Science.gov

Sample records for leatherback turtle migrations

  1. Navigational challenges in the oceanic migrations of leatherback sea turtles

    PubMed Central

    Sale, Alessandro; Luschi, Paolo

    2009-01-01

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321

  2. Navigational challenges in the oceanic migrations of leatherback sea turtles.

    PubMed

    Sale, Alessandro; Luschi, Paolo

    2009-11-07

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2-3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium.

  3. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

    PubMed

    Jonsen, Ian D; Myers, Ransom A; James, Michael C

    2006-09-01

    1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.

  4. Coastal leatherback turtles reveal conservation hotspot

    PubMed Central

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  5. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for leatherback turtle. 226.207 Section 226.207 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters...

  6. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional

  7. Pink spot, white spot: the pineal skylight of the leatherback turtle (Dermochelys coriacea Vandelli 1761) skull and its possible role in the phenology of feeding migrations

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    Leatherback turtles, Dermochelys coriacea, which have an irregular pink area on the crown of the head known as the pineal or ‘pink spot’, forage upon jellyfish in cool temperate waters along the western and eastern margins of the North Atlantic during the summer. Our study showed that the skeletal structures underlying the pink spot in juvenile and adult turtles are compatible with the idea of a pineal dosimeter function that would support recognition of environmental light stimuli. We interrogated an extensive turtle sightings database to elucidate the phenology of leatherback foraging during summer months around Great Britain and Ireland and compared the sightings with historical data for sea surface temperatures and day lengths to assess whether sea surface temperature or light periodicity/levels were likely abiotic triggers prompting foraging turtles to turn south and leave their feeding grounds at the end of the summer. We found that sea temperature was too variable and slow changing in the study area to be useful as a trigger and suggest that shortening of day lengths as the late summer equilux is approached provides a credible phenological cue, acting via the pineal, for leatherbacks to leave their foraging areas whether they are feeding close to Nova Scotia or Great Britain and Ireland.

  8. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical...

  9. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical...

  10. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E

    2015-04-07

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense.

  11. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.

    2015-01-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  12. Behaviour and Physiology: The Thermal Strategy of Leatherback Turtles

    PubMed Central

    Bostrom, Brian L.; Jones, T. Todd; Hastings, Mervin; Jones, David R.

    2010-01-01

    Background Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 – 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters. Conclusions/Significance In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment. PMID:21085716

  13. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  14. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for leatherback turtle. 226.207 Section 226.207 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT §...

  15. Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Willis-Norton, Ellen; Hazen, Elliott L.; Fossette, Sabrina; Shillinger, George; Rykaczewski, Ryan R.; Foley, David G.; Dunne, John P.; Bograd, Steven J.

    2015-03-01

    Eastern Pacific populations of the leatherback turtle (Dermochelys coriacea) have declined by over 90% during the past three decades. The decline is primarily attributed to human pressures, including unsustainable egg harvest, development on nesting beaches, and by-catch mortality. In particular, the effects of climate change may impose additional stresses upon already threatened leatherback populations. This study analyzes how the pelagic habitat of Eastern Pacific leatherbacks may be affected by climate change over the next century. This population adheres to a persistent migration pattern; following nesting at Playa Grande, Costa Rica, individuals move rapidly through equatorial currents and into foraging habitat within the oligotrophic South Pacific Gyre. Forty-six nesting females were fitted with satellite tags. Based on the turtle positions, ten environmental variables were sampled along the tracks. Presence/absence habitat models were created to determine the oceanographic characteristics of the preferred turtle habitat. Core pelagic habitat was characterized by relatively low sea surface temperatures and chlorophyll-a. Based on these habitat models, we predicted habitat change using output from the Geophysical Fluid Dynamics Laboratory prototype Earth System Model under the Special Report on Emissions Scenario A2 (business-as-usual). Although the model predicted both habitat losses and gains throughout the region, we estimated that overall the core pelagic habitat of the Eastern Pacific leatherback population will decline by approximately 15% within the next century. This habitat modification might increase pressure on a critically endangered population, possibly forcing distributional shifts, behavioral changes, or even extinction.

  16. An oceanographic context for the foraging ecology of eastern Pacific leatherback turtles: Consequences of ENSO

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Shillinger, George L.; Swithenbank, Alan M.; Block, Barbara A.; Spotila, James R.; Musick, John A.; Paladino, Frank V.

    2008-05-01

    We analyzed some of the primary biological and physical dynamics within the eastern Pacific leatherback turtle ( Dermochelys coriacea) migration area in relation to ENSO and leatherback nesting ecology at Parque Nacional Marino Las Baulas (PNMB), Costa Rica. We used data from remote sensing to calculate resource availability via a net primary production (NPP) model, and to analyze the physical dynamics of the migration area via sea surface temperature fronts. Within the migration area, NPP north of 15°S was highly governed by interannual variability as indicated by the Multivariate ENSO Index while south of 15°S, production had a more seasonal signal. Nesting peaks of leatherbacks at PNMB were associated with cool, highly productive La Niña events and with large-scale equatorial phytoplankton blooms encompassing 110°W that were induced by iron enrichment following the termination of El Niño events. Resource availability in the northern migration area (eastern equatorial Pacific) appeared to determine the nesting response for the population at PNMB, Costa Rica. We suggest that ENSO significantly influences the nesting ecology of leatherbacks at PNMB because the majority of the population consists of pelagic foragers that strictly rely on the eastern equatorial Pacific for prey consumption prior to the nesting season. Coastal foragers may be a minority in the population because of high mortality rates associated with coastal gillnet fisheries along Central and South America.

  17. Resource Requirements of the Pacific Leatherback Turtle Population

    PubMed Central

    Jones, T. Todd; Bostrom, Brian L.; Hastings, Mervin D.; Van Houtan, Kyle S.; Pauly, Daniel; Jones, David R.

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518

  18. Resource requirements of the Pacific leatherback turtle population.

    PubMed

    Jones, T Todd; Bostrom, Brian L; Hastings, Mervin D; Van Houtan, Kyle S; Pauly, Daniel; Jones, David R

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924-1112) with the Pacific population consuming 2.1×10(6) t of jellyfish annually (range 1.0-3.7×10(6)) equivalent to 4.2×10(8) megajoules (MJ) (range 2.0-7.4×10(8)). Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×10(6) t of jellyfish or 2.2×10(8) MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.

  19. Flexible foraging movements of leatherback turtles across the North Atlantic Ocean.

    PubMed

    Hays, Graeme C; Hobson, Victoria J; Metcalfe, Julian D; Righton, David; Sims, David W

    2006-10-01

    Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.

  20. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  1. Effect of longitudinal ridges on the hydrodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2014-11-01

    Leatherback sea turtles (Dermochelys coriacea) known as the fastest swimmer and the deepest diver among marine turtles have five longitudinal ridges on their carapace, and these ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the effect of these ridges on the hydrodynamic performance of the leatherback turtle, we model a carapace with and without ridges using a stuffed leatherback turtle in the National Science Museum, Korea. We measure the drag and lift forces on the ridged model in the ranges of real leatherback turtles' Reynolds number (Re) and angle of attack (α), and compare them with those of non-ridged model. At α < 6°, longitudinal ridges decrease drag on the ridged model by up to 32% compared to non-ridged model. On the other hand, at α > 6°, the drag and lift coefficients of the ridged model are higher than those of the non-ridged model, and the lift-to-drag ratio of the ridged model is higher by about 7% than that of the non-ridged model. We also measure the velocity field around both models using a particle image velocimetry and explain the hydrodynamic role of ridges in relation to diving behaviors of leatherback sea turtles. Supported by the NRF Program (2011-0028032).

  2. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean

    PubMed Central

    Roe, John H.; Morreale, Stephen J.; Paladino, Frank V.; Shillinger, George L.; Benson, Scott R.; Eckert, Scott A.; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J.; Eguchi, Tomoharu; Dutton, Peter H.; Seminoff, Jeffrey A.; Block, Barbara A.; Spotila, James R.

    2014-01-01

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch. PMID:24403331

  3. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean.

    PubMed

    Roe, John H; Morreale, Stephen J; Paladino, Frank V; Shillinger, George L; Benson, Scott R; Eckert, Scott A; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J; Eguchi, Tomoharu; Dutton, Peter H; Seminoff, Jeffrey A; Block, Barbara A; Spotila, James R

    2014-02-22

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.

  4. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle

    NASA Astrophysics Data System (ADS)

    Fossette, Sabrina; Hobson, Victoria J.; Girard, Charlotte; Calmettes, Beatriz; Gaspar, Philippe; Georges, Jean-Yves; Hays, Graeme C.

    2010-05-01

    Understanding food web functioning through the study of natural bio-indicators may constitute a valuable and original approach. In the context of jellyfish proliferation in many overexploited marine ecosystems studying the spatio-temporal foraging patterns of the giant "jellyvore" leatherback turtle turns out to be particularly relevant. Here we analyzed long-term tracking data to assess spatio-temporal foraging patterns in 21 leatherback turtles during their pluri-annual migration in the Northern Atlantic. Through an analytical approach based on the animal's own motion (independent of currents) and diving behavior distinct zones of high and low foraging success were identified. High foraging success occurred in a sub-equatorial zone spanning the width of the Atlantic and at high (>30°N) latitudes. Between these zones in the centre of North Atlantic gyre there was low foraging success. This "ocean desert" area was traversed at high speed by leatherbacks on their way to more productive areas at higher latitudes. Animals traveled slowly in high foraging success areas and dived shallower (17.2 ± 8.0 km day - 1 and 53.6 ± 33.1 m mean ± SD respectively) than in low foraging success areas (51.0 ± 13.1 km day - 1 and 81.8 ± 56.2 m mean ± SD respectively). These spatio-temporal foraging patterns seem to relatively closely match the main features of the integrated meso-zooplankton distribution in the North Atlantic. Our method of defining high foraging success areas is intuitive and relatively easy to implement but also takes into account the impact of oceanic currents on animal's behavior.

  5. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    PubMed

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  6. Mycobacterium haemophilum infection in a juvenile leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Donnelly, Kyle; Waltzek, Thomas B; Wellehan, James F X; Stacy, Nicole I; Chadam, Maria; Stacy, Brian A

    2016-11-01

    Mycobacteriosis is infrequently reported in free-ranging sea turtles. Nontuberculous Mycobacterium haemophilum was identified as the causative agent of disseminated mycobacteriosis in a juvenile leatherback turtle (Dermochelys coriacea) that was found stranded on the Atlantic coast of Florida. Disseminated granulomatous inflammation was identified histologically, most notably affecting the nervous system. Identification of mycobacterial infection was based on cytologic, molecular, histologic, and microbiologic methods. Among stranded sea turtles received for diagnostic evaluation from the Atlantic and Gulf of Mexico coasts of the United States between 2004 and 2015, the diagnosis of mycobacteriosis was overrepresented in stranded oceanic-phase juveniles compared with larger size classes, which suggests potential differences in susceptibility or exposure among different life phases in this region. We describe M. haemophilum in a sea turtle, which contributes to the knowledge of diseases of small juvenile sea turtles, an especially cryptic life phase of the leatherback turtle.

  7. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging

  8. Leatherback Turtle Movements, Dive Behavior, and Habitat Characteristics in Ecoregions of the Northwest Atlantic Ocean

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging

  9. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras.

    PubMed

    Heaslip, Susan G; Iverson, Sara J; Bowen, W Don; James, Michael C

    2012-01-01

    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83-100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ • d(-1) but were as high as 167,797 kJ • d(-1) corresponding to turtles consuming an average of 330 kg wet mass • d(-1) (up to 840 kg • d(-1)) or approximately 261 (up to 664) jellyfish • d(-1). Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1) equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  10. Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea.

    PubMed

    Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V

    2004-01-01

    Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.

  11. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for leatherback turtles (Dermochelys coriacea). 226.207 Section 226.207 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED...

  12. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea)

    PubMed Central

    Hunt, Kathleen E.; Innis, Charles J.; Merigo, Constance; Rolland, Rosalind M.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 ‘distressed’ leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent

  13. Endocrine responses to diverse stressors of capture, entanglement and stranding in leatherback turtles (Dermochelys coriacea).

    PubMed

    Hunt, Kathleen E; Innis, Charles J; Merigo, Constance; Rolland, Rosalind M

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 'distressed' leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent moderate

  14. Behavioral inference of diving metabolic rate in free-ranging leatherback turtles.

    PubMed

    Bradshaw, Corey J A; McMahon, Clive R; Hays, Graeme C

    2007-01-01

    Good estimates of metabolic rate in free-ranging animals are essential for understanding behavior, distribution, and abundance. For the critically endangered leatherback turtle (Dermochelys coriacea), one of the world's largest reptiles, there has been a long-standing debate over whether this species demonstrates any metabolic endothermy. In short, do leatherbacks have a purely ectothermic reptilian metabolic rate or one that is elevated as a result of regional endothermy? Recent measurements have provided the first estimates of field metabolic rate (FMR) in leatherback turtles using doubly labeled water; however, the technique is prohibitively expensive and logistically difficult and produces estimates that are highly variable across individuals in this species. We therefore examined dive duration and depth data collected for nine free-swimming leatherback turtles over long periods (up to 431 d) to infer aerobic dive limits (ADLs) based on the asymptotic increase in maximum dive duration with depth. From this index of ADL and the known mass-specific oxygen storage capacity (To(2)) of leatherbacks, we inferred diving metabolic rate (DMR) as To2/ADL. We predicted that if leatherbacks conform to the purely ectothermic reptilian model of oxygen consumption, these inferred estimates of DMR should fall between predicted and measured values of reptilian resting and field metabolic rates, as well as being substantially lower than the FMR predicted for an endotherm of equivalent mass. Indeed, our behaviorally derived DMR estimates (mean=0.73+/-0.11 mL O(2) min(-1) kg(-1)) were 3.00+/-0.54 times the resting metabolic rate measured in unrestrained leatherbacks and 0.50+/-0.08 times the average FMR for a reptile of equivalent mass. These DMRs were also nearly one order of magnitude lower than the FMR predicted for an endotherm of equivalent mass. Thus, our findings lend support to the notion that diving leatherback turtles are indeed ectothermic and do not demonstrate

  15. Recent Demographic History and Present Fine-Scale Structure in the Northwest Atlantic Leatherback (Dermochelys coriacea) Turtle Population

    PubMed Central

    Molfetti, Érica; Torres Vilaça, Sibelle; Georges, Jean-Yves; Plot, Virginie; Delcroix, Eric; Le Scao, Rozen; Lavergne, Anne; Barrioz, Sébastien; dos Santos, Fabrício Rodrigues; de Thoisy, Benoît

    2013-01-01

    The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic

  16. Comparative health assessment of western Pacific leatherback turtles (Dermochelys coriacea) foraging off the coast of California, 2005-2007

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; Gilardi, Kirsten V.; Poppenga, Robert H.; Work, Thierry M.; Dutton, Peter H.; Mazet, Jonna A.K.

    2011-01-01

    Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.

  17. Maternal Health Status Correlates with Nest Success of Leatherback Sea Turtles (Dermochelys coriacea) from Florida

    PubMed Central

    Perrault, Justin R.; Miller, Debra L.; Eads, Erica; Johnson, Chris; Merrill, Anita; Thompson, Larry J.; Wyneken, Jeanette

    2012-01-01

    Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60–70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007–2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ∼50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium∶phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower

  18. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    PubMed Central

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-01-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition. PMID:27694826

  19. Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2016-10-01

    Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.

  20. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline.

    PubMed

    Poppi, Lisa; Zaccaroni, Annalisa; Pasotto, Daniela; Dotto, Giorgia; Marcer, Federica; Scaravelli, Dino; Mazzariol, Sandro

    2012-08-13

    Leatherback sea turtles Dermochelys coriacea are regularly reported in the Mediterranean Sea but rarely reach the northern Adriatic Sea. In the summer of 2009, a well-preserved carcass of an adult female of this species was found dead along the coast of Lido di Venezia. A complete necropsy was carried out, along with evaluation of levels of tissue trace elements. The the post-mortem revealed acute severe bacterial gastroenteritis caused by Photobacterium damselae ssp. piscicida, an opportunistic agent that infected an apparently debilitated animal weakened by ingested plastic debris. High levels of heavy metals (Hg, Pb, Cd and As) found in the liver and kidneys might have contributed to the animal's demise. These findings support previous indications that marine debris is one of the major threats to marine animals, particularly for critically endangered species such as the leatherback turtle.

  1. Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring.

    PubMed

    Plot, Virginie; Jenkins, Thomas; Robin, Jean-Patrice; Fossette, Sabrina; Georges, Jean-Yves

    2013-01-01

    Organisms compensate for reproduction costs through two major strategies: capital breeders store body reserves before reproduction and do not feed during the breeding season, whereas income breeders adjust their food intake depending on concurrent reproductive needs. Sea turtles are commonly considered capital breeders. Yet recent biometric and behavioral studies have suggested that sea turtles may in fact feed during reproduction. We tested this hypothesis in the leatherback turtle Dermochelys coriacea, nesting in French Guiana. Our study is based on the innovative use of longitudinal monitoring for morphological (body size, body mass, and body condition) and physiological (plasma glucose, triacylglycerides, urea, calcium, and hematocrit) measurements in 35 females throughout the 2006 nesting season. During their 71-d nesting period, leatherbacks lost a mean (±SE) of [Formula: see text] kg (i.e., ∼11% of their initial body mass of [Formula: see text] kg). Simultaneously, a significant decrease in plasma concentrations of glucose, triacylglycerides, and urea was observed throughout the nesting season, following typical patterns reported in other long-fasting animals that rely on lipid body stores. At the end of the nesting season, the interindividual variability in plasma concentrations was very low, which may characterize some minimum thresholds associated with the end of reproduction. We also identified a minimum necessary threshold for female body condition at the onset of reproduction; the body condition of any females beginning the nesting period below this threshold decreased dramatically. This study makes a compelling case that, in French Guiana, gravid leatherback females are anorexic during the nesting season (i.e., leatherback turtles are capital breeders). We further highlight the mechanisms that prevent this multiparous reptile from jeopardizing its own body condition while not feeding during reproduction.

  2. Embryonic Death Is Linked to Maternal Identity in the Leatherback Turtle (Dermochelys coriacea)

    PubMed Central

    Rafferty, Anthony R.; Santidrián Tomillo, Pilar; Spotila, James R.; Paladino, Frank V.; Reina, Richard D.

    2011-01-01

    Leatherback turtles have an average global hatching success rate of ∼50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle. PMID:21695086

  3. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs.

    PubMed

    Patino-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Abella, Elena; Abad, Roberto Muriel; Diéguez-Uribeondo, Javier

    2012-01-01

    Many conservation programs consider translocation of turtle nests to hatcheries as a useful technique. The repeated use of the same incubation substrate over several seasons in these hatcheries could, however, be harmful to embryos if pathogens were able to accumulate or if the physical and chemical characteristics of the incubation environment were altered. However, this hypothesis has yet to be tested. We conducted two field experiments to evaluate the effects of hatchery sand and eggshell decay on the embryonic development of leatherback sea turtle eggs in Colombia. We identified the presence of both fungi and bacteria species on leatherback turtle eggs. Sea turtle eggs exposed to previously used hatchery substrates or to decaying eggshells during the first and middle third of the embryonic development produced hatchlings that were smaller and/or weighed less than control eggs. However, this did not negatively influence hatching success. The final third of embryonic development seems to be less susceptible to infection by microorganisms associated with decaying shells. We discuss the mechanisms that could be affecting sea turtle egg development when in contact with fungi. Further studies should seek to understand the infection process and the stages of development in which the fungi are more virulent to the eggs of this critically endangered species.

  4. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-11-07

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.

  5. Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.

    PubMed Central

    Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F

    2003-01-01

    While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360

  6. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers.

  7. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment.

    PubMed

    Houghton, Jonathan D R; Doyle, Thomas K; Wilson, Mark W; Davenport, John; Hays, Graeme C

    2006-08-01

    Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal "hotspots" during consecutive years (2003-2005). Examination of retrospective sightings data (>50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations.

  8. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  9. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  10. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis.

    PubMed

    Perrault, Justin R; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L

    2014-01-01

    Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5-4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species.

  11. Climate driven egg and hatchling mortality threatens survival of eastern Pacific leatherback turtles.

    PubMed

    Santidrián Tomillo, Pilar; Saba, Vincent S; Blanco, Gabriela S; Stock, Charles A; Paladino, Frank V; Spotila, James R

    2012-01-01

    Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.

  12. COCCIDIAL INFECTION OF THE ADRENAL GLANDS OF LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Ferguson, Sara D; Wellehan, James F X; Frasca, Salvatore; Innis, Charles J; Harris, Heather S; Miller, Melissa; Weber, E Scott; Walden, Heather Stockdale; Greiner, Ellis C; Merigo, Constance; Stacy, Brian A

    2016-10-01

    Histologic lesions incidental to the cause of death were observed in the adrenal glands of 17 subadult and adult leatherback sea turtles ( Dermochelys coriacea ) found dead or moribund on or near shore in North America. Round bodies, 250-300 μm in diameter composed of an outer capsule and large multinucleated cells surrounding a central mass of acellular material were distributed throughout the affected glands. Protozoal etiology was suspected based on some resemblance to coccidia; however, features diagnostic for coccidial infection were lacking in all but one case, which had a focal area of adrenalitis containing zoites. A novel eucoccidian partial 18S rRNA genetic sequence was consistently detected in adrenal glands with lesions. With the use of quantitative PCR, a specific area of the V4 region of the coccidian 18S gene was quantified in affected adrenal glands and correlated significantly with density of the histologic lesions. A second distinct, but closely related, 18S sequence was also amplified from the adrenal gland of one turtle and from a fecal sample containing unsporulated coccidian oocysts. The two 18S sequences identified from leatherback sea turtles form a clade within the family Eimeriidae. Further investigation is required to understand better the morphology of the life stages, life cycle, and potential effects of this coccidian parasite on adrenal function.

  13. Climate Driven Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles

    PubMed Central

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Blanco, Gabriela S.; Stock, Charles A.; Paladino, Frank V.; Spotila, James R.

    2012-01-01

    Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50–60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes. PMID:22649544

  14. Pathologic findings in hatchling and posthatchling leatherback sea turtles (Dermochelys coriacea) from Florida.

    PubMed

    Miller, Debra L; Wyneken, Jeanette; Rajeev, Sreekumari; Perrault, Justin; Mader, Douglas R; Weege, James; Baldwin, Charles A

    2009-10-01

    In an attempt to identify critical health issues affecting the survival of endangered leatherback sea turtles (Dermochelys coriacea), a prospective study was conducted in several dead-in-nest hatchlings and captive posthatchlings to examine pathologic changes and presence of pathogenic microorganisms. Numerous histopathologic changes were identified. Although bacterial etiologies were suspected in deaths of captive individuals, a single causative organism was not identified but rather, a mixed population of bacterial flora was cultured. Muscle degeneration observed in most samples implicates a potential environmental factor in species survival and needs future investigation.

  15. Unique characteristics of the trachea of the juvenile leatherback turtle facilitate feeding, diving and endothermy

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    The adult leatherback turtle Dermochelys coriacea overlaps in body size (300–500 kg) with many marine mammals, yet develops from a 50 g hatchling. Adults can dive deeper than 1200 m and have core body temperatures of 25 °C; hatchlings are near-surface dwellers. Juvenile leatherbacks have rarely been studied; here we present anatomical information for the upper respiratory tract of 3 turtles (66.7–83.0 cm straight carapace length; 33.2–53.4 kg body mass) incidentally captured by long-line fisheries. Combined with existing information from adults and hatchlings, our data show that there is an ontogenic shift in tracheal structure, with cartilaginous rings becoming broader and eventually fusing anteriorly. This ontogenic shift during independent existence is unique among extant deep-diving air breathing vertebrates. Tract wall thickness is graded, becoming progressively thinner from larynx to bronchi. In addition, cross-sectional shape becomes increasingly dorsoventrally flattened (more elliptical) from anterior to posterior. These characteristics ensure that the tract will collapse from posterior to anterior during dives. This study contains the first report of a double (= internally bifurcated) posterior section of the trachea; it is suggested that this allows continuous food movement along the esophagus without tracheal collapse. The whole upper respiratory tract (from larynx to lungs) has a vascular lining (thicker anteriorly than posteriorly) that appears to be a simple analog of the complex turbinates of birds and mammals. Our study confirmed that the leatherback tracheal structure represents a distinctive way of dealing with the challenges of diving in deep, cold sea water.

  16. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle.

    PubMed

    Gjertsen, Heidi; Squires, Dale; Dutton, Peter H; Eguchi, Tomoharu

    2014-02-01

    Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost-effectiveness of nesting site and at-sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost-effectiveness measures. Nesting beach protection was the most cost-effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high-bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low-cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost-effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost-effective, particularly, if fisheries in the area are small and of little commercial value.

  17. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    PubMed Central

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-01-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897

  18. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    NASA Astrophysics Data System (ADS)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  19. Maternal transfer of chlorinated contaminants in the leatherback turtles, Dermochelys coriacea, nesting in French Guiana.

    PubMed

    Guirlet, Elodie; Das, Krishna; Thomé, Jean-Pierre; Girondot, Marc

    2010-04-01

    We examined the maternal transfer of organochlorine contaminants (OCs), pesticides (DDTS and HCHs) and polychlorinated biphenyls (PCBs), and the temporal variation of blood and eggs concentrations from 38 leatherback turtles (Dermochelys coriacea) nesting in French Guiana. PCBs were found to be the dominant OCs with respective mean concentrations of 55.14 ng g(-1) lipid-mass for egg and 1.26 ng mL(-1) wet-mass for blood. OC concentrations were lower than concentrations measured in other marine turtles which might be due to the lower trophic position (diet based on gelatinous zooplankton) and to the location of their foraging and nesting grounds. All OCs detected in leatherback blood were detected in eggs, suggesting a maternal transfer of OCs. This transfer was shown to depend on female blood concentration for SigmaDDTs and for the most prevalent PCB congeners, since significant relationships were found between paired blood-egg concentrations. During the nesting season, OC concentrations in eggs and the percentage of lipid in eggs were found to decline in successive clutches, highlighting a process of offloading from females to their eggs and a decreasing investment of lipid from females into their clutches. OCs in eggs tended to be higher in females spending 3 years in the foraging grounds between two nesting seasons than in those spending 2 years, suggesting an impact of time spacing two breeding seasons, called remigration interval, and of location of the foraging grounds.

  20. Global analysis of the effect of local climate on the hatchling output of leatherback turtles.

    PubMed

    Santidrián Tomillo, Pilar; Saba, Vincent S; Lombard, Claudia D; Valiulis, Jennifer M; Robinson, Nathan J; Paladino, Frank V; Spotila, James R; Fernández, Carlos; Rivas, Marga L; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-17

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  1. Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana.

    PubMed

    Fossette, Sabrina; Gaspar, Philippe; Handrich, Yves; Le Maho, Yvon; Georges, Jean-Yves

    2008-03-01

    1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep

  2. Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters.

    PubMed

    Stewart, Kelly R; James, Michael C; Roden, Suzanne; Dutton, Peter H

    2013-07-01

    Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first

  3. Pan-atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries.

    PubMed

    Fossette, S; Witt, M J; Miller, P; Nalovic, M A; Albareda, D; Almeida, A P; Broderick, A C; Chacón-Chaverri, D; Coyne, M S; Domingo, A; Eckert, S; Evans, D; Fallabrino, A; Ferraroli, S; Formia, A; Giffoni, B; Hays, G C; Hughes, G; Kelle, L; Leslie, A; López-Mendilaharsu, M; Luschi, P; Prosdocimi, L; Rodriguez-Heredia, S; Turny, A; Verhage, S; Godley, B J

    2014-04-07

    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.

  4. Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    PubMed Central

    Fossette, S.; Witt, M. J.; Miller, P.; Nalovic, M. A.; Albareda, D.; Almeida, A. P.; Broderick, A. C.; Chacón-Chaverri, D.; Coyne, M. S.; Domingo, A.; Eckert, S.; Evans, D.; Fallabrino, A.; Ferraroli, S.; Formia, A.; Giffoni, B.; Hays, G. C.; Hughes, G.; Kelle, L.; Leslie, A.; López-Mendilaharsu, M.; Luschi, P.; Prosdocimi, L.; Rodriguez-Heredia, S.; Turny, A.; Verhage, S.; Godley, B. J.

    2014-01-01

    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters. PMID:24523271

  5. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica.

    PubMed

    Wallace, Bryan P; Williams, Cassondra L; Paladino, Frank V; Morreale, Stephen J; Lindstrom, R Todd; Spotila, James R

    2005-10-01

    Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.

  6. Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida.

    PubMed

    Perrault, Justin; Wyneken, Jeanette; Thompson, Larry J; Johnson, Chris; Miller, Debra L

    2011-08-01

    Leatherback sea turtles (Dermochelys coriacea) have low hatching and emergence success compared to other sea turtle species. Postmortem examinations of hatchlings showed degeneration of heart and skeletal muscle that was similar to that found in other neonates with selenium deficient mothers. Selenium deficiency can result from elevated concentrations of bodily mercury. Ingested mercury is detoxified by the liver through mercury-selenium compound formation. In animals persistently exposed to mercury, the liver's ability to detoxify this element may decrease, especially if dietary selenium is insufficient. We measured mercury and selenium concentrations in nesting female leatherbacks and their hatchlings from Florida and compared the levels to hatching and emergence success. Both liver selenium and the liver selenium-to-mercury ratio positively correlated with leatherback hatching and emergence success. This study provides the first evidence for the roles of mercury and selenium in explaining low reproductive success in a globally imperiled species, the leatherback sea turtle.

  7. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    PubMed

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species.

  8. Salt and water regulation by the leatherback sea turtle Dermochelys coriacea.

    PubMed

    Reina, Richard D; Jones, T Todd; Spotila, James R

    2002-07-01

    We measured the salt and water balance of hatchling leatherback sea turtles, Dermochelys coriacea, during their first few days of life to investigate how they maintain homeostasis under the osmoregulatory challenge of a highly desiccating terrestrial environment and then a hyperosmotic marine environment. Hatchlings desiccated rapidly when denied access to sea water, with their hematocrit increasing significantly from 30.32+/-0.54 % to 38.51+/-1.35 % and plasma Na(+) concentration increasing significantly from 138.2+/-3.3 to 166.2+/-11.2 mmol l(-1) in 12 h. When hatchlings were subsequently put into sea water, hematocrit decreased and plasma Na(+) concentration was unchanged but both were significantly elevated above pretreatment values. In other hatchlings kept in sea water for 48 h, body mass and plasma Na(+) concentration increased significantly, but hematocrit did not increase. These data show that hatchlings were able to osmoregulate effectively and gain mass by drinking sea water. We stimulated hatchlings to secrete salt from the salt glands by injecting a salt load of 27 mmol kg(-1). The time taken for secretion to begin in newly hatched turtles was longer than that in 4-day-old hatchlings, but the secretory response was identical at 4.15+/-0.40 and 4.13+/-0.59 mmol Na(+) kg(-1) h(-1) respectively. Adrenaline and methacholine were both potent inhibitors of salt gland secretion in a dose-dependent manner, although methacholine administered simultaneously with a subthreshold salt load elicited a transient secretory response. The results showed that hatchling leatherbacks are able to tolerate significant changes in internal composition and efficiently use their salt glands to establish internal ionic and water balance when in sea water.

  9. Measuring the level of agreement in hematologic and biochemical values between blood sampling sites in leatherback sea turtles (Dermochelys coriacea).

    PubMed

    Stewart, Kimberly; Mitchell, Mark A; Norton, Terry; Krecek, Rosina C

    2012-12-01

    Conservation programs to protect endangered sea turtles are being instituted worldwide. A common practice in these programs is to collect blood to evaluate the health of the turtles. Several different venipuncture sites are used to collect blood from sea turtles for hematologic and biochemistry tests, depending on the species. To date, it is unknown what affect venipuncture site may have on sample results. The purpose of this study was to measure the level of agreement between hematologic and biochemistry values collected from the dorsal cervical sinus and the interdigital vein of leatherback (Dermochelys coriacea) sea turtles. Paired heparinized blood samples were obtained from the dorsal cervical sinus and the interdigital vein of 12 adult female nesting leatherback sea turtles on Keys Beach, St. Kitts, West Indies. Even though the sample population was small, the data for each chemistry were normally distributed, except for creatine kinase (CK). There was no significant difference when comparing biochemistry or hematologic values by venipuncture site, except for CK (P = 0.02). The level of agreement between sampling sites was considered good for albumin, calcium, globulin, glucose, packed cell volume, phosphorus, potassium, sodium, total protein, total solids, uric acid, white blood cell count, and all of the individual white cell types, while the level of agreement for aspartate aminotransferase and CK were considered poor. This information, coupled with the fact that the interdigital vein affords a less-invasive procedure, demonstrates that the interdigital vein is an appropriate location to use when establishing a hematologic and biochemical profile for leatherback sea turtles.

  10. Beach dynamics and nest distribution of the leatherback turtle (Dermochelys coriacea) at Grande Riviere Beach, Trinidad & Tobago.

    PubMed

    Lum, Lori Lee

    2005-05-01

    Grande Riviere Beach in Trinidad and Tobago is an important nesting site in the Caribbean for the Critically Endangered leatherback sea turtle, Dermochelys coriacea. Community members were concerned that beach erosion and seasonal river flooding were destroying many of the nests deposited annually and thought that a hatchery was a possible solution. Over the 2001 turtle nesting season, the Institute of Marine Affairs (IMA) assessed the spatial and temporal distribution of nests using the Global Positioning System recorded to reference points, and beach dynamics using permanent bench mark profile stations, to determine areas of high risk and more stable areas for nesting. A total of 1449 leatherback nests were positioned. It was evident that at the start of the season in March, the majority of leatherback nests were deposited at the eastern section of the beach. After May, there was a continuing westward shift in nest distribution as the season progressed until August and beach erosion in the eastern section became predominant. The backshore remained relatively stable along the entire beach throughout the nesting season, and erosion was predominant in the foreshore at the eastern section of the beach, from the middle to the end of the season. Similar trends in accretion and erosion were observed in 2000. River flooding did not occur during the study period or in the previous year. With both high risk and more stable regions for turtle nesting available at Grande Riviere Beach, there was no compelling evidence to justify the need for a hatchery.

  11. Salmonella enterica prevalence in leatherback sea turtles (Dermochelys coriacea) in St. Kitts, West Indies.

    PubMed

    Dutton, Clayton S; Revan, Floyd; Wang, Chengming; Xu, Chuanling; Norton, Terry M; Stewart, Kimberly M; Kaltenboeck, Bernhard; Soto, Esteban

    2013-09-01

    Salmonella spp. are gram-negative bacteria capable of causing diseases in a wide range of aquatic and terrestrial animals, including humans. Sea and terrestrial turtles have been recognized as carriers of this zoonotic pathogen. In this project, conventional and molecular diagnostic methods were combined to investigate the prevalence of Salmonella enterica in leatherback sea turtles (Dermochelys coriacea) that used the island of St. Kitts, West Indies as a nesting ground during 2011 (n = 21). Isolates obtained from selective media were screened and colonies suspected of being Salmonella spp. were confirmed by fluorescence resonance energy transfer polymerase chain reaction. The prevalence of S. enterica within this sample population during this period was found to be 14.2%. Moreover, due to the increasing risk of antibiotic resistance in enteric bacteria, antimicrobial susceptibility was investigated in all recovered Salmonella spp. isolates utilizing the broth microdilution method. All isolates were susceptible to the lowest concentration of kanamycin, gentamicin, ciprofloxacin, enrofloxacin, nalidixic acid, and trimethoprim/sulfamethoxazole tested. Further research should be pursued to understand the interaction of this bacterial pathogen with the environment, host, and other microbial communities, and to further develop faster, more sensitive, and more specific diagnostic methods.

  12. Sedation and anesthesia of hatchling leatherback sea turtles (Dermochelys coriacea) for auditory evoked potential measurement in air and in water.

    PubMed

    Harms, Craig A; Piniak, Wendy E D; Eckert, Scott A; Stringer, Elizabeth M

    2014-03-01

    Sedation or anesthesia of hatchling leatherback sea turtles was employed to acquire auditory evoked potential (AEP) measurements in air and in water to assess their hearing sensitivity in relation to potential consequences from anthropogenic noise. To reduce artifacts in AEP collection caused by muscle movement, hatchlings were sedated with midazolam 2 or 3 mg/kg i.v. for in-air (n = 7) or in-water (n = 11) AEP measurements; hatchlings (n = 5) were anesthetized with ketamine 6 mg/kg and dexmedetomidine 30 microg/kg i.v. reversed with atipamezole 300 microg/kg, half i.m. and half i.v. for in-air AEP measurements. Midazolam-sedated turtles were also physically restrained with a light elastic wrap. For in-water AEP measurements, sedated turtles were brought to the surface every 45-60 sec, or whenever they showed intention signs for breathing, and not submerged again until they took a breath. Postprocedure temperature-corrected venous blood pH, pCO2, pO2, and HCO3- did not differ among groups, although for the midazolam-sedated in-water group, pCO2 trended lower, and in the ketamine-dexmedetomidine anesthetized group there was one turtle considered clinically acidotic (temperature-corrected pH = 7.117). Venous blood lactate was greater for hatchlings recently emerged from the nest than for turtles sedated with midazolam in air, with the other two groups falling intermediate between, but not differing significantly from the high and low lactate groups. Disruptive movements were less frequent with anesthesia than with sedation in the in-air group. Both sedation with midazolam and anesthesia with ketamine-dexmedetomidine were successful for allowing AEP measurements in hatchling leatherback sea turtles. Sedation allowed the turtle to protect its airway voluntarily while limiting flipper movement. Midazolam or ketamine-dexmedetomidine (and reversal with atipamezole) would be useful for other procedures requiring minor or major restraint in leatherback sea turtle hatchlings

  13. Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St Croix, US Virgin Islands.

    PubMed

    Eckert, Scott A

    2002-12-01

    Swim speed, dive behavior and movements were recorded for seven female leatherback sea turtles (Dermochelys coriacea Vandelli 1761) during a single internesting interval near St Croix in the US Virgin Islands. Modal speeds ranged from 0.56 to 0.84 m s(-1), maximum speed range 1.9-2.8 m s(-1). Turtles swam continuously throughout the day and night. There were two swim-speed patterns; the most common was slightly U-shaped, with high speeds at the initiation and conclusion of the dive, and the less common was continuous high-speed swimming. The U-shaped speed patterns were coincident with vertical diving by the turtles, while the second pattern occurred most frequently during the daytime, with the turtle swimming within 2 m of the surface. This latter swim behavior appeared to be designed to maximize efficiency for long-distance travel. The hypothesis that leatherbacks rest or bask at midday during their internesting interval is refuted by this study.

  14. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  15. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down

    PubMed Central

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting. PMID:26445982

  16. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down.

    PubMed

    Davenport, John; Jones, T Todd; Work, Thierry M; Balazs, George H

    2015-10-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  17. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies.

  18. Interannual differences for sea turtles bycatch in Spanish longliners from Western Mediterranean Sea.

    PubMed

    Báez, José C; Macías, David; García-Barcelona, Salvador; Real, Raimundo

    2014-01-01

    Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle.

  19. Interannual Differences for Sea Turtles Bycatch in Spanish Longliners from Western Mediterranean Sea

    PubMed Central

    Báez, José C.; García-Barcelona, Salvador

    2014-01-01

    Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle. PMID:24764769

  20. Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle.

    PubMed

    Rivalan, Philippe; Prévot-Julliard, Anne-Caroline; Choquet, Remi; Pradel, Roger; Jacquemin, Bertrand; Girondot, Marc

    2005-10-01

    The trade-off between current and future reproduction plays an important role in demographic analyses. This can be revealed by the relationship between the number of years without reproduction and reproductive investment within a reproductive year. However, estimating both the duration between two successive breeding season and reproductive effort is often limited by variable recapture or resighting effort. Moreover, a supplementary difficulty is raised when nonbreeder individuals are not present sampling breeding grounds, and are therefore unobservable. We used capture-recapture (CR) models to investigate intermittent breeding and reproductive effort to test a putative physiological trade-off in a long-lived species with intermittent breeding, the leatherback sea turtle. We used CR data collected on breeding females on Awa:la-Ya:lima:po beach (French Guiana, South America) from 1995 to 2002. By adding specific constraints in multistate (MS) CR models incorporating several nonobservable states, we modelled the breeding cycle in leatherbacks and then estimated the reproductive effort according to the number of years elapsed since the last nesting season. Using this MS CR framework, the mean survival rate was estimated to 0.91 and the average resighting probability to 0.58 (ranged from 0.30 to 0.99). The breeding cycle was found to be limited to 3 years. These results therefore suggested that animals whose observed breeding intervals are greater than 3 years were most likely animals that escaped detection during their previous nesting season(s). CR data collected in 2001 and 2002 allowed us to compare the individual reproductive effort between females that skipped one breeding season and females that skipped two breeding seasons. These inferences led us to conclude that a trade-off between current and future reproduction exists in leatherbacks nesting in French Guiana, likely linked to the resource provisioning required to invest in reproduction.

  1. Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    PubMed Central

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J.; Shillinger, George L.; Swithenbank, Alan M.; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K. H. Patrik; Paladino, Frank V.; Spotila, James R.; Block, Barbara A.; Hays, Graeme C.

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic. PMID:22615767

  2. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status.

    PubMed

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J; Shillinger, George L; Swithenbank, Alan M; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K H Patrik; Paladino, Frank V; Spotila, James R; Block, Barbara A; Hays, Graeme C

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1)) and transit at high speeds (20-45 km d(-1)). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1) indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  3. Breeding Sex Ratios in Adult Leatherback Turtles (Dermochelys coriacea) May Compensate for Female-Biased Hatchling Sex Ratios

    PubMed Central

    Stewart, Kelly R.; Dutton, Peter H.

    2014-01-01

    For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models. PMID:24505403

  4. Breeding sex ratios in adult leatherback turtles (Dermochelys coriacea) may compensate for female-biased hatchling sex ratios.

    PubMed

    Stewart, Kelly R; Dutton, Peter H

    2014-01-01

    For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models.

  5. Estimating Limit Reference Points for Western Pacific Leatherback Turtles (Dermochelys coriacea) in the U.S. West Coast EEZ

    PubMed Central

    Curtis, K. Alexandra; Moore, Jeffrey E.; Benson, Scott R.

    2015-01-01

    Biological limit reference points (LRPs) for fisheries catch represent upper bounds that avoid undesirable population states. LRPs can support consistent management evaluation among species and regions, and can advance ecosystem-based fisheries management. For transboundary species, LRPs prorated by local abundance can inform local management decisions when international coordination is lacking. We estimated LRPs for western Pacific leatherbacks in the U.S. West Coast Exclusive Economic Zone (WCEEZ) using three approaches with different types of information on local abundance. For the current application, the best-informed LRP used a local abundance estimate derived from nest counts, vital rate information, satellite tag data, and fishery observer data, and was calculated with a Potential Biological Removal estimator. Management strategy evaluation was used to set tuning parameters of the LRP estimators to satisfy risk tolerances for falling below population thresholds, and to evaluate sensitivity of population outcomes to bias in key inputs. We estimated local LRPs consistent with three hypothetical management objectives: allowing the population to rebuild to its maximum net productivity level (4.7 turtles per five years), limiting delay of population rebuilding (0.8 turtles per five years), or only preventing further decline (7.7 turtles per five years). These LRPs pertain to all human-caused removals and represent the WCEEZ contribution to meeting population management objectives within a broader international cooperative framework. We present multi-year estimates, because at low LRP values, annual assessments are prone to substantial error that can lead to volatile and costly management without providing further conservation benefit. The novel approach and the performance criteria used here are not a direct expression of the “jeopardy” standard of the U.S. Endangered Species Act, but they provide useful assessment information and could help guide

  6. Persistent organic pollutant levels in eggs of leatherback turtles (Dermochelys coriacea) point to a decrease in hatching success.

    PubMed

    De Andrés, Eva; Gómara, Belén; González-Paredes, Daniel; Ruiz-Martín, José; Marco, Adolfo

    2016-03-01

    Sea turtles are susceptible to environmental pollution, since many harmful effects have been reported for different chemicals over the last two decades. In this context, persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are of particular concern due to their endocrine-disrupting nature. The aims of this study were to provide additional baseline data on PCB and PBDE concentrations in eggs of Dermochelys coriacea; and to investigate whether any of the congeners could compromise reproductive success in this species. A total of 18 nests from different females were studied during the nesting season of 2008 at Reserva Pacuare Beach, in the Caribbean side of Costa Rica. Reproductive parameters (viability, fertility and hatching rates) were calculated for all nests and hatchling morphometrics were successfully measured in 8 of them. Two to three fresh eggs per nest were taken for contaminant study. Different congeners of POPs were purified and identified using gas chromatography (GC) coupled to an ion trap detector (GC-ITD MS/MS), as described below. Mean ± SD concentrations were calculated for POP congeners within each nest and clustering was also evaluated. Correlations were performed searching for potential relationships with reproductive parameters. POP levels were similar to those reported in French-Guiana populations and slightly lower than those associated to Florida populations. Sum of PBDEs showed a negative correlation to the hatching success, suggesting potential harmful effects of these contaminants on the reproduction of leatherbacks.

  7. The influence of fluvial dynamics and North Atlantic swells on the beach habitat of leatherback turtles at Grande Riviere Trinidad.

    PubMed

    Darsan, Junior; Jehu, Adam; Asmath, Hamish; Singh, Asha; Wilson, Matthew

    2016-09-15

    Grande Riviere beach, located on the north coast of Trinidad, West Indies, is internationally recognised as a critical habitat/nesting ground for the endangered leatherback turtles (Dermochelys coriacea). Episodic extreme flooding of the Grande Riviere River led to the shifting of the river mouth and resulted in backshore beach erosion, with the most recent recorded event occurring in 2012. Following this event, the construction of a sand dam to arrest further erosion which threatened coastal infrastructure, precipitated a host of new problems ranging from beach instability to public health threats. In January 2013, high energy swell waves naturally in-filled the erosion channel, and the beach recovery continued over the successive months, thereby rendering the intervention in the previous year questionable. This paper presents a geomorphological analysis of beach dynamics for Grande Riviere, within the context of this erosion event. Data on beach profiles, sediment and coastal processes were collected using standard geomorphological techniques. Beach topographic analysis and water quality tests on impounded water in the erosion channel were conducted. Results indicate that the event created an erosion channel of 4843.42 m(3) over a contiguous area of 2794.25 m(2). While swell waves were able to naturally infill the channel, they also eroded 17,762 m(3) of sand overall across the beach. Water quality tests revealed that the impounded water was classified as a pollutant, and created challenges for remediation. Hydrologic and coastal geomorphologic interplay is responsible for the existence and sustainability of this coastal system. It is also evident that the beach system is able to recover naturally following extreme events. Our results demonstrate that effective and integrated management of such critical habitats remains dependent upon continuous monitoring data which should be used to inform policy and decision making.

  8. Does prey size matter? Novel observations of feeding in the leatherback turtle (Dermochelys coriacea) allow a test of predator-prey size relationships.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Casey, James P; Lewis, Andrew R; Hays, Graeme C

    2012-06-23

    Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.

  9. Atlantic Leatherback Migratory Paths and Temporary Residence Areas

    PubMed Central

    López-Mendilaharsu, Milagros; Miller, Philip; Domingo, Andrés; Evans, Daniel; Kelle, Laurent; Plot, Virginie; Prosdocimi, Laura; Verhage, Sebastian; Gaspar, Philippe; Georges, Jean-Yves

    2010-01-01

    Background Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. Methodology/Principal Findings Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. Conclusions/Significance Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly

  10. Mass spectrometry-based sequencing and SRM-based quantitation of two novel vitellogenin isoforms in the leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Plumel, Marine I; Wasselin, Thierry; Plot, Virginie; Strub, Jean-Marc; Van Dorsselaer, Alain; Carapito, Christine; Georges, Jean-Yves; Bertile, Fabrice

    2013-09-06

    No biomarker has yet been discovered to identify the reproductive status of the endangered leatherback sea turtle (Dermochelys coriacea). Although vitellogenin (VTG) could be used for this, its sequence is not known in D. coriacea and no quantitative assay has been carried out in this species to date. Using de novo sequencing-based proteomics, we unambiguously characterized sequences of two different VTG isoforms that we named Dc-VTG1 and Dc-VTG2. To our knowledge, this is the first clear evidence of different VTG isoforms and the structural characterization of derived yolk proteins in reptiles. This work illustrates how massive de novo sequencing can characterize novel sequences when working on "exotic" nonmodel species in which even nucleotide sequences are not available. We developed assays for absolute quantitation of these two isoforms using selected reaction monitoring (SRM) mass spectrometry, thus providing the first SRM assays developed specifically for a nonsequenced species. Plasma levels of Dc-VTG1 and Dc-VTG2 decreased as the nesting season proceeded, and were closely related to the increased levels of reproductive effort. The SRM assays developed here therefore provide an original and efficient approach for the reliable monitoring of reproduction cycles not only in D. coriacea, but potentially in other turtle species.

  11. Ontogenetic changes in tracheal structure facilitate deep dives and cold water foraging in adult leatherback sea turtles.

    PubMed

    Davenport, John; Fraher, John; Fitzgerald, Ed; McLaughlin, Patrick; Doyle, Tom; Harman, Luke; Cuffe, Tracy; Dockery, Peter

    2009-11-01

    Adult leatherbacks are large animals (300-500 kg), overlapping in size with marine pinniped and cetacean species. Unlike marine mammals, they start their aquatic life as 40-50 g hatchlings, so undergo a 10,000-fold increase in body mass during independent existence. Hatchlings are limited to the tropics and near-surface water. Adults, obligate predators on gelatinous plankton, encounter cold water at depth (<1280 m) or high latitude and are gigantotherms that maintain elevated core body temperatures in cold water. This study shows that there are great ontogenetic changes in tracheal structure related to diving and exposure to cold. Hatchling leatherbacks have a conventional reptilian tracheal structure with circular cartilaginous rings interspersed with extensive connective tissue. The adult trachea is an almost continuous ellipsoidal cartilaginous tube composed of interlocking plates, and will collapse easily in the upper part of the water column during dives, thus avoiding pressure-related structural and physiological problems. It is lined with an extensive, dense erectile vascular plexus that will warm and humidify cold inspired air and possibly retain heat on expiration. A sub-luminal lymphatic plexus is also present. Mammals and birds have independently evolved nasal turbinates to fulfil such a respiratory thermocontrol function; for them, turbinates are regarded as diagnostic of endothermy. This is the first demonstration of a turbinate equivalent in a living reptile.

  12. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data

    PubMed Central

    Innis, Charles J.; Merigo, Constance; Cavin, Julie M.; Hunt, Kathleen; Dodge, Kara L.; Lutcavage, Molly

    2014-01-01

    The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme. PMID:27293669

  13. Serial assessment of the physiological status of leatherback turtles (Dermochelys coriacea) during direct capture events in the northwestern Atlantic Ocean: comparison of post-capture and pre-release data.

    PubMed

    Innis, Charles J; Merigo, Constance; Cavin, Julie M; Hunt, Kathleen; Dodge, Kara L; Lutcavage, Molly

    2014-01-01

    The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme.

  14. [False eggs (SAGs) facilitate social post-hatching emergence behaviour in Leatherback turtles Dermochelys coriacea (Testudines: Dermochelyidae) nests].

    PubMed

    Patiño-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Calabuig, Cecilia P

    2010-09-01

    Hatchling emergence to the beach surface from deep sand nests occurs without parental care. Social behaviour among siblings is crucial to overcome this first challenge in sea turtles life. This study, carried out at the Caribbean coast of Colombia, describes the emergence social behaviour of hatchlings from eight nests, and assess the nests translocation effects on temporal patterns of emergence. For the first time, we propose that space released by dehydration of shelled albumen globes (SAGs) at the top of the clutch, might be a reproductive advantage, while facilitating neonates to group together in a very limited space, and favouring the synchrony of emergence. The mean time of groups emergence was of 3.3 days, varying between 1 and 6 days. We found that relocation of the nests did not significantly affect the temporal pattern of emergence, which was mainly nocturnal (77.7% of natural nests and 81.7% of translocated ones). The maximum number of emergences to the surface occurred at the lowest air temperatures (22:00h-06:00h). The selective advantage of this pattern is probably related to the greater rate of predation and mortality by hyperthermia observed during the day.

  15. Sea turtle nesting distributions and oceanographic constraints on hatchling migration

    PubMed Central

    Putman, Nathan F.; Bane, John M.; Lohmann, Kenneth J.

    2010-01-01

    Patterns of abundance across a species's reproductive range are influenced by ecological and environmental factors that affect the survival of offspring. For marine animals whose offspring must migrate long distances, natural selection may favour reproduction in areas near ocean currents that facilitate migratory movements. Similarly, selection may act against the use of potential reproductive areas from which offspring have difficulty emigrating. As a first step towards investigating this conceptual framework, we analysed loggerhead sea turtle (Caretta caretta) nest abundance along the southeastern US coast as a function of distance to the Gulf Stream System (GSS), the ocean current to which hatchlings in this region migrate. Results indicate that nest density increases as distance to the GSS decreases. Distance to the GSS can account for at least 90 per cent of spatial variation in regional nest density. Even at smaller spatial scales, where local beach conditions presumably exert strong effects, at least 38 per cent of the variance is explained by distance from the GSS. These findings suggest that proximity to favourable ocean currents strongly influences sea turtle nesting distributions. Similar factors may influence patterns of abundance across the reproductive ranges of diverse marine animals, such as penguins, eels, salmon and seals. PMID:20573619

  16. Sea turtle nesting distributions and oceanographic constraints on hatchling migration.

    PubMed

    Putman, Nathan F; Bane, John M; Lohmann, Kenneth J

    2010-12-07

    Patterns of abundance across a species's reproductive range are influenced by ecological and environmental factors that affect the survival of offspring. For marine animals whose offspring must migrate long distances, natural selection may favour reproduction in areas near ocean currents that facilitate migratory movements. Similarly, selection may act against the use of potential reproductive areas from which offspring have difficulty emigrating. As a first step towards investigating this conceptual framework, we analysed loggerhead sea turtle (Caretta caretta) nest abundance along the southeastern US coast as a function of distance to the Gulf Stream System (GSS), the ocean current to which hatchlings in this region migrate. Results indicate that nest density increases as distance to the GSS decreases. Distance to the GSS can account for at least 90 per cent of spatial variation in regional nest density. Even at smaller spatial scales, where local beach conditions presumably exert strong effects, at least 38 per cent of the variance is explained by distance from the GSS. These findings suggest that proximity to favourable ocean currents strongly influences sea turtle nesting distributions. Similar factors may influence patterns of abundance across the reproductive ranges of diverse marine animals, such as penguins, eels, salmon and seals.

  17. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry.

    PubMed Central

    Luschi, P; Hays, G C; Del Seppia, C; Marsh, R; Papi, F

    1998-01-01

    Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues. PMID:9881473

  18. Migrations of green turtles (Chelonia mydas) between nesting and foraging grounds across the Coral Sea.

    PubMed

    Read, Tyffen C; Wantiez, Laurent; Werry, Jonathan M; Farman, Richard; Petro, George; Limpus, Colin J

    2014-01-01

    Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia) and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97) and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia) and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away) despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2) even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

  19. Migrations of Green Turtles (Chelonia mydas) between Nesting and Foraging Grounds across the Coral Sea

    PubMed Central

    Read, Tyffen C.; Wantiez, Laurent; Werry, Jonathan M.; Farman, Richard; Petro, George; Limpus, Colin J.

    2014-01-01

    Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia) and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97) and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia) and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200–2680 km away) despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2) even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea. PMID:24940598

  20. Riding on the fast lane: how sea turtles behave in post-nesting migration

    NASA Astrophysics Data System (ADS)

    Wang, Y.-H.; Cheng, I.-J.; Centurioni, L.

    2014-07-01

    Sea turtles are known as powerful swimmers. How do they behave when riding in strong currents during their migrations? In this study, three, satellite-tagged, post-nesting green turtles travelled from Lanyu Island, east of Taiwan, partly within the Kuroshio to their foraging sites approximately 1000 km away in the Ryukyu Archipelago. Their swimming behaviors were analyzed by comparing their migration velocities estimated from Argos tag data with ocean currents derived from a data simulation model and from AVISO advection estimates. Results suggest that the turtles take advantage of Kuroshio during the initial portion of their migration routes. They must then make a great effort to swim eastward, at speeds over 1 m s-1, toward their foraging sites to avoid being carried off course by the strong current. The cues that might cause the change in swimming direction were evaluated with a Principle Component Analysis. The factors considered are ambient current velocity, wind, eddy activity (vorticity), magnetic field (latitude) and water temperature. The analysis shows that the ambient current and water temperature are negatively correlated with the eastward swimming velocity. This suggests that the changes in ocean current and a drop of water temperature, likely due to eddies impinging on the Kuroshio, may trigger the eastward swimming. Despite the differences among migratory routes of three Argos-tagged turtles after leaving the Kuroshio, they all reached foraging sites in the same general area. That suggests there may be more complex cues that guide the turtles to their foraging sites during their post-nesting migrations.

  1. Home range, habitat use, and migrations of hawksbill turtles tracked from Dry Tortugas National Park, Florida, USA

    USGS Publications Warehouse

    Hart, Kristen M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Pratt, Harold L.; Morley, Danielle; Feeley, Michael W.

    2012-01-01

    To determine habitat-use patterns of sub-adult hawksbills Eretmochelys imbricata, we conducted satellite- and acoustic-tracking of 3 turtles captured in August 2008 within Dry Tortugas National Park (DRTO), south Florida, USA, in the Gulf of Mexico; turtles ranged in size from 51.9 to 69.8 cm straight carapace length. After 263, 699, and 655 d of residence in the park, turtles migrated out of the DRTO. Within the park, core-use areas (i.e. 50% kernel density estimates) were 9.2 to 21.5 km2; all 3 turtle core-use areas overlapped in an area 6.1 km2 within a zone of the park with multiple human uses (e.g. fishing, anchoring). Two turtles migrated to Cuba and ceased transmitting after 320 and 687 tracking days; the third turtle migrated toward Key West, Florida, and ceased transmitting after 884 tracking days. The present study highlights previously unknown regional connections for hawksbills, possible turtle-harvest incidents, and fine-scale habitat use of sub-adult hawksbills within a United States National Park.

  2. Lymphocyte migration in the micro-channel of splenic sheathed capillaries in Chinese soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng

    2016-01-01

    The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles.

  3. Seasonal changes in serum gonadal steroids associated with migration, mating, and nesting in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Wibbels, T; Owens, D W; Limpus, C J; Reed, P C; Amoss, M S

    1990-07-01

    Adult male loggerhead sea turtles, Caretta caretta, exhibited a "prenuptial" spermatogenic cycle that was coincident with increased concentrations of serum testosterone (T). Serum T was high during the months when migration and mating have been recorded for males. In contrast to females, males appear to be annual breeders. Nine reproductively active female C. caretta (as verified through laparoscopy) were tagged with sonic transmitters and were repeatedly bled prior to migration. Four months prior to the nesting season, the ovaries of reproductively active females had hundreds of vitellogenic follicles of approximately 1.5 cm in diameter (i.e., half the size of ovulatory follicles). Approximately 4-6 weeks prior to migration from feeding grounds to mating and nesting areas, serum estradiol-17 beta (E2) concentrations increased significantly and remained high for approximately 4 weeks, suggesting a period of increased vitellogenesis. During a 1- to 2-week period prior to migration, serum E2 decreased significantly, while serum T concentrations increased (at least) until the time of migration. Serum T, E2, and progesterone (PRO) were elevated during nesting if a turtle was going to nest again during that nesting season. During the last nesting of a season, turtles had low serum concentrations of T, E2, and Pro. The prenuptial pattern of gonadal recrudescence and gonadal steroid production in both male and female C. caretta contrasts with those of many temperate freshwater turtles, and this type of reproductive pattern may have been facilitated by adaptation to a tropical marine environment.

  4. 77 FR 34334 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii Shallow-Set Longline Fishery AGENCY... fishery and leatherback and loggerhead sea turtles. NMFS also proposes administrative housekeeping changes... turtle, seabird, and marine mammal handling and mitigation gear and techniques. NMFS may issue a...

  5. Population genetics and phylogeography of sea turtles.

    PubMed

    Bowen, B W; Karl, S A

    2007-12-01

    The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may

  6. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming.

  7. Resident areas and migrations of female green turtles nesting at Buck Island Reef National Monument, St. Croix, U.S. Virgin Islands

    USGS Publications Warehouse

    Hart, Kristen M.; Iverson, Autumn; Benscoter, Allison M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy

    2017-01-01

    Satellite tracking in marine turtle studies can reveal much about their spatial use of breeding areas, migration zones, and foraging sites. We assessed spatial habitat-use patterns of 10 adult female green turtles (Chelonia mydas) nesting at Buck Island Reef National Monument, U.S. Virgin Islands (BIRNM) from 2011 – 2014. Turtles ranged in size from 89.0 – 115.9 cm CCL (mean + SD = 106.8 + 7.7 cm). The inter-nesting period across all turtles ranged from 31 July to 4 November, and sizes of the 50% core-use areas during inter-nesting ranged from 4.2 – 19.0 km2. Inter-nesting core-use areas were located up to1.4 km from shore and had bathymetry values ranging from -17.0 to -13.0 m. Seven of the ten turtles remained locally resident after the nesting season. Five turtles (50%) foraged around Buck Island, two foraged around the island of St. Croix, and the other three (30%) made longer-distance migrations to Antigua, St. Kitts & Nevis, and Venezuela. Further, five turtles had foraging centroids within protected areas. Delineating spatial areas and identifying temporal periods of nearshore habitat-use can be useful for natural resource managers with responsibility for overseeing vulnerable habitats and protected marine turtle populations.

  8. Migration routes and staging areas of trans-Saharan Turtle Doves appraised from light-level geolocators.

    PubMed

    Eraud, Cyril; Rivière, Marcel; Lormée, Hervé; Fox, James W; Ducamp, Jean-Jacques; Boutin, Jean-Marie

    2013-01-01

    The identification of migration routes, wintering grounds and stopover sites are crucial issues for the understanding of the Palearctic-African bird migration system as well as for the development of relevant conservation strategies for trans-Saharan migrants. Using miniaturized light-level geolocators we report a comprehensive and detailed year round track of a granivorous trans-Saharan migrant, the European Turtle Dove (Streptopelia turtur). From five recovered loggers, our data provide new insights on migratory journeys and winter destinations of Turtle Doves originating from a breeding population in Western France. Data confirm that Turtle Doves wintered in West Africa. The main wintering area encompassed Western Mali, the Inner Delta Niger and the Malian/Mauritanian border. Some individuals also extended their wintering ranges over North Guinea, North-West of Burkina Faso and the Ivory-Coast. Our results reveal that all individuals did not spend the winter period at a single location; some of them experienced a clear eastward shift of several hundred kilometres. We also found evidence for a loop migration pattern, with a post-breeding migration flyway lying west of the spring route. Finally, we found that on their way back to breeding grounds Turtle Doves needed to refuel after crossing the Sahara desert. Contrary to previous suggestions, our data reveal that birds used stopover sites for several weeks, presumably in Morocco and North Algeria. This later finding is a crucial issue for future conservation strategies because environmental conditions on these staging areas might play a pivotal role in population dynamics of this declining species.

  9. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  10. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration.

    PubMed

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.

  11. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration

    PubMed Central

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration. PMID:26398528

  12. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  13. Mixed-stock analysis reveals the migrations of juvenile hawksbill turtles (Eretmochelys imbricata) in the Caribbean Sea.

    PubMed

    Bowen, B W; Grant, W S; Hillis-Starr, Z; Shaver, D J; Bjorndal, K A; Bolten, A B; Bass, A L

    2007-01-01

    Hawksbill turtles (Eretmochelys imbricata) migrate between nesting beaches and feeding habitats that are often associated with tropical reefs, but it is uncertain which nesting colonies supply which feeding habitats. To address this gap in hawksbill biology, we compile previously published and new mitochondrial DNA (mtDNA) haplotype data for 10 nesting colonies (N = 347) in the western Atlantic and compare these profiles to four feeding populations and four previously published feeding samples (N = 626). Nesting colonies differ significantly in mtDNA haplotype frequencies (Phi(ST) = 0.588, P < 0.001), corroborating earlier conclusions of nesting site fidelity and setting the stage for mixed-stock analysis. Feeding aggregations show lower but significant structure (Phi(ST) = 0.089, P < 0.001), indicating that foraging populations are not homogenous across the Caribbean Sea. Bayesian mixed-stock estimates of the origins of juveniles in foraging areas show a highly significant, but shallow, correlation with nesting population size (r = 0.378, P = 0.004), supporting the premise that larger rookeries contribute more juveniles to feeding areas. A significant correlation between the estimated contribution and geographical distance from nesting areas (r = -0.394, P = 0.003) demonstrates the influence of proximity on recruitment to feeding areas. The influence of oceanic currents is illustrated by pelagic stage juveniles stranded in Texas, which are assigned primarily (93%) to the upstream rookery in Yucatan. One juvenile had a haplotype previously identified only in the eastern Atlantic, invoking rare trans-oceanic migrations. The mixed-stock analysis demonstrates that harvests in feeding habitats will impact nesting colonies throughout the region, with the greatest detriment to nearby nesting populations.

  14. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  15. An immunohistochemical approach to identify the sex of young marine turtles.

    PubMed

    Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette

    2017-03-13

    Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries over-expressed a particular Cold-induced RNA Binding Protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H and E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. This article is protected by copyright. All rights reserved.

  16. Trophic status drives interannual variability in nesting numbers of marine turtles.

    PubMed

    Broderick, A C; Godley, B J; Hays, G C

    2001-07-22

    Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.

  17. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles?

    PubMed

    Nel, Ronel; Punt, André E; Hughes, George R

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures.

  18. Are Coastal Protected Areas Always Effective in Achieving Population Recovery for Nesting Sea Turtles?

    PubMed Central

    Nel, Ronel; Punt, André E.; Hughes, George R.

    2013-01-01

    Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures. PMID:23671683

  19. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.

    2008-01-01

    Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.

  20. The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.

    2011-12-01

    Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.

  1. Turtle Girls

    ERIC Educational Resources Information Center

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  2. Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.

    PubMed

    Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney

    2004-08-01

    Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased

  3. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    PubMed

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2016-12-23

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  4. Distorting Gene Pools by Conservation: Assessing the Case of Doomed Turtle Eggs

    NASA Astrophysics Data System (ADS)

    Mrosovsky, N.

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  5. Sea turtle distribution along the boundary of the Gulf Stream current off eastern Florida

    USGS Publications Warehouse

    Hoffman, W.; Fritts, T.H.

    1982-01-01

    Aerial surveys, out to 222 km off the east coast of central Florida during August 1980, revealed that marine turtles were distributed in a narrow zone west of the Gulf Stream. Of 255 loggerhead turtles, Caretta caretta, only three were observed east of the western boundary of the Gulf Stream. Radiometric thermometry revealed that the waters occupied by most Caretta were markedly cooler than the nearby waters of the Gulf Stream. Of 18 leatherback turtles, Dermochelys coriacea, all were seen west of the Gulf Stream in waters less than 70 m in depth. Marine turtles off eastern Florida are confined seasonally to nearshore waters west of the Gulf Stream. The records of Dermochelys in nearshore waters are in contrast with a deep water oceanic ecology often hypothesized for this species.

  6. Distorting gene pools by conservation: Assessing the case of doomed turtle eggs.

    PubMed

    Mrosovsky, N

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  7. Sea Turtle Navigation and the Detection of Geomagnetic Field Features

    NASA Astrophysics Data System (ADS)

    Lohmann, Kenneth J.; Lohmann, Catherine M. F.

    The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.

  8. Pleated turtle escapes the box--shape changes in Dermochelys coriacea.

    PubMed

    Davenport, John; Plot, Virginie; Georges, Jean-Yves; Doyle, Thomas K; James, Michael C

    2011-10-15

    Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support. Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS) and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved) distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response to alterations in nutritional and reproductive status.

  9. Impact of jaguar Panthera onca (Carnivora: Felidae) predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica.

    PubMed

    Arroyo-Arce, Stephanny; Salom-Pérez, Roberto

    2015-09-01

    Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriacea and Eretmochelys imbricata) that nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005) and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD = 45) and 2 (SD = 3) green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  10. Environmental effects of dredging: Alternative dredging equipment and operational methods to minimize sea turtle mortalities. Technical notes

    SciTech Connect

    Dickerson, D.D.; Nelson, D.A.

    1990-12-01

    Five species of sea turtles occur along the United States coastlines and are listed as threatened or endangered. The loggerhead sea turtle (Caretta caretta) is listed as threatened, while the Kemp`s ridley (Lepidochelys kenipi), the hawksbill (Eretmochelys imbricata), and the leatherback (Dermochelys coriacea) are all less abundant and listed as endangered. Florida breeding populations of the green sea turtle (Chelonia mydas) are listed as endangered, but green turtles in other US waters are considered threatened. The National Marine Fisheries Service (NMFS) has determined, based on the best available information, that because of their life cycle and behavioral patterns only the loggerhead, the green, and the Kemp`s ridley are put at risk by hopper dredging activities (Studt 1987).

  11. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  12. Conservation hotspots for the turtles on the high seas of the Atlantic Ocean.

    PubMed

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.

  13. Conservation Hotspots for the Turtles on the High Seas of the Atlantic Ocean

    PubMed Central

    Huang, Hsiang-Wen

    2015-01-01

    Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful. PMID:26267796

  14. Do roads reduce painted turtle (Chrysemys picta) populations?

    PubMed

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  15. Marine turtles used to assist Austronesian sailors reaching new islands.

    PubMed

    Wilmé, Lucienne; Waeber, Patrick O; Ganzhorn, Joerg U

    2016-02-01

    Austronesians colonized the islands of Rapa Nui, Hawaii, the Marquesas and Madagascar. All of these islands have been found to harbor Austronesian artifacts and also, all of them are known nesting sites for marine turtles. Turtles are well known for their transoceanic migrations, sometimes totalling thousands of miles, between feeding and nesting grounds. All marine turtles require land for nesting. Ancient Austronesians are known to have had outstanding navigation skills, which they used to adjust course directions. But these skills will have been insufficient to locate tiny, remote islands in the vast Indo-Pacific oceans. We postulate that the Austronesians must have had an understanding of the marine turtles' migration patterns and used this knowledge to locate remote and unknown islands. The depth and speed at which marine turtles migrate makes following them by outrigger canoes feasible. Humans have long capitalized on knowledge of animal behavior.

  16. Navigation and seasonal migratory orientation in juvenile sea turtles.

    PubMed

    Avens, Larisa; Lohmann, Kenneth J

    2004-05-01

    Juvenile loggerhead and green turtles that inhabit inshore waters of North Carolina, USA undertake long seasonal migrations, after which they often return to specific feeding areas. In addition, juvenile turtles are capable of homing to specific sites after being displaced. As a first step towards investigating the navigational mechanisms that underlie these movements, juvenile turtles were captured in coastal waters of North Carolina and displaced 30-167 km along circuitous routes while deprived of visual cues. At the testing location, turtles were tethered in a circular arena and permitted to swim while their orientation was monitored. Between May and September, when juvenile loggerhead and green turtles inhabit feeding areas along the North Carolina coast, turtles oriented in directions that corresponded closely with the most direct route back to their capture locations. During October and November, however, both loggerhead and green turtles oriented southward, a direction consistent with the migratory paths of turtles beginning their autumn migration. The results demonstrate for the first time that both homing and migratory orientation can be elicited in juvenile turtles under laboratory conditions in which orientation cues can be readily manipulated. In addition, the results provide evidence that juvenile loggerheads can assess their position relative to a goal using local cues available at the test site and are therefore capable of map-based navigation.

  17. Geomagnetic Navigation in Sea Turtles

    NASA Astrophysics Data System (ADS)

    Lohmann, K.; Putman, N.; Lohmann, C.

    2011-12-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Newly hatched turtles (hatchlings) begin the migration with a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries. In laboratory experiments, young turtles that had never before been in the ocean were exposed to fields like those that exist at various, widely separated locations along their transoceanic migratory route. Turtles responded by swimming in directions that would, in each case, help them remain within the North Atlantic gyre currents and advance along the migratory pathway. The results demonstrate that turtles can derive both longitudinal and latitudinal information from the Earth's field, and provide strong evidence that hatchling loggerheads inherit a remarkably elaborate set of responses that function in guiding them along their open-sea migratory route. For young sea turtles, couplings of oriented swimming to regional magnetic fields appear to provide the fundamental building blocks from which natural selection can sculpt a sequence of responses capable of guiding first-time ocean migrants along complex migratory routes. The results imply that hatchlings from different populations in different parts of the world are likely to have magnetic navigational responses uniquely suited for the migratory routes that each group follows. Thus, from a conservation perspective, turtles from different populations are not interchangeable. From an evolutionary perspective, the responses are not incompatible with either secular variation or magnetic polarity reversals. As Earth's field gradually changes, strong selective pressure presumably acts to maintain an approximate match between the responses of hatchlings and the fields that exist at critical points along

  18. Management and protection protocols for nesting sea turtles on Cape Hatteras National Seashore, North Carolina

    USGS Publications Warehouse

    Cohen, J.B.

    2005-01-01

    Executive Summary 1. The southeast U.S. population of the loggerhead turtle (Caretta caretta) has increased since the species was listed as federally threatened in 1978. Since standardized monitoring began in North Carolina in 1995, the number of nests at Cape Hatteras National Seashore (CAHA) fluctuated from year to year, and was lowest in 1996 and 1997 (39 nests) and highest in 2003 (101 nests). Green turtles (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) have nested in small numbers at CAHA, sporadically over time. 2. Hatching success of sea turtle nests typically approaches 80%. At CAHA hatching success from 1999-2003 was low when hurricanes hit during the nesting season (30%-38%), and ranged from 52%-70% otherwise. Hatching success at CAHA is usually correlated with hatching success in the surrounding subpopulation (north Florida to North Carolina). 3. Inclement weather, predation, and human recreation can negatively impact nesting rate and hatching success. 4. Currently there is little protection from recreation at CAHA for nesting females and nests that have not been found by monitors. We propose three management options to provide such protection, and to increase protection for known nests and hatchlings. We propose an adaptive management framework for assessing the effectiveness of these management options in improving sea turtle nesting rate and nest and hatchling survival. 5. We recommend continued efforts to trap and remove mammalian predators from all sea turtle habitat. We further recommend intensive monitoring and surveillance of protected areas to determine the extent and timing of threats to nests and broods, including nest overwash, predation, and disturbance or vandalism by humans. 6. Continue to relocate nests and assist stranded turtles according to North Carolina Wildlife Resources Commission guidelines. 7. Artificial light sources pose a serious threat to sea turtles in some parts of CAHA, which must be remedied immediately

  19. Palaeontology: turtles in transition.

    PubMed

    Lee, Michael S Y

    2013-06-17

    One of the major remaining gaps in the vertebrate fossil record concerns the origin of turtles. The enigmatic little reptile Eunotosaurus could represent an important transitional form, as it has a rudimentary shell that resembles the turtle carapace.

  20. Underwater sightings of sea turtles in the northern Gulf of Mexico. Final report

    SciTech Connect

    Rosman, I.; Boland, G.S.; Martin, L.; Chandler, C.

    1987-10-01

    Between 1975 and 1985, eight scientific studies were conducted in the northern Gulf of Mexico. The purpose here was to review the data collected from all eight studies for information concerning underwater sightings of sea turtles. Records of 1,024 scuba dives, 909 hours of underwater video and submersible observations, and some 1,500 days of time-lapse photographic observations were compiled from published reports, data logs, and photographic material. The effort yielded 268 verifiable underwater sightings of sea turtles, 231 of which came from time-lapse cameras. The majority of sightings that could be identified by species were of loggerheads. Other species sighted included three leatherbacks and one Kemp's Ridley.

  1. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  2. Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?

    PubMed Central

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles. PMID:24858065

  3. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    NASA Astrophysics Data System (ADS)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  4. The Classroom Animal: Box Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  5. THE BOG TURTLE: Georgia's Rarest Turtle.

    ERIC Educational Resources Information Center

    Wilson, Lawrence

    1991-01-01

    This article discusses the description and range, the status, the habitat, the natural history, and the proper management of the diminutive, rare, and endangered species known as the box turtle. (JJK)

  6. Body temperature stability achieved by the large body mass of sea turtles.

    PubMed

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  7. Hatching behavior in turtles.

    PubMed

    Spencer, Ricky-John; Janzen, Fredric J

    2011-07-01

    Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching.

  8. The magnetic map of hatchling loggerhead sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2012-04-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals.

  9. Pinpointing 'Isla Meta': the case of sea turtles and albatrosses

    PubMed

    Papi; Luschi

    1996-01-01

    Satellite tracking has recently shown that the very long open-sea journeys of sea turtles and albatrosses share several features, in spite of the different physiological and environmental constraints to which turtles and birds are subjected. The reviews of data obtained by tracking migration and feeding routes show that both sea turtles and albatrosses are able (i) to pinpoint small, isolated targets by following straight courses, (ii) to continue on a bearing at night even when the moon is not visible, (iii) to compensate for wind or current drift and (iv) to return home after experimental, long-distance displacements. Sea turtles and albatrosses seem to rely on a position-fixing capacity which cannot be explained by known navigational mechanisms but might be shared by other animals that display similar feats of open-sea guidance. Future research will further benefit from satellite telemetry and other new techniques applied to experimental investigations.

  10. Underwater Hearing in Turtles.

    PubMed

    Willis, Katie L

    2016-01-01

    The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.

  11. Metabolic scaling in turtles.

    PubMed

    Ultsch, Gordon R

    2013-04-01

    Bennett and Dawson (1976) presented an analysis of the relationship of metabolic rate (MR) and body mass among turtles, based on 10 studies, but unlike most of other groups of ectotherms, there has been no update to include the many later reports on turtles. Here I present a review of the data on turtle metabolic rates at 20, 25, and 30°C, along with regression equations and graphical analyses from a large number of studies. Two generalities emerge: (1) reported metabolic rates for sea turtles are higher than for other chelonians, although it is not certain whether this is an intrinsic characteristic of sea turtles or an artifact related to experimental conditions (such as greater activity of sea turtles in metabolic chambers and the fact that a number of studies were done with the turtles out of water), and (2) the slopes of the log-log plots of metabolic rate (MR) vs. body mass [b in the allometric equation MR=a(mass)(b)] are mostly lower than previously reported in smaller studies.

  12. Terrestrial movement patterns of western pond turtles (Actinemys marmorata) in central California

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.; Stafford, Robert

    2013-01-01

    We used radio telemetry to track the terrestrial movements and seasonal habitat use patterns of Western Pond Turtles (Actinemys marmorata) near two ponds in the Carrizo Plain Ecological Reserve, California, USA. We captured 93 turtles in September 2005 and, of these, we tagged three males and six females(weighing > 300 g) with external transmitters. Tagged turtles traveled from 255–1,096 m over the 448-day study, and we found none further than 343 m from ponds. All turtles moved away from the ponds as water levels receded in the fall, resulting in periods of terrestrial overwintering ranging from 10–30 weeks (74–202 d). We found no evidence for group migrations as turtles departed ponds over 2–8 week periods, moved in different directions from their ponds, and used different habitats. Turtles overwintered mainly in oak and chaparral vegetation communities, which constituted most of the local vegetation. We found overwintering turtles in a variety of microhabitats, but all turtles were on the surface with their carapace just visible amongst the duff layer. Turtles returned to ponds over several weeks, sometimes months after they refilled with winter rains. In the winter of 2006–2007, no turtles returned to terrestrial overwintering sites used the previous year. Most of the turtles we tracked spent over half of each year on land, demonstrating the importance of terrestrial habitats around these seasonal ponds. This pattern is similar to pond turtles living in streams (overwinter on land), as compared to permanent ponds (turtles often remain in water).

  13. Fishery gear interactions from stranded bottlenose dolphins, Florida manatees and sea turtles in Florida, U.S.A.

    PubMed

    Adimey, Nicole M; Hudak, Christine A; Powell, Jessica R; Bassos-Hull, Kim; Foley, Allen; Farmer, Nicholas A; White, Linda; Minch, Karrie

    2014-04-15

    Documenting the extent of fishery gear interactions is critical to wildlife conservation efforts, especially for reducing entanglements and ingestion. This study summarizes fishery gear interactions involving common bottlenose dolphins (Tursiops truncatus truncatus), Florida manatees (Trichechus manatus latirostris) and sea turtles: loggerhead (Caretta caretta), green turtle (Chelonia mydas), leatherback (Dermochelys coriacea), hawksbill (Eretmochelys imbricata), Kemp's ridley (Lepidochelys kempii), and olive ridley (Lepidochelys olivacea) stranding in Florida waters during 1997-2009. Fishery gear interactions for all species combined were 75.3% hook and line, 18.2% trap pot gear, 4.8% fishing nets, and 1.7% in multiple gears. Total reported fishery gear cases increased over time for dolphins (p<0.05), manatees (p<0.01), loggerheads (p<0.05) and green sea turtles (p<0.05). The proportion of net interaction strandings relative to total strandings for loggerhead sea turtles increased (p<0.05). Additionally, life stage and sex patterns were examined, fishery gear interaction hotspots were identified and generalized linear regression modeling was conducted.

  14. Turtles as hopeful monsters.

    PubMed

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation.

  15. Young Children and Turtle Graphics Programming: Understanding Turtle Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    The LOGO programing language developed for children includes a set of primitive graphics commands that control the displacement and rotation of a display screen cursor called a turtle. The purpose of this study was to examine 4- to 7-year-olds' understanding of single turtle commands as transformations that connect turtle states and to…

  16. The Classroom Animal: Snapping Turtles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  17. Orientation and open-sea navigation in sea turtles

    PubMed

    Lohmann; Lohmann

    1996-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta L.) emerge from underground nests, scramble to the sea and begin a transoceanic migration by swimming away from their natal beach and into the open ocean. Evidence suggests that hatchlings sequentially use three different sets of cues to maintain orientation during their initial migration offshore. While on the beach, hatchlings find the ocean by crawling towards the lower, brighter seaward horizon and away from the dark, elevated silhouettes of vegetation and dunes. Upon entering the ocean, turtles initially orient seawards by swimming into waves, which can be detected as orbital movements from under water. Laboratory experiments have demonstrated that turtles can transfer a course initiated on the basis of waves or visual cues to a course mediated by a magnetic compass. Thus, by setting a magnetic course on the basis of nearshore cues that indicate the seaward direction, hatchlings may continue on offshore headings after entering deep water beyond sight of land. Sea turtles may use the earth's magnetic field not only as a cue for compass orientation but also as a source of world-wide positional information. Recent experiments have demonstrated that loggerheads can detect subtle differences in magnetic field inclination and intensity, two geomagnetic features that vary across the surface of the earth. Because most nesting beaches and oceanic regions are marked by a unique combination of these features, these findings raise the possibility that adult sea turtles navigate using a bicoordinate magnetic map.

  18. Turtle Watch: Community Engagement and Action

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  19. Regional magnetic fields as navigational markers for sea turtles.

    PubMed

    Lohmann, K J; Cain, S D; Dodge, S A; Lohmann, C M

    2001-10-12

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake a transoceanic migration in which they gradually circle the north Atlantic Ocean before returning to the North American coast. Here we report that hatchling loggerheads, when exposed to magnetic fields replicating those found in three widely separated oceanic regions, responded by swimming in directions that would, in each case, help keep turtles within the currents of the North Atlantic gyre and facilitate movement along the migratory pathway. These results imply that young loggerheads have a guidance system in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial geographic boundaries.

  20. Chapter 2. Vulnerability of marine turtles to climate change.

    PubMed

    Poloczanska, Elvira S; Limpus, Colin J; Hays, Graeme C

    2009-01-01

    threaten nesting beaches and reproductive success, and pollution and eutrophication is threatening important coastal foraging habitats for turtles worldwide. Exploitation and bycatch in other fisheries has seriously reduced marine turtle populations. The synergistic effects of other human-induced stressors may seriously reduce the capacity of some turtle populations to adapt to the current rates of climate change. Conservation recommendations to increase the capacity of marine turtle populations to adapt to climate change include increasing population resilience, for example by the use of turtle exclusion devices in fisheries, protection of nesting beaches from the viewpoints of both conservation and coastal management, and increased international conservation efforts to protect turtles in regions where there is high unregulated or illegal fisheries (including turtle harvesting). Increasing research efforts on the critical knowledge gaps of processes influencing population numbers, such as identifying ocean foraging hotspots or the processes that underlie the initiation of nesting migrations and selection of breeding areas, will inform adaptive management in a changing climate.

  1. The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation

    PubMed Central

    Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo

    2011-01-01

    Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329

  2. A phylogenomic analysis of turtles.

    PubMed

    Crawford, Nicholas G; Parham, James F; Sellas, Anna B; Faircloth, Brant C; Glenn, Travis C; Papenfuss, Theodore J; Henderson, James B; Hansen, Madison H; Simison, W Brian

    2015-02-01

    Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154bp of aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny. This robust phylogeny shows that proposed phylogenetic names correspond to well-supported clades, and this topology is more consistent with the temporal appearance of clades and paleobiogeography. Future studies of turtle phylogeny using fossil turtles should use this topology as a scaffold for their morphological phylogenetic analyses.

  3. Turtle Graphics of Morphic Sequences

    NASA Astrophysics Data System (ADS)

    Zantema, Hans

    2016-02-01

    The simplest infinite sequences that are not ultimately periodic are pure morphic sequences: fixed points of particular morphisms mapping single symbols to strings of symbols. A basic way to visualize a sequence is by a turtle curve: for every alphabet symbol fix an angle, and then consecutively for all sequence elements draw a unit segment and turn the drawing direction by the corresponding angle. This paper investigates turtle curves of pure morphic sequences. In particular, criteria are given for turtle curves being finite (consisting of finitely many segments), and for being fractal or self-similar: it contains an up-scaled copy of itself. Also space-filling turtle curves are considered, and a turtle curve that is dense in the plane. As a particular result we give an exact relationship between the Koch curve and a turtle curve for the Thue-Morse sequence, where until now for such a result only approximations were known.

  4. Natal homing in juvenile loggerhead turtles (Caretta caretta).

    PubMed

    Bowen, Brian W; Bass, Anna L; Chow, Shaio-Mei; Bostrom, Meredith; Bjorndal, Karen A; Bolten, Alan B; Okuyama, Toshinori; Bolker, Benjamin M; Epperly, Sheryan; Lacasella, Erin; Shaver, Donna; Dodd, Mark; Hopkins-Murphy, Sally R; Musick, John A; Swingle, Mark; Rankin-Baransky, Karen; Teas, Wendy; Witzell, Wayne N; Dutton, Peter H

    2004-12-01

    Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (PhiST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.

  5. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  6. 77 FR 17494 - Endangered Species; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ..., CA; PRT-60610A The applicant requests a permit to import biological specimens of loggerhead sea turtles (Caretta caretta), leatherback sea turtles (Dermochelys coriacea), and leatherback sea turtles... eldii), barasingha (Rucervus duvaucelii), Arabian oryx (Oryx leucoryx), scimitar-horned oryx...

  7. 77 FR 72882 - Endangered Species; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... specimens from loggerhead sea turtles (Caretta caretta), hawksbill sea turtles (Eretmochelys imbricata), and leatherback sea turtles (Dermochelys coriacea) that occur in the wild at Tetepare Island, Solomon Islands,...

  8. An odyssey of the green sea turtle: Ascension Island revisited

    PubMed Central

    Bowen, Brian W.; Meylan, Anne B.; Avise, John C.

    1989-01-01

    Green turtles (Chelonia mydas) that nest on Ascension Island, in the south-central Atlantic, utilize feeding grounds along the coast of Brazil, more than 2000 km away. To account for the origins of this remarkable migratory behavior, Carr and Coleman [Carr, A. & Coleman, P. J. (1974) Nature (London) 249, 128-130] proposed a vicariant biogeographic scenario involving plate tectonics and natal homing. Under the Carr-Coleman hypothesis, the ancestors of Ascension Island green turtles nested on islands adjacent to South America in the late Cretaceous, soon after the opening of the equatorial Atlantic Ocean. Over the last 70 million years, these volcanic islands have been displaced from South America by sea-floor spreading, at a rate of about 2 cm/year. A population-specific instinct to migrate to Ascension Island is thus proposed to have evolved gradually over tens of millions of years of genetic isolation. Here we critically test the Carr-Coleman hypothesis by assaying genetic divergence among several widely separated green turtle rookeries. We have found fixed or nearly fixed mitochondrial DNA (mtDNA) restriction site differences between some Atlantic rookeries, suggesting a severe restriction on contemporary gene flow. Data are consistent with a natal homing hypothesis. However, an extremely close similarity in overall mtDNA sequences of surveyed Atlantic green turtles from three rookeries is incompatible with the Carr-Coleman scenario. The colonization of Ascension Island, or at least extensive gene flow into the population, has been evolutionarily recent. Images PMID:16594013

  9. Direct evidence of swimming demonstrates active dispersal in the sea turtle "lost years".

    PubMed

    Putman, Nathan F; Mansfield, Katherine L

    2015-05-04

    Although oceanic dispersal in larval and juvenile marine animals is widely studied, the relative contributions of swimming behavior and ocean currents to movements and distribution are poorly understood [1-4]. The sea turtle "lost years" [5] (often referred to as the surface-pelagic [6] or oceanic [7] stage) are a classic example. Upon hatching, young turtles migrate offshore and are rarely observed until they return to coastal waters as larger juveniles [5]. Sightings of small turtles downcurrent of nesting beaches and in association with drifting organisms (e.g., Sargassum algae) led to this stage being described as a "passive migration" during which turtles' movements are dictated by ocean currents [5-10]. However, laboratory and modeling studies suggest that dispersal trajectories might also be shaped by oriented swimming [11-15]. Here, we use an experimental approach designed to directly test the passive-migration hypothesis by deploying pairs of surface drifters alongside small green (Chelonia mydas) and Kemp's ridley (Lepidochelys kempii) wild-caught turtles, tracking their movements via satellite telemetry. We conclusively demonstrate that these turtles do not behave as passive drifters. In nearly all cases, drifter trajectories were uncharacteristic of turtle trajectories. Species-specific and location-dependent oriented swimming behavior, inferred by subtracting track velocity from modeled ocean velocity, contributed substantially to individual movement and distribution. These findings highlight the importance of in situ observations for depicting the dispersal of weakly swimming animals. Such observations, paired with information on the mechanisms of orientation, will likely allow for more accurate predictions of the ecological and evolutionary processes shaped by animal movement.

  10. Young Children Learn Geometric Concepts Using Logo with a Screen Turtle and a Floor Turtle.

    ERIC Educational Resources Information Center

    Weaver, Constance L.

    This research was designed to investigate several primary questions in comparing the Logo floor turtle to the Logo screen turtle: (1) Do young children gain different geometric concepts from experiences with the floor turtle than they do with the screen turtle? (2) Do young children learn to use the four basic Logo commands more efficiently with…

  11. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range.

  12. Multinational Tagging Efforts Illustrate Regional Scale of Distribution and Threats for East Pacific Green Turtles (Chelonia mydas agassizii)

    PubMed Central

    Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have

  13. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii).

    PubMed

    Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have

  14. Engaging Students in Science: Turtle Nestwatch

    ERIC Educational Resources Information Center

    Lewis, Elaine; Baudains, Catherine; Mansfield, Caroline

    2009-01-01

    Involving students in authentic science work is one way to enhance their interest in science. This paper reports a project in which Year 4-7 students actively participated in a study that involved the provision of a suitable nesting site for local turtles. The students collected data on turtle nests at the site and evidence of turtle hatchlings at…

  15. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  16. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  17. TORTIS (Toddler's Own Recursive Turtle Interpreter System).

    ERIC Educational Resources Information Center

    Perlman, Radia

    TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…

  18. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  19. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  20. 50 CFR 223.205 - Sea turtles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except...

  1. Three millennia of human and sea turtle interactions in Remote Oceania

    NASA Astrophysics Data System (ADS)

    Allen, M. S.

    2007-12-01

    Sea turtles are one of the largest vertebrates in the shallow water ecosystems of Remote Oceania, occurring in both sea grass pastures and on coral reefs. Their functional roles, however, over ecological and evolutionary times scales are not well known, in part because their numbers have been so drastically reduced. Ethnographic and archaeological data is analysed to assess long-term patterns of human sea turtle interactions (mainly green and hawksbill) prior to western contact and the magnitude of turtle losses in this region. From the ethnographic data two large-scale patterns emerge, societies where turtle capture and consumption was controlled by chiefs and priests versus those where control over turtle was more flexible and consumption more egalitarian. Broadly the distinction is between societies on high (volcanic and raised coral) islands versus atolls, but the critical variables are the ratio of land to shallow marine environments, combined with the availability of refugia. Archaeological evidence further highlights differences in the rate and magnitude of turtle losses across these two island types, with high islands suffering both large and rapid declines while those on atolls are less marked. These long-term historical patterns help explain the ethnographic endpoints, with areas that experienced greater losses apparently developing more restrictive social controls over time. Finally, if current turtle migration patterns held in the past, with annual movements between western foraging grounds and eastern nesting beaches, then intensive harvesting from 2,800 Before Present in West Polynesia probably affected turtle abundance and coral reef ecology in East Polynesia well before the actual arrival of human settlers, the latter a process that most likely began 1,400 years later.

  2. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    PubMed

    Joyce, Walter G; Gauthier, Jacques A

    2004-01-07

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.

  3. Projected response of an endangered marine turtle population to climate change

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián

    2012-11-01

    Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.

  4. 78 FR 44878 - Turtles Intrastate and Interstate Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... public distribution, of viable turtle eggs and live turtles with a carapace length of less than 4 inches... turtle eggs and turtles with a carapace length of less than 4 inches to stop the spread of...

  5. 78 FR 44915 - Turtles Intrastate and Interstate Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... commercial or public distribution, of viable turtle eggs and live turtles with a carapace length of less than... distribution of viable turtle eggs and turtles with a carapace length of less than 4 inches to stop the...

  6. Characterization of marine mammals and turtles in the mid- and north-Atlantic areas of the US Outer Continental Shelf: executive summary for 1979. Final report 1979-81

    SciTech Connect

    Not Available

    1981-04-01

    The program's objectives are as follows: (1) to determine which species of marine mammals and marine turtles inhabit and/or migrate through the study area; (2) to identify, delineate and describe areas of importance (feeding, breeding, calving, etc.) to marine mammals and marine turtles in the study area; (3) to determine the temporal and spatial distribution of marine mammals and marine turtles in the study area; (4) to estimate the size of and extent of marine mammal and marine turtle populations in the study area; and (5) to emphasize the above item 1-4 for those species classified as threatened or endangered by the Department of Interior and Department of Commerce.

  7. The origin of turtles: a paleontological perspective.

    PubMed

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.

  8. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    PubMed

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles.

  9. Immunoglobulin genes of the turtles.

    PubMed

    Magadán-Mompó, Susana; Sánchez-Espinel, Christian; Gambón-Deza, Francisco

    2013-03-01

    The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH). This IGH locus in both turtles contains genes for 13 isotypes in C. picta bellii and 17 in P. sinensis. These correspond with one immunoglobulin M, one immunoglobulin D, several immunoglobulins Y (six in C. picta bellii and eight in P. sinensis), and several immunoglobulins that are similar to immunoglobulin D2 (five in C. picta belli and seven in P. sinensis) that was previously described in Eublepharis macularius. It is worthy to note that IGHD2 are placed in an inverted transcriptional orientation and present sequences for two immunoglobulin domains that are similar to bird IgA domains. Furthermore, its phylogenetic analysis allows us to consider about the presence of IGHA gene in a primitive reptile, so we would be dealing with the memory of the gene that originated from the bird IGHA. In summary, we provide a clear picture of the immunoglobulins present in a turtle, whose analysis supports the idea that turtles emerged from the evolutionary line from the differentiation of birds and the presence of the IGHA gene present in a common ancestor.

  10. Basking Behavior of Painted Turtles.

    ERIC Educational Resources Information Center

    Zipko, Stephen J.

    1982-01-01

    Examines the basking postures of captive eastern painted turtles exposed to two different sources of illumination (white floor lamps and infrared heat lamps) and three types of substrates (sphagnum, rock, wood) and discusses possible ecological and evolutionary significance of these behaviors. (Author/JN)

  11. The ontogeny of morphological defenses in Kemp's ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtles.

    PubMed

    Salmon, Michael; Higgins, Benjamin; Stewart, Joshua; Wyneken, Jeanette

    2015-08-01

    Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape-limited predators, but changes in body shape function throughout ontogeny-initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead.

  12. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.

    PubMed

    Brothers, J Roger; Lohmann, Kenneth J

    2015-02-02

    Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals.

  13. The endoskeletal origin of the turtle carapace.

    PubMed

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell.

  14. Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific.

    PubMed

    Vargas, Sarah M; Jensen, Michael P; Ho, Simon Y W; Mobaraki, Asghar; Broderick, Damien; Mortimer, Jeanne A; Whiting, Scott D; Miller, Jeff; Prince, Robert I T; Bell, Ian P; Hoenner, Xavier; Limpus, Colin J; Santos, Fabrício R; FitzSimmons, Nancy N

    2016-05-01

    Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.

  15. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  16. Status of marine turtle rehabilitation in Queensland

    PubMed Central

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  17. Status of marine turtle rehabilitation in Queensland.

    PubMed

    Flint, Jaylene; Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  18. Functional Measures of Sea Turtle Hearing

    DTIC Science & Technology

    2005-09-01

    anatomy among stages and species and physiologically by brainstem evoked potential techniques. Sea turtles employed in this work were provided by NMFS...SUPPLEMENTARY NOTES 14. ABSTRACT Sea turtle hearing was investigated fmorphometrically by analyzing variations in auditory anatomy a and physiologically by...A t Project Title: Functional Measures of Sea Turtle Hearing ONR Award No: N00014-02-1-0510 Organization Award No: 13051000 Final Report Award Period

  19. Amniote phylogeny and the position of turtles.

    PubMed

    Hedges, S Blair

    2012-07-27

    The position of turtles among amniotes remains in dispute, with morphological and molecular comparisons giving different results. Morphological analyses align turtles with either lizards and their relatives, or at the base of the reptile tree, whereas molecular analyses, including a recent study by Chiari et al. in BMC Biology, place turtles with birds and crocodilians. Molecular studies have not wavered as the numbers of genes and species have increased, but morphologists have been reluctant to embrace the molecular tree.

  20. Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean.

    PubMed

    Blumenthal, J M; Abreu-Grobois, F A; Austin, T J; Broderick, A C; Bruford, M W; Coyne, M S; Ebanks-Petrie, G; Formia, A; Meylan, P A; Meylan, A B; Godley, B J

    2009-12-01

    Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed 'many-to-many' mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200-2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high-resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P < 0.001; linear regression, r = 0.83, P < 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a 'turtle soup'), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.

  1. Sea Turtles and Strategies for Language Skills.

    ERIC Educational Resources Information Center

    Tippins, Deborah; And Others

    1993-01-01

    Describes teaching strategies, including science activities, for challenging students' misconceptions about turtles and helping limited-English-proficiency students enhance their language proficiency. (PR)

  2. Modeling neck mobility in fossil turtles.

    PubMed

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection.

  3. A Mycoplasma species of Emydidae turtles in the northeastern USA.

    PubMed

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Niederriter, Holly; Zarate, Brian; Newton, Alisa L; McAloose, Denise

    2015-04-01

    Mycoplasma infections can cause significant morbidity and mortality in captive and wild chelonians. As part of a health assessment of endangered bog turtles (Glyptemys muhlenbergii) in the northeastern US, choanal and cloacal swabs from these and other sympatric species, including spotted turtles (Clemmys guttata), eastern box turtles (Terrapene carolina carolina), wood turtles (Glyptemys insculpta), and common snapping turtles (Chelydra serpentina) from 10 sampling sites in the states (US) of Delaware, New Jersey, and Pennsylvania, were tested by PCR for Mycoplasma. Of 108 turtles tested, 63 (58.3%) were PCR positive for Mycoplasma including 58 of 83 bog turtles (70%), three of three (100%) eastern box turtles, and two of 11 (18%) spotted turtles; all snapping turtles (n = 7) and wood turtles (n = 4) were negative. Sequence analysis of portions of the 16S-23S intergenic spacer region and the 16S ribosomal RNA gene revealed a single, unclassified species of Mycoplasma that has been previously reported in eastern box turtles, ornate box turtles (Terrapene ornata ornata), western pond turtles (Emys marmorata), and red-eared sliders (Trachemys scripta elegans). We document a high incidence of Mycoplasma, in the absence of clinical disease, in wild emydid turtles. These findings, along with wide distribution of the identified Mycoplasma sp. across a broad geographic region, suggest this bacterium is likely a commensal inhabitant of bog turtles, and possibly other species of emydid turtles, in the northeastern US.

  4. A new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution.

    PubMed

    Sterli, Juliana

    2008-06-23

    Turtles have been known since the Upper Triassic (210Myr old); however, fossils recording the first steps of turtle evolution are scarce and often fragmentary. As a consequence, one of the main questions is whether living turtles (Testudines) originated during the Late Triassic (210Myr old) or during the Middle to Late Jurassic (ca 160Myr old). The discovery of the new fossil turtle, Condorchelys antiqua gen. et sp. nov. from the Middle to Upper Jurassic (ca 160-146Myr old) of South America (Patagonia, Argentina), presented here sheds new light on early turtle evolution. An updated cladistic analysis of turtles shows that C. antiqua and other fossil turtles are not crown turtles, but stem turtles. This cladistic analysis also shows that stem turtles were more diverse than previously thought, and that until the Middle to Upper Jurassic there were turtles without the modern jaw closure mechanism.

  5. 77 FR 32909 - Listing Endangered and Threatened Wildlife and Designating Critical Habitat; 12-Month...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Petition To Revise Designated Critical Habitat for the Endangered Leatherback Sea Turtle AGENCY: National... for leatherback sea turtles pursuant to the Endangered Species Act (ESA) of 1973, as amended. The... leatherback sea turtle by adding the coastline and offshore waters of the Northeast Ecological Corridor...

  6. 76 FR 23305 - Endangered Species; File No. 15672

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... permit to take leatherback sea turtles (Dermochelys coriacea) for purposes of scientific research. DATES... characterize the distribution, movements and dive behavior of leatherback sea turtles in the waters of New... leatherback sea turtles annually. Researchers would use animals that have been disentangled from fishing...

  7. 75 FR 41436 - Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition to Revise Critical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... 90-Day Finding on a Petition to Revise Critical Habitat for the Endangered Leatherback Sea Turtle... endangered leatherback sea turtle under the Endangered Species Act (ESA). We find that the petition does not... leatherback sea turtles and their habitat under our jurisdiction. FOR FURTHER INFORMATION CONTACT:...

  8. 76 FR 58471 - Endangered Species; File No. 15634

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... permit to take leatherback sea turtles (Dermochelys coriacea) for scientific research. DATES: Written... proposes to conduct research on leatherback sea turtles to continue long-term monitoring of their status... leatherbacks. Up to 55 sea turtles would be located annually through aerial surveys and subsequently...

  9. The evolutionary position of turtles revised

    NASA Astrophysics Data System (ADS)

    Zardoya, Rafael; Meyer, Axel

    2001-05-01

    Consensus on the evolutionary position of turtles within the amniote phylogeny has eluded evolutionary biologists for more than a century. This phylogenetic problem has remained unsolved partly because turtles have such a unique morphology that only few characters can be used to link them with any other group of amniotes. Among the many alternative hypotheses that have been postulated to explain the origin and phylogenetic relationships of turtles, a general agreement among paleontologists emerged in favoring the placement of turtles as the only living survivors of the anapsid reptiles (those that lack temporal fenestrae in the skull). However, recent morphological and molecular studies have radically changed our view of amniote phylogenetic relationships, and evidence is accumulating that supports the diapsid affinities of turtles. Molecular studies favor archosaurs (crocodiles and birds) as the living sister group of turtles, whereas morphological studies support lepidosaurs (tuatara, lizards, and snakes) as the closest living relatives of turtles. Accepting these hypotheses implies that turtles cannot be viewed any longer as primitive reptiles, and that they might have lost the temporal holes in the skull secondarily rather than never having had them.

  10. Why do turtles live so long

    SciTech Connect

    Gibbons, J.W.

    1987-04-01

    Turtles appear to live longer than most other species of vertebrates, according to both maximal lifespans from zoo records and survivorship patterns in natural populations. Turtle longevity may reflect low metabolic activity, an absence of physiological and anatomical senility, a large investment in the adult's protective shell, and a life history with a long maturation period.

  11. More on Sea Turtles and Seaweed

    ERIC Educational Resources Information Center

    Xin, Tian

    2005-01-01

    "Sea turtle" and "seaweed"--otherwise known as "returnee from abroad" and "unemployed from abroad," respectively-- are a pair of popular new terms that are innately connected. In this article, the author discusses the common plight faced by "sea turtles" and "seaweeds" who returned from…

  12. Dune vegetation fertilization by nesting sea turtles.

    PubMed

    Hannan, Laura B; Roth, James D; Ehrhart, Llewellyn M; Weishampel, John F

    2007-04-01

    Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.

  13. 50 CFR Appendix F to Part 622 - Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements F Appendix F to Part 622 Wildlife and Fisheries... 622—Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements...

  14. 50 CFR Appendix F to Part 622 - Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements F Appendix F to Part 622 Wildlife and Fisheries...—Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements A. Sea...

  15. North American box turtles: A natural history

    USGS Publications Warehouse

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  16. Island-finding ability of marine turtles.

    PubMed

    Hays, Graeme C; Akesson, Susanne; Broderick, Annette C; Glen, Fiona; Godley, Brendan J; Papi, Floriano; Luschi, Paolo

    2003-08-07

    Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island.

  17. Island-finding ability of marine turtles.

    PubMed Central

    Hays, Graeme C; Akesson, Susanne; Broderick, Annette C; Glen, Fiona; Godley, Brendan J; Papi, Floriano; Luschi, Paolo

    2003-01-01

    Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island. PMID:12952621

  18. Transitional fossils and the origin of turtles.

    PubMed

    Lyson, Tyler R; Bever, Gabe S; Bhullar, Bhart-Anjan S; Joyce, Walter G; Gauthier, Jacques A

    2010-12-23

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.

  19. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan.

    PubMed

    Agusa, Tetsuro; Takagi, Kozue; Kubota, Reiji; Anan, Yasumi; Iwata, Hisato; Tanabe, Shinsuke

    2008-05-01

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As.

  20. Is the geographic distribution of nesting in the Kemp's ridley turtle shaped by the migratory needs of offspring?

    PubMed

    Putman, Nathan F; Shay, Thomas J; Lohmann, Kenneth J

    2010-09-01

    Across the geographic area that a species uses for reproduction, the density of breeding individuals is typically highest in locations where ecological factors promote reproductive success. For migratory animals, fitness depends, in part, on producing offspring that migrate successfully to habitats suitable for the next life-history stage. Thus, natural selection might favor reproduction in locations with conditions that facilitate the migration of offspring. To investigate this concept, we studied the Kemp's ridley sea turtle (Lepidochelys kempii) to determine whether coastal areas with the highest levels of nesting have particularly favorable conditions for hatchling migration. We modeled the passive drift of young Kemp's ridley turtles from seven nesting regions within the Gulf of Mexico to foraging grounds using the particle-tracking program ICHTHYOP and surface-current output from HYCOM (HYbrid Coordinate Ocean Model). Results revealed that geographic regions with conditions that facilitate successful migration to foraging grounds typically have higher abundance of nests than do regions where oceanographic conditions are less favorable and successful migration is difficult for hatchlings. Thus, our findings are consistent with the hypothesis that, for the Kemp's ridley turtle and perhaps for other migrants, patterns of abundance across the breeding range are shaped in part by conditions that promote or impede the successful migration of offspring.

  1. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high-productivity oceanic regions for foraging.

    PubMed

    Endres, Courtney S; Lohmann, Kenneth J

    2012-10-15

    During their long-distance migrations, sea turtles of several species feed on jellyfish and other invertebrates that are particularly abundant in ocean regions characterized by high productivity. An ability to distinguish productive oceanic regions from other areas, and to concentrate foraging activities in locations where prey density is highest, might therefore be adaptive. The volatile compound dimethyl sulfide (DMS) accumulates in the air above productive ocean areas such as upwelling and frontal zones. In principle, DMS might therefore serve as an indicator of high prey density for turtles. To determine whether turtles perceive DMS, juvenile loggerhead sea turtles (Caretta caretta) were placed into a water-filled arena in which DMS and other odorants could be introduced to the air above the water surface. Turtles exposed to air that had passed over a cup containing 10 nmol l(-1) DMS spent more time at the surface with their noses out of the water than control turtles, which were exposed to air that had passed over a cup containing distilled water. Odors that do not occur in the sea (cinnamon, jasmine and lemon) did not elicit increased surface time, implying that the response to DMS is unlikely to reflect a generalized response to any novel odor. The results demonstrate for the first time that sea turtles can detect DMS, an ability that might enable the identification of favorable foraging areas.

  2. Non-migratory breeding by isolated green sea turtles ( Chelonia mydas) in the Indian Ocean: biological and conservation implications

    NASA Astrophysics Data System (ADS)

    Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.

    2008-04-01

    Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  3. Evolutionary origin of the turtle skull.

    PubMed

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  4. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.

    PubMed

    Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J

    2015-04-01

    During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics.

  5. Fifty-year trends in a box turtle population in Maryland

    USGS Publications Warehouse

    Hall, R.J.; Henry, P.F.P.; Bunck, C.M.

    1999-01-01

    A survey conducted in 1995 investigated long term declines reported in a population of box turtles Terrapene Carolina monitored each decade since 1945 in bottomland hardwood forest at the Patuxent Wildlife Research Center, Maryland. Methods duplicated past surveys in most respects, but were supplemented by radiotelemetry and a survey of dominant vegetation. Seventy different turtles were found on the 11.8 ha study area, a decline of >75% since peak populations were recorded in 1955. Searchers were less efficient in 1995 than in 1945-1975 for a variety of possible reasons. Among turtles recorded, approximately equal numbers persisted from each of the past five decades, with some individuals surviving >70 years. A sex ratio strongly favoring males was first recorded in 1975 and continued in 1995, but juveniles and subadults were found in greater proportion in 1995 than in any other survey. Six of nine radio-marked turtles left the bottomland study area and migrated to the adjoining bluffs to hibernate, suggesting more extensive movements and perhaps less stable home ranges than formerly thought. Age structure of trees indicated a gradual change to more shade-tolerant species. Examination of rates of change from survey data suggested that major losses probably resulted from changes in hydrology that exacerbated flooding in 1972, with recovery only beginning in 1995 and perhaps limited both by repeated flood events and successional changes in the forest. Slow recovery from losses may indicate that populations of the species would respond poorly to exploitation.

  6. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil.

    PubMed

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20-25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  7. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    PubMed Central

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations. PMID:26500439

  8. Life history and environmental requirements of loggerhead turtles

    SciTech Connect

    Nelson, D.A.

    1988-08-01

    In the United States scattered nestings of loggerhead sea turtles (Caretta caretta) may occur in most of its range from Texas to Florida and Florida to New Jersey; however, nesting concentrations occur on coastal islands of North Carolina, South Carolina, and Georgia and on the coasts of Florida. The greatest portion of a loggerhead's life is spent in ocean and estuarine waters where it breeds in shallow waters adjacent to nesting beaches, feeds on a variety of fish and shellfish, and migrates generally north in the spring and summer and south in the fall and winter. The other part of its life is spent on coastal beaches where the female digs a nest, lays her eggs (average 120 eggs), the eggs hatch (in 46 to 65 days), and the hatchlings emerge from the nest as a group and orient seaward to become part of the aquatic system again. Nesting activity begins in the spring, peaks in midsummer, and declines until completion in late summer. A loggerhead female generally nests every other or every third year. Beach sand temperatures may affect nest site selection by females, the incubation time and hatching success of eggs, and the sex and emergence timing of hatchlings. Most management of sea turtles has been directed toward increasing hatching and hatchling success through predator control, egg relocation, and raising captive hatchlings. 183 refs.; 10 figs.; 3 tabs.

  9. Relationship between lanthanide contents in aquatic turtles and environmental exposures.

    PubMed

    Censi, P; Randazzo, L A; D'Angelo, S; Saiano, F; Zuddas, P; Mazzola, S; Cuttitta, A

    2013-05-01

    Trace elements released in the environment during agricultural practices can be incorporated and accumulated in biological fluids and tissues of living organisms. The assessment of these exposures were carried out investigating lanthanide distributions in blood and exoskeleton samples collected from Emys trinacris turtle specimens coming from sites with anthropogenic discharge in western and south Sicily, along migration paths of many bird species from Africa to Europe. The data show a significant (Rxy=0.72; Rxy>0.67; α=0.025) linear relationship between the size of turtle specimens and the lanthanide contents in blood lower than 0.4 μg L(-1) whereas this relationship disappears in blood with higher lanthanide contents. Comparative evaluations of normalised concentrations show that lanthanides fractionate between blood and exoskeleton inducing antithetical lanthanide patterns therein. These features are more evident in specimens with high lanthanide contents in blood, suggesting that lanthanide accumulations in the exoskeleton can represent the physiological response of E. trinacris to environmental and the further confirmation of relationship occurring between the environmental and the biological fluids.

  10. Geographic variation in marine turtle fibropapillomatosis

    USGS Publications Warehouse

    Greenblatt, R.J.; Work, T.M.; Dutton, P.; Sutton, C.A.; Spraker, T.R.; Casey, R.N.; Diez, C.E.; Parker, Dana C.; St. Ledger, J.; Balazs, G.H.; Casey, J.W.

    2005-01-01

    We document three examples of fibropapillomatosis by histology, quantitative polymerase chain reaction (qPCR), and sequence analysis from three different geographic areas. Tumors compatible in morphology with fibropapillomatosis were seen in green turtles from Puerto Rico and San Diego (California) and in a hybrid loggerhead/ hawksbill turtle from Florida Bay (Florida). Tumors were confirmed as fibropapillomas on histology, although severity of disease varied between cases. Polymerase chain reaction (PCR) analyses revealed infection with the fibropapilloma-associated turtle herpesvirus (FPTHV) in all cases, albeit at highly variable copy numbers per cell. Alignment of a portion of the polymerase gene from each fibropapilloma-associated turtle herpesvirus isolate demonstrated geographic variation in sequence. These cases illustrate geographic variation in both the pathology and the virology of fibropapillomatosis.

  11. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    NASA Astrophysics Data System (ADS)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-03-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the Central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  12. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    NASA Astrophysics Data System (ADS)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-12-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea-turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  13. Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: an indication of polluted effluents.

    PubMed

    Al-Bahry, Saif; Mahmoud, Ibrahim; Elshafie, Abdulkader; Al-Harthy, Asila; Al-Ghafri, Sabha; Al-Amri, Issa; Alkindi, Abdulaziz

    2009-05-01

    Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers.

  14. Science 101: How Do Animals Navigate during Migration?

    ERIC Educational Resources Information Center

    Robertson, William C.

    2007-01-01

    Migrating animals do amazing things. Homing pigeons can find their way "home" across hundreds of miles; salmon return to their spawning location thousands of miles away; turtles travel over eight thousand miles to lay their eggs in the spot where they originally hatched. Scientists have studied how animals navigate around the globe and have…

  15. Bibliography of marine turtles in Hawaii

    SciTech Connect

    Payne, S.F.

    1981-07-01

    Information on the organisms at proposed Ocean Thermal Energy Conversion (OTEC) sites is required to assess the potential impacts of OTEC power plant operations. This bibliography is the product of a literature survey on marine turtles at two proposed OTEC sites in Hawaii. The OTEC sites are located off Keahole Point, Hawaii and Kahe Point, Oahu. The references included in this bibliography provide information on the distribution, ecology and biology of marine turtles in Hawaii.

  16. An Updated AP2 Beamline TURTLE Model

    SciTech Connect

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  17. Physiological, behavioral, and ecological aspects of migration in reptiles.

    PubMed

    Southwood, Amanda; Avens, Larisa

    2010-01-01

    Seasonal movements between foraging, breeding, and overwintering sites occur in a wide variety of reptile species. Terrestrial snakes, lizards, and turtles migrate short distances (\\20 km) between seasonal habitats, whereas fully aquatic marine turtles migrate hundreds to thousands of kilometers between foraging and breeding areas. The purpose of this article is to summarize aspects of migratory physiology and behavior in reptiles, particularly with regards to energetics and sensory mechanisms for navigation and orientation. We discuss the influence of aerobic scope, endurance, and cost of transport on migratory capacity, the effects of temperature and circulating hormones on activity and behavior, and mechanisms of detecting and transducing environmental cues to successfully navigate and orient toward a goal during migration. Topics worthy of further research are highlighted in the text, and we conclude with a discussion of how information on migration patterns of reptiles may be used to manage and conserve threatened populations.

  18. Magnetite in Black Sea Turtles (Chelonia agassizi)

    NASA Astrophysics Data System (ADS)

    Fuentes, A.; Urrutia-Fucugauchi, J.; Garduño, V.; Sanchez, J.; Rizzi, A.

    2004-12-01

    Previous studies have reported experimental evidence for magnetoreception in marine turtles. In order to increase our knowledge about magnetoreception and biogenic mineralization, we have isolated magnetite particles from the brain of specimens of black sea turtles Chelonia agassizi. Our samples come from natural deceased organisms collected the reserve area of Colola Maruata in southern Mexico. The occurrence of magnetite particles in brain tissue of black sea turtles offers the opportunity for further studies to investigate possible function of ferrimagnetic material, its mineralogical composition, grain size, texture and its location and structural arrangement within the host tissue. After sample preparation and microscopic examination, we localized and identified the ultrafine unidimensional particles of magnetite by scanning electron microscope (SEM). Particles present grain sizes between 10.0 to 40.0Mm. Our study provides, for the first time, evidence for biogenic formation of this material in the black sea turtles. The ultrafine particles are apparently superparamagnetic. Preliminary results from rock magnetic measurements are also reported and correlated to the SEM observations. The black turtle story on the Michoacan coast is an example of formerly abundant resource which was utilized as a subsistence level by Nahuatl indigenous group for centuries, but which is collapsing because of intensive illegal commercial exploitation. The most important nesting and breeding grounds for the black sea turtle on any mainland shore are the eastern Pacific coastal areas of Maruata and Colola, in Michoacan. These beaches are characterized by important amounts of magnetic mineral (magnetites and titanomagnetites) mixed in their sediments.

  19. Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…

  20. First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles.

    PubMed

    Zelenitsky, Darla K; Therrien, Franc Ois; Joyce, Walter G; Brinkman, Donald B

    2008-12-23

    Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.

  1. The Box Turtle: Room with a View on Species Decline.

    ERIC Educational Resources Information Center

    Belzer, Bill; Steisslinger, Mary Beth

    1999-01-01

    Surveys salient aspects of eastern box-turtle natural history. Explores the societal and ecological factors that have contributed to the decline of the box-turtle population. Contains 18 references. (WRM)

  2. 77 FR 29586 - Sea Turtle Conservation; Shrimp Trawling Requirements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Part 223 RIN 0648-BC10 Sea Turtle Conservation; Shrimp Trawling Requirements; Correction AGENCY... turtle excluder devices (TEDs) in their nets, and announced five public hearings to be held in...

  3. Juvenile turtles for mosquito control in water storage tanks.

    PubMed

    Borjas, G; Marten, G G; Fernandez, E; Portillo, H

    1993-09-01

    Juvenile turtles, Trachemys scripta, provided highly effective control of mosquito larvae in cement tanks (pilas) where water was stored for household cleaning. When single turtles were introduced to tanks with histories of high mosquito production, nearly all turtles remained in good health and no mosquito larvae survived to the pupal stage. Families welcome turtles in their water storage containers in Honduras. Humane conditions for turtles can be assured by providing small quantities of table scraps to supplement their diet and by placing a small floating platform in the tank for basking. Although turtles can serve as alternate hosts for Salmonella, available evidence suggests that turtles in tanks should not be a source of human infection. Further confirmation that there is no Salmonella hazard should precede routine use of turtles for mosquito control.

  4. Modifications of traps to reduce bycatch of freshwater turtles

    USGS Publications Warehouse

    Bury, R. Bruce

    2011-01-01

    Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.

  5. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    PubMed

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-04-04

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles - hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta - exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) - the strongest on record - combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  6. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  7. Calcium transport in turtle bladder

    SciTech Connect

    Sabatini, S.; Kurtzman, N.A. )

    1987-12-01

    Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.

  8. Against Oversimplifying the Issues on Relocating Turtle Eggs

    NASA Astrophysics Data System (ADS)

    Mrosovsky, Nicholas

    2008-04-01

    Translocating sea turtle eggs at risk from high tides to safer places is one of the most widely undertaken conservation measures on behalf of these species. Recent research work has shown that individual female turtles differ in their nest-site preferences. If more of the nests saved by translocation come from turtles with tendencies to lay near the water, might this perhaps interfere with natural selection? This possibility adds to the controversy already surrounding relocation of turtle nests.

  9. Against oversimplifying the issues on relocating turtle eggs.

    PubMed

    Mrosovsky, Nicholas

    2008-04-01

    Translocating sea turtle eggs at risk from high tides to safer places is one of the most widely undertaken conservation measures on behalf of these species. Recent research work has shown that individual female turtles differ in their nest-site preferences. If more of the nests saved by translocation come from turtles with tendencies to lay near the water, might this perhaps interfere with natural selection? This possibility adds to the controversy already surrounding relocation of turtle nests.

  10. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    USGS Publications Warehouse

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  11. Sea Turtles: An Auditorium Program, Grades 6-9.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    The National Aquarium in Baltimore's sea turtle auditorium program introduces students in grades 6-9 to the seven (or eight, depending on which expert is consulted) species of sea turtles alive today. The program, which includes slides, films, artifacts, and discussion, focuses on sea turtle biology and conservation. This booklet covers most of…

  12. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  13. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  14. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  15. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  16. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  17. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  18. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  19. Decline of the Sea Turtles: Causes and Prevention.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  20. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  1. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  2. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  3. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  4. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals...

  5. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  6. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  7. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  8. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  9. 50 CFR 648.106 - Sea Turtle conservation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Sea Turtle conservation. 648.106 Section 648.106 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Sea turtle regulations are found at 50...

  10. 50 CFR 648.106 - Sea Turtle conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea Turtle conservation. 648.106 Section... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Link to an amendment published at 76 FR 60629, Sept. 29, 2011. Sea turtle regulations are found at 50 CFR parts 222 and 223. Effective Date...

  11. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  12. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as...

  13. 50 CFR 648.109 - Sea turtle conservation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50...

  14. Young Children's Misconceptions of Simple Turtle Graphics Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Four- and 5-year-olds' understanding of basic turtle graphics commands was examined before and after a hands-on, interactive problem-solving experience. Children (n=32) saw display screen events consisting of an initial turtle state, a command transformation, and the resulting turtle state. They were asked to give the command executed in each…

  15. Nesting Ecology of Hawksbill Sea Turtles (Eretmochelys imbricata) on Utila, Honduras

    NASA Astrophysics Data System (ADS)

    Damazo, Lindsey Renee Eggers

    The hawksbill sea turtle (Eretmochelys imbricata) has a circumtropical distribution and plays an important role in maintaining the health of coral reefs. Unfortunately, hawksbill populations have been decimated, and estimated numbers in the Caribbean are less than 10% of populations a century ago. The hawksbill is considered Critically Endangered, and researchers are coordinating worldwide efforts to protect this species. One country where we lack knowledge regarding hawksbills is Honduras. This study aimed to increase our understanding of hawksbill nesting ecology in Caribbean Honduras. Characteristics of hawksbill nesting activity and a nesting beach on the island of Utila were elucidated using satellite telemetry, beach profiling, vegetation surveys, beach monitoring, and nest temperature profiles. We affixed satellite transmitters to two nesting hawksbills, and found the turtles migrated to different countries. One turtle traveled 403 km to a bay in Mexico, and the other traveled 181 km to a Marine Protected Area off Belize. This study presents the first description of hawksbill migration routes from Honduras, facilitating protection efforts for turtles that traverse international waters. To investigate nesting beach and turtle characteristics, we conducted beach monitoring during the 2012 nesting season. Nesting turtle carapace sizes were similar to worldwide values, but hatchlings were heavier. To measure nest temperatures, we placed thermocouple data loggers in four nests and four pseudo-nests. Data suggested metabolic heating may be maintaining nest temperatures above the pivotal temperature. However, large temperature fluctuations corresponding to rainfall from Hurricane Ernesto (as determined using a time series cross-correlation analysis) make it difficult to predict sex ratios, and underscore the impact stochastic events can have on nest temperatures. We created topographic and substrate profiles of the beach, and found it was 475 m long, yet hawksbills

  16. Clinical Pathology Reference Intervals for an In-Water Population of Juvenile Loggerhead Sea Turtles (Caretta caretta) in Core Sound, North Carolina, USA

    PubMed Central

    Kelly, Terra R.; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R.; Hohn, Aleta A.; Godfrey, Matthew H.; Mihnovets, A. Nicole; Cluse, Wendy M.; Harms, Craig A.

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as “threatened” on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation. PMID

  17. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    PubMed

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  18. 50 CFR 665.813 - Western Pacific longline fishing restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Limits on sea turtle interactions. (1) Maximum annual limits are established on the number of physical interactions that occur each calendar year between leatherback and loggerhead sea turtles and vessels... leatherback sea turtles (Dermochelys coriacea) is 16, and the annual limit for loggerhead sea turtles...

  19. 50 CFR 665.813 - Western Pacific longline fishing restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Limits on sea turtle interactions. (1) Maximum annual limits are established on the number of physical interactions that occur each calendar year between leatherback and loggerhead sea turtles and vessels... leatherback sea turtles (Dermochelys coriacea) is 16, and the annual limit for loggerhead sea turtles...

  20. Tracking sea turtles in the Everglades

    USGS Publications Warehouse

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  1. Evolutionary origin of the turtle shell.

    PubMed

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida.

  2. Temporal bone arrangements in turtles: an overview.

    PubMed

    Werneburg, Ingmar

    2012-06-01

    The temporal region of turtles is characterized by significant anatomical diversity. Turtles show a pure anapsid morphotype that exhibits various different marginal reductions known as emarginations. As a result of this diversity, turtles can be taken as a model by which to understand the processes that may have resulted in the highly debated anatomy of the amniote temporal region in general. In this review on almost forgotten literature, I summarize ten potential factors that may act on the skull to shape the temporal region of turtles. These are: (1) phylogenetic constraints, (2) skull weights, (3) type of food, (4) skull dimensions, (5) muscle bulging, (6) ear anatomy and jaw muscle bending mechanisms, (7) extent and nature of muscle attachment sites, (8) internal forces within the jaw adductor chamber, (9) environmental pressure, and (10) neck bending mechanisms. Particular focus is laid on the interrelationship of the jaw musculature and the dermatocranial armour, which were assumed to influence each other to a certain degree. In the literature, cranial dimensions were assumed to influence temporal bone formation within major tetrapod groups. Among these, turtles seem to represent a kind of intermixture, a phenomenon that may be reflected in their specific anatomy. The references presented should be understood as product of the scientific environment in which they developed and the older literature does not always insist current empirical demands. However, the intuitive and creative ideas and the comprehensive anatomical considerations of these authors may inspire future studies in several fields related to this topic.

  3. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    PubMed Central

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  4. Decompression sickness ('the bends') in sea turtles.

    PubMed

    García-Párraga, D; Crespo-Picazo, J L; de Quirós, Y Bernaldo; Cervera, V; Martí-Bonmati, L; Díaz-Delgado, J; Arbelo, M; Moore, M J; Jepson, P D; Fernández, Antonio

    2014-10-16

    Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.

  5. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.

    PubMed

    Pascual-Anaya, Juan; Hirasawa, Tatsuya; Sato, Iori; Kuraku, Shigehiro; Kuratani, Shigeru

    2014-01-01

    The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that appears at both sides of the dorsal lateral trunk of the turtle embryo and that probably controls the formation of the carapace, the dorsal moiety of the shell. Although from the beginning of this century modern genetic techniques have been applied to resolve the evolutionary developmental origin of the CR, the use of different models with, in principle, dissimilar results has hampered the establishment of a common mechanism for the origin of the shell. Although modern turtles are divided into two major groups, Cryptodira (or hidden-necked turtles) and Pleurodira (or side-necked turtles), molecular developmental studies have been carried out mostly using cryptodiran models. In this study, we revisit the past data obtained from cryptodiran turtles in order to reconcile the different results. We also analyze the histological anatomy and the expression pattern of main CR factors in a pleurodiran turtle, the red-bellied short-necked turtle Emydura subglobosa. We suggest that the turtle shell probably originated concomitantly with the co-option of the canonical Wnt signaling pathway into the CR in the last common ancestor of the turtle.

  6. Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: Transmission from native turtles.

    PubMed

    Hidalgo-Vila, J; Díaz-Paniagua, C; Ribas, A; Florencio, M; Pérez-Santigosa, N; Casanova, J C

    2009-06-01

    We report the prevalence and diversity of helminth parasites found in native turtles Mauremys leprosa and Emys orbicularis from three localities in southwestern Spain and we describe the helminth communities of exotic turtles Trachemys scripta elegans coexisting in the wild with both native turtle species. Five nematodes species were identified, of which Serpinema microcephalus was the only species common between two localities, although infection parameters were different between them. This is the first report of cross transmission of S. microcephalus and Falcaustra donanaensis from native to exotic turtles and the first report of genus Physaloptera in turtles of the Palearctic Region. Continuous releasing of exotic pet turtles in wildlife ecosystems increases the risk of parasite introductions and, consequently, potential transmission to native species, and highlights the impending need for regulation of pet turtle trade in Europe.

  7. A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles.

    PubMed

    Anquetin, Jérémy; Barrett, Paul M; Jones, Marc E H; Moore-Fay, Scott; Evans, Susan E

    2009-03-07

    The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.

  8. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    PubMed

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  9. Ghrelin and leptin modulate the feeding behaviour of the hawksbill turtle Eretmochelys imbricata during nesting season

    PubMed Central

    Goldberg, Daphne Wrobel; Leitão, Santiago Alonso Tobar; Godfrey, Matthew H.; Lopez, Gustave Gilles; Santos, Armando José Barsante; Neves, Fabiana Alves; de Souza, Érica Patrícia Garcia; Moura, Anibal Sanchez; Bastos, Jayme da Cunha; Bastos, Vera Lúcia Freire da Cunha

    2013-01-01

    Female sea turtles have rarely been observed foraging during the nesting season. This suggests that prior to their migration to nesting beaches the females must store sufficient energy and nutrients at their foraging grounds and must be physiologically capable of undergoing months without feeding. Leptin (an appetite-suppressing protein) and ghrelin (a hunger-stimulating peptide) affect body weight by influencing energy intake in all vertebrates. We investigated the levels of these hormones and other physiological and nutritional parameters in nesting hawksbill sea turtles in Rio Grande do Norte State, Brazil, by collecting consecutive blood samples from 41 turtles during the 2010–2011 and 2011–2012 reproductive seasons. We found that levels of serum leptin decreased over the nesting season, which potentially relaxed suppression of food intake and stimulated females to begin foraging either during or after the post-nesting migration. Concurrently, we recorded an increasing trend in ghrelin, which may have stimulated food intake towards the end of the nesting season. Both findings are consistent with the prediction that post-nesting females will begin to forage, either during or immediately after their post-nesting migration. We observed no seasonal trend for other physiological parameters (values of packed cell volume and serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, low-density lipoprotein, and high-density lipoprotein). The observed downward trends in general serum biochemistry levels were probably due to the physiological challenge of vitellogenesis and nesting in addition to limited energy resources and probable fasting. PMID:27293600

  10. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles

    PubMed Central

    Zhou, Chang-Fu; Rabi, Márton

    2015-01-01

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses. PMID:26553740

  11. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    PubMed

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  12. Acquisition of Salmonella flora by turtle hatchlings on commercial turtle farms.

    PubMed

    Izadjoo, M J; Pantoja, C O; Siebeling, R J

    1987-08-01

    A commercial turtle pond in South Louisiana was studied to identify the mechanism by which turtle hatchlings acquire Salmonella flora. The visceral organs and mature eggs removed from 31 adult gravid female turtles over the course of two egg-laying seasons and from 37 adult females during one winter dormant period were examined bacteriologically for Salmonella. Pond water, egg nest soil, and hatchlings produced by eggs removed from the oviducts and nest soil were also tested. Eighty-eight turtles hatched from eggs removed from the oviducts of 15 turtles at necropsy did not excrete or harbor systemically Salmonella, nor were these pathogens isolated from ovarian tissue or immature eggs. The findings suggest transovarian transmission of these pathogens does not occur frequently. Turtles hatched from eggs retrieved from soil nests 1 to 2 h after deposition harbor and excrete these organisms. This result coupled with the isolation of these pathogens from the cloaca, colon contents, and bursal fluid from 18 females captured in the act of egg laying supports the cloaca to egg and nest soil to egg mode for salmonellae infection in the resultant hatchling. Salmonella arizonae and Salmonella serogroups B, C2, and E1 were isolated from the cloaca, colon contents, pond water, and nest soil, and were excreted by hatchlings produced from eggs removed from the soil nests. These same serogroups were isolated from the colon contents of 19 of 37 females tested during the dormant period, suggesting the salmonellae persist in the pond environment in the adult throughout the year.

  13. 76 FR 29718 - Western Pacific Pelagic Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle Interactions AGENCY: National Marine... Pacific green sea turtles, which will enable American Samoa longline fishing vessels to continue... turtle populations. DATES: Comments on Amendment 5, including an environmental assessment, must...

  14. Long range radio tracking of sea turtles and polar bear: Instrumentation and preliminary results

    NASA Technical Reports Server (NTRS)

    Baldwin, H. A.

    1972-01-01

    Instrumentation developed for studies of path behavior of the green sea turtle and migration movement of polar bear is described. Preliminary results bearing on navigation ability in these species are presented. Both species operate in difficult environments, and the problems faced in the design of electronic instrumentation for these studies are not completely specified at this time. However, the critical factors yet to be understood are primarily related to the behavior of instrumented animals. The data obtained with these experimental techniques are included, first to illustrate the technique and, second to provide initial preliminary results bearing on animal navigation.

  15. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  16. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    PubMed

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  17. 75 FR 7434 - Endangered and Threatened Species; Proposed Rule to Revise the Critical Habitat Designation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Turtle; Extension of Public Comment Period AGENCY: National Marine Fisheries Service (NMFS), National... designation for the endangered leatherback sea turtle (Dermochelys coriacea) by designating additional areas... 0648-AX06, and addressed to: David Cottingham, Chief, Marine Mammal and Sea Turtle...

  18. 78 FR 5481 - Endangered Species; Marine Mammals; Receipt of Applications for Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... marine otters (Lontra felina), sea otters (Enhydra lutris), all species of Sirenia (Trichechus manatus, T... Center for Sea Turtle Research, University of Florida, Gainesville, FL; PRT-724540 The applicant requests... captive hatched leatherback sea turtle (Dermochelys coriacea), hawksbill sea turtle...

  19. "Turtle Island Tales." Cue Sheet for Students.

    ERIC Educational Resources Information Center

    Carr, Gail

    This performance guide is designed for teachers to use with students before and after a shadow play performance of "Turtle Island Tales" by Hobey Ford and His Golden Rod Puppets. The guide, called a "Cuesheet," contains seven activity sheets for use in class, addressing: (1) The Tales (offering brief outlines of the three tales…

  20. Biology and medicine of turtles and tortoises.

    PubMed

    Mautino, M; Page, C D

    1993-11-01

    Turtles and tortoises are unique reptiles that are gaining popularity as pets. Their anatomy and defense posture hinder, but do not preclude, clinical assessment and performance of routine diagnostic and therapeutic procedures by the clinician. A basic working knowledge of chelonian taxonomy, anatomy, physiology, husbandry, common diseases, and therapeutics will enable the veterinarian to provide health care to this order of reptiles.

  1. Age and residency duration of loggerhead turtles at a North Pacific bycatch hotspot using skeletochronology

    PubMed Central

    Tomaszewicz, Calandra N. Turner; Seminoff, Jeffrey A.; Avens, Larisa; Goshe, Lisa R.; Peckham, S. Hoyt; Rguez-Baron, Juan M.; Bickerman, Kalyn; Kurle, Carolyn M.

    2015-01-01

    For migratory marine animals, like sea turtles, effective conservation can be challenging because key demographic information such as duration of life stages and exposure to spatially explicit threats in different habitats are often unknown. In the eastern Pacific near the Baja California Peninsula (BCP), Mexico, tens of thousands of endangered North Pacific loggerhead sea turtles (Caretta caretta) concentrate at a foraging area known to have high rates of fishery bycatch. Because stage survivorship of loggerheads in the BCP will vary significantly depending on the number of years spent in this region, we applied skeletochronology to empirically estimate residency duration in this loggerhead hotspot. The observed age distribution obtained from skeletochronology analysis of 146 dead-stranded loggerheads ranged from three to 24 years old, suggesting a BCP residency of >20 years. Given the maximum estimated age and a one-year migration to western Pacific nesting beaches, we infer age-at-maturation for BCP loggerheads at ~25 years old. We also examine survivorship at varying BCP residency durations by applying our findings to current annual mortality estimates. Predicted survivorship of loggerheads spending over 20 years in this BCP foraging habitat is less than 10%, and given that ~43,000 loggerhead turtles forage here, a significant number of turtles are at extreme risk in this region. This is the first empirical evidence supporting estimated age-at-maturation for BCP North Pacific loggerheads, and the first estimates of BCP stage survivorship. Our findings emphasize the urgent need for continued and effective international conservation efforts to minimize bycatch of this endangered species. PMID:25848136

  2. Global Conservation Priorities for Marine Turtles

    PubMed Central

    Wallace, Bryan P.; DiMatteo, Andrew D.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Mortimer, Jeanne A.; Seminoff, Jeffrey A.; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jérôme; Bowen, Brian W.; Briseño Dueñas, Raquel; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Finkbeiner, Elena M.; Girard, Alexandre; Girondot, Marc; Hamann, Mark; Hurley, Brendan J.; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2011-01-01

    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for

  3. Turtle-Associated Salmonellosis, United States, 2006–2014

    PubMed Central

    Tauxe, Robert V.; Behravesh, Casey Barton

    2016-01-01

    During 2006–2014, a total of 15 multistate outbreaks of turtle-associated salmonellosis in humans were reported in the United States. Exposure to small pet turtles has long been recognized as a source of human salmonellosis. The risk to public health has persisted and may be increasing. Turtles are a popular reptilian pet among children, and numerous risky behaviors for the zoonotic transmission of Salmonella bacteria to children have been reported in recent outbreaks. Despite a long-standing federal ban against the sale and distribution of turtles <4 in (<10.16 cm) long, these small reptiles can be readily acquired through multiple venues and continue to be the main source of turtle-associated salmonellosis in children. Enhanced efforts are needed to minimize the disease risk associated with small turtle exposure. Prevention will require novel partnerships and a comprehensive One Health approach involving human, animal, and environmental health. PMID:27315584

  4. First records of dive durations for a hibernating sea turtle.

    PubMed

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-03-22

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect.

  5. Prevalence of Salmonella spp. in pet turtles and their environment.

    PubMed

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell; Heo, Gang-Joon

    2016-09-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea.

  6. Prevalence of Salmonella spp. in pet turtles and their environment

    PubMed Central

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  7. First records of dive durations for a hibernating sea turtle

    PubMed Central

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-01-01

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7 h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect. PMID:17148134

  8. Susceptibility of two turtle species to eastern equine encephalitis virus.

    PubMed

    Smith, A L; Anderson, C R

    1980-10-01

    Two species of turtle collected in southern New England were inoculated subcutaneously with eastern equine encephalitis virus. The spotted turtles (Clemmys guttata) developed viremia and neutralizing antibody after exposure to 3 logs or more of virus. Viremia was not detected in the eastern painted turtles (Chrysemys picta), and neutralizing antibody was detected in only 1 of 15 inoculated C. picta; however, since pre-inoculation serum was not obtained from this animal, the possibility of natural infection cannot be eliminated.

  9. Tumors in sea turtles: the insidious menace of fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.

    2013-01-01

    Early in July 2013, a colleague in New Caledonia reported the stranding of a green sea turtle on the far northwest of the island. The animal had washed up dead on a rocky beach with multiple large tumors on its neck and hind flippers. To all appearances, the turtle had fibropapillomatosis (FP), a tumor disease affecting marine turtles globally. This was the first known case of FP on the island—an alarming find, and another example of the creeping expansion of this disease in green turtles around the world.

  10. An ancestral turtle from the Late Triassic of southwestern China.

    PubMed

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  11. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    PubMed

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  12. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    PubMed

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  13. Reproductive Disorders and Perinatology of Sea Turtles.

    PubMed

    Spadola, Filippo; Morici, Manuel; Santoro, Mario; Oliveri, Matteo; Insacco, Gianni

    2017-05-01

    Sea turtles' reproductive disorders are underdiagnosed, but potentially, there are several diseases that may affect gonads, genitalia, and annexes. Viruses, bacteria, and parasites may cause countless disorders, but more frequently the cause is traumatic or linked to human activities. Furthermore, veterinary management of the nest is of paramount importance as well as the care of newborns (also in captivity). This article gives an overview on the methods used to manage nests and reproductive activities of these endangered chelonians species.

  14. Habitat Suitability Index Models: Snapping turtle

    USGS Publications Warehouse

    Graves, Brent M.; Anderson, Stanley H.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the snapping turtle (Chelydra serpentina). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  15. Habitat Suitability Index Models: Slider turtle

    USGS Publications Warehouse

    Morreale, Stephen J.; Gibbons, J. Whitfield

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the slider turtle (Pseudemys scripta). The model consolidates habitat use information into a framework appropriate for field application and is scaled to produce an index between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  16. 50 CFR 665.813 - Western Pacific longline fishing restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Limits on sea turtle interactions. (1) Maximum annual limits are established on the number of physical interactions that occur each calendar year between leatherback and loggerhead sea turtles and vessels... for leatherback sea turtles (Dermochelys coriacea) is 16, and the annual limit for loggerhead...

  17. 50 CFR 665.813 - Western Pacific longline fishing restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Limits on sea turtle interactions. (1) Maximum annual limits are established on the number of physical interactions that occur each calendar year between leatherback and North Pacific loggerhead sea turtles and... annual limit for leatherback sea turtles (Dermochelys coriacea) is 26, and the annual limit for...

  18. 76 FR 25660 - Endangered and Threatened Wildlife; Notice of 90-Day Finding on a Petition to Revise Critical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Sea Turtle Under the Endangered Species Act AGENCY: National Marine Fisheries Service (NMFS), National... endangered ] leatherback sea turtle under the Endangered Species Act (ESA). We find that the petition... leatherback sea turtles and their habitat under our jurisdiction. FOR FURTHER INFORMATION CONTACT:...

  19. 75 FR 61133 - Marine Mammals and Endangered Species; File Nos. 808-1735, 14233, 14506, 14603, and 14726

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... amendment to conduct research ] on marine mammals or sea turtles. See SUPPLEMENTARY INFORMATION for... leatherback (Dermochelys coriacea) sea turtles had been submitted by Llewellyn Ehrhart, Ph.D. [File No. 14506... research on green, hawksbill, Kemp's ridley, loggerhead, and leatherback sea turtles had been submitted...

  20. 50 CFR 665.813 - Western Pacific longline fishing restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Limits on sea turtle interactions. (1) Maximum annual limits are established on the number of physical interactions that occur each calendar year between leatherback and North Pacific loggerhead sea turtles and... annual limit for leatherback sea turtles (Dermochelys coriacea) is 26, and the annual limit for...

  1. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Energy Regulatory Commission Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office... caverns and related facilities to be located in Chambers and Liberty Counties, Texas. Turtle Bayou...

  2. 50 CFR 660.720 - Interim protection for sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§...

  3. 50 CFR 660.720 - Interim protection for sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§...

  4. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of...

  5. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    EPA Science Inventory

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  6. 50 CFR 660.720 - Interim protection for sea turtles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§...

  7. 50 CFR 660.720 - Interim protection for sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§...

  8. 50 CFR 660.720 - Interim protection for sea turtles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§...

  9. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  10. Learning from Experience: A Report from Mexico's Turtle Trip 2000.

    ERIC Educational Resources Information Center

    Jankowska, Marta Maja

    2000-01-01

    Fifteen high school students and adults from Idaho traveled to Mexico to assist the One World Workforce with monitoring the nests of olive ridley sea turtles. Only 1 percent of these endangered turtles mature to adulthood. The volunteers protected the eggs from poachers and helped the hatchlings get safely to the water. (TD)

  11. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  12. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of...

  13. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra from the...

  14. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  15. LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA

    EPA Science Inventory

    T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...

  16. The Green Sea Turtle of the Cayman Islands

    ERIC Educational Resources Information Center

    Considine, James L.; Winberry, John J.

    1978-01-01

    The green sea turtle is an economically valuable animal because of the many articles produced from it, including food stuffs. This article describes the history of turtle hunting and the attempts that have been made to domesticate and raise this reptile in captivity. (MA)

  17. Endohelminths of European pond turtle Emys orbicularis in Southwest Iran.

    PubMed

    Shayegh, Hossein; Rajabloo, Mohammad; Gholamhosseini, Amin; Mootabi Alavi, Amir; Salarian, Parisa; Zolfaghari, Ali

    2016-03-01

    Very little is known about parasitic diseases of European pond turtles (Emys orbicularis) in Iran. The objective of this study is to examine parasitic fauna of European pond turtles collected from Fars province, southwest Iran. Carcasses of turtles (n = 52) which died during dredging procedure are collected from earthen fishery basins in Zarghan region. They have been died earlier during dredging procedure in different farms. Three species of helminths in total were found in gastrointestinal tract, including two nematodes (Serpinema microcephalus and Falcaustra araxiana) and one digenean trematod (Telorchis assula). Large intestines of all examined turtles were infected by F. araxiana (100 %, Mean intensity = 18) and this nematode were also found in gastric nodules. Nine turtles (17.3 %, 3 male, 6 female, Mean intensity = 3) were infected with Serpinema microcephalus. T. assula were found in 25 turtles (48.07 %, 5 male, 20 female, mean intensity = 5). Helminths were not found in any examined organs and no ectoparasite found eighter. F. araxiana is the most prevalent nematode in European pond turtles. Detection of Serpinema.microcephalus is in agreement with the fact which this parasite is common parasite of turtles in all over the world. T. assula might be transmitted between variety of reptiles so presence of the trematod should be considered as a risk factor for other reptiles.

  18. Geometric morphometrics of the shoulder girdle in extant turtles (Chelonii)

    PubMed Central

    Depecker, Marion; Berge, Christine; Penin, Xavier; Renous, Sabine

    2006-01-01

    The aim of this study was to identify shape patterns of the shoulder girdle in relation to different functional and environmental behaviours in turtles. The Procrustes method was used to compare the shoulder girdles (scapula and coracoid) of 88 adult extant turtles. The results indicate that four shape patterns can be distinguished. The shoulder girdles of (1) terrestrial (Testudinidae), (2) highly aquatic freshwater (Trionychidae, Carettochelyidae) and (3) marine turtles (Cheloniidae, Dermochelyidae) correspond to three specialized morphological patterns, whereas the shoulder girdle of (4) semi-aquatic freshwater turtles (Bataguridae, Chelidae, Chelydridae, Emydidae, Kinosternidae, Pelomedusidae, Platysternidae, Podocnemididae) is more generalized. In terrestrial turtles, the long scapular prong and the short coracoid are associated with a domed shell and a mode of locomotion in which walking is predominant. By contrast, highly aquatic freshwater turtles share traits with marine turtles. In both, the short scapular prong and the long coracoid are associated with a flat shell, and swimming locomotion. The enlarged attachment sites of the biceps, coracobrachialis magnus, and supracoracoideus also give these strong swimmers a mechanical advantage during adduction and retraction of the arm. Increasing size leads to allometrical shape changes that emphasize mechanical efficiency both in terrestrial and in aquatic turtles. PMID:16420377

  19. Geometric morphometrics of the shoulder girdle in extant turtles (Chelonii).

    PubMed

    Depecker, Marion; Berge, Christine; Penin, Xavier; Renous, Sabine

    2006-01-01

    The aim of this study was to identify shape patterns of the shoulder girdle in relation to different functional and environmental behaviours in turtles. The Procrustes method was used to compare the shoulder girdles (scapula and coracoid) of 88 adult extant turtles. The results indicate that four shape patterns can be distinguished. The shoulder girdles of (1) terrestrial (Testudinidae), (2) highly aquatic freshwater (Trionychidae, Carettochelyidae) and (3) marine turtles (Cheloniidae, Dermochelyidae) correspond to three specialized morphological patterns, whereas the shoulder girdle of (4) semi-aquatic freshwater turtles (Bataguridae, Chelidae, Chelydridae, Emydidae, Kinosternidae, Pelomedusidae, Platysternidae, Podocnemididae) is more generalized. In terrestrial turtles, the long scapular prong and the short coracoid are associated with a domed shell and a mode of locomotion in which walking is predominant. By contrast, highly aquatic freshwater turtles share traits with marine turtles. In both, the short scapular prong and the long coracoid are associated with a flat shell, and swimming locomotion. The enlarged attachment sites of the biceps, coracobrachialis magnus, and supracoracoideus also give these strong swimmers a mechanical advantage during adduction and retraction of the arm. Increasing size leads to allometrical shape changes that emphasize mechanical efficiency both in terrestrial and in aquatic turtles.

  20. Use of Electronic Tag Data and Associated Analytical Tools to Identify and Predict Habitat Utilization of Marine Predators

    DTIC Science & Technology

    2012-01-01

    Convergence Zone (blue and mako sharks, leatherback turtles), or the eastern Pacific and Hawaiian Islands (white sharks, albacore tuna, and black...the nearshore CCLME, but also migrated into warmer, offshore waters of the Subtropical Gyre12 and the Hawaiian Islands (Figure 5c). Shortfin makos...Costa, and F. Trillmich. 2012a. Age, body mass and environmental variation shape the foraging ontogeny of Galapagos sea lions. Marine Ecology

  1. Relative vulnerability of female turtles to road mortality

    USGS Publications Warehouse

    Steen, D.A.; Aresco, M.J.; Beilke, S.G.; Compton, B.W.; Condon, E.P.; Dodd, C.K.; Forrester, H.; Gibbons, J.W.; Greene, J.L.; Johnson, G.; Langen, T.A.; Oldham, M.J.; Oxier, D.N.; Saumure, R.A.; Schueler, F.W.; Sleeman, J.M.; Smith, L.L.; Tucker, J.K.; Gibbs, J.P.

    2006-01-01

    Recent studies suggest that freshwater turtle populations are becoming increasingly male-biased. A hypothesized cause is a greater vulnerability of female turtles to road mortality. We evaluated this hypothesis by comparing sex ratios from published and unpublished population surveys of turtles conducted on- versus off-roads. Among 38 166 turtles from 157 studies reporting sex ratios, we found a consistently larger female fraction in samples from on-roads (61%) than off-roads (41%). We conclude that female turtles are indeed more likely to cross roadways than are males, which may explain recently reported skewed sex ratios near roadways and signify eventual population declines as females are differentially eliminated. ?? 2006 The Zoological Society of London.

  2. Removal of nonnative slider turtles (Trachemys scripta) and effects on native Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, Yavapai County, Arizona

    USGS Publications Warehouse

    Drost, Charles A.; Lovich, Jeffrey E.; Madrak, Sheila V.; Monatesti, A.J.

    2011-01-01

    The National Park Service (NPS) estimates that 234 national parks contain nonnative, invasive animal species that are of management concern (National Park Service, 2004). Understanding and controlling invasive species is thus an important priority within the NPS (National Park Service, 1996). The slider turtle (Trachemys scripta) is one such invasive species. Native to the Southeastern United States (Ernst and Lovich, 2009), as well as Mexico, Central America, and portions of South America (Ernst and Barbour, 1989), the slider turtle has become established throughout the continental United States and in other locations around the world (Burke and others, 2000). Slider turtle introductions have been suspected to be a threat to native turtles (Holland 1994; da Silva and Blasco, 1995), however, there has not been serious study of their effects until recently. Cadi and Joly (2003) found that slider turtles outcompeted European pond turtles (Emys orbicularis) for preferred basking sites under controlled experimental conditions, demonstrating for the first time direct competition for resources between a native and an exotic turtle species. Similarly, Spinks and others (2003) suggested that competition for basking sites between slider turtles and Pacific pond turtles (Actinemys marmorata) was partly responsible for the decline of Pacific pond turtles observed at their study site in California. They concluded that the impact of introduced slider turtles was 'almost certainly negative' for the western pond turtle. In the most recent critical study to assess the effects of introduced slider turtles on native turtles, Cadi and Joly (2004) demonstrated that European pond turtles that were kept under experimentally controlled conditions with slider turtles lost body weight and exhibited higher rates of mortality than in control groups of turtles comprised of the same species, demonstrating potential population-level effects on native species. Slider turtles are not native to

  3. Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle)

    DOE PAGES

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.; ...

    2016-09-01

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  4. Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle)

    SciTech Connect

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.; Green, Timothy M.

    2016-09-01

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  5. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  6. Three Novel Herpesviruses of Endangered Clemmys and Glyptemys Turtles

    PubMed Central

    Ossiboff, Robert J.; Raphael, Bonnie L.; Ammazzalorso, Alyssa D.; Seimon, Tracie A.; Newton, Alisa L.; Chang, Tylis Y.; Zarate, Brian; Whitlock, Alison L.; McAloose, Denise

    2015-01-01

    The rich diversity of the world’s reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts. PMID

  7. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    PubMed

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  8. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world's largest marine protected area.

    PubMed

    Hays, Graeme C; Mortimer, Jeanne A; Ierodiaconou, Daniel; Esteban, Nicole

    2014-12-01

    Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km(2) ) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA.

  9. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest.

  10. Migratory corridors of adult female Kemp’s ridley turtles in the Gulf of Mexico

    USGS Publications Warehouse

    Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Pena, Jaime; Gamez, Daniel Gomez; Gonzales Diaz Miron, Raul de Jesus; Burchfield, Patrick M.; Martinez, Hector J.; Ortiz, Jaime

    2016-01-01

    For many marine species, locations of migratory pathways are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to define the migratory corridor used by Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. The turtles were tagged after nesting at Padre Island National Seashore, Texas, USA from 1997 to 2014 (PAIS; n = 80); Rancho Nuevo, Tamaulipas, Mexico from 2010 to 2011 (RN; n = 14); Tecolutla, Veracruz, Mexico from 2012 to 2013 (VC; n = 13); and Gulf Shores, Alabama, USA during 2012 (GS; n = 1). The migratory corridor lies in nearshore Gulf of Mexico waters in the USA and Mexico with mean water depth of 26 m and a mean distance of 20 km from the nearest mainland coast. Migration from the nesting beach is a short phenomenon that occurs from late-May through August, with a peak in June. There was spatial similarity of post-nesting migratory pathways for different turtles over a 16 year period. Thus, our results indicate that these nearshore Gulf waters represent a critical migratory habitat for this species. However, there is a gap in our understanding of the migratory pathways used by this and other species to return from foraging grounds to nesting beaches. Therefore, our results highlight the need for tracking reproductive individuals from foraging grounds to nesting beaches. Continued tracking of adult females from PAIS, RN, and VC nesting beaches will allow further study of environmental and bathymetric components of migratory habitat and threats occurring within our defined corridor. Furthermore, the existence of this migratory corridor in nearshore waters of both the USA and Mexico demonstrates that international cooperation is necessary to protect essential migratory habitat for this imperiled species.

  11. The physiology of hibernation in common map turtles (Graptemys geographica).

    PubMed

    Reese, S A; Crocker, C E; Carwile, M E; Jackson, D C; Ultsch, G R

    2001-09-01

    Map turtles from Wisconsin were submerged at 3 degrees C in normoxic and anoxic water to simulate extremes of potential respiratory microenvironments while hibernating under ice. In predive turtles, and in turtles submerged for up to 150 days, plasma PO2, PCO2) pH, [Cl-], [Na+], [K+], total Mg, total Ca, lactate, glucose, and osmolality were measured; hematocrit and body mass were determined, and plasma [HCO3-] was calculated. Turtles in anoxic water developed a severe metabolic acidosis, accumulating lactate from a predive value of 1.7 to 116 mmol/l at 50 days, associated with a fall in pH from 8.010 to 7.128. To buffer lactate increase, total calcium and magnesium rose from 3.5 and 2.0 to 25.7 and 7.6 mmol/l, respectively. Plasma [HCO3-] was titrated from 44.7 to 4.3 mmol/l in turtles in anoxic water. Turtles in normoxic water had only minor disturbances of their acid-base status and ionic statuses; there was a marked increase in hematocrit from 31.1 to 51.9%. This study and field studies suggest that map turtles have an obligatory requirement for a hibernaculum that provides well-oxygenated water (e.g. rivers and large lakes rather than small ponds and swamps) and that this requirement is a major factor in determining their microdistribution.

  12. The role of turtles as coral reef macroherbivores.

    PubMed

    Goatley, Christopher H R; Hoey, Andrew S; Bellwood, David R

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  13. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis.

    PubMed

    Scheyer, Torsten M

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  14. Replication and persistence of VHSV IVb in freshwater turtles.

    PubMed

    Goodwin, Andrew E; Merry, Gwenn E

    2011-05-09

    With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.

  15. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    NASA Astrophysics Data System (ADS)

    Scheyer, Torsten M.

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  16. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae).

    PubMed

    Carabajal, Ariana Paulina; Sterli, Juliana; Müller, Johannes; Hilger, André

    2013-01-01

    Turtles are one of the least explored clades regarding endocranial anatomy with few available descriptions of the brain and inner ear of extant representatives. In addition, the paleoneurology of extinct turtles is poorly known and based on only a few natural cranial endocasts. The main goal of this study is to provide for the first time a detailed description of the neuroanatomy of an extinct turtle, the Late Jurassic Plesiochelysetalloni, including internal carotid circulation, cranial endocast and inner ear, based on the first digital 3D reconstruction using micro CT scans. The general shape of the cranial endocast of P. etalloni is tubular, with poorly marked cephalic and pontine flexures. Anteriorly, the olfactory bulbs are clearly differentiated suggesting larger bulbs than in any other described extinct or extant turtle, and indicating a higher capacity of olfaction in this taxon. The morphology of the inner ear of P. etalloni is comparable to that of extant turtles and resembles those of slow-moving terrestrial vertebrates, with markedly low, short and robust semicircular canals, and a reduced lagena. In P. etalloni the arterial pattern is similar to that found in extant cryptodires, where all the internal carotid branches are protected by bone. As the knowledge of paleoneurology in turtles is scarce and the application of modern techniques such as 3D reconstructions based on CT scans is almost unexplored in this clade, we hope this paper will trigger similar investigations of this type in other turtle taxa.

  17. Collecting a sample of loggerhead sea turtle hatchlings before a natural emergence does not reduce nest productivity

    USGS Publications Warehouse

    Salmon, Michael; Carthy, Raymond R.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.; Wyneken, Jeanette

    2012-01-01

     In numerous studies involving hatchling sea turtles, researchers have collected small numbers of hatchlings from nests a few hours before the turtles would otherwise have emerged naturally. This procedure makes it possible to do experiments in which the behavioral or physiological responses of numerous hatchlings must be tested in a limited period of time, and also allows hatchlings to be released back into the sea in time to migrate offshore before dawn. In principle, however, the procedure might inadvertently reduce nest productivity (the number of hatchlings that successfully leave the nest), if digging into a nest prior to emergence somehow reduces the ability of the remaining turtles to emerge. We compared nest productivity in 67 experimental loggerhead nests, from which we removed 10 hatchlings before a natural emergence, to 95 control nests left undisturbed before a natural emergence. The 2 groups showed no statistical differences in productivity. We conclude that taking a few hatchlings from a loggerhead nest shortly before a natural emergence has no negative impact on hatchling production if sampling is done with care at locations where there are few nest predators, and at sites where an emergence can be predicted because nest deposition dates are known.

  18. Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    In all vertebrates sex determination is the step at which development of a testis or ovary is initiated in the bipotential gonad. Although Mus musculus and the red-eared slider turtle, Trachemys scripta, use different mechanisms to initiate organogenesis of the testis (the Y-linked gene, Sry, in the mouse vs. the incubation temperature of the egg in the turtle), the structure of the adult testis is strikingly similar. We have identified several cellular mechanisms involved in testis organogenesis in mouse. Here we investigated whether these cellular mechanisms are conserved in T. scripta downstream of the temperature-dependent switch. Cell tracing experiments indicated that the coelomic epithelium in T. scripta contributes precursors for Sertoli cells and interstitial cells as in mouse. However, we detect no male-specific mesonephric cell migration, a process required for the de novo testis cord-forming process in mouse. In contrast to mouse gonads, where no cord structure is discernible until after the divergence of testis development, we find that primitive sex cords continuous with the coelomic epithelium exist in all T. scripta gonads from the earliest bipotential stages examined. We conclude that typical testis architecture results from the maintenance and elaboration of primitive sex cords in T. scripta rather than the assembly of de novo structures as in mouse. PMID:15454268

  19. Hawksbill × loggerhead sea turtle hybrids at Bahia, Brazil: where do their offspring go?

    PubMed Central

    Reisser, Julia; Marins, Luis F.; Marcovaldi, Maria A.; Soares, Luciano S.; Monteiro, Danielle S.; Wijeratne, Sarath; Pattiaratchi, Charitha; Secchi, Eduardo R.

    2014-01-01

    Hybridization between hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta) breeding groups is unusually common in Bahia state, Brazil. Such hybridization is possible because hawksbill and loggerhead nesting activities overlap temporally and spatially along the coast of this state. Nevertheless, the destinations of their offspring are not yet known. This study is the first to identify immature hawksbill × loggerhead hybrids (n = 4) from this rookery by analyzing the mitochondrial DNA (mtDNA) of 157 immature turtles morphologically identified as hawksbills. We also compare for the first time modeled dispersal patterns of hawksbill, loggerhead, and hybrid offspring considering hatching season and oceanic phase duration of turtles. Particle movements varied according to season, with a higher proportion of particles dispersing southwards throughout loggerhead and hybrid hatching seasons, and northwards during hawksbill season. Hybrids from Bahia were not present in important hawksbill feeding grounds of Brazil, being detected only at areas more common for loggerheads. The genetic and oceanographic findings of this work indicate that these immature hybrids, which are morphologically similar to hawksbills, could be adopting behavioral traits typical of loggerheads, such as feeding in temperate waters of the western South Atlantic. Understanding the distribution, ecology, and migrations of these hybrids is essential for the development of adequate conservation and management plans. PMID:24688839

  20. Ultraviolet colour opponency in the turtle retina.

    PubMed

    Ventura, D F; Zana, Y; de Souza, J M; DeVoe, R D

    2001-07-01

    We have examined the functional architecture of the turtle Pseudemys scripta elegans retina with respect to colour processing, extending spectral stimulation into the ultraviolet, which has not been studied previously in the inner retina. We addressed two questions. (i) Is it possible to deduce the ultraviolet cone spectral sensitivity function through horizontal cell responses? (ii) Is there evidence for tetrachromatic neural mechanisms, i.e. UV/S response opponency? Using a constant response methodology we have isolated the ultraviolet cone input into the S/LM horizontal cell type and described it in fine detail. Monophasic (luminosity), biphasic L/M (red-green) and triphasic S/LM (yellow-blue) horizontal cells responded strongly to ultraviolet light. The blue-adapted spectral sensitivity function of a S/LM cell peaked in the ultraviolet and could be fitted to a porphyropsin cone template with a peak at 372 nm. In the inner retina eight different combinations of spectral opponency were found in the centre of the receptive field of ganglion cells. Among amacrine cells the only types found were UVSM-L+ and its reverse. One amacrine and four ganglion cells were also opponent in the receptive field surround. UV/S opponency, seen in three different types of ganglion cell, provides a neural basis for discrimination of ultraviolet colours. In conclusion, the results strongly suggest that there is an ultraviolet channel and a neural basis for tetrachromacy in the turtle retina.

  1. Physiological ecology of overwintering in hatchling turtles.

    PubMed

    Costanzo, Jon P; Lee, Richard E; Ultsch, Gordon R

    2008-07-01

    Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.

  2. Differences in habitat use by blanding's turtles, Emydoidea blandingii, and painted turtles, Chysemys picta, in the Nebraska sandhills

    USGS Publications Warehouse

    Bury, R. Bruce; Germano, David J.

    2003-01-01

    We sampled a variety of wetlands in the Nebraska sandhills at Valentine National Wildlife Refuge. Significantly more individuals of painted turtles (Chrysemys picta) occurred in lakes and open waters than in marshes or small ponds, and the opposite was true for Blanding's turtles (Emydoidea blandingii). Besides this marked difference in habitat use, 46% of the captured E. blandingii in pond/marsh habitat were juveniles, but only 31.6% in lakes and open water. Current information suggests that marshes and small ponds are important habitat for juvenile turtles, especially Emydoidea blandingii.

  3. 51. Port elevation, in port. Note reduced turtle deck due ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Port elevation, in port. Note reduced turtle deck due to quarters expansion. - U.S. Coast Guard Cutter WHITE SUMAC, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA

  4. Looking southeast down the Turtle Creek Valley at the Edgar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast down the Turtle Creek Valley at the Edgar Thomson works from a bluff at North Braddock (Martin Stupich) - U.S. Steel Edgar Thomson Works, Along Monongahela River, Braddock, Allegheny County, PA

  5. 45. Starboard elevation under way. Note large turtle deck and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Starboard elevation under way. Note large turtle deck and crane configuration. - U.S. Coast Guard Cutter WHITE SUMAC, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA

  6. Gulf Coast Sea Turtle Hatchlings Released at KSC

    NASA Video Gallery

    The first group of hatchlings from endangered sea turtle eggs brought from beaches along the northern U.S. Gulf Coast was released into the Atlantic Ocean off NASA's Kennedy Space Center in Florida...

  7. Turtle embryos move to optimal thermal environments within the egg.

    PubMed

    Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo

    2013-08-23

    A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms.

  8. Corneal fibropapillomatosis in green sea turtles (Chelonia mydas) in Australia.

    PubMed

    Flint, M; Limpus, C J; Patterson-Kane, J C; Murray, P J; Mills, P C

    2010-05-01

    Chelonid corneal fibropapillomatosis has not previously been recorded in Australian waters. During 2008, 724 green sea turtles (Chelonia mydas) were examined in Queensland, Australia at two sites, Moreton Bay (n=155) and Shoalwater Bay (n=569), during annual monitoring. In the same calendar year, 63 turtles were submitted from various sites in southern Queensland for post-mortem examination at the University of Queensland. Four of the 787 animals (0.5%) were found to have corneal fibropapillomas of varying size, with similar gross and microscopical features to those reported in other parts of the world. Two animals with corneal fibropapillomas also had cutaneous fibropapillomas. Clinical assessment indicated that these lesions had detrimental effects on the vision of the turtles and therefore their potential ability to source food, avoid predators and interact with conspecifics. Importantly, these findings represent an emergence of this manifestation of fibropapillomatosis in green sea turtle populations in the southern Pacific Ocean.

  9. Two cases of pseudohermaphroditism in loggerhead sea turtles Caretta caretta.

    PubMed

    Crespo, Jose Luis; García-Párraga, Daniel; Giménez, Ignacio; Rubio-Guerri, Consuelo; Melero, Mar; Sánchez-Vizcaíno, José Manuel; Marco, Adolfo; Cuesta, Jose A; Muñoz, María Jesús

    2013-09-03

    Two juvenile (curved carapace lengths: 28 and 30 cm) loggerhead sea turtles Caretta caretta with precocious male external characteristics were admitted to the ARCA del Mar rescue area at the Oceanogràfic Aquarium in Valencia, Spain, in 2009 and 2010. Routine internal laparoscopic examination and subsequent histopathology confirmed the presence of apparently healthy internal female gonads in both animals. Extensive tissue biopsy and hormone induction assays were consistent with female sex. To the best of our knowledge, this is the first report of pseudohermaphroditism in loggerhead sea turtles based on sexual external characteristics and internal laparoscopic examination. Our findings suggest that the practice of using external phenotypical characteristics as the basis for gender identification in sea turtles should be reevaluated. Future research should focus on detecting more animals with sexual defects and their possible effects on the sea turtle population.

  10. Serum antileptospiral agglutinins in freshwater turtles from Southern Brazil

    PubMed Central

    Silva, Éverton F; Seyffert, Núbia; Cerqueira, Gustavo M.; Leihs, Karl P.; Athanazio, Daniel A.; Valente, Ana L. S.; Dellagostin, Odir A.; Brod, Claudiomar S.

    2009-01-01

    In this study, we observed the presence of antileptospiral agglutinins in freshwater turtles of two urban lakes of Pelotas, Southern Brazil. Forty animals (29 Trachemys dorbigny and 11 Phrynops hilarii) were captured and studied. Attempts to isolate leptospires from blood and urine samples were unsuccessful. Serum samples (titer > 100) reactive to pathogenic strains were observed in 11 animals. These data encourage surveys of pet turtles to evaluate the risk of transmission of pathogenic leptospires to humans. PMID:24031348

  11. Demographic evidence of illegal harvesting of an endangered asian turtle.

    PubMed

    Sung, Yik-Hei; Karraker, Nancy E; Hau, Billy C H

    2013-12-01

    Harvesting pressure on Asian freshwater turtles is severe, and dramatic population declines of these turtles are being driven by unsustainable collection for food markets, pet trade, and traditional Chinese medicine. Populations of big-headed turtle (Platysternon megacephalum) have declined substantially across its distribution, particularly in China, because of overcollection. To understand the effects of chronic harvesting pressure on big-headed turtle populations, we examined the effects of illegal harvesting on the demography of populations in Hong Kong, where some populations still exist. We used mark-recapture methods to compare demographic characteristics between sites with harvesting histories and one site in a fully protected area. Sites with a history of illegal turtle harvesting were characterized by the absence of large adults and skewed ratios of juveniles to adults, which may have negative implications for the long-term viability of populations. These sites also had lower densities of adults and smaller adult body sizes than the protected site. Given that populations throughout most of the species' range are heavily harvested and individuals are increasingly difficult to find in mainland China, the illegal collection of turtles from populations in Hong Kong may increase over time. Long-term monitoring of populations is essential to track effects of illegal collection, and increased patrolling is needed to help control illegal harvesting of populations, particularly in national parks. Because few, if any, other completely protected populations remain in the region, our data on an unharvested population of big-headed turtles serve as an important reference for assessing the negative consequences of harvesting on populations of stream turtles. Evidencia Demográfica de la Captura Ilegal de una Tortuga Asiática en Peligro.

  12. Common snapping turtle preys on an adult western grebe

    USGS Publications Warehouse

    Igl, L.D.; Peterson, S.L.

    2010-01-01

    The identification of predators of aquatic birds can be difficult. The Common Snapping Turtle (Chelydra serpentine) is considered a major predator of waterfowl and other aquatic birds, but the evidence for this reputation is based largely on circumstantial or indirect evidence rather than direct observations. Herein, the first documented observations of a snapping turtle attacking and killing an adult Western Grebe (Aechmophorus occidentalis) are described.

  13. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages

    PubMed Central

    Wu, Shelly C.; Bergey, Elizabeth A.

    2017-01-01

    Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts. PMID:28192469

  14. The Distribution and Conservation Status of Green Turtles (Chelonia mydas) and Olive Ridley Turtles (Lepidochelys olivacea) on Pulau Pinang beaches (Malaysia), 1995-2009.

    PubMed

    Salleh, Sarahaizad Mohd; Yobe, Mansor; Sah, Shahrul Anuar Mohd

    2012-05-01

    The Green Turtle (Chelonia mydas) and Olive Ridley Turtle (Lepidochelys olivacea) are the only sea turtles with recorded landings in the Pulau Pinang coastal area. The Green Turtle has been the most abundant and widely distributed sea turtle in this area since it was first surveyed in 1995. Statistical analysis by the Pulau Pinang Department of Fisheries on the distribution of sea turtles from 2001 through 2009 has identified Pantai Kerachut and Telok Kampi as the most strongly preferred beaches for Green Turtle landings, with records for almost every month in every year. Green Turtle tracks and nests have also been found along the coast of Pulau Pinang at Batu Ferringhi, Tanjong Bungah, Pantai Medan, Pantai Belanda, Telok Kumbar, Gertak Sanggul, Moonlight Beach, Telok Duyung, Telok Aling, Telok Bahang and Telok Katapang. The Olive Ridley Turtle is present in smaller numbers; landing and nesting have only been recorded on a few beaches. There are no previous records of Olive Ridley landings at Pantai Kerachut and Telok Kampi, but tracks and nests have been found at Telok Kumbar, Tanjong Bungah, Pantai Medan, Telok Duyung and Gertak Sanggul. A Turtle Conservation Centre has been established at Pantai Kerachut to protect these species from extinction in Pulau Pinang. This paper presents details of the records and distribution of sea turtles in Pulau Pinang from 1995 through 2009.

  15. Emerging from the rib: resolving the turtle controversies.

    PubMed

    Rice, Ritva; Riccio, Paul; Gilbert, Scott F; Cebra-Thomas, Judith

    2015-05-01

    Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.

  16. Origin of the unique ventilatory apparatus of turtles.

    PubMed

    Lyson, Tyler R; Schachner, Emma R; Botha-Brink, Jennifer; Scheyer, Torsten M; Lambertz, Markus; Bever, G S; Rubidge, Bruce S; de Queiroz, Kevin

    2014-11-07

    The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.

  17. Endoscopic evaluation of the esophagus and stomach in three loggerhead sea turtles (Caretta caretta) and a Malaysian giant turtle (Orlitia borneensis).

    PubMed

    Pressler, Barrak M; Goodman, Robert A; Harms, Craig A; Hawkins, Eleanor C; Lewbart, Greg A

    2003-03-01

    Three loggerhead sea turtles (Caretta caretta) and a Malaysian giant turtle (Orlitia borneensis) were presented with suspected or confirmed esophageal foreign bodies. Esophagoscopy was performed on all turtles, and gastroscopy was performed on three turtles. In all cases, endoscopy was easy to perform, and allowed visualization of most upper gastrointestinal features. The papillated esophagus was easy to navigate, but mucosal papillae in the loggerhead sea turtles prevented examination of the underlying mucosa. The stomach was easily entered and examined in both species, but the working endoscope length (100 cm) prevented inspection of the pyloric antrum and the duodenum in all turtles. The turtles in this report may serve as references for future endoscopic examinations of these species.

  18. Migration Theories

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-08-01

    The great variety of the architectures of the extra-solar planetary systems has revealed the fundamental role played by planetary migration: the interactions between the planets and the gaseous disk in which they form leads to a modification of their orbits. Here, I will review the basic processes and the most recent results in this area.Planets up to ~50 Earth masses are prone to so-called type I migration.I will describe the processes at play, namely the Lindblad and corotation torques, and explain how the total torque depends on the planet mass and the local disk structure. Application to realistic disks shows one or two sweet spot(s) for outward migration of planets roughly between 5 and 30 Earth masses around the snowline ; this is confirmed by dedicated 3D numerical simulations. This has strong consequences on the formation of hot Super-Earths or mini-Neptunes.For smaller mass planets, it has been recently proposed that the heating of the neighboring gas by the luminous planet can lead to a positive torque, hence promoting outward migration. On the other hand, if the planet is not a heat source, a cold finger appears, whose resulting torque is negative. Applications of these two recent results should be discussed.Giant planets open gaps in the proto-planetary disk, and then are supposedly subject to type II migration, following the viscous accretion of the disk. This standard picture has been questioned recently, as gas appears to drift through the gap. Although the gap opening process is well understood in 2D for a planet on a fixed orbit, recent results on 3D simulations or migrating planets make the picture more accurate.Our ever better understanding of planet-disk interactions is of crucial importance as the statistics on extra solar systems keep growing and the results of these interactions are now imaged.

  19. The Western Pond Turtle; Habitat and History, 1993-1994 Final Report.

    SciTech Connect

    Holland, Dan C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy.

  20. ESTABLISHMENT OF A FIBRINOGEN REFERENCE INTERVAL IN ORNATE BOX TURTLES (TERRAPENE ORNATA ORNATA).

    PubMed

    Parkinson, Lily; Olea-Popelka, Francisco; Klaphake, Eric; Dadone, Liza; Johnston, Matthew

    2016-09-01

    This study sought to establish a reference interval for fibrinogen in healthy ornate box turtles ( Terrapene ornata ornata). A total of 48 turtles were enrolled, with 42 turtles deemed to be noninflammatory and thus fitting the inclusion criteria and utilized to estimate a fibrinogen reference interval. Turtles were excluded based upon physical examination and blood work abnormalities. A Shapiro-Wilk normality test indicated that the noninflammatory turtle fibrinogen values were normally distributed (Gaussian distribution) with an average of 108 mg/dl and a 95% confidence interval of the mean of 97.9-117 mg/dl. Those turtles excluded from the reference interval because of abnormalities affecting their health had significantly different fibrinogen values (P = 0.313). A reference interval for healthy ornate box turtles was calculated. Further investigation into the utility of fibrinogen measurement for clinical usage in ornate box turtles is warranted.

  1. Forelimb muscle function in pig-nosed turtles, Carettochelys insculpta: testing neuromotor conservation between rowing and flapping in swimming turtles.

    PubMed

    Rivera, Angela R V; Blob, Richard W

    2013-10-23

    Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation-the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns-has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions.

  2. Forelimb muscle function in pig-nosed turtles, Carettochelys insculpta: testing neuromotor conservation between rowing and flapping in swimming turtles

    PubMed Central

    Rivera, Angela R. V.; Blob, Richard W.

    2013-01-01

    Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation—the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns—has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions. PMID:23966596

  3. Graptemys pulchra Baur 1893: Alabama Map Turtle

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Godwin, James C.; McCoy, C.J.; Rhodin, A. G. J.; Pritchard, P. C. H.; van Dijk, P. P.; Saumure, R.A.; Buhlmann, K.A.; Iverson, J.B.; Mittermeier, R.A.

    2014-01-01

    The Alabama Map Turtle, Graptemys pulchra (Family Emydidae), is a moderately large riverine species endemic to the Mobile Bay drainage system of Alabama, Georgia, and Mississippi. Sexual size dimorphism is pronounced, with adult females (carapace length [CL] to 273 mm) attaining more than twice the size of adult males (CL to 117 mm). The species is an inhabitant of relatively large, swift creeks and rivers, often with wide sandbars. Stream sections open to the sun and with abundant basking sites in the form of logs and brush are preferred. Six to seven clutches of 4–7 eggs are laid each year on river sandbars. Although the species is locally abundant, populations are threatened by habitat destruction, declines in their prey base, commercial collection, and vandalism. It is listed as a Species of Special Concern in Alabama.

  4. Haemoproteus (Apicomplexa: Haemoproteidae) of tortoises and turtles.

    PubMed Central

    Lainson, R; Naiff, R D

    1998-01-01

    It is the general opinion that the haemoproteid blood parasites of chelonians belong to the genus Haemoproteus. Different specific names have long been assigned to this parasite in birds, but some past authorities have accepted only a single species, H. metchnikovi, for all those haemoproteids recorded in a wide range of chelonian genera throughout the world. In the present study, a comparison of one such organism in the tortoise Geochelone denticulata with another in the river turtle Peltocephalus dumerilianus, from Amazonian Brazil, has revealed clear morphological differences. These distinguish the parasites from each other, H. metchnikovi and the other named species of chelonian Haemoproteus for which adequate descriptions are available. We have assigned to them the names Haemoproteus geochelonis n.sp. and Haemoproteus peltocephali n.sp. PMID:9675908

  5. Migrating Planets

    NASA Astrophysics Data System (ADS)

    Murray, N.; Hansen, B.; Holman, M.; Tremaine, S.

    1998-01-01

    A planet orbiting in a disk of planetesimals can experience an instability in which it migrates to smaller orbital radii. Resonant interactions between the planet and planetesimals remove angular momentum from the planetesimals, increasing their eccentricities. Subsequently, the planetesimals either collide with or are ejected by the planet, reducing the semimajor axis of the planet. If the surface density of planetesimals exceeds a critical value, corresponding to 0.03 solar masses of gas inside the orbit of Jupiter, the planet will migrate inward a large distance. This instability may explain the presence of Jupiter-mass objects in small orbits around nearby stars.

  6. The embryological development of primary visual centres in the turtle Emys orbicularis.

    PubMed Central

    Hergueta, S; Lemire, M; Pieau, C; Ward, R; Repérant, J

    1993-01-01

    The development of the primary visual centres was studied in a series of embryos of the turtle, Emys orbicularis, incubated at 25 degrees C. The differentiation of both visual and nonvisual diencephalic and mesencephalic structures takes place entirely within the 2nd quarter of the period of incubation; this finding appears to be consistent with previous descriptions of the embryology of 2 other chelonian species, Lepidochelys and Chelydra. Two successive waves of migration, each dividing into internal and external sheaves, are involved in the formation of the structures of the diencephalon and mesencephalon. The primary visual centres, which comprise 2 hypothalamic, 5 thalamic and 5 pretectal zones of retinal projections, together with the 2 superficial layers of the tectum and a single tegmental projection zone, all have their origin in the external sheaf of the 1st wave of migration. The finding that the adult nucleus geniculatus lateralis dorsalis, pars ventralis arises from one of the migrations of the dorsal thalamus is discussed in the context of the debate over the possible homologues of the mammalian geniculostriate visual pathway. Images Fig. 1 (cont.) Fig. 1 Fig. 2 (cont.) Fig. 2 Fig. 3 (cont.) Fig. 3 Fig. 4 (cont.) Fig. 4 Fig. 5 (cont.) Fig. 5 Fig. 6 (cont.) Fig. 6 Fig. 7 Fig. 8 (cont.) Fig. 8 Fig. 9 (cont.) Fig. 9 Fig. 10 (cont.) Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:8300423

  7. 76 FR 4635 - Endangered Species; File No. 15552

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ...), loggerhead (Caretta caretta), Kemp's ridley (Lepidochelys kempii), olive ridley (Lepidochelys olivacea..., loggerhead, hawksbill, leatherback, Kemp's ridley, olive ridley, and unidentified hardshell sea turtles by... 120 olive ridley/ unknown hardshell sea turtles would be handled, identified, photographed,...

  8. Monarch Migration.

    ERIC Educational Resources Information Center

    Williamson, Brad; Taylor, Orley

    1996-01-01

    Describes the Monarch Watch program that tracks the migration of the monarch butterfly. Presents activities that introduce students to research and international collaboration between students and researchers. Familiarizes students with monarchs, stimulates their interest, and helps them generate questions that can lead to good research projects.…

  9. Dateline Migration.

    ERIC Educational Resources Information Center

    Tomasi, Lydio E., Ed.

    1995-01-01

    Presents data on international migration and its effects in and between various countries in North America, Europe, and Africa. Discussions include refugee, immigrant, and migrant worker flows; the legal, political, and social problems surrounding immigrants; alien terrorism and law enforcement problems; and migrant effects on education, social…

  10. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. Link to an amendment published at 76 FR 60635, Sept. 29, 2011. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the...

  11. 75 FR 47825 - Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles Affected by the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Fish and Wildlife Service Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles... sea turtle species. We, the U.S. Fish and Wildlife Service have authorized Texas State Aquarium, under an Endangered Species Act (ESA) permit, to aid sea turtles affected by the oil spill....

  12. 77 FR 60637 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii Shallow-Set Longline Fishery AGENCY... Pacific loggerhead sea turtles. NMFS also makes administrative housekeeping changes to the regulations... turtles, seabirds, and marine mammals. NMFS may issue a maximum of 164 longline permits for the deep-...

  13. 50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... turtles, in accordance with and subject to the conditions of part 222, subpart C—General Permit...

  14. 77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... National Oceanic and Atmospheric Administration RIN 0648-XC379 2013 Annual Determination for Sea Turtle... to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  15. Association of sea turtles with petroleum platforms in the north-central Gulf of Mexico

    SciTech Connect

    Lohoefener, R.; Hoggard, W.; Mullin, K.; Roden, C.; Rogers, C.

    1990-06-01

    There are over 4,500 petroleum platforms in the north-central Gulf of Mexico. Explosives are commonly used to remove platforms and have the potential to kill nearby sea turtles. From June 1988-June 1990, the authors used aerial surveys to study turtle density and the spatial relationship between turtles and platforms offshore of Louisiana. They sighted 316 turtles most of which (92%) were loggerheads. Seventy-eight percent were sighted just east of the Mississippi River offshore of the Chandeleur Islands. East of the river, turtle densities ranged from 0.92 (winter) to 4.83 turtles/100 sq km (spring). West of the river, annual densities ranged from 0.11-0.50 turtles/100 sq km. East of the river, three statistical tests indicated that turtles were generally closer to platforms than expected by chance alone. West of the river, turtles were randomly located with respect to platform locations. Before explosives are used, current mitigation measures require that no turtle can be sighted within 1,000 m of the platform. East of the river, the probability of a turtle being within 1,000 m of any platform selected at random was about 60%; west of the river, 2-7%. West of the river to about 92 W, the mitigation measures should protect turtles but offshore of the Chandeleur Islands, special precautions should be taken.

  16. 75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries Service (NMFS), National Oceanic...' request. The purpose of observing identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and...

  17. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... National Oceanic and Atmospheric Administration RIN 0648-XA892 2012 Annual Determination for Sea Turtle... learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  18. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be...

  19. 50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... turtles, in accordance with and subject to the conditions of part 222, subpart C—General Permit...

  20. 50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... turtles, in accordance with and subject to the conditions of part 222, subpart C—General Permit...

  1. 50 CFR 648.129 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  2. 50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education, zoological... zoological exhibition, or to enhance the propagation or survival of threatened species of sea turtles,...

  3. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be...

  4. 50 CFR 648.129 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  5. 77 FR 14347 - Proposed Information Collection; Comment Request; Reporting of Sea Turtle Incidental Take in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... of Sea Turtle Incidental Take in Virginia Chesapeake Bay Pound Net Operations AGENCY: National... endangered and threatened sea turtles, found both live and dead, in their pound net operations. When a live or dead sea turtle is discovered during a pound net trip, the Virginia pound net fisherman...

  6. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  7. 50 CFR 648.129 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  8. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be...

  9. 78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... National Oceanic and Atmospheric Administration RIN 0648-XD008 2014 Annual Determination for Sea Turtle... to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to implement...

  10. 50 CFR 648.129 - Protection of threatened and endangered sea turtles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to...

  11. 75 FR 70900 - Proposed Information Collection; Comment Request; Reporting of Sea Turtle Entanglement in Fishing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... of Sea Turtle Entanglement in Fishing Gear or Marine Debris AGENCY: National Oceanic and Atmospheric... of a currently approved collection. This collection of information involves sea turtles becoming... prevent the recovery of endangered and threatened sea turtle populations. The National Marine...

  12. 78 FR 66841 - Turtles Intrastate and Interstate Requirements; Confirmation of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate... commercial or public distribution, of viable turtle eggs and live turtles with a carapace length of less...

  13. 76 FR 32929 - Western Pacific Pelagic Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle Interactions AGENCY: National Marine... interactions between longline fishing and Pacific green sea turtles. DATES: Comments on the proposed rule must..., mitigation, handling, and release techniques for sea turtles, seabirds, and marine mammals. Fishermen...

  14. Petrogenesis of the reversely-zoned Turtle pluton, southeastern California

    SciTech Connect

    Allen, C.M.

    1989-01-01

    Few plutons with a reversed geometry of a felsic rim and mafic core have been described in the geologic literature. The Turtle pluton of S.E. California is an intrusion composed of a granitic rim and granodioritic core and common microgranitoid enclaves. Field observations, mineral textures and chemistries, major and trace element geochemistry, and isotopic variability support a petrogenetic model of in situ, concomitant, magma mixing and fractional crystallization of rhyolitic magma progressively mixed with an increasing volume of andesitic magma, all without chemical contribution from entrained basaltic enclaves. Hornblende geobarometry indicates the Turtle pluton crystallized at about 3.5 kb. A crystallization sequence of biotite before hornblende (and lack of pyroxenes) suggests the initial granitic magma contained less than 4 wt% H{sub 2}O at temperatures less than 780C. U-Pb, Pb-Pb, Rb-Sr and oxygen isotope studies indicate the terrane intruded by the Turtle pluton is 1.8 Ga, that the Turtle pluton crystallized at 130 Ma, that the Target Granite and garnet aplites are about 100 Ma, and that these intrusions were derived from different sources. Models based on isotopic data suggest the rhyolitic end member magma of the Turtle pluton was derived from mafic igneous rocks, and was not derived from sampled Proterozoic country rocks. Similarity of common Sr and Pb isotopic ratios of these rocks to other Mesozoic intrusions in the Colorado River Region suggest the Turtle pluton and Target Granite have affinities like rocks to the east, including the Whipple Mountains and plutons of western Arizona. P-T-t history of the southern Turtle Mountains implies uplift well into the upper crust by Late Cretaceous time so that the heating and deformation events of the Late Cretaceous and Tertiary observed in flanking ranges did not affect the study area.

  15. Sedimentology, geochemistry and rock magnetic properties of beach sands in Galapagos Islands - implications for nesting marine turtles

    NASA Astrophysics Data System (ADS)

    Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.

    2007-12-01

    Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum

  16. The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast

    NASA Astrophysics Data System (ADS)

    Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien

    2016-03-01

    The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.

  17. The feeding habit of sea turtles influences their reaction to artificial marine debris

    NASA Astrophysics Data System (ADS)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-06-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris.

  18. The feeding habit of sea turtles influences their reaction to artificial marine debris

    PubMed Central

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris. PMID:27305858

  19. Global distribution of two fungal pathogens threatening endangered sea turtles.

    PubMed

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  20. No slip locomotion of hatchling sea turtles on granular media

    NASA Astrophysics Data System (ADS)

    Mazouchova, Nicole; Li, Chen; Gravish, Nick; Savu, Andrei; Goldman, Daniel

    2009-11-01

    Sea turtle locomotion occurs predominantly in aquatic environments. However after hatching from a nest on a beach, the juvenile turtles (hatchlings), must run across several hundred meters of granular media to reach the water. To discover how these organisms use aquatically adapted limbs for effective locomotion on sand, we use high speed infrared video to record hatchling Loggerhead sea turtles (Caretta caretta) kinematics in a field site on Jekyll Island, GA, USA. A portable fluidized bed trackway allows variation of the properties of the granular bed including volume fraction and angle up to the angle of repose. Despite being adapted for life in water, on all treatments the turtles use strategies similar to terrestrial organisms when moving on sand. Speeds up to 3 BL/sec are generated not by paddling in sand, but by limb movement that minimizes slip of the flippers, thus maintaining force below the yield stress of the medium. We predict turtle speed using a model which incorporates the yield stress of the granular medium as a function of surface angle.

  1. Physiological ramifications for loggerhead turtles captured in pelagic longlines

    PubMed Central

    Williard, Amanda; Parga, Mariluz; Sagarminaga, Ricardo; Swimmer, Yonat

    2015-01-01

    Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles. PMID:26490415

  2. Tissue enzyme activities in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Anderson, Eric T; Socha, Victoria L; Gardner, Jennifer; Byrd, Lynne; Manire, Charles A

    2013-03-01

    The loggerhead sea turtle, Caretta caretta, one of the seven species of threatened or endangered sea turtles worldwide, is one of the most commonly encountered marine turtles off the eastern coast of the United States and Gulf of Mexico. Although biochemical reference ranges have been evaluated for several species of sea turtles, tissue specificity of the commonly used plasma enzymes is lacking. This study evaluated the tissue specificity of eight enzymes, including amylase, lipase, creatine kinase (CK), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in 30 tissues from five stranded loggerhead sea turtles with no evidence of infectious disease. Amylase and lipase showed the greatest tissue specificity, with activity found only in pancreatic samples. Creatine kinase had high levels present in skeletal and cardiac muscle, and moderate levels in central nervous system and gastrointestinal samples. Gamma-glutamyl transferase was found in kidney samples, but only in very low levels. Creatine kinase, ALP, AST, and LDH were found in all tissues evaluated and ALT was found in most, indicating low tissue specificity for these enzymes in the loggerhead.

  3. The effects of large beach debris on nesting sea turtles

    USGS Publications Warehouse

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  4. Physiological ramifications for loggerhead turtles captured in pelagic longlines.

    PubMed

    Williard, Amanda; Parga, Mariluz; Sagarminaga, Ricardo; Swimmer, Yonat

    2015-10-01

    Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles.

  5. Visual wavelength discrimination by the loggerhead turtle, Caretta caretta.

    PubMed

    Young, Morgan; Salmon, Michael; Forward, Richard

    2012-02-01

    Marine turtles are visual animals, yet we know remarkably little about how they use this sensory capacity. In this study, our purpose was to determine whether loggerhead turtles could discriminate between objects on the basis of color. We used light-adapted hatchlings to determine the minimum intensity of blue (450 nm), green (500 nm), and yellow (580 nm) visual stimuli that evoked a positive phototaxis (the phototaxis "threshold" [pt]). Juvenile turtles were later trained to associate each color (presented at 1 log unit above that color's pt) with food, then to discriminate between two colors (the original rewarded stimulus plus one of the other colors, not rewarded) when both were presented at 1 log unit above their pt. In the crucial test, turtles were trained to choose between the rewarded and unrewarded color when the colors varied in intensity. All turtles learned that task, demonstrating color discrimination. An association between blue and food was acquired in fewer trials than between yellow and food, perhaps because some prey of juvenile loggerheads in oceanic surface waters (jellyfishes, polyps, and pelagic gastropods) are blue or violet in color.

  6. Resilience of marine turtle regional management units to climate change.

    PubMed

    Fuentes, Mariana M P B; Pike, David A; Dimatteo, Andrew; Wallace, Bryan P

    2013-05-01

    Enhancing species resilience to changing environmental conditions is often suggested as a climate change adaptation strategy. To effectively achieve this, it is necessary first to understand the factors that determine species resilience, and their relative importance in shaping the ability of species to adjust to the complexities of environmental change. This is an extremely challenging task because it requires comprehensive information on species traits. We explored the resilience of 58 marine turtle regional management units (RMUs) to climate change, encompassing all seven species of marine turtles worldwide. We used expert opinion from the IUCN-SSC Marine Turtle Specialist Group (n = 33 respondents) to develop a Resilience Index, which considered qualitative characteristics of each RMU (relative population size, rookery vulnerability, and genetic diversity) and non climate-related threats (fisheries, take, coastal development, and pollution/pathogens). Our expert panel perceived rookery vulnerability (the likelihood of functional rookeries becoming extirpated) and non climate-related threats as having the greatest influence on resilience of RMUs to climate change. We identified the world's 13 least resilient marine turtle RMUs to climate change, which are distributed within all three major ocean basins and include six of the world's seven species of marine turtle. Our study provides the first look at inter- and intra-species variation in resilience to climate change and highlights the need to devise metrics that measure resilience directly. We suggest that this approach can be widely used to help prioritize future actions that increase species resilience to climate change.

  7. Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles

    PubMed Central

    Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide. PMID:24465748

  8. Hibernation in freshwater turtles: softshell turtles (Apalone spinifera) are the most intolerant of anoxia among North American species.

    PubMed

    Reese, S A; Jackson, D C; Ultsch, G R

    2003-04-01

    Softshell turtles (Apalone spinifera) were submerged at 3 degrees C in anoxic or normoxic water. Periodically, blood PO(2), PCO(2), pH, plasma [Cl(-)], [Na(+)], [K(+)], total Ca, total Mg, lactate, glucose, and osmolality were measured; hematocrit and body mass determined; and blood [HCO(3)(-)] calculated. On day 14 of anoxic submergence, five of eight softshell turtles were dead, one died immediately after removal, and the remaining two showed no signs of life other than a heartbeat. After 11 days of submergence in anoxic water, blood pH fell from 7.923 to 7.281 and lactate increased to 62.1 mM. Plasma [HCO(3)(-)] was titrated from 34.57 mM to 4.53 mM. Plasma [Cl(-)] fell, but [K(+)] and total Ca and Mg increased. In normoxic submergence, turtles survived over 150 days and no lactate accumulated. A respiratory alkalosis developed (pH-8.195, PCO(2)-5.49 after 10 days) early and persisted throughout; no other variables changed in normoxic submergence. Softshell turtles are very capable of extrapulmonary extraction of O(2), but are an anoxia-intolerant species of turtle forcing them to utilize hibernacula that are unlikely to become hypoxic or anoxic (e.g., large lakes and rivers).

  9. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles.

    PubMed

    Angielczyk, Kenneth D; Burroughs, Robert W; Feldman, Chris R

    2015-05-01

    Understanding how and why biodiversity is structured across the globe has been central to ecology, evolution, and biogeography even before those disciplines took their modern forms. Three global-scale patterns in particular have been the focus of research and debate for decades: latitudinal gradients in species richness (richness decreases with increasing latitude), body size (body size increases with increasing latitude in endotherms; Bergmann's rule), and geographic range size (range size increases with increasing latitude; Rapoport's rule). Despite decades of study, the generality and robustness of these trends have been debated, as have their underlying causes. Here we investigate latitudinal gradients in species richness, body size, and range size in the world's turtles (Testudines), and add more evidence that these rules do not seem to apply across all taxa. We show that turtle diversity actually peaks at 25° north, a highly unusual global pattern. Turtles also fail to follow Bergmann's Rule, and may show the converse (larger at lower latitudes), though trends are weak. Turtles also show a complex relationship between latitude and range size that does not directly follow Rapoport's rule. Body size and geographic range size are significantly correlated, and multiple abiotic and biotic variables help explain the relationships between latitude and species diversity, body size, and range size. Although we show that turtles do not strictly follow some classic biogeographical rules, we also call for further in-depth research to investigate potential causal mechanisms for these atypical patterns.

  10. Estimates of the non-market value of sea turtles in Tobago using stated preference techniques.

    PubMed

    Cazabon-Mannette, Michelle; Schuhmann, Peter W; Hailey, Adrian; Horrocks, Julia

    2017-05-01

    Economic benefits are derived from sea turtle tourism all over the world. Sea turtles also add value to underwater recreation and convey non-use values. This study examines the non-market value of sea turtles in Tobago. We use a choice experiment to estimate the value of sea turtle encounters to recreational SCUBA divers and the contingent valuation method to estimate the value of sea turtles to international tourists. Results indicate that turtle encounters were the most important dive attribute among those examined. Divers are willing to pay over US$62 per two tank dive for the first turtle encounter. The mean WTP for turtle conservation among international visitors to Tobago was US$31.13 which reflects a significant non-use value associated with actions targeted at keeping sea turtles from going extinct. These results illustrate significant non-use and non-consumptive use value of sea turtles, and highlight the importance of sea turtle conservation efforts in Tobago and throughout the Caribbean region.

  11. Ontogenetic scaling of the humerus in sea turtles and its implications for locomotion.

    PubMed

    Nishizawa, Hideaki; Asahara, Masakazu; Kamezaki, Naoki

    2013-03-01

    In the present study, we analyzed the ontogenetic scaling of humeri in the green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta). Green turtles have relatively thicker humeri than loggerhead turtles, indicating that the humerus of the green turtle can resist greater loads. Our results are consistent with isometry, or slightly negative allometry, of diameter in relation to length of the humerus in both species. Geometric similarity or isometry of the humerus in relation to body mass is supported by estimates of the cross-sectional properties of green turtles. Sea turtles are adapted for aquatic life, but also perform terrestrial locomotion. Thus, during terrestrial locomotion, which requires support against gravity, the observed scaling relationships indicate that there may be greater stress and fracture risk on the humeri of larger green turtles than on the humeri of smaller turtles. In aquatic habitats, in which limbs are mainly used for propulsion, the stress and fracture risk for green turtle humeri are estimated to increase with greater speed. This scaling pattern may be related to the possibility that smaller turtles swim at a relatively faster speed per body length.

  12. Passive fishing techniques: a cause of turtle mortality in the Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Briggler, J.T.; Ostendorf, D.E.

    2004-01-01

    We investigated variation of incidentally captured turtle mortality in response to environmental factors and passive fishing techniques. We used Long Term Resource Monitoring Program (LTRMP) data collected from 1996 to 2001 in the unimpounded upper Mississippi River (UMR) adjacent to Missouri and Illinois, USA. We used a principle components analysis (PCA) and a stepwise discriminant function analysis to identify factors correlated with mortality of captured turtles. Furthermore, we were interested in what percentage of turtles died from passive fishing techniques and what techniques caused the most turtle mortality. The main factors influencing captured turtle mortality were water temperature and depth at net deployment. Fyke nets captured the most turtles and caused the most turtle mortality. Almost 90% of mortalities occurred in offshore aquatic areas (i.e., side channel or tributary). Our results provide information on causes of turtle mortality (as bycatch) in a riverine system and implications for river turtle conservation by suggesting management strategies to reduce turtle bycatch and decrease mortality of captured turtles.

  13. Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles

    USGS Publications Warehouse

    Quackenbush, S.L.; Work, T.M.; Balazs, G.H.; Casey, R.N.; Rovnak, J.; Chaves, A.; duToit, L.; Baines, J.D.; Parrish, C.R.; Bowser, P.R.; Casey, J.W.

    1998-01-01

    Green turtle fibropapillomatosis is a neoplastic disease of increasingly significant threat to the survivability of this species. Degenerate PCR primers that target highly conserved regions of genes encoding herpesvirus DNA polymerases were used to amplify a DNA sequence from fibropapillomas and fibromas from Hawaiian and Florida green turtles. All of the tumors tested (n= 23) were found to harbor viral DNA, whereas no viral DNA was detected in skin biopsies from tumor-negative turtles. The tissue distribution of the green turtle herpesvirus appears to be generally limited to tumors where viral DNA was found to accumulate at approximately two to five copies per cell and is occasionally detected, only by PCR, in some tissues normally associated with tumor development. In addition, herpesviral DNA was detected in fibropapillomas from two loggerhead and four olive ridley turtles. Nucleotide sequencing of a 483-bp fragment of the turtle herpesvirus DNA polymerase gene determined that the Florida green turtle and loggerhead turtle sequences are identical and differ from the Hawaiian green turtle sequence by five nucleotide changes, which results in two amino acid substitutions. The olive ridley sequence differs from the Florida and Hawaiian green turtle sequences by 15 and 16 nucleotide changes, respectively, resulting in four amino acid substitutions, three of which are unique to the olive ridley sequence. Our data suggest that these closely related turtle herpesviruses are intimately involved in the genesis of fibropapillomatosis.

  14. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  15. Fluke (Spirorchiidae) infections in sea turtles stranded on Taiwan: prevalence and pathology.

    PubMed

    Chen, Hochang; Kuo, R-J; Chang, T-C; Hus, C-K; Bray, R A; Cheng, I-J

    2012-04-01

    The prevalence of spirorchiid fluke infections of marine turtles is high and may cause the death of the hosts throughout their ranges. Virtually nothing has been reported regarding the infective status of sea turtles stranded on Taiwan. Between 2007 and 2010, 30 green turtles (Chelonia mydas) and 2 loggerhead turtles ( Caretta caretta ), stranded and dead, were examined for spirorchiid flukes and their eggs. Twenty-four of the green turtles were juveniles, and the stranded loggerhead turtles were subadults. Adult spirorchiid flukes were found in 13 green turtles but not in the loggerheads. Four species of flukes were identified, namely, Leardius learedi , Hapalotrema postorchis , H. mehrai , and Carettacola hawaiiensis . The main infection sites were the major arteries and heart. Seventy percent of the green turtles harbored spirorchiid eggs, but no eggs were found in loggerheads. The largest eggs with bipolar spines, type I eggs, were found in every case. Although more than half of the stranded turtles were infected, parasite infections were not the main cause of death in the green turtles. Fishery by-catch is probably responsible for the mortality of these stranded turtles.

  16. Levels and distribution of polybrominated diphenyl ethers and organochlorine compounds in sea turtles from Japan.

    PubMed

    Malarvannan, Govindan; Takahashi, Shin; Isobe, Tomohiko; Kunisue, Tatsuya; Sudaryanto, Agus; Miyagi, Toshihiko; Nakamura, Masaru; Yasumura, Shigeki; Tanabe, Shinsuke

    2011-01-01

    Three species of sea turtles (green, hawksbill and loggerhead turtles) stranded along the coasts or caught (by-catch) around Ishigaki Island and Kochi, Japan were collected between 1998 and 2006 and analyzed for six organohalogen compounds viz., PBDEs, PCBs, DDTs, CHLs, HCHs and HCB. The present study is the first and foremost to report the occurrence of organohalogen compounds in the sea turtles from Japan. Among the compounds analyzed, concentrations of PCBs, DDTs and CHLs were the highest in all the turtle samples. PBDEs were ubiquitously present in all the turtle species. Comparing with the other two species, concentrations of organohalogens in green turtle were relatively low and decreasing trend in the concentrations were noted with increasing carapace length. Concentrations of OCs in sea turtles from the coasts of Ishigaki Island and Kochi were relatively low as compared to those from other locations in the world.

  17. Use of multiple orientation cues by juvenile loggerhead sea turtles Caretta caretta.

    PubMed

    Avens, Larisa; Lohmann, Kenneth J

    2003-12-01

    Although the orientation cues used by hatchling sea turtles have been studied extensively, little is known about the mechanisms of orientation and navigation that guide older turtles. To investigate the orientation cues used by juvenile loggerheads Caretta caretta L., captured turtles were tethered in a water-filled arena located outdoors. Turtles tested under these conditions established and maintained headings in specific directions in the absence of wave cues, familiar landmarks and chemical gradients. Distorting the magnetic field around the anterior part of a turtle's body did not disrupt orientation if vision remained unimpaired. Similarly, eliminating visual cues by attaching frosted goggles did not disrupt orientation if the magnetic environment was undisturbed. However, when turtles experienced a simultaneous disruption of magnetic and visual cues, their orientation was altered. These results imply that sea turtles, like migratory birds and homing pigeons, are able to maintain headings using multiple sources of directional information.

  18. Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.

    PubMed

    Houghton, J D; Hays, G C

    2001-03-01

    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised

  19. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of

  20. Turtle hunting and tombstone opening. public generosity as costly signaling.

    PubMed

    Smith; Bird

    2000-07-01

    Costly signaling theory (CST) offers an explanation of generosity and collective action that contrasts sharply with explanations based on conditional reciprocity. This makes it particularly relevant to situations involving widespread unconditional provisioning of collective goods. We provide a preliminary application of CST to ethnographic data on turtle hunting and public feasting among the Meriam of Torres Strait, Australia. Turtle hunting appears to meet the key conditions specified in CST: it is (1) an honest signal of underlying abilities such as strength, risk-taking, skill, and leadership; (2) costly in ways not subject to reciprocation; (3) an effective means of broadcasting signals, since the collective good (a feast) attracts a large audience; and (4) seems to provide benefits to signalers (turtle hunters) as well as recipients (audience). We conclude with some suggestions as to the broader implications of this research, and the costly signaling paradigm in general, for understanding collective action and generosity in human social groups.

  1. Biomass of freshwater turtles: a geographic comparison

    SciTech Connect

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entire six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.

  2. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    PubMed Central

    Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2014-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell. PMID:23624526

  3. Accidental Bait: Do Deceased Fish Increase Freshwater Turtle Bycatch in Commercial Fyke Nets?

    NASA Astrophysics Data System (ADS)

    Larocque, Sarah M.; Watson, Paige; Blouin-Demers, Gabriel; Cooke, Steven J.

    2012-07-01

    Bycatch of turtles in passive inland fyke net fisheries has been poorly studied, yet bycatch is an important conservation issue given the decline in many freshwater turtle populations. Delayed maturity and low natural adult mortality make turtles particularly susceptible to population declines when faced with additional anthropogenic adult mortality such as bycatch. When turtles are captured in fyke nets, the prolonged submergence can lead to stress and subsequent drowning. Fish die within infrequently checked passive fishing nets and dead fish are a potential food source for many freshwater turtles. Dead fish could thus act as attractants and increase turtle captures in fishing nets. We investigated the attraction of turtles to decomposing fish within fyke nets in eastern Ontario. We set fyke nets with either 1 kg of one-day or five-day decomposed fish, or no decomposed fish in the cod-end of the net. Decomposing fish did not alter the capture rate of turtles or fish, nor did it alter the species composition of the catch. Thus, reducing fish mortality in nets using shorter soak times is unlikely to alter turtle bycatch rates since turtles were not attracted by the dead fish. Interestingly, turtle bycatch rates increased as water temperatures did. Water temperature also influences turtle mortality by affecting the duration turtles can remain submerged. We thus suggest that submerged nets to either not be set or have reduced soak times in warm water conditions (e.g., >20 °C) as turtles tend to be captured more frequently and cannot withstand prolonged submergence.

  4. Accidental bait: do deceased fish increase freshwater turtle bycatch in commercial fyke nets?

    PubMed

    Larocque, Sarah M; Watson, Paige; Blouin-Demers, Gabriel; Cooke, Steven J

    2012-07-01

    Bycatch of turtles in passive inland fyke net fisheries has been poorly studied, yet bycatch is an important conservation issue given the decline in many freshwater turtle populations. Delayed maturity and low natural adult mortality make turtles particularly susceptible to population declines when faced with additional anthropogenic adult mortality such as bycatch. When turtles are captured in fyke nets, the prolonged submergence can lead to stress and subsequent drowning. Fish die within infrequently checked passive fishing nets and dead fish are a potential food source for many freshwater turtles. Dead fish could thus act as attractants and increase turtle captures in fishing nets. We investigated the attraction of turtles to decomposing fish within fyke nets in eastern Ontario. We set fyke nets with either 1 kg of one-day or five-day decomposed fish, or no decomposed fish in the cod-end of the net. Decomposing fish did not alter the capture rate of turtles or fish, nor did it alter the species composition of the catch. Thus, reducing fish mortality in nets using shorter soak times is unlikely to alter turtle bycatch rates since turtles were not attracted by the dead fish. Interestingly, turtle bycatch rates increased as water temperatures did. Water temperature also influences turtle mortality by affecting the duration turtles can remain submerged. We thus suggest that submerged nets to either not be set or have reduced soak times in warm water conditions (e.g., >20 °C) as turtles tend to be captured more frequently and cannot withstand prolonged submergence.

  5. Turtle isochore structure is intermediate between amphibians and other amniotes.

    PubMed

    Chojnowski, Jena L; Braun, Edward L

    2008-10-01

    Vertebrate genomes are comprised of isochores that are relatively long (>100 kb) regions with a relatively homogenous (either GC-rich or AT-rich) base composition and with rather sharp boundaries with neighboring isochores. Mammals and living archosaurs (birds and crocodilians) have heterogeneous genomes that include very GC-rich isochores. In sharp contrast, the genomes of amphibians and fishes are more homogeneous and they have a lower overall GC content. Because DNA with higher GC content is more thermostable, the elevated GC content of mammalian and archosaurian DNA has been hypothesized to be an adaptation to higher body temperatures. This hypothesis can be tested by examining structure of isochores across the reptilian clade, which includes the archosaurs, testudines (turtles), and lepidosaurs (lizards and snakes), because reptiles exhibit diverse body sizes, metabolic rates, and patterns of thermoregulation. This study focuses on a comparative analysis of a new set of expressed genes of the red-eared slider turtle and orthologs of the turtle genes in mammalian (human, mouse, dog, and opossum), archosaurian (chicken and alligator), and amphibian (western clawed frog) genomes. EST (expressed sequence tag) data from a turtle cDNA library enriched for genes that have specialized functions (developmental genes) revealed using the GC content of the third-codon-position to examine isochore structure requires careful consideration of the types of genes examined. The more highly expressed genes (e.g., housekeeping genes) are more likely to be GC-rich than are genes with specialized functions. However, the set of highly expressed turtle genes demonstrated that the turtle genome has a GC content that is intermediate between the GC-poor amphibians and the GC-rich mammals and archosaurs. There was a strong correlation between the GC content of all turtle genes and the GC content of other vertebrate genes, with the slope of the line describing this relationship also

  6. Encroachment of Human Activity on Sea Turtle Nesting Sites

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.

    2008-12-01

    The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for

  7. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Oi, M; Araki, J; Matsumoto, J; Nogami, S

    2012-10-01

    The red-eared slider turtle (Trachemys scripta elegans) was intentionally introduced from the United States to Japan as a pet in the 1950s and has become established throughout much of the country. We examined red-eared slider turtles from two localities in Japan for foreign parasitic helminths. Consequently, a total of seven species of helminths were found: two monogeneans (Neopolystoma exhamatum and Polystomoides japonicum), three digeneans (Spirorchisartericola, Spi.elegans and Telorchis clemmydis) and two nematodes (Serpinema microcephalum and Falcaustra wardi). Of these, three helminths are alien to Japan-Spi.artericola, Spi. elegans and F. wardi-which represent the first report of their presence in the red-eared slider turtle from Japan.

  8. Cytological organization of the central gelatinosa in the turtle spinal cord.

    PubMed

    Trujillo-Cenóz, Omar; Fernández, Anabel; Radmilovich, Milka; Reali, Cecilia; Russo, Raúl E

    2007-05-10

    This paper deals with the cytological organization of the central gelatinosa (CG) in the spinal cord of juvenile (2-12 months) turtles. We found two main cell classes in the CG: one with characteristics of immature neurons, the other identified as radial glia (RG). The cells surrounding the central canal formed radial conglomerates in such a way that the RG lamellae covered the immature neurons. We found three major subpopulations of RG that expressed S-100, glial fibrillary acidic protein, or both proteins. Electron microscopic images showed gap junctions interconnecting RG. As with the mammalian neuroepithelial cells, most CG cells displayed intrinsic polarity expressed by structural and molecular differences between the most apical and basal cell compartments. The apical zone was characterized by the occurrence of a single cilium associated with a conspicuous centrosomal complex. We found a prominent expression of the PCM-1 centrosomal protein concentrated close to the central canal lumen. In the particular case of RG, the peripheral end feet contacted the subpial basement membrane. We also found "transitional cell forms" difficult to classify by the usual imaging approaches. Functional clues obtained by patch-clamp recordings of CG cells defined some of them as already committed to follow the neuronal lineage, whereas others had properties of less mature or migrating cells. The CG appeared as a richly innervated region receiving terminal branches from nerve plexuses expressing gamma-aminobutyric acid, serotonin, and glutamate. The results presented here support our previous studies indicating that the CG is an extended neurogenic niche along the spinal cord of turtles.

  9. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell.

    PubMed

    Lyson, Tyler R; Bhullar, Bhart-Anjan S; Bever, Gabe S; Joyce, Walter G; de Queiroz, Kevin; Abzhanov, Arhat; Gauthier, Jacques A

    2013-01-01

    The turtle shell represents a unique modification of the ancestral tetrapod body plan. The homologies of its approximately 50 bones have been the subject of debate for more than 200 years. Although most of those homologies are now firmly established, the evolutionary origin of the dorsal median nuchal bone of the carapace remains unresolved. We propose a novel hypothesis in which the nuchal is derived from the paired, laterally positioned cleithra-dorsal elements of the ancestral tetrapod pectoral girdle that are otherwise retained among extant tetrapods only in frogs. This hypothesis is supported by origin of the nuchal as paired, mesenchymal condensations likely derived from the neural crest followed by a unique two-stage pattern of ossification. Further support is drawn from the establishment of the nuchal as part of a highly conserved "muscle scaffold" wherein the cleithrum (and its evolutionary derivatives) serves as the origin of the Musculus trapezius. Identification of the nuchal as fused cleithra is congruent with its general spatial relationships to other elements of the shoulder girdle in the adult morphology of extant turtles, and it is further supported by patterns of connectivity and transformations documented by critical fossils from the turtle stem group. The cleithral derivation of the nuchal implies an anatomical reorganization of the pectoral girdle in which the dermal portion of the girdle was transformed from a continuous lateral-ventral arc into separate dorsal and ventral components. This transformation involved the reduction and eventual loss of the scapular rami of the clavicles along with the dorsal and superficial migration of the cleithra, which then fused with one another and became incorporated into the carapace.

  10. Do open-cycle hatcheries relying on tourism conserve sea turtles? Sri Lankan developments and economic-ecological considerations.

    PubMed

    Tisdell, Clem; Wilson, Clevo

    2005-04-01

    By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.

  11. Epizootiology of spirorchid infection in green turtles (Chelonia mydas) in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Schumacher, Jody L.; Marie, A.

    2005-01-01

    We describe the epizootiology of spirorchiid trematode infections in Hawaiian green turtles (Chelonia mydas) by quantifying tissue egg burdens in turtles submitted for necropsy and by assessing antibody response to crude adult worm and egg antigens among a variety of age groups. Hapalotrema sp. and Laeredius sp. predominated in turtles infected with spirorchiids. Tissue egg burdens decreased with increasing size and increased with deteriorating body condition of turtles. No relationship was found between tissue egg burdens and sex or fibropapillomatosis status. Tissue egg burdens increased in turtles from southeast to northwest in the main Hawaiian Islands (Hawaii to Kauai). Hatchling and captive-reared turtles had significantly lower levels of antibodies against crude worm and egg antigens. Based on tissue egg burdens and antibody status, we hypothesize that immature turtles become infected with spirorchiids shortly after recruiting into coastal foraging pastures from the pelagic environment, that infection levels decrease with age, and that spirorchiids detrimentally affect the body condition of sea turtles independent of tumor burden. The low intensity of infection in turtles with the endemic trematode Carettacola hawaiiensis suggests either that turtles are less susceptible to infection with this parasite or that the parasite is outcompeted by species of Hapalotrema and Laeredius. Given that the 2 latter species are found in the Pacific and other oceans, they are not likely endemic and were probably introduced into Hawaii through an undetermined route.

  12. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGES

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  13. Induction of oviposition by the administration of oxytocin in hawksbill turtles.

    PubMed

    Kawazu, Isao; Kino, Masakatsu; Maeda, Konomi; Yamaguchi, Yasuhiro; Sawamukai, Yutaka

    2014-12-01

    We set out to develop an oviposition induction technique for captive female hawksbill turtles Eretmochelys imbricata. The infertile eggs of nine females were induced to develop by the administration of follicle-stimulating hormone, after which we investigated the effects of administering oxytocin on oviposition. Seven of the turtles were held in a stationary horizontal position on a retention stand, and then oxytocin was administrated (0.6-0.8 units/kg of body weight; 5 mL). The seven turtles were retained for a mandatory 2 h period after oxytocin administration, and were then returned to the holding tanks. As the control, normal saline (5 mL) was administered to the other two turtles, followed by the administration of oxytocin after 24 h. The eggs in oviducts of all nine turtles were observed by ultrasonography at 24 h after oxytocin administration. The control experiment validated that stationary retention and normal saline administration had no effect on egg oviposition. Eight of the turtles began ovipositing eggs at 17-43 min after oxytocin administration, while one began ovipositing in the holding tank immediately after retention. All turtles finished ovipositing eggs within 24 h of oxytocin administration. This report is the first to demonstrate successful induced oviposition in sea turtles. We suggest that the muscles in the oviducts of hawksbill turtles may respond to relatively lower doses of oxytocin (inducing contractions) compared to land and freshwater turtles (4-40 units/kg) based on existing studies.

  14. Dehydration as an effective treatment for brevetoxicosis in loggerhead sea turtles (Caretta caretta).

    PubMed

    Manire, Charles A; Anderson, Eric T; Byrd, Lynne; Fauquier, Deborah A

    2013-06-01

    Harmful algal blooms are known to cause morbidity and mortality to a large number of marine and estuarine organisms worldwide, including fish and marine mammals, birds, and turtles. The effects of these algal blooms on marine organisms are due to the various toxins produced by the different algal species. In southwest Florida, frequent blooms of the dinoflagellate Karenia brevis, which produces neurotoxins known as brevetoxins, cause widespread fish kills and affect many marine animals. In 2005-2007, numerous sea turtles of several species underwent treatment for brevetoxicosis at the Sea Turtle Rehabilitation Hospital. In green sea turtles, Chelonia mydas, and Kemp's ridley sea turtles, Lepidochelys kempii, symptoms associated with brevetoxicosis were limited to neurologic signs, such as the inability to control the head (head bobbing) and nervous twitching. For these turtles, treatment involved removing the turtles from the environment containing the toxins and providing short-term supportive care. In loggerhead sea turtles, Caretta caretta, symptoms were more generalized; thus, a similar approach was unsuccessful, as was routine treatment for general toxicosis. Loggerhead sea turtles had more extreme neurologic symptoms including coma, and other symptoms that included generalized edema, conjunctival edema, and cloacal or penile prolapse. Treatment of brevetoxicosis in loggerhead sea turtles required a therapeutic regimen that initially included dehydration and systemic antihistamine treatment followed by supportive care.

  15. Comparative study of the shell development of hard- and soft-shelled turtles.

    PubMed

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.

  16. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    SciTech Connect

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  17. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    PubMed Central

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  18. Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry.

    PubMed

    Halsey, Lewis G; Jones, T Todd; Jones, David R; Liebsch, Nikolai; Booth, David T

    2011-01-01

    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (VO2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25-44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean VO2 over an hour in a green turtle from measures of ODBA and mean flipper length (R(2) = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22-30 °C) had only a small effect on Vo₂. A VO2-ODBA equation for the loggerhead hatchling data was also significant (R(2) = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets.

  19. Individual-level behavioral responses of immature green turtles to snorkeler disturbance.

    PubMed

    Griffin, Lucas P; Brownscombe, Jacob W; Gagné, Tyler O; Wilson, Alexander D M; Cooke, Steven J; Danylchuk, Andy J

    2017-03-01

    Despite many positive benefits of ecotourism, increased human encounters with wildlife may have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea turtles are increasingly the focus of ecotourism activities. The purpose of our study was to quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by snorkelers, and to investigate whether turtles have individual-level responses to snorkeler disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler (n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we identified two distinct turtle personality types, 'bold' and 'timid', based upon 145 encounters of 19 individually identified turtles and five disturbance response variables. There was significant intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more behavioral plasticity and less consistent responses than more timid individuals. Bolder individuals with reduced evasion responses might be at a higher risk of shark predation, while more timid turtles might have greater energetic consequences due to non-lethal predator effects and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold and timid individuals may promote more resilient populations. We recommend that snorkelers maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism activities be temporally and spatially stratified. Further, turtle watching guidelines need to be communicated to both tour operators and independent snorkelers to reduce the disturbance of turtles.

  20. Latitudinal diversity gradients in Mesozoic non-marine turtles

    PubMed Central

    Holroyd, Patricia A.; Valdes, Paul

    2016-01-01

    The latitudinal biodiversity gradient (LBG)—the pattern of increasing taxonomic richness with decreasing latitude—is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15–30° N in the Jurassic, 30–45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution. PMID:28018649

  1. Latitudinal diversity gradients in Mesozoic non-marine turtles.

    PubMed

    Nicholson, David B; Holroyd, Patricia A; Valdes, Paul; Barrett, Paul M

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  2. 77 FR 27411 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... skimmer trawls, pusher-head trawls, and wing nets (butterfly trawls) rigged for fishing to use turtle... (butterfly trawls). For example, on May 8, 2009, NMFS published a notice of intent (NOI) to prepare an... (butterfly trawls) rigged for fishing in Mississippi and Alabama state waters. Before the emergency...

  3. 78 FR 9024 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ..., pusher-head trawls, and wing nets (butterfly trawls) rigged for fishing to use turtle excluder devices... (77 FR 27411) that would require all skimmer trawls, pusher-head trawls, and wing nets (butterfly... trawls, pusher-head trawls, and wing nets (butterfly trawls) will be collectively referred to as...

  4. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  5. 78 FR 63872 - Turtles Intrastate and Interstate Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 Turtles Intrastate and Interstate Requirements Correction In rule document 2013-17751 appearing on pages 44878-44881 in the issue of July...

  6. ORGANOCHLORINE CONTAMINANTS IN SEA TURTLES FROM THE EASTERN PACIFIC

    EPA Science Inventory

    We measured organochlorine residues in three species of sea turtles from the Baja California peninsula, Mexico. Seventeen of 21 organochlorine pesticides analyzed were detected, with heptachlor epoxide and y-hexachlorocyclohexane the most prevalent in 14 (40%) and 11 (31%) of th...

  7. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  8. Movement mysteries unveiled: spatial ecology of juvenile green sea turtles

    USGS Publications Warehouse

    Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Lutterschmidt, William I.

    2013-01-01

    Locations of important foraging areas are not well defined for many marine species. Unraveling these mysteries is vital to develop conservation strategies for these species, many of which are threatened or endangered. Satellite-tracking is a tool that can reveal movement patterns at both broad and fine spatial scales, in all marine environments. This chapter presents records of the longest duration track of an individual juvenile green turtle (434 days) and highest number of tracking days in any juvenile green turtle study (5483 tracking days) published to date. In this chapter, we use spatial modeling techniques to describe movements and identify foraging areas for juvenile green turtles (Chelonia mydas) captured in a developmental habitat in south Texas, USA. Some green turtles established residency in the vicinity of their capture and release site, but most used a specific habitat feature (i.e., a jettied pass) to travel between the Gulf of Mexico and a nearby bay. Still others moved southward within the Gulf of Mexico into Mexican coastal waters, likely in response to decreasing water temperatures. These movements to waters off the coast of Mexico highlight the importance of international cooperation in restoration efforts undertaken on behalf of this imperiled species.

  9. Conservation genomics of the endangered Burmese roofed turtle.

    PubMed

    Çilingir, F Gözde; Rheindt, Frank E; Garg, Kritika M; Platt, Kalyar; Platt, Steven G; Bickford, David P

    2017-02-28

    The Burmese roofed turtle (Batagur trivittata) is one of the world's most endangered turtles. Only one wild population remains in Myanmar. Based on field observations, wild breeders are thought to number around a dozen. Combined in-situ and ex-situ conservation efforts for the species have raised >700 captive turtles over a decade predominantly from wild collected eggs. In one of the most comprehensive studies bridging genomic methodologies with active in-situ and ex-situ conservation efforts, we obtained ∼1500 unlinked genome-wide single nucleotide polymorphisms (SNPs) from ∼40% of the turtles' remaining global population. We found that individuals fall into five distinct genetic clusters, four of which represent full-sib families. We inferred a low effective population size (≤10) but did not detect signs of severe inbreeding, possibly because the population bottleneck has only happened recently. Based on genetic diversity, we identified two groups of 30 individuals from the captive pool that were subsequently reintroduced, leading to an increase in breeding success in the wild. Another 25 individuals, selected via the same criteria, were transferred to Singapore Zoo as an assurance colony. Our study demonstrates that the research-to-application gap in conservation can be bridged by successful agency-academic collaboration and through rigorous application of sound genomic methodologies. This article is protected by copyright. All rights reserved.

  10. Atomic force microscopy of asymmetric membranes from turtle erythrocytes.

    PubMed

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-08-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

  11. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT §...

  12. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT §...

  13. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat...

  14. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT §...

  15. Ontogenetic scaling of bite force in lizards and turtles.

    PubMed

    Herrel, Anthony; O'reilly, James C

    2006-01-01

    Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.

  16. Adaptive evolution of plastron shape in emydine turtles.

    PubMed

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form.

  17. Living together but remaining apart: Atlantic and Mediterranean loggerhead sea turtles (Caretta caretta) in shared feeding grounds.

    PubMed

    Carreras, Carlos; Pascual, Marta; Cardona, Luis; Marco, Adolfo; Bellido, Juan Jesús; Castillo, Juan José; Tomás, Jesús; Raga, Juan Antonio; Sanfélix, Manuel; Fernández, Gloria; Aguilar, Alex

    2011-01-01

    Juvenile loggerhead sea turtles (Caretta caretta) from Atlantic nesting populations migrate into the western Mediterranean, where they share feeding grounds with turtles originating in the Mediterranean. In this scenario, male-mediated gene flow may lead to the homogenization of these distant populations. To test this hypothesis, we genotyped 7 microsatellites from 56 Atlantic individuals sampled from feeding grounds in the western Mediterranean and then compared the observed allele frequencies with published data of 112 individuals from Mediterranean nesting beaches. Mediterranean populations were found to be genetically differentiated from the Atlantic stock reaching the western Mediterranean (F(st) = 0.029, P < 0.001); therefore, the possible mating events between Atlantic and Mediterranean individuals are not sufficient to homogenize these 2 areas. The differentiation observed between these 2 areas demonstrates that microsatellites are sufficiently powerful for mixed stock analysis and that individual assignment (IA) tests can be performed in combination with mitochondrial DNA (mtDNA) analysis. In a set of 197 individuals sampled in western Mediterranean feeding grounds, 87% were robustly assigned to Atlantic or Mediterranean groups with the combined marker, as compared with only 52% with mtDNA alone. These findings provide a new approach for tracking the movements of these oceanic migrants and have strong implications for the conservation of the species.

  18. Migration, Foraging, and Residency Patterns for Northern Gulf Loggerheads: Implications of Local Threats and International Movements

    PubMed Central

    Hart, Kristen M.; Lamont, Margaret M.; Sartain, Autumn R.; Fujisaki, Ikuko

    2014-01-01

    Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010–2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of −32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of −24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats. PMID:25076053

  19. Migration, foraging, and residency patterns for Northern Gulf loggerheads: implications of local threats and international movements

    USGS Publications Warehouse

    Hart, Kristen M.; Lamont, Margaret M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2014-01-01

    Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010–2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of −32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of −24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.

  20. Twelve chromatically opponent ganglion cell types in turtle retina.

    PubMed

    Rocha, F A F; Saito, C A; Silveira, L C L; de Souza, J M; Ventura, D F

    2008-01-01

    The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has an ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working in the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.

  1. Detecting spring after a long winter: coma or slow vigilance in cold, hypoxic turtles?

    PubMed

    Madsen, Jesper G; Wang, Tobias; Beedholm, Kristian; Madsen, Peter T

    2013-01-01

    Many freshwater turtle species can spend the winter submerged in ice-covered lakes by lowering their metabolism, and it has been proposed that such severe metabolic depression render these turtles comatose. This raises the question of how they can detect the arrival of spring and respond in a sensible way to sensory information during hibernation. Using evoked potentials from cold or hypoxic turtles exposed to vibration and light, we show that hibernating turtles maintain neural responsiveness to light stimuli during prolonged hypoxia. Furthermore, turtles held under hibernation conditions for 14 days increase their activity when exposed to light or elevated temperatures, but not to vibration or increased oxygen. It is concluded that hibernating turtles are not comatose, but remain vigilant during overwintering in cold hypoxia, allowing them to respond to the coming of spring and to adjust their behaviour to specific sensory inputs.

  2. Prevalence of ingested fish hooks in freshwater turtles from five rivers in the southeastern United States.

    PubMed

    Steen, David A; Hopkins, Brittney C; Van Dyke, James U; Hopkins, William A

    2014-01-01

    Freshwater turtles may ingest baited fish hooks because many are opportunistic scavengers. Although the ingestion of fish hooks is known to be a source of mortality in multiple vertebrate groups, the prevalence of hook ingestion by freshwater turtles has not been well studied. We trapped turtles from five rivers in the southeastern United States and used radiographs to examine over 600 individuals of four species. Depending on the species, sex, and age class, 0-33% of turtles contained ingested fish hooks. For some species, larger turtles were more likely to contain a fish hook than smaller individuals. Freshwater turtle demography suggests that even small increases in adult mortality may lead to population declines. If our study areas are representative of other aquatic systems that receive fishing pressure, this work likely identifies a potential conflict between a widespread, common recreational activity (i.e., fishing) and an imperiled taxonomic group.

  3. Prevalence of Ingested Fish Hooks in Freshwater Turtles from Five Rivers in the Southeastern United States

    PubMed Central

    Steen, David A.; Hopkins, Brittney C.; Van Dyke, James U.; Hopkins, William A.

    2014-01-01

    Freshwater turtles may ingest baited fish hooks because many are opportunistic scavengers. Although the ingestion of fish hooks is known to be a source of mortality in multiple vertebrate groups, the prevalence of hook ingestion by freshwater turtles has not been well studied. We trapped turtles from five rivers in the southeastern United States and used radiographs to examine over 600 individuals of four species. Depending on the species, sex, and age class, 0–33% of turtles contained ingested fish hooks. For some species, larger turtles were more likely to contain a fish hook than smaller individuals. Freshwater turtle demography suggests that even small increases in adult mortality may lead to population declines. If our study areas are representative of other aquatic systems that receive fishing pressure, this work likely identifies a potential conflict between a widespread, common recreational activity (i.e., fishing) and an imperiled taxonomic group. PMID:24621919

  4. Evolution of the turtle body plan by the folding and creation of new muscle connections.

    PubMed

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Ericsson, Rolf; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2009-07-10

    The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.

  5. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs

    PubMed Central

    Crawford, Nicholas G.; Faircloth, Brant C.; McCormack, John E.; Brumfield, Robb T.; Winker, Kevin; Glenn, Travis C.

    2012-01-01

    We present the first genomic-scale analysis addressing the phylogenetic position of turtles, using over 1000 loci from representatives of all major reptile lineages including tuatara. Previously, studies of morphological traits positioned turtles either at the base of the reptile tree or with lizards, snakes and tuatara (lepidosaurs), whereas molecular analyses typically allied turtles with crocodiles and birds (archosaurs). A recent analysis of shared microRNA families found that turtles are more closely related to lepidosaurs. To test this hypothesis with data from many single-copy nuclear loci dispersed throughout the genome, we used sequence capture, high-throughput sequencing and published genomes to obtain sequences from 1145 ultraconserved elements (UCEs) and their variable flanking DNA. The resulting phylogeny provides overwhelming support for the hypothesis that turtles evolved from a common ancestor of birds and crocodilians, rejecting the hypothesized relationship between turtles and lepidosaurs. PMID:22593086

  6. Populations and home range relationships of the box turtle, Terrapene c. carolina (Linnaeus)

    USGS Publications Warehouse

    Stickel, L.F.

    1950-01-01

    SUMMARY: A population study of the box turtle (Terrapene c. carolina Linnaeus) was made during the years 1944 to 1947 at the Patuxent Research Refuge, Maryland. A thirty acre area in well drained bottomland forest on the flood plain of the Patuxent River was selected for intensive study. Similarly forested land extended in all directions from the study plot. Markers were established at eighty-three foot intervals over the study plot for reference in recording locality data. Individuals were marked by filing notches in the marginal scutes according to a code system. There were 2109 collections of study area turtles. Records of collecting sites and turtle behavior showed that in the bottomlands habitat cover is utilized extensively during the day as well as at night. Turtles not actively moving about are almost always found in or around brush piles, heaps of debris, and tangles of vines and briars. Gully banks and woods openings are used for sunning. Turtles are occasionally found in the mud or water of the gullies. The commonest type of night retreat is a cavity constructed by the turtle in leaves, debris, or earth. These cavities, termed 'forms,' may be used only once, but are sometimes used repeatedly, often at intervals of several days or more. Different turtles sometimes use the same form on successive nights. Weather conditions most favorable to turtle activity are high humidity, warm sunny days, and frequent rains. The most unfavorable influences are low temperatures and drought. On most summer days there are some active turtles but individual turtles are not active every day. Periods of activity are alternated with periods of quiet even in favorable weather. This behavior is most pronounced in early spring and late fall when inactive days are often more numerous than active ones. Adult turtles occupy specific home ranges which they maintain from year to year. The turtles living in the study plot retained their ranges even through a flood that completely

  7. First satellite tracks of neonate sea turtles redefine the 'lost years' oceanic niche.

    PubMed

    Mansfield, Katherine L; Wyneken, Jeanette; Porter, Warren P; Luo, Jiangang

    2014-04-22

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle 'lost years'. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle 'lost years' paradigms.

  8. EFFECTS OF "SWIM WITH THE TURTLES" TOURIST ATTRACTIONS ON GREEN SEA TURTLE (CHELONIA MYDAS) HEALTH IN BARBADOS, WEST INDIES.

    PubMed

    Stewart, Kimberly; Norton, Terry; Mohammed, Hamish; Browne, Darren; Clements, Kathleen; Thomas, Kirsten; Yaw, Taylor; Horrocks, Julia

    2016-04-01

    Along the West Coast of Barbados a unique relationship has developed between endangered green sea turtles (Chelonia mydas) and humans. Fishermen began inadvertently provisioning these foraging turtles with fish offal discarded from their boats. Although initially an indirect supplementation, this activity became a popular attraction for visitors. Subsequently, demand for this activity increased, and direct supplementation or provisioning with food began. Food items offered included raw whole fish (typically a mixture of false herring [Harengula clupeola] and pilchard [Harengula humeralis]), filleted fish, and lesser amounts of processed food such as hot dogs, chicken, bread, or various other leftovers. Alterations in behavior and growth rates as a result of the provisioning have been documented in this population. The purpose of this study was to determine how tourism-based human interactions are affecting the overall health of this foraging population and to determine what potential health risks these interactions may create for sea turtles. Juvenile green sea turtles (n=29) were captured from four sites off the coast of Barbados, West Indies, and categorized into a group that received supplemental feeding as part of a tour (n=11) or an unsupplemented group (n=18) that consisted of individuals that were captured at sites that did not provide supplemental feeding. Following capture, a general health assessment of each animal was conducted. This included weight and morphometric measurements, a systematic physical examination, determination of body condition score and body condition index, epibiota assessment and quantification, and clinical pathology including hematologic and biochemical testing and nutritional assessments. The supplemented group was found to have changes to body condition, vitamin, mineral, hematologic, and biochemical values. Based on these results, recommendations were made to decrease negative behaviors and health impacts for turtles as a result

  9. Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis.

    PubMed

    Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L

    2014-09-01

    Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.

  10. Case descriptions of fibropapillomatosis in rehabilitating loggerhead sea turtles Caretta caretta in the southeastern USA.

    PubMed

    Page-Karjian, Annie; Norton, Terry M; Harms, Craig; Mader, Doug; Herbst, Larry H; Stedman, Nancy; Gottdenker, Nicole L

    2015-08-20

    Fibropapillomatosis (FP) is a debilitating neoplastic disease that affects all species of hard-shelled sea turtles, including loggerhead turtles Caretta caretta. FP can represent an important clinical concern in rehabilitating turtles, since managing these infectious lesions often requires special husbandry provisions including quarantine, and FP may affect clinical progression, extend rehabilitation duration, and complicate prognoses. Here we describe cases of rehabilitating loggerhead turtles with FP (designated FP+). Medical records of FP+ loggerhead cases from 3 sea turtle rehabilitation facilities in the southeastern USA were reviewed. Between 2001 and 2014, FP was observed in 8 of 818 rehabilitating loggerhead turtles (0.98% overall prevalence in admitted patients). FP+ loggerhead size classes represented were large juvenile (straight carapace length, SCL: 58.1-80 cm; n=7) and adult (SCL>87 cm; n=1). Three turtles presented with FP, and 5 developed tumors during rehabilitation within a range of 45 to 319 d. Sites of new tumor growth included the eyes, sites of trauma, neck, and glottis. FP+ turtles were scored as mildly (3/8), moderately (4/8), or heavily (1/8) afflicted. The mean total time in rehabilitation was 476±355 d (SD) (range: 52-1159 d). Six turtles were released without visible evidence of FP, 1 turtle was released with mild FP, and 1 turtle with internal FP was euthanized. Clinical decision-making for FP+ loggerhead patients can be aided by such information as time to tumor development, anatomic locations to monitor for new tumor growth, husbandry considerations, diagnostic and treatment options, and comparisons to FP in rehabilitating green turtles Chelonia mydas.

  11. Reticulate melanism in western painted turtles (Chrysemys picta bellii): Exploring linkages with habitat and heating rates

    USGS Publications Warehouse

    Gronke, W.K.; Chipps, S.R.; Bandas, S.J.; Higgins, K.F.

    2006-01-01

    In western painted turtles (Chrysemys picta bellii), males often exhibit one of two morphs: (1) a reticulated form, characterized by an intricate network of dark markings on the carapace or (2) a non-reticulated form. Although several hypotheses have been proposed to explain the adaptive significance of reticulate melanism (RM) on western painted turtles, no attempts have been made to document whether RM is linked to habitat conditions or if the presence of melanism affects heating rates. To evaluate these questions, we compared the frequency of adult male turtles with RM across three different habitats: riverine (rivers), lacustrine (lakes) and palustrine (wetland) habitats. Using manipulative experiments, we also tested the hypothesis that body heating rates are higher in turtles with RM. Reticulate melanism occurred on 99 (31%) of 320 male turtles captured in South Dakota from 2002 to 2003. Turtles with reticulate melanism were significantly larger than non-reticulated turtles; RM was not observed on male turtles with carapace lengths 15 cm carapace length) with RM was similar among river (0.54), lake (0.50) and wetland (0.64) habitats, implying that RM is not a habitat-linked trait. Heating rates for turtles with RM were similar to those measured for non-reticulated individuals. Body size, however, influenced heating rates; larger-bodied turtles with lower surface area-to-volume ratio heated more slowly than smaller turtles. Whether RM is a by-product of hormonal regulation or serves an adaptive purpose remains unclear. However, other hypotheses, especially those involving communication (e.g., courtship behavior) and/or gamete protection remain untested for western painted turtles and warrant further investigation.

  12. Mixed-stock analysis in green turtles Chelonia mydas: mtDNA decipher current connections among west Atlantic populations.

    PubMed

    Costa Jordao, Juliana; Bondioli, Ana Cristina Vigliar; Almeida-Toledo, Lurdes Foresti de; Bilo, Karin; Berzins, Rachel; Le Maho, Yvon; Chevallier, Damien; de Thoisy, Benoit

    2017-03-01

    The green turtle Chelonia mydas undertakes wide-ranging migrations between feeding and nesting sites, resulting in mixing and isolation of genetic stocks. We used mtDNA control region to characterize the genetic composition, population structure, and natal origins of C. mydas in the West Atlantic Ocean, at one feeding ground (State of Rio de Janeiro, Brazil), and three Caribbean nesting grounds (French Guiana, Guadeloupe, and Suriname). The feeding ground presented considerable frequency of common haplotypes from the South Atlantic, whereas the nesting sites presented a major contribution of the most common haplotype from the Caribbean. MSA revealed multiple origins of individuals at the feeding ground, notably from Ascension Island, Guinea Bissau, and French Guiana. This study enables a better understanding of the dispersion patterns and highlights the importance of connecting both nesting and feeding areas. Effective conservation initiatives need to encompass these ecologically and geographically distinct sites as well as those corridors connecting them.

  13. Immunological evaluation of captive green sea turtle (Chelonia mydas) with ulcerative dermatitis

    USGS Publications Warehouse

    Muñoz, Fernando Alberto; ,; ,; Romero-Rojas, Andrés; Gonzalez-Ballesteros, Erik; Work, Thierry; Villaseñor-Gaona, Hector; Estrada-Garcia, Iris

    2013-01-01

    Ulcerative dermatitis (UD) is common in captive sea turtles and manifests as skin erosions and ulcers associated with gram-negative bacteria. This study compared clinically healthy and UD-affected captive turtles by evaluating hematology, histopathology, immunoglobulin levels, and delayed-type hypersensitivity assay. Turtles with UD had significantly lower weight, reduced delayed-type hypersensitivity (DTH) responses, and higher heterophil:lymphocyte ratios. This study is the first to assay DTH in green turtles (Chelonia mydas) and suggests that UD is associated with immunosuppression.

  14. Evidence for a hormonal tactic maximizing green turtle reproduction in response to a pervasive ecological stressor.

    PubMed

    Jessop, T S; Hamann, M; Read, M A; Limpus, C J

    2000-06-01

    Mortality of breeding sea turtles due to excessive heat exposure after nesting activities is an unusual feature of the Raine Island green turtle rookery. Breeding turtles that fail to return to the ocean after oviposition can experience increasing body temperatures that exceed lethal limits (>39 degrees C) as ambient temperatures rise after sunrise. We investigated how acute increases in body temperature influenced plasma corticosterone (B) concentrations of individual turtles. Furthermore, interactions between progesterone (P) and testosterone (T) and increasing body temperature and the glucocorticoid corticosterone were examined for negative correlations. Breeding green turtles exhibited a 16-fold mean increase in plasma corticosterone concentration as body temperature (cloacal) rose from 28.2 to 40.7 degrees C in less than 6 h. However, the absolute increase in plasma B was small and much less than expected, despite the lethal stressor. Comparatively, the maximal B response to lethal heat stress was similar to plasma B concentrations obtained from breeding female turtles exposed to 8 h of capture stress. However, the maximal B response of breeding turtles exposed to heat and capture stressors was significantly less than the B response of nonbreeding adult female turtles subjected to an 8-h capture stressor. No negative correlations were observed between plasma T and plasma B, between plasma T and body temperature, between plasma P and plasma B, or between plasma P and body temperature. Our findings provide further evidence that reduced adrenocortical function operates in breeding green turtles in the presence of even the most pervasive of environmental stressors.

  15. Immunological evaluation of captive green sea turtle (Chelonia mydas) with ulcerative dermatitis.

    PubMed

    Muñoz, Fernando Alberto; Estrada-Parra, Sergio; Romero-Rojas, Andrés; Gonzalez-Ballesteros, Erik; Work, Thierry M; Villaseñor-Gaona, Hector; Estrada-Garcia, Iris

    2013-12-01

    Ulcerative dermatitis (UD) is common in captive sea turtles and manifests as skin erosions and ulcers associated with gram-negative bacteria. This study compared clinically healthy and UD-affected captive turtles by evaluating hematology, histopathology, immunoglobulin levels, and delayed-type hypersensitivity assay. Turtles with UD had significantly lower weight, reduced delayed-type hypersensitivity (DTH) responses, and higher heterophil:lymphocyte ratios. This study is the first to assay DTH in green turtles (Chelonia mydas) and suggests that UD is associated with immunosuppression.

  16. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  17. TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of

  18. An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: a new piece in the puzzle of sex chromosome evolution in turtles.

    PubMed

    Martinez, Pedro Alonzo; Ezaz, Tariq; Valenzuela, Nicole; Georges, Arthur; Marshall Graves, Jennifer A

    2008-01-01

    Chromosomal sex determination is the prevalent system found in animals but is rare among turtles. In fact, heteromorphic sex chromosomes are known in only seven of the turtles possessing genotypic sex determination (GSD), two of which correspond to cryptic sex microchromosomes detectable only with high-resolution cytogenetic techniques. Sex chromosomes were undetected in previous studies of Emydura macquarii, a GSD side-necked turtle. Using comparative genomic hybridization (CGH) and GTG-banding, a heteromorphic XX/XY sex chromosome system was detected in E. macquarii. The Y chromosome appears submetacentric and somewhat larger than the metacentric X, the first such report for turtles. CGH revealed a male-specific chromosomal region, which appeared heteromorphic using GTG-banding, and was restricted to the telomeric region of the p arm. Based on our observations and the current phylogeny of chelid turtles, we hypothesize that the sex chromosomes of E. macquarii might be the result of a translocation of an ancestral Y microchromosome as found in a turtle belonging to a sister clade, Chelodina longicollis, onto the tip of an autosome. However, in the absence of data from an outgroup, the opposite (fission of a large XY into an autosome and a micro-XY) is theoretically equally likely. Alternatively, the sex chromosome systems of E. macquarii and C. longicollis may have evolved independently. We discuss the potential causes and consequences of such putative chromosome rearrangements in the evolution of sex chromosomes and sex-determining systems of turtles in general.

  19. A Florida Redbelly Turtle is spotted at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Florida Redbelly Turtle casts a suspicious look as he is being photographed on the grounds of Kennedy Space Center. The Redbelly turtle inhabits ponds, lakes, sloughs, marshes and mangrove- bordered creeks, in a range that encompasses Florida from the southern tip north to the Apalachicola area of the panhandle. Active year-round, it is often seen basking on logs or floating mats of vegetation. Adults prefer a diet of aquatic plants. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  20. STS-81 Rollout to Pad 39B (turtle in foreground)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Will the Space Shuttle Atlantis or the turtle reach Launch Pad 39B first? Carried atop the Mobile Launch Platform on the 6- million-pound Crawler Transporter, Shuttle Atlantis departs the Vehicle Assembly Building en route to Pad B at a maximum speed of 1 mile per hour. No one clocked the turtle, which seems to be heading in the same direction. Atlantis is tentatively scheduled to lift off on a nine-day mission on Jan. 12. STS-81 will be the fifth Shuttle-Mir docking. The six-member crew at liftoff will include Mission Specialist J.M. Linenger, who will transfer to the Russian Mir Space Station for an extended stay, replacing astronaut John E. Blaha, who will return to Earth on Atlantis.