto; Eustache, Francis
2013-06-01
While procedures acquired before the development of amnesia are likely to be preserved in alcoholic patients with Korsakoff's syndrome, the ability of Korsakoff patients (KS) to learn new cognitive procedures is called in question. According to the Adaptive Control of Thoughts model, learning a new cognitive procedure requires highly controlled processes in the initial cognitive phase, which may be difficult for KS with episodic and working memory deficits. The goals of the present study were to examine the learning dynamics of KS compared with uncomplicated alcoholic patients (AL) and control subjects (CS) and to determine the contribution of episodic and working memory abilities in cognitive procedural learning performance. Fourteen KS, 15 AL, and 15 CS were submitted to 40 trials (4 daily learning sessions) of the Tower of Toronto task (disk-transfer task similar to the tower of Hanoi task) as well as episodic and working memory tasks. The 10 KS who were able to perform the cognitive procedural learning task obtained lower results than both CS and AL. The cognitive phase was longer in the Korsakoff's syndrome group than in the other 2 groups but did not differ between the 3 groups any more when episodic memory abilities were controlled. Our results indicate that KS have impaired cognitive procedural learning abilities compared with both AL and CS. Episodic memory deficits observed in KS result in a delayed transition from the cognitive learning phase to more advanced learning phases and, as a consequence, in an absence of automation of the procedure within 40 trials. Copyright © 2012 by the Research Society on Alcoholism.
Willis, Suzi; Goldbart, Juliet; Stansfield, Jois
2014-07-01
To compare verbal short-term memory and visual working memory abilities of six children with congenital hearing-impairment identified as having significant language learning difficulties with normative data from typically hearing children using standardized memory assessments. Six children with hearing loss aged 8-15 years were assessed on measures of verbal short-term memory (Non-word and word recall) and visual working memory annually over a two year period. All children had cognitive abilities within normal limits and used spoken language as the primary mode of communication. The language assessment scores at the beginning of the study revealed that all six participants exhibited delays of two years or more on standardized assessments of receptive and expressive vocabulary and spoken language. The children with hearing-impairment scores were significantly higher on the non-word recall task than the "real" word recall task. They also exhibited significantly higher scores on visual working memory than those of the age-matched sample from the standardized memory assessment. Each of the six participants in this study displayed the same pattern of strengths and weaknesses in verbal short-term memory and visual working memory despite their very different chronological ages. The children's poor ability to recall single syllable words in relation to non-words is a clinical indicator of their difficulties in verbal short-term memory. However, the children with hearing-impairment do not display generalized processing difficulties and indeed demonstrate strengths in visual working memory. The poor ability to recall words, in combination with difficulties with early word learning may be indicators of children with hearing-impairment who will struggle to develop spoken language equal to that of their normally hearing peers. This early identification has the potential to allow for target specific intervention that may remediate their difficulties. Copyright © 2014. Published by Elsevier Ireland Ltd.
Bui, Dung C.; Maddox, Geoffrey B.; Balota, David A.
2014-01-01
Memory is better when learning events are spaced, as compared with massed (i.e., the spacing effect). Recent theories posit that retrieval of an item’s earlier presentation contributes to the spacing effect, which suggests that individual differences in the ability to retrieve an earlier event may influence the benefit of spaced repetition. The present study examined (1) the difficulty of task demands between repetitions, which should modulate the ability to retrieve the earlier information, and (2) individual differences in working memory in a spaced repetition paradigm. Across two experiments, participants studied a word set twice, each separated by an interval where duration was held constant, and the difficulty of the intervening task was manipulated. After a short retention interval following the second presentation, participants recalled the word set. Those who scored high on working memory measures benefited more from repeated study than did those who scored lower on working memory measures, regardless of task difficulty. Critically, a crossover interaction was observed between working memory and intervening task difficulty: Individuals with low working memory scores benefited more when task difficulty was easy than when it was difficult, but individuals with high working memory scores produced the opposite effect. These results suggest that individual differences in working memory should be considered in optimizing the benefits of repetition learning. PMID:23224905
Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D
2016-06-01
To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning
Ettlinger, Marc; Wong, Patrick C. M.
2016-01-01
Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085
Statistical Learning Induces Discrete Shifts in the Allocation of Working Memory Resources
ERIC Educational Resources Information Center
Umemoto, Akina; Scolari, Miranda; Vogel, Edward K.; Awh, Edward
2010-01-01
Observers can voluntarily select which items are encoded into working memory, and the efficiency of this process strongly predicts memory capacity. Nevertheless, the present work suggests that voluntary intentions do not exclusively determine what is encoded into this online workspace. Observers indicated whether any items from a briefly stored…
Teaching Political Science through Memory Work
ERIC Educational Resources Information Center
Jansson, Maria; Wendt, Maria; Ase, Cecilia
2009-01-01
In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…
Conti-Ramsden, Gina; Ullman, Michael T; Lum, Jarrad A G
2015-01-01
What memory systems underlie grammar in children, and do these differ between typically developing (TD) children and children with specific language impairment (SLI)? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females) and 46 TD children (30 males, 16 females), both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group × procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman's Declarative/Procedural model of language and procedural deficit hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children with SLI.
Tobinaga, Seisho; Hashimoto, Michio; Utsunomiya, Iku; Taguchi, Kyoji; Nakamura, Morihiko; Tsunematsu, Tokugoro
2012-01-01
Cardanol (ginkgol) extracted from Ginkgo biloba leaves and cashew nutshell liquid enhances the growth of NSC-34 immortalized motor neuron-like cells and, when chronically administered to young rats, improves working memory-related learning ability as assessed by eight-arm radial maze tasks. These findings suggest that cardanol is one of the components in Ginkgo biloba leaves that improves cognitive learning ability.
Festini, Sara B; Reuter-Lorenz, Patricia A
2014-03-01
Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.
ERIC Educational Resources Information Center
Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam; Abu Bakar, Zainudin
2015-01-01
Human cognitive capacity is unavailable for conscious processing of every amount of instructional messages. Aligning an instructional design with learner expertise level would allow better use of available working memory capacity in a cognitive learning task. Motivating students to learn consciously is also an essential determinant of the capacity…
Working Memory Capacity and Disfluency Effect: An Aptitude-Treatment-Interaction Study
ERIC Educational Resources Information Center
Lehmann, Janina; Goussios, Christina; Seufert, Tina
2016-01-01
According to Cognitive Load Theory, learning material should be designed in a way to decrease unnecessary demands on working memory (WM). However, recent research has shown that additional demands on WM caused by less legible texts lead to better learning outcomes. This so-called disfluency effect can be assumed as a metacognitive regulation…
ERIC Educational Resources Information Center
Brandenburg, Janin; Klesczewski, Julia; Fischbach, Anne; Schuchardt, Kirsten; Büttner, Gerhard; Hasselhorn, Marcus
2015-01-01
In transparent orthographies like German, isolated learning disabilities in either reading or spelling are common and occur as often as a combined reading and spelling disability. However, most issues surrounding the cognitive causes of these isolated or combined literacy difficulties are yet unresolved. Recently, working memory dysfunctions have…
Working Memory in Wayfinding--A Dual Task Experiment in a Virtual City
ERIC Educational Resources Information Center
Meilinger, Tobias; Knauff, Markus; Bulthoff, Heinrich H.
2008-01-01
This study examines the working memory systems involved in human wayfinding. In the learning phase, 24 participants learned two routes in a novel photorealistic virtual environment displayed on a 220 degrees screen while they were disrupted by a visual, a spatial, a verbal, or--in a control group--no secondary task. In the following wayfinding…
Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children
ERIC Educational Resources Information Center
Camos, Valerie
2008-01-01
This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…
Corrective Feedback and Working Memory Capacity in Interaction-Driven L2 Learning
ERIC Educational Resources Information Center
Goo, Jaemyung
2012-01-01
The present study explores the relative efficacy of recasts over metalinguistic feedback on the learning of the English "that"-trace filter and how working memory capacity (WMC) is related to the extent to which learners can benefit from recasts and metalinguistic feedback. Fifty-four Korean English as a foreign language (EFL) learners…
ERIC Educational Resources Information Center
Hinze, Scott R.; Bunting, Michael F; Pellegrino, James W.
2009-01-01
The involvement of working memory capacity (WMC) in ruled-based cognitive skill acquisition is well-established, but the duration of its involvement and its role in learning strategy selection are less certain. Participants (N=610) learned four logic rules, their corresponding symbols, or logic gates, and the appropriate input-output combinations…
Effects of classroom bilingualism on task-shifting, verbal memory, and word learning in children.
Kaushanskaya, Margarita; Gross, Megan; Buac, Milijana
2014-07-01
We examined the effects of classroom bilingual experience in children on an array of cognitive skills. Monolingual English-speaking children were compared with children who spoke English as the native language and who had been exposed to Spanish in the context of dual-immersion schooling for an average of 2 years. The groups were compared on a measure of non-linguistic task-shifting; measures of verbal short-term and working memory; and measures of word learning. The two groups of children did not differ on measures of non-linguistic task-shifting and verbal short-term memory. However, the classroom-exposure bilingual group outperformed the monolingual group on the measure of verbal working memory and a measure of word learning. Together, these findings indicate that while exposure to a second language in a classroom setting may not be sufficient to engender changes in cognitive control, it can facilitate verbal memory and verbal learning. © 2014 John Wiley & Sons Ltd.
Effects of Classroom Bilingualism on Task Shifting, Verbal Memory, and Word Learning in Children
Kaushanskaya, Margarita; Gross, Megan; Buac, Milijana
2014-01-01
We examined the effects of classroom bilingual experience in children on an array of cognitive skills. Monolingual English-speaking children were compared with children who spoke English as the native language and who had been exposed to Spanish in the context of dual-immersion schooling for an average of two years. The groups were compared on a measure of non-linguistic task-shifting; measures of verbal short-term and working memory; and measures of word-learning. The two groups of children did not differ on measures of non-linguistic task-shifting and verbal short-term memory. However, the classroom-exposure bilingual group outperformed the monolingual group on the measure of verbal working memory and a measure of word-learning. Together, these findings indicate that while exposure to a second language in a classroom setting may not be sufficient to engender changes in cognitive control, it can facilitate verbal memory and verbal learning. PMID:24576079
Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia
Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia
2009-01-01
Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187
Working memory involvement in stuttering: exploring the evidence and research implications.
Bajaj, Amit
2007-01-01
Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.
Varvel, Stephen A; Cravatt, Benjamin F; Engram, April E; Lichtman, Aron H
2006-04-01
Although recent evidence suggests that fatty acid amide hydrolase (FAAH) may represent a potential therapeutic target, few published studies have investigated FAAH or its fatty acid amide substrates (FAAs) in animal models of learning and memory. Therefore, our primary goal was to determine whether FAAH (-/-) mice, which possess elevated levels of anandamide and other FAAs, would display altered performance in four Morris water maze tasks: acquisition of a hidden fixed platform, reversal learning, working memory, and probe trials. FAAH (-/-) mice failed to exhibit deficits in any task; in fact, they initially acquired the working memory task more rapidly than FAAH (+/+) mice. The second goal of this study was to investigate whether the FAAH inhibitor OL-135 (1-oxo-1[5-(2-pyridyl)-2-yl]-7-phenylheptane), anandamide, other FAAs, and methanandamide would affect working memory in both genotypes. FAAH (-/-), but not (+/+), mice displayed working memory impairments following exogenous administration of anandamide (ED(50) = 6 mg/kg) or oleamide (50 mg/kg). However, the central cannabinoid receptor (CB(1)) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl] only blocked the disruptive effects of anandamide. Methanandamide, which is not metabolized by FAAH, disrupted working memory performance in both genotypes (ED(50) = 10 mg/kg), suggesting that CB(1) receptor signaling is unaltered by FAAH deletion. In contrast, OL-135 and other FAAs failed to affect working memory in either genotype. These results suggest that FAAH deletion does not impair spatial learning but may enhance acquisition under certain conditions. More generally, FAAH may represent a novel therapeutic target that circumvents the undesirable cognitive side effects commonly associated with direct-acting cannabinoid agonists.
How does a specific learning and memory system in the mammalian brain gain control of behavior?
McDonald, Robert J; Hong, Nancy S
2013-11-01
This review addresses a fundamental, yet poorly understood set of issues in systems neuroscience. The issues revolve around conceptualizations of the organization of learning and memory in the mammalian brain. One intriguing, and somewhat popular, conceptualization is the idea that there are multiple learning and memory systems in the mammalian brain and they interact in different ways to influence and/or control behavior. This approach has generated interesting empirical and theoretical work supporting this view. One issue that needs to be addressed is how these systems influence or gain control of voluntary behavior. To address this issue, we clearly specify what we mean by a learning and memory system. We then review two types of processes that might influence which memory system gains control of behavior. One set of processes are external factors that can affect which system controls behavior in a given situation including task parameters like the kind of information available to the subject, types of training experience, and amount of training. The second set of processes are brain mechanisms that might influence what memory system controls behavior in a given situation including executive functions mediated by the prefrontal cortex; switching mechanisms mediated by ascending neurotransmitter systems, the unique role of the hippocampus during learning. The issue of trait differences in control of different learning and memory systems will also be considered in which trait differences in learning and memory function are thought to potentially emerge from differences in level of prefrontal influence, differences in plasticity processes, differences in ascending neurotransmitter control, differential access to effector systems like motivational and motor systems. Finally, we present scenarios in which different mechanisms might interact. This review was conceived to become a jumping off point for new work directed at understanding these issues. The outcome of this work, in combination with other approaches, might improve understanding of the mechanisms of volition in human and non-human animals. Copyright © 2013 Wiley Periodicals, Inc.
Associations Between White Matter Microstructure and Infants’ Working Memory
Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.
2013-01-01
Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623
Lu, Hanna; Xi, Ni; Fung, Ada W T; Lam, Linda C W
2018-06-09
Memory and learning, as the core brain function, shows controversial results across studies focusing on aging and dementia. One of the reasons is because of the multi-faceted nature of memory and learning. However, there is still a dearth of comparable proxies with psychometric and morphometric portrait in clinical and non-clinical populations. We aim to investigate the proxies of memory and learning function with direct and derived measures and examine their associations with morphometric features in senior adults with different cognitive status. Based on two modality-driven tests, we assessed the component-specific memory and learning in the individuals with high performing (HP), normal aging, and neurocognitive disorders (NCD) (n = 488). Structural magnetic resonance imaging was used to measure the regional cortical thickness with surface-based morphometry analysis in a subsample (n = 52). Compared with HP elderly, the ones with normal aging and minor NCD showed declined recognition memory and working memory, whereas had better learning performance (derived scores). Meanwhile, major NCD patients showed more breakdowns of memory and learning function. The correlation between proxies of memory and learning and cortical thickness exhibited the overlapped and unique neural underpinnings. The proxies of memory and learning could be characterized by component-specific constructs with psychometric and morphometric bases. Overall, the constructs of memory are more likely related to the pathological changes, and the constructs of learning tend to reflect the cognitive abilities of compensation.
Rule-Based Category Learning in Children: The Role of Age and Executive Functioning
Rabi, Rahel; Minda, John Paul
2014-01-01
Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658
Polish Listening SPAN: A New Tool for Measuring Verbal Working Memory
ERIC Educational Resources Information Center
Zychowicz, Katarzyna; Biedron, Adriana; Pawlak, Miroslaw
2017-01-01
Individual differences in second language acquisition (SLA) encompass differences in working memory capacity, which is believed to be one of the most crucial factors influencing language learning. However, in Poland research on the role of working memory in SLA is scarce due to a lack of proper Polish instruments for measuring this construct. The…
Deaf Children and Children with ADHD in the Inclusive Classroom: Working Memory Matters
ERIC Educational Resources Information Center
Cockcroft, Kate; Dhana-Dullabh, Hansini
2013-01-01
This study compared the working memory functioning of deaf children, children with ADHD and typically developing children. Working memory is involved in the storage and mental manipulation of information during classroom learning activities that are crucial for the acquisition of complex skills and knowledge. Thus, it is important to determine how…
Involvement of Working Memory in Longitudinal Development of Number-Magnitude Skills
ERIC Educational Resources Information Center
Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.
2014-01-01
The ability to connect numbers and magnitudes is an important prerequisite for math learning, here referred to as number-magnitude skills. It has been proposed that working memory plays an important role in constructing these connections. The aim of the current study was to examine if working memory accounts for constructing these connections by…
Effects of testosterone on spatial learning and memory in adult male rats
Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.
2011-01-01
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035
Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F
2014-08-01
Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Sewell, David K.; Lewandowsky, Stephan
2012-01-01
The concept of attention is central to theorizing in learning as well as in working memory. However, research to date has yet to establish how attention as construed in one domain maps onto the other. We investigate two manifestations of attention in category- and cue-learning to examine whether they might provide common ground between learning…
ERIC Educational Resources Information Center
Cranford, Kristen N.; Tiettmeyer, Jessica M.; Chuprinko, Bryan C.; Jordan, Sophia; Grove, Nathaniel P.
2014-01-01
Information processing provides a powerful model for understanding how learning occurs and highlights the important role that cognitive load plays in this process. In instances in which the cognitive load of a problem exceeds the available working memory, learning can be seriously hindered. Previously reported methods for measuring cognitive load…
ERIC Educational Resources Information Center
Cunningham, Rhonda Phillips
2013-01-01
Research has suggested many children with learning disabilities (LD) have deficits in working memory (WM) that hinder their academic achievement. Cogmed RM, a computerized intervention, uses adaptive training over 25 sessions and has shown efficacy in improving WM in children with attention deficit hyperactivity disorder (ADHD) and a variety of…
ERIC Educational Resources Information Center
Ryan, Tamara E.
2014-01-01
The purpose of this study was to determine the effects of auditory integration training (AIT) on a component of the executive function of working memory; specifically, to determine if learning preferences might have an interaction with AIT to increase the outcome for some learners. The question asked by this quantitative pretest posttest design is…
Students Meet Wilfred Gordon: Helping Students with Special Needs Understand Their Memory
ERIC Educational Resources Information Center
Zambo, Debby M.
2006-01-01
Understanding how memory works is important for success in school, for "all" students. One way for teachers to help students with disabilities learn about memory is to use picture books and then learn strategies. Picture books are useful for students with disabilities because these resources have moved beyond a means to scaffold early literacy…
Maehler, C; Schuchardt, K
2009-01-01
Children with learning disabilities are identified by their severe learning problems and their deficient school achievement. On the other hand, children with sub-average school achievement and sub-average intellectual development are thought to suffer from a general intellectual delay rather than from specific learning disabilities. The open question is whether these two groups are characterised by differences in their cognitive functioning. The present study explored several functions of working memory. A working memory battery with tasks for the phonological loop, the visual-spatial sketchpad and central executive skills was presented in individual sessions to 27 children with learning disabilities and normal IQ (ICD-10: mixed disorders of scholastic skills), 27 children with learning disabilities and low IQ (intellectual disabilities), and a control group of 27 typically developing children with regular school achievement levels and normal IQ. The results reveal an overall deficit in working memory of the two groups with learning disabilities compared with the control group. However, unexpectedly, there were no differences between the two groups of children with disabilities (normal vs. low IQ). These findings do not support the notion of different cognitive functioning because of differences in intelligence of these two groups. In the ongoing discussion about the role of intelligence (especially as to the postulated discrepancy between intelligence and school achievement in diagnosis and special education), our findings might lead to rethinking the current practice of treating these two groups as fundamentally different.
Unstable Memories Create a High-Level Representation that Enables Learning Transfer.
Mosha, Neechi; Robertson, Edwin M
2016-01-11
A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schmittmann, Verena D; van der Maas, Han L J; Raijmakers, Maartje E J
2012-04-01
Behavioral, psychophysiological, and neuropsychological studies have revealed large developmental differences in various learning paradigms where learning from positive and negative feedback is essential. The differences are possibly due to the use of distinct strategies that may be related to spatial working memory and attentional control. In this study, strategies in performing a discrimination learning task were distinguished in a cross-sectional sample of 302 children from 4 to 14 years of age. The trial-by-trial accuracy data were analyzed with mathematical learning models. The best-fitting model revealed three learning strategies: hypothesis testing, slow abrupt learning, and nonlearning. The proportion of hypothesis-testing children increased with age. Nonlearners were present only in the youngest age group. Feature preferences for the irrelevant dimension had a detrimental effect on performance in the youngest age group. The executive functions spatial working memory and attentional control significantly predicted posterior learning strategy probabilities after controlling for age. Copyright © 2011 Elsevier Inc. All rights reserved.
Working Memory in Students with Mathematical Difficulties
NASA Astrophysics Data System (ADS)
Nur, I. R. D.; Herman, T.; Ningsih, S.
2018-04-01
Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.
Szűcs, D
2016-01-01
A large body of research suggests that mathematical learning disability (MLD) is related to working memory impairment. Here, I organize part of this literature through a meta-analysis of 36 studies with 665 MLD and 1049 control participants. I demonstrate that one subtype of MLD is associated with reading problems and weak verbal short-term and working memory. Another subtype of MLD does not have associated reading problems and is linked to weak visuospatial short-term and working memory. In order to better understand MLD we need to precisely define potentially modality-specific memory subprocesses and supporting executive functions, relevant for mathematical learning. This can be achieved by taking a multidimensional parametric approach systematically probing an extended network of cognitive functions. Rather than creating arbitrary subgroups and/or focus on a single factor, highly powered studies need to position individuals in a multidimensional parametric space. This will allow us to understand the multidimensional structure of cognitive functions and their relationship to mathematical performance. © 2016 Elsevier B.V. All rights reserved.
Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan
2011-01-01
Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement. PMID:21521768
Matzel, Louis D; Light, Kenneth R; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C; Kolata, Stefan
2011-01-01
Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement.
Sleep stages, memory and learning.
Dotto, L
1996-01-01
Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
ERIC Educational Resources Information Center
Passolunghi, Maria Chiara; Mammarella, Irene Cristina
2012-01-01
This study examines visual and spatial working memory skills in 35 third to fifth graders with both mathematics learning disabilities (MLD) and poor problem-solving skills and 35 of their peers with typical development (TD) on tasks involving both low and high attentional control. Results revealed that children with MLD, relative to TD children,…
ERIC Educational Resources Information Center
Bosman, Anna M. T.; Janssen, Marije
2017-01-01
In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was…
ERIC Educational Resources Information Center
Sowerby, Paula; Seal, Simon; Tripp, Gail
2011-01-01
Objective: To further define the nature of working memory (WM) impairments in children with combined-type ADHD. Method: A total of 40 Children with ADHD and an age and gender-matched control group (n = 40) completed two measures of visuo-spatial WM and two measures of verbal WM. The effects of age and learning/language difficulties on performance…
Cognitive Load Theory: A Broader View on the Role of Memory in Learning and Education
ERIC Educational Resources Information Center
Paas, Fred; Ayres, Paul
2014-01-01
According to cognitive load theory (CLT), the limitations of working memory (WM) in the learning of new tasks together with its ability to cooperate with an unlimited long-term memory (LTM) for familiar tasks enable human beings to deal effectively with complex problems and acquire highly complex knowledge and skills. With regard to WM, CLT has…
ERIC Educational Resources Information Center
Frick, Karyn M.; Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.
2015-01-01
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17ß-estradiol (E[subscript 2]), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes…
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
Kuschpel, Maxim S; Liu, Shuyan; Schad, Daniel J; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.
Kuschpel, Maxim S.; Liu, Shuyan; Schad, Daniel J.; Heinzel, Stephan; Heinz, Andreas; Rapp, Michael A.
2015-01-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. PMID:26579055
Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice.
Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna
2017-07-05
The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al. , 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al. , 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al. , 2016). Here we describe the experimental setup and procedures of this behavioral test.
[The consolidation of memory, one century on].
Prado-Alcala, R A; Quirarte, G L
The theory of memory consolidation, based on the work published by Georg Elias Muller and Alfons Pilzecker over a century ago, continues to guide research into the neurobiology of memory, either directly or indirectly. In their classic monographic work, they concluded that fixing memory requires the passage of time (consolidation) and that memory is vulnerable during this period of consolidation, as symptoms of amnesia appear when brain functioning is interfered with before the consolidation process is completed. Most of the experimental data concerning this phenomenon strongly support the theory. In this article we present a review of experiments that have made it possible to put forward a model that explains the amnesia produced in conventional learning conditions, as well as another model related to the protection of memory when the same instances of learning are submitted to a situation involving intensive training. Findings from relatively recent studies have shown that treatments that typically produce amnesia when they are administered immediately after a learning experience (during the period in which the memory would be consolidating itself) no longer have any effect when the instances of learning involve a relatively large number of trials or training sessions, or relatively high intensity aversive events. These results are not congruent with the prevailing theories about consolidation.
Abasi-Moghadam, Monir; Ghasemi-Dehno, Arefe; Sadegh, Mehdi; Palizvan, Mohammad Reza
2018-05-10
Epilepsy is a common neurological disorder that affects learning and memory. Recently it has been shown that mild foot electrical stimulation (MFES) can increase learning and memory in normal rats. Pentylenetetrazole (PTZ) kindling is a model of human epilepsy. As with human epilepsy, PTZ kindling impairs learning and memory in rats. The purpose of this study was to investigate the effect MFES on kindling-induced learning and memory deficits in rats. Forty-nine male Wistar rats weighting 200 to 250 g were divided into the following seven groups: PTZ only, phenytoin only, MFES only, PTZ plus phenytoin, PTZ plus MFES, phenytoin plus MFES, and saline (control), with the treatments administered for 26 days. Forty-eight hours after the last injection, the animals performed the Morris water maze (MWM) task, and spatial learning and memory were measured. The results indicated that although chronic administration of phenytoin inhibited the development of PTZ kindling, it did not exert a protective effect against kindling-induced spatial learning and memory impairment in rats. On the other hand, pretreatment of PTZ-kindled animals with MFES significantly improved spatial working and reference memory. The results point to potential novel beneficial effects of MFES on learning and memory impairment induced by PTZ kindling in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Trumbo, Michael Christopher Stefan
Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memorymore » for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.« less
Vicario-Feliciano, Raquel; Murray, Elisabeth A; Averbeck, Bruno B
2017-10-01
A large body of work has implicated the ventral striatum (VS) in aspects of reinforcement learning (RL). However, less work has directly examined the effects of lesions in the VS, or other forms of inactivation, on 2-armed bandit RL tasks. We have recently found that lesions in the VS in macaque monkeys affect learning with stochastic schedules but have minimal effects with deterministic schedules. The reasons for this are not currently clear. Because our previous work used short intertrial intervals, one possibility is that the animals were using working memory to bridge stimulus-reward associations from 1 trial to the next. In the present study, we examined learning of 60 pairs of objects, in which the animals received only 1 trial per day with each pair. The large number of object pairs and the long interval (approximately 24 hr) between trials with a given pair minimized the chances that the animals could use working memory to bridge trials. We found that monkeys with VS lesions were unimpaired relative to controls, which suggests that animals with VS lesions can still learn to select rewarded objects even when they cannot make use of working memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
First-Grade Predictors of Mathematical Learning Disability: A Latent Class Trajectory Analysis
Geary, David C.; Bailey, Drew H.; Littlefield, Andrew; Wood, Phillip; Hoard, Mary K.; Nugent, Lara
2009-01-01
Kindergarten to 3rd grade mathematics achievement scores from a prospective study of mathematical development were subjected to latent growth trajectory analyses (n = 306). The four corresponding classes included children with mathematical learning disability (MLD, 6% of sample), and low (LA, 50%), typically (TA, 39%) and high (HA, 5%) achieving children. The groups were administered a battery of intelligence (IQ), working memory, and mathematical-cognition measures in 1st grade. The children with MLD had general deficits in working memory and IQ, and potentially more specific deficits on measures of number sense. The LA children did not have working memory or IQ deficits, but showed moderate deficits on these number sense measures and for addition fact retrieval. The distinguishing features of the HA children were a strong visuospatial working memory, a strong number sense, and frequent use of memory-based processes to solve addition problems. Implications for the early identification of children at risk for poor mathematics achievement are discussed. PMID:20046817
An Investigation Into Second Language Aptitude for Advanced Chinese Language Learning
ERIC Educational Resources Information Center
Winke, Paula
2013-01-01
In this study I examine the construct of aptitude in learning Chinese as a second language (L2) to an advanced level. I test 2 hypotheses: first, that L2 aptitude comprises 4 components--working memory, rote memory, grammatical sensitivity, and phonemic coding ability--and second, that L2 aptitude affects learning both directly and indirectly…
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Soederberg Miller, Lisa M; Gibson, Tanja N; Applegate, Elizabeth A; de Dios, Jeannette
2011-07-01
Prior knowledge, working memory capacity (WMC), and conceptual integration (attention allocated to integrating concepts in text) are critical within many contexts; however, their impact on the acquisition of health information (i.e. learning) is relatively unexplored.We examined how these factors impact learning about nutrition within a cross-sectional study of adults ages 18 to 81. Results showed that conceptual integration mediated the effects of knowledge and WMC on learning, confirming that attention to concepts while reading is important for learning about health. We also found that when knowledge was controlled, age declines in learning increased, suggesting that knowledge mitigates the effects of age on learning about nutrition.
Memory for relations in the short term and the long term after medial temporal lobe damage.
Squire, Larry R
2017-05-01
A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.
2005-01-01
Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…
Media multitasking and implicit learning.
Edwards, Kathleen S; Shin, Myoungju
2017-07-01
Media multitasking refers to the simultaneous use of different forms of media. Previous research comparing heavy media multitaskers and light media multitaskers suggests that heavy media multitaskers have a broader scope of attention. The present study explored whether these differences in attentional scope would lead to a greater degree of implicit learning for heavy media multitaskers. The study also examined whether media multitasking behaviour is associated with differences in visual working memory, and whether visual working memory differentially affects the ability to process contextual information. In addition to comparing extreme groups (heavy and light media multitaskers) the study included analysis of people who media multitask in moderation (intermediate media multitaskers). Ninety-four participants were divided into groups based on responses to the media use questionnaire, and completed the contextual cueing and n-back tasks. Results indicated that the speed at which implicit learning occurred was slower in heavy media multitaskers relative to both light and intermediate media multitaskers. There was no relationship between working memory performance and media multitasking group, and no relationship between working memory and implicit learning. There was also no evidence for superior performance of intermediate media multitaskers. A deficit in implicit learning observed in heavy media multitaskers is consistent with previous literature, which suggests that heavy media multitaskers perform more poorly than light media multitaskers in attentional tasks due to their wider attentional scope.
ERIC Educational Resources Information Center
Peng, Peng; Fuchs, Douglas
2017-01-01
Researchers are increasingly interested in working memory (WM) training. However, it is unclear whether it strengthens comprehension in young children who are at risk for learning difficulties. We conducted a modest study of whether the training of verbal WM would improve verbal WM and passage listening comprehension and whether training effects…
Bisagno, Elisa; Morra, Sergio
2018-03-01
This study examines young volleyball players' learning of increasingly complex attack gestures. The main purpose of the study was to examine the predictive role of a cognitive variable, working memory capacity (or "M capacity"), in the acquisition and development of motor skills in a structured sport. Pascual-Leone's theory of constructive operators (TCO) was used as a framework; it defines working memory capacity as the maximum number of schemes that can be simultaneously activated by attentional resources. The role of expertise in motor learning was also considered. The expertise of each athlete was assessed in terms of years of practice and number of training sessions per week. The participants were 120 volleyball players, aged between 6 and 26 years, who performed both working memory tests and practical tests of volleyball involving the execution of the "third touch" by means of technical gestures of varying difficulty. We proposed a task analysis of these different gestures framed within the TCO. The results pointed to a very clear dissociation. On the one hand, M capacity was the best predictor of correct motor performance, and a specific capacity threshold was found for learning each attack gesture. On the other hand, experience was the key for the precision of the athletic gestures. This evidence could underline the existence of two different cognitive mechanisms in motor learning. The first one, relying on attentional resources, is required to learn a gesture. The second one, based on repeated experience, leads to its automatization. Copyright © 2017 Elsevier Inc. All rights reserved.
Implicit and explicit motor sequence learning in children born very preterm.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2017-01-01
Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differential working memory correlates for implicit sequence performance in young and older adults.
Bo, Jin; Jennett, S; Seidler, R D
2012-09-01
Our recent work has revealed that visuospatial working memory (VSWM) relates to the rate of explicit motor sequence learning (Bo and Seidler in J Neurophysiol 101:3116-3125, 2009) and implicit sequence performance (Bo et al. in Exp Brain Res 214:73-81, 2011a) in young adults (YA). Although aging has a detrimental impact on many cognitive functions, including working memory, older adults (OA) still rely on their declining working memory resources in an effort to optimize explicit motor sequence learning. Here, we evaluated whether age-related differences in VSWM and/or verbal working memory (VWM) performance relates to implicit performance change in the serial reaction time (SRT) sequence task in OA. Participants performed two computerized working memory tasks adapted from change detection working memory assessments (Luck and Vogel in Nature 390:279-281, 1997), an implicit SRT task and several neuropsychological tests. We found that, although OA exhibited an overall reduction in both VSWM and VWM, both OA and YA showed similar performance in the implicit SRT task. Interestingly, while VSWM and VWM were significantly correlated with each other in YA, there was no correlation between these two working memory scores in OA. In YA, the rate of SRT performance change (exponential fit to the performance curve) was significantly correlated with both VSWM and VWM, while in contrast, OA's performance was only correlated with VWM, and not VSWM. These results demonstrate differential reliance on VSWM and VWM for SRT performance between YA and OA. OA may utilize VWM to maintain optimized performance of second-order conditional sequences.
ERIC Educational Resources Information Center
Sato, Takeshi; Matsunuma, Mitsuyasu; Suzuki, Akio
2013-01-01
Our study aims to optimize a multimedia application for vocabulary learning for English as a Foreign Language (EFL). Our study is based on the concept that difficulty in reading a text in a second language is due to the need for more working memory for word decoding skills, although the working memory must also be used for text comprehension…
Benefits from retrieval practice are greater for students with lower working memory capacity.
Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L
2017-07-01
We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.
Preservation of musical memory in Alzheimer's disease.
Crystal, H A; Grober, E; Masur, D
1989-12-01
An 82 year old musician with Alzheimer's disease (AD) showed a preserved ability to play previously learned piano compositions from memory while being unable to identify the composer or titles of each work. He also showed a preserved ability to learn the new skill of mirror reading while being unable to recall or recognise new information. Both anterograde and retrograde procedural memory may be relatively spared in AD.
ERIC Educational Resources Information Center
Dean, Bonnie L.
Reported is a study related to the Project on an Information Memory Model and designed to encompass the claims of Piaget and Inhelder on differences of kinds of cognition and recall done on figural sorting task cognition at the Project on an Information Memory Model. The work of Piaget and Inhelder has defined learning information flow and related…
The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage
Sandi, Carmen
1998-01-01
Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681
Brady, Timothy F; Konkle, Talia; Alvarez, George A
2009-11-01
The information that individuals can hold in working memory is quite limited, but researchers have typically studied this capacity using simple objects or letter strings with no associations between them. However, in the real world there are strong associations and regularities in the input. In an information theoretic sense, regularities introduce redundancies that make the input more compressible. The current study shows that observers can take advantage of these redundancies, enabling them to remember more items in working memory. In 2 experiments, covariance was introduced between colors in a display so that over trials some color pairs were more likely to appear than other color pairs. Observers remembered more items from these displays than from displays where the colors were paired randomly. The improved memory performance cannot be explained by simply guessing the high-probability color pair, suggesting that observers formed more efficient representations to remember more items. Further, as observers learned the regularities, their working memory performance improved in a way that is quantitatively predicted by a Bayesian learning model and optimal encoding scheme. These results suggest that the underlying capacity of the individuals' working memory is unchanged, but the information they have to remember can be encoded in a more compressed fashion. Copyright 2009 APA
The beneficial role of memory reactivation for language learning during sleep: A review.
Schreiner, Thomas; Rasch, Björn
2017-04-01
Sleep is essential for diverse aspects of language learning. According to a prominent concept these beneficial effects of sleep rely on spontaneous reactivation processes. A series of recent studies demonstrated that inducing such reactivation processes by re-exposure to memory cues during sleep enhances foreign vocabulary learning. Building upon these findings, the present article reviews recent models and empirical findings concerning the beneficial effects of sleep on language learning. Consequently, the memory function of sleep, its neural underpinnings and the role of the sleeping brain in language learning will be summarized. Finally, we will propose a working model concerning the oscillatory requirements for successful reactivation processes and future research questions to advance our understanding of the role of sleep on language learning and memory processes in general. Copyright © 2016 Elsevier Inc. All rights reserved.
Hoffman, A N; Krigbaum, A; Ortiz, J B; Mika, A; Hutchinson, K M; Bimonte-Nelson, H A; Conrad, C D
2011-09-01
Chronic stress results in reversible spatial learning impairments in the Morris water maze that correspond with hippocampal CA3 dendritic retraction in male rats. Whether chronic stress impacts different types of memory domains, and whether these can similarly recover, is unknown. This study assessed the effects of chronic stress with and without a post-stress delay to evaluate learning and memory deficits within two memory domains, reference and working memory, in the radial arm water maze (RAWM). Three groups of 5-month-old male Sprague-Dawley rats were either not stressed [control (CON)], or restrained (6 h/day for 21 days) and then tested on the RAWM either on the next day [stress immediate (STR-IMM)] or following a 21-day delay [stress delay (STR-DEL)]. Although the groups learned the RAWM task similarly, groups differed in their 24-h retention trial assessment. Specifically, the STR-IMM group made more errors within both the spatial reference and working memory domains, and these deficits corresponded with a reduction in apical branch points and length of hippocampal CA3 dendrites. In contrast, the STR-DEL group showed significantly fewer errors in both the reference and working memory domains than the STR-IMM group. Moreover, the STR-DEL group showed better RAWM performance in the reference memory domain than did the CON group, and this corresponded with restored CA3 dendritic complexity, revealing long-term enhancing actions of chronic stress. These results indicate that chronic stress-induced spatial working and reference memory impairments, and CA3 dendritic retraction, are reversible, with chronic stress having lasting effects that can benefit spatial reference memory, but with these lasting beneficial effects being independent of CA3 dendritic complexity. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Rångtell, Frida H; Karamchedu, Swathy; Andersson, Peter; Liethof, Lisanne; Olaya Búcaro, Marcela; Lampola, Lauri; Schiöth, Helgi B; Cedernaes, Jonathan; Benedict, Christian
2018-01-31
Acute sleep deprivation can lead to judgement errors and thereby increases the risk of accidents, possibly due to an impaired working memory. However, whether the adverse effects of acute sleep loss on working memory are modulated by auditory distraction in women and men are not known. Additionally, it is unknown whether sleep loss alters the way in which men and women perceive their working memory performance. Thus, 24 young adults (12 women using oral contraceptives at the time of investigation) participated in two experimental conditions: nocturnal sleep (scheduled between 22:30 and 06:30 hours) versus one night of total sleep loss. Participants were administered a digital working memory test in which eight-digit sequences were learned and retrieved in the morning after each condition. Learning of digital sequences was accompanied by either silence or auditory distraction (equal distribution among trials). After sequence retrieval, each trial ended with a question regarding how certain participants were of the correctness of their response, as a self-estimate of working memory performance. We found that sleep loss impaired objective but not self-estimated working memory performance in women. In contrast, both measures remained unaffected by sleep loss in men. Auditory distraction impaired working memory performance, without modulation by sleep loss or sex. Being unaware of cognitive limitations when sleep-deprived, as seen in our study, could lead to undesirable consequences in, for example, an occupational context. Our findings suggest that sleep-deprived young women are at particular risk for overestimating their working memory performance. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.
2015-01-01
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs. PMID:26286657
The Profile of Memory Function in Children With Autism
Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.
2007-01-01
A clinical memory test was administered to 38 high-functioning children with autism and 38 individually matched normal controls, 8–16 years of age. The resulting profile of memory abilities in the children with autism was characterized by relatively poor memory for complex visual and verbal information and spatial working memory with relatively intact associative learning ability, verbal working memory, and recognition memory. A stepwise discriminant function analysis of the subtests found that the Finger Windows subtest, a measure of spatial working memory, discriminated most accurately between the autism and normal control groups. A principal components analysis indicated that the factor structure of the subtests differed substantially between the children with autism and controls, suggesting differing organizations of memory ability. PMID:16460219
Effect of quantum learning model in improving creativity and memory
NASA Astrophysics Data System (ADS)
Sujatmika, S.; Hasanah, D.; Hakim, L. L.
2018-04-01
Quantum learning is a combination of many interactions that exist during learning. This model can be applied by current interesting topic, contextual, repetitive, and give opportunities to students to demonstrate their abilities. The basis of the quantum learning model are left brain theory, right brain theory, triune, visual, auditorial, kinesthetic, game, symbol, holistic, and experiential learning theory. Creativity plays an important role to be success in the working world. Creativity shows alternatives way to problem-solving or creates something. Good memory plays a role in the success of learning. Through quantum learning, students will use all of their abilities, interested in learning and create their own ways of memorizing concepts of the material being studied. From this idea, researchers assume that quantum learning models can improve creativity and memory of the students.
The generalizability of working-memory capacity in the sport domain.
Buszard, Tim; Masters, Rich Sw; Farrow, Damian
2017-08-01
Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Fasting During Ramadan Month on Cognitive Function in Muslim Athletes
Tian, Ho-Heng; Aziz, Abdul-Rashid; Png, Weileen; Wahid, Mohamed Faizul; Yeo, Donald; Constance Png, Ai-Li
2011-01-01
Purpose Our study aimed to profile the effect of fasting during the Ramadan month on cognitive function in a group of healthy Muslim athletes. Methods Eighteen male athletes underwent computerized neuropsychological testing during (fasting) and after (non-fasting) Ramadan. Diet was standardized, and tests were performed at 0900h and 1600h to characterize potential time-of-day (TOD) interactions. Psychomotor function (processing speed), vigilance (visual attention), visual learning and memory, working memory (executive function), verbal learning and memory were examined. Capillary glucose, body temperature, urine specific gravity, and sleep volume were also recorded. Results Fasting effects were observed for psychomotor function (Cohen's d=1.3, P=0.01) and vigilance (d=0.6, P=0.004), with improved performance at 0900h during fasting; verbal learning and memory was poorer at 1600h (d=-0.8, P=0.03). A TOD effect was present for psychomotor function (d=-0.4, P<0.001), visual learning (d=-0.5, P=0.04), verbal learning and memory (d=-1.3, P=0.001), with poorer performances at 1600h. There was no significant fasting effect on visual learning and working memory. Conclusions Our results show that the effect of fasting on cognition is heterogeneous and domain-specific. Performance in functions requiring sustained rapid responses was better in the morning, declining in the late afternoon, whereas performance in non-speed dependent accuracy measures was more resilient. PMID:22375233
Reflection as Situated Practice: A Memory-Work Study of Lived Experience in Teacher Education
ERIC Educational Resources Information Center
Ovens, Alan; Tinning, Richard
2009-01-01
The aim of this paper is to understand whether student teachers enact reflection differently as they encounter different situations within their teacher education programme. Group memory-work was used to generate and analyse five participants' memories of learning to teach. Three different discursive contexts were identified in the students'…
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
Panoz-Brown, Danielle; Carey, Lawrence M; Smith, Alexandra E; Gentry, Meredith; Sluka, Christina M; Corbin, Hannah E; Wu, Jie-En; Hohmann, Andrea G; Crystal, Jonathon D
2017-10-01
Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.
Working Memory Load Strengthens Reward Prediction Errors.
Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David
2017-04-19
Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.
ERIC Educational Resources Information Center
Gray, S. A.; Chaban, P.; Martinussen, R.; Goldberg, R.; Gotlieb, H.; Kronitz, R.; Hockenberry, M.; Tannock, R.
2012-01-01
Background: Youths with coexisting learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) are at risk for poor academic and social outcomes. The underlying cognitive deficits, such as poor working memory (WM), are not well targeted by current treatments for either LD or ADHD. Emerging evidence suggests that WM might be…
ERIC Educational Resources Information Center
Srikoon, Sanit; Bunterm, Tassanee; Nethanomsak, Teerachai; Ngang, Tang Keow
2017-01-01
Purpose: The attention, working memory, and mood of learners are the most important abilities in the learning process. This study was concerned with the comparison of contextualized attention, working memory, and mood through a neurocognitive-based model (5P) and a conventional model (5E). It sought to examine the significant change in attention,…
Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep.
Heller, H Craig; Ruby, Norman F; Rolls, Asya; Makam, Megha; Colas, Damien
2014-06-01
The circadian system organizes sleep and wake through imposing a daily cycle of sleep propensity on the organism. Sleep has been shown to play an important role in learning and memory. Apart from the daily cycle of sleep propensity, however, direct effects of the circadian system on learning and memory also have been well documented. Many mechanistic components of the memory consolidation process ranging from the molecular to the systems level have been identified and studied. The question that remains is how do these various processes and components work together to produce cycles of increased and decreased learning abilities, and why should there be times of day when neural plasticity appears to be restricted? Insights into this complex problem can be gained through investigations of the learning disabilities caused by circadian disruption in Siberian hamsters and by aneuploidy in Down's syndrome mice. A simple working hypothesis that has been explored in this work is that the observed learning disabilities are due to an altered excitation/inhibition balance in the CNS. Excessive inhibition is the suspected cause of deficits in memory consolidation. In this article we present the evidence that excessive inhibition in these cases of learning disability involves GABAergic neurotransmission, that treatment with GABA receptor inhibitors can reverse the learning disability, and that the efficacy of the treatment is time sensitive coincident with the major daily sleep phase, and that it depends on sleep. The evidence we present leads us to hypothesize that a function of the circadian system is to reduce neuroplasticity during the daily sleep phase when processes of memory consolidation are taking place. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice
Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna
2017-01-01
The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al., 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al., 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al., 2016). Here we describe the experimental setup and procedures of this behavioral test. PMID:28944261
Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P
2017-06-12
The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia 1 , 2 and language impairment 3 , 4 , but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.
Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal
2012-01-01
Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551
Lactobacillus helveticus-fermented milk improves learning and memory in mice.
Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko
2015-07-01
To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.
Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul
2012-11-01
Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.
Does visuo-spatial working memory generally contribute to immediate serial letter recall?
Fürstenberg, A; Rummer, R; Schweppe, J
2013-01-01
This work contributes to the understanding of the visual similarity effect in verbal working memory, a finding that suggests that the visuo-spatial sketch pad-the system in Baddeley's working memory model specialised in retaining nonverbal visual information-might be involved in the retention of visually presented verbal materials. Crucially this effect is implicitly interpreted by the most influential theory of multimedia learning as evidence for an obligatory involvement of the visuo-spatial sketch pad. We claim that it is only involved when the functioning of the working memory component normally used for processing verbal material is impaired. In this article we review the studies that give rise to the idea of obligatory involvement of the visuo-spatial sketch pad and suggest that some findings can be understood with reference to orthographic rather than visual similarity. We then test an alternative explanation of the finding that is most apt to serve as evidence for obligatory involvement of the visuo-spatial sketch pad. We conclude that, in healthy adults and under normal learning conditions, the visual similarity effect can be explained within the framework of verbal working memory proposed by Baddeley (e.g., 1986, 2000) without additional premises regarding the visuo-spatial sketch.
Cognitive and Emotional Factors in Children with Mathematical Learning Disabilities
ERIC Educational Resources Information Center
Passolunghi, Maria Chiara
2011-01-01
Emotional and cognitive factors were examined in 18 children with mathematical learning disabilities (MLD), compared with 18 normally achieving children, matched for chronological age, school level, gender and verbal IQ. Working memory, short-term memory, inhibitory processes, speed of processing and level of anxiety in mathematics were assessed…
Contextualizing Instruction for English Language Learners with Learning Disabilities
ERIC Educational Resources Information Center
Miller, Rhonda D.
2016-01-01
English language learners (ELLs) with learning disabilities (LD) can find navigating the content areas quite difficult due to challenges involving limitations in English language proficiency, gaps in English academic vocabulary, difficulties with working memory and long-term memory, and limited background knowledge on content area topics. However,…
MICROINJECTION OF DYNORPHIN INTO THE HIPPOCAMPUS IMPAIRS SPATIAL LEARNING IN RATS
The effect of hippocampal dynorphin administration on learning and memory was examined in spatial and nonspatial tasks. ilateral infusion of dynorphin A(1-8)(DYN; 10 or 20 ug in one ul) into the dorsal hippocampus resulted in dose-related impairment of spatial working memory in a...
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
Nucleus incertus inactivation impairs spatial learning and memory in rats.
Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh
2015-02-01
Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
Specific memory impairment following neonatal encephalopathy in term-born children.
van Handel, Mariëlle; de Sonneville, Leo; de Vries, Linda S; Jongmans, Marian J; Swaab, Hanna
2012-01-01
This study examines short-term memory, verbal working memory, episodic long-term memory, and intelligence in 32 children with mild neonatal encephalopathy (NE), 39 children with moderate NE, 10 children with NE who developed cerebral palsy (CP), and 53 comparison children, at the age of 9 to 10 years. in addition to a global effect on intelligence, NE had a specific effect on verbal working memory, verbal and visuo-spatial long-term memory, and learning, which was associated with degree of NE. Although these memory problems occurred in children without CP, they were more pronounced when children had also developed CP.
Sudo, Akihito; Sato, Akihiro; Hasegawa, Osamu
2009-06-01
Associative memory operating in a real environment must perform well in online incremental learning and be robust to noisy data because noisy associative patterns are presented sequentially in a real environment. We propose a novel associative memory that satisfies these requirements. Using the proposed method, new associative pairs that are presented sequentially can be learned accurately without forgetting previously learned patterns. The memory size of the proposed method increases adaptively with learning patterns. Therefore, it suffers neither redundancy nor insufficiency of memory size, even in an environment in which the maximum number of associative pairs to be presented is unknown before learning. Noisy inputs in real environments are classifiable into two types: noise-added original patterns and faultily presented random patterns. The proposed method deals with two types of noise. To our knowledge, no conventional associative memory addresses noise of both types. The proposed associative memory performs as a bidirectional one-to-many or many-to-one associative memory and deals not only with bipolar data, but also with real-valued data. Results demonstrate that the proposed method's features are important for application to an intelligent robot operating in a real environment. The originality of our work consists of two points: employing a growing self-organizing network for an associative memory, and discussing what features are necessary for an associative memory for an intelligent robot and proposing an associative memory that satisfies those requirements.
Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.
Santoro, Adam; Frankland, Paul W; Richards, Blake A
2016-11-30
Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.
Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J
2016-01-01
This study focused on the efficacy of cognitive training for verbal learning and memory deficits in a population of older veterans with alcohol use disorders. Veterans with alcohol use disorders, who were in outpatient treatment at VA facilities and in early-phase recovery (N = 31), were randomized to receive a three-month trial of daily cognitive training plus work therapy (n = 15) or work therapy alone (n = 16), along with treatment as usual. Participants completed assessments at baseline and at three- and six-month follow-ups; the Hopkins Verbal Learning Task (HVLT) was the primary outcome measure. Participants were primarily male (97%) and in their mid-50s (M = 55.16, SD = 5.16) and had been sober for 1.64 (SD = 2.81) months. Study retention was excellent (91% at three-month follow-up) and adherence to treatment in both conditions was very good. On average, participants in the cognitive training condition had more than 41 hours of cognitive training, and both conditions had more than 230 hours of productive activity. HVLT results at three-month follow-up revealed significant condition effects favoring cognitive training for verbal learning (HVLT Trial-3 T-score, p < .005, Cohen's d = 1.3) and verbal memory (HVLT Total T-score, p < .01, Cohen's d = 1.1). Condition effects were sustained at six-month follow-up. At baseline, 55.9% of participants showed a significant deficit in verbal memory and 58.8% showed a deficit in verbal learning compared with a premorbid estimate of verbal IQ. At three-month follow-up there was a significant reduction in the number of participants in the cognitive training condition with clinically significant verbal memory deficits (p < .01, number needed to treat = 3.0) compared with the work therapy alone condition and a trend toward significance for verbal learning deficits, which was not sustained at six-month follow-up. This National Institute on Drug Abuse-funded pilot study demonstrates that cognitive training within the context of another activating intervention (work therapy) may have efficacy in remediating verbal learning and memory deficits in patients with alcohol use disorder. Findings indicate a large effect for cognitive training in this pilot study, which suggests that further research is warranted. This study is registered on ClinicalTrials.gov (NCT 01410110).
ERIC Educational Resources Information Center
Kormos, Judit; Safar, Anna
2008-01-01
In our research we addressed the question what the relationship is between phonological short-term and working memory capacity and performance in an end-of-year reading, writing, listening, speaking and use of English test. The participants of our study were 121 secondary school students aged 15-16 in the first intensive language training year of…
Terhoeven, Valentin; Kallen, Ursula; Ingenerf, Katrin; Aschenbrenner, Steffen; Weisbrod, Matthias; Herzog, Wolfgang; Brockmeyer, Timo; Friederich, Hans-Christoph; Nikendei, Christoph
2017-03-01
It is unclear whether observed memory impairment in anorexia nervosa (AN) depends on the semantic structure (categorized words) of material to be encoded. We aimed to investigate the processing of semantically related information in AN. Memory performance was assessed in a recall, learning, and recognition test in 27 adult women with AN (19 restricting, 8 binge-eating/purging subtype; average disease duration: 9.32 years) and 30 healthy controls using an extended version of the Rey Auditory Verbal Learning Test, applying semantically related and unrelated word stimuli. Short-term memory (immediate recall, learning), regardless of semantics of the words, was significantly worse in AN patients, whereas long-term memory (delayed recall, recognition) did not differ between AN patients and controls. Semantics of stimuli do not have a better effect on memory recall in AN compared to CO. Impaired short-term versus long-term memory is discussed in relation to dysfunctional working memory in AN. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
Braden, B Blair; Andrews, Madeline G; Acosta, Jazmin I; Mennenga, Sarah E; Lavery, Courtney; Bimonte-Nelson, Heather A
2017-03-30
For decades, progestins have been included in hormone therapies (HT) prescribed to women to offset the risk of unopposed estrogen-induced endometrial hyperplasia. However, the potential effects on cognition of subcategories of clinically used progestins have been largely unexplored. In two studies, the present investigation evaluated the cognitive effects of norethindrone acetate (NETA), levonorgestrel (LEVO), and medroxyprogesterone acetate (MPA) on the water radial-arm maze (WRAM) and Morris water maze (MM) in middle-aged ovariectomized rats. In Study 1, six-weeks of a high-dose NETA treatment impaired learning and delayed retention on the WRAM, and impaired reference memory on the MM. Low-dose NETA treatment impaired delayed retention on the WRAM. In Study 2, high-dose NETA treatment was reduced to four-weeks and compared to MPA and LEVO. As previously shown, MPA impaired working memory performance during the lattermost portion of testing, at the highest working memory load, impaired delayed retention on the WRAM, and impaired reference memory on the MM. NETA also impaired performance on these WRAM and MM measures. Interestingly, LEVO did not impair performance, but instead enhanced learning on the WRAM. The current study corroborates previous evidence that the most commonly prescribed FDA-approved progestin for HT, MPA, impairs learning and memory in the ovariectomized middle-aged rat. When progestins from two different additional subcategories were investigated, NETA impaired learning and memory similarly to MPA, but LEVO enhanced learning. Future research is warranted to determine LEVO's potential as an ideal progestin for optimal health in women, including for cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Learning New Letter-like Writing Patterns Explicitly and Implicitly in Children and Adults.
Jongbloed-Pereboom, M; Overvelde, A; Nijhuis-van der Sanden, M W G; Steenbergen, B
2017-12-15
A handwriting task was used to test the assumption that explicit learning is dependent on age and working memory, while implicit learning is not. The effect of age was examined by testing both, typically developing children (5-12 years old, n = 81) and adults (n = 27) in a counterbalanced within-subjects design. Participants were asked to repeatedly write letter-like patterns on a digitizer with a non-inking pen. Reproduction of the pattern was better after explicit learning compared to implicit learning. Age had positive effects on both explicit and implicit learning; working memory did not affect learning in either conditions. These results show that it may be more effective to learn writing new letter-like patterns explicitly and that an explicit teaching method is preferred in mainstream primary education.
Associative memory cells and their working principle in the brain
Wang, Jin-Hui; Cui, Shan
2018-01-01
The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741
Hebb learning, verbal short-term memory, and the acquisition of phonological forms in children.
Mosse, Emma K; Jarrold, Christopher
2008-04-01
Recent work using the Hebb effect as a marker for implicit long-term acquisition of serial order has demonstrated a functional equivalence across verbal and visuospatial short-term memory. The current study extends this observation to a sample of five- to six-year-olds using verbal and spatial immediate serial recall and also correlates the magnitude of Hebb learning with explicit measures of word and nonword paired-associate learning. Comparable Hebb effects were observed in both domains, but only nonword learning was significantly related to the magnitude of Hebb learning. Nonword learning was also independently related to individuals' general level of verbal serial recall. This suggests that vocabulary acquisition depends on both a domain-specific short-term memory system and a domain-general process of learning through repetition.
Fraello, David; Maller-Kesselman, Jill; Vohr, Betty; Katz, Karol H; Kesler, Shelli; Schneider, Karen; Reiss, Allan; Ment, Laura; Spann, Marisa N
2011-06-01
This study tested the hypothesis that preterm early adolescents' short-term memory is compromised when presented with increasingly complex verbal information and that associated neuroanatomical volumes would differ between preterm and term groups. Forty-nine preterm and 20 term subjects were evaluated at age 12 years with neuropsychological measures and magnetic resonance imaging (MRI). There were no differences between groups in simple short-term and working memory. Preterm subjects performed lower on learning and short-term memory tests that included increased verbal complexity. They had reduced right parietal, left temporal, and right temporal white matter volumes and greater bilateral frontal gray and right frontal white matter volumes. There was a positive association between complex working memory and the left hippocampus and frontal white matter in term subjects. While not correlated, memory scores and volumes of cortical regions known to subserve language and memory were reduced in preterm subjects. This study provides evidence of possible mechanisms for learning problems in former preterm infants.
Emotional Modulation of Learning and Memory: Pharmacological Implications.
LaLumiere, Ryan T; McGaugh, James L; McIntyre, Christa K
2017-07-01
Memory consolidation involves the process by which newly acquired information becomes stored in a long-lasting fashion. Evidence acquired over the past several decades, especially from studies using post-training drug administration, indicates that emotional arousal during the consolidation period influences and enhances the strength of the memory and that multiple different chemical signaling systems participate in this process. The mechanisms underlying the emotional influences on memory involve the release of stress hormones and activation of the basolateral amygdala, which work together to modulate memory consolidation. Moreover, work suggests that this amygdala-based memory modulation occurs with numerous types of learning and involves interactions with many different brain regions to alter consolidation. Additionally, studies suggest that emotional arousal and amygdala activity in particular influence synaptic plasticity and associated proteins in downstream brain regions. This review considers the historical understanding for memory modulation and cellular consolidation processes and examines several research areas currently using this foundational knowledge to develop therapeutic treatments. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza
2016-07-15
Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Learning and Memory Processes Following Cochlear Implantation: The Missing Piece of the Puzzle.
Pisoni, David B; Kronenberger, William G; Chandramouli, Suyog H; Conway, Christopher M
2016-01-01
At the present time, there is no question that cochlear implants (CIs) work and often work very well in quiet listening conditions for many profoundly deaf children and adults. The speech and language outcomes data published over the last two decades document quite extensively the clinically significant benefits of CIs. Although there now is a large body of evidence supporting the "efficacy" of CIs as a medical intervention for profound hearing loss in both children and adults, there still remain a number of challenging unresolved clinical and theoretical issues that deal with the "effectiveness" of CIs in individual patients that have not yet been successfully resolved. In this paper, we review recent findings on learning and memory, two central topics in the field of cognition that have been seriously neglected in research on CIs. Our research findings on sequence learning, memory and organization processes, and retrieval strategies used in verbal learning and memory of categorized word lists suggests that basic domain-general learning abilities may be the missing piece of the puzzle in terms of understanding the cognitive factors that underlie the enormous individual differences and variability routinely observed in speech and language outcomes following cochlear implantation.
Learning and Memory Processes Following Cochlear Implantation: The Missing Piece of the Puzzle
Pisoni, David B.; Kronenberger, William G.; Chandramouli, Suyog H.; Conway, Christopher M.
2016-01-01
At the present time, there is no question that cochlear implants (CIs) work and often work very well in quiet listening conditions for many profoundly deaf children and adults. The speech and language outcomes data published over the last two decades document quite extensively the clinically significant benefits of CIs. Although there now is a large body of evidence supporting the “efficacy” of CIs as a medical intervention for profound hearing loss in both children and adults, there still remain a number of challenging unresolved clinical and theoretical issues that deal with the “effectiveness” of CIs in individual patients that have not yet been successfully resolved. In this paper, we review recent findings on learning and memory, two central topics in the field of cognition that have been seriously neglected in research on CIs. Our research findings on sequence learning, memory and organization processes, and retrieval strategies used in verbal learning and memory of categorized word lists suggests that basic domain-general learning abilities may be the missing piece of the puzzle in terms of understanding the cognitive factors that underlie the enormous individual differences and variability routinely observed in speech and language outcomes following cochlear implantation. PMID:27092098
Value conditioning modulates visual working memory processes.
Thomas, Paul M J; FitzGibbon, Lily; Raymond, Jane E
2016-01-01
Learning allows the value of motivationally salient events to become associated with stimuli that predict those events. Here, we asked whether value associations could facilitate visual working memory (WM), and whether such effects would be valence dependent. Our experiment was specifically designed to isolate value-based effects on WM from value-based effects on selective attention that might be expected to bias encoding. In a simple associative learning task, participants learned to associate the color of tinted faces with gaining or losing money or neither. Tinted faces then served as memoranda in a face identity WM task for which previously learned color associations were irrelevant and no monetary outcomes were forthcoming. Memory was best for faces with gain-associated tints, poorest for faces with loss-associated tints, and average for faces with no-outcome-associated tints. Value associated with 1 item in the WM array did not modulate memory for other items in the array. Eye movements when studying faces did not depend on the valence of previously learned color associations, arguing against value-based biases being due to differential encoding. This valence-sensitive value-conditioning effect on WM appears to result from modulation of WM maintenance processes. (c) 2015 APA, all rights reserved).
Alvarez-Periel, Elena; Puigdellívol, Mar; Brito, Verónica; Plattner, Florian; Bibb, James A; Alberch, Jordi; Ginés, Silvia
2017-12-29
Cognitive deficits are a major hallmark of Huntington's disease (HD) with a great impact on the quality of patient's life. Gaining a better understanding of the molecular mechanisms underlying learning and memory impairments in HD is, therefore, of critical importance. Cdk5 is a proline-directed Ser/Thr kinase involved in the regulation of synaptic plasticity and memory processes that has been associated with several neurodegenerative disorders. In this study, we aim to investigate the role of Cdk5 in learning and memory impairments in HD using a novel animal model that expresses mutant huntingtin (mHtt) and has genetically reduced Cdk5 levels. Genetic reduction of Cdk5 in mHtt knock-in mice attenuated both corticostriatal learning deficits as well as hippocampal-dependent memory decline. Moreover, the molecular mechanisms by which Cdk5 counteracts the mHtt-induced learning and memory impairments appeared to be differentially regulated in a brain region-specific manner. While the corticostriatal learning deficits are attenuated through compensatory regulation of NR2B surface levels, the rescue of hippocampal-dependent memory was likely due to restoration of hippocampal dendritic spine density along with an increase in Rac1 activity. This work identifies Cdk5 as a critical contributor to mHtt-induced learning and memory deficits. Furthermore, we show that the Cdk5 downstream targets involved in memory and learning decline differ depending on the brain region analyzed suggesting that distinct Cdk5 effectors could be involved in cognitive impairments in HD.
Reconceptualizing Working Memory in Educational Research
ERIC Educational Resources Information Center
Fenesi, Barbara; Sana, Faria; Kim, Joseph A.; Shore, David I.
2015-01-01
In recent years, research from cognitive science has provided a solid theoretical framework to develop evidence-based interventions in education. In particular, research into reading, writing, language, mathematics and multimedia learning has been guided by the application of Baddeley's multicomponent model of working memory. However, an…
Working Memory: Maintenance, Updating, and the Realization of Intentions
Nyberg, Lars; Eriksson, Johan
2016-01-01
“Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287
Working memory and the design of health materials: a cognitive factors perspective.
Wilson, Elizabeth A H; Wolf, Michael S
2009-03-01
Working memory and other supportive cognitive processes involved in learning are reviewed in the context of developing patient education materials. We specifically focus on the impact of certain design factors such as text format and syntax, the inclusion of images, and the choice of modality on individuals' ability to understand and remember health information. A selective review of relevant cognitive and learning theories is discussed with regard to their potential impact on the optimal design of health materials. Working memory is measured as an individual's capacity to hold and manipulate information in active consciousness. It is limited by necessity, and well-designed health materials can effectively minimize extraneous cognitive demands placed on individuals, making working memory resources more available to better process content-related information. Further research is needed to evaluate specific design principles and identify ideal uses of print versus video-based forms of communication for conveying information. The process of developing health materials should account for the cognitive demands that extrinsic factors such as modality place on patients.
Derksen, B J; Duff, M C; Weldon, K; Zhang, J; Zamba, K D; Tranel, D; Denburg, N L
2015-01-01
Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasises collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task (BT), a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the BT, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterised by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older.
Nussenbaum, Kate; Amso, Dima; Markant, Julie
2017-11-01
Previous work has demonstrated that increasing the number of distractors in a search array can reduce interference from distractor content during target processing. However, it is unclear how this reduced interference influences learning of target information. Here, we investigated how varying the amount and content of distraction present in a learning environment affects visual search and subsequent memory for target items. In two experiments, we demonstrate that the number and content of competing distractors interact in their influence on target selection and memory. Specifically, while increasing the number of distractors present in a search array made target detection more effortful, it did not impair learning and memory for target content. Instead, when the distractors contained category information that conflicted with the target, increasing the number of distractors from one to three actually benefitted learning and memory. These data suggest that increasing numbers of distractors may reduce interference from conflicting conceptual information during encoding.
Pulvermüller, Friedemann; Garagnani, Max
2014-08-01
Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fiechter, Joshua L; Benjamin, Aaron S
2017-08-28
Retrieval practice has been shown to be a highly effective tool for enhancing memory, a fact that has led to major changes to educational practice and technology. However, when initial learning is poor, initial retrieval practice is unlikely to be successful and long-term benefits of retrieval practice are compromised or nonexistent. Here, we investigate the benefit of a scaffolded retrieval technique called diminishing-cues retrieval practice (Finley, Benjamin, Hays, Bjork, & Kornell, Journal of Memory and Language, 64, 289-298, 2011). Under learning conditions that favored a strong testing effect, diminishing cues and standard retrieval practice both enhanced memory performance relative to restudy. Critically, under learning conditions where standard retrieval practice was not helpful, diminishing cues enhanced memory performance substantially. These experiments demonstrate that diminishing-cues retrieval practice can widen the range of conditions under which testing can benefit memory, and so can serve as a model for the broader application of testing-based techniques for enhancing learning.
ERIC Educational Resources Information Center
Chau, Kien Tsong; Samsudin, Zarina; Yahaya, Wan Ahmad Jaafar Wan
2018-01-01
Insignificant consideration in multimedia research has been given to the features that are associated with cognitive functioning in general, and working memory (WM) in particular for preschoolers. As correlational research works discovered a close association between WM and learning achievement, multimedia research works that are tapping into…
Constantinidou, Fofi; Evripidou, Christiana
2012-01-01
This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10-12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.
Lamar, Melissa; Charlton, Rebecca; Zhang, Aifeng; Kumar, Anand
2012-07-01
Verbal memory deficits attributed to late life depression (LLD) may result from executive dysfunction that is more detrimental to list-learning than story-based recall when compared to healthy aging. Despite these behavioral dissociations, little work has been done investigating related neuroanatomical dissociations across types of verbal memory performance in LLD. We compared list-learning to story-based memory performance in 24 non-demented individuals with LLD (age ~ 66.1 ± 7.8) and 41 non-demented/non-depressed healthy controls (HC; age ~ 67.6 ± 5.3). We correlated significant results of between-group analyses across memory performance variables with brain volumes of frontal, temporal and parietal regions known to be involved with verbal learning and memory. When compared to the HC group, the LLD group showed significantly lower verbal memory performance for spontaneous recall after repeated exposure and after a long-delay but only for the list-learning task; groups did not differ on story-based memory performance. Despite equivalent brain volumes across regions, only the LLD group showed brain associations with verbal memory performance and only for the list-learning task. Specifically, frontal volumes important for subjective organization and response monitoring correlated with list-learning performance in the LLD group. This study is the first to demonstrate neuroanatomical dissociations across types of verbal memory performance in individuals with LLD. Results provide structural evidence for the behavioral dissociations between list-learning and story-based recall in LLD when compared to healthy aging. More specifically, it points toward a network of predominantly anterior brain regions that may underlie the executive contribution to list-learning in older adults with depression. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directional hippocampal-prefrontal interactions during working memory.
Liu, Tiaotiao; Bai, Wenwen; Xia, Mi; Tian, Xin
2018-02-15
Working memory refers to a system that is essential for performing complex cognitive tasks such as reasoning, comprehension and learning. Evidence shows that hippocampus (HPC) and prefrontal cortex (PFC) play important roles in working memory. The HPC-PFC interaction via theta-band oscillatory synchronization is critical for successful execution of working memory. However, whether one brain region is leading or lagging relative to another is still unclear. Therefore, in the present study, we simultaneously recorded local field potentials (LFPs) from rat ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) and while the rats performed a Y-maze working memory task. We then applied instantaneous amplitudes cross-correlation method to calculate the time lag between PFC and vHPC to explore the functional dynamics of the HPC-PFC interaction. Our results showed a strong lead from vHPC to mPFC preceded an animal's correct choice during the working memory task. These findings suggest the vHPC-leading interaction contributes to the successful execution of working memory. Copyright © 2017. Published by Elsevier B.V.
Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.
Bree, Kathleen D; Beljan, Paul
2016-01-01
Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.
An Analysis of the Working Memories of Expert Sport Instructors
ERIC Educational Resources Information Center
McCullick, Bryan; Schempp, Paul; Hsu, Shan-Hui; Jung, Jin Hong; Vickers, Brad; Schuknecht, Greg
2006-01-01
A distinguishing characteristic of expert teachers appears to be an excellent memory (Berliner, 1986; Tan, 1997). Possessing an excellent memory aids experts in building a substantial knowledge base relative to teaching and learning. Despite its importance, the memory skills of expert teachers have yet to be investigated. Therefore, the purpose of…
Some Prerequisites in Learning to Solve Figural Analogy Problems.
ERIC Educational Resources Information Center
Wagner, James
A series of three experiments was conducted for the purposes of (1) clarifying problems of previous research on the relationship between working memory capacity and performance on figural analogy tasks, and (2) exploring developmental issues concerning executive strategies, working memory capacity, and perceptual processing. Directly manipulating…
Wilson, Jack H; Criss, Amy H; Spangler, Sean A; Walukevich, Katherine; Hewett, Sandra
2017-10-01
Nonsteroidal anti-inflammatory drugs work by non-selectively inhibiting cyclooxygenase enzymes. Evidence indicates that metabolites of the cyclooxygenase pathway play a critical role in the process of learning and memory. We evaluated whether acute naproxen treatment impairs short-term working memory, episodic memory, or semantic memory in a young, healthy adult population. Participants received a single dose of placebo or naproxen (750 mg) in random order separated by 7-10 days. Two hours following administration, participants completed five memory tasks. The administration of acute high-dose naproxen had no effect on memory in healthy young adults.
Is caffeine a cognitive enhancer?
Nehlig, Astrid
2010-01-01
The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.
Berger, Stefan M; Fernández-Lamo, Iván; Schönig, Kai; Fernández Moya, Sandra M; Ehses, Janina; Schieweck, Rico; Clementi, Stefano; Enkel, Thomas; Grothe, Sascha; von Bohlen Und Halbach, Oliver; Segura, Inmaculada; Delgado-García, José María; Gruart, Agnès; Kiebler, Michael A; Bartsch, Dusan
2017-11-17
Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.
The effect of strategic memory training in older adults: who benefits most?
Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena
2017-12-07
Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.
Bayindir, Mustafa; Bolger, Fergus; Say, Bilge
2016-07-19
Making decisions using judgements of multiple non-deterministic indicators is an important task, both in everyday and professional life. Learning of such decision making has often been studied as the mapping of stimuli (cues) to an environmental variable (criterion); however, little attention has been paid to the effects of situation-by-person interactions on this learning. Accordingly, we manipulated cue and feedback presentation mode (graphic or numeric) and task difficulty, and measured individual differences in working memory capacity (WMC). We predicted that graphic presentation, fewer cues, and elevated WMC would facilitate learning, and that person and task characteristics would interact such that presentation mode compatible with the decision maker's cognitive capability (enhanced visual or verbal WMC) would assist learning, particularly for more difficult tasks. We found our predicted main effects, but no significant interactions, except that those with greater WMC benefited to a larger extent with graphic than with numeric presentation, regardless of which type of working memory was enhanced or number of cues. Our findings suggest that the conclusions of past research based predominantly on tasks using numeric presentation need to be reevaluated and cast light on how working memory helps us learn multiple cue-criterion relationships, with implications for dual-process theories of cognition.
Pflueger, Marlon O; Calabrese, Pasquale; Studerus, Erich; Zimmermann, Ronan; Gschwandtner, Ute; Borgwardt, Stefan; Aston, Jacqueline; Stieglitz, Rolf-Dieter; Riecher-Rössler, Anita
2018-01-01
Episodic memory encoding and working memory (WM) deficits are among the first cognitive signs and symptoms in the course of schizophrenia spectrum disorders. However, it is not clear whether the deficit pattern is generalized or specific in nature. We hypothesized that encoding deficits at an early stage of the disease might be due to the more fundamental WM deficits. We examined episodic memory encoding and WM by administering the California Verbal Learning Test, a 2-back task, and the Wisconsin Card Sorting Test in 90 first-episode psychosis (FE) patients and 116 individuals with an at-risk mental state for psychosis (ARMS) compared to 57 healthy subjects. Learning progress, but not span of apprehension, was diminished to a similar extent in both the ARMS and the FE. We showed that this was due to WM impairment by applying a structural equation approach. Thus, we conclude that verbal memory encoding deficits are secondary to primary WM impairment in emerging psychosis.
ADRA2B Deletion Variant Influences Time-Dependent Effects of Pre-Learning Stress on Long-Term Memory
Zoladz, Phillip R.; Dailey, Alison M.; Nagle, Hannah E.; Fiely, Miranda K.; Mosley, Brianne E.; Brown, Callie M.; Duffy, Tessa J.; Scharf, Amanda R.; Earley, McKenna B.; Rorabaugh, Boyd R.
2017-01-01
Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30 min prior to learning a list of words that varied in emotional valence and arousal level. Participants’ memory for the words was tested immediately (recall) and 24 h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30 min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes. PMID:28254464
Core verbal working-memory capacity: the limit in words retained without covert articulation.
Chen, Zhijian; Cowan, Nelson
2009-07-01
Verbal working memory may combine phonological and conceptual units. We disentangle their contributions by extending a prior procedure (Chen & Cowan, 2005) in which items recalled from lists of previously seen word singletons and of previously learned word pairs depended on the list length in chunks. Here we show that a constant capacity of about 3 chunks holds across list lengths and list types, provided that covert phonological rehearsal is prevented. What remains is a core verbal working-memory capacity.
Interference control in working memory: comparing groups of children with atypical development.
Palladino, Paola; Ferrari, Marcella
2013-01-01
The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.
Experience and Sentence Processing: Statistical Learning and Relative Clause Comprehension
ERIC Educational Resources Information Center
Wells, Justine B.; Christiansen, Morten H.; Race, David S.; Acheson, Daniel J.; MacDonald, Maryellen C.
2009-01-01
Many explanations of the difficulties associated with interpreting object relative clauses appeal to the demands that object relatives make on working memory. MacDonald and Christiansen [MacDonald, M. C., & Christiansen, M. H. (2002). "Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996)." "Psychological…
ERIC Educational Resources Information Center
Mayer, Richard E.; Moreno, Roxana
1998-01-01
Multimedia learners (n=146 college students) were able to integrate words and computer-presented pictures more easily when the words were presented aurally rather than visually. This split-attention effect is consistent with a dual-processing model of working memory. (SLD)
The Episodic Buffer in Children with Intellectual Disabilities: An Exploratory Study
ERIC Educational Resources Information Center
Henry, Lucy A.
2010-01-01
Performance on three verbal measures (story recall, paired associated learning, category fluency) designed to assess the integration of long-term semantic and linguistic knowledge, phonological working memory and executive resources within the proposed "episodic buffer" of working memory (Baddeley, 2007) was assessed in children with intellectual…
Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.
Zepeda, Emily A; Veline, Robert J; Crook, Robyn J
2017-06-01
Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.
Ekkel, M R; van Lier, R; Steenbergen, B
2017-03-01
Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we examined individual factors that are likely to affect learning to echolocate: sustained and divided attention, working memory, and spatial abilities. To that aim, sighted participants with normal hearing performed an echolocation task that was adapted from a previously reported size-discrimination task. In line with existing studies, we found large individual differences in echolocation ability. We also found indications that participants were able to improve their echolocation ability. Furthermore, we found a significant positive correlation between improvement in echolocation and sustained and divided attention, as measured in the PASAT. No significant correlations were found with our tests regarding working memory and spatial abilities. These findings may have implications for the development of guidelines for training echolocation that are tailored to the individual with a visual impairment.
Developmental Dissociation Between the Maturation of Procedural Memory and Declarative Memory
Finn, Amy S.; Kalra, Priya B.; Goetz, Calvin; Leonard, Julia A.; Sheridan, Margaret A.; Gabrieli, John D. E.
2015-01-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit versus implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory, working memory capacity, and four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than the adults, but exhibited learning equivalent to adults on all four measures of procedural memory. Declarative and procedural memory are, therefore, developmentally dissociable, with procedural memory being adult-like by age 10 and declarative memory continuing to mature into young adulthood. PMID:26560675
Cognitive Impairment in Euthymic Pediatric Bipolar Disorder: A Systematic Review and Meta-Analysis.
Elias, Liana R; Miskowiak, Kamilla W; Vale, Antônio M O; Köhler, Cristiano A; Kjærstad, Hanne L; Stubbs, Brendon; Kessing, Lars V; Vieta, Eduard; Maes, Michael; Goldstein, Benjamin I; Carvalho, André F
2017-04-01
To perform a systematic review and meta-analysis of studies investigating neurocognition in euthymic youths with bipolar disorder (BD) compared to healthy controls (HCs). A systematic literature search was conducted in the PubMed/MEDLINE, PsycINFO, and EMBASE databases from inception up until March 23, 2016, for original peer-reviewed articles that investigated neurocognition in euthymic youths with BD compared to HCs. Effect sizes (ES) for individual tests were extracted. In addition, results were grouped according to cognitive domain. This review complied with the PRISMA statement guidelines. A total of 24 studies met inclusion criteria (N = 1,146; 510 with BD). Overall, euthymic youths with BD were significantly impaired in verbal learning, verbal memory, working memory, visual learning, and visual memory, with moderate to large ESs (Hedge's g 0.76-0.99); significant impairments were not observed for attention/vigilance, reasoning and problem solving, and/or processing speed. Heterogeneity was moderate to large (I 2 ≥ 50%) for most ES estimates. Differences in the definition of euthymia across studies explained the heterogeneity in the ES estimate for verbal learning and memory. We also found evidence for other potential sources of heterogeneity in several ES estimates including co-occurring attention-deficit/hyperactivity disorder (ADHD) and anxiety disorders, and the use of medications. In addition, the use of different neuropsychological tests appeared to contribute to heterogeneity of some estimates (e.g., attention/vigilance domain). Euthymic youths with BD exhibit significant cognitive dysfunction encompassing verbal learning and memory, working memory, and/or visual learning and memory domains. These data indicate that for a subset of individuals with BD, neurodevelopmental factors may contribute to cognitive dysfunction. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Restoration of fMRI Decodability Does Not Imply Latent Working Memory States
Schneegans, Sebastian; Bays, Paul M.
2018-01-01
Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674
Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia
Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.
2011-01-01
Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197
Mahoney, James J.; Kalechstein, Ari D.; Verrico, Christopher D.; Arnoudse, Nicholas M.; Shapiro, Benjamin A.; De La Garza, Richard
2015-01-01
Long-term cocaine use is a risk factor for the onset of neurocognitive impairment. This study sought to determine whether the cholinesterase inhibitor rivastigmine could improve neurocognitive performance in cocaine-dependent individuals. Cocaine-dependent individuals who were not seeking treatment at the time of enrollment in the study were randomly assigned to receive placebo (n = 16), rivastigmine 3 mg (n = 13), or rivastigmine 6 mg (n = 12). The baseline neurocognitive assessment, which included measures of attention/information processing (as measured by the Continuous Performance Task-II (CPT-II)), verbal learning/episodic memory (as measured by the Hopkins Verbal Learning Test-Revised (HVLT-R)), and working memory (as measured by the Dual N-Back Task), was conducted prior to the administration of study medication (Day 0). The follow-up assessment was conducted on Day 8 after the participants had received rivastigmine or placebo for 7 days (Day 2–8). Rivastigmine administration significantly improved performance on one measure of working memory span (mean n-back span). This study provides additional data showing that cocaine-associated neurocognitive impairment, specifically working memory deficits, can be remediated, at least to some degree. PMID:24239594
Mahoney, James J; Kalechstein, Ari D; Verrico, Christopher D; Arnoudse, Nicholas M; Shapiro, Benjamin A; De La Garza, Richard
2014-04-03
Long-term cocaine use is a risk factor for the onset of neurocognitive impairment. This study sought to determine whether the cholinesterase inhibitor rivastigmine could improve neurocognitive performance in cocaine-dependent individuals. Cocaine-dependent individuals who were not seeking treatment at the time of enrollment in the study were randomly assigned to receive placebo (n=16), rivastigmine 3mg (n=13), or rivastigmine 6mg (n=12). The baseline neurocognitive assessment, which included measures of attention/information processing (as measured by the Continuous Performance Task-II (CPT-II)), verbal learning/episodic memory (as measured by the Hopkins Verbal Learning Test-Revised (HVLT-R)), and working memory (as measured by the Dual N-Back Task), was conducted prior to the administration of study medication (Day 0). The follow-up assessment was conducted on Day 8 after the participants had received rivastigmine or placebo for 7days (Day 2-8). Rivastigmine administration significantly improved performance on one measure of working memory span (mean n-back span). This study provides additional data showing that cocaine-associated neurocognitive impairment, specifically working memory deficits, can be remediated, at least to some degree. Copyright © 2013. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Grossberg, Stephen; Pearson, Lance R.
2008-01-01
How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and…
Goverover, Yael; Chiaravalloti, Nancy D; O'Brien, Amanda R; DeLuca, John
2018-02-01
To update the clinical recommendations for cognitive rehabilitation of people with multiple sclerosis (MS), based on a systematic review of the literature from 2007 through 2016. Searches of MEDLINE, PsycINFO, and CINAHL were conducted with a combination of the following terms: attention, awareness, cognition, cognitive, communication, executive, executive function, language, learning, memory, perception, problem solving, reasoning, rehabilitation, remediation, training, processing speed, and working memory. One hundred twenty-nine articles were identified and underwent initial screening. Fifty-nine articles were selected for inclusion after initial screening. Nineteen studies were excluded after further detailed review. Forty studies were fully reviewed and evaluated. Articles were assigned to 1 of 6 categories: attention, learning and memory, processing speed and working memory, executive functioning, metacognition, or nonspecified/combined cognitive domains. Articles were abstracted and levels of evidence were decided using specific criteria. The current review yielded 6 class I studies, 10 class II studies, and 24 class III studies. One intervention in the area of verbal learning and memory received support for a practice standard, 2 computer programs received support as practice guidelines (in the area of attention and multicognitive domains), and several studies provided support for 5 practice options in the domains of attention and learning and memory. Substantial progress has been made since our previous review regarding the identification of effective treatments for cognitive impairments in persons with MS. However, much work remains to be done to optimize rehabilitation potential by applying the most methodologically rigorous research designs to provide class I evidence in support of a given treatment strategy. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden
2016-05-01
The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.
Expertise for upright faces improves the precision but not the capacity of visual working memory.
Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank
2014-10-01
Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.
Oberauer, Klaus; Awh, Edward; Sutterer, David W.
2016-01-01
We report four experiments examining whether associations in visual working memory are subject to proactive interference from long term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of three concrete objects in an array. Each array in the WM test consisted of one old (previously learned) object with a new color (old-mismatch), one old object with its old color (old-match), and one new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from long term memory. In the old mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. PMID:27685018
Grossberg, Stephen
2015-09-24
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Long-term effect of early-life stress from earthquake exposure on working memory in adulthood.
Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai, Jiajia; Wang, Xueyi
2015-01-01
The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3-12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood.
Gender differences in navigational memory: pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico
2015-02-01
The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.
Wei, Catherine J.; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K.; Chen, Jiang-Fan
2011-01-01
The adenosine A2A receptor (A2AR) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A2AR inactivation can be pro-cognitive, analyses of A2AR's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A2ARs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A2ARs. Specifically, we evaluated the cognitive impacts of conditional A2AR deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A2AR KO) or to striatum alone (st-A2AR KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A2AR-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility—enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A2ARs as they were captured by A2AR deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D1, D2, or A1 receptor expression was found. This study provides the first direct demonstration that targeting striatal A2ARs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions. PMID:21693634
Wei, Catherine J; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K; Chen, Jiang-Fan
2011-01-01
The adenosine A(2A) receptor (A(2A)R) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A(2A)R inactivation can be pro-cognitive, analyses of A(2A)R's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A(2A)Rs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A(2A)Rs. Specifically, we evaluated the cognitive impacts of conditional A(2A)R deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A(2A)R KO) or to striatum alone (st-A(2A)R KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A(2A)R-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility-enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A(2A)Rs as they were captured by A(2A)R deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D(1), D(2), or A(1) receptor expression was found. This study provides the first direct demonstration that targeting striatal A(2A)Rs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions.
Modulation of learning and memory by the genetic disruption of circadian oscillator populations.
Snider, Kaitlin H; Obrietan, Karl
2018-06-23
While a rich literature has documented that the efficiency of learning and memory varies across circadian time, a close survey of that literature reveals extensive heterogeneity in the time of day (TOD) when peak cognitive performance occurs. Moreover, most previous experiments in rodents have not focused on the question of discriminating which memory processes (e.g., working memory, memory acquisition, or retrieval) are modulated by the TOD. Here, we use assays of contextual fear conditioning and spontaneous alternation in WT (C57Bl/6 J) mice to survey circadian modulation of hippocampal-dependent memory at multiple timescales - including working memory (seconds to a few minutes), intermediate-term memory (a delay of thirty minutes), and acquisition and retrieval of long-term memory (a delay of two days). Further, in order to test the relative contributions of circadian timing mechanisms to the modulation of memory, a parallel set of studies were performed in mice lacking clock timing mechanisms. These transgenic mice lacked the essential circadian gene Bmal1, either globally (Bmal1 null) or locally (floxed Bmal1 mice which lack Bmal1 in excitatory forebrain neurons, e.g. cortical and hippocampal neurons). Here, we show that in WT mice, retrieval (but not working memory, intermediate-term memory, or acquisition of long-term memory) is modulated by TOD. However, transgenic mouse models lacking Bmal1 - both globally, and only in forebrain excitatory neurons - show deficits regardless of the memory process tested (and lack circadian modulation of retrieval). These results provide new clarity regarding the impact of TOD on hippocampal-dependent memory and support the key role of hippocampal and cortical circadian oscillations in circadian gating of cognition. Copyright © 2018. Published by Elsevier Inc.
Movement, Memory and Mathematics: Henri Bergson and the Ontology of Learning
ERIC Educational Resources Information Center
de Freitas, Elizabeth; Ferrara, Francesca
2015-01-01
Using the work of philosopher Henri Bergson (1859-1941) to examine the nature of movement and memory, this article contributes to recent research on the role of the body in learning mathematics. Our aim in this paper is to introduce the ideas of Bergson and to show how these ideas shed light on mathematics classroom activity. Bergson's monist…
Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization
Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.
2016-01-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225
Derksen, B.J.; Duff, M.C.; Weldon, K.; Zhang, J.; Zamba, G.; Tranel, D.; Denburg, N.L.
2014-01-01
Learning and memory abilities tend to decline as people age. The current study examines the question of whether a learning situation that emphasizes collaborative social interaction might help older persons overcome age-related learning and memory changes and thus perform similarly to younger persons. Younger and Older participants (n = 34 in each group) completed the Barrier Task, a game-like social interaction where partners work together to develop labels for a set of abstract tangrams. Participants were also administered standard clinical neuropsychological measures of memory, on which the Older group showed expected inferiority to the Younger group. On the Barrier Task, the Older group performed less well than the Younger group early on, but as the task progressed, the performance of the Older group caught up and became statistically indistinguishable from that of the Younger group. These results can be taken to suggest that a learning milieu characterized by collaborative social interaction can attenuate some of the typical memory disadvantages associated with being older. PMID:24841619
Meng, Bo; Zhu, Shujia; Li, Shijia; Zeng, Qingwen; Mei, Bing
2009-08-28
Music has been proved beneficial to improve learning and memory in many species including human in previous research work. Although some genes have been identified to contribute to the mechanisms, it is believed that the effect of music is manifold, behind which must concern a complex regulation network. To further understand the mechanisms, we exposed the mice to classical music for one month. The subsequent behavioral experiments showed improvement of spatial learning capability and elevation of fear-motivated memory in the mice with music-exposure as compared to the naïve mice. Meanwhile, we applied the microarray to compare the gene expression profiles of the hippocampus and cortex between the mice with music-exposure and the naïve mice. The results showed approximately 454 genes in cortex (200 genes up-regulated and 254 genes down-regulated) and 437 genes in hippocampus (256 genes up-regulated and 181 genes down-regulated) were significantly affected in music-exposing mice, which mainly involved in ion channel activity and/or synaptic transmission, cytoskeleton, development, transcription, hormone activity. Our work may provide some hints for better understanding the effects of music on learning and memory.
Feedback-related brain activity predicts learning from feedback in multiple-choice testing.
Ernst, Benjamin; Steinhauser, Marco
2012-06-01
Different event-related potentials (ERPs) have been shown to correlate with learning from feedback in decision-making tasks and with learning in explicit memory tasks. In the present study, we investigated which ERPs predict learning from corrective feedback in a multiple-choice test, which combines elements from both paradigms. Participants worked through sets of multiple-choice items of a Swahili-German vocabulary task. Whereas the initial presentation of an item required the participants to guess the answer, corrective feedback could be used to learn the correct response. Initial analyses revealed that corrective feedback elicited components related to reinforcement learning (FRN), as well as to explicit memory processing (P300) and attention (early frontal positivity). However, only the P300 and early frontal positivity were positively correlated with successful learning from corrective feedback, whereas the FRN was even larger when learning failed. These results suggest that learning from corrective feedback crucially relies on explicit memory processing and attentional orienting to corrective feedback, rather than on reinforcement learning.
Individual differences in simultaneous color constancy are related to working memory.
Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K
2012-02-01
Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011)], the current study examined the relation between simultaneous color constancy and working memory-the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability. © 2012 Optical Society of America
van Iterson, Loretta; de Jong, Peter F
2018-01-01
While short-term memory (STM) and working memory (WM) are understood as being crucial for learning, and children with epilepsy often experience learning difficulties, little is known about the age-related development of memory span tasks in children with epilepsy. Short-term memory and WM, operationalized as digit span forwards (DSF) or digit span backwards (DSB), respectively, were studied. Participants were 314 children with epilepsy and 327 typically developing children in ages between 5 and 15years and full scale intelligence quotient (FS-IQ)≥75. Cross-sectional analyses of the data were done with analyses of variance and analyses of covariance ((M)ANCOVAs) and generalized linear analyses. The analyses revealed that STM problems in epilepsy were mediated by age-related gains in WM as well as by differences in IQ. Working memory developed at a quick pace in the younger children, the pace slowed down to some extent in the later primary school years and resumed again later on. Working memory problems prevailed in epilepsy, independent of IQ and development of STM. Timing of the epilepsy in terms of age at onset and duration determined memory development. The youngest children with epilepsy showed age-appropriate development in STM but were the most vulnerable in terms of WM development. Later in the course of the epilepsy, the WM problems of the young children attenuated. In later onset epilepsy, WM problems were smaller but persisted over time. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive Memory: Is Survival Processing Special?
ERIC Educational Resources Information Center
Nairne, James S.; Pandeirada, Josefa N. S.
2008-01-01
Do the operating characteristics of memory continue to bear the imprints of ancestral selection pressures? Previous work in our laboratory has shown that human memory may be specially tuned to retain information processed in terms of its survival relevance. A few seconds of survival processing in an incidental learning context can produce recall…
1987-09-29
load on the centra and regional controllers. Strategy #S: Reduce message Chase. W.G., & Ericsson. K.A. ( 1082 ). Skill andInterference of concurrently...bypsycholocy Lf learning and motivation. Vol. Ia. strengthening region. to,.region connections on theNeYokAcdmcPs. innerlooip. Crowder, R.G. ( 1082
Development of a Handbook for Educators: Addressing Working Memory Capacity in Elementary Students
ERIC Educational Resources Information Center
Fernandez, Julie Marie
2013-01-01
Working Memory (WM) refers to a brain system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks such as language comprehension, learning, and reasoning. WM also requires the simultaneous storage and processing of information. WM is directly related to academic performance in the classroom.…
ERIC Educational Resources Information Center
Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei
2012-01-01
Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…
Aspects of Working Memory in L2 Learning
ERIC Educational Resources Information Center
Juffs, Alan; Harrington, Michael
2011-01-01
This article reviews research on working memory (WM) and its use in second language (L2) acquisition research. Recent developments in the model and issues surrounding the operationalization of the construct itself are presented, followed by a discussion of various methods of measuring WM. These methods include word and digit span tasks, reading,…
ERIC Educational Resources Information Center
Sanz, Cristina; Lin, Hui-Ju; Lado, Beatriz; Stafford, Catherine A.; Bowden, Harriet W.
2016-01-01
The article summarizes results from two experimental studies (N = 23, N = 21) investigating the extent to which working memory capacity (WMC) intervenes in "ab initio" language development under two pedagogical conditions [± grammar lesson + input-based practice + explicit feedback]. The linguistic target is the use of morphosyntax to…
Roles of Working Memory Performance and Instructional Strategy in Complex Cognitive Task Performance
ERIC Educational Resources Information Center
Cevik, V.; Altun, A.
2016-01-01
This study aims to investigate how working memory (WM) performances and instructional strategy choices affect learners' complex cognitive task performance in online environments. Three different e-learning environments were designed based on Merrill's (2006a) model of instructional strategies. The lack of experimental research on his framework is…
ERIC Educational Resources Information Center
Kates, Wendy R.; Krauss, Beth R.; AbdulSabur, Nuria; Colgan, Deirdre; Antshel, Kevin M.; Higgins, Anne Marie; Shprintzen, Robert J.
2007-01-01
Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant…
Neuroscientific Insights: Attention, Working Memory, and Inhibitory Control
ERIC Educational Resources Information Center
Raver, C. Cybele; Blair, Clancy
2016-01-01
In this article, Cybele Raver and Clancy Blair explore a group of cognitive processes called executive function (EF)--including the flexible control of attention, the ability to hold information through working memory, and the ability to maintain inhibitory control. EF processes are crucial for young children's learning. On the one hand, they can…
Working Memory Difficulties and Eligibility for K-12 Special Education
ERIC Educational Resources Information Center
Wilson, Corrie L.
2017-01-01
Working memory (WM) has long been associated with deficiencies in reading. Approximately 35% of students in the United States who receive special education services do so under the category of specific learning disability (SLD). The study's theoretical underpinning was Baddeley's model of WM; previous research revealed a significant literature gap…
Cognitive Load Theory: An Empirical Study of Anxiety and Task Performance in Language Learning
ERIC Educational Resources Information Center
Chen, I-Jung; Chang, Chi-Cheng
2009-01-01
Introduction: This study explores the relationship among three variables--cognitive load, foreign language anxiety, and task performance. Cognitive load refers to the load imposed on working memory while performing a particular task. The authors hypothesized that anxiety consumes the resources of working memory, leaving less capacity for cognitive…
When Feedback Is Cognitively-Demanding: The Importance of Working Memory Capacity
ERIC Educational Resources Information Center
Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany
2015-01-01
Feedback is generally considered a beneficial learning tool, and providing feedback is a recommended instructional practice. However, there are a variety of feedback types with little guidance on how to choose the most effective one. We examined individual differences in working memory capacity as a potential moderator of feedback type. Second-…
Calhoun, Susan L.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Mayes, Susan D.; Tsaoussoglou, Marina; Rodriguez-Muñoz, Alfredo; Bixler, Edward O.
2012-01-01
Study Objectives: Although excessive daytime sleepiness (EDS) is a common problem in children, with estimates of 15%; few studies have investigated the sequelae of EDS in young children. We investigated the association of EDS with objective neurocognitive measures and parent reported learning, attention/hyperactivity, and conduct problems in a large general population sample of children. Design: Cross-sectional. Setting: Population based. Participants: 508 children from The Penn State Child Cohort. Interventions: N/A. Measurements and Results: Children underwent a 9-h polysomnogram, comprehensive neurocognitive testing, and parent rating scales. Children were divided into 2 groups: those with and without parent-reported EDS. Structural equation modeling was used to examine whether processing speed and working memory performance would mediate the relationship between EDS and learning, attention/hyperactivity, and conduct problems. Logistic regression models suggest that parent-reported learning, attention/hyperactivity, and conduct problems, as well as objective measurement of processing speed and working memory are significant sequelae of EDS, even when controlling for AHI and objective markers of sleep. Path analysis demonstrates that processing speed and working memory performance are strong mediators of the association of EDS with learning and attention/hyperactivity problems, while to a slightly lesser degree are mediators from EDS to conduct problems. Conclusions: This study suggests that in a large general population sample of young children, parent-reported EDS is associated with neurobehavioral (learning, attention/hyperactivity, conduct) problems and poorer performance in processing speed and working memory. Impairment due to EDS in daytime cognitive and behavioral functioning can have a significant impact on children's development. Citation: Calhoun SL; Fernandez-Mendoza J; Vgontzas AN; Mayes SD; Tsaoussoglou M; Rodriguez-Muñoz A; Bixler EO. Learning, attention/hyperactivity, and conduct problems as sequelae of excessive daytime sleepiness in a general population study of young children. SLEEP 2012;35(5):627-632. PMID:22547888
Unsupervised learning in neural networks with short range synapses
NASA Astrophysics Data System (ADS)
Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.
2013-01-01
Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
Sutherland, Robert J.; Sparks, Fraser; Lehmann, Hugo
2010-01-01
The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that hippocampal retrograde amnesia normally exhibits a temporal gradient, affecting recent, but sparing remote memories. Surprisingly, the evidence does not provide much support for the idea that there is a lengthy process of systems consolidation following a learning episode. Instead, recent and remote memories tend to be equally affected. The extent of damage to the hippocampus is a significant factor in this work since it is likely that spared hippocampal tissue can support at least partial memory retrieval. With extensive hippocampal damage gradients are flat or, in the case of memory tasks with flavour/odour retrieval cues, the retrograde amnesia covers a period of about 1 – 3 days. There is consistent evidence that at the time of learning the hippocampus interferes with or overshadows memory acquisition by other systems. This contributes to the breadth and severity of retrograde amnesia relative to anterograde amnesia in the rat. The fact that multiple, distributed learning episodes can overcome this overshadowing is consistent with a parallel dual-store theory or a Distributed Reinstatement Theory in which each learning episode triggers a short period of memory replay that provides a brief hippocampal-dependent systems consolidation. PMID:20430043
Neuropsychological function in patients with anorexia nervosa or bulimia nervosa.
Weider, Siri; Indredavik, Marit Saebø; Lydersen, Stian; Hestad, Knut
2015-05-01
This study explored the neuropsychological performance of patients diagnosed with anorexia nervosa (AN) or bulimia nervosa (BN) compared with healthy controls (HCs). An additional aim was to investigate the effect of several possible mediators on the association between eating disorders (EDs) and cognitive function. Forty patients with AN, 39 patients with BN, and 40 HCs who were comparable in age and education were consecutively recruited to complete a standardized neuropsychological test battery covering the following cognitive domains: verbal learning and memory, visual learning and memory, speed of information processing, visuospatial ability, working memory, executive function, verbal fluency, attention/vigilance, and motor function. The AN group scored significantly below the HCs on eight of the nine measured cognitive domains. The BN group also showed inferior performance on six cognitive domains. After adjusting for possible mediators, the nadir body mass index (lowest lifetime BMI) and depressive symptoms explained all findings in the BN group. Although this adjustment reduced the difference between the AN and HC groups, the AN group still performed worse than the HCs regarding verbal learning and memory, visual learning and memory, visuospatial ability, working memory, and executive functioning. Patients with EDs scored below the HCs on several cognitive function measures, this difference being most pronounced for the AN group. The nadir BMI and depressive symptoms had strong mediating effects. Longitudinal studies are needed to identify the importance of weight restoration and treatment of depressive symptoms in the prevention of a possible cognitive decline. © 2014 Wiley Periodicals, Inc.
In Respect to the Cognitive Load Theory: Adjusting Instructional Guidance with Student Expertise.
Schilling, Jim
2017-01-01
The amount of guidance supplied by educators to students in allied health programs is a factor in student learning. According to the cognitive load theory of learning, without adequate instructional support, novice learners will be overwhelmed and unable to store information, while unnecessary guidance supplied to advanced students will cause extraneous cognitive load on the working memory system. Adjusting instructional guidance for students according to their level of expertise to minimize extraneous cognitive load and optimize working memory storage capacity will enhance learning effectiveness. Novice students presented with complex subject matter require significant guidance during the initial stages, using strategies such as worked examples. As students comprehend information, instructional guidance needs to gradually fade to avoid elevated extraneous cognitive load from the expertise reversal effect. An instructional strategy that utilizes a systemic (fixed) or adjustable (adaptive) tapering of guidance to students in allied health programs depending on their expertise will optimize learning capability.
van Lamsweerde, Amanda E; Beck, Melissa R
2015-12-01
In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. (c) 2015 APA, all rights reserved).
Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp
2012-01-01
Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.
Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.
Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J
2012-12-01
Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Tian, Jia; Geng, Fei; Gao, Feng; Chen, Yi-Hua; Liu, Ji-Hong; Wu, Jian-Lin; Lan, Yu-Jie; Zeng, Yuan-Ning; Li, Xiao-Wen; Yang, Jian-Ming; Gao, Tian-Ming
2017-08-01
Hippocampal function is important for learning and memory, and dysfunction of the hippocampus has been linked to the pathophysiology of neuropsychiatric diseases such as schizophrenia. Neuregulin1 (NRG1) and ErbB4, two susceptibility genes for schizophrenia, reportedly modulate long-term potentiation (LTP) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, little is known regarding the contribution of hippocampal NRG1/ErbB4 signaling to learning and memory function. Here, quantitative real-time PCR and Western blotting were used to assess the mRNA and protein levels of NRG1 and ErbB4. Pharmacological and genetic approaches were used to manipulate NRG1/ErbB4 signaling, following which learning and memory behaviors were evaluated using the Morris water maze, Y-maze test, and the novel object recognition test. Spatial learning was found to reduce hippocampal NRG1 and ErbB4 expression. The blockade of NRG1/ErbB4 signaling in hippocampal CA1, either by neutralizing endogenous NRG1 or inhibiting/ablating ErbB4 receptor activity, enhanced hippocampus-dependent spatial learning, spatial working memory, and novel object recognition memory. Accordingly, administration of exogenous NRG1 impaired those functions. More importantly, the specific ablation of ErbB4 in parvalbumin interneurons also improved learning and memory performance. The manipulation of NRG1/ErbB4 signaling in the present study revealed that NRG1/ErbB4 activity in the hippocampus is critical for learning and memory. These findings might provide novel insights on the pathophysiological mechanisms of schizophrenia and a new target for the treatment of Alzheimer's disease, which is characterized by a progressive decline in cognitive function.
Collins, Anne G E; Frank, Michael J
2018-03-06
Learning from rewards and punishments is essential to survival and facilitates flexible human behavior. It is widely appreciated that multiple cognitive and reinforcement learning systems contribute to decision-making, but the nature of their interactions is elusive. Here, we leverage methods for extracting trial-by-trial indices of reinforcement learning (RL) and working memory (WM) in human electro-encephalography to reveal single-trial computations beyond that afforded by behavior alone. Neural dynamics confirmed that increases in neural expectation were predictive of reduced neural surprise in the following feedback period, supporting central tenets of RL models. Within- and cross-trial dynamics revealed a cooperative interplay between systems for learning, in which WM contributes expectations to guide RL, despite competition between systems during choice. Together, these results provide a deeper understanding of how multiple neural systems interact for learning and decision-making and facilitate analysis of their disruption in clinical populations.
Alloway, Tracy Packiam; Tewolde, Furtuna; Skipper, Dakota; Hijar, David
2017-06-01
The aim of the present study is to explore whether those with Specific Language Impairment (SLI) and dyslexia display distinct or overlapping cognitive profiles with respect to learning outcomes. In particular, we were interested in two key cognitive skills associated with academic performance - working memory and IQ. We recruited three groups of children - those with SLI, those with dyslexia, and a control group. All children were given standardized tests of working memory, IQ (vocabulary and matrix), spelling, and math. The pattern of results suggests that both children with dyslexia and SLI are characterized with poorer verbal working memory and IQ compared to controls, but preserved nonverbal cognitive skills. It appears that that these two disorder groups cannot be distinguished by the severity of their cognitive deficits. However, there was a differential pattern with respect to learning outcomes, where the children with dyslexia rely more on visual skills in spelling, while those with SLI use their relative strengths in vocabulary. These findings can have important implications for how intervention is tailored in the classroom, as disorder-specific support could yield important gains in learning. Copyright © 2017. Published by Elsevier Ltd.
The cortisol awakening response and memory performance in older men and women.
Almela, Mercedes; van der Meij, Leander; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia
2012-12-01
The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory). Copyright © 2012 Elsevier Ltd. All rights reserved.
Woldeit, M L; Korz, V
2010-02-03
A functional connection between theta rhythms, information processing, learning and memory formation is well documented by studies focusing on the impact of theta waves on motor activity, global context or phase coding in spatial learning. In the present study we analyzed theta oscillations during a spatial learning task and assessed which specific behavioral contexts were connected to changes in theta power and to the formation of memory. Therefore, we measured hippocampal dentate gyrus theta modulations in male rats that were allowed to establish a long-term spatial reference memory in a holeboard (fixed pattern of baited holes) in comparison to rats that underwent similar training conditions but could not form a reference memory (randomly baited holes). The first group established a pattern specific learning strategy, while the second developed an arbitrary search strategy, visiting increasingly more holes during training. Theta power was equally influenced during the training course in both groups, but was significantly higher when compared to untrained controls. A detailed behavioral analysis, however, revealed behavior- and context-specific differences within the experimental groups. In spatially trained animals theta power correlated with the amounts of reference memory errors in the context of the inspection of unbaited holes and exploration in which, as suggested by time frequency analyses, also slow wave (delta) power was increased. In contrast, in randomly trained animals positive correlations with working memory errors were found in the context of rearing behavior. These findings indicate a contribution of theta/delta to long-lasting memory formation in spatially trained animals, whereas in pseudo trained animals theta seems to be related to attention in order to establish trial specific short-term working memory. Implications for differences in neuronal plasticity found in earlier studies are discussed. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Attention allocation: Relationships to general working memory or specific language processing.
Archibald, Lisa M D; Levee, Tyler; Olino, Thomas
2015-11-01
Attention allocation, updating working memory, and language processing are interdependent cognitive tasks related to the focused direction of limited resources, refreshing and substituting information in the current focus of attention, and receiving/sending verbal communication, respectively. The current study systematically examined the relationship among executive attention, working memory executive skills, and language abilities while adjusting for individual differences in short-term memory. School-age children completed a selective attention task requiring them to recall whether a presented shape was in the same place as a previous target shape shown in an array imposing a low or high working memory load. Results revealed a selective attention cost when working above but not within memory span capacity. Measures of general working memory were positively related to overall task performance, whereas language abilities were related to response time. In particular, higher language skills were associated with faster responses under low load conditions. These findings suggest that attentional control and storage demands have an additive impact on working memory resources but provide only limited evidence for a domain-general mechanism in language learning. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Wingen, M; Kuypers, K P C; Ramaekers, J G
2007-07-01
Serotonergic neurotransmission has been implicated in memory impairment. It is unclear however if memory performance is mediated through general 5-HT availability, through specific 5-HT receptors or both. The aim of the present study was to assess the contribution of 5-HT reuptake inhibition and specific blockade of 5-HT(1A) and 5-HT(2A) receptors to memory impairment. The study was conducted according to a randomized, double-blind, placebo-controlled, four-way cross-over design including 16 healthy volunteers. The treatment consisted of oral administration of escitalopram 20 mg + placebo, escitalopram 20 mg + ketanserin 50 mg, escitalopram 20 mg + pindolol 10 mg and placebo on 4 separate days with a washout period of minimum 7 days. Different memory tasks were performed including verbal memory, spatial working memory and reversal learning. Escitalopram showed an impairing effect on immediate verbal recall which nearly reached statistical significance. No effects of escitalopram were found on other types of memory. In combination with pindolol, immediate verbal recall was significantly impaired. Escitalopram in combination with ketanserin impaired spatial working memory significantly. No effects were found on reversal learning. Selective impairment of immediate verbal recall after a 5-HT(1A) partial agonist and selective impairment of spatial working memory performance after 5-HT(2A) receptor antagonist, both in combination with a selective serotonergic reuptake inhibitor (escitalopram), suggests that 5-HT(1A) and 5-HT(2A) receptors are distinctly involved in verbal and spatial memory.
Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.
ERIC Educational Resources Information Center
Perry, Fred L., Jr.
An overview of theory and research in memory as it relates to developmental differences is offered in this paper, which is intended to provide background information for the staff of the Skills Essential to Learning Television Project (a multi-level series of video and print resources for classroom use). A model for viewing information processing…
Developmental dissociation between the maturation of procedural memory and declarative memory.
Finn, Amy S; Kalra, Priya B; Goetz, Calvin; Leonard, Julia A; Sheridan, Margaret A; Gabrieli, John D E
2016-02-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit vs. implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory and working memory capacity and on four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than adults, but children exhibited learning equivalent to adults on all four measures of procedural memory. Therefore, declarative memory and procedural memory are developmentally dissociable, with procedural memory being adult-like by age 10years and declarative memory continuing to mature into young adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Evidence for age-associated cognitive decline from Internet game scores.
Geyer, Jason; Insel, Philip; Farzin, Faraz; Sternberg, Daniel; Hardy, Joseph L; Scanlon, Michael; Mungas, Dan; Kramer, Joel; Mackin, R Scott; Weiner, Michael W
2015-06-01
Lumosity's Memory Match (LMM) is an online game requiring visual working memory. Change in LMM scores may be associated with individual differences in age-related changes in working memory. Effects of age and time on LMM learning and forgetting rates were estimated using data from 1890 game sessions for users aged 40 to 79 years. There were significant effects of age on baseline LMM scores (β = -.31, standard error or SE = .02, P < .0001) and lower learning rates (β = -.0066, SE = .0008, P < .0001). A sample size of 202 subjects/arm was estimated for a 1-year study for subjects in the lower quartile of game performance. Online memory games have the potential to identify age-related decline in cognition and to identify subjects at risk for cognitive decline with smaller sample sizes and lower cost than traditional recruitment methods.
The New ISD: Applying Cognitive Strategies to Instructional Design.
ERIC Educational Resources Information Center
Clark, Ruth Colvin
2002-01-01
Discusses cognitive models of instruction that can help develop new models of Instructional Systems Design (ISD) that include cognitive task analysis to identify mental models; constructive assumptions of learning; working memory and long-term memory; retrieval of new knowledge and skills from long-term memory; and support of metacognitive skills.…
Using Explicit and Systematic Instruction to Support Working Memory
ERIC Educational Resources Information Center
Smith, Jean Louise M.; Sáez, Leilani; Doabler, Christian T.
2016-01-01
Students are frequently expected to complete multistep tasks within a range of academic or classroom routines and to do so independently. Students' ability to complete these tasks successfully may vary as a consequence of both their working-memory capacity and the conditions under which they are expected to learn. Crucial features in the design or…
ERIC Educational Resources Information Center
Hsieh, Po-Jang; Colas, Jaron T.
2012-01-01
The contents of working memory (WM) have predominantly been viewed as necessarily conscious. However, recent findings suggest otherwise. Here we investigate whether visual WM can represent subliminal stimuli, such that the positions of an invisible moving object can be extrapolated or learned about in terms of their task-relevant predictive power.…
ERIC Educational Resources Information Center
Fitzhugh, Shannon Leigh
2012-01-01
The study reported here tests a model that includes several factors thought to contribute to the comprehension of static multimedia learning materials (i.e. background knowledge, working memory, attention to components as measured with eye movement measures). The model examines the effects of working memory capacity, domain specific (biology) and…
Working Memory Deficits in Children with Specific Learning Disorders
ERIC Educational Resources Information Center
Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus
2008-01-01
This article examines working memory functioning in children with specific developmental disorders of scholastic skills as defined by ICD-10. Ninety-seven second to fourth graders with a minimum IQ of 80 are compared using a 2 x 2 factorial (dyscalculia vs. no dyscalculia; dyslexia vs. no dyslexia) design. An extensive test battery assesses the…
Individual Differences in the Fan Effect and Working Memory Capacity
ERIC Educational Resources Information Center
Bunting, M.F.; Conway, A.R.A.; Heitz, R.P.
2004-01-01
In opposition to conceptualizing working memory (WM) in terms of a general capacity, we present four experiments that favor the view that individual differences in WM depend on attentional control. High- and low-WM participants, as assessed by the operation span task, learned unrelated sentences for which the subject and predicate of the sentences…
ERIC Educational Resources Information Center
Pociask, Fredrick D.; Morrison, Gary
2004-01-01
Human working memory can be defined as a component system responsible for the temporary storage and manipulation of information related to higher level cognitive behaviors, such as understanding and reasoning (Baddeley, 1992; Becker & Morris, 1999). Working memory, while able to manage a complex array of cognitive activities, presents with an…
When and How Less Is More: Reply to Tharp and Pickering
ERIC Educational Resources Information Center
DeCaro, Marci S.; Carlson, Krista D.; Thomas, Robin D.; Beilock, Sian L.
2009-01-01
In DeCaro et al. [DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). "Individual differences in category learning: Sometimes less working memory capacity is better than more." "Cognition, 107," 284-294] we demonstrated that sometimes less working memory (WM) has its advantages. The lower individuals' WM, the faster they achieved success on an…
Enhancing Mobile Working Memory Training by Using Affective Feedback
ERIC Educational Resources Information Center
Schaaff, Kristina
2013-01-01
The objective of this paper is to propose a novel approach to enhance working memory (WM) training for mobile devices by using information about the arousal level of a person. By the example of an adaptive n-back task, we combine methodologies from different disciplines to tackle this challenge: mobile learning, affective computing and cognitive…
Working memory involved in predicting future outcomes based on past experiences.
Dretsch, Michael N; Tipples, Jason
2008-02-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding.
Giesbrecht, Barry; Sy, Jocelyn L.; Guerin, Scott A.
2012-01-01
Environmental context learned without awareness can facilitate visual processing of goal-relevant information. According to one view, the benefit of implicitly learned context relies on the neural systems involved in spatial attention and hippocampus-mediated memory. While this view has received empirical support, it contradicts traditional models of hippocampal function. The purpose of the present work was to clarify the influence of spatial context on visual search performance and on brain structures involved memory and attention. Event-related functional magnetic resonance imaging revealed that activity in the hippocampus as well as in visual and parietal cortex was modulated by learned visual context even though participants’ subjective reports and performance on a post-experiment recognition task indicated no explicit knowledge of the learned context. Moreover, the magnitude of the initial selective hippocampus response predicted the magnitude of the behavioral benefit due to context observed at the end of the experiment. The results suggest that implicit contextual learning is mediated by attention and memory and that these systems interact to support search of our environment. PMID:23099047
Mitolo, Micaela; Borella, Erika; Meneghetti, Chiara; Carbone, Elena; Pazzaglia, Francesca
2017-05-01
This study aimed to assess the efficacy of a route-learning training in a group of older adults living in a residential care home. We verified the presence of training-specific effects in tasks similar to those trained - route-learning tasks - as well as transfer effects on related cognitive processes - visuo-spatial short-term memory (VSSTM; Corsi Blocks Test (CBT), forward version), visuo-spatial working memory (VSWM; CBT, backward version; Pathway Span Tasks; Jigsaw Puzzle Test) - and in self-report measures. The maintenance of training benefits was examined after 3 months. Thirty 70-90-year-old residential care home residents were randomly assigned to the route-learning training group or to an active control group (involved in non-visuo-spatial activities). The trained group performed better than the control group in the route-learning tasks, retaining this benefit 3 months later. Immediate transfer effects were also seen in visuo-spatial span tasks (i.e., CBT forward and backward version and Pathway Span Task); these benefits had been substantially maintained at the 3-month follow-up. These findings suggest that a training on route learning is a promising approach to sustain older adults' environmental learning and some related abilities (e.g., VSSTM and VSWM), even in residential care home residents.
Penley, Stephanie C; Gaudet, Cynthia M; Threlkeld, Steven W
2013-12-04
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Acosta, Jazmin I; Mayer, Loretta; Talboom, Joshua S; Zay, Cynthia; Scheldrup, Melissa; Castillo, Jonathan; Demers, Laurence M; Enders, Craig K; Bimonte-Nelson, Heather A
2009-03-01
Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.
Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G
2007-07-01
Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.
Richmond, Lauren L; Wolk, David; Chein, Jason; Olson, Ingrid R
2014-11-01
Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813-822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193-199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.
Uematsu, Akira; Tan, Bao Zhen
2015-01-01
Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494
Working memory, long-term memory, and medial temporal lobe function
Jeneson, Annette; Squire, Larry R.
2012-01-01
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan
2016-01-01
Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.
Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning.
Hoshiba, Yoshio; Wada, Takeyoshi; Hayashi-Takagi, Akiko
2017-01-01
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational. With the application of the latest optogenetic tools, it has been possible to collect direct evidence of the contributions of synaptic potentiation in the formation and consolidation of cell ensemble in a learning task specific manner. In this review, we summarize the current view of the causative role of synaptic plasticity as the cellular mechanism underlying the encoding of memory and recalling of learned memories. In particular, we will be focusing on the latest optoprobe developed for the visualization of such "synaptic ensembles." We further discuss how a new synaptic ensemble could contribute to the formation of cell ensembles during learning and memory. With the development and application of novel research tools in the future, studies on synaptic ensembles will pioneer new discoveries, eventually leading to a comprehensive understanding of how the brain works.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Van Luit, Johannes E H
2015-04-01
The relative importance of visual-spatial and verbal working memory for mathematics performance and learning seems to vary with age, the novelty of the material, and the specific math domain that is investigated. In this study, the relations between verbal and visual-spatial working memory and performance in four math domains (i.e., addition, subtraction, multiplication, and division) at different ages during primary school are investigated. Children (N = 4337) from grades 2 through 6 participated. Visual-spatial and verbal working memory were assessed using online computerized tasks. Math performance was assessed at the start, middle, and end of the school year using a speeded arithmetic test. Multilevel Multigroup Latent Growth Modeling was used to model individual differences in level and growth in math performance, and examine the predictive value of working memory per grade, while controlling for effects of classroom membership. The results showed that as grade level progressed, the predictive value of visual-spatial working memory for individual differences in level of mathematics performance waned, while the predictive value of verbal working memory increased. Working memory did not predict individual differences between children in their rate of performance growth throughout the school year. These findings are discussed in relation to three, not mutually exclusive, explanations for such age-related findings.
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.
Lippelt, D P; van der Kint, S; van Herk, K; Naber, M
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults
Lippelt, D. P.; van der Kint, S.; van Herk, K.; Naber, M.
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0–2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants. PMID:27341028
Nosofsky, Robert M.; Denton, Stephen E.; Zaki, Safa R.; Murphy-Knudsen, Anne F.; Unverzagt, Frederick W.
2013-01-01
Studies of incidental category learning support the hypothesis of an implicit prototype-extraction system which is distinct from explicit memory (Smith, 2008). In those studies, patients with explicit-memory impairments due to damage to the medial-temporal lobe performed normally in implicit categorization tasks (Bozoki, Grossman, & Smith, 2006; Knowlton & Squire, 1993). However, alternative interpretations are that: i) even people with impairments to a single memory system have sufficient resources to succeed on the particular categorization tasks that have been tested (Nosofsky & Zaki, 1998; Zaki & Nosofsky, 2001); and ii) working memory can be used at time of test to learn the categories (Palmeri & Flanery, 1999). In the present experiments, patients with amnestic mild cognitive impairment or early Alzheimer’s disease were tested in prototype-extraction tasks to examine these possibilities. In a categorization task involving discrete-feature stimuli, the majority of subjects relied on memories for exceedingly few features, even when the task structure strongly encouraged reliance on broad-based prototypes. In a dot-pattern categorization task, even the memory-impaired patients were able to use working memory at time of test to extract the category structure (at least for the stimulus set used in past work). We argue that the results weaken the past case made in favor of a separate system of implicit-prototype extraction. PMID:22746953
Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.
2013-01-01
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106
The role of executive functioning in memory performance in pediatric focal epilepsy.
Sepeta, Leigh N; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D; Berl, Madison M
2017-02-01
Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (Wechsler Abbreviated Scale of Intelligence [WASI]/Differential Ability Scales [DAS]), as well as visual Children's Memory Scale (CMS Dot Locations) and verbal episodic memory (Wide Range Assessment of Memory and Learning [WRAML] Story Memory and California Verbal Learning Test for Children [CVLT-C]). Executive functioning was measured directly (WISC-IV Digit Span Backward; Clinical Evaluation of Language Fundamentals, Fourth Edition (CELF-IV) Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function [BRIEF]). Children with focal epilepsy had lower delayed free-recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η 2 = 0.12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η 2 = 0.03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η 2 = 0.08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9-19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9-10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extratemporal, frontal vs. extrafrontal). Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis.
Potvin, Stéphane; Pelletier, Julie; Grot, Stéphanie; Hébert, Catherine; Barr, Alasdair M; Lecomte, Tania
2018-05-01
Methamphetamine has long been considered as a neurotoxic substance causing cognitive deficits. Recently, however, the magnitude and the clinical significance of the cognitive effects associated with methamphetamine use disorder (MUD) have been debated. To help clarify this controversy, we performed a meta-analysis of the cognitive deficits associated with MUD. A literature search yielded 44 studies that assessed cognitive dysfunction in 1592 subjects with MUD and 1820 healthy controls. Effect size estimates were calculated using the Comprehensive Meta-Analysis, for the following 12 cognitive domains: attention, executive functions, impulsivity/reward processing, social cognition, speed of processing, verbal fluency/language, verbal learning and memory, visual learning and memory, visuo-spatial abilities and working memory. Findings revealed moderate impairment across most cognitive domains, including attention, executive functions, language/verbal fluency, verbal learning and memory, visual memory and working memory. Deficits in impulsivity/reward processing and social cognition were more prominent, whereas visual learning and visuo-spatial abilities were relatively spared cognitive domains. A publication bias was observed. These results show that MUD is associated with broad cognitive deficits that are in the same range as those associated with alcohol and cocaine use disorder, as recently shown by way of meta-analysis. The prominent effects of MUD on social cognition and impulsivity/reward processing are based on a small number of studies, and as such, these results will need to be replicated. The functional consequences (social and occupational) of the cognitive deficits of methamphetamine will also need to be determined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Looking at Learning Approaches from the Angle of Student Profiles
ERIC Educational Resources Information Center
Kyndt, Eva; Dochy, Filip; Struyven, Katrien; Cascallar, Eduardo
2012-01-01
This study starts with investigating the relation of perceived workload, motivation for learning and working memory capacity (WMC) with students' approaches to learning. Secondly, this study investigates if differences exist between different student profiles concerning their approach to the learning and the influence of workloads thereon. Results…
Working Memory in Children with Learning Disabilities: Rethinking the Criterion of Discrepancy
ERIC Educational Resources Information Center
Maehler, Claudia; Schuchardt, Kirsten
2011-01-01
The criterion of discrepancy is used to distinguish children with learning disorders from children with intellectual disabilities. The justification of the criterion of discrepancy for the diagnosis of learning disorders relies on the conviction of fundamental differences between children with learning difficulties with versus without discrepancy…
Bezu, M; Shanmugasundaram, B; Lubec, G; Korz, V
2016-10-01
Cognition enhancing drugs often target the dopaminergic system, which is involved in learning and memory, including working memory that in turn involves mainly the prefrontal cortex and the hippocampus. In most animal models for modulations of working memory animals are pre-trained to a certain criterion and treated then acutely to test drugs effects on working memory. Thus, little is known regarding subchronic or chronic application of cognition enhancing drugs and working memory performance. Therefore we trained male rats over six days in a rewarded alternation test in a T-maze. Rats received daily injections of either modafinil or Levodopa (L-Dopa) at a lower and a higher dose 30min before training. Levodopa but not modafinil increased working memory performance during early training significantly at day 3 when compared to vehicle controls. Both drugs induced dose dependent differences in working memory with significantly better performance at low doses compared to high doses for modafinil, in contrast to L-Dopa where high dose treated rats performed better than low dose rats. Strikingly, these effects appeared only at day 3 for both drugs, followed by a decline in behavioral performance. Thus, a critical drug independent time window for dopaminergic effects upon working memory could be revealed. Evaluating the underlying mechanisms contributes to the understanding of temporal effects of dopamine on working memory performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Lundqvist, Thomas
2005-06-01
This review aims to compare cognitive consequence between cannabis, and stimulants and heroin with regards to attention, memory and executive functions. The available studies using brain imaging techniques and neuropsychological tests show that acutely, all drugs create a disharmony in the neuropsychological network, causing a decrease of activity in areas responsible for short-term memory and attention, with the possible exception of heroin. Cannabis induces loss of internal control and cognitive impairment, especially of attention and memory, for the duration of intoxication. Heavy cannabis use is associated with reduced function of the attentional/executive system, as exhibited by decreased mental flexibility, increased perserveration, and reduced learning, to shift and/or sustain attention. Recent investigations on amphetamine/methamphetamine have documented deficits in learning, delayed recall, processing speed, and working memory. MDMA users exhibit difficulties in coding information into long-term memory, display impaired verbal learning, are more easily distracted, and are less efficient at focusing attention on complex tasks. The degree of executive impairment increases with the severity of use, and the impairments are relatively lasting over time. Chronic cocaine users display impaired attention, learning, memory, reaction time and cognitive flexibility. Heroin addiction may have a negative effect on impulse control, and selective processing.
Silver, Henry; Bilker, Warren B
2015-03-30
Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A close relationship between verbal memory and SN/VTA integrity in young and older adults.
Düzel, Sandra; Schütze, Hartmut; Stallforth, Sabine; Kaufmann, Jörn; Bodammer, Nils; Bunzeck, Nico; Münte, Thomas F; Lindenberger, Ulman; Heinze, Hans-Jochen; Düzel, Emrah
2008-11-01
Age-related dysfunction in dopaminergic neuromodulation is assumed to contribute to age-associated memory impairment. However, to date there are no in vivo data on how structural parameters of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic projections, relate to memory performance in healthy young and older adults. We investigated this relationship in a cross-sectional study including data from the hippocampus and frontal white matter (FWM) and also assessing working memory span and attention. In groups of young and older adults matched for the variance of their age distribution, gender and body mass index, we observed a robust positive correlation between Magnetization Transfer Ratio (MTR)--a measure of structural integrity--of the SN/VTA and FWM with verbal learning and memory performance among older adults, while there was a negative correlation in the young. Two additional imaging parameters, anisotropy of diffusion and diffusion coefficient, suggested that in older adults FWM changes reflected vascular pathology while SN/VTA changes pointed towards neuronal loss and loss of water content. The negative correlation in the young possibly reflected maturational changes. Multiple regression analyses indicated that in both young and older adults, SN/VTA MTR explained more variance of verbal learning and memory than FWM MTR or hippocampal MTR, and contributed less to explaining variance of working memory span. Together these findings indicate that structural integrity in the SN/VTA has a relatively selective impact on verbal learning and memory and undergoes specific changes from young adulthood to older age that qualitatively differ from changes in the FWM and hippocampus.
"We Not I" Not "I Me Mine": Learning from Professional Memory about Collectivist English Teaching
ERIC Educational Resources Information Center
Tarpey, Paul
2017-01-01
This article investigates the professional memories of English teachers who began their careers between 1965 and 1975. The teachers began their careers in circumstances that offered opportunities to work in collectivist ways. Their memories reveal a strong collective identity, a powerful sense of agency and a critical engagement with the aims of…
ERIC Educational Resources Information Center
Schweppe, Judith; Grice, Martine; Rummer, Ralf
2011-01-01
Despite developments in phonology over the last few decades, models of verbal working memory make reference to phoneme-sized phonological units, rather than to the features of which they are composed. This study investigates the influence on short-term retention of such features by comparing the serial recall of lists of syllables with varying…
ERIC Educational Resources Information Center
Mammarella, Nicola; Fairfield, Beth; Di Domenico, Alberto
2013-01-01
Two experiments examined the effects of spatial and temporal contiguities in a working memory binding task that required participants to remember coloured objects. In Experiment 1, a black and white drawing and a corresponding phrase that indicated its colour perceptually were either near or far (spatial study condition), while in Experiment 2,…
ERIC Educational Resources Information Center
Swanson, H. Lee
2014-01-01
Cognitive strategies are important tools for children with math difficulties (MD) in learning to solve word problems. The effectiveness of strategy training, however, depends on working memory capacity (WMC). Thus, children with MD but with relatively higher WMC are more likely to benefit from strategy training, whereas children with lower WMC may…
Working-memory capacity protects model-based learning from stress.
Otto, A Ross; Raio, Candace M; Chiang, Alice; Phelps, Elizabeth A; Daw, Nathaniel D
2013-12-24
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.
Working-memory capacity protects model-based learning from stress
Otto, A. Ross; Raio, Candace M.; Chiang, Alice; Phelps, Elizabeth A.; Daw, Nathaniel D.
2013-01-01
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive–dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response—believed to have detrimental effects on prefrontal cortex function—should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress. PMID:24324166
Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Burke, Hanna M; Woelke, Sarah A; Pisansky, Julia M; Talbot, Jeffery N
2014-03-01
Previous work has indicated that stress generally impairs memory retrieval. However, little research has addressed discrepancies that exist in this line of work and the factors that could explain why stress can exert differential effects on retrieval processes. Therefore, we examined the influence of brief, pre-retrieval stress that was administered immediately before testing on long-term memory in males and females. Participants learned a list of 42 words varying in emotional valence and arousal. Following the learning phase, participants were given an immediate free recall test. Twenty-four hours later, participants submerged their non-dominant hand in a bath of ice cold (Stress) or warm (No Stress) water for 3 min. Immediately following this manipulation, participants' memory for the word list was assessed via free recall and recognition tests. We observed no group differences on short-term memory. However, male participants who showed a robust cortisol response to the stress exhibited enhanced long-term recognition memory, while male participants who demonstrated a blunted cortisol response to the stress exhibited impaired long-term recall and recognition memory. These findings suggest that the effects of brief, pre-retrieval stress on long-term memory are sex-specific and mediated by corticosteroid mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Implications of Research on Human Memory for CALL Design.
ERIC Educational Resources Information Center
Forester, Lee
2002-01-01
Offers a brief overview of what is generally accepted about how human memory works as it applied to computer assisted language learning (CALL). Discusses a number of interactions from various CALL products in light of the research summarized. (Author/VWL)
Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701
Episodic memories predict adaptive value-based decision-making
Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila
2016-01-01
Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046
Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.
Young, John Q; Van Merrienboer, Jeroen; Durning, Steve; Ten Cate, Olle
2014-05-01
Cognitive Load Theory (CLT) builds upon established models of human memory that include the subsystems of sensory, working and long-term memory. Working memory (WM) can only process a limited number of information elements at any given time. This constraint creates a "bottleneck" for learning. CLT identifies three types of cognitive load that impact WM: intrinsic load (associated with performing essential aspects of the task), extraneous load (associated with non-essential aspects of the task) and germane load (associated with the deliberate use of cognitive strategies that facilitate learning). When the cognitive load associated with a task exceeds the learner's WM capacity, performance and learning is impaired. To facilitate learning, CLT researchers have developed instructional techniques that decrease extraneous load (e.g. worked examples), titrate intrinsic load to the developmental stage of the learner (e.g. simplify task without decontextualizing) and ensure that unused WM capacity is dedicated to germane load, i.e. cognitive learning strategies. A number of instructional techniques have been empirically tested. As learners' progress, curricula must also attend to the expertise-reversal effect. Instructional techniques that facilitate learning among early learners may not help and may even interfere with learning among more advanced learners. CLT has particular relevance to medical education because many of the professional activities to be learned require the simultaneous integration of multiple and varied sets of knowledge, skills and behaviors at a specific time and place. These activities possess high "element interactivity" and therefore impose a cognitive load that may surpass the WM capacity of the learner. Applications to various medical education settings (classroom, workplace and self-directed learning) are explored.
Mahoney, James J.; Jackson, Brian J.; Kalechstein, Ari D.; De La Garza, Richard; Newton, Thomas F.
2012-01-01
Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing neurocognitive impairment. PMID:21122811
Dissociation of long-term verbal memory and fronto-executive impairment in first-episode psychosis
Leeson, V. C.; Robbins, T. W.; Franklin, C.; Harrison, M.; Harrison, I.; Ron, M. A.; Barnes, T. R. E.; Joyce, E. M.
2009-01-01
Background Verbal memory is frequently and severely affected in schizophrenia and has been implicated as a mediator of poor clinical outcome. Whereas encoding deficits are well demonstrated, it is unclear whether retention is impaired. This distinction is important because accelerated forgetting implies impaired consolidation attributable to medial temporal lobe (MTL) dysfunction whereas impaired encoding and retrieval implicates involvement of prefrontal cortex. Method We assessed a group of healthy volunteers (n=97) and pre-morbid IQ- and sex-matched first-episode psychosis patients (n=97), the majority of whom developed schizophrenia. We compared performance of verbal learning and recall with measures of visuospatial working memory, planning and attentional set-shifting, and also current IQ. Results All measures of performance, including verbal memory retention, a memory savings score that accounted for learning impairments, were significantly impaired in the schizophrenia group. The difference between groups for delayed recall remained even after the influence of learning and recall was accounted for. Factor analyses showed that, in patients, all variables except verbal memory retention loaded on a single factor, whereas in controls verbal memory and fronto-executive measures were separable. Conclusions The results suggest that IQ, executive function and verbal learning deficits in schizophrenia may reflect a common abnormality of information processing in prefrontal cortex rather than specific impairments in different cognitive domains. Verbal memory retention impairments, however, may have a different aetiology. PMID:19419594
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-01-01
Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-10-22
Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.
Association of physical fitness and fatness with cognitive function in women with fibromyalgia.
Soriano-Maldonado, Alberto; Artero, Enrique G; Segura-Jiménez, Víctor; Aparicio, Virgina A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Munguía-Izquierdo, Diego; Casimiro-Andújar, Antonio J; Delgado-Fernández, Manuel; Ortega, Francisco B
2016-09-01
This study assessed the association of fitness and fatness with cognitive function in women with fibromyalgia, and the independent influence of their single components on cognitive tasks. A total of 468 women with fibromyalgia were included. Speed of information processing and working memory (Paced Auditory Serial Addition Task), as well as immediate and delayed recall, verbal learning and delayed recognition (Rey Auditory Verbal Learning Test) were assessed. Aerobic fitness, muscle strength, flexibility and motor agility were assessed with the Senior Fitness Test battery. Body mass index, percent body fat, fat-mass index and waist circumference were measured. Aerobic fitness was associated with attention and working memory (all, p < 0.05). All fitness components were generally associated with delayed recall, verbal learning and delayed recognition (all, p < 0.05). Aerobic fitness showed the most powerful association with attention, working memory, delayed recall and verbal learning, while motor agility was the most powerful indicator of delayed recognition. None of the fatness parameters were associated with any of the outcomes (all, p > 0.05). Our results suggest that fitness, but not fatness, is associated with cognitive function in women with fibromyalgia. Aerobic fitness appears to be the most powerful fitness component regarding the cognitive tasks evaluated.
Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.
2013-01-01
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600
Orlov, Natasza D; Tracy, Derek K; Joyce, Daniel; Patel, Shinal; Rodzinka-Pasko, Joanna; Dolan, Hayley; Hodsoll, John; Collier, Tracy; Rothwell, John; Shergill, Sukhwinder S
Schizophrenia is characterized by prominent cognitive deficits, impacting on memory and learning; these are strongly associated with the prefrontal cortex. To combine two interventions, transcranial direct current stimulation (tDCS) over the prefrontal cortex and cognitive training, to examine change in cognitive performance in patients with schizophrenia. A double blind, sham-controlled pilot study of 49 patients with schizophrenia, randomized into real or sham tDCS stimulation groups. Subjects participated in 4 days of cognitive training (days 1, 2, 14, 56) with tDCS applied at day-1 and day-14. The primary outcome measure was change in accuracy on working memory and implicit learning tasks from baseline. The secondary outcome measure was the generalization of learning to non-trained task, indexed by the CogState neuropsychological battery. Data analysis was conducted using multilevel modelling and multiple regressions. 24 participants were randomized to real tDCS and 25 to sham. The working memory task demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 (b = 0.68, CI 0.14-1.21; p = 0.044) and at day-56 (b = 0.71, 0.16-1.26; p = 0.044). There were no significant effects of tDCS on implicit learning. Trend evidence of generalization onto untrained tasks of attention and vigilance task (b = 0.40, 0.43-0.77; p = 0.058) was found. This is the first study to show a significant longer-term effect of tDCS on working memory in schizophrenia. Given the current lack of effective therapies for cognitive deficits, tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.
Influence of shift work on cognitive performance in male business process outsourcing employees
Shwetha, Bijavara; Sudhakar, Honnamachanahalli
2012-01-01
Background: India is a front runner in IT industry. Business process outsourcing (BPO) sector is a major part of IT industry with around 4.5 million employees. These employees are subjected to high work stress, odd working hours, and frequent shift changes leading to increased physical and mental health problems. Aim: To study the cognitive functions in male BPO employees exposed to regular shifts. Settings and Design: Young BPO employees from various BPO companies of Bangalore were tested for cognitive functions. Materials and Methods: Fifty male BPO employees exposed to regular shifts were assessed for various cognitive functions including tests for speed, attention, learning and memory, and executive function. They were compared with 50 non-BPO employees not working in shifts. Statistical analysis - Data was analysed by t-test and Mann-Whitney test using SPSS V.13.0. Results: BPO employees performed poorly compared to their controls in tests for mental speed, learning and memory, and response inhibition. No changes were seen between groups in tests for attention and working memory. Conclusion: Cognitive functions are impaired in BPO employees exposed to regular shift changes. PMID:23776319
Influence of shift work on cognitive performance in male business process outsourcing employees.
Shwetha, Bijavara; Sudhakar, Honnamachanahalli
2012-09-01
India is a front runner in IT industry. Business process outsourcing (BPO) sector is a major part of IT industry with around 4.5 million employees. These employees are subjected to high work stress, odd working hours, and frequent shift changes leading to increased physical and mental health problems. To study the cognitive functions in male BPO employees exposed to regular shifts. Young BPO employees from various BPO companies of Bangalore were tested for cognitive functions. Fifty male BPO employees exposed to regular shifts were assessed for various cognitive functions including tests for speed, attention, learning and memory, and executive function. They were compared with 50 non-BPO employees not working in shifts. Statistical analysis - Data was analysed by t-test and Mann-Whitney test using SPSS V.13.0. BPO employees performed poorly compared to their controls in tests for mental speed, learning and memory, and response inhibition. No changes were seen between groups in tests for attention and working memory. Cognitive functions are impaired in BPO employees exposed to regular shift changes.
[CMACPAR an modified parallel neuro-controller for control processes].
Ramos, E; Surós, R
1999-01-01
CMACPAR is a Parallel Neurocontroller oriented to real time systems as for example Control Processes. Its characteristics are mainly a fast learning algorithm, a reduced number of calculations, great generalization capacity, local learning and intrinsic parallelism. This type of neurocontroller is used in real time applications required by refineries, hydroelectric centers, factories, etc. In this work we present the analysis and the parallel implementation of a modified scheme of the Cerebellar Model CMAC for the n-dimensional space projection using a mean granularity parallel neurocontroller. The proposed memory management allows for a significant memory reduction in training time and required memory size.
Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En
2015-05-01
The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.
Kolata, Stefan; Light, Kenneth; Wass, Christopher D.; Colas-Zelin, Danielle; Roy, Debasri; Matzel, Louis D.
2010-01-01
Background Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. Conclusions/Significance These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence. PMID:21103339
ERIC Educational Resources Information Center
Greer, Diana L.; Crutchfield, Stephen A.; Woods, Kari L.
2013-01-01
Struggling learners and students with Learning Disabilities often exhibit unique cognitive processing and working memory characteristics that may not align with instructional design principles developed with typically developing learners. This paper explains the Cognitive Theory of Multimedia Learning and underlying Cognitive Load Theory, and…
Memory in Elementary School Children Is Improved by an Unrelated Novel Experience.
Ballarini, Fabricio; Martínez, María Cecilia; Díaz Perez, Magdalena; Moncada, Diego; Viola, Haydée
2013-01-01
Education is the most traditional means with formative effect on the human mind, learning and memory being its fundamental support. For this reason, it is essential to find different strategies to improve the studentś performance. Based on previous work, we hypothesized that a novel experience could exert an enhancing effect on learning and memory within the school environment. Here we show that novel experience improved the memory of literary or graphical activities when it is close to these learning sessions. We found memory improvements in groups of students who had experienced a novel science lesson 1 hour before or after the reading of a story, but not when these events were 4 hours apart. Such promoting effect on long-term memory (LTM) was also reproduced with another type of novelty (a music lesson) and also after another type of learning task (a visual memory). Interestingly, when the lesson was familiar, it failed to enhance the memory of the other task. Our results show that educationally relevant novel events experienced during normal school hours can improve LTM for tasks/activities learned during regular school lessons. This effect is restricted to a critical time window around learning and is particularly dependent on the novel nature of the associated experience. These findings provide a tool that could be easily transferred to the classroom by the incorporation of educationally novel events in the school schedule as an extrinsic adjuvant of other information acquired some time before or after it. This approach could be a helpful tool for the consolidation of certain types of topics that generally demand a great effort from the children.
Kirry, Adam J; Herbst, Matthew R; Poirier, Sarah E; Maskeri, Michelle M; Rothwell, Amy C; Twining, Robert C; Gilmartin, Marieke R
2018-05-01
A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nielsen, Shawn E.; Ahmed, Imran; Cahill, Larry
2014-01-01
Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a post-learning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested three predictions. First, compared to naturally cycling women (NC women) in the luteal phase, women on hormonal contraception (HC women) would have significantly blunted HPA reactivity to physical stress. Second, post-learning stress would enhance detail and gist memory from an emotional story in NC women, and finally, post-learning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, Cold Pressor Stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared to HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared to the neutral story. In HC women, however, the post-learning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, post-learning stress differentially affects memory for emotional information depending on their hormonal contraceptive status. PMID:24841741
Living Design Memory: Framework, Implementation, Lessons Learned.
ERIC Educational Resources Information Center
Terveen, Loren G.; And Others
1995-01-01
Discusses large-scale software development and describes the development of the Designer Assistant to improve software development effectiveness. Highlights include the knowledge management problem; related work, including artificial intelligence and expert systems, software process modeling research, and other approaches to organizational memory;…
Memory: from the laboratory to everyday life.
Schacter, Daniel L
2013-12-01
One of the key goals of memory research is to develop a basic understanding of the nature and characteristics of memory processes and systems. Another important goal is to develop useful applications of basic research to everyday life. This editorial considers two lines of work that illustrate some of the prospects for applying memory research to everyday life: interpolated quizzing to enhance learning in educational settings, and specificity training to enhance memory and associated functions in individuals who have difficulties remembering details of their past experiences.
Hernández-González, Marisela; Almanza-Sepúlveda, Mayra Linné; Olvera-Cortés, María Esther; Gutiérrez-Guzmán, Blanca Erika; Guevara, Miguel Angel
2012-08-01
The prefrontal cortex is involved in working memory functions, and several studies using food or drink as rewards have demonstrated that the rat is capable of performing tasks that involve working memory. Sexual activity is another highly-rewarding, motivated behaviour that has proven to be an efficient incentive in classical operant tasks. The objective of this study was to determine whether the functional activity of the medial prefrontal cortex (mPFC) changes in relation to the working memory processes involved in a sexually motivated task performed in male rats. Thus, male Wistar rats implanted in the mPFC were subjected to a nonmatching-to-sample task in a T-maze using sexual interaction as a reinforcer during a 4-day training period. On the basis of their performance during training, the rats were classified as 'good-learners' or 'bad-learners'. Only the good-learner rats showed an increase in the absolute power of the 8-13 Hz band during both the sample and test runs; a finding that could be related to learning of the working memory elements entailed in the task. During the maintenance phase only (i.e., once the rule had been learned well), the good-learner rats also showed an increased correlation of the 8-13 Hz band during the sample run, indicating that a high degree of coupling between the prefrontal cortices is necessary for the processing required to allow the rats to make correct decisions in the maintenance phase. Taken together, these data show that mPFC activity changes in relation to the working memory processes involved in a sexually motivated task in male rats.
Two retrievals from a single cue: A bottleneck persists across episodic and semantic memory.
Orscheschek, Franziska; Strobach, Tilo; Schubert, Torsten; Rickard, Timothy
2018-05-01
There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black-right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black-"white"). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.
ERIC Educational Resources Information Center
Butler, Andrew J.; James, Thomas W.; James, Karin Harman
2011-01-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…
Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle
2015-01-01
Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; McGhee, S.
2013-05-01
This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.
Oberauer, Klaus; Awh, Edward; Sutterer, David W
2017-01-01
We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3 concrete objects in an array. Each array in the WM test consisted of 1 old (previously learned) object with a new color (old-mismatch), 1 old object with its old color (old-match), and 1 new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from LTM. In the old-mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Seeking a Spotless Mind: Extinction, Deconsolidation, and Erasure of Fear Memory
Maren, Stephen
2011-01-01
Learning to contend with threats in the environment is essential to survival, but dysregulation of memories for traumatic events can lead to disabling psychopathology. Recent years have witnessed an impressive growth in our understanding of the neural systems and synaptic mechanisms underlying emotional memory formation. As a consequence, interest has emerged in developing strategies for suppressing, if not eliminating, fear memories. Here I review recent work employing sophisticated behavioral, pharmacological, and molecular tools to target fear memories, placing these memories firmly behind the crosshairs of neurobiologically informed interventions. PMID:21658578
ERIC Educational Resources Information Center
Geary, David C.; Hoard, Mary K.; Byrd-Craven, Jennifer; DeSoto, M. Catherine
2004-01-01
Groups of first-grade (mean age = 82 months), third-grade (mean age = 107 months), and fifth-grade (mean age = 131 months) children with a learning disability in mathematics (MD, n=58) and their normally achieving peers (n = 91) were administered tasks that assessed their knowledge of counting principles, working memory, and the strategies used to…
ERIC Educational Resources Information Center
Squires, David R.
2017-01-01
The structure of the literature review features the current trajectory of Augmented Reality in the field including the current literature detailing how Augmented Reality has been applied in educational environments; how Augmented Reality has been applied in training environments; how Augmented Reality has been used to measure cognition and the…
Klink, P Christiaan; Jeurissen, Danique; Theeuwes, Jan; Denys, Damiaan; Roelfsema, Pieter R
2017-08-22
The richness of sensory input dictates that the brain must prioritize and select information for further processing and storage in working memory. Stimulus salience and reward expectations influence this prioritization but their relative contributions and underlying mechanisms are poorly understood. Here we investigate how the quality of working memory for multiple stimuli is determined by priority during encoding and later memory phases. Selective attention could, for instance, act as the primary gating mechanism when stimuli are still visible. Alternatively, observers might still be able to shift priorities across memories during maintenance or retrieval. To distinguish between these possibilities, we investigated how and when reward cues determine working memory accuracy and found that they were only effective during memory encoding. Previously learned, but currently non-predictive, color-reward associations had a similar influence, which gradually weakened without reinforcement. Finally, we show that bottom-up salience, manipulated through varying stimulus contrast, influences memory accuracy during encoding with a fundamentally different time-course than top-down reward cues. While reward-based effects required long stimulus presentation, the influence of contrast was strongest with brief presentations. Our results demonstrate how memory resources are distributed over memory targets and implicates selective attention as a main gating mechanism between sensory and memory systems.
Kolata, Stefan; Light, Kenneth; Townsend, David A; Hale, Gregory; Grossman, Henya C; Matzel, Louis D
2005-11-01
Up to 50% of an individuals' performance across a wide variety of distinct cognitive tests can be accounted for by a single factor (i.e., "general intelligence"). Despite its ubiquity, the processes or mechanisms regulating this factor are a matter of considerable debate. Although it has been hypothesized that working memory may impact cognitive performance across various domains, tests have been inconclusive due to the difficulty in isolating working memory from its overlapping operations, such as verbal ability. We address this problem using genetically diverse mice, which exhibit a trait analogous to general intelligence. The general cognitive abilities of CD-1 mice were found to covary with individuals' working memory capacity, but not with variations in long-term retention. These results provide evidence that independent of verbal abilities, variations in working memory are associated with general cognitive abilities, and further, suggest a conservation across species of mechanisms and/or processes that regulate cognitive abilities.
Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.
2009-01-01
This study examined whether measures of short-term memory, working memory, and executive functioning in preschool children predict later proficiency in academic achievement at 7 years of age (third year of primary school). Children were tested in preschool (M age = 4 years, 6 months) on a battery of cognitive measures, and mathematics and reading outcomes (from standardized, norm-referenced school-based assessments) were taken on entry to primary school, and at the end of the first and third year of primary school. Growth curve analyses examined predictors of math and reading achievement across the duration of the study and revealed that better digit span and executive function skills provided children with an immediate head start in math and reading that they maintained throughout the first three years of primary school. Visual-spatial short-term memory span was found to be a predictor specifically of math ability. Correlational and regression analyses revealed that visual short-term and working memory were found to specifically predict math achievement at each time point, while executive function skills predicted learning in general rather than learning in one specific domain. The implications of the findings are discussed in relation to further understanding the role of cognitive skills in different mathematical tasks, and in relation to the impact of limited cognitive skills in the classroom environment. PMID:18473197
Category learning strategies in younger and older adults: Rule abstraction and memorization.
Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L
2016-06-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Why is working memory capacity related to matrix reasoning tasks?
Harrison, Tyler L; Shipstead, Zach; Engle, Randall W
2015-04-01
One of the reasons why working memory capacity is so widely researched is its substantial relationship with fluid intelligence. Although this relationship has been found in numerous studies, researchers have been unable to provide a conclusive answer as to why the two constructs are related. In a recent study, researchers examined which attributes of Raven's Progressive Matrices were most strongly linked with working memory capacity (Wiley, Jarosz, Cushen, & Colflesh, Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 256-263, 2011). In that study, Raven's problems that required a novel combination of rules to solve were more strongly correlated with working memory capacity than were problems that did not. In the present study, we wanted to conceptually replicate the Wiley et al. results while controlling for a few potential confounds. Thus, we experimentally manipulated whether a problem required a novel combination of rules and found that repeated-rule-combination problems were more strongly related to working memory capacity than were novel-rule-combination problems. The relationship to other measures of fluid intelligence did not change based on whether the problem required a novel rule combination.
The impact of sleep loss on hippocampal function
Prince, Toni-Moi; Abel, Ted
2013-01-01
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values “work around the clock.” Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs. PMID:24045505
Tart cherries improve working memory in aged rats
USDA-ARS?s Scientific Manuscript database
Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...
Sampedro-Piquero, Patricia; Moreno-Fernández, Román D; Carmen Mañas-Padilla, M; Gil-Rodríguez, Sara; Gavito, Ana Luisa; Pavón, Francisco J; Pedraza, Carmen; García-Fernández, María; Ladrón de Guevara-Miranda, David; Santín, Luis J; Castilla-Ortega, Estela
2018-05-01
Learning experiences are potent modulators of adult hippocampal neurogenesis (AHN). However, the vast majority of findings on the learning-induced regulation of AHN derive from aversively-motivated tasks, mainly the water maze paradigm, in which stress is a confounding factor that affects the AHN outcome. Currently, little is known regarding the effect of appetitively-motivated training on AHN. Hence we studied how spatial learning to find food rewards in a hole-board maze modulates AHN (cell proliferation and immature neurons) and AHN-related hippocampal neuroplasticity markers (BDNF, IGF-II and CREB phosphorylation) in mice. The 'Trained' mice were tested for both spatial reference and working memory and compared to 'Pseudotrained' mice (exposed to different baited holes in each session, thus avoiding the reference memory component of the task) and 'Control' mice (exposed to the maze without rewards). In contrast to Pseudotrained and Control mice, the number of proliferating hippocampal cells were reduced in Trained mice, but they notably increased their population of immature neurons assessed by immunohistochemistry. This evidence shows that hole-board spatial reference learning diminishes cell proliferation in favor of enhancing young neurons' survival. Interestingly, the enhanced AHN in the Trained mice (specifically in the suprapyramidal blade) positively correlated with their reference memory performance, but not with their working memory. Furthermore, the Trained animals increased the hippocampal protein expression of all the neuroplasticity markers analyzed by western blot. Results show that the appetitively-motivated hole-board task is a useful paradigm to potentiate and/or investigate AHN and hippocampal plasticity minimizing aversive variables such as fear or stress. Copyright © 2018 Elsevier Inc. All rights reserved.
An attention-gating recurrent working memory architecture for emergent speech representation
NASA Astrophysics Data System (ADS)
Elshaw, Mark; Moore, Roger K.; Klein, Michael
2010-06-01
This paper describes an attention-gating recurrent self-organising map approach for emergent speech representation. Inspired by evidence from human cognitive processing, the architecture combines two main neural components. The first component, the attention-gating mechanism, uses actor-critic learning to perform selective attention towards speech. Through this selective attention approach, the attention-gating mechanism controls access to working memory processing. The second component, the recurrent self-organising map memory, develops a temporal-distributed representation of speech using phone-like structures. Representing speech in terms of phonetic features in an emergent self-organised fashion, according to research on child cognitive development, recreates the approach found in infants. Using this representational approach, in a fashion similar to infants, should improve the performance of automatic recognition systems through aiding speech segmentation and fast word learning.
Working memory training promotes general cognitive abilities in genetically heterogeneous mice.
Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Zagalsky, Ryan; Matzel, Louis D
2010-04-27
In both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]). Here, genetically heterogeneous mice were assessed on a battery of five learning tasks. Animals' aggregate performance across the tasks was used to estimate their general cognitive abilities, a trait that is in some respects analogous to intelligence [13, 14]. Working memory training promoted an increase in animals' selective attention and their aggregate performance on these tasks. This enhancement of general cognitive performance by working memory training was attenuated if its selective attention demands were reduced. These results provide evidence that the efficacy of working memory capacity and selective attention may be causally related to an animal's general cognitive performance and provide a framework for behavioral strategies to promote those abilities. Furthermore, the pattern of behavior reported here reflects a conservation of the processes that regulate general cognitive performance in humans and infrahuman animals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Plancher, Gaën; Gyselinck, Valérie; Piolino, Pascale
2018-01-01
Memory is one of the most important cognitive functions in a person's life as it is essential for recalling personal memories and performing many everyday tasks. Although a huge number of studies have been conducted in the field, only a few of them investigated memory in realistic situations, due to methodological issues. The various tools that have been developed using virtual environments (VEs) have gained popularity in cognitive psychology and neuropsychology because they enable to create naturalistic and controlled situations, and are thus particularly adapted to the study of episodic memory (EM), for which an ecological evaluation is of prime importance. EM is the conscious recollection of personal events combined with their phenomenological and spatiotemporal encoding contexts. Using an original paradigm in a VE, the objective of the present study was to characterize the construction of episodic memories. While the concept of working memory has become central in the understanding of a wide range of cognitive functions, its role in the integration of episodic memories has seldom been assessed in an ecological context. This experiment aimed at filling this gap by studying how EM is affected by concurrent tasks requiring working memory resources in a realistic situation. Participants navigated in a virtual town and had to memorize as many elements in their spatiotemporal context as they could. During learning, participants had either to perform a concurrent task meant to prevent maintenance through the phonological loop, or a task aimed at preventing maintenance through the visuospatial sketchpad, or no concurrent task. EM was assessed in a recall test performed after learning through various scores measuring the what, where and when of the memories. Results showed that, compared to the control condition with no concurrent task, the prevention of maintenance through the phonological loop had a deleterious impact only on the encoding of central elements. By contrast, the prevention of visuo-spatial maintenance interfered both with the encoding of the temporal context and with the binding. These results suggest that the integration of realistic episodic memories relies on different working memory processes that depend on the nature of the traces.
Geary, David C.
2011-01-01
Objective The goals of the review are threefold; a) to highlight the educational and employment consequences of poorly developed mathematical competencies; b) overview the characteristics of the children with persistently low achievement in mathematics; and c) provide a primer on cognitive science research that is aimed at identifying the cognitive mechanisms underlying these learning disabilities and associated cognitive interventions. Method Literatures on the educational and economic consequences of poor mathematics achievement were reviewed and integrated with reviews of epidemiological, behavioral genetic, and cognitive science studies of poor mathematics achievement. Results Poor mathematical competencies are common among adults and result in employment difficulties and difficulties in many common day-to-day activities. Among students, about 7% of children and adolescents have a mathematical learning disability (MLD) and another 10% show persistent low achievement (LA) in mathematics despite average abilities in most other areas. Children with MLD and their LA peers have deficits in understanding and representing numerical magnitude, difficulties retrieving basic arithmetic facts from long-term memory, and delays in learning mathematical procedures. These deficits and delays cannot be attributed to intelligence, but are related to working memory deficits for children with MLD, but not LA children. Interventions that target these cognitive deficits are in development and preliminary results are promising. Conclusion Mathematical learning disabilities and learning difficulties associated with persistent low achievement in mathematics are common and not attributable to intelligence. These individuals have identifiable number and memory delays and deficits that appear to be specific to mathematics learning. The most promising interventions are those that target these specific deficits and, in addition, for children with MLD interventions that target their low working memory capacity. PMID:21285895
Dividing time: concurrent timing of auditory and visual events by young and elderly adults.
McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H
2010-07-01
This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.
Garcia, Ricardo Basso; Mammarella, Irene C; Tripodi, Doriana; Cornoldi, Cesare
2014-03-01
This study examined forward and backward recall of locations and colours and the binding of locations and colours, comparing typically developing children - aged between 8 and 10 years - with two different groups of children of the same age with learning disabilities (dyslexia in one group, non-verbal learning disability [NLD] in the other). Results showed that groups with learning disabilities had different visuospatial working memory problems and that children with NLD had particular difficulties in the backward recall of locations. The differences between the groups disappeared, however, when locations and colours were bound together. It was concluded that specific processes may be involved in children in the binding and backward recall of different types of information, as they are not simply the resultant of combining the single processes needed to recall single features. © 2013 The British Psychological Society.
Gibson, Erin M; Wang, Connie; Tjho, Stephanie; Khattar, Neera; Kriegsfeld, Lance J
2010-12-01
Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. In the present study, we investigated whether experimental 'jet lag' (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning and memory.
What People Believe about How Memory Works: A Representative Survey of the U.S. Population
Simons, Daniel J.; Chabris, Christopher F.
2011-01-01
Incorrect beliefs about the properties of memory have broad implications: The media conflate normal forgetting and inadvertent memory distortion with intentional deceit, juries issue verdicts based on flawed intuitions about the accuracy and confidence of testimony, and students misunderstand the role of memory in learning. We conducted a large representative telephone survey of the U.S. population to assess common beliefs about the properties of memory. Substantial numbers of respondents agreed with propositions that conflict with expert consensus: Amnesia results in the inability to remember one's own identity (83% of respondents agreed), unexpected objects generally grab attention (78%), memory works like a video camera (63%), memory can be enhanced through hypnosis (55%), memory is permanent (48%), and the testimony of a single confident eyewitness should be enough to convict a criminal defendant (37%). This discrepancy between popular belief and scientific consensus has implications from the classroom to the courtroom. PMID:21826204
Nielson, Kristy A; Correro, Anthony N
2017-10-01
The Deese-Roediger-McDermott (DRM) paradigm examines false memory by introducing words associated with a non-presented 'critical lure' as memoranda, which typically causes the lures to be remembered as frequently as studied words. Our prior work has shown enhanced veridical memory and reduced misinformation effects when arousal is induced after learning (i.e., during memory consolidation). These effects have not been examined in the DRM task, or with signal detection analysis, which can elucidate the mechanisms underlying memory alterations. Thus, 130 subjects studied and then immediately recalled six DRM lists, one after another, and then watched a 3-min arousing (n=61) or neutral (n=69) video. Recognition tested 70min later showed that arousal induced after learning led to better delayed discrimination of studied words from (a) critical lures, and (b) other non-presented 'weak associates.' Furthermore, arousal reduced liberal response bias (i.e., the tendency toward accepting dubious information) for studied words relative to all foils, including critical lures and 'weak associates.' Thus, arousal induced after learning effectively increased the distinction between signal and noise by enhancing access to verbatim information and reducing endorsement of dubious information. These findings provide important insights into the cognitive mechanisms by which arousal modulates early memory consolidation processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional Relationships for Investigating Cognitive Processes
Wright, Anthony A.
2013-01-01
Functional relationships (from systematic manipulation of critical variables) are advocated for revealing fundamental processes of (comparative) cognition—through examples from my work in psychophysics, learning, and memory. Functional relationships for pigeon wavelength (hue) discrimination revealed best discrimination at the spectral points of hue transition for pigeons—a correspondence (i.e., functional relationship) similar to that for humans. Functional relationships for learning revealed: Item-specific or relational learning in matching to sample as a function of the pigeons’ sample-response requirement, and same/different abstract-concept learning as a function of the training set size for rhesus monkeys, capuchin monkeys, and pigeons. Functional relationships for visual memory revealed serial position functions (a 1st order functional relationship) that changed systematically with retention delay (a 2nd order relationship) for pigeons, capuchin monkeys, rhesus monkeys, and humans. Functional relationships for rhesus-monkey auditory memory also revealed systematic changes in serial position functions with delay, but these changes were opposite to those for visual memory. Functional relationships for proactive interference revealed interference that varied as a function of a ratio of delay times. Functional relationships for change detection memory revealed (qualitative) similarities and (quantitative) differences in human and monkey visual short term memory as a function of the number of memory items. It is concluded that these findings were made possible by varying critical variables over a substantial portion of the manipulable range to generate functions and derive relationships. PMID:23174335
2017-01-01
Statistical structure abounds in language. Human infants show a striking capacity for using statistical learning (SL) to extract regularities in their linguistic environments, a process thought to bootstrap their knowledge of language. Critically, studies of SL test infants in the minutes immediately following familiarization, but long-term retention unfolds over hours and days, with almost no work investigating retention of SL. This creates a critical gap in the literature given that we know little about how single or multiple SL experiences translate into permanent knowledge. Furthermore, different memory systems with vastly different encoding and retention profiles emerge at different points in development, with the underlying memory system dictating the fidelity of the memory trace hours later. I describe the scant literature on retention of SL, the learning and retention properties of memory systems as they apply to SL, and the development of these memory systems. I propose that different memory systems support retention of SL in infant and adult learners, suggesting an explanation for the slow pace of natural language acquisition in infancy. I discuss the implications of developing memory systems for SL and suggest that we exercise caution in extrapolating from adult to infant properties of SL. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872372
Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.
Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia
2012-03-01
It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.
Gómez, Rebecca L
2017-01-05
Statistical structure abounds in language. Human infants show a striking capacity for using statistical learning (SL) to extract regularities in their linguistic environments, a process thought to bootstrap their knowledge of language. Critically, studies of SL test infants in the minutes immediately following familiarization, but long-term retention unfolds over hours and days, with almost no work investigating retention of SL. This creates a critical gap in the literature given that we know little about how single or multiple SL experiences translate into permanent knowledge. Furthermore, different memory systems with vastly different encoding and retention profiles emerge at different points in development, with the underlying memory system dictating the fidelity of the memory trace hours later. I describe the scant literature on retention of SL, the learning and retention properties of memory systems as they apply to SL, and the development of these memory systems. I propose that different memory systems support retention of SL in infant and adult learners, suggesting an explanation for the slow pace of natural language acquisition in infancy. I discuss the implications of developing memory systems for SL and suggest that we exercise caution in extrapolating from adult to infant properties of SL.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Optimizing one-shot learning with binary synapses.
Romani, Sandro; Amit, Daniel J; Amit, Yali
2008-08-01
A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of both familiarity recognition and memory retrieval, and estimate the network's capacity. In the case of binary neurons, we extend the analysis of Amit and Fusi (1994) to obtain capacity limits based on computations of signal-to-noise ratio of the field difference between selective and non-selective neurons of learned signals. We show that with fast learning (potentiation probability approximately 1), the most recently learned patterns can be retrieved in working memory (selective delay activity). A much higher number of once-seen learned patterns elicit a realistic familiarity signal in the presence of an external field. With potentiation probability much less than 1 (slow learning), memory retrieval disappears, whereas familiarity recognition capacity is maintained at a similarly high level. This analysis is corroborated in simulations. For analog neurons, where such analysis is more difficult, we simplify the capacity analysis by studying the excess number of potentiated synapses above the steady-state distribution. In this framework, we derive the optimal constraint between potentiation and depression probabilities that maximizes the capacity.
Alt, Mary
2011-01-01
The purpose of this study was to determine which factors contribute to the lexical learning deficits of children with specific language impairment (SLI). Participants included 40 7-8-year old participants, half of whom were diagnosed with SLI and half of whom had normal language skills. We tested hypotheses about the contributions to word learning of the initial encoding of phonological information and the link to long-term memory. Children took part in a computer-based fast-mapping task which manipulated word length and phonotactic probability to address the hypotheses. The task had a recognition and a production component. Data were analyzed using mixed ANOVAs with post-hoc testing. Results indicate that the main problem for children with SLI is with initial encoding, with implications for limited capacity. There was not strong evidence for specific deficits in the link to long-term memory. We were able to ascertain which aspects of lexical learning are most problematic for children with SLI in terms of fast-mapping. These findings may allow clinicians to focus intervention on known areas of weakness. Future directions include extending these findings to slow mapping scenarios. The reader will understand how different components of phonological working memory contribute to the word learning problems of children with specific language impairment. Copyright © 2010 Elsevier Inc. All rights reserved.
Focus of Attention and Choice of Text Modality in Multimedia Learning
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Mengelkamp, Christoph; Baadte, Christiane; Hauck, Georg
2014-01-01
The term "modality effect" in multimedia learning means that students learn better from pictures combined with spoken rather than written text. The most prominent explanations refer to the split attention between visual text reading and picture observation which could affect transfer of information into working memory, maintenance of…
Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N
2014-04-10
Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.
Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C
2016-12-01
Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica , a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. © 2016 Associated Professional Sleep Societies, LLC.
Nelwan, Michel; Kroesbergen, Evelyn H
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old ( N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training's lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.
Nelwan, Michel; Kroesbergen, Evelyn H.
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9–12 years old (N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development. PMID:27708595
Does Far Transfer Exist? Negative Evidence From Chess, Music, and Working Memory Training.
Sala, Giovanni; Gobet, Fernand
2017-12-01
Chess masters and expert musicians appear to be, on average, more intelligent than the general population. Some researchers have thus claimed that playing chess or learning music enhances children's cognitive abilities and academic attainment. We here present two meta-analyses assessing the effect of chess and music instruction on children's cognitive and academic skills. A third meta-analysis evaluated the effects of working memory training-a cognitive skill correlated with music and chess expertise-on the same variables. The results show small to moderate effects. However, the effect sizes are inversely related to the quality of the experimental design (e.g., presence of active control groups). This pattern of results casts serious doubts on the effectiveness of chess, music, and working memory training. We discuss the theoretical and practical implications of these findings; extend the debate to other types of training such as spatial training, brain training, and video games; and conclude that far transfer of learning rarely occurs.
Hu, Xiaochen; Ackermann, Hermann; Martin, Jason A; Erb, Michael; Winkler, Susanne; Reiterer, Susanne M
2013-12-01
Individual differences in second language (L2) aptitude have been assumed to depend upon a variety of cognitive and personality factors. Especially, the cognitive factor phonological working memory has been conceptualised as language learning device. However, strong associations between phonological working memory and L2 aptitude have been previously found in early-stage learners only, not in advanced learners. The current study aimed at investigating the behavioural and neurobiological predictors of advanced L2 learning. Our behavioural results showed that phonetic coding ability and empathy, but not phonological working memory, predict L2 pronunciation aptitude in advanced learners. Second, functional neuroimaging revealed this behavioural trait to be correlated with hemodynamic responses of the cerebral network of speech motor control and auditory-perceptual areas. We suggest that the acquisition of L2 pronunciation aptitude is a dynamic process, requiring a variety of neural resources at different processing stages over time. Copyright © 2012 Elsevier Inc. All rights reserved.
A Probabilistic Model of Social Working Memory for Information Retrieval in Social Interactions.
Li, Liyuan; Xu, Qianli; Gan, Tian; Tan, Cheston; Lim, Joo-Hwee
2018-05-01
Social working memory (SWM) plays an important role in navigating social interactions. Inspired by studies in psychology, neuroscience, cognitive science, and machine learning, we propose a probabilistic model of SWM to mimic human social intelligence for personal information retrieval (IR) in social interactions. First, we establish a semantic hierarchy as social long-term memory to encode personal information. Next, we propose a semantic Bayesian network as the SWM, which integrates the cognitive functions of accessibility and self-regulation. One subgraphical model implements the accessibility function to learn the social consensus about IR-based on social information concept, clustering, social context, and similarity between persons. Beyond accessibility, one more layer is added to simulate the function of self-regulation to perform the personal adaptation to the consensus based on human personality. Two learning algorithms are proposed to train the probabilistic SWM model on a raw dataset of high uncertainty and incompleteness. One is an efficient learning algorithm of Newton's method, and the other is a genetic algorithm. Systematic evaluations show that the proposed SWM model is able to learn human social intelligence effectively and outperforms the baseline Bayesian cognitive model. Toward real-world applications, we implement our model on Google Glass as a wearable assistant for social interaction.
Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella
2010-11-12
The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.
Buchy, L.; Czechowska, Y.; Chochol, C.; Malla, A.; Joober, R.; Pruessner, J.; Lepage, M.
2010-01-01
Our previous work has linked verbal learning and memory with cognitive insight, but not clinical insight, in individuals with a first-episode psychosis (FEP). The current study reassessed the neurocognitive basis of cognitive and clinical insight and explored their neural basis in 61 FEP patients. Cognitive insight was measured with the Beck Cognitive Insight Scale (BCIS) and clinical insight with the Scale to assess Unawareness of Mental Disorder (SUMD). Global measures for 7 domains of cognition were examined. Hippocampi were manually segmented in to 3 parts: the body, head, and tail. Verbal learning and memory significantly correlated with the BCIS composite index. Composite index scores were significantly associated with total left hippocampal (HC) volume; partial correlations, however, revealed that this relationship was attributable largely to verbal memory performance. The BCIS self-certainty subscale significantly and inversely correlated with bilateral HC volumes, and these associations were independent of verbal learning and memory performance. The BCIS self-reflectiveness subscale significantly correlated with verbal learning and memory but not with HC volume. No significant correlations emerged between the SUMD and verbal memory or HC volume. These results strengthen our previous assertion that in individuals with an FEP cognitive insight may rely on memory whereby current experiences are appraised based on previous ones. The HC may be a viable location among others for the brain system that underlies aspects of cognitive insight in individuals with an FEP. PMID:19346315
The touchscreen operant platform for testing learning and memory in rats and mice
Horner, Alexa E.; Heath, Christopher J.; Hvoslef-Eide, Martha; Kent, Brianne A.; Kim, Chi Hun; Nilsson, Simon R. O.; Alsiö, Johan; Oomen, Charlotte A.; Holmes, Andrew; Saksida, Lisa M.; Bussey, Timothy J.
2014-01-01
Summary An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive, rather than aversive reinforcement), has high translational potential, and lends itself to a high degree of standardisation and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer’s disease, schizophrenia, Huntington’s disease, frontotemporal dementia), and characterisation of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: Visual Discrimination, Object-Location Paired-Associates Learning, Visuomotor Conditional Learning and Autoshaping. It is accompanied by two further protocols using the touchscreen platform to assess executive function, working memory and pattern separation. PMID:24051959
Dynamic reconfiguration of human brain functional networks through neurofeedback.
Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri
2013-11-01
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Young, Bernard
2012-01-01
Photography students spend a considerable amount of time working on technical issues in shooting, composing, editing, and processing prints. Another aspect of their learning should include the conception and communication of their ideas. A student's memories and dreams can serve as motivation to create images in visual art. Some artists claim that…
Soar: A Unified Theory of Cognition?
ERIC Educational Resources Information Center
Waldrop, M. Mitchell
1988-01-01
Describes an artificial intelligence system known as SOAR that approximates a theory of human cognition. Discusses cognition as problem solving, working memory, long term memory, autonomy and adaptability, and learning from experience as they relate to artificial intelligence generally and to SOAR specifically. Highlights the status of the…
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2012-01-01
This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331
How Common are WM Deficits in Children with Difficulties in Reading and Mathematics?
Gathercole, Susan E; Woolgar, Francesca; Kievit, Rogier A; Astle, Duncan; Manly, Tom; Holmes, Joni
2016-12-01
The extent to which deficits in working memory (WM) are characteristic of children with reading and mathematics difficulties was investigated in a large sample aged 5-15 years reported to have problems in attention, learning and memory. WM performance was highly correlated with reading and mathematics scores. Although deficits in individual tests of short-term memory (STM) and WM occurred in less than half of the children with detected learning difficulties, three-quarters of the children with low reading and mathematics scores obtained one or more WM scores in the deficit range. These findings are consistent with proposals that WM or the broader cognitive dimensions it taps impede school-based learning, and point to the importance of managing WM loads in the classroom.
Non-declarative memory in the rehabilitation of amnesia.
Cavaco, S; Malec, J F; Bergquist, T
2005-09-01
The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.
The misnomer of attention-deficit hyperactivity disorder.
Wasserman, Theodore; Wasserman, Lori Drucker
2015-01-01
We propose that attention-deficit disorder represents an inefficiency of an integrated system designed to allocate working memory to designated tasks rather than the absence or dysfunction of a particular form of attention. A significant portion of this inefficiency in the allocation of working memory represents poor engagement of the reward circuit with distinct circuits of learning and performance that control instrumental conditioning (learning). Efficient attention requires the interaction of these circuits. For a significant percentage of individuals who present with attention-deficit disorder, their problems represent the engagement, or lack thereof, of the motivational and reward circuit as opposed to problems, or disorders of attention traditionally defined as problems with orienting, focusing, and sustaining. We demonstrate that there is an integrated system of working-memory allocation that responds by recruiting relevant aspects of both cortex and subcortex to the demands of the task being encountered. In this model, attention is viewed as a gating function determined by novelty, flight-or-fight response, and reward history/valence affecting motivation. We view the traditional models of attention, rather than describe specific types of attention per se, as representing the description of the behavioral output of this integrated orienting and engagement system designed to allocate working memory to task-specific stimuli.
The Role of Cognitive Load in Intentional Forgetting Using the Think/No-Think Task.
Noreen, Saima; de Fockert, Jan W
2017-01-01
We investigated the role of cognitive control in intentional forgetting by manipulating working memory load during the think/no-think task. In two experiments, participants learned a series of cue-target word pairs and were asked to recall the target words associated with some cues or to avoid thinking about the target associated with other cues. In addition to this, participants also performed a modified version of the n-back task which required them to respond to the identity of a single target letter present in the currently presented cue word (n = 0 condition, low working memory load), and in either the previous cue word (n = 1 condition, high working memory load, Experiment 1) or the cue word presented two trials previously (n = 2 condition, high working memory load, Experiment 2). Participants' memory for the target words was subsequently tested using same and novel independent probes. In both experiments it was found that although participants were successful at forgetting on both the same and independent-probe tests in the low working memory load condition, they were only successful at forgetting on the same-probe test in the high working memory load condition. We argue that our findings suggest that the high load working memory task diverted attention from direct suppression and acted as an interference-based strategy. Thus, when cognitive resources are limited participants can switch between the strategies they use to prevent unwanted memories from coming to mind.
Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect
Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto
2013-01-01
Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search). PMID:23607935
Synchrony and desynchrony in circadian clocks: impacts on learning and memory
Krishnan, Harini C.
2015-01-01
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation. PMID:26286653
Information processing efficiency in patients with multiple sclerosis.
Archibald, C J; Fisk, J D
2000-10-01
Reduced information processing efficiency, consequent to impaired neural transmission, has been proposed as underlying various cognitive problems in patients with Multiple Sclerosis (MS). This study employed two measures developed from experimental psychology that control for the potential confound of perceptual-motor abnormalities (Salthouse, Babcock, & Shaw, 1991; Sternberg, 1966, 1969) to assess the speed of information processing and working memory capacity in patients with mild to moderate MS. Although patients had significantly more cognitive complaints than neurologically intact matched controls, their performance on standard tests of immediate memory span did not differ from control participants and their word list learning was within normal limits. On the experimental measures, both relapsing-remitting and secondary-progressive patients exhibited significantly slowed information processing speed relative to controls. However, only the secondary-progressive patients had an additional decrement in working memory capacity. Depression, fatigue, or neurologic disability did not account for performance differences on these measures. While speed of information processing may be slowed early in the disease process, deficits in working memory capacity may appear only as there is progression of MS. It is these latter deficits, however, that may underlie the impairment of new learning that patients with MS demonstrate.
Daikhin, Luba; Ahissar, Merav
2015-07-01
Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.
Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan
2017-03-20
Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.
Prefrontal Dopamine in Associative Learning and Memory
Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.
2014-01-01
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063
Prefrontal dopamine in associative learning and memory.
Puig, M V; Antzoulatos, E G; Miller, E K
2014-12-12
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Rapeli, Pekka; Fabritius, Carola; Kalska, Hely; Alho, Hannu
2009-04-17
Opioid-substitution treatment (OST) for opioid dependence (OD) has proven effective in retaining patients in treatment and reducing illegal opiate abuse and crime. Consequently, the World Health Organization (WHO) has listed the opioid agonists methadone and buprenorphine as essential drugs for OD that should be available worldwide. In many areas of the world, OD is often associated with concomitant benzodiazepine (BZD) dependence and abuse, which complicates treatment. However, possible changes in the cognitive functioning of these patients are not well-known. The present study is the first to examine longitudinal stability of memory function in OST patients with BZD use, thus providing a new tool for health policy authorities in evaluating the usefulness of OST. Within the first two months (T1) and between 6-9 months (T2) after OST admission, we followed the working memory, immediate verbal memory, and memory consolidation of 13 methadone- and 15 buprenorphine- or buprenorphine/naloxone-treated patients with BZD dependence or abuse disorder. The results were compared to those of fifteen normal comparison participants. All participants also completed a self-reported memory complaint questionnaire on both occasions. Both patient groups performed statistically significantly worse than normal comparison participants in working memory at time points T1 and T2. In immediate verbal memory, as measured by list learning at T1, patients scored lower than normal comparison participants. Both patient groups reported significantly more subjective memory problems than normal comparison participants. Patients with more memory complaints recalled fewer items at T2 from the verbal list they had learned at T1 than those patients with fewer memory complaints. The significance of the main analyses remained nearly the same when the statistical tests were performed without buprenorphine-only patients leaving 12 patients to buprenorphine/naloxone group. Working memory may be persistently affected in OST patients with BZD use. A high number of memory complaints among OST patients with BZD use may indicate memory consolidation impairment. These findings show that recovery of memory function in OD patients treated along with BZDs takes time, and their memory complaints may have practical relevance.
Lexical Integration of Novel Words without Sleep
ERIC Educational Resources Information Center
Lindsay, Shane; Gaskell, M. Gareth
2013-01-01
Learning a new word involves integration with existing lexical knowledge. Previous work has shown that sleep-associated memory consolidation processes are important for the engagement of novel items in lexical competition. In 3 experiments we used spaced exposure regimes to investigate memory for novel words and whether lexical integration can…
Learning STEM through Integrative Visual Representations
ERIC Educational Resources Information Center
Virk, Satyugjit Singh
2013-01-01
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with…
Lee, Linda; Weston, W Wayne; Hillier, Loretta; Archibald, Douglas; Lee, Joseph
2018-06-21
Family physicians often find themselves inadequately prepared to manage dementia. This article describes the curriculum for a resident training intervention in Primary Care Collaborative Memory Clinics (PCCMC), outlines its underlying educational principles, and examines its impact on residents' ability to provide dementia care. PCCMCs are family physician-led interprofessional clinic teams that provide evidence-informed comprehensive assessment and management of memory concerns. Within PCCMCs residents learn to apply a structured approach to assessment, diagnosis, and management; training consists of a tutorial covering various topics related to dementia followed by work-based learning within the clinic. Significantly more residents who trained in PCCMCs (sample = 98), as compared to those in usual training programs (sample = 35), reported positive changes in knowledge, ability, and confidence in ability to assess and manage memory problems. The PCCMC training intervention for family medicine residents provides a significant opportunity for residents to learn about best clinical practices and interprofessional care needed for optimal dementia care integrated within primary care practice.
Sandberg, Petra; Rönnlund, Michael; Derwinger-Hallberg, Anna; Stigsdotter Neely, Anna
2016-10-01
The study investigated the relationship between cognitive factors and gains in number recall following training in a number-consonant mnemonic in a sample of 112 older adults (M = 70.9 years). The cognitive factors examined included baseline episodic memory, working memory, processing speed, and verbal knowledge. In addition, predictors of maintenance of gains to a follow-up assessment, eight months later, were examined. Whereas working memory was a prominent predictor of baseline recall, the magnitude of gains in recall from pre- to post-test assessments were predicted by baseline episodic memory, processing speed, and verbal knowledge. Verbal knowledge was the only significant predictor of maintenance. Collectively, the results indicate the need to consider multiple factors to account for individual differences in memory plasticity. The potential contribution of additional factors to individual differences in memory plasticity is discussed.
Learning to recognize objects on the fly: a neurally based dynamic field approach.
Faubel, Christian; Schöner, Gregor
2008-05-01
Autonomous robots interacting with human users need to build and continuously update scene representations. This entails the problem of rapidly learning to recognize new objects under user guidance. Based on analogies with human visual working memory, we propose a dynamical field architecture, in which localized peaks of activation represent objects over a small number of simple feature dimensions. Learning consists of laying down memory traces of such peaks. We implement the dynamical field model on a service robot and demonstrate how it learns 30 objects from a very small number of views (about 5 per object are sufficient). We also illustrate how properties of feature binding emerge from this framework.
The impact of modality and working memory capacity on achievement in a multimedia environment
NASA Astrophysics Data System (ADS)
Stromfors, Charlotte M.
This study explored the impact of working memory capacity and student learning in a dual modality, multimedia environment titled Visualizing Topography. This computer-based instructional program focused on the basic skills in reading and interpreting topographic maps. Two versions of the program presented the same instructional content but varied the modality of verbal information: the audio-visual condition coordinated topographic maps and narration; the visual-visual condition provided the same topographic maps with readable text. An analysis of covariance procedure was conducted to evaluate the effects due to the two conditions in relation to working memory capacity, controlling for individual differences in spatial visualization and prior knowledge. The scores on the Figural Intersection Test were used to separate subjects into three levels in terms of their measured working memory capacity: low, medium, and high. Subjects accessed Visualizing Topography by way of the Internet and proceeded independently through the program. The program architecture was linear in format. Subjects had a minimum amount of flexibility within each of five segments, but not between segments. One hundred and fifty-one subjects were randomly assigned to either the audio-visual or the visual-visual condition. The average time spent in the program was thirty-one minutes. The results of the ANCOVA revealed a small to moderate modality effect favoring an audio-visual condition. The results also showed that subjects with low and medium working capacity benefited more from the audio-visual condition than the visual-visual condition, while subjects with a high working memory capacity did not benefit from either condition. Although splitting the data reduced group sizes, ANCOVA results by gender suggested that the audio-visual condition favored females with low working memory capacities. The results have implications for designers of educational software, the teachers who select software, and the students themselves. Splitting information into two, non-redundant sources, one audio and one visual, may effectively extend working memory capacity. This is especially significant for the student population encountering difficult science concepts that require the formation and manipulation of mental representations. It is recommended that multimedia environments be designed or selected with attention to modality conditions that facilitate student learning.
Knoblauch, Andreas; Körner, Edgar; Körner, Ursula; Sommer, Friedrich T.
2014-01-01
Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect. PMID:24858841
Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.
Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero
2016-12-01
Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.
Oberauer, Klaus; Lange, Elke B
2009-02-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.
Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition
Robbins, Trevor W.; Murphy, Emily R.
2006-01-01
Behavioural pharmacology is an interdisciplinary field at the intersection of several research areas that ultimately lead to the development of drugs for clinical use and build understanding of how brain functions enable cognition and behaviour. In this article, the development of behavioural pharmacology in the UK is briefly surveyed, and the current status and success of the field is highlighted by the progress in our understanding of learning and memory that has resulted from discoveries in glutamate receptor pharmacology allied to theoretical and methodological advances in behavioural neuroscience. We describe the original breakthrough in terms of the role of NMDA receptors in hippocampal-mediated spatial learning and long-term potentiation, and review recent advances that demonstrate the involvement of glutamate receptor in working memory, recognition memory, stimulus–response learning and memory, and higher cognitive functions. We also discuss the unique functions of NMDA receptors and the fundamental role of AMPA receptors in processes that are common to some of these forms of memory, including encoding, consolidation and retrieval. PMID:16490260
ERIC Educational Resources Information Center
Clarke, Steve; Jenner, Simon
2006-01-01
The article describes how one Educational Psychology Service in the UK developed a service delivery based on self-organised learning (SOL). This model is linked to the paradigms and discourses within which educational psychology and special educational needs work. The work described here is dedicated to the memory of Brian Roberts, academic, close…
Stillbirth and stigma: the spoiling and repair of multiple social identities.
Brierley-Jones, Lyn; Crawley, Rosalind; Lomax, Samantha; Ayers, Susan
This study investigated mothers' experiences surrounding stillbirth in the United Kingdom, their memory making and sharing opportunities, and the effect these opportunities had on them. Qualitative data were generated from free text responses to open-ended questions. Thematic content analysis revealed that "stigma" was experienced by most women and Goffman's (1963) work on stigma was subsequently used as an analytical framework. Results suggest that stillbirth can spoil the identities of "patient," "mother," and "full citizen." Stigma was reported as arising from interactions with professionals, family, friends, work colleagues, and even casual acquaintances. Stillbirth produces common learning experiences often requiring "identity work" (Murphy, 2012). Memory making and sharing may be important in this work and further research is needed. Stigma can reduce the memory sharing opportunities for women after stillbirth and this may explain some of the differential mental health effects of memory making after stillbirth that is documented in the literature.
Characterizing Rule-Based Category Learning Deficits in Patients with Parkinson's Disease
ERIC Educational Resources Information Center
Filoteo, J. Vincent; Maddox, W. Todd; Ing, A. David; Song, David D.
2007-01-01
Parkinson's disease (PD) patients and normal controls were tested in three category learning experiments to determine if previously observed rule-based category learning impairments in PD patients were due to deficits in selective attention or working memory. In Experiment 1, optimal categorization required participants to base their decision on a…
ERIC Educational Resources Information Center
Manning, Corinne
2010-01-01
The following article outlines the methodological approach used to include people with learning disabilities as active participants in an oral history produced in Australia. The history sought to document life inside Kew Cottages, Australia's oldest and largest specialised institution for people with learning disabilities. This work furthers…
Contributions of Associative Learning to Age and Individual Differences in Fluid Intelligence
ERIC Educational Resources Information Center
Tamez, Elaine; Myerson, Joel; Hale, Sandra
2012-01-01
According to the cognitive cascade hypothesis, age-related slowing results in decreased working memory, which in turn affects higher-order cognition. Because recent studies show complex associative learning correlates highly with fluid intelligence, the present study examined the role of complex associative learning in cognitive cascade models of…
ERIC Educational Resources Information Center
Rast, Philippe
2011-01-01
The present study aimed at modeling individual differences in a verbal learning task by means of a latent structured growth curve approach based on an exponential function that yielded 3 parameters: initial recall, learning rate, and asymptotic performance. Three cognitive variables--speed of information processing, verbal knowledge, working…
Expressive writing in people with traumatic brain injury and learning disability.
Wheeler, Lisa; Nickerson, Sherry; Long, Kayla; Silver, Rebecca
2014-01-01
There is a dearth of systematic studies of expressive writing disorder (EWD) in persons with Traumatic Brain Injury (TBI). It is unclear if TBI survivors' written expression differs significantly from that experienced by persons with learning disabilities. It is also unclear which cognitive or neuropsychological variables predict problems with expressive writing (EW) or the EWD. This study investigated the EW skill, and the EWD in adults with mild traumatic brain injuries (TBI) relative to those with learning disabilities (LD). It also determined which of several cognitive variables predicted EW and EWD. Principle Component Analysis (PCA) of writing samples from 28 LD participants and 28 TBI survivors revealed four components of expressive writing skills: Reading Ease, Sentence Fluency, Grammar and Spelling, and Paragraph Fluency. There were no significant differences between the LD and TBI groups on any of the expressive writing components. Several neuropsychological variables predicted skills of written expression. The best predictors included measures of spatial perception, verbal IQ, working memory, and visual memory. TBI survivors and persons with LD do not differ markedly in terms of expressive writing skill. Measures of spatial perception, visual memory, verbal intelligence, and working memory predict writing skill in both groups. Several therapeutic interventions are suggested that are specifically designed to improve deficits in expressive writing skills in individuals with TBI and LD.
Jou, Jerwen
2014-10-01
Subjects performed Sternberg-type memory recognition tasks (Sternberg paradigm) in four experiments. Category-instance names were used as learning and testing materials. Sternberg's original experiments demonstrated a linear relation between reaction time (RT) and memory-set size (MSS). A few later studies found no relation, and other studies found a nonlinear relation (logarithmic) between the two variables. These deviations were used as evidence undermining Sternberg's serial scan theory. This study identified two confounding variables in the fixed-set procedure of the paradigm (where multiple probes are presented at test for a learned memory set) that could generate a MSS RT function that was either flat or logarithmic rather than linearly increasing. These two confounding variables were task-switching cost and repetition priming. The former factor worked against smaller memory sets and in favour of larger sets whereas the latter factor worked in the opposite way. Results demonstrated that a null or a logarithmic RT-to-MSS relation could be the artefact of the combined effects of these two variables. The Sternberg paradigm has been used widely in memory research, and a thorough understanding of the subtle methodological pitfalls is crucial. It is suggested that a varied-set procedure (where only one probe is presented at test for a learned memory set) is a more contamination-free procedure for measuring the MSS effects, and that if a fixed-set procedure is used, it is worthwhile examining the RT function of the very first trials across the MSSs, which are presumably relatively free of contamination by the subsequent trials.
Ranganathan, M; DeMartinis, N; Huguenel, B; Gaudreault, F; Bednar, M M; Shaffer, C L; Gupta, S; Cahill, J; Sherif, M A; Mancuso, J; Zumpano, L; D'Souza, D C
2017-11-01
There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the preclinical (rat, NHP) and human studies with PF-04958242, and in silico modeling of AMPAR-NMDAR interactions in the hippocampus, highlights the translational value of this study.
Llano Lopez, L; Hauser, J; Feldon, J; Gargiulo, P A; Yee, B K
2010-05-01
The Morris water maze (WM) is a common spatial memory test in rats. It has been adapted for evaluating genetic manipulations in mice. One major acknowledged problem of this cross-species translation is floating. We investigated here in mice the feasibility and practicality of an alternative paradigm-the cheeseboard (CB), which is a dry version of the WM, in a within-subject design allowing direct comparison with the conventional WM. Under identical task demands (reference or working memory), mice learned in the CB as efficiently as in the WM. Furthermore, individual differences in learning rate correlated between the two reference memory tests conducted separately in the two mazes. However, no such correlation was found with respect to reference memory retention or working memory performance. This study demonstrated that the CB is an effective alternative to the WM as spatial cognition test. Additional tests in the CB confirmed that the mice relied on extra maze cues in their spatial search. We would recommend the CB as a valuable addition to, rather than a replacement of the WM in phenotyping transgenic mice, because the two apparatus might diverge in the ability to detect individual differences in various domains of mnemonic functions.
2010-12-01
Psychology– Learning , Memory and Cognition , 13, 344-349. Bahrick, H. P., & Hall, L. K. (1991a). Lifetime maintenance of high school mathematics content...been through an initiation ceremony—a novice who has begun introductory instruction . APPRENTICE Literally, one who is learning —a student undergoing...area of medical education, Problem-Based Learning is an instructional method that has students collaborate in work on challenging practical problems
Rosemann, Stephanie; Gießing, Carsten; Özyurt, Jale; Carroll, Rebecca; Puschmann, Sebastian; Thiel, Christiane M.
2017-01-01
Noise-vocoded speech is commonly used to simulate the sensation after cochlear implantation as it consists of spectrally degraded speech. High individual variability exists in learning to understand both noise-vocoded speech and speech perceived through a cochlear implant (CI). This variability is partly ascribed to differing cognitive abilities like working memory, verbal skills or attention. Although clinically highly relevant, up to now, no consensus has been achieved about which cognitive factors exactly predict the intelligibility of speech in noise-vocoded situations in healthy subjects or in patients after cochlear implantation. We aimed to establish a test battery that can be used to predict speech understanding in patients prior to receiving a CI. Young and old healthy listeners completed a noise-vocoded speech test in addition to cognitive tests tapping on verbal memory, working memory, lexicon and retrieval skills as well as cognitive flexibility and attention. Partial-least-squares analysis revealed that six variables were important to significantly predict vocoded-speech performance. These were the ability to perceive visually degraded speech tested by the Text Reception Threshold, vocabulary size assessed with the Multiple Choice Word Test, working memory gauged with the Operation Span Test, verbal learning and recall of the Verbal Learning and Retention Test and task switching abilities tested by the Comprehensive Trail-Making Test. Thus, these cognitive abilities explain individual differences in noise-vocoded speech understanding and should be considered when aiming to predict hearing-aid outcome. PMID:28638329
Grimes, Matthew T; Harley, Carolyn W; Darby-King, Andrea; McLean, John H
2012-02-21
Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.
Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus
Goh, Jinzhong Jeremy
2013-01-01
Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536
Fedotova, Iu O
2014-03-01
The present work was devoted to the comparative analysis of α4β2 nicotinic acetylcholine receptors (nAChRs) in learning/memory processes during ovary cycle in the adult female rats. RJR-2403 (1.0 mg/kg, i. p.), α4β2 nAChRs agonist and mecamylamine (1.0 mg/kg, i. p.), α4β2 nAChRs antagonist were injected chronically during 14 days. The processes of learning/memory were assessed in different models of learning: passive avoidance performance and Morris water maze. Chronic RJR-2403 administration to females improved the passive avoidance performance in proestrous and estrous as compared to the control animals. Also, RJR-2403 restored spatial learning of rats during proestrous phases in Morris water maze, and stimulated the dynamics of spatial learning during estrous phases. On the contrary, the chronic mecamylamine administration impaired non-spatial, and especially, spatial learning in females during key phases of ovary cycle. The results of the study suggest positive effect of α4β2 nAChRs stimulation in learning/memory processes during ovary cycle in the adult female rats.
The Demise of the Synapse As the Locus of Memory: A Looming Paradigm Shift?
Trettenbrein, Patrick C
2016-01-01
Synaptic plasticity is widely considered to be the neurobiological basis of learning and memory by neuroscientists and researchers in adjacent fields, though diverging opinions are increasingly being recognized. From the perspective of what we might call "classical cognitive science" it has always been understood that the mind/brain is to be considered a computational-representational system. Proponents of the information-processing approach to cognitive science have long been critical of connectionist or network approaches to (neuro-)cognitive architecture, pointing to the shortcomings of the associative psychology that underlies Hebbian learning as well as to the fact that synapses are practically unfit to implement symbols. Recent work on memory has been adding fuel to the fire and current findings in neuroscience now provide first tentative neurobiological evidence for the cognitive scientists' doubts about the synapse as the (sole) locus of memory in the brain. This paper briefly considers the history and appeal of synaptic plasticity as a memory mechanism, followed by a summary of the cognitive scientists' objections regarding these assertions. Next, a variety of tentative neuroscientific evidence that appears to substantiate questioning the idea of the synapse as the locus of memory is presented. On this basis, a novel way of thinking about the role of synaptic plasticity in learning and memory is proposed.
Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.
Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R
2014-11-01
Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Contribution of neurocognition to 18-month employment outcomes in first-episode psychosis.
Karambelas, George J; Cotton, Sue M; Farhall, John; Killackey, Eóin; Allott, Kelly A
2017-10-27
To examine whether baseline neurocognition predicts vocational outcomes over 18 months in patients with first-episode psychosis enrolled in a randomized controlled trial of Individual Placement and Support or treatment as usual. One-hundred and thirty-four first-episode psychosis participants completed an extensive neurocognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying structure of the battery. Setwise (hierarchical) multiple linear and logistic regressions were used to examine predictors of (1) total hours employed over 18 months and (2) employment status, respectively. Neurocognition factors were entered in the models after accounting for age, gender, premorbid IQ, negative symptoms, treatment group allocation and employment status at baseline. Five neurocognitive factors were extracted: (1) processing speed, (2) verbal learning and memory, (3) knowledge and reasoning, (4) attention and working memory and (5) visual organization and memory. Employment status over 18 months was not significantly predicted by any of the predictors in the final model. Total hours employed over 18 months were significantly predicted by gender (P = .027), negative symptoms (P = .032) and verbal learning and memory (P = .040). Every step of the regression model was a significant predictor of total hours worked overall (final model: P = .013). Verbal learning and memory, negative symptoms and gender were implicated in duration of employment in first-episode psychosis. The other neurocognitive domains did not significantly contribute to the prediction of vocational outcomes over 18 months. Interventions targeting verbal memory may improve vocational outcomes in early psychosis. © 2017 John Wiley & Sons Australia, Ltd.
Mahoney, James J; Jackson, Brian J; Kalechstein, Ari D; De La Garza, Richard; Newton, Thomas F
2011-03-30
Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing neurocognitive impairment. Copyright © 2010 Elsevier B.V. All rights reserved.
Wezenberg, E; Verkes, R J; Sabbe, B G C; Ruigt, G S F; Hulstijn, W
2005-09-01
The central cholinergic system is implicated in cognitive functioning. The dysfunction of this system is expressed in many diseases like Alzheimer's disease, dementia of Lewy body, Parkinson's disease and vascular dementia. In recent animal studies, it was found that selective cholinergic modulation affects visuospatial processes even more than memory function. In the current study, we tried to replicate those findings. In order to investigate the acute effects of cholinergic drugs on memory and visuospatial functions, a selective anticholinergic drug, biperiden, was compared to a selective acetylcholinesterase-inhibiting drug, rivastigmine, in healthy elderly subjects. A double-blind, placebo-controlled, randomised, cross-over study was performed in 16 healthy, elderly volunteers (eight men, eight women; mean age 66.1, SD 4.46 years). All subjects received biperiden (2 mg), rivastigmine (3 mg) and placebo with an interval of 7 days between them. Testing took place 1 h after drug intake (which was around Tmax for both drugs). Subjects were presented with tests for episodic memory (wordlist and picture memory), working memory tasks (N-back, symbol recall) and motor learning (maze task, pursuit rotor). Visuospatial abilities were assessed by tests with high visual scanning components (tangled lines and Symbol Digit Substitution Test). Episodic memory was impaired by biperiden. Rivastigmine impaired recognition parts of the episodic memory performance. Working memory was non-significantly impaired by biperiden and not affected by rivastigmine. Motor learning as well as visuospatial processes were impaired by biperiden and improved by rivastigmine. These results implicate acetylcholine as a modulator not only of memory but also of visuospatial abilities.
Kuroishi, Rita Cristina Sadako; Garcia, Ricardo Basso; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma Terezinha; Fukuda, Marisa Tomoe Hebihara
2015-01-01
Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. Analytical cross-sectional study with control group conducted in a public university hospital. 42 children (mean age = 8.7 years) who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years) matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords), reading comprehension and arithmetic skills. Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006), arithmetic (P = 0.025) and working memory for pseudowords (P = 0.002), but not for numbers (P = 0.76). Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.
Memory profiles of Down, Williams, and fragile X syndromes: implications for reading development.
Conners, Frances A; Moore, Marie S; Loveall, Susan J; Merrill, Edward C
2011-06-01
The purpose of this review was to understand the types of memory impairments that are associated with intellectual disability (ID, formerly called mental retardation) and the implications of these impairments for reading development. Specifically, studies on working memory, delayed memory and learning, and semantic/conceptual memory in Down syndrome, Williams syndrome, and fragile X syndrome were examined. A distinct memory profile emerged for each of the 3 etiologies of ID. Memory profiles are discussed in relation to strengths and weaknesses in reading skills in these three etiologies. We suggest that reading instruction be designed to capitalize on relatively stronger memory skills while providing extra support for especially challenging aspects of reading.
The 5-HT7 receptor in learning and memory. Importance of the hippocampus
Roberts, Amanda J.; Hedlund, Peter B.
2011-01-01
The 5-HT7 receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. The present paper reviews to what extent the use of animal models of learning and memory and other techniques have implicated the 5-HT7 receptor in such processes. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior and cellular mechanisms. In tests such as the Barnes maze, contextual fear conditioning and novel location recognition that involve spatial learning and memory there is a considerable amount of evidence supporting an involvement of the 5-HT7 receptor. Supporting evidence has also been obtained in studies of mRNA expression and cellular signaling as well as in electrophysiological experiments. Especially interesting are the subtle but distinct effects observed in hippocampus-dependent models of place learning where impairments have been described in mice lacking the 5-HT7 receptor or after administration of a selective antagonist. While more work is required, it appears that 5-HT7 receptors are particularly important in allocentric representation processes. In instrumental learning tasks both procognitive effects and impairments in memory have been observed using pharmacological tools targeting the 5-HT7 receptor. In conclusion, the use of pharmacological and genetic tools in animal studies of learning and memory suggest a potentially important role for the 5-HT7 receptor in cognitive processes. PMID:21484935
Forgetting, Reminding, and Remembering: The Retrieval of Lost Spatial Memory
Morris, Richard G. M
2004-01-01
Retrograde amnesia can occur after brain damage because this disrupts sites of storage, interrupts memory consolidation, or interferes with memory retrieval. While the retrieval failure account has been considered in several animal studies, recent work has focused mainly on memory consolidation, and the neural mechanisms responsible for reactivating memory from stored traces remain poorly understood. We now describe a new retrieval phenomenon in which rats' memory for a spatial location in a watermaze was first weakened by partial lesions of the hippocampus to a level at which it could not be detected. The animals were then reminded by the provision of incomplete and potentially misleading information—an escape platform in a novel location. Paradoxically, both incorrect and correct place information reactivated dormant memory traces equally, such that the previously trained spatial memory was now expressed. It was also established that the reminding procedure could not itself generate new learning in either the original environment, or in a new training situation. The key finding is the development of a protocol that definitively distinguishes reminding from new place learning and thereby reveals that a failure of memory during watermaze testing can arise, at least in part, from a disruption of memory retrieval. PMID:15314651
Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning
Bath, Kevin G.; Daw, Nathaniel D.; Frank, Michael J.
2016-01-01
Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by “model-free” learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by “model-based” learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. SIGNIFICANCE STATEMENT Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies. PMID:26818509
Behavioral decoding of working memory items inside and outside the focus of attention.
Mallett, Remington; Lewis-Peacock, Jarrod A
2018-03-31
How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority. © 2018 New York Academy of Sciences.
Rethinking the connection between working memory and language impairment.
Archibald, Lisa M D; Harder Griebeling, Katherine
2016-05-01
Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. To examine the processing function of working memory in children with low language (LL) by employing tasks imposing increasing processing loads with constant storage demands individually adjusted based on each participant's short-term memory capacity. School-age groups with LL (n = 17) and typical language with either average (n = 28) or above-average nonverbal intelligence (n = 15) completed complex working memory-span tasks varying processing load while keeping storage demands constant, varying storage demands while keeping processing load constant, simple storage-span tasks, and measures of language and nonverbal intelligence. Teachers completed questionnaires about cognition and learning. Significantly lower scores were found for the LL than either matched group on storage-based tasks, but no group differences were found on the tasks varying processing load. Teachers' ratings of oral expression and mathematics abilities discriminated those who did or did not complete the most challenging cognitive tasks. The results implicate a deficit in the phonological storage but not in the central executive component of working memory for children with LL. Teacher ratings may reveal personality traits related to perseverance of effort in cognitive research. © 2015 Royal College of Speech and Language Therapists.
NASA Astrophysics Data System (ADS)
Hubacz, Frank, Jr.
The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was completed by comparing lab grade averages, final exam averages, and final course grade averages between the two groups. Participant mental effort survey results showed significant positive effects of technology in reducing cognitive load for two laboratory investigations. One investigation revealed a significant difference in achievement measured by lab grade average comparisons. Although results of this study are inconclusive as to the usefulness of technology-driven investigations to affect learning, recommendations for further study are discussed.
Bornstein, Aaron M.; Daw, Nathaniel D.
2013-01-01
How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation. PMID:24339770
Hara, Yoko; Naveh-Benjamin, Moshe
2015-01-01
Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.
Drosophila Courtship Conditioning As a Measure of Learning and Memory.
Koemans, Tom S; Oppitz, Cornelia; Donders, Rogier A T; van Bokhoven, Hans; Schenck, Annette; Keleman, Krystyna; Kramer, Jamie M
2017-06-05
Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits resulting from mutations in genes associated with human cognitive disorders, such as intellectual disability (ID) and autism. This work describes a methodology for testing learning and memory using a classic paradigm in Drosophila known as courtship conditioning. Male flies court females using a distinct pattern of easily recognizable behaviors. Premated females are not receptive to mating and will reject the male's copulation attempts. In response to this rejection, male flies reduce their courtship behavior. This learned reduction in courtship behavior is measured over time, serving as an indicator of learning and memory. The basic numerical output of this assay is the courtship index (CI), which is defined as the percentage of time that a male spends courting during a 10 min interval. The learning index (LI) is the relative reduction of CI in flies that have been exposed to a premated female compared to naïve flies with no previous social encounters. For the statistical comparison of LIs between genotypes, a randomization test with bootstrapping is used. To illustrate how the assay can be used to address the role of a gene relating to learning and memory, the pan-neuronal knockdown of Dihydroxyacetone phosphate acyltransferase (Dhap-at) was characterized here. The human ortholog of Dhap-at, glyceronephosphate O-acyltransferase (GNPT), is involved in rhizomelic chondrodysplasia punctata type 2, an autosomal-recessive syndrome characterized by severe ID. Using the courtship conditioning assay, it was determined that Dhap-at is required for long-term memory, but not for short-term memory. This result serves as a basis for further investigation of the underlying molecular mechanisms.
Selective white matter pathology induces a specific impairment in spatial working memory.
Coltman, Robin; Spain, Aisling; Tsenkina, Yanina; Fowler, Jill H; Smith, Jessica; Scullion, Gillian; Allerhand, Mike; Scott, Fiona; Kalaria, Rajesh N; Ihara, Masafumi; Daumas, Stephanie; Deary, Ian J; Wood, Emma; McCulloch, James; Horsburgh, Karen
2011-12-01
The integrity of the white matter is critical in regulating efficient neuronal communication and maintaining cognitive function. Damage to brain white matter putatively contributes to age-related cognitive decline. There is a growing interest in animal models from which the mechanistic basis of white matter pathology in aging can be elucidated but to date there has been a lack of systematic behavior and pathology in the same mice. Anatomically widespread, diffuse white matter damage was induced, in 3 different cohorts of C57Bl/6J mice, by chronic hypoperfusion produced by bilateral carotid stenosis. A comprehensive assessment of spatial memory (spatial reference learning and memory; cohort 1) and serial spatial learning and memory (cohort 2) using the water maze, and spatial working memory (cohort 3) using the 8-arm radial arm maze, was conducted. In parallel, a systematic assessment of white matter components (myelin, axon, glia) was conducted using immunohistochemical markers (myelin-associated glycoprotein [MAG], degraded myelin basic protein [dMBP], anti-amyloid precursor protein [APP], anti-ionized calcium-binding adapter molecule [Iba-1]). Ischemic neuronal perikarya damage, assessed using histology (hematoxylin and eosin; H&E), was absent in all shams but was present in some hypoperfused mice (2/11 in cohort 1, 4/14 in cohort 2, and 17/24 in cohort 3). All animals with neuronal perikaryal damage were excluded from further study. Diffuse white matter damage occurred, throughout the brain, in all hypoperfused mice in each cohort and was essentially absent in sham-operated controls. There was a selective impairment in spatial working memory, with all other measures of spatial memory remaining intact, in hypoperfused mice with selective white matter damage. The results demonstrate that diffuse white matter pathology, in the absence of gray matter damage, induces a selective impairment of spatial working memory. This highlights the importance of assessing parallel pathology and behavior in the same mice. Copyright © 2011. Published by Elsevier Inc.
Thai, Christine; Lim, Yen Ying; Villemagne, Victor L; Laws, Simon M; Ames, David; Ellis, Kathryn A; Rainey-Smith, Stephanie R; Martins, Ralph N; Masters, Colin L; Rowe, Christopher C; Maruff, Paul
2015-01-01
High levels of β-amyloid (Aβ) in the brain and carriage of the APOE ε4 allele have each been linked to cognitive impairment in cognitively normal (CN) older adults. However, the relationship between these two biomarkers and cognitive decline is unclear. The aim of this study was to investigate the relationship between cerebral Aβ level, APOE ε4 carrier status, and cognitive decline over 18 months, in 317 cognitively healthy (CN) older adults (47.6% males, 52.4% females) aged between 60 and 89 years (Mean = 69.9, SD = 6.8). Cognition was assessed using the Cogstate Brief Battery (CBB) and the California Verbal Learning Test, Second Edition (CVLT-II). Planned comparisons indicated that CN older adults with high Aβ who were also APOE ε4 carriers demonstrated the most pronounced decline in learning and working memory. In CN older adults who were APOE ε4 non-carriers, high Aβ was unrelated to cognitive decline in learning and working memory. Carriage of APOE ε4 in CN older adults with low Aβ was associated with a significantly increased rate of decline in learning and unexpectedly, improved cognitive performance on measures of verbal episodic memory over 18 months. These results suggest that Aβ and APOE ε4 interact to increase the rate of cognitive decline in CN older adults and provide further support for the use of Aβ and APOE ε4 as biomarkers of early Alzheimer's disease.
Warrington, Junie P.; Csiszar, Anna; Mitschelen, Matthew; Lee, Yong Woo; Sonntag, William E.
2012-01-01
Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40–50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored. PMID:22279591
Transcranial Direct Current Stimulation Modulates Neuronal Activity and Learning in Pilot Training
Choe, Jaehoon; Coffman, Brian A.; Bergstedt, Dylan T.; Ziegler, Matthias D.; Phillips, Matthew E.
2016-01-01
Skill acquisition requires distributed learning both within (online) and across (offline) days to consolidate experiences into newly learned abilities. In particular, piloting an aircraft requires skills developed from extensive training and practice. Here, we tested the hypothesis that transcranial direct current stimulation (tDCS) can modulate neuronal function to improve skill learning and performance during flight simulator training of aircraft landing procedures. Thirty-two right-handed participants consented to participate in four consecutive daily sessions of flight simulation training and received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal cortex (DLPFC) or left motor cortex (M1) in a randomized, double-blind experiment. Continuous electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were collected during flight simulation, n-back working memory, and resting-state assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in flight and n-back working memory training, confirming tDCS-related modulation of brain processes involved in executive function. This modulation corresponded to a significantly different online and offline learning rates for working memory accuracy and decreased inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks and tDCS to the right DLPFC increased midline frontal theta-band power during n-back and flight tasks. These results demonstrate a modulation of group variance in skill acquisition through an increasing in learned skill consistency in cognitive and real-world tasks with tDCS. Further, tDCS performance improvements corresponded to changes in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices, providing a stronger link between modulated neuronal function and behavior. PMID:26903841
A Resource Guide to Assistive Technology for Memory and Organization. Second Edition.
ERIC Educational Resources Information Center
McHale, Kathy; McHale, Sara, Ed.
The second edition of this guide to assistive technology for memory and organization is intended for professionals working with people who have learning disabilities, attention deficit disorders, neurological conditions, and psychological problems. It contains expanded and new appendices as well as new information about free Internet resources,…