Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1981-09-01
Preliminary results provide strong evidence to show that the fungi, Candida and Cryptococcus , can be raoidly differentiated by a lectin test. SFor Oro...SUMMATION LECTIN-YEAST INTERACTIONS Objective: To find a lectin that selectively agglutinates Cryptococcus neoformans (the etiologic agent of...peanut), Conavalia ensiformis (Con A) and mango extract may potentially be utilized to differentiate Cryptococcus from the other yeasts most commonly
Lectins and their application to clinical microbiology.
Slifkin, M; Doyle, R J
1990-01-01
Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603
Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease
Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe
2015-01-01
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678
Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid.
Ueda, H; Kojima, K; Saitoh, T; Ogawa, H
1999-04-01
A lectin from the fruiting body of Psathyrella velutina has been used as a specific probe for non-reducing terminal N-acetylglucosamine residues. We reveal in this report that P. velutina lectin recognizes a non-reducing terminal N-acetylneuraminic acid residue in glycoproteins and oligosaccharides. Binding of biotinyl P. velutina lectin to N-acetylneuraminic acid residues was prevented by desialylation of glycoconjugates and was distinguished from the binding to N-acetylglucosamine. Sialooligosaccharides were retarded or bound and eluted with N-acetylglucosamine on a P. velutina lectin column, being differentiated from each other and also from the oligosaccharides with non-reducing terminal N-acetylglucosamine which bound more strongly to the column.
Gilboa-Garber, Nechama; Lerrer, Batya; Lesman-Movshovich, Efrat; Dgani, Orly
2005-12-01
Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.
Differentiation of Bacillus Anthracis and Other Bacillus Species by Use of Lectins
1983-07-18
TITL9 fAnd Subtfitle) S.TypeO REPORT gi PZRCC rvt 4 DIFFERENTIATION OF BACIL-LUSg’ ANTHRAtgACIS D OTHER BACILLUS , SPECIES BY-USE OYLECTINS" Inter[im...Ricinus communis. Some strains of Bacillus cer-eus var. m-ycoides (B. Mycoides) were strongly reactive with the lectin from Helbi pomtia and weakly reacti...ve with the Glycine max lectin. The differential iCnteractions between Bacillus species and lectins af forded a means of distinguishing B. anthracis
Hoffmann, H J; Dahl, C; Schiøtz, P O; Berglund, L; Dahl, R
2003-07-01
Atopy is closely associated with the cellular T helper type-2 (Th2) phenotype, that is dominated by the pleiotrophic cytokine IL-4. The cellular source of IL-4 has yet to be determined, although basophils have been proposed. Eosinophils and mast cells are likely contenders investigated here, and the eosinophil-like leukaemia line AML14.3D10 is compared to eosinophils as an in vitro culturable model for eosinophils. Lectins can cross-link-specific surface glycoproteins and are found in the ingested (processed foods) and inhaled (airborne pollen grains) human environment. Therefore it is of interest to determine whether lectins can elicit the release of IL-4 from Th2-associated granulocytes other than basophils. This study investigated the ability of eosinophils, AML14.3D10 and mast cells to secrete preformed IL-4 in response to stimulation with lectins, and explored molecular mechanisms underlying the interaction. Purified eosinophils and basophils, and cultured mast cells and AML14.3D10 cells were incubated with 1 micro m lectin. Agglutination was scored by microscopy. IL-4 secretion was measured by enzyme-linked immunosorbent assay. Biotinylated lectins were used to determine binding to cells by flow cytometry and in lectin blots of sodium dodecyl sulphate (SDS) gels. Purified human eosinophils, AML14.3D10 cells and cultured mast cells secrete IL-4 with a pattern similar to that found in basophils when stimulated with a panel of reactive and unreactive lectins. The lectin SNA induces IL-4 secretion from mast cells and basophils, but not from eosinophils or AML14.3D10. Eosinophils appear to secrete only pre-formed IL-4, whereas mast cells may synthesize IL-4 on ligation with the lectin LCA. Lectins that agglutinate the granulocytes investigated do not necessarily induce secretion of IL-4. Lectins that elicit secretion of IL-4 bind more to eosinophils than unreactive lectins as determined by flow cytometry and lectin blotting of SDS gels. As granulocytes with functions related to that of basophils, eosinophils, AML14.3D10 and cultured mast cells respond to stimulation with lectins similarly to basophils. This emphasizes the possibility that eosinophils and mast cells may be linked in their cellular heritage as the cellular partners, and lectins as ligands, may contribute to the maintenance of a Th2-favoured microenvironment that is thought to underlie the allergic march.
Basseri, Hamid R; Javazm, Mahdi Salari; Farivar, Leila; Abai, Mohammad R
2016-04-01
Potential targets of Plasmodium ookinetes at the mosquito midgut walls were investigated in relation to interfering malarial transmission. In this study, the essential application of Quantum Dots (QDs) was used to examine the interaction between Plasmodium berghei ookinetes and the Anopheles stephensi midgut, based on lectin-carbohydrate recognition. Two significant lectins were utilized to determine this interaction. Two QDs, cadmium telluride (CdTe)/CdS and cadmium selenide (CdSe)/CdS, were employed in staining Plasmodium ookinete to study its interaction in the midgut of the mosquito vector in vivo. Concurrently, two lectins, wheat germ agglutinin (WGA) and concanavalin A (Con A), were inadvertently exploited to mask lectin binding sites between ookinetes and mosquito midgut cells. The numbers of ookinetes in both lumen and epithelial cells were eventually counted, following adequate preparation of wax sections extracted from whole midgut, and subsequent examination using a differential interference contrast a fluorescence microscopic technique. Interestingly, we detected that neither of the QDs mutated ookinete invasion into the midgut cells of the investigated mosquitoes. QD staining of ookinetes remained permanent despite the effective embedding procedure. The massive binding potency of ookinetes to midgut cells of the cross-examined mosquitoes undoubtedly revealed that Con A did not interrupt ookinete penetration into the midgut wall. In contrast, WGA inhibited ookinete invasion into the midgut cells. The results proved that QD nanoparticles are biocompatible, non-toxic to P. berghei and stable to photobleaching. The QDs staining, which was successfully implemented for ookinete labelling, is a simple and effective tool which plays a crucial role in bioimaging including the study of parasite-vector interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Glycoproteomic Analysis of Glioblastoma Stem Cell Differentiation
He, Jintang; Liu, Yashu; Zhu, Thant S.; Xie, Xiaolei; Costello, Mark A.; Talsma, Caroline E.; Flack, Callie G.; Crowley, Jessica G.; DiMeco, Francesco; Vescovi, Angelo L.; Fan, Xing; Lubman, David M.
2010-01-01
Cancer stem cells are responsible for tumor formation through self-renewal and differentiation into multiple cell types, and thus represent a new therapeutic target for tumors. Glycoproteins play a critical role in determining the fates of stem cells such as self-renewal, proliferation and differentiation. Here we applied a multi-lectin affinity chromatography and quantitative glycoproteomics approach to analyze alterations of glycoproteins relevant to the differentiation of a glioblastoma-derived stem cell line HSR-GBM1. Three lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and peanut agglutinin (PNA) were used to capture glycoproteins, followed by LC-MS/MS analysis. A total of 73 and 79 high-confidence (FDR < 0.01) glycoproteins were identified from the undifferentiated and differentiated cells, respectively. Label-free quantitation resulted in the discovery of 18 differentially expressed glycoproteins, wherein 9 proteins are localized in the lysosome. All of these lysosomal glycoproteins were up-regulated after differentiation, where their principal function was hydrolysis of glycosyl residues. Protein-protein interaction and functional analyses revealed the active involvement of lysosomes during the process of glioblastoma stem cell differentiation. This work provides glycoprotein markers to characterize differentiation status of glioblastoma stem cells which may be useful in stemcell therapy of glioblastoma. PMID:21110520
Use of lectin microarray to differentiate gastric cancer from gastric ulcer
Huang, Wei-Li; Li, Yang-Guang; Lv, Yong-Chen; Guan, Xiao-Hui; Ji, Hui-Fan; Chi, Bao-Rong
2014-01-01
AIM: To investigate the feasibility of lectin microarray for differentiating gastric cancer from gastric ulcer. METHODS: Twenty cases of human gastric cancer tissue and 20 cases of human gastric ulcer tissue were collected and processed. Protein was extracted from the frozen tissues and stored. The lectins were dissolved in buffer, and the sugar-binding specificities of lectins and the layout of the lectin microarray were summarized. The median of the effective data points for each lectin was globally normalized to the sum of medians of all effective data points for each lectin in one block. Formalin-fixed paraffin-embedded gastric cancer tissues and their corresponding gastric ulcer tissues were subjected to Ag retrieval. Biotinylated lectin was used as the primary antibody and HRP-streptavidin as the secondary antibody. The glycopatterns of glycoprotein in gastric cancer and gastric ulcer specimens were determined by lectin microarray, and then validated by lectin histochemistry. Data are presented as mean ± SD for the indicated number of independent experiments. RESULTS: The glycosylation level of gastric cancer was significantly higher than that in ulcer. In gastric cancer, most of the lectin binders showed positive signals and the intensity of the signals was stronger, whereas the opposite was the case for ulcers. Significant differences in the pathological score of the two lectins were apparent between ulcer and gastric cancer tissues using the same lectin. For MPL and VVA, all types of gastric cancer detected showed stronger staining and a higher positive rate in comparison with ulcer, especially in the case of signet ring cell carcinoma and intra-mucosal carcinoma. GalNAc bound to MPL showed a significant increase. A statistically significant association between MPL and gastric cancer was observed. As with MPL, there were significant differences in VVA staining between gastric cancer and ulcer. CONCLUSION: Lectin microarray can differentiate the different glycopatterns in gastric cancer and gastric ulcer, and the lectins MPL and VVA can be used as biomarkers. PMID:24833877
Swaroopa Rani, Tirupaati; Podile, Appa Rao
2014-04-01
Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.
Interactions of lectins with plasma membrane glycoproteins of the Ehrlich ascites carcinoma cell.
Nachbar, M S; Oppenheim, J D; Aull, F
1976-02-06
Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various lectins is Ricinus communis greater than wheat germ greater than or equal to concanavalin A greater than or equal to soybean greater than Limulus polyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites for concanavalin A and soybean lectins. Sodium deoxycholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity columns. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.
Heng, M C; Fallon-Friedlander, S; Bennett, R
1992-06-01
Lectins bind tightly to carbohydrate moieties on cell surfaces. Alterations in lectin binding have been reported to accompany epidermal cell differentiation, marking alterations in membrane sugars during this process. The presence of UEA I (Ulex europaeus agglutinin I) L-fucose-specific lectin-binding sites has been used as a marker for terminally differentiated (committed) keratinocytes. In this article, we report the presence of UEA-I-binding sites on squamous keratinocytes of well-differentiated squamous cell carcinomas, with patchy loss of UEA I positivity on poorly differentiated cells of squamous cell carcinomas, suggesting a possible use for this technique in the rapid assessment of less differentiated areas within the squamous cell tumor. The absence of UEA-I-binding sites on basal cell carcinomas may be related to an inability of cells comprising this tumor to convert the L-D-pyranosyl moiety on basal cells to the L-fucose moiety, resulting in an inability of basal cell carcinoma cell to undergo terminal differentiation into a committed keratinocyte.
dos-Santos, Petra B; Zanetti, Juliana S; Vieira-de-Mello, Gabriela S; Rêgo, Moacyr BM; A, Alfredo Ribeiro-Silva; Beltrão, Eduardo Isidoro Carneiro
2014-01-01
Increased sialylation and β1,6-branched oligosaccharides has been associated with a variety of structural changes in cell surface carbohydrates, most notably in tumorigenesis. Lectins are defined as proteins that preferentially recognize and bind carbohydrate complexes protruding from glycolipids and glycoproteins. This interaction with carbohydrates can be as specific as the interaction between antigen and antibody. Due to this type of interaction lectins have been used as experimental auxiliary tools in histopathological diagnosis of cancer. This study was designed to evaluate the differential expression of sialic acids and β1,6-N-acetylglucosaminyltransferase V (MGAT5) in invasive (IDC) and in situ (DCIS) ductal carcinoma of the breast and its possible application as prognostic biomarkers. A possible transition between pre-malign and malign lesions was evaluated using DCIS samples. Biopsies were analyzed regarding the expression of MUC1, p53, Ki-67, estrogen receptor, progesterone receptor, HER-2 and MGAT5. α2,6-linked sialic acids residues recognized by SNA lectin was overexpressed in 33.3% of IDC samples and it was related with Ki-67 (p=0.042), PR (p=0.029), lymphnodes status (p=0.017) and death (p=0.011). Regarding survival analysis SNA was the only lectin able to correlate with specific-disease survival and disease-free survival (p=0.024 and p=0.041, respectively), besides, it presents itself as an independent variable by Cox Regression analysis (p= 0.004). Comparing IDC and DCIS cases, only SNA showed different staining pattern (p=0.034). The presence of sialic acids on tumor cell surface can be an indicative of poor prognosis and our study provides further evidence that SNA lectin can be used as a prognostic probe in IDC and DCIS patients. PMID:24966944
The use of lectins as markers for differentiated secretory cells in planarians.
Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A
2010-11-01
Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. © 2010 Wiley-Liss, Inc.
Differential Lectin Agglutination of Fetal, Dividing-Postnatal, and Malignant Hepatocytes
Becker, F. F.
1974-01-01
Numerous studies have reported the capacity of the lectin, concanavalin A, to agglutinate selected cell-types. The finding that cells transformed in culture, embryonic cells, and malignant cells are all agglutinated by this substance, may contribute to our understanding of the oncogenic process. The present study compared the response to concanavalin A of rat hepatocytes derived from livers of differing developmental and mitotic-status as well as those derived from malignant liver tumors (hepatomas). Fetal hepatocytes and hepatoma cells were highly susceptible to agglutination while hepatocytes from post-natal livers, whether dividing or quiescent, were not. Treatment with protease(s) did not make the interphase hepatocyte agglutinable. These data emphasize the importance of examining a wide variety of cells in attempting to understand the interaction of lectins on cell surfaces, and further, demonstrate the value of obtaining cells directly from tissue(s) during differing physiologic and pathologic states. Images PMID:4373708
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
Manalo, Trina; May, Adam; Quinn, Joshua; Lafontant, Dominique S.; Shifatu, Olubusola; He, Wei; Gonzalez-Rosa, Juan M.; Burns, Geoffrey C.; Burns, Caroline E.; Burns, Alan R.; Lafontant, Pascal J.
2016-01-01
Lectins are carbohydrate-binding proteins commonly used as biochemical and histochemical tools to study glycoconjugate (glycoproteins, glycolipids) expression patterns in cells, tissues, including mammalian hearts. However, lectins have received little attention in zebrafish (Danio rerio) and giant danio (Devario aequipinnatus) heart studies. Here, we sought to determine the binding patterns of six commonly used lectins—wheat germ agglutinin (WGA), Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin (BS lectin), concanavalin A (Con A), Ricinus communis agglutinin I (RCA I), and Lycopersicon esculentum agglutinin (tomato lectin)—in these hearts. Con A showed broad staining in the myocardium. WGA stained cardiac myocyte borders, with binding markedly stronger in the compact heart and bulbus. BS lectin, which stained giant danio coronaries, was used to measure vascular reconstruction during regeneration. However, BS lectin reacted poorly in zebrafish. RCA I stained the compact heart of both fish. Tomato lectin stained the giant danio, and while low reactivity was seen in the zebrafish ventricle, staining was observed in their transitional cardiac myocytes. In addition, we observed unique staining patterns in the developing zebrafish heart. Lectins’ ability to reveal differential glycoconjugate expression in giant danio and zebrafish hearts suggests they can serve as simple but important tools in studies of developing, adult, and regenerating fish hearts. PMID:27680670
Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin
2016-10-01
C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. Copyright © 2016 Elsevier Inc. All rights reserved.
Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction
NASA Astrophysics Data System (ADS)
Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.
1986-04-01
A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.
Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR).
Krotkiewska, Bozena; Pasek, Marta; Krotkiewski, Hubert
2002-01-01
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2013-03-01
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d
NASA Astrophysics Data System (ADS)
Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee
1999-02-01
The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.
Effect of surface modifiers on an ectoenzyme: granulocyte 5'-nucleotidase.
Smolen, J E; Karnovsky, M L
1980-05-01
Several agents that react with plasma membranes, namely the native lectins concanavalin A, Ricinus communis agglutinin, and wheat germ agglutinin, the modified lectin succinyl concanavalin A, and sodium meta-periodate, inhibited the ecto-5'-nucleotidase of intact guinea pig granulocytes. Stimulation of the enzyme was not observed at any lectin concentration. Inhibition by native lectins could be blocked or reversed by appropriate competing hapten sugars. In the case of concanavalin A, reversal could be achieved at 37 degrees C, but not at 5 degrees C. When lectins were used in combination with each other, the effects were found to be largely independent. However, when concanavalin A and R. communis agglutinin were applied together, complications arose because the former lectin binds to the latter as well as to the cell surface. To avoid some of the complexities inherent in studying intact cell 5'-nucleotidase and to gain additional information about the system, two broken cell enzyme preparations were also examined. The enzyme of plasma membrane-enriched fractions was inhibited by all five agents mentioned above. 5'-Nucleotidase solubilized in sodium deoxycholate was inhibited by the four lectins but stimulated by periodate. The effects of the surface modifiers on kinetic data for all three enzyme preparations are consistent with the hypothesis that direct interactions with the enzyme molecule give rise to changes in Vmax; interactions at membrane sites other than 5'-nucleotidase itself could cause increases in apparent Km values. Effects of interactions of ectoenzymes with plant lectins may serve as models for phenomena that result from cell-cell interactions or from interactions of animal cells with lectin-like components of the cellular environment.
Neco, Antonio Hadson Bastos; Pinto-Junior, Vanir Reis; Araripe, David Alencar; Santiago, Mayara Queiroz; Osterne, Vinicius Jose Silva; Lossio, Claudia Figueiredo; Nobre, Clareane Avelino Simplicio; Oliveira, Messias Vital; Silva, Mayara Torquato Lima; Martins, Maria Gleiciane Queiroz; Cajazeiras, Joao Batista; Marques, Gabriela Fernandes Oliveira; Costa, Diego Rabelo; Nascimento, Kyria Santiago; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa
2018-05-24
Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and N-glycans. Two dimannosides, methyl mannose-1,3-α-D-mannose (MDM) and mannose-1,3-α-D-mannose (M13), were used in molecular dynamics (MD) simulations to study the behavior of the carbohydrate-recognition domain (CRD) over time. Results showed an expanded domain within which hydrophobic interactions with the methyl group in the MDM molecule were established, thus revealing novel interactions for mannose-specific Dalbergieae lectins. To examine its biological activities, CML was purified in a single step by affinity chromatography on Sepharose-mannose matrix. The lectin demonstrated inflammatory response in the paw edema model and stimulated leukocyte migration to the animal peritoneal cavities, an effect elicited by CRD. For the first time, this work reports the molecular dynamics of a lectin from the Dalbergieae tribe. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling
NASA Astrophysics Data System (ADS)
Shang, Yuqin; Zeng, Yun; Zeng, Yong
2016-02-01
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.
Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling
Shang, Yuqin; Zeng, Yun; Zeng, Yong
2016-01-01
Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207
1991-04-01
AD- A235 913 DEVELOPMENT Ei ENGINEERING CENTER CRDEC-TR-268 PATHOGENIC AND NONPATHOGENIC STRAINS OF ENTAMOEBA HISTOLYTICA CAN BE DIFFERENTIATED BY...Pathogenic and Nonpathogenic Strains of Entamoeba Histolytica can be Differentiated by Monoclonal PR-IFJlX2XXRPEW Antibodies to the Galactose-Specific...galactose lectin produced by Entamoeba histolytica provide the basis for development of a model system for the environmental detection of adherence and
Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces
Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven
2005-01-01
Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent state of hESCs because binding percentages and binding localization of these lectins are similar to those of SSEA-4. Non-binding lectins, DBA and LTL, may identify differentiated cell types; however, we did not find these lectins to bind to pluripotent SSEA-4 positive hESCs. This work represents a fundamental base to systematically classify pluripotent hESCs, and in future studies these lectins may be used to distinguish differentiated hESC types based on glycan presentation that accompanies differentiation. PMID:16033656
Konidala, Praveen; Niemeyer, Bernd
2007-07-01
The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.
Chen, Yanan; Vedala, Harindra; Kotchey, Gregg P.; Audfray, Aymeric; Cecioni, Samy; Imberty, Anne; Vidal, Sébastien; Star, Alexander
2012-01-01
Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 µM of nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL and ConA) and three carbohydrate epitopes (galactose, fucose and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugates surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (Kd) and compare them to the values obtained from the isothermal titration microcalorimetry (ITC) technique. PMID:22136380
Lectins in fish skin: do they play a role in host-monogenean interactions?
Buchmann, K
2001-09-01
Mucus samples from rainbow trout skin with or without infections by Gyrodactylus derjavini were tested for the presence of lectins reacting with mannose, galactose and lactose. The samples inhibited the binding of biotinylated lectins (from Canavalia ensiformis, Artocarpus integrifolia and Erythrina corallodendron, respectively) to microtitre plates with covalently bound carbohydrates (mannopyranoside, galactopyranoside and lactose, respectively). However, the inhibition of C. ensiformis and A. integrifolia lectins was slightly greater when mucus from infected (but recovering) fish was used, suggesting an increase of mannose and galactose binding lectins in fish skin exposed to parasites. As mannose, galactose and lactose are present on the glycocalyx of Gyrodactylus derjavini, it is suggested that lectins could play a dual role in interactions between fish hosts and their monogenean parasites. Thus, recognition between parasite and host and also host responses towards parasite infections could both, at least partly, involve carbohydrate-lectin binding.
Sundblad, Victoria; Quintar, Amado A.; Morosi, Luciano G.; Niveloni, Sonia I.; Cabanne, Ana; Smecuol, Edgardo; Mauriño, Eduardo; Mariño, Karina V.; Bai, Julio C.; Maldonado, Cristina A.; Rabinovich, Gabriel A.
2018-01-01
Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings. PMID:29545799
Sundblad, Victoria; Quintar, Amado A; Morosi, Luciano G; Niveloni, Sonia I; Cabanne, Ana; Smecuol, Edgardo; Mauriño, Eduardo; Mariño, Karina V; Bai, Julio C; Maldonado, Cristina A; Rabinovich, Gabriel A
2018-01-01
Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn's disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings.
Alborzian Deh Sheikh, Amin; Akatsu, Chizuru; Imamura, Akihiro; Abdu-Allah, Hajjaj H M; Takematsu, Hiromu; Ando, Hiromune; Ishida, Hideharu; Tsubata, Takeshi
2018-01-01
Lectins expressed on the cell surface are often bound and regulated by the membrane molecules containing the glycan ligands on the same cell (cis-ligands). However, molecular nature and function of cis-ligands are generally poorly understood partly because of weak interaction between lectins and glycan ligands. Cis-ligands are most extensively studied in CD22 (also known as Siglec-2), an inhibitory B lymphocyte receptor specifically recognizing α2,6 sialic acids. CD22, CD45 and IgM are suggested to be ligands of CD22. Here we labeled molecules in the proximity of CD22 in situ on B cell surface using biotin-tyramide. Molecules including CD22, CD45 and IgM were labeled in wild-type but not ST6GalI -/- B cells that lack α2,6 sialic acids, indicating that these molecules associate with CD22 by lectin-glycan interaction, and are therefore cis-ligands. In ST6GalI -/- B cells, these cis-ligands are located in a slightly more distance from CD22. Thus, the lectin-glycan interaction recruits cis-ligands already located in the relative proximity of CD22 through non-lectin-glycan interaction to the close proximity. Moreover, cis-ligands are labeled in Cmah -/- B cells that lack Neu5Gc preferred by mouse CD22 as efficiently as in wild-type B cells, indicating that very low affinity lectin-glycan interaction is sufficient for recruiting cis-ligands, and can be detected by proximity labeling. Thus, proximity labeling with tyramide appears to be a useful method to identify cis-ligands and to analyze their interaction with the lectins. Copyright © 2017 Elsevier Inc. All rights reserved.
Rhizoid differentiation of Spirogyra is regulated by substratum.
Ikegaya, Hisato; Sonobe, Seiji; Murakami, Kohei; Shimmen, Teruo
2008-11-01
Some species of Spirogyra can anchor to substratum with rod- or rosette-shaped rhizoid (hapteron). The rhizoid differentiation can be induced by cutting algal filaments in a laboratory. Requirement of contact stimulation for rhizoid differentiation has been reported (Nagata in Plant Cell Physiol 14:531-541, 1973a). However, the control mechanism of rhizoid morphology has not been elucidated. When cut filaments were incubated on the glass surface, start of tip growth, secretion of lectin-binding material and callose synthesis were observed. In the absence of contact to the glass surface, none of above phenomena was induced. Systematic analysis showed that rosette-shaped rhizoid was formed only on the hydrophobic substratum. On the hydrophobic substratum, both Bandeiraea (Griffonia) simplicifolia lectin and jacalin strongly stained the rhizoids. On the hydrophilic substratum, however, only Bandeiraea (Griffonia) simplicifolia lectin strongly stained the rhizoids.
Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms.
Bovi, Michele; Carrizo, Maria E; Capaldi, Stefano; Perduca, Massimiliano; Chiarelli, Laurent R; Galliano, Monica; Monaco, Hugo L
2011-08-01
A novel lectin has been isolated from the fruiting bodies of the common edible mushroom Boletus edulis (king bolete, penny bun, porcino or cep) by affinity chromatography on a chitin column. We propose for the lectin the name BEL (B. edulis lectin). BEL inhibits selectively the proliferation of several malignant cell lines and binds the neoplastic cell-specific T-antigen disaccharide, Galβ1-3GalNAc. The lectin was structurally characterized: the molecule is a homotetramer and the 142-amino acid sequence of the chains was determined. The protein belongs to the saline-soluble family of mushroom fruiting body-specific lectins. BEL was also crystallized and its three-dimensional structure was determined by X-ray diffraction to 1.15 Å resolution. The structure is similar to that of Agaricus bisporus lectin. Using the appropriate co-crystals, the interactions of BEL with specific mono- and disaccharides were also studied by X-ray diffraction. The six structures of carbohydrate complexes reported here provide details of the interactions of the ligands with the lectin and shed light on the selectivity of the two distinct binding sites present in each protomer.
Lectins stain cells differentially in the coral, Montipora capitata
Work, Thierry M.; Farah, Yael
2014-01-01
A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.
Protozoa lectins and their role in host-pathogen interactions.
Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh
2016-01-01
Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment. Copyright © 2016 Elsevier Inc. All rights reserved.
Albores, Silvana; Moros, Maria; Cerdeiras, Maria Pia; de la Fuente, Jesus Martinez; Grazu, Valeria; Fraguas, Laura Franco
2016-01-01
Fungal lectins constitute excellent ligands for development of affinity adsorbents useful in affinity chromatography. In this work, a lectin was purified from Pycnoporus sanguineus (PSL) mycelium using 3 procedures: by affinity chromatography, using magnetic galactosyl-nanoparticles or galactose coupled to Sepharose, and by ionic exchange chromatography (IEC). The highest lectin yield was achieved by IEC (55%); SDS-PAGE of PSL showed 2 bands with molecular mass of 68.7 and 55.2 kDa and IEC displayed 2 bands at pi 5.5 and 5.2. The lectin agglutinates rat erythrocytes, exhibiting broad specificity toward several monosaccharides, including galactose. The agglutination was also inhibited by the glycoproteins fetal calf fetuin, bovine lactoferrin, bovine transferrin, and horseradish peroxidase. The lectin was then used to synthesize an affinity adsorbent (PSL-Sepharose) and the interaction with glycoproteins was evaluated by analyzing their chromatographic behaviors. The strongest interaction with the PSL-derivative was observed with transferrin, although lower interactions were also displayed toward fetuin and lactoferrin. These results indicate that the purified PSL constitutes an interesting ligand for the design of affinity adsorbents to be used (i.e., in glycoprotein purification).
Lerrer, Batia; Lesman-Movshovich, Efrat; Gilboa-Garber, Nechama
2005-09-01
Pseudomonas aeruginosa produces a fucose-binding lectin (PA-IIL) which strongly binds to human cells. This lectin was shown to be highly sensitive to inhibition by fucose-bearing human milk glycoproteins. Since the glycans of these glycoproteins mimic human cell receptors, they may function as decoys in blocking lectin-dependent pathogen adhesion to the host cells. Human saliva and seminal fluid also contain such compounds, and body fluids of individuals who are "secretors" express additional fucosylated (alpha 1,2) residues. The latter are selectively detected by Ulex europaeus lectin UEA-I. The aim of the present research was to compare the PA-IIL and UEA-I interactions with human salivas and seminal fluids of "secretors" and "nonsecretors" with those obtained with the respective milks. Using hemagglutination inhibition and Western blot analyses, we showed that PA-IIL interactions with the saliva and seminal fluid glycoproteins were somewhat weaker than those obtained with the milk and that "nonsecretor" body fluids were not less efficient than those of "secretors" in PA-IIL blocking. UEA-I, which interacted only with the "secretors" glycoproteins, was most sensitive to those of the seminal fluids.
In-house preparation of lectin panel and detection of Tn polyagglutination.
Das, Sudipta Sekhar
2015-01-01
Polyagglutination is a condition in which red cells are agglutinated by ABO-compatible adult human sera, but not by cord blood sera and may be acquired or inherited. Lectins are invaluable reagents in the investigation of red cells polyagglutination. We prepared in-house lectin panel and confirmed Tn polyagglutination in a pregnant lady. The lady was anemic and refused blood transfusion elsewhere due to serological discrepancy. We found ABO discrepancy and an incompatible minor cross-match in the initial investigation and suspected polyagglutination. Confirmation of polyagglutination was done using adult and cord sera. We then used the in-house lectin panels to detect the type of polyagglutination. The agglutination pattern with the various lectins was suggestive of Tn polyagglutination, which was further supported by the enzyme study. Most blood banks in India lack commercial lectin panels because of cost and procurement difficulty. Lectins play an important role in the diagnosis and differentiation of polyagglutination and immunohematological management of patient. The important and basic lectins can be prepared in-house using specific raw seeds following standardized protocol.
Karpova, I S
2016-12-01
Growing interest in lectins is based on their diagnostic and pharmacological potential, especially the ability to inhibit proliferation and initiate apoptosis of cancer cells. In our research microplate lectinoassay able to detect carbohydrate containing structures (receptors) on erythrocyte surface have been proposed for Chornobyl cleanup workers (1986) monitoring. It was expected to reveal specific abnormalities associated with pathological condition arising as a result of late radiation effects. Red blood cell (RBC) specimens were taken from 171 persons distributed into the six cohorts: nonexposed donors (1); chronically exposed to the doses below (2) and over 50 cGy (3); exposed to acute radiation without (4) and with manifestation of acute radiation syndrome (5 and 6). Lectins from 24 species of medicinal plants were purified by ethanol fractionation and electrofocusing. Intensity of lectin-receptor interactions was determined in reaction of hemagglutination. Method of flow cytofluorometry was used to study B-cell counts. Hormone levels in blood serum were determined by radioimmunoassay. An elevated ability of RBC to interact with the panel of lectins was found in all cohorts of exposed persons versus nonexposed donors, moreover, changes in the intensity of lectin-receptor binding depended on the dose of irradiation. Diagnostic value of specific RBC reactions with some individual lectins has been elucidated. Elevated intensity of RBC reaction with Zea mays lectin was accompanied by a decrease in serum content of thyroid hormones T4 and T3, as well as reduction of B-cell counts. In the case of Rubus caesius lectin the more intensive reaction with RBC, the higher level of hormone cortisol was observed. Deviations from donor's norm in intensity of lectin - RBC interactions in radiation exposed men are supposed to carry information about negative changes in their health status following Chornobyl catastrophe and show the diagnostic potential. The most sensitive reactions have been associated primarily with shifts in endocrine and immune systems. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".
Pinto-Junior, Vanir Reis; Santiago, Mayara Queiroz; Nobre, Camila Bezerra; Osterne, Vinicius Jose Silva; Leal, Rodrigo Bainy; Cajazeiras, Joao Batista; Lossio, Claudia Figueiredo; Rocha, Bruno Anderson Matias; Martins, Maria Gleiciane Queiroz; Nobre, Clareane Avelino Simplicio; Silva, Mayara Torquato Lima; Nascimento, Kyria Santiago; Cavada, Benildo Sousa
2017-09-15
The Pisum arvense lectin (PAL), a legume protein belonging to the Vicieae tribe, is capable of specific recognition of mannose, glucose and its derivatives without altering its structure. In this work, the three-dimensional structure of PAL was determined by X-ray crystallography and studied in detail by a combination of molecular docking and molecular dynamics (MD). Crystals belonging to monoclinic space group P2 1 were grown by the vapor diffusion method at 293 K. The structure was solved at 2.16 Å and was similar to that of other Vicieae lectins. The structure presented R factor and R free of 17.04% and 22.08%, respectively, with all acceptable geometric parameters. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and high-mannose N-glycans. PAL demonstrated different affinities on carbohydrates, depending on bond orientation and glycosidic linkage present in ligands. Furthermore, the lectin interacted with representative N-glycans in a manner consistent with the biological effects described for Vicieae lectins. Carbohydrate-recognition domain (CRD) in-depth analysis was performed by MD, describing the behavior of CRD residues in complex with ligand, stability, flexibility of the protein over time, CRD volume and topology. This is a first report of its kind for a lectin of the Vicieae tribe. Copyright © 2017 Elsevier Inc. All rights reserved.
Lectin activity in mycelial extracts of Fusarium species.
Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S
2016-01-01
Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Functional Mapping of the Lectin Activity Site on the β-Prism Domain of Vibrio cholerae Cytolysin
Rai, Anand Kumar; Paul, Karan; Chattopadhyay, Kausik
2013-01-01
Vibrio cholerae cytolysin (VCC) is a prominent member in the family of β-barrel pore-forming toxins. It induces lysis of target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. VCC also exhibits prominent lectin-like activity in interacting with β1-galactosyl-terminated glycoconjugates. Apart from the cytolysin domain, VCC harbors two lectin-like domains: the β-Trefoil and the β-Prism domains; however, precise contribution of these domains in the lectin property of VCC is not known. Also, role(s) of these lectin-like domains in the mode of action of VCC remain obscure. In the present study, we show that the β-Prism domain of VCC acts as the structural scaffold to determine the lectin activity of the protein toward β1-galactosyl-terminated glycoconjugates. Toward exploring the physiological implication of the β-Prism domain, we demonstrate that the presence of the β-Prism domain-mediated lectin activity is crucial for an efficient interaction of the toxin toward the target cells. Our results also suggest that such lectin activity may act to regulate the oligomerization ability of the membrane-bound VCC toxin. Based on the data presented here, and also consistent with the existing structural information, we propose a novel mechanism of regulation imposed by the β-Prism domain's lectin activity, implicated in the process of membrane pore formation by VCC. PMID:23209283
Quantitative assessment of the multivalent protein-carbohydrate interactions on silicon.
Yang, Jie; Chazalviel, Jean-Noël; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal
2014-10-21
A key challenge in the development of glycan arrays is that the sensing interface be fabricated reliably so as to ensure the sensitive and accurate analysis of the protein-carbohydrate interaction of interest, reproducibly. These goals are complicated in the case of glycan arrays as surface sugar density can influence dramatically the strength and mode of interaction of the sugar ligand at any interface with lectin partners. In this Article, we describe the preparation of carboxydecyl-terminated crystalline silicon (111) surfaces onto which are grafted either mannosyl moieties or a mixture of mannose and spacer alcohol molecules to provide "diluted" surfaces. The fabrication of the silicon surfaces was achieved efficiently through a strategy implicating a "click" coupling step. The interactions of these newly fabricated glycan interfaces with the lectin, Lens culinaris, have been characterized using quantitative infrared (IR) spectroscopy in the attenuated total geometry (ATR). The density of mannose probes and lectin targets was precisely determined for the first time by the aid of special IR calibration experiments, thus allowing for the interpretation of the distribution of mannose and its multivalent binding with lectins. These experimental findings were accounted for by numerical simulations of lectin adsorption.
Mikkat, U; Damm, I; Schröder, G; Schmidt, K; Wirth, C; Weber, H; Jonas, L
1998-05-01
Lectins are able to bind to cholecystokinin (CCK) receptors and other glycosylated membrane proteins. The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) are used for affinity chromatography to isolate the highly glycosylated CCK-A receptor of pancreatic acinar cells. According to the working hypothesis that lectin binding to the CCK receptor should alter the ligand-receptor interaction, the effect of WGA and UEA-I on CCK-8-induced enzyme secretion was studied on isolated rat pancreatic acini in vitro. In vitro both lectins showed a dosage-dependent inhibition of CCK-8-induced alpha-amylase secretion of acini over 60 min. WGA showed a strong inhibitory effect on amylase secretion, approximately 40%, in vitro. UEA-I caused a smaller, but significant decrease, approximately 20%, in enzyme secretion of isolated acini. Additionally, both lectins inhibited cerulein/secretin- or cerulein-induced pancreatic secretion of rats in vivo, but not after secretin alone. The results are discussed with respect to a possible influence of both lectins on the interaction of CCK or cerulein with the CCK-A receptor.
Yan, Chao; Yersin, Alexandre; Afrin, Rehana; Sekiguchi, Hiroshi; Ikai, Atsushi
2009-09-01
Glycophorin A (GpA) is one of the most abundant transmembrane proteins in human erythrocytes and its interaction with lectins has been studied as model systems for erythrocyte related biological processes. We performed a force measurement study using the force mode of atomic force microscopy (AFM) to investigate the single molecular level biophysical mechanisms involved in GpA-lectin interactions. GpA was mounted on a mica surface or natively presented on the erythrocyte membrane and probed with an AFM tip coated with the monomeric but multivalent Psathyrella velutina lectin (PVL) through covalent crosslinkers. A dynamic force spectroscopy study revealed similar interaction properties in both cases, with the unbinding force centering around 60 pN with a weak loading rate dependence. Hence we identified the presence of one energy barrier in the unbinding process. Force profile analysis showed that more than 70% of GpAs are free of cytoskeletal associations in agreement with previous reports.
Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1
Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...
2016-09-01
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less
Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less
Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L
2000-08-25
Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.
Horejsí, V; Tichá, M; Kocourek, J
1977-09-29
Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.
Glycome Diagnosis of Human Induced Pluripotent Stem Cells Using Lectin Microarray*
Tateno, Hiroaki; Toyota, Masashi; Saito, Shigeru; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Fukumura, Mihoko; Matsushima, Asako; Nakanishi, Mio; Ohnuma, Kiyoshi; Akutsu, Hidenori; Umezawa, Akihiro; Horimoto, Katsuhisa; Hirabayashi, Jun; Asashima, Makoto
2011-01-01
Induced pluripotent stem cells (iPSCs) can now be produced from various somatic cell (SC) lines by ectopic expression of the four transcription factors. Although the procedure has been demonstrated to induce global change in gene and microRNA expressions and even epigenetic modification, it remains largely unknown how this transcription factor-induced reprogramming affects the total glycan repertoire expressed on the cells. Here we performed a comprehensive glycan analysis using 114 types of human iPSCs generated from five different SCs and compared their glycomes with those of human embryonic stem cells (ESCs; nine cell types) using a high density lectin microarray. In unsupervised cluster analysis of the results obtained by lectin microarray, both undifferentiated iPSCs and ESCs were clustered as one large group. However, they were clearly separated from the group of differentiated SCs, whereas all of the four SCs had apparently distinct glycome profiles from one another, demonstrating that SCs with originally distinct glycan profiles have acquired those similar to ESCs upon induction of pluripotency. Thirty-eight lectins discriminating between SCs and iPSCs/ESCs were statistically selected, and characteristic features of the pluripotent state were then obtained at the level of the cellular glycome. The expression profiles of relevant glycosyltransferase genes agreed well with the results obtained by lectin microarray. Among the 38 lectins, rBC2LCN was found to detect only undifferentiated iPSCs/ESCs and not differentiated SCs. Hence, the high density lectin microarray has proved to be valid for not only comprehensive analysis of glycans but also diagnosis of stem cells under the concept of the cellular glycome. PMID:21471226
NASA Astrophysics Data System (ADS)
Engel, Nicole Y.; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter
2017-01-01
In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling.
Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.
Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G
2015-08-07
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.
Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential
Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C.; Müller, Werner E. G.
2015-01-01
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628
NASA Astrophysics Data System (ADS)
Bocsi, József; Nieschke, Kathleen; Mittag, Anja; Reichert, Thomas; Laffers, Wiebke; Marecka, Monika; Pierzchalski, Arkadiusz; Piltz, Joachim; Esche, Hans-Jürgen; Wolf, Günther; Dähnert, Ingo; Baumgartner, Adolf; Tarnok, Attila
2014-03-01
Myocardial infarction (MI) is an acute life-threatening disease with a high incidence worldwide. Aim of this study was to test lectin-carbohydrate binding-induced red blood cell (RBC) agglutination as an innovative tool for fast, precise and cost effective diagnosis of MI. Five lectins (Ricinus communis agglutinin (RCA), Phaseolus vulgaris erythroagglutinin (PHA), Datura stramonium agglutinin (DSA), Artocarpus agglutinin (ArA), Triticum agglutinin (TA)) were tested for ability to differentiate between agglutination characteristics in patients with MI (n = 101) or angina pectoris without MI (AP) (n = 34) and healthy volunteers (HV) as control (n =68) . RBC agglutination was analyzed by light absorbance of a stirred RBC suspension in the green to red light spectrum in an agglutimeter (amtec, Leipzig, Germany) for 15 min after lectin addition. Mean cell count in aggregates was estimated from light absorbance by a mathematical model. Each lectin induced RBC agglutination. RCA led to the strongest RBC agglutination (~500 RBCs/aggregate), while the others induced substantially slower agglutination and lead to smaller aggregate sizes (5-150 RBCs/aggregate). For all analyzed lectins the lectin-induced RBC agglutination of MI or AP patients was generally higher than for HV. However, only PHA induced agglutination that clearly distinguished MI from HV. Variance analysis showed that aggregate size after 15 min. agglutination induced by PHA was significantly higher in the MI group (143 RBCs/ aggregate) than in the HV (29 RBC-s/aggregate, p = 0.000). We hypothesize that pathological changes during MI induce modification of the carbohydrate composition on the RBC membrane and thus modify RBC agglutination. Occurrence of carbohydrate-lectin binding sites on RBC membranes provides evidence about MI. Due to significant difference in the rate of agglutination between MI > HV the differentiation between these groups is possible based on PHA-induced RBC-agglutination. This novel assay could serve as a rapid, cost effective valuable new tool for diagnosis of MI.
Singh, Ram Sarup; Bhari, Ranjeeta; Kaur, Hemant Preet; Vig, Monika
2010-11-01
Lectin has been isolated from mycelia of Aspergillus terricola by single step purification on porcine stomach mucin-Sepharose 4B affinity column. Lectin could be effectively purified with 75% recovery and 4.47-fold increase in specific activity. Lectin migrated as a single band on SDS-PAGE with an apparent molecular mass of 32.5 kDa. Sugar inhibition assay revealed that the lectin did not strongly interact with most carbohydrates and their derivatives tested while strong binding affinity to D-glucose, D-sucrose, N-acetyl-D-galactosamine, asialofetuin, porcine stomach mucin, and bovine submaxillary mucin was indicated. Neuraminidase and protease treatment to erythrocytes enhanced lectin titre. Lectin activity was stable within the pH range of 7.0-10.5. A. terricola lectin displayed remarkable thermostability and remained unaffected upon incubation at 70 degrees C for 2.5 h. Lectin did not require metal ions for its activity. Incubation with denaturants (urea, thiourea, and guanidine-HCl) substantially reduced lectin activity. Carbohydrate analysis revealed that it is a glycoprotein with 9.76% total sugars.
Benachour, H; Leroy-Dudal, J; Agniel, R; Wilson, J; Briand, M; Carreiras, F; Gallet, O
2018-05-01
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest. Copyright © 2017 John Wiley & Sons, Ltd.
Plant lectins: the ties that bind in root symbiosis and plant defense.
De Hoff, Peter L; Brill, Laurence M; Hirsch, Ann M
2009-07-01
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.
Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav
2017-01-01
Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.
Functional Aspects of Fish Mucosal Lectins-Interaction with Non-Self.
Brinchmann, Monica Fengsrud; Patel, Deepti Manjari; Pinto, Nevil; Iversen, Martin Haugmo
2018-05-09
Mucosal surfaces are of key importance in protecting animals against external threats including pathogens. In the mucosal surfaces, host molecules interact with non-self to prevent infection and disease. Interestingly, both inhibition and stimulation of uptake hinder infection. In this review, the current knowledgebase on teleost mucosal lectins’ ability to interact with non-self is summarised with a focus on agglutination, growth inhibition, opsonisation, cell adhesion, and direct killing activities. Further research on lectins is essential, both to understand the immune system of fishes, since they rely more on the innate immune system than mammals, and also to explore these molecules’ antibiotic and antiparasitic activities against veterinary and human pathogens.
Unfolding energetics and stability of banana lectin.
Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha
2008-08-01
The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.
Alterations in protein glycosylation in PMA-differentiated U-937 cells exposed to mineral particles.
Trabelsi, N; Greffard, A; Pairon, J C; Bignon, J; Zanetti, G; Fubini, B; Pilatte, Y
1997-01-01
Carbohydrate moieties of cell glycoconjugates play a pivotal role in molecular recognition phenomena involved in the regulation of most biological systems and the changes observed in cell surface carbohydrates during cell activation or differentiation frequently modulate certain cell functions. Consequently, some aspects of macrophage response to particle exposure might conceivably result from alterations in glycosylation. Therefore, the effect of mineral particles on protein glycosylation was investigated in phorbol myristate acetate (PMA)-differentiated U-937. Jacalin, a lectin specific for O-glycosylated structures, showed a global increase in O-glycosylation in particle-treated cells. In contrast, no significant modifications were observed with concanavalin A, a lectin that recognizes certain N-glycosylated structures. The sialic acid-specific lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin and the galactose-specific lectin Ricinus communis agglutinin revealed a complex pattern of alterations in glycoprotein glycosylation after crystalline silica or manganese dioxide treatments. Expression of sialyl Lewis(x), a glycosylated structure implicated in leukocyte trafficking, could not be detected in control or treated cells. This finding was consistent with the decrease in sialyl Lewis(x) expression observed during PMA-induced differentiation. In conclusion, various treatments used in this study induced quantitative as well as qualitative changes in protein glycosylation. Whether these changes are due to glycosidase release or to an alteration in glycosyltransferase expression remains to be determined. The potential functional implications of these changes are currently under investigation. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 3. C Figure 4. PMID:9400716
Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier
2003-01-01
Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Mori, K
1986-02-19
To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.
Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang
2016-08-17
In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Kupffer cell/tumor cell interactions and hepatic metastasis in colorectal cancer.
Meterissian, S H; Toth, C A; Steele, G; Thomas, P
1994-06-15
The degree of interaction with Kupffer cells of two moderately well differentiated cell lines, CX-1 and CCl-188 of high metastatic potential (61%) were compared to two poorly differentiated cell lines, MIP-101 and Clone A of low metastatic potential (6%) in the intrasplenic injection model for liver metastasis. MIP-101 and Clone A bound significantly better to mouse Kupffer cells in vitro than either CX-1 or CCL-188. We also identified specific cell surface proteins mediating attachment of colorectal carcinoma cells to murine Kupffer cells. Kupffer cells were radiolabelled and their surface proteins incubated with MIP-101 and CX-1. Two radiolabelled proteins from murine Kupffer cells of 14 and 34 kDa were identified consistently binding to the tumor cells. Binding of both proteins was inhibited by asialofetuin but not by fetuin. This suggests that the major binding proteins between Kupffer cells and colorectal cancer cells are galactose binding lectins.
Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.
1982-09-01
for the use of plant proteins, called lectins, in diagnostic microbiology. We studied lectin interactions with Staphylococcus, Legionella, Streptococcus ...commercial sources (BBL and Difco). Thethree Brucella species: suis abortus, and melitensis were also purchased from BBL and Difco. Lectins were obtained...that are killed by antibiotic treatment rather than formalin. Lee Laboratories in Georgia has offered to prepare these antigens for us according to our
A Novel Functional Role of Collagen Glycosylation
Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels
2011-01-01
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090
Microglial Lectins in Health and Neurological Diseases
Siew, Jian Jing; Chern, Yijuang
2018-01-01
Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases. PMID:29867350
Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M
2014-10-01
The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian
2017-09-01
Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Ezpeleta, I; Arangoa, M A; Irache, J M; Stainmesse, S; Chabenat, C; Popineau, Y; Orecchioni, A M
1999-11-25
One approach to improve the bioavailability and efficiency of drugs consists of the association of a ligand (i.e. lectins), showing affinity for biological structures located on the mucosa surfaces, to nanoparticulate drug delivery systems. In this context, Ulex europaeus lectin-gliadin nanoparticle conjugates (UE-GNP) were prepared with the aim of evaluating their in vitro bioadhesive properties. The lectin was fixed by a covalent procedure to gliadin nanoparticles by a two-stage carbodiimide method. Typically, the amount of bound lectin was calculated to be approximately 15 microg lectin/mg nanoparticle, which represented a coupling efficiency of approximately 16% of the initial lectin concentration. In addition, the activity of these conjugates was tested with bovine submaxillary gland mucin (BSM) and the level of binding to this mucin was always much greater with UE-GNP than with controls (gliadin nanoparticles). However, the presence of 50 micromol fucose, which is the reported specific sugar for U. europaeus lectin, specifically inhibited the activity of these conjugates and, therefore, the UE-GNP binding to BSM was attenuated by 70%. These results clearly showed that the activity and specificity of U. europaeus lectin was preserved after covalent coupling to these biodegradable carriers.
de Siqueira Patriota, Leydianne Leite; Procópio, Thamara Figueiredo; de Santana Brito, Jéssica; Sebag, Virginie; de Oliveira, Ana Patrícia Silva; de Araújo Soares, Ana Karine; Moreira, Leyllane Rafael; de Albuquerque Lima, Thâmarah; Soares, Tatiana; da Silva, Túlio Diego; Paiva, Patrícia Maria Guedes; de Lorena, Virgínia Maria Barros; de Melo, Cristiane Moutinho Lagos; de Albuquerque, Lidiane Pereira; Napoleão, Thiago Henrique
2017-10-01
In this study, we report the purification and characterization of a multifunctional lectin (MvFL) from Microgramma vacciniifolia fronds as well as its immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). MvFL (pI 4.51; 54kDa) is a glycoprotein able to inhibit trypsin activity and that has sequence similarities (32% coverage) with a plant RNA-binding protein. Hemagglutinating activity of MvFL was not altered by heating at 100°C for 30min, but was reduced in alkaline pH (8.0 and 9.0). Fluorimetric analyses showed that this lectin did not undergo marked conformational changes when heated. However, the MvFL conformation changed depending on the pH. MvFL at 6.25-25μg/mL was not cytotoxic to lymphocytes present among PBMCs. The PBMCs incubated for 24h with the lectin (12.5μg/mL) showed increased TNF-α, IFN-γ, IL-6, IL-10, and nitric oxide production. MvFL also stimulated T lymphocytes from PBMCs to differentiate into CD8 + cells. The activation (indicated by CD28 expression) of these cells was also stimulated. In conclusion, MvFL is a heat-stable and multifunctional protein, with both lectin and trypsin inhibitor activities, and capable of inducing predominantly a Th1 response in human PBMCs as well as activation and differentiation of T lymphocytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Insights into animal and plant lectins with antimicrobial activities.
Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz
2015-01-05
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.
Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T
2005-09-01
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
Agglutination of Helicobacter pylori coccoids by lectins
Khin, Mar Mar; Hua, Jie Song; Ng, Han Cong; Wadström, Torkel; Ho, Bow
2000-01-01
AIM: To study the agglutination pattern of Helicobacter pylori coccoid and spiral forms. METHODS: Assays of agglutination and agglutination inhibition were applied using fifteen commercial lectins. RESULTS: Strong agglutination was observed with mannose-specific Concanavalin A (Con A), fucose-specific Tetragonolobus purpureas (Lotus A) and N-acetyl glucosamine-specific Triticum vulgaris (WGA) lectins. Mannose and fucose specific lectins were reactive with all strains of H. pylori coccoids as compared to the spirals. Specific carbohydrates, glycoproteins and mucin were shown to inhibit H. pylori lectin-agglutination reactions. Pre-treatment of the bacterial cells with formalin and sulphuric acid did not alter the agglutination patterns with lectins. However, sodium periodate treatment of bacterial cells were shown to inhibit agglutination reaction with Con A, Lotus A and WGA lectins. On the contrary, enzymatic treatment of coccoids and spirals did not show marked inhibition of H. pylori lectin agglutination. Interes tingly, heating of H. pylori cells at 60 °C for 1 h was shown to augment the agglutination with all of the lectins tested. CONCLUSION: The considerable differences in lectin agglutination patterns seen among the two differentiated forms of H. pylori might be attributable to the structural changes during the events of morphological transformation, resulting in exposing or masking some of the sugar residues on the cell surface. Possibility of various sugar residues on the cell wall of the coccoids may allow them to bind to different carbohydrate receptors on gastric mucus and epithelial cells. The coccoids with adherence characteristics like the spirals could aid in the pathogenic process of Helicobacter infection. This may probably lead to different clinical outcome of H. pylori associated gastroduodenal disease. PMID:11819557
Villalva, Denise Gradella; Giansanti, Luisa; Mauceri, Alessandro; Ceccacci, Francesca; Mancini, Giovanna
2017-11-01
The presence of carbohydrate-binding proteins (i.e. lectins) on the surface of various bacterial strains and their overexpression in some tumor tissues makes the use of glycosylated liposomes a promising approach for the specific drug delivery in antibacterial and anti-cancer therapies. However, the functionalization of liposome surface with sugar moieties by glycosylated amphiphiles does not ensure the binding of sugar-coated vesicles with lectins. In fact, the composition and properties of lipid bilayer play a pivotal role in the exposure of sugar residues and in the interaction with lectins. The influence of the length of the hydrophilic spacer that links the sugar to liposome surface and of the presence of saturated or unsaturated phospholipids in the lipid bilayer on the ability of glucosylated liposomes to interact with a model lectin, Concanavalin A, was investigated. Our results demonstrate that both the chain length and the prensece of unsaturation, parameters that strongly affect the fluidity of the lipid bilayer, affect agglutination. In particular, agglutination is favored when liposomes are in the gel phase within a defined range of temperature. Moreover, the obtained results confirm that the length of the PEG spacer, that influences both lipid organization and the exposure of sugar moieties to the bulk, plays a crucial role in liposome/lectin interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu
2011-04-01
Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses,more » i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.« less
Stern, Daniel; Pauly, Diana; Zydek, Martin; Müller, Christian; Avondet, Marc A; Worbs, Sylvia; Lisdat, Fred; Dorner, Martin B; Dorner, Brigitte G
2016-04-15
Ricin is one of the most toxic plant toxins known. Its accessibility and relative ease of preparation makes it a potential agent for criminal or bio-terrorist attacks. Detection of ricin from unknown samples requires differentiation of ricin from the highly homologous Ricinus communis agglutinin which is currently not feasible using immunological methods. Here we have developed a simple and sensitive surface plasmon resonance (SPR) sensing system for rapid differentiation between ricin and agglutinin done in real time. Both lectins were quantified in a sandwich immunoassay-like setting by capturing with a cross-reactive antibody (R109) binding to both proteins while differentiating by injection of a ricin-specific antibody (R18) in a subsequent enhancement step. The SPR-assay was reproducible and sensitive for different R. communis cultivars, showing no false positive results when other lectins were tested. Quantification and differentiation of both molecules was also demonstrated from a crude castor bean extract and complex matrices. For the first time, we have demonstrated how the closely related lectins can be discerned and quantified in a single assay based on immunological methods. This novel approach delivers crucial information regarding the composition, purity, concentration, and toxicity of suspicious samples containing ricin in less than 30 minutes. Furthermore, we show how enhancement injections during SPR-measurements can be used to determine the ratio of two related proteins independently of the actual protein concentration by comparing normalized enhancement response levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and Function of Mammalian Carbohydrate-Lectin Interactions
NASA Astrophysics Data System (ADS)
Anderson, Kevin; Evers, David; Rice, Kevin G.
Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.
Clark, M A; Jepson, M A; Simmons, N L; Hirst, B H
1995-12-01
The in vivo interaction of the lectin Ulex europaeus agglutinin 1 with mouse Peyer's patch follicle-associated epithelial cells was studied in the mouse Peyer's patch gut loop model by immunofluorescence and electron microscopy. The lectin targets to mouse Peyer's patch M-cells and is rapidly endocytosed and transcytosed. These processes are accompanied by morphological changes in the M-cell microvilli and by redistribution of polymerised actin. The demonstration of selective binding and uptake of a lectin by intestinal M-cells in vivo suggests that M-cell-specific surface glycoconjugates might act as receptors for the selective adhesion/uptake of microorganisms.
Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin
2012-09-18
Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions.
Wang, Xin; Ramström, Olof; Yan, Mingdi
2011-10-21
Glyconanomaterials, an emerging class of bio-functional nanomaterials, have shown promise in detecting, imaging and targeting proteins, bacteria, and cells. In this article, we report that dynamic light scattering (DLS) can be used as an efficient tool to study glyconanoparticle (GNP)--lectin interactions. Silica and Au nanoparticles (NPs) conjugated with D-mannose (Man) and D-galactose (Gal) were treated with the lectins Concanavalin A (Con A) and Ricinus communis agglutinin (RCA(120)), and the hydrodynamic volumes of the resulting aggregates were measured by DLS. The results showed that the particle size grew with increasing lectin concentration. The limit of detection (LOD) was determined to be 2.9 nM for Con A with Man-conjugated and 6.6 nM for RCA(120) with Gal-conjugated silica NPs (35 nm), respectively. The binding affinity was also determined by DLS and the results showed 3-4 orders of magnitude higher affinity of GNPs than the free ligands with lectins. The assay sensitivity and affinity were particle size dependent and decreased with increasing particle diameter. Because the method relies on the particle size growth, it is therefore general and can be applied to nanomaterials of different compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Hinestrosa Salazar, Juan P; Shubert, Katherine R
2013-01-01
Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a non-destructive method for functional characterization based on EPS content. In this report, we evaluate the use of the block co-polymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface support for lectin-specific microbial capture. Arrays of circular polymer supports ten micron in diameter were generated on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. These supports promoted microbemore » adhesion and colony formation in a lectin-specific manner. Silicon posts with similar topography containing only physisorbed lectins showed significantly less activity. These results demonstrate that micropatterned PGMA-b-PVDMA supports provide a unique platform for microbial capture and screening based on EPS content by combining high avidity lectin surfaces with three-dimensional topography.« less
Maranhão, Paulo A C; Teixeira, Claudener S; Sousa, Bruno L; Barroso-Neto, Ito L; Monteiro-Júnior, José E; Fernandes, Andreia V; Ramos, Marcio V; Vasconcelos, Ilka M; Gonçalves, José F C; Rocha, Bruno A M; Freire, Valder N; Grangeiro, Thalles B
2017-07-01
The genus Swartzia is a member of the tribe Swartzieae, whose genera constitute the living descendants of one of the early branches of the papilionoid legumes. Legume lectins comprise one of the main families of structurally and evolutionarily related carbohydrate-binding proteins of plant origin. However, these proteins have been poorly investigated in Swartzia and to date, only the lectin from S. laevicarpa seeds (SLL) has been purified. Moreover, no sequence information is known from lectins of any member of the tribe Swartzieae. In the present study, partial cDNA sequences encoding L-type lectins were obtained from developing seeds of S. simplex var. grandiflora. The amino acid sequences of the S. simplex grandiflora lectins (SSGLs) were only averagely related to the known primary structures of legume lectins, with sequence identities not greater than 50-52%. The SSGL sequences were more related to amino acid sequences of papilionoid lectins from members of the tribes Sophoreae and Dalbergieae and from the Cladratis and Vataireoid clades, which constitute with other taxa, the first branching lineages of the subfamily Papilionoideae. The three-dimensional structures of 2 representative SSGLs (SSGL-A and SSGL-E) were predicted by homology modeling using templates that exhibit the characteristic β-sandwich fold of the L-type lectins. Molecular docking calculations predicted that SSGL-A is able to interact with D-galactose, N-acetyl-D-galactosamine and α-lactose, whereas SSGL-E is probably a non-functional lectin due to 2 mutations in the carbohydrate-binding site. Using molecular dynamics simulations followed by density functional theory calculations, the binding free energies of the interaction of SSGL-A with GalNAc and α-lactose were estimated as -31.7 and -47.5 kcal/mol, respectively. These findings gave insights about the carbohydrate-binding specificity of SLL, which binds to immobilized lactose but is not retained in a matrix containing D-GalNAc as ligand. Copyright © 2017 Elsevier Ltd. All rights reserved.
Than, Nandor Gabor; Romero, Roberto; Balogh, Andrea; Karpati, Eva; Mastrolia, Salvatore Andrea; Staretz-Chacham, Orna; Hahn, Sinuhe; Erez, Offer; Papp, Zoltan; Kim, Chong Jai
2015-05-01
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Coutiño-Rodríguez, R; Hernández-Cruz, P; Giles-Ríos, H
2001-01-01
In fruits with therapeutic properties for antidiarrheal and laxative uses, the presence of lectins may be the bioactive properties that interfere with bacterial adhesion, thought to be competition for glycoside signal sites in the attachment. This study identifies lectins in crude extracts from fruits such as Tamarindus indica (tamarind), Spontia vulgaris (plum), Psidium guava (guava), Mangifera indica (mango), Cydonia vulgaris (quince), and Crataegus mexicanus (tejocote). To verify the procedures, extracts from Ricinus communis (castor bean), Glycine max (soybean), Phaseolus vulgaris (beans), Vicia fava (fava bean), and Solanum tuberosum (potato) were used as controls for lectin activity. Both sources of lectins were analyzed to determine their participation in the host-parasite interaction, using as a model the hemagglutinating properties of Escherichia coli O157:H7 (EHA). All extracts showed hemagglutination to group O erythrocytes test (HA) with the exception of mango. Two new galactose-specific lectins were identified from tamarind and guava. When analyzed for participation in EHA, only guava lectins inhibited this, while soybean lectin induced hemolysis; as both lectins bind to galactose, it is probable that their recognition occurs in different domains. Sugars involved in the attachment between Escherichia coli O157:H7 and red cells were identified and again, galactose in addition to mannose was found to be related in EHA. On the other hand, guava lectins also agglutinated E. coli O157:H7, perhaps due to the same galactose-specific lectin or to another type of lectin. In summary, guava has a galactose-specific lectin that prevents adhesion of E. coli O157:H7 to red cells; this lectin is mediated by galactose. Prevention could also be due to their capacity of agglutinating E. coli by guava lectins. Soybean lectin induced hemolysis only when bacteria was present, but not with floating secretions. This finding showed that guava is a source of lectin that can be explored to prevent adhesion of E. coli to epithelial intestinal cells; contrariwise, soya must be studied to see its participation in the uremia caused during E. coli O157:H7 pathogenesis.
Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity.
Swanson, Michael D; Boudreaux, Daniel M; Salmon, Loïc; Chugh, Jeetender; Winter, Harry C; Meagher, Jennifer L; André, Sabine; Murphy, Paul V; Oscarson, Stefan; Roy, René; King, Steven; Kaplan, Mark H; Goldstein, Irwin J; Tarbet, E Bart; Hurst, Brett L; Smee, Donald F; de la Fuente, Cynthia; Hoffmann, Hans-Heinrich; Xue, Yi; Rice, Charles M; Schols, Dominique; Garcia, J Victor; Stuckey, Jeanne A; Gabius, Hans-Joachim; Al-Hashimi, Hashim M; Markovitz, David M
2015-10-22
A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code. Copyright © 2015 Elsevier Inc. All rights reserved.
Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity
Swanson, Michael D.; Boudreaux, Daniel M.; Salmon, Loïc; Chugh, Jeetender; Winter, Harry C.; Meagher, Jennifer L.; André, Sabine; Murphy, Paul V.; Oscarson, Stefan; Roy, René; King, Steven; Kaplan, Mark H.; Goldstein, Irwin J.; Tarbet, E. Bart; Hurst, Brett L.; Smee, Donald F.; de la Fuente, Cynthia; Hoffmann, Hans-Heinrich; Xue, Yi; Rice, Charles M.; Schols, Dominique; Garcia, J. Victor; Stuckey, Jeanne A.; Gabius, Hans-Joachim; Al-Hashimi, Hashim M.; Markovitz, David M.
2015-01-01
Summary A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code. PMID:26496612
Gabius, Hans-Joachim; Wu, Albert M
2006-01-01
Biochemistry textbooks commonly make it appear that it is a foregone conclusion that the hardware of biological information storage and transfer is confined to nucleotides and amino acids, the letters of the genetic code. However, the remarkable talents of a third class of biomolecules are often overlooked. For example, one of them far surpasses the building blocks of nucleic acids and proteins in terms of theoretical coding capacity by oligomer formation. Although often exclusively assigned to duties in energy metabolism, carbohydrates as part of cellular glycoconjugates (glycoproteins, proteoglycans, glycolipids) have, in fact, other important tasks. Currently, they are increasingly gaining recognition as an operative high-density information coding system. An elaborate enzymatic machinery enables cells to be versatile enough to produce a glycan profile (glycome) that is as characteristic as a fingerprint. Moreover, swift modifications during dynamic processes, such as differentiation or malignant transformation, are readily possible. The translation of the information presented in oligosaccharide determinants to biological responses is carried out by lectins. Recognition of foreign glycosignatures in innate immunity, regulation of cell-cell/matrix interactions, cell migration or growth, and intra- and intercellular glycan routing etc represent physiologically far-reaching lectin-carbohydrate functionality. The classification of endogenous lectins is guided by sequence alignments and conservation of distinct structural traits. For example, a jelly-roll-like folding pattern and maintenance of key residue positioning involved in stacking and C-H/pi-interactions as well as directional hydrogen bonds to the 1-galactoside ligands are common denominators among galectins. Biochemical and biophysical studies are beginning to unravel the intricacies of the selection of a limited set of endogenous ligands, such as certain integrins or ganglioside GM1, and combined with biological cell experiments, its relevance for cell sociology, e.g. in growth regulation and tumor cell invasion or activated T cell apoptosis. Histopathological monitoring accompanies the biological cell investigations, linking expression of certain family members to tumor progression or suppression. Further insights into the functional consequences of the sugar code's translation are thus expected to have notable repercussions for diagnostic and therapeutic procedures.
Sasaki, Nozomi; Moriwaki, Kenta; Uozumi, Naofumi; Noda, Katsuhisa; Taniguchi, Naoyuki; Kameyama, Akihiko; Narimatsu, Hisashi; Takeishi, Shunsaku; Yamada, Masao; Koyama, Nobuto; Miyoshi, Eiji
2009-12-01
Oligosaccharides serve as markers of the cell surface and have been used as certain kinds of tumor markers. In the present study, we established a simple method for isolating hepatic progenitor cells using a lectin, which recognizes a characteristic oligosaccharide structure. Rat liver epithelial (RLE) cells, which have been established as a hepatic stem-like cell, were used to identify characteristic oligosaccharide structures on hepatic stem cells. As a result from lectin micro array, several types of lectin including E4-PHA were identified to bind RLE cells specifically. Furthermore, lectin blot and lectin flow cytometry analyses showed that binding to E(4)-PHA lectin was significantly increased in RLE cells, compared to hepatocytes, and hepatoma cells. The induction of differentiation into a hepatocyte lineage of RLE cells by treatment with Oncostatin M and dexamethasone resulted in a decrease in E(4)-PHA binding. Using an E(4)-PHA column, we succeeded in isolating hepatic stem cells from LEC (Long-Evans with cinnamon coat color) rat livers with fluminant hepatitis. The characteristics of the established cells were similar to RLE cells and had a potential of proliferating in rat liver. These results suggest that oligosaccharides can serve as a novel marker for the isolation of the hepatic progenitor cells.
C-type lectins do not act as functional receptors for filovirus entry into cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuno, Keita; Nakayama, Eri; Noyori, Osamu
2010-12-03
Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps ofmore » virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.« less
Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin
Cash, Heather L.; Whitham, Cecilia V.; Behrendt, Cassie L.; Hooper, Lora V.
2009-01-01
The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIγ, a secreted C-type lectin. RegIIIγ binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIγ and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships. PMID:16931762
High diversification of CD94 by alternative splicing in New World primates.
Galindo, John A; Cadavid, Luis F
2013-04-01
CD94 forms heterodimers with NKG2A, -C, or -E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.
Lectins for gastrointestinal targeting--15 years on.
Woodley, J F
2000-01-01
In the mid-1980s, the concept of bioadhesion using synthetic polymers emerged, and brought with it the promise of improved efficiency for the delivery of drugs via mucosal surfaces. Studies in the author's laboratory concentrated on 'biological' bioadhesion using the naturally-occurring proteins, lectins, which recognise and bind sugars in glycoconjugates, such as those found on the surfaces of cells. Tomato Lectin (TL) was extensively studied as a putative non-toxic lectin with potential for drug targeting/delivery to the gastrointestinal (GI) tract. In vitro, the TL displayed impressive binding to the intestinal mucosa, but in vivo failed to significantly modify intestinal transit. A number of research groups have coupled the TL to microparticles, and significant systemic uptake of these has been observed in animal studies. Polymers with pendant sugars have also been shown to be bioadhesive, by interacting with endogenous lectins present on the cells of the GI tract. The use of lectins to target to Peyer's patches and diseased tissues in the colon is an interesting development, but much work remains to be done. Lectins also have potential in mucosal vaccines. Before advanced drug delivery systems using lectins can be realised, rigorous evaluation of their toxicity and immunogenicity will be required, but they clearly offer a number of possibilities for GI drug targeting systems in the future.
Bovi, Michele; Cenci, Lucia; Perduca, Massimiliano; Capaldi, Stefano; Carrizo, Maria E; Civiero, Laura; Chiarelli, Laurent R; Galliano, Monica; Monaco, Hugo L
2013-05-01
A novel lectin was purified from the fruiting bodies of king bolete mushrooms (Boletus edulis, also called porcino, cep or penny bun). The lectin was structurally characterized i.e its amino acid sequence and three-dimensional structure were determined. The new protein is a homodimer and each protomer folds as β-trefoil domain and therefore we propose the name Boletus edulis lectin (BEL) β-trefoil to distinguish it from the other lectin that has been described in these mushrooms. The lectin has potent anti-proliferative effects on human cancer cells, which confers to it an interesting therapeutic potential as an antineoplastic agent. Several crystal forms of the apoprotein and of complexes with different carbohydrates were studied by X-ray diffraction. The structure of the apoprotein was solved at 1.12 Å resolution. The interaction of the lectin with lactose, galactose, N-acetylgalactosamine and T-antigen disaccharide, Galβ1-3GalNAc, was examined in detail. All the three potential binding sites present in the β-trefoil fold are occupied in at least one crystal form and are described in detail in this paper. No important conformational changes are observed in the lectin when comparing its co-crystals with carbohydrates with those of the ligand-free protein.
Ilyas, Rebecca; Wallis, Russell; Soilleux, Elizabeth J; Townsend, Paul; Zehnder, Daniel; Tan, Bee K; Sim, Robert B; Lehnert, Hendrik; Randeva, Harpal S; Mitchell, Daniel A
2011-01-01
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins. Copyright © 2010 Elsevier GmbH. All rights reserved.
Sato, Yuichiro; Morimoto, Kinjiro; Kubo, Takanori; Sakaguchi, Takemasa; Nishizono, Akira; Hirayama, Makoto; Hori, Kanji
2015-01-01
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells. PMID:26035023
Little, D; Said, J W; Siegel, R J; Fealy, M; Fishbein, M C
1986-06-01
Markers for endothelial cells including Ulex europaeus 1 lectin, blood group A, B, and H, and the prostaglandin metabolite 6-keto-PGF1 alpha were evaluated in paraffin secretions from formalin-fixed benign and malignant vascular neoplasms using a variety of immunohistochemical techniques, and results compared with staining for factor VIII-related antigen. Staining for Ulex appeared more sensitive than factor VIII-related antigen in identifying poorly differentiated neoplasms including haemangiosarcomas and spindle cell proliferations in Kaposi's sarcoma. Staining for blood group related antigens correlated with blood group in all cases. Ulex europaeus 1 lectin was the only marker for endothelial cells in lymphangiomas.
Mello, C B; Nigam, Y; Garcia, E S; Azambuja, P; Newton, R P; Ratcliffe, N A
1999-04-01
We demonstrated that in Rhodnius prolixus haemocyte monolayers, both Trypanosoma cruzi and Trypanosoma rangeli are capable of inducing haemocyte/parasite clump formation. We also purified, by one-step affinity chromatography, a haemolymph galactoside-binding lectin from R. prolixus which we believe could play an important role in the development of T. rangeli in the haemocoel of the insect vector. This lectin markedly enhanced the activation of clump formation by T. rangeli in R. prolixus haemocyte monolayers, with an increase in clump size and haemocyte aggregation. The haemolymph lectin also significantly affected the motilitity and survival of T. rangeli culture short forms, but not the long forms, when they were incubated in vitro. This molecule is also one of the few described in insects with agglutination activity independent of calcium ions. The partial N-terminal amino acid sequence of this lectin demonstrated similarity to a bacterial xylulose kinase and in preliminary experiments the purified haemolymph lectin phosphorylated a tyrosine kinase substrate in a dose-dependent manner. The possible role of this haemolymph lectin in the life cycle of T. rangeli is discussed. Copyright 1999 Academic Press.
Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.
Ito, Takashi; Yoshida, Yasuhiro; Shiota, Yasuyoshi; Ito, Yuki; Yamamoto, Tadashi; Takashiba, Shogo
2018-02-01
Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.
Poretz, R D; Barth, R F
1976-01-01
The agglutinating activity of lectins from the seeds of Sophora japonica and Canavalia ensiformis (concanavalin A) with human and murine erythrocytes and lymphocytes have been compared to one another and related to the mitogenic and immunosuppressive properties of these purified proteins. The S. japonica lectin, which demonstrates blood group specificity, is more active than concanavalin A with human erythrocytes, but has a much lower reactivity than concanavalin A with murine red blood cells. Ficin treatment of human erythrocytes results in an increase in agglutinability by both lectins as well as causing the appearance of S. japonica lectin receptors on type O cells. Treatment of murine reythrocytes with ficin alone or followed by beta-galactosidase causes the cells to be more reactive with concanavalin A. Beta-Galactosidase alone has no observable affect on the cells. In contrast, the agglutinability of cells by the S. japonica lectin increases after ficin treatment but is not affected by beta-galaetosidose treatment either after or in the absence of ficinization. Murine lymphocytes react with both lectins in a manner paralleling the agglutination patterns of murine erythrocytes. The S. japonica lectin appears to be devoid of mitogenic and immuno-suppressive activity, in contrast to concanavalin A which suppresses the T helper-dependent antibody response to sheep erythrocytes. These results are discussed in terms of the types of lectin receptors on lymphocytes related to agglutination, induction of blastogenesis and immuno-suppression. PMID:955676
Integrative analysis workflow for the structural and functional classification of C-type lectins
2011-01-01
Background It is important to understand the roles of C-type lectins in the immune system due to their ubiquity and diverse range of functions in animal cells. It has been observed that currently confirmed C-type lectins share a highly conserved domain known as the C-type carbohydrate recognition domain (CRD). Using the sequence profile of the CRD, an increasing number of putative C-type lectins have been identified. Hence, it is highly needed to develop a systematic framework that enables us to elucidate their carbohydrate (glycan) recognition function, and discover their physiological and pathological roles. Results Presented herein is an integrated workflow for characterizing the sequence and structural features of novel C-type lectins. Our workflow utilizes web-based queries and available software suites to annotate features that can be found on the C-type lectin, given its amino acid sequence. At the same time, it incorporates modeling and analysis of glycans - a major class of ligands that interact with C-type lectins. Thereafter, the results are analyzed together with context-specific knowledge to filter off unlikely predictions. This allows researchers to design their subsequent experiments to confirm the functions of the C-type lectins in a systematic manner. Conclusions The efficacy and usefulness of our proposed immunoinformatics workflow was demonstrated by applying our integrated workflow to a novel C-type lectin -CLEC17A - and we report some of its possible functions that warrants further validation through wet-lab experiments. PMID:22372988
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
NASA Astrophysics Data System (ADS)
El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.
2015-01-01
In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.
Bauhinia variegata var. variegata lectin: isolation, characterization, and comparison.
Chan, Yau Sang; Ng, Tzi Bun
2015-01-01
Bauhinia variegata var. variegata seeds are rich in proteins. Previously, one of the major storage proteins of the seeds was found to be a trypsin inhibitor that possessed various biological activities. By using another purification protocol, a glucoside- and galactoside-binding lectin that demonstrated some differences from the previously reported B. variegata lectin could be isolated from the seeds. It involved affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Q-Sepharose and Mono Q, and also size exclusion chromatography on Superdex 75. The lectin was not retained on Affi-gel blue gel but interacted with Q-Sepharose. The lectin was a 64-kDa protein with two 32-kDa subunits. It had low thermostability (stable up to 50 °C) and moderate pH stability (stable in pH 3-10). It exhibited anti-proliferative activity on nasopharyngeal carcinoma HONE1 cells with an IC50 of 12.8 μM after treatment for 48 h. It also slightly inhibited the growth of hepatoma HepG2 cells. The lectin may have potential in aiding cancer treatments.
Pei, Zhichao; Saint-Guirons, Julien; Käck, Camilla; Ingemarsson, Björn; Aastrup, Teodor
2012-05-15
A novel approach to the study of molecular interactions on the surface of mammalian cells using a QCM biosensor was developed. For this study, an epidermoid carcinoma cell line (A-431) and a breast adenocarcinoma cell line (MDA-MB-468) were immobilized onto polystyrene-coated quartz crystals. The binding and dissociation between the lectin Con A and the cells as well as the inhibition of the binding by monosaccharides were monitored in real time and provided an insight into the complex avidic recognition of cell glycoconjugates. The real-time lectin screening of a range of lectins, including Con A, DBA, PNA and UEA-I, enabled the accurate study of the glycosylation changes between cells, such as changes associated with cancer progression and development. Furthermore, the kinetic parameters of the interaction of Con A with MDA-MB-468 cells were studied. This application provides investigators in the field of glycobiology with a novel tool to study cell surface glycosylation and may also have impacts on drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.
Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.
Mrázková, Jana; Malinovská, Lenka; Wimmerová, Michaela
2017-01-01
Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.
Singh, D D; Saikrishnan, K; Kumar, Prashant; Surolia, A; Sekar, K; Vijayan, M
2005-10-01
The crystal structure of a complex of methyl-alpha-D-mannoside with banana lectin from Musa paradisiaca reveals two primary binding sites in the lectin, unlike in other lectins with beta-prism I fold which essentially consists of three Greek key motifs. It has been suggested that the fold evolved through successive gene duplication and fusion of an ancestral Greek key motif. In other lectins, all from dicots, the primary binding site exists on one of the three motifs in the three-fold symmetric molecule. Banana is a monocot, and the three motifs have not diverged enough to obliterate sequence similarity among them. Two Greek key motifs in it carry one primary binding site each. A common secondary binding site exists on the third Greek key. Modelling shows that both the primary sites can support 1-2, 1-3, and 1-6 linked mannosides with the second residue interacting in each case primarily with the secondary binding site. Modelling also readily leads to a bound branched mannopentose with the nonreducing ends of the two branches anchored at the two primary binding sites, providing a structural explanation for the lectin's specificity for branched alpha-mannans. A comparison of the dimeric banana lectin with other beta-prism I fold lectins, provides interesting insights into the variability in their quaternary structure.
Pohleven, Jure; Renko, Miha; Magister, Špela; Smith, David F.; Künzler, Markus; Štrukelj, Borut; Turk, Dušan; Kos, Janko; Sabotič, Jerica
2012-01-01
Lectins are carbohydrate-binding proteins that exert their biological activity by binding to specific cell glycoreceptors. We have expressed CNL, a ricin B-like lectin from the basidiomycete Clitocybe nebularis in Escherichia coli. The recombinant lectin, rCNL, agglutinates human blood group A erythrocytes and is specific for the unique glycan N,N′-diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc) as demonstrated by glycan microarray analysis. We here describe the crystal structures of rCNL in complex with lactose and LacdiNAc, defining its interactions with the sugars. CNL is a homodimeric lectin, each of whose monomers consist of a single ricin B lectin domain with its β-trefoil fold and one carbohydrate-binding site. To study the mode of CNL action, a nonsugar-binding mutant and nondimerizing monovalent CNL mutants that retain carbohydrate-binding activity were prepared. rCNL and the mutants were examined for their biological activities against Jurkat human leukemic T cells and the hypersensitive nematode Caenorhabditis elegans mutant strain pmk-1. rCNL was toxic against both, although the mutants were inactive. Thus, the bivalent carbohydrate-binding property of homodimeric CNL is essential for its activity, providing one of the rare pieces of evidence that certain activities of lectins are associated with their multivalency. PMID:22298779
Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.
Giannasca, P J; Boden, J A; Monath, T P
1997-01-01
The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal administration. PMID:9317039
Targeting the C-type lectins-mediated host-pathogen interactions with dextran.
Pustylnikov, Sergey; Sagar, Divya; Jain, Pooja; Khan, Zafar K
2014-01-01
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen-lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin-glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran-lectin interactions may also be important for development of future dextran applications in biological research and medicine.
Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.
2004-01-01
Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.
Than, Nandor Gabor; Romero, Roberto; Balogh, Andrea; Karpati, Eva; Mastrolia, Salvatore Andrea; Staretz-Chacham, Orna; Hahn, Sinuhe; Erez, Offer; Papp, Zoltan; Kim, Chong Jai
2015-01-01
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes. PMID:26018511
Rebiere-Huët, Julie; Di Martino, Patrick; Hulen, Christian
2004-05-01
Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 x 10(5) CFU/ micro g. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.
Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors
Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia
2017-01-01
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609
Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study
Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun
2017-01-01
Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796
Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention.
Liu, Yang; Zhang, Fuchun; Liu, Jianying; Xiao, Xiaoping; Zhang, Siyin; Qin, Chengfeng; Xiang, Ye; Wang, Penghua; Cheng, Gong
2014-02-01
C-type lectins are a family of proteins with carbohydrate-binding activity. Several C-type lectins in mammals or arthropods are employed as receptors or attachment factors to facilitate flavivirus invasion. We previously identified a C-type lectin in Aedes aegypti, designated as mosquito galactose specific C-type lectin-1 (mosGCTL-1), facilitating the attachment of West Nile virus (WNV) on the cell membrane. Here, we first identified that 9 A. aegypti mosGCTL genes were key susceptibility factors facilitating DENV-2 infection, of which mosGCTL-3 exhibited the most significant effect. We found that mosGCTL-3 was induced in mosquito tissues with DENV-2 infection, and that the protein interacted with DENV-2 surface envelop (E) protein and virions in vitro and in vivo. In addition, the other identified mosGCTLs interacted with the DENV-2 E protein, indicating that DENV may employ multiple mosGCTLs as ligands to promote the infection of vectors. The vectorial susceptibility factors that facilitate pathogen invasion may potentially be explored as a target to disrupt the acquisition of microbes from the vertebrate host. Indeed, membrane blood feeding of antisera against mosGCTLs dramatically reduced mosquito infective ratio. Hence, the immunization against mosGCTLs is a feasible approach for preventing dengue infection. Our study provides a future avenue for developing a transmission-blocking vaccine that interrupts the life cycle of dengue virus and reduces disease burden.
Houser, Josef; Komarek, Jan; Cioci, Gianluca; Varrot, Annabelle; Imberty, Anne; Wimmerova, Michaela
2015-03-01
The Aspergillus fumigatus lectin AFL was recently described as a new member of the AAL lectin family. As a lectin from an opportunistic pathogen, it might play an important role in the interaction of the pathogen with the human host. A detailed study of structures of AFL complexed with several monosaccharides and oligosaccharides, including blood-group epitopes, was combined with affinity data from SPR and discussed in the context of previous findings. Its six binding sites are non-equivalent, and owing to minor differences in amino-acid composition they exhibit a marked difference in specific ligand recognition. AFL displays a high affinity in the micromolar range towards oligosaccharides which were detected in plants and also those bound on the human epithelia. All of these results indicate AFL to be a complex member of the lectin family and a challenging target for future medical research and, owing to its binding properties, a potentially useful tool in specific biotechnological applications.
C-Type Lectin Receptor MCL Facilitates Mincle Expression and Signaling through Complex Formation.
Miyake, Yasunobu; Masatsugu, Oh-hora; Yamasaki, Sho
2015-06-01
C-type lectin receptors expressed in APCs are recently defined pattern recognition receptors that play a crucial role in immune responses against pathogen-associated molecular patterns. Among pathogen-associated molecular patterns, cord factor (trehalose-6,6'-dimycolate [TDM]) is the most potent immunostimulatory component of the mycobacterial cell wall. Two C-type lectin receptors, macrophage-inducible C-type lectin (Mincle) and macrophage C-type lectin (MCL), are required for immune responses against TDM. Previous studies indicate that MCL is required for TDM-induced Mincle expression. However, the mechanism by which MCL induces Mincle expression has not been fully understood. In this study, we demonstrate that MCL interacts with Mincle to promote its surface expression. After LPS or zymosan stimulation, MCL-deficient bone marrow-derived dendritic cells (BMDCs) had a lower level of Mincle protein expression, although mRNA expression was comparable with wild-type BMDCs. Meanwhile, BMDCs from MCL transgenic mice showed an enhanced level of Mincle expression on the cell surface. MCL was associated with Mincle through the stalk region and this region was necessary and sufficient for the enhancement of Mincle expression. This interaction appeared to be mediated by the hydrophobic repeat of MCL, as substitution of four hydrophobic residues within the stalk region with serine (MCL(4S)) abolished the function to enhance the surface expression of Mincle. MCL(4S) mutant failed to restore the defective TDM responses in MCL-deficient BMDCs. These results suggest that MCL positively regulates Mincle expression through protein-protein interaction via its stalk region, thereby magnifying Mincle-mediated signaling. Copyright © 2015 by The American Association of Immunologists, Inc.
Ueda, H; Saitoh, T; Kojima, K; Ogawa, H
1999-09-01
An N-acetylglucosamine (GlcNAc)/N-acetylneuraminic acid-specific lectin from the fruiting body of Psathyrella velutina (PVL) is a useful probe for the detection and fractionation of specific carbohydrates. In this study, PVL was found to exhibit multispecificity to acidic polysaccharides and sulfatides. Purified PVL and a counterpart lectin to PVL in the mycelium interact with heparin neoproteoglycans, as detected by both membrane analysis and solid phase assay. The pH-dependencies of the binding to heparin and GlcNAc5-6 differ. The heparin binding of PVL is inhibited best by pectin, polygalacturonic acid, and highly sulfated polysaccharides, but not by GlcNAc, colominic acid, or other glycosaminoglycans. Sandwich affinity chromatography indicated that PVL can simultaneously interact with heparin- and GlcNAc-containing macromolecules. Extensive biotinylation was found to suppress the binding activity to heparin while the GlcNAc binding activity is retained. On the other hand, biotinyl PVL binds to sulfatide and the binding is not inhibited by GlcNAc, N-acetylneuraminic acid, or heparin. These results indicate that PVL is a multi-ligand adhesive lectin that can interact with various glycoconjugates. This multispecificity needs to be recognized when using PVL as a sugar-specific probe to avoid misleading information about the nature of glycoforms.
The distribution of lectin receptor sites in human breast lesions.
Skutelsky, E; Hoenig, S; Griffel, B; Alroy, J
1988-08-01
Conflicting data regarding the status of A, B, H and T antigens in epithelium of normal, mastopathies, fibroadenomas and carcinomas of the breast stimulated us to re-examine the carbohydrate residues in these condition. Currently, we extended the number of carbohydrate residues studied by using ten different biotinylated lectins as probes and avidin-biotin-peroxidase complex (ABC) as a visualant. In addition, the pattern of lectin staining of cancerous cells in primary and metastatic sites was compared. In primary and metastatic breast carcinomas, lectin receptor sites were stained more intensely with Concanavalia ensiformi agglutinin (*Con A), Ricinus communis agglutinin-I (RCA-I) and wheat germ agglutinin (WGA), than in normal breast, in mastopathies or in fibroadenomas. Cryptic receptor sites for peanut agglutinin (PNA) were stained in all cases of breast carcinomas, while free PNA sites stained only in a few cases of well-differentiated carcinomas. Receptors sites for Ulex europaeus agglutinin-I (UEA-I) stained non-malignant epithelium of patients with blood group H but did not stain malignant cells. The results show significant differences in lectin-binding patterns and staining intensities between normal and non-malignant, and malignant epithelial breast cells. Furthermore, these results indicate that in malignant cells, there is an increased content of sialic acid-rich carbohydrates but not of asialylated glycoconjugates.
Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry
Andrade, Camila G; Cabral Filho, Paulo E; Tenório, Denise PL; Santos, Beate S; Beltrão, Eduardo IC; Fontes, Adriana; Carvalho, Luiz B
2013-01-01
Cell surface glycoconjugates play an important role in differentiation/dedifferentiation processes and lectins are employed to evaluate them by several methodologies. Fluorescent probes are considered a valuable tool because of their ability to provide a particular view, and are more detailed and sensitive in terms of cell structure and molecular content. The aim of this study was to evaluate and compare the expression and distribution of glycoconjugates in normal human breast tissue, and benign (fibroadenoma), and malignantly transformed (invasive ductal carcinoma) breast tissues. For this, we used mercaptosuccinic acid-coated Cadmium Telluride (CdTe) quantum dots (QDs) conjugated with concanavalin A (Con A) or Ulex europaeus agglutinin I (UEA I) lectins to detect α-D-glucose/mannose and L-fucose residues, respectively. The QD-lectin conjugates were evaluated by hemagglutination activity tests and carbohydrate inhibition assays, and were found to remain functional, keeping their fluorescent properties and carbohydrate recognition ability. Fluorescence images showed that different regions of breast tissue expressed particular types of carbohydrates. While the stroma was preferentially and intensely stained by QD-Con A, ductal cells were preferentially labeled by QD-UEA I. These results indicate that QD-lectin conjugates can be used as molecular probes and can help to elucidate the glycoconjugate profile in biological processes. PMID:24324334
Kitamura, Noriaki; Ikekita, Masahiko; Hayakawa, Satoru; Funahashi, Hisayuki; Furukawa, Kiyoshi
2004-02-01
Glycoproteins from mammalian brain tissues contain unique N-linked oligosaccharides terminating with beta-N-acetylglucosamine residues. Lectin blot analysis of membrane glycoprotein samples from human neuroblastoma SH-SY5Y cells showed that several protein bands bind to Psathylera velutina lectin (PVL), which interacts with beta-N-acetylglucosamine-terminating oligosaccharides. No lectin positive bands were detected by digestion with jack bean beta-N-acetyl-hexosaminidase or N-glycanase before incubation with the lectin, indicating that the cells contain beta-N-acetylglucosamine-terminating N-linked oligosaccharides. When cells were cultured in dishes with different concentrations of PVL, the cell proliferation was inhibited in a dose-dependent manner. Similarly, the neurite extension, which was stimulated with nerve growth factor, was also inhibited in a manner dependent on the lectin dose. Cell proliferation and neurite extension were recovered by the addition of 10 mM N-acetylglucosamine into the medium. Immunoblot analysis of the activation of mitogen-activated protein (MAP) kinases and protein kinase C revealed that phosphorylation of 42-kDa and 44-kDa MAP kinases and 80-kDa protein kinase C are inhibited when SH-SY5Y cells are cultured in PVL-coated dishes, but are restored by the addition of the haptenic sugar into the medium, indicating that MAP kinase and protein kinase C pathways are inhibited by interaction with immobilized PVL. These results indicate that beta-N-acetylglucosamine-terminating N-linked oligosaccharides expressed on neural cells can induce intracellular signals upon binding to extracellular receptors, and are important for growth regulation of neural cells. Copyright 2003 Wiley-Liss, Inc.
Aristoteli, Lina Panayiota; Willcox, Mark D P
2006-11-01
Pseudomonas aeruginosa is a pathogen gaining prevalence in contact lens-related corneal ulcers. Tear outflow protects the ocular surface, where high molecular weight tear glycoproteins bind bacteria for removal from the eye. The purpose of the present study was to identify glycoproteins in human tears involved in the adhesion of ocular P. aeruginosa isolates. Basal human tears were applied to a bacterial adhesion assay involving electrophoretic separation of tear components, transfer to nitrocellulose and incubation with biotin-labelled bacteria. Glycoproteins were further characterised using lectin profiling. The results showed large-dimension agarose gels were imperative for the detection of at least four glycoproteins with a migration >200 kDa, including species not previously identified. P. aeruginosa 6294 preferentially bound to a well-defined glycoprotein near the origin of the gel that, unlike other glycoproteins >200 kDa, reacted with Sambucus nigra lectin (sialic acid alpha2-6) but not WGA lectin (N-acetylglucosamine, sialic acid alpha2-3). Adhesion did not involve free biotin label or hydrophobic interactions. Also, the pre-incubation of separated tear glycoproteins with S. nigra lectin increased subsequent adhesion of 6294 to this tear glycoprotein. The less virulent Paer1 strain showed diffuse adhesion in the S. nigra-reactive region at the gel origin. In conclusion, an overlay adhesion assay was developed that identified slow-migrating sialylated glycoprotein species in human tears preferentially bound by P. aeruginosa ocular strains, and S. nigra lectin seemed to enhance the interaction. The study provides a basis for direct investigation of bacterial adhesion to glycoproteins with an apparent migration >200 kDa in tear fluid.
Chen, Chang-Shan; Chen, Chun-Yi; Ravinath, Divya Malathy; Bungahot, Agustina; Cheng, Chi-Ping; You, Ren-In
2018-01-03
Along with the rapid development of glycomic tools, the study of lectin-carbohydrate interactions has expanded, opening the way for applications in the fields of analytic, diagnostic, and drug delivery. Chitin-binding lectins (CBLs) play roles in immune defense against chitin-containing pathogens. CBLs from species of the Solanaceae family, such as tomato, potato and jimsonweed, display different binding specificities to sugar chains containing poly-N-acetyllactosamine. In this report, CBLs from Solanum integrifolium were isolated by ion exchange chromatography. The fractions showed hemagglutination activity (HA). The recombinant CBL in the 293F cell culture supernatant was able to inhibit the growth of Rhizoctonia solani and Colletotrichum gloeosporioide. Furthermore, the carbohydrate-binding property of CBLs was confirmed with the inhibition of HA. Binding of CBL to Spodoptera frugiperda (sf21) insect cells can partly be inhibited by N-Acetylglucosamine (GlcNAc), which is related to decrease mitochondrial membrane potential of sf21 cells. The results showed that CBL exhibited antifungal properties and inhibited insect cell growth, which is directly correlated to the lectin-carbohydrate interaction. Further identification and characterization of CBLs will help to broaden their scope of application in plant defense and in biomedical applications.
Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.
Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun
2017-06-01
The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p < 0.05). The levels of CLEC5A (C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).
Ferrero, Maximiliano R; Heins, Anja M; Soprano, Luciana L; Acosta, Diana M; Esteva, Mónica I; Jacobs, Thomas; Duschak, Vilma G
2016-02-01
In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host-parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E-Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E-Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E-Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E-Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.
Jacalin Lectin At5g28520 Is Regulated By ABA and miR846
Jia, Fan; Rock, Christopher D.
2013-01-01
Plant microRNAs (miRNAs) are important regulators of development and stress responses and are oftentimes under transcriptional regulation by stresses and plant hormones. We recently showed that polycistronic MIR842 and MIR846 are expressed from the same primary transcript which is subject to alternative splicing. ABA treatment affects the alternative splicing of the primary cistronic transcript which results in differential expression of the two miRNAs that are predicted to target the same family of jacalin lectin genes. One variant of miR846 in roots can direct the cleavage of AT5G28520, which is also highly upregulated by ABA in roots. In this addendum, we present additional results further supporting the regulation of AT5G28520 by MIR846 using a T-DNA insertion line mapping upstream of MIR842 and MIR846. We also show that AT5G28520 is transcriptionally induced by ABA and this induction is subject to ABA signaling effectors in seedlings. Based on previous results and data presented in this paper, we propose an interaction loop between MIR846, AT5G28520 and ABA in roots. PMID:23603955
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders
2010-01-01
Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779
Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals
Dumych, Tetiana; Lutsyk, Maxym; Banski, Mateusz; Yashchenko, Antonina; Sojka, Bartlomiej; Horbay, Rostyslav; Lutsyk, Alexander; Stoika, Rostyslav; Misiewicz, Jan; Podhorodecki, Artur; Bilyy, Rostyslav
2014-01-01
Aim To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). Methods B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu3+-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu3+ with the fluorescent emission at 600-720 nm range. Results NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu3+ conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. Conclusion NPL lectin-NaGdF4:Eu3+ conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor. PMID:24891277
Gohier, A; Espinosa, J F; Jimenez-Barbero, J; Carrupt, P A; Pérez, S; Imberty, A
1996-12-01
Ulex europaeus isolectin I is specific for fucose-containing oligosaccharide such as H type 2 trisaccharide alpha-L-Fuc (1-->2) beta-D-Gal (1-->4) beta-D-GlcNAc. Several legume lectins have been crystallized and modeled, but no structural data are available concerning such fucose-binding lectin. The three-dimensional structure of Ulex europaeus isolectin I has been constructed using seven legume lectins for which high-resolution crystal structures were available. Some conserved water molecules, as well as the structural cations, were taken into account for building the model. In the predicted binding site, the most probable locations of the secondary hydroxyl groups were determined using the GRID method. Several possible orientations could be determined for a fucose residue. All of the four possible conformations compatible with energy calculations display several hydrogen bonds with Asp-87 and Ser-132 and a stacking interaction with Tyr-220 and Phe-136. In two orientations, the O-3 and O-4 hydroxyl groups of fucose are the most buried ones, whereas two other, the O-2 and O-3 hydroxyl groups are at the bottom of the site. Possible docking modes are also studied by analysis of the hydrophobic and hydrophilic surfaces for both the ligand and the protein. The SCORE method allows for a quantitative evaluation of the complementarity of these surfaces, on the basis of molecular lipophilicity calculations. The predictions presented here are compared with known biochemical data.
Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu
2010-08-01
Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.
Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M
2016-06-01
Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Luz, Luciana de Andrade; Silva, Mariana Cristina Cabral; Ferreira, Rodrigo da Silva; Santana, Lucimeire Aparecida; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Oliva, Maria Luiza Vilela; Paiva, Patricia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso
2013-07-01
Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein. Secondary structure content was estimated as 46% α-helix, 12% β-sheets, 17% β-turns and 25% unordered structures belonging to the α/β tertiary structure class. cMoL significantly prolonged the time required for blood coagulation, activated partial thromboplastin (aPTT) and prothrombin times (PT), but was not so effective in prolonging aPTT in asialofetuin presence. cMoL acted as an anticoagulant protein on in vitro blood coagulation parameters and at least on aPTT, the lectin interacted through the carbohydrate recognition domain. Copyright © 2013 Elsevier B.V. All rights reserved.
Sanchez-Moreno, M; Fernandez-Becerra, C; Mascaro, C; Rosales, M J; Dollet, M; Osuna, A
1995-01-01
Plants of Lycopersicon esculentum (grown in greenhouses) and Anona cherimolia cultivated in southeastern Spain were examined for the presence of trypanosomatid flagellates. Kinetoplastid protozoa were found in the fruits but not in the phloem or other plant tissues. Parasites were detected from the onset of fruiting. Isolates were detected from the onset of fruiting. Isolates were adapted to in vitro culturing in monophase media. The form and the structural organization was studied by scanning and transmission electron microscopy. The parasites showed an ultrastructural pattern similar to that of other species of the genus Phytomonas. In tomatoes experimentally inoculated with flagellates cultivated in vitro, we observed that the parasites did not lose their infectious capacity. Three strains of trypanosomatids of the genus Phytomonas, isolated from different species of Euphorbia (E. characias and E. hyssopifolia) and from Cocos nucifera, were compared with our isolates by lectin-agglutination tests. Our isolates were different from the two strains isolated from Euphorbia, but with this technique we could not differentiate our isolates from those of the coconut, nor could we differentiate between the isolates, their ultrastructural similarity together with their similar behavior in the lectin-agglutination test suggesting that these isolates have a common origin.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Carneiro, Rômulo Farias; Torres, Renato Cézar Farias; Chaves, Renata Pinheiro; de Vasconcelos, Mayron Alves; de Sousa, Bruno Lopes; Goveia, André Castelo Rodrigues; Arruda, Francisco Vassiliepe; Matos, Maria Nágila Carneiro; Matthews-Cascon, Helena; Freire, Valder Nogueira; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda
2017-02-01
A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 10 6 M -1 ). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.
Characterization of the Grp94/OS-9 chaperone-lectin complex
Seidler, Paul M.; Shinsky, Stephen A.; Hong, Feng; Li, Zihai; Cosgrove, Michael S.; Gewirth, Daniel T.
2014-01-01
Grp94 is a macromolecular chaperone belonging to the hsp90 family and is the most abundant glycoprotein in the endoplasmic reticulum of mammals. In addition to its essential role in protein folding, Grp94 was proposed to participate in the ER associated degradation (ERAD) quality control pathway by interacting with the lectin OS-9, a sensor for terminally misfolded proteins (TMPs). To understand how OS-9 interacts with ER chaperone proteins, we mapped its interaction with Grp94. Glycosylation of the full length Grp94 protein was essential for OS-9 binding, although deletion of the Grp94 N-terminal domain relieved this requirement suggesting that the effect was allosteric rather than direct. Although yeast OS-9 is composed of a well-established N-terminal MRH lectin domain and a C-terminal dimerization domain, we find that the C-terminal domain of OS-9 in higher eukaryotes contains ‘mammalian-specific insets’ that are specifically recognized by the middle and C-terminal domains of Grp94. Additionally, the Grp94 binding domain in OS-9 was found to be intrinsically disordered. The biochemical analysis of the interacting regions provides insight into the manner by which the two associate, and additionally hints at a plausible biological role for the Grp94/OS-9 complex. PMID:25193139
Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution
Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof
2012-01-01
The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757
Vergallo, C; Fonseca, T; Pizzi, G; Dini, L
2010-08-01
The maintenance of a healthy corneal epithelium under both normal and wound healing conditions is achieved by a population of stem cells (SCs) located in the basal epithelium at the corneoscleral limbus. In the light of the development of strategies for reconstruction of the ocular surface in patients with limbal stem cell deficiency, a major challenge in corneal SCs biology remains the ability to identify stem cells in situ and in vitro. To date, not so much markers exist for the identification of different phenotypes. CESCs (corneal epithelial stem cells) isolated from limbal biopsies were maintained in primary culture for 14 days and stained with Hoechst and a panel of FITC-conjugated lectins. All lectins, with the exception of Lycopersicon esculentum, labelled CESCs irrespective of the degree of differentiation. Lycopersicon esculentum, that binds N-acetylglucosamine oligomers, labelled intensely only the surface of TACs (single corneal epithelial stem cells better than colonial cells). These results suggest that Lycopersicon esculentum lectin is a useful and easy-to-use marker for the in vitro identification of TACs (transient amplifying cells) in cultures of isolated CESCs. Copyright 2010. Published by Elsevier Ltd.
Farnum, C E; Wilsman, N J
1984-06-01
A postembedment method for the localization of lectin-binding glycoconjugates was developed using Epon-embedded growth plate cartilage from Yucatan miniature swine. By testing a variety of etching, blocking, and incubation procedures, a standard protocol was developed for 1 micron thick sections that allowed visualization of both intracellular and extracellular glycoconjugates with affinity for wheat germ agglutinin and concanavalin A. Both fluorescent and peroxidase techniques were used, and comparisons were made between direct methods and indirect methods using the biotin-avidin bridging system. Differential extracellular lectin binding allowed visualization of interterritorial , territorial, and pericellular matrices. Double labeling experiments showed the precision with which intracellular binding could be localized to specific cytoplasmic compartments, with resolution of binding to the Golgi apparatus, endoplasmic reticulum, and nuclear membrane at the light microscopic level. This method allows the localization of both intracellular and extracellular lectin-binding glycoconjugates using fixation and embedment procedures that are compatible with simultaneous ultrastructural analysis. As such it should have applicability both to the morphological analysis of growth plate organization during normal endochondral ossification, as well as to the diagnostic pathology of matrix abnormalities in disease states of growing cartilage.
van Eijk, Martin; Rynkiewicz, Michael J; Khatri, Kshitij; Leymarie, Nancy; Zaia, Joseph; White, Mitchell R; Hartshorn, Kevan L; Cafarella, Tanya R; Van Die, Irma; Hessing, Martin; Seaton, Barbara A; Haagsman, Henk P
2018-05-16
Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD-glycosylation provides interactions with the sialic acid binding site of IAV, and a tripeptide loop at the lectin binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neckCRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure including the lectin site conformation, but revealed a potential second non-lectin binding site for glycans. IAV hemagglutination inhibition, IAV aggregation and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3) sialylated oligosaccharides. Glycan binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures whereas RhNCRD bound polylactosamine-containing glycans. Presence of the N-glycan in the CRD increases the glycan binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu
2012-01-01
Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uwe Bunz
2003-08-27
The detection and sensing of biological warfare agents (Ricin, Anthrax toxin), of disease agents (cholera, botulinum and tetanus toxins, influenza virus etc) and of biologically active species is important for national security and disease control. A premiere goal would be the simple colorimetric or fluorimetric detection of such toxins by a dipstick test. It would be desirable to sense 5,000-10,000 toxin molecules, i.e. 10-100 fg of a toxin contained 1-5 mL of sample. Fluorescent conjugated polymers should be particularly interesting in this regard, because they can carry multiple identical and/or different recognition units. Such an approach is particularly valuable formore » the detection of lectin toxins, because these bind to oligomeric carbohydrate displays. Lectins bind multivalently to sugars, i.e. several covalently connected sugar moieties have to be exposed to the lectin at the same time to obtain binding. The requirement of multivalency of the lectin-sugar interactions should allow a very sensitive detection of lectins with sugar coated conjugated polymers in an agglutination type assay, where the fluorescence of the PPEs disappears upon binding to the lectins. High molecular weights of the used PPEs would mean high sensitivity. Herein we present our progress towards that goal up to date.« less
Koharudin, Leonardus M I; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M
2012-09-28
Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ~66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties.
Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise
2016-10-01
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.
Purification of a thermostable antinociceptive lectin isolated from Andira anthelmia.
Nascimento, Kyria Santiago; Nascimento, Francisco Lucas Faustino do; Silva, Mayara Torquato Lima; Nobre, Camila Bezerra; Moreira, Cleane Gomes; Brizeno, Luiz André Cavalcante; da Ponte, Edson Lopes; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa
2016-06-01
Andira anthelmia (tribe Dalbergieae), a plant from Brazilian Amazon, possesses a seed lectin that was purified by affinity chromatography in sepharose-mannose. This novel Dalbergieae lectin, named AAL, agglutinated rabbit erythrocytes treated with trypsin. The hemagglutinating activity of AAL was maintained after incubation at a wide range of temperature (40 to 70 °C) and pH, was shown to be dependent on divalent cations, and was inhibited by d-mannose and d-sucrose. AAL showed an electrophoretic profile in sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to other lectins of the tribe Dalbergieae, presenting a double band of molecular weight with approximately 20 kDa and other minor bands of 17, 15, and 13 kDa, being the smaller fragment glycosylated. AAL injected by intravenous route in mice showed antinociceptive activity in two behavioral tests (writhing and formalin). In the writhing test induced by acetic acid, AAL showed inhibitory effect at 0.01 mg/kg (68%), 0.1 mg/kg (46%) and 1 mg/kg (74%). In the formalin test, AAL (0.1 mg/kg) inhibited by 48% the licking time in the inflammatory phase, an effect that was recovered by the lectin association with mannose. In conclusion, AAL presents analgesic effect involving the lectin domain via peripheral mechanisms of inflammatory nociception. This activity highlights the importance of lectins as tools to be used for understanding the interaction of protein-carbohydrate in processes associated to inflammatory pain. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Lectins with anti-HIV activity: a review.
Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai
2015-01-06
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.
Josts, Inokentijs; Roszak, Aleksander W.; Waløen, Kai I.; Cogdell, Richard J.; Milner, Joel; Evans, Tom; Kelly, Sharon; Tucker, Nicholas P.; Byron, Olwyn; Smith, Brian; Walker, Daniel
2014-01-01
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins. PMID:24516380
Biswas, C; Sinha, D; Mandal, C
2000-01-01
Achatinin, a 9-O-acetyl sialic acid (9-O-AcSA) binding lectin, has been demonstrated to be synthesized in amoebocytes of Achatina fulica snails. This lectin was affinity-purified from Achatina amoebocytes lysate (AAL); it appeared as a single band on native polyacrylamide gel electrophoresis (PAGE) and showed 16 identical subunits of M.W. 15 kDa on sodium dodecyl sulphate (SDS)-PAGE. It was found to be homologous with an earlier reported lectin, Achatinin-H, derived from hemolymph of A. fulica snails (Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achantia fulica. Carbohydr. Res., 268, 115-125). Homology between both lectins was confirmed by their similar electrophoretic mobilities, carbohydrate specificity and cross reactivity on immunodiffusion. Achatinin showed in vitro calcium dependent binding to two 9-O-acetylated sialoglyoconjugates (9-O-AcSG) on lipopolysaccharide (LPS) (Escherichia coli 055: B5) of M.W. 40 kDa and 27.5 kDa, which was abolished following de-O-acetylation. Based on the previously defined narrow sugar specificity of Achatinin towards 9-O-AcSAalpha2-->6GalNAc [Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achatina fulica. Carbohydr. Res., 268, 115-125], we conclude that LPS contains this lectinogenic epitope at the terminal sugar moiety. The Achatinin-mediated hemagglutination inhibition of rabbit erythrocytes by LPS further confirmed it. The lectin exhibited bacteriostatic effect on Gram-negative bacteria E. coli, DH5alpha and C600. AAL was earlier reported to undergo coagulation in presence of pg level of LPS (Biswas, C., Mandal, C., 1999. The role of amoebocytes in the endotoxin-mediated coagulation in the innate immunity of Achatina fulica snail, Scand. J. Immunol. 49, 131-138). We now demonstrate that Achatinin participates in LPS-mediated coagulation of AAL as indicated by enhanced release of Achatinin from the LPS stimulated amoebocytes and most importantly, by exhibiting a 77% decline in the coagulation of AAL when depleted of Achatinin. Level of Achatinin sharply declined (17-fold) following injection of LPS (20 microg per snail) to the snails, which was reversible by simultaneous injection of LPS and leupeptin implying the presence of LPS-mediated serine protease activity in Achatinin. This was substantiated when purified Achatinin in vitro showed serine protease activity in the presence of LPS followed by its complete blockage in the presence of leupeptin and phenyl methyl sulphonyl fluoride. Therefore, Achatinin, an abundantly available lectin at multiple sites of A. fulica, by virtue of its interaction with LPS, essentially plays a crucial role in the innate immune protection of A. fulica snails.
Engelmann, B
1993-11-01
The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.
NASA Astrophysics Data System (ADS)
Rao, V. S. R.; Biswas, Margaret; Mukhopadhyay, Chaitali; Balaji, P. V.
1989-03-01
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands. The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β- L-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α- D-glucopyranoside and methyl-2,3-dimethyl-α- D-glucopyranoside which explain well the available experimental data in solution.
Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki
2004-09-01
We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.
Selvaraju, Subhashini; Rassi, Ziad El
2013-01-01
A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome. PMID:23533108
Ikeda, Akemi; Kojima-Aikawa, Kyoko; Taniguchi, Naoyuki; Varón Silva, Daniel; Feizi, Ten; Seeberger, Peter H.; Yamaguchi, Yoshiki
2018-01-01
ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analyses of the interactions of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs), using glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation Transfer Difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interacts with ZG16p using the mannose residues. Binding site of PIMs is identified by chemical shift perturbation experiments using uniformly 15N-labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan, which would help to consider the physiological role of ZG16p. PMID:25919894
Dingjan, Tamir; Imberty, Anne; Pérez, Serge; Yuriev, Elizabeth; Ramsland, Paul A.
2017-01-01
Burkholderia ambifaria is an opportunistic respiratory pathogen belonging to the Burkholderia cepacia complex, a collection of species responsible for the rapidly fatal cepacia syndrome in cystic fibrosis patients. A fucose-binding lectin identified in the B. ambifaria genome, BambL, is able to adhere to lung tissue, and may play a role in respiratory infection. X-ray crystallography has revealed the bound complex structures for four fucosylated human blood group epitopes (blood group B, H type 1, H type 2, and Lex determinants). The present study employed computational approaches, including docking and molecular dynamics (MD), to extend the structural analysis of BambL-oligosaccharide complexes to include four additional blood group saccharides (A, Lea, Leb, and Ley) and a library of blood-group-related carbohydrates. Carbohydrate recognition is dominated by interactions with fucose via a hydrogen-bonding network involving Arg15, Glu26, Ala38, and Trp79 and a stacking interaction with Trp74. Additional hydrogen bonds to non-fucose residues are formed with Asp30, Tyr35, Thr36, and Trp74. BambL recognition is dominated by interactions with fucose, but also features interactions with other parts of the ligands that may modulate specificity or affinity. The detailed computational characterization of the BambL carbohydrate-binding site provides guidelines for the future design of lectin inhibitors. PMID:28680402
Balanzino, L E; Barra, J L; Monferran, C G; Cumar, F A
1994-04-01
The ability of glycoproteins from pig intestinal brush border membranes (BBM) to bind cholera toxin (CT) or heat-labile toxins from strains of Escherichia coli isolated from human (LTh) or pig (LTp) intestines was studied. Glycoproteins capable of binding the toxins are also recognized by antibodies or lectins specific for ABO(H) blood group and related antigens. Pigs expressing A, H, or I antigenic determinants were used for comparison. The toxin-binding capacity of a glycoprotein depends on the toxin type and the blood group epitope borne by the glycoprotein. LTh and LTp preferably bound to several blood group A-active glycoproteins rather than H-active glycoproteins. By contrast, CT practically did not recognize either blood group A- or blood group H-active glycoproteins, while glycoproteins from pigs expressing I antigenic determinants were able to interact with LTh, LTp, and CT. LTh, LTp, or CT glycoprotein binding was selectively inhibited by specific lectins or monosaccharides. Affinity purification of the toxin binding brush border glycoproteins on the basis of their blood group reactivity suggests that such glycoproteins are hydrolytic enzymes. BBM from A+ pigs contain about 27 times more LTh binding sites, in addition to those recognized by CT, than an equivalent membrane preparation from H+ pigs. The present findings may help clarify some previous unclear results on LTh binding to intestinal BBM glycoproteins obtained by use of animals not typed by their ABO(H) blood group phenotype.
Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.
2007-01-01
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538
New crystal forms of Diocleinae lectins in the presence of different dimannosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Frederico Bruno Mendes Batista; Bezerra, Gustavo Arruda; Oliveira, Taianá Maia de
2006-11-01
The crystallization and preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. Studying the interactions between lectins and sugars is important in order to explain the differences observed in the biological activities presented by the highly similar proteins of the Diocleinae subtribe. Here, the crystallization andmore » preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. The crystal complexes of ConA-like lectins with Man(α1-4)Man(α1)OMe are reported here for the first time.« less
Ganguly, Sreerupa; Mukherjee, Amarshi; Mazumdar, Budhaditya; Ghosh, Amar N.; Banerjee, Kalyan K.
2014-01-01
Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC50) without the lectin domain, and mutant VCCD617A with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 107 m−1. However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC50 was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer. PMID:24356964
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922
Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi
2015-06-01
Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rehman, Jalees; Li, Jingling; Orschell, Christie M; March, Keith L
2003-03-04
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood and can enhance angiogenesis after infusion into host animals. It is not known whether the proangiogenic effects are a result of such events as endothelial differentiation and subsequent proliferation of EPCs or secondary to secretion of angiogenic growth factors. Human EPCs were isolated as previously described, and their phenotypes were confirmed by uptake of acetylated LDL and binding of ulex-lectin. EPC proliferation and surface marker expression were analyzed by flow cytometry, and conditioned medium was assayed for growth factors. The majority of EPCs expressed monocyte/macrophage markers such as CD14 (95.7+/-0.3%), Mac-1 (57.6+/-13.5%), and CD11c (90.8+/-4.9%). A much lower percentage of cells expressed the specific endothelial marker VE-cadherin (5.2+/-0.7%) or stem/progenitor-cell markers AC133 (0.16+/-0.05%) and c-kit (1.3+/-0.7%). Compared with circulating monocytes, cultured EPCs showed upregulation of monocyte activation and macrophage differentiation markers. EPCs did not demonstrate any significant proliferation but did secrete the angiogenic growth factors vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Our findings suggest that acetylated LDL(+)ulex-lectin(+) cells, commonly referred to as EPCs, do not proliferate but release potent proangiogenic growth factors. The majority of acetylated LDL(+)ulex-lectin(+) cells are derived from monocyte/macrophages. The findings of low proliferation and endothelial differentiation suggest that their angiogenic effects are most likely mediated by growth factor secretion. These findings may allow for development of novel angiogenic therapies relying on secreted growth factors or on recruitment of endogenous monocytes/macrophages to sites of ischemia.
Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y
1994-12-01
The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.
Sultan, Nabil Ali Mohammed; Kenoth, Roopa; Swamy, Musti J
2004-12-15
A new galactose-specific lectin has been purified from the extracts of Trichosanthes dioica seeds by affinity chromatography on cross-linked guar gum. The purified lectin (T. dioica seed lectin, TDSL) moved as a single symmetrical peak on gel filtration on Superose-12 in the presence of 0.1 M lactose with an M(r) of 55 kDa. In the absence of ligand, the movement was retarded, indicating a possible interaction of the lectin with the column matrix. In SDS-PAGE, in the presence of beta-mercaptoethanol, two non-identical bands of M(r) 24 and 37 kDa were observed, whereas in the absence of beta-mercaptoethanol, the lectin yielded a single band corresponding to approximately 55,000 Da, indicating that the two subunits of TDSL are connected by one or more disulfide bridges. TDSL is a glycoprotein with about 4.9% covalently bound neutral sugar. Analysis of near-UV CD spectrum by three different methods (CDSSTR, CONTINLL, and SELCON3) shows that TDSL contains 13.3% alpha-helix, 36.7% beta-sheet, 19.4% beta-turns, and 31.6% unordered structure. Among a battery of sugars investigated, TDSL was inhibited strongly by beta-d-galactopyranosides, with 4-methylumbelliferyl-beta-d-galactopyranoside being the best ligand. Chemical modification studies indicate that tyrosine residues are important for the carbohydrate-binding and hemagglutinating activities of the lectin. A partial protection was observed when the tyrosine modification was performed in the presence of 0.2 M lactose. The tryptophan residues of TDSL appear to be buried in the protein interior as they could not be modified under native conditions, whereas upon denaturation with 8 M urea two Trp residues could be selectively modified by N-bromosuccinimide. The subunit composition and size, secondary structure, and sugar specificity of this lectin are similar to those of type-2 ribosome inactivating proteins, suggesting that TDSL may belong to this protein family.
Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph
2016-06-01
Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Carbohydrate binding specificity of immobilized Psathyrella velutina lectin.
Endo, T; Ohbayashi, H; Kanazawa, K; Kochibe, N; Kobata, A
1992-01-15
The carbohydrate binding specificity of Psathyrella velutina lectin (PVL) was thoroughly investigated by analyzing the behavior of various complex-type oligosaccharides and human milk oligosaccharides on a PVL-Affi-Gel 10 column. Basically, the lectin interacts with the nonreducing terminal beta-N-acetylglucosamine residue, but does not show any affinity for the nonreducing terminal N-acetylgalactosamine or N-acetylneuraminic acid residue. Substitution of the terminal N-acetylglucosamine residues of oligosaccharides by galactose completely abolishes their affinity to the column. GlcNAc beta 1----3Gal beta 1----4sorbitol binds to the column, but GlcNAc beta 1----6Gal beta 1----4sorbitol is only retarded in the column. The behavior of degalactosylated N-linked oligosaccharides is quite interesting. Although all degalactosylated monoantennary sugar chain isomers are retarded in the column, those with the GlcNAc beta 1----2Man group interact more strongly with the column than those with the GlcNAc beta 1----4Man group or the GlcNAc beta 1----6Man group. The degalactosylated bi- and triantennary sugar chains bind to the column, but the tetraantennary ones are only retarded in the column. These results indicated that the binding affinity is not simply determined by the number of terminal N-acetylglucosamine residues. Addition of the bisecting N-acetylglucosamine residue reduces the affinity of oligosaccharides to the column, but addition of an alpha-fucosyl residue at the C-6 position of the proximal N-acetylglucosamine residue does not affect the behavior of oligosaccharides in the column. These results indicated that the binding specificity of PVL is quite different from those of other N-acetylglucosamine-binding lectins from higher plants, which interact preferentially with the GlcNAc beta 1----4 residue.
Development of glycan specific lectin based immunoassay for detection of prostate specific antigen.
Bhanushali, Paresh B; Badgujar, Shamkant B; Tripathi, Mukesh M; Gupta, Sanjeev; Murthy, Vedang; Krishnasastry, Musti V; Puri, Chander P
2016-05-01
We describe an analytical approach for the detection and verification of glycosylation patterns of prostate specific antigen (PSA), a key biomarker currently used for understanding the onset and prognosis of prostate cancer. PSA has been purified from the human seminal plasma and total PSA from prostate cancer sera. PSA is a monomeric glycoprotein with an apparent molecular mass 28040.467 Da, which exhibits a characteristic protease activity against casein and gelatin. Its optimal protease activity is centered on neutral pH. Peptide mass fingerprint analysis of the purified PSA has yielded peptides that partially match with known database sequences (Uniprot ID P07288). Tryptic digestion profile of isolated PSA, infer the exclusive nature of PSA and may be additive molecule in the dictionary of seminal proteins. Surface plasmon resonance and lectin immunoassay revealed direct interaction between a newly developed anti-PSA monoclonal antibody (C4E6) and PSA. A lectin based immunoassay is reported here which was achieved with the C4E6 anti-PSA antibody and biotinylated plant lectins. This investigation provides an alternative method to isolate and quantify PSA with altered glycosylation which might be seen in the prostate cancer and developing a lectin based immunoassay to detect PSA in serum of prostate cancer patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonçalves, Gabriel Ramos Ferreira; Gandolfi, Olga Reinert Ramos; Santos, Leandro Soares; Bonomo, Renata Cristina Ferreira; Veloso, Cristiane Martins; Veríssimo, Lizzy Ayra Alcântara; Fontan, Rafael da Costa Ilhéu
2017-11-15
Lectins are glycoproteins that bind to carbohydrates or glycoconjugates by specific interactions. The specificity of lectins to various carbohydrates is a determinant factor in the choice of ligand for the chromatographic matrix when using chromatography as a lectin purification technique. In this work, the immobilization of three different aminated carbohydrates on the surface of macroporous polymeric cryogels was evaluated. Carbohydrates were immobilized on cryogel surfaces via the glutaraldehyde method to create spacer arms, reducing steric hindrance. The immobilized N-acetyl-d-glucosamine and N-acetyl-d-mannosamine concentrations contained approximately 130mg of carbohydrate/g dehydrated cryogel, while the N-acetyl-d-galactosamine contained 105mg of carbohydrate/g dehydrated cryogel. Scanning electron microscopy showed that the physical structure and porosity of the chromatographic columns were not affected by the immobilization process, maintaining an elevated hydration capacity and the macroporous structure of the cryogels. Adsorption of concanavalin A on cryogels functionalized with N-acetyl-d-glucosamine (cryo-d-GlcNAc) was tested, as well as its reuse capability. After 5 cycles of use, cryo-d-GlcNAc was shown to be stable, with an adsorptive capacity of around 50mg/g. Carbohydrate immobilization in polyacrylamide cryogels was satisfactory, with promise for applications in lectin purification processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Peipei; Wang, Yu; Zhou, Xiaohui; Xie, Yongli; Wu, Huijun; Gao, Xuewen
2013-10-01
Lectins are proteins of non-immune origin that specifically interact with carbohydrates, known to play important roles in the defense system of plants. In this study, in order to study the function of a new soybean lectin (SBL), the corresponding encoding gene lec-s was introduced into tobacco plants via Agrobacterium-mediated transformation. Southern blot analyses had revealed that the lec-s gene was stable integrated into the chromosome of the tobacco. The results of the reverse transcription polymerase chain reaction (RT-PCR) also indicated that the lec-s gene in the transgenic tobacco plants could be expressed under the control of the constitutive CaMV35S promoter. Evaluation agronomic of the performance had showed that the transgenic plants could resist to the infection of Phytophthora nicotianae. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed SBL significantly (P.0.05) reduced the weight gain of larvae of the beet armyworm (Spodoptera exigua). Further on, the lectins retarded the development of the larvae and their metamorphosis. These findings suggest that soybean lectins have potential as a protective agent against pathogens and insect pests through a transgenic approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W
2008-12-01
Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.
Sharma, Alok; Pohlentz, Gottfried; Bobbili, Kishore Babu; Jeyaprakash, A Arockia; Chandran, Thyageshwar; Mormann, Michael; Swamy, Musti J; Vijayan, M
2013-08-01
The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two β-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-α-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.
Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M
2015-01-01
Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256
Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy
2014-01-17
Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P.; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta; Sailor, Michael; Ruoslahti, Erkki
2009-01-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles. PMID:19394687
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki
2009-08-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.
Walsh, Naomi M.; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M.
2017-01-01
Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight challenges in using soluble receptor/ligand blocking experiments to recapitulate biologically relevant interactions. PMID:28282442
Screening natural libraries of human milk oligosaccharides against lectins using CaR-ESI-MS.
El-Hawiet, Amr; Chen, Yajie; Shams-Ud-Doha, Km; Kitova, Elena N; Kitov, Pavel I; Bode, Lars; Hage, Naim; Falcone, Franco H; Klassen, John S
2018-01-15
Human milk oligosaccharides (HMOs) afford many health benefits to breast-fed infants, such as protection against infection and regulation of the immune system, through the formation of non-covalent interactions with protein receptors. However, the molecular details of these interactions are poorly understood. Here, we describe the application of catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) for screening natural libraries of HMOs against lectins. The HMOs in the libraries were first identified based on molecular weights (MWs), ion mobility separation arrival times (IMS-ATs) and collision-induced dissociation (CID) fingerprints of their deprotonated anions. The libraries were then screened against lectins and the ligands identified from the MWs, IMS-ATs and CID fingerprints of HMOs released from the lectin in the gas phase. To demonstrate the assay, four fractions, extracted from pooled human milk and containing ≥35 different HMOs, were screened against a C-terminal fragment of human galectin-3 (hGal-3C), for which the HMOs specificities have been previously investigated, and a fragment of the blood group antigen-binding adhesin (BabA) from Helicobacter pylori, for which the HMO specificities have not been previously established. The structures of twenty-one ligands, corresponding to both neutral and acidic HMOs, of hGal-3C were identified; all twenty-one were previously shown to be ligands for this lectin. The presence of HMO ligands at six other MWs was also ascertained. Application of the assay to BabA revealed nineteen specific HMO structures that are recognized by the protein and HMO ligands at two other MWs. Notably, it was found that BabA exhibits broad specificity for HMOs, and recognizes both neutral HMOs, including non-fucosylated ones, and acidic HMOs. The results of competitive binding experiments indicate that HMOs can interact with BabA at previously unknown binding sites. The affinities of eight purified HMOs for BabA were measured by ESI-MS and found to be in the 10 3 M -1 to 10 4 M -1 range.
The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties.
Souza, Maria A; Carvalho, Fernanda C; Ruas, Luciana P; Ricci-Azevedo, Rafael; Roque-Barreira, Maria Cristina
2013-10-01
Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.
Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin.
Shibuya, N; Goldstein, I J; Shafer, J A; Peumans, W J; Broekaert, W F
1986-08-15
The interaction of the stinging nettle rhizome lectin (UDA) with carbohydrates was studied by using the techniques of quantitative precipitation, hapten inhibition, equilibrium dialysis, and uv difference spectroscopy. The Carbohydrate binding site of UDA was determined to be complementary to an N,N',N"-triacetylchitotriose unit and proposed to consist of three subsites, each of which has a slightly different binding specificity. UDA also has a hydrophobic interacting region adjacent to the carbohydrate binding site. Equilibrium dialysis and uv difference spectroscopy revealed that UDA has two carbohydrate binding sites per molecule consisting of a single polypeptide chain. These binding sites either have intrinsically different affinities for ligand molecules, or they may display negative cooperativity toward ligand binding.
Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1
Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette
2015-01-01
Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450
Interspecific and host-related gene expression patterns in nematode-trapping fungi.
Andersson, Karl-Magnus; Kumar, Dharmendra; Bentzer, Johan; Friman, Eva; Ahrén, Dag; Tunlid, Anders
2014-11-11
Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function. This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.
Podocalyxin Is a Glycoprotein Ligand of the Human Pluripotent Stem Cell-Specific Probe rBC2LCN
Tateno, Hiroaki; Matsushima, Asako; Hiemori, Keiko; Onuma, Yasuko; Ito, Yuzuru; Hasehira, Kayo; Nishimura, Ken; Ohtaka, Manami; Takayasu, Satoko; Nakanishi, Mahito; Ikehara, Yuzuru; Nakanishi, Mio; Ohnuma, Kiyoshi; Chan, Techuan; Toyoda, Masashi; Akutsu, Hidenori; Umezawa, Akihiro; Asashima, Makoto
2013-01-01
In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 104 M−1) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. PMID:23526252
Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra
2013-01-01
The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482
Parkinson, John E.; Tivey, Trevor R.; Mandelare, Paige E.; Adpressa, Donovon A.; Loesgen, Sandra; Weis, Virginia M.
2018-01-01
Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48–72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system. PMID:29765363
Oliveira, Weslley F; Silva, Germana M M; Cabral Filho, Paulo E; Fontes, Adriana; Oliveira, Maria D L; Andrade, César A S; Silva, Márcia V; Coelho, Luana C B B; Machado, Giovanna; Correia, Maria T S
2018-09-01
An alternative to accelerate the osseointegration on titanium dioxide nanotubes (TNTs) used in osseointegrated implants is through the functionalization of these nanostructured surfaces with biomolecules. In this work, we immobilized a lectin with recognized mitogenic activity, the Cramoll lectin, extracted from Cratylia mollis seeds, on surfaces modified by TNTs. For the immobilization of Cramoll on TNTs surfaces, we used the Layer-by-Layer technique (LbL) by growing five alternate layers of poly(allylamine) hydrochloride (PAH) and poly(acrylic) acid (PAA); lastly we incubated the lectin, at different concentrations, with the TNTs-LbL. Before and after the immobilization procedures, the substrate surfaces were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and, electrochemical impedance spectroscopy (EIS). We also evaluated the Cramoll activity after immobilization on TNTs by using the lectin interaction with ovalbumin. The lectin did not lose its biological activity, even after immobilization onto nanotubular arrays. In addition, we observed an increase osteoblast-like cell adhesion on the TNTs-LbL-Cramoll system when compared to the bare TNTs surfaces. Moreover, a significative cell proliferation was identified on the substrates when Cramoll was immobilized at concentrations of 80, 160 and 320 μg/mL after 48 h of incubation by using the resazurin assay. Our results suggest that Cramoll was efficiently immobilized on a nanotubular array and this new platform presents a great potential to be tested in implantology. Copyright © 2018 Elsevier B.V. All rights reserved.
Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael
2016-01-01
Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.
He, Jintang; Liu, Yashu; Xie, Xiaolei; Zhu, Thant; Soules, Mary; DiMeco, Francesco; Vescovi, Angelo L.; Fan, Xing; Lubman, David M.
2010-01-01
Despite progress in the treatment of glioblastoma, more than 95% of patients suffering from this disease still die within two years. Recent findings support the belief that cancer stem-like cells are responsible for tumor formation and ongoing growth. Here a method combining lectin microarray and LC-MS/MS was used to discover the cell surface glycoprotein markers of a glioblastoma-derived stem-like cell line. Lectin microarray analysis of cell surface glycans showed that two galactose-specific lectins Trichosanthes kirilowii agglutinin (TKA) and Peanut agglutinin (PNA) could distinguish the stem-like glioblastoma neurosphere culture from a traditional adherent glioblastoma cell line. Agarose-bound TKA and PNA were used to capture the glycoproteins from the two cell cultures, which were analyzed by LC-MS/MS. The glycoproteins were quantified by spectral counting, resulting in the identification of 12 and 11 potential glycoprotein markers from the TKA and PNA captured fractions respectively. Almost all of these proteins were membrane proteins. Differential expression was verified by Western blotting analysis of 6 interesting proteins, including the up-regulated Receptor-type tyrosine-protein phosphatase zeta, Tenascin-C, Chondroitin sulfate proteoglycan NG2, Podocalyxin-like protein 1 and CD90, and the down-regulated CD44. An improved understanding of these proteins may be important for earlier diagnosis and better therapeutic targeting of glioblastoma. PMID:20235609
Kaltner, H; Gabius, H-J
2012-04-01
Lectin histochemistry has revealed cell-type-selective glycosylation. It is under dynamic and spatially controlled regulation. Since their chemical properties allow carbohydrates to reach unsurpassed structural diversity in oligomers, they are ideal for high density information coding. Consequently, the concept of the sugar code assigns a functional dimension to the glycans of cellular glycoconjugates. Indeed, multifarious cell processes depend on specific recognition of glycans by their receptors (lectins), which translate the sugar-encoded information into effects. Duplication of ancestral genes and the following divergence of sequences account for the evolutionary dynamics in lectin families. Differences in gene number can even appear among closely related species. The adhesion/growth-regulatory galectins are selected as an instructive example to trace the phylogenetic diversification in several animals, most of them popular models in developmental and tumor biology. Chicken galectins are identified as a low-level-complexity set, thus singled out for further detailed analysis. The various operative means for establishing protein diversity among the chicken galectins are delineated, and individual characteristics in expression profiles discerned. To apply this galectin-fingerprinting approach in histopathology has potential for refining differential diagnosis and for obtaining prognostic assessments. On the grounds of in vitro work with tumor cells a strategically orchestrated co-regulation of galectin expression with presentation of cognate glycans is detected. This coordination epitomizes the far-reaching physiological significance of sugar coding.
Singha, Biswajit; Adhya, Mausumi; Chatterjee, Bishnu P
2008-09-22
A new calcium dependent GalNAc/Gal specific lectin was isolated from the serum of Indian catfish, Clarias batrachus and designated as C. batrachus lectin (CBL). It is a disulfide-linked homodecameric lectin of 74.65kDa subunits and the oligomeric form is essential for its activity. Binding specificity of CBL was investigated by enzyme-linked lectin-sorbent assay using a series of simple sugars, polysaccharides, and glycoproteins. GalNAc was more potent inhibitor than Gal; and alpha glycosides of both were more inhibitory than their beta counterparts. CBL showed maximum affinity for human tumor-associated Tn-antigens (GalNAcalpha1-Ser/Thr) at the molecular level and was 3.5 times higher than GalNAc. CBL interacted strongly with polyvalent Tn and Talpha (Galbeta1,3GalNAcalpha1-) as well as multivalent-II (Galbeta1,4GlcNAcbeta1-) antigens containing glycoproteins and intensity of inhibition was 10(3)-10(5) times more than monovalent ones. The overall specificity of CBL lies in the order of polyvalent Tn, Talpha and II>monovalent Tn > or = Me-alphaGalNAc>monovalent Talpha> Me-betaGalNAc>Me-alphaGal>monovalent T>GalNAc>monovalent F>monovalent II>Me-betaGal>Gal.
da Silva, Roberta Peres; Heiss, Christian; Black, Ian; ...
2015-09-21
Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) andmore » α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)- Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. As a result, the role of these newly identified components in the interaction with the host remains to be unraveled.« less
Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.
Reina, José J; Díaz, Irene; Nieto, Pedro M; Campillo, Nuria E; Páez, Juan A; Tabarani, Georges; Fieschi, Franck; Rojo, Javier
2008-08-07
DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
da Silva, Roberta Peres; Heiss, Christian; Black, Ian
Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) andmore » α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)- Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. As a result, the role of these newly identified components in the interaction with the host remains to be unraveled.« less
Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.
2016-01-01
Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789
Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L
2016-01-01
Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.
Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele
2013-01-01
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.
Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi; Monteiro, Rose Adele
2013-01-01
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823
Vibrio elicits targeted transcriptional responses from copepod hosts.
Almada, Amalia A; Tarrant, Ann M
2016-06-01
Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2005-01-01
One of the mechanisms contributing to the protection by breast-feeding of the newborn against enteric diseases is related to the ability of human milk oligosaccharides to prevent the attachment of pathogenic bacteria to the duodenual epithelium. Indeed, a variety of fucosylated oligosaccharides, specific to human milk, form part of the innate immune system. In the present study, we demonstrate the specific blocking of PA-IIL, a fucose-binding lectin of the human pathogen Pseudomonas aeruginosa, by milk oligosaccharides. Two fucosylated epitopes, Lewis a and 3-fucosyl-lactose (Lewis x glucose analogue) bind to the lectin with dissociation constants of 2.2×10−7 M and 3.6×10−7 M respectively. Thermodynamic studies indicate that these interactions are dominated by enthalpy. The entropy contribution is slightly favourable when binding to fucose and to the highest-affinity ligand, Lewis a. The high-resolution X-ray structures of two complexes of PA-IIL with milk oligosaccharides allow the precise determination of the conformation of a trisaccharide and a pentasaccharide. The different types of interaction between the oligosaccharides and the protein involve not only hydrogen bonding, but also calcium- and water-bridged contacts, allowing a rationalization of the thermodynamic data. This study provides important structural information about compounds that could be of general application in new therapeutic strategies against bacterial infections. PMID:15790314
Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi
2015-01-30
In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla; Speziale, Pietro; Margarit, Immaculada
2016-01-01
The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. Copyright © 2015 by The American Association of Immunologists, Inc.
Gidwani, Kamlesh; Huhtinen, Kaisa; Kekki, Henna; van Vliet, Sandra; Hynninen, Johanna; Koivuviita, Niina; Perheentupa, Antti; Poutanen, Matti; Auranen, Annika; Grenman, Seija; Lamminmäki, Urpo; Carpen, Olli; van Kooyk, Yvette; Pettersson, Kim
2016-10-01
Measurement of serum cancer antigen 125 (CA125) is the standard approach for epithelial ovarian cancer (EOC) diagnostics and follow-up. However, the clinical specificity is not optimal because increased values are also detected in healthy controls and in benign diseases. CA125 is known to be differentially glycosylated in EOC, potentially offering a way to construct CA125 assays with improved cancer specificity. Our goal was to identify carbohydrate-reactive lectins for discriminating between CA125 originating from EOC and noncancerous sources. CA125 from the OVCAR-3 cancer cell line, placental homogenate, and ascites fluid from patients with cirrhosis were captured on anti-CA125 antibody immobilized on microtitration wells. A panel of lectins, each coated onto fluorescent europium-chelate-doped 97-nm nanoparticles (Eu(+3)-NPs), was tested for detection of the immobilized CA125. Serum samples from high-grade serous EOC or patients with endometriosis and healthy controls were analyzed. By using macrophage galactose-type lectin (MGL)-coated Eu(+3)-NPs, an analytically sensitive CA125 assay (CA125(MGL)) was achieved that specifically recognized the CA125 isoform produced by EOC, whereas the recognition of CA125 from nonmalignant conditions was reduced. Serum CA125(MGL) measurement better discriminated patients with EOC from endometriosis compared to conventional immunoassay. The discrimination was particularly improved for marginally increased CA125 values and for earlier detection of EOC progression. The new CA125(MGL) assay concept could help reduce the false-positive rates of conventional CA125 immunoassays. The improved analytical specificity of this test approach is dependent on a discriminating lectin immobilized in large numbers on Eu(+3)-NPs, providing both an avidity effect and signal amplification. © 2016 American Association for Clinical Chemistry.
Lubkowski, Jacek; Durbin, Sarah V; Silva, Mariana C C; Farnsworth, David; Gildersleeve, Jeffrey C; Oliva, Maria Luiza V; Wlodawer, Alexander
2017-02-01
Lectins have been used at length for basic research and clinical applications. New insights into the molecular recognition properties enhance our basic understanding of carbohydrate-protein interactions and aid in the design/development of new lectins. In this study, we used a combination of cell-based assays, glycan microarrays, and X-ray crystallography to evaluate the structure and function of the recombinant Bauhinia forficata lectin (BfL). The lectin was shown to be cytostatic for several cancer cell lines included in the NCI-60 panel; in particular, it inhibited growth of melanoma cancer cells (LOX IMVI) by over 95%. BfL is dimeric in solution and highly specific for binding of oligosaccharides and glycopeptides with terminal N-acetylgalactosamine (GalNAc). BfL was found to have especially strong binding (apparent K d = 0.5-1.0 nm) to the tumor-associated Tn antigen. High-resolution crystal structures were determined for the ligand-free lectin, as well as for its complexes with three Tn glycopeptides, globotetraose, and the blood group A antigen. Extensive analysis of the eight crystal structures and comparison to structures of related lectins revealed several unique features of GalNAc recognition. Of special note, the carboxylate group of Glu126, lining the glycan-binding pocket, forms H-bonds with both the N-acetyl of GalNAc and the peptide amido group of Tn antigens. Stabilization provided by Glu126 is described here for the first time for any GalNAc-specific lectin. Taken together, the results provide new insights into the molecular recognition of carbohydrates and provide a structural understanding that will enable rational engineering of BfL for a variety of applications. Structural data are available in the PDB under the accession numbers 5T50, 5T52, 5T55, 5T54, 5T5L, 5T5J, 5T5P, and 5T5O. © 2016 Federation of European Biochemical Societies.
André, S; Ortega, P J; Perez, M A; Roy, R; Gabius, H J
1999-11-01
Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential of dendrimers for applications as lectin-targeting device, as attested by these observations.
Chuang, Yen-Jun; Zhou, Xichun; Pan, Zhengwei; Turchi, Craig
2009-01-01
Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoaprticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (Kd) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: Maltose > Mannose > Glucose > Lactose > MAN5. PMID:19698698
Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.
Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P
1995-11-02
In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.
Kochibe, N; Matta, K L
1989-01-05
A lectin in the fruiting bodies of Psathyrella velutina was purified by affinity chromatography on a chitin column and subsequent ion-exchange chromatography. P. velutina lectin (PVL) tends to aggregate irreversibly in buffered saline, but the addition of glycerol (10%, v/v) to lectin solutions was found to prevent aggregate formation. PVL is assumed to occur as a monomer of a polypeptide of Mr = 40,000 as determined by gel filtration and by gel electrophoresis in the presence of sodium dodecyl sulfate. PVL is specific for N-acetylglucosamine (GlcNAc). It was determined by equilibrium dialysis to have four binding sites/polypeptide molecule showing an average intrinsic association constant of K0 = 6.4 x 10(3) M-1 toward this sugar. The binding specificity of the lectin was studied by hemagglutination inhibition assays and by avidin-biotin-mediated enzyme immunoassays using various GlcNAc-containing saccharides. The results indicate that methyl N-acetyl beta-glucosaminide was a slightly better inhibitor than the corresponding alpha-anomer. PVL binds well to oligosaccharides bearing nonreducing terminal beta-GlcNAc linked 1----6 or 1----3 but poorly to those having a 1----4 linkage, such as N-acetylated chito-oligosaccharides. It also binds to the subterminal GlcNAc moiety when it is substituted at the C-6 position but does not interact with the moiety when substituted either at C-3 or C-4. Thus, these results show that PVL is quite different in its binding specificity from other GlcNAc-binding lectins of higher plants since they bind preferentially to beta-GlcNAc in 1----4 linkage and they have a high affinity for chitin oligosaccharides.
Targeting the C-type Lectins-Mediated Host-Pathogen Interactions with Dextran
Pustylnikov, Sergey; Sagar, Divya; Jain, Pooja; Khan, Zafar K.
2017-01-01
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran’s cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen–lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell–specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin–glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran–lectin interactions may also be important for development of future dextran applications in biological research and medicine. PMID:25224349
Pashkunova-Martic, Irena; Kremser, Christian; Galanski, Markus; Schluga, Petra; Arion, Vladimir; Debbage, Paul; Jaschke, Werner; Keppler, Bernhard
2011-06-01
Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.
Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN.
Jug, Gregor; Anderluh, Marko; Tomašič, Tihomir
2015-06-01
Five docking tools, namely AutoDock, FRED, CDOCKER, FlexX and GOLD, have been critically examined, with the aim of selecting those most appropriate for use as docking tools for docking molecules to the lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This lectin has been selected for its rather non-druggable binding site, which enables complex interactions that guide the binding of the core monosaccharide. Since optimal orientation is crucial for forming coordination bonds, it was important to assess whether the selected docking tools could reproduce the optimal binding conformation for several oligosaccharides that are known to bind DC-SIGN. Our results show that even widely used docking programs have certain limitations when faced with a rather shallow and featureless binding site, as is the case of DC-SIGN. The FRED docking software (OpenEye Scientific Software, Inc.) was found to score as the best tool for docking ligands to DC-SIGN. The performance of FRED was further assessed on another lectin, Langerin. We have demonstrated that this validated docking protocol could be used for docking to other lectins similar to DC-SIGN.
Webb, David V; Mentrikoski, Mark J; Verduin, Lindsey; Brill, Louis B; Wick, Mark R
2015-04-01
Typical cutaneous basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are morphologically dissimilar. It is well known, however, that poorly differentiated SCC may assume a basaloid phenotype, complicating the histologic distinction between these 2 neoplasms. Selected immunohistochemical stains have been used in the past to aid in that differential diagnosis. In the current study, additional markers were evaluated to determine whether they would be helpful in that regard. Twenty-nine cases of metatypical (squamoid) BCC (MBCC) and 25 examples of basaloid SCC (BSCC) were studied using the antibodies Ber-EP4 and MOC-31 as well as a plant lectin preparation from Ulex europaeus I (UEA-1). The resulting immunostains were interpreted independently by 3 pathologists, and the results showed that MBCCs demonstrated strong and diffuse staining for Ber-EP4 (25/29) and MOC-31 (29/29). In contrast, BSCCs tended to be only sporadically reactive for both markers (4/25 and 1/25 cases, respectively). Labeling for UEA-1 was observed in almost all BSCCs (24/25), but only 6 of 29 cases of MBCC showed limited, focal staining with that lectin. These data suggest that MOC-31 is a useful marker in the specified differential diagnosis, especially when used together with UEA-1. Copyright © 2015 Elsevier Inc. All rights reserved.
Host-pathogen interactions: A cholera surveillance system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Aaron T.
2016-02-22
Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.
Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W
1999-05-01
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutscher, Susan
2014-09-30
The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because ofmore » their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently labeled peptides, including our lectin/carbohydrate- targeting peptides, by displaying the targeting epitopes on small ~29 amino acid cyclic plant protein scaffolds known as cyclotides. Cyclotides are extremely stable molecules with long serum half-lives and low kidney uptake (7). More than one copy of the peptide can be engineered into the cyclotide loops, thus increasing the avidity of the peptide construct for its target.« less
Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team
The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L
2016-10-01
Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.
Glycans: bioactive signals decoded by lectins.
Gabius, Hans-Joachim
2008-12-01
The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.
Santana, Sanzio Silva; Gennari-Cardoso, Margareth Leitão; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina; Santiago, André da Silva; Alvim, Fátima Cerqueira; Pirovani, Carlos Priminho
2014-01-01
Lectins are carbohydrate-binding proteins that recognize and modulate physiological activities and have been used as a toll for detection and identification of biomolecules, and therapy of diseases. In this study we have isolated a lectin present in the latex of Euphorbia tirucalli, and named it Eutirucallin. The latex protein extract was subjected to ion exchange chromatography and showed two peaks with haemagglutinating activity. Polypeptides of 32 kDa protein extract strongly interacted with immobilized galactose (α-lactose > D-N-acetylgalactosamine). The Eutirucallin was obtained with a yield of 5.6% using the α-lactose column. The lectin domain has 32 kDa subunits and at least two of which are joined by disulfide bridges. The agglutinating capacity for human erythrocytes A+, B+ and O+ is inhibited by D-galactose. The haemagglutinating activity of Eutirucallin was independent of Ca2+ and maintained until the temperature of 55°C. Eutirucallin presented biological activities such as neutrophils recruitment and cytokine prodution by macrophages. The analysis of the trypsin-digested Eutirucallin by ms/ms in ESI-Q-TOFF resulted in nine peptides similar to type 2 ribosome-inactivating protein (type-2 RIP). It's partial sequence showed a similarity of 67.4 – 83.1% for the lectin domain of type-2 RIP [Ricin and Abrin (83.1%), Viscumin, Ebulin, Pulchellin, Cinnamomin, Volkensin and type-2 RIP Iris hollandica]. Our data suggest that Eutirucallin is a new member of type 2 ribosome-inactivating protein and presents biotechnological potential. PMID:24558388
G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora.
Rouf, Razina; Stephens, Alexandre S; Spaan, Lina; Arndt, Nadia X; Day, Christopher J; May, Tom W; Tiralongo, Evelin; Tiralongo, Joe
2014-01-01
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.
Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando
2016-09-01
Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E
1998-01-01
The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672
Satoh, Tadashi; Toshimori, Takayasu; Noda, Masanori; Uchiyama, Susumu; Kato, Koichi
2016-11-01
The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme. © 2016 The Protein Society.
CH/π Interactions in Carbohydrate Recognition.
Spiwok, Vojtěch
2017-06-23
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate-aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
Ng, Sim-Kun; Huang, Yu-Tsyr; Lee, Yuan-Chuan; Low, Ee-Ling; Chiu, Cheng-Hsun; Chen, Shiu-Ling; Mao, Liang-Chi; Chang, Margaret Dah-Tsyr
2014-01-01
Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens. PMID:25541995
Hexameric supramolecular scaffold orients carbohydrates to sense bacteria.
Grünstein, Dan; Maglinao, Maha; Kikkeri, Raghavendra; Collot, Mayeul; Barylyuk, Konstantin; Lepenies, Bernd; Kamena, Faustin; Zenobi, Renato; Seeberger, Peter H
2011-09-07
Carbohydrates are integral to biological signaling networks and cell-cell interactions, yet the detection of discrete carbohydrate-lectin interactions remains difficult since binding is generally weak. A strategy to overcome this problem is to create multivalent sensors, where the avidity rather than the affinity of the interaction is important. Here we describe the development of a series of multivalent sensors that self-assemble via hydrophobic supramolecular interactions. The multivalent sensors are comprised of a fluorescent ruthenium(II) core surrounded by a heptamannosylated β-cyclodextrin scaffold. Two additional series of complexes were synthesized as proof-of-principle for supramolecular self-assembly, the fluorescent core alone and the core plus β-cyclodextrin. Spectroscopic analyses confirmed that the three mannosylated sensors displayed 14, 28, and 42 sugar units, respectively. Each complex adopted original and unique spatial arrangements. The sensors were used to investigate the influence of carbohydrate spatial arrangement and clustering on the mechanistic and qualitative properties of lectin binding. Simple visualization of binding between a fluorescent, multivalent mannose complex and the Escherichia coli strain ORN178 that possesses mannose-specific receptor sites illustrates the potential for these complexes as biosensors.
Wei, Xiumei; Liu, Xiangquan; Yang, Jianmin; Fang, Jinghui; Qiao, Hongjin; Zhang, Ying; Yang, Jialong
2012-01-01
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca(2+) binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln(122)-Pro(123)-Asn(124)) in LvLectin-1, but QPD (Gln(128)-Pro(129)-Asp(130)) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P<0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P<0.01) and 12 h (P<0.05), but the expression level of LvLectin-1 down-regulated significantly (P<0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus. Copyright © 2011 Elsevier Ltd. All rights reserved.
Romero, Juan M; Trujillo, Madia; Estrin, Darío A; Rabinovich, Gabriel A; Di Lella, Santiago
2016-12-01
Endogenous lectins can control critical biological responses, including cell communication, signaling, angiogenesis and immunity by decoding glycan-containing information on a variety of cellular receptors and the extracellular matrix. Galectin-1 (Gal-1), a prototype member of the galectin family, displays only one carbohydrate recognition domain and occurs in a subtle homodimerization equilibrium at physiologic concentrations. Such equilibrium critically governs the function of this lectin signaling by allowing tunable interactions with a preferential set of glycosylated receptors. Here, we used a combination of experimental and computational approaches to analyze the kinetics and mechanisms connecting Gal-1 ligand unbinding and dimer dissociation processes. Kinetic constants of both processes were found to differ by an order of magnitude. By means of steered molecular dynamics simulations, the ligand unbinding process was followed monitoring water occupancy changes. By determining the water sites in a carbohydrate binding place during the unbinding process, we found that rupture of ligand-protein interactions induces an increase in energy barrier while ligand unbinding process takes place, whereas the entry of water molecules to the binding groove and further occupation of their corresponding water sites contributes to lowering of the energy barrier. Moreover, our findings suggested local asymmetries between the two subunits in the dimer structure detected at a nanosecond timescale. Thus, integration of experimental and computational data allowed a more complete understanding of lectin ligand binding and dimerization processes, suggesting new insights into the relationship between Gal-1 structure and function and renewing the discussion on the biophysics and biochemistry of lectin-ligand lattices. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Non-Carbohydrate Glycomimetics and Glycoprotein Surrogates as DC-SIGN Antagonists and Agonists
Prost, Lynne R.; Grim, Joseph C.; Tonelli, Marco; Kiessling, Laura L.
2012-01-01
An understanding of the biological roles of lectins will be advanced by ligands that can inhibit or even recruit lectin function. To this end, glycomimetics, non-carbohydrate ligands that function analogously to endogenous carbohydrates, are being sought. The advantage of having such ligands is illustrated by the many roles of the protein DC-SIGN. DC-SIGN is a C-type lectin displayed on dendritic cells, where it binds to mannosides and fucosides to mediate interactions with other host cells or bacterial or viral pathogens. DC-SIGN engagement can modulate host immune responses (e.g., suppress autoimmunity) or benefit pathogens (e.g., promote HIV dissemination). DC-SIGN can bind to glycoconjugates, internalize glycosylated cargo for antigen processing, and transduce signals. DC-SIGN ligands can serve as inhibitors as well as probes of the lectin’s function, so they are especially valuable for elucidating and controlling DC-SIGN’s roles in immunity. We previously reported a small molecule that embodies key features of the carbohydrates that bind DC-SIGN. Here, we demonstrate that this non-carbohydrate ligand acts as a true glycomimetic. Using NMR HSQC experiments, we found that the compound mimics saccharide ligands: It occupies the same carbohydrate-binding site and interacts with the same side chain residues on DC-SIGN. The glycomimetic also is functional. It had been shown previously to antagonize DC-SIGN function but here we use it to generate DC-SIGN agonists. Specifically, appending this glycomimetic to a protein scaffold affords a conjugate that elicits key cellular signaling responses. Thus, the glycomimetic can give rise to functional glycoprotein surrogates that elicit lectin-mediated signaling. PMID:22747463
Cyborg lectins: novel leguminous lectins with unique specificities.
Yamamoto, K; Maruyama, I N; Osawa, T
2000-01-01
Bauhinia purpurea lectin (BPA) is one of the beta-galactose-binding leguminous lectins. Leguminous lectins contain a long metal-binding loop, part of which determines their carbohydrate-binding specificities. Random mutations were introduced into a portion of the cDNA coding BPA that corresponds to the carbohydrate-binding loop of the lectin. An library of the mutant lectin expressed on the surface of lambda foo phages was screened by the panning method. Several phage clones with an affinity for mannose or N-acetylglucosamine were isolated. These results indicate the possibility of making artificial lectins (so-called "cyborg lectins") with distinct and desired carbohydrate-binding specificities.
Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.
Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo
2016-05-01
Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lectins: production and practical applications
2010-01-01
Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754
Glycoconjugate distribution in early human notochord and axial mesenchyme.
Götz, W; Quondamatteo, F
2001-02-01
Glycosylation patterns of cells and tissues give insights into spatially and temporally regulated developmental processes and can be detected histochemically using plant lectins with specific affinities for sugar moieties. The early development of the vertebral column in man is a process which has never been investigated by lectin histochemistry. Therefore, we studied binding of several lectins (AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA) in formaldehyde-fixed sections of the axial mesenchyme of 5 human embryos in Carnegie stages 12-15. During these developmental stages, an unsegmented mesenchyme covers the notochord. Staining patterns did not show striking temporal variations except for SBA which stained the cranial axial mesenchyme only in the early stage 12 embryo and for PNA, of which the staining intensity in the mesenchyme decreased with age. The notochord appeared as a highly glycosylated tissue. Carbohydrates detected may correspond to adhesion molecules or to secreted substances like proteoglycans or proteins which could play an inductive role, for example, for the neural tube. The axial perinotochordal unsegmented mesenchyme showed strong PNA binding. Therefore, its function as a PNA-positive "barrier" tissue is discussed. The endoderm of the primitive gut showed a lectin-binding pattern that was similar to that of the notochord, which may correlate with interactions between these tissues during earlier developmental stages.
Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida).
Busch, A; Schumacher, U; Storch, V
2001-02-01
Priapulida represent one of the phylogenetically oldest multicellular animal groups. In multicellular animals (Metazoa) cell-to-cell and cell-to-matrix interactions are often mediated by carbohydrate residues of glycoconjugates. To analyze the carbohydrate composition of a phylogenetically old species, lectin histochemistry was employed on 5 specimens of the priapulid Halicryptus spinulosus. Many lectins bound to the chitin-containing cuticle, including those specific for carbohydrates other than N-acetylglucosamine, the principle building block of chitin. The connective tissue of the animals contained both N-acetylglucosamine and N-acetylgalactosamine. Mannose residues were widely distributed with the exception of the cuticle, but complex type carbohydrates were not present in the entire animal. Sialic acid residues were only detected in the cuticle and brush border of the intestinal epithelium, while fucose was limited to the cuticle. Thus, the lectin-binding pattern indicated that sugars typical for the linking region of both N- and O-glycoproteins in mammals are also present in H. spinulosus. Carbohydrate residues that are typical for the complex type of N-linked glycans in vertebrates are not present as are carbohydrate residues typical for the termination of O-linked carbohydrate chains. Hence, a truncated form of both N- and O-linked glycosylation is present in H. spinulosus indicating that more complex patterns of glycosylation developed later during evolution.
Rouf, Razina; Tiralongo, Evelin; Krahl, Anja; Maes, Karen; Spaan, Lina; Wolf, Stefan; May, Tom W; Tiralongo, Joe
2011-01-01
Fifteen Australian mushroom species (higher Basidiomycetes) were assessed for hemagglutination and lectin activity. Hemagglutination activity was evaluated using both neuraminidase treated and untreated rabbit and human A, B, and O erythrocytes. Lectin activity was determined by the ability of various mono- and oligosaccharides to inhibit hemagglutination activity. Of the mushrooms evaluated, seven contained lectin activity. However, five (Agaricus bitorquis, Chlorophyllum brunneum, Coprinus comatus, Cortinarius sp. TWM 1710, and Omphalotus nidiformis) expressed lectin activity in only one of two collections tested. The two remaining lectin active mushroom species (Phlebopus marginatus and Psathyrella asperospora) possessed lectin activity with the same sugar specificity in both collections. Although lectins were identified with diverse specificity, lactose-specific lectin activity was most frequently identified, being present in Agaricus bitorquis, Copronus comatus, Omphalotus nidiformis, and Phlebopus marginatus. In contrast, Psathyrella asperospora, Cortinarius sp. TWM 1710, and Chlorophyllum brunneum were found to possess lectin activity specific for N-acetyl-D-glucosamine, galactose, and N-acetyl-neurammic acid, respectively. Significantly, the galactose-specific lectin activity identified in Cortinarius sp. TWM 1710 and the lactose-specific lectin activity in Phlebopus marginatus have not been previously reported.
Gibbons, R. J.; Dankers, I.
1981-01-01
Hot and cold aqueous extracts were prepared from 22 commonly ingested fruits, vegetables, and seeds. When tested by agar diffusion, extracts from 13 and 10 of the foods formed precipitin bands with samples of normal rabbit serum and human saliva, respectively; extracts from four of the foods also reacted with antigen extracts of strains of Streptococcus mutans. When added to rabbit antiserum, extracts from 18 of 21 foods tested inhibited reactivity with antigen extracts derived from S. mutans MT3. Extracts from 16 foods agglutinated whole S. mutans cells, whereas those from 10 foods agglutinated human erythrocytes of blood types A and B. The lectin-like activities of extracts which reacted with human saliva were studied further. Pretreatment of saliva-coated hydroxyapatite (S-HA) beads with extracts of bananas, coconuts, carrots, alfalfa, and sunflower seeds markedly reduced the subsequent adsorption of S. mutans MT3. Pretreatment of S-HA with banana extract also strongly inhibited adsorption of S. mutans H12 and S. sanguis C1, but it had little effect on attachment of Actinomyces naeslundii L13 or A. viscosus LY7. Absorption experiments indicated that the component(s) in banana extract responsible for inhibiting streptococcal adsorption to S-HA was identical to that which bound to human erythrocytes. The banana hemagglutinin exhibited highest activity between pH 7 and 8, and it was inhibited by high concentrations of glucosamine, galactosamine, and, to a lesser extent, mannosamine. Other sugars tested had no effect. The selective bacterial adsorption-inhibiting effect noted for banana extract was also observed in studies with purified lectins. Thus, pretreating S-HA with wheat germ agglutinin and concanavalin A inhibited adsorption of S. mutans MT3 cells, whereas peanut agglutinin, Ulex agglutinin, Dolichos agglutinin, and soybean agglutinin had little effect; none of these lectins affected attachment of A. viscosus LY7. Collectively, the observations suggest that many foods contain lectins which can interact with components of human saliva and S. mutans cells. Because of their potential to influence host-parasite interactions in the mouth and elsewhere in the gastrointestinal canal, these reactions warrant further study. Images PMID:6786220
Bastos-Aristizabal, Sara; Kozlov, Guennadi; Gehring, Kalle
2014-01-01
Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids. PMID:24662985
Lectins of beneficial microbes: system organisation, functioning and functional superfamily.
Lakhtin, M; Lakhtin, V; Alyoshkin, V; Afanasyev, S
2011-06-01
In this review our last results and proposals with respect to general aspects of lectin studies are summarised and compared. System presence, organisation and functioning of lectins are proposed, and accents on beneficial symbiotic microbial lectins studies are presented. The proposed general principles of lectin functioning allows for a comparison of lectins with other carbohydrate-recognition systems. A new structure-functional superfamily of symbiotic microbial lectins is proposed and its main properties are described. The proposed superfamily allows for extended searches of the biological activities of any microbial member. Prospects of lectins of beneficial symbiotic microorganisms are discussed.
2013-01-01
Background Wheat – Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. Results Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. Conclusion Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation. PMID:23800119
Characterization and antimicrobial activity of lectins from Penicillium sp.
Singh, R S; Jain, P; Kaur, H P
2013-11-01
Ten Penicillium sp. were screened for lectin activity for occurrence of lectins. Mycelial extracts from submerged cultures of P. corylophilum, P. expansum and P. purpurogenum showed agglutination against human (A, B, AB and O), goat, sheep, pig and rabbit erythrocytes. Neuraminidase treatment to human blood- type O erythrocytes substantially increased their agglutinability by all the lectins as compared to untreated erythrocytes. Modification of erythrocyte surfaces by protease increased the lectin titre only of P. corylophilum with no effect on other two lectins. P. corylophilum and P. expansum displayed relatively lower titres in mycelial extracts prepared from agar plate cultures as compared to broth cultures. A panel of sugars was tested for inhibition of lectin activity. All the lectins were found to be specific for asialofetuin, bovine submaxillary mucin, porcine stomach mucin, chondroitin-6-sulphate, D-sucrose and D-glucose. P. corylophilum lectin was expressed (Titre 8) by 5 day old cultures, reaching its maximum level (Titre 32) upon 8 days of cultivation, thereafter declin in lectin activity was observed. P. purpurogenum lectin was expressed by 7-10 days old cultures, while in P. expansum maximum lectin activity was elaborated by 5-8 days old cultures. Lectin extracts from all the three species were found to possess antimicrobial activities. Lectin extracts from the three Penicillium species displayed antifungal activity and antibacterial activity against Gram-negative and Gram-positive bacterial strains.
Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42)
NASA Astrophysics Data System (ADS)
Matsumoto, Erino; Yamauchi, Takahiro; Fukuda, Tomohiro; Miura, Yoshiko
2009-06-01
Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.
Alvarez, Jorge I; Rivera, Jennifer; Teale, Judy M
2008-04-09
Neurocysticercosis (NCC) is an infection of the central nervous system (CNS) by the metacestode of the helminth Taenia solium. The severity of the symptoms is associated with the intensity of the immune response. First, there is a long asymptomatic period where host immunity seems incapable of resolving the infection, followed by a chronic hypersensitivity reaction. Since little is known about the initial response to this infection, a murine model using the cestode Mesocestoides corti (syn. Mesocestoides vogae) was employed to analyze morphological changes in the parasite early in the infection. It was found that M. corti material is released from the tegument making close contact with the nervous tissue. These results were confirmed by infecting murine CNS with ex vivo-labeled parasites. Because more than 95% of NCC patients exhibit humoral responses against carbohydrate-based antigens, and the tegument is known to be rich in glycoconjugates (GCs), the expression of these types of molecules was analyzed in human, porcine, and murine NCC specimens. To determine the GCs present in the tegument, fluorochrome-labeled hydrazides as well as fluorochrome-labeled lectins with specificity to different carbohydrates were used. All the lectins utilized labeled the tegument. GCs bound by isolectinB4 were shed in the first days of infection and not resynthesized by the parasite, whereas GCs bound by wheat germ agglutinin and concavalinA were continuously released throughout the infectious process. GCs bound by these three lectins were taken up by host cells. Peanut lectin-binding GCs, in contrast, remained on the parasite and were not detected in host cells. The parasitic origin of the lectin-binding GCs found in host cells was confirmed using antibodies against T. solium and M. corti. We propose that both the rapid and persistent release of tegumental GCs plays a key role in the well-known immunomodulatory effects of helminths, including immune evasion and life-long inflammatory sequelae seen in many NCC patients.
Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder
2014-01-01
Background Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Methods Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Results Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5–9.5, while optimum temperature for lectin activity was 20–30°C. Lectin was stable within a pH range of 7.0–10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. Conclusion This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin. PMID:25286160
Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder
2014-01-01
Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin.
The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus.
Audette, G F; Vandonselaar, M; Delbaere, L T
2000-12-01
The tertiary and quaternary structure of the lectin I from Ulex europaeus (UE-I) has been determined to 2.2 A resolution. UE-I is a dimeric metalloglycoprotein that binds the H-type 2 human blood group determinant [alpha-L-Fucalpha(1-->2)-beta-D-Galbeta(1-->4)-beta-D-Glc NAcalpha-]. Nine changes from the published amino acid sequence were necessary to account for the electron density. The quaternary structural organization of UE-I is that of the most commonly occurring legume lectin dimer. The tertiary structure of the monomeric subunits is similar to that in the conventional lectin subunit; however, some structural differences are noted. These differences include a four-stranded anti-parallel "S" sheet in UE-I versus the five-stranded S sheet in other lectin monomers. The Ala residue of the Ala-Asp cis-peptide bond present in the carbohydrate-binding site of the conventional lectin monomer is replaced with a Thr in the UE-I structure. Also, a novel disulfide bridge linking Cys115 and Cys150 is present. There are two metallic ions, one calcium and the other manganese, per subunit. N-linked oligosaccharides are at residues 23 and 111 of each subunit. One molecule of R-2-methyl-2, 4-pentanediol (R-MPD) is present in a shallow depression on the surface of each subunit. In order to examine the binding of the H-type 2 blood group determinant by UE-I, its beta-methyl glycoside (H-type 2-OMe) was docked into the binding site of R-MPD. The epitope previously identified for H-type 2-OMe by chemical mapping proved, with only minor adjustment of amino acid residues, to be complementary to the shallow cavity occupied by R-MPD in the structure. Several key interactions have been proposed between the H-type 2-OMe and UE-I. Copyright 2000 Academic Press.
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-02-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-04-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Elias, L; Van Epps, D E
1984-06-01
The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.
An, SuFang; Gong, FangPing; Wang, Wei
2012-01-01
Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae. PMID:23185632
Wu, Xiaolin; Xiong, Erhui; An, Sufang; Gong, Fangping; Wang, Wei
2012-01-01
Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae.
Folding and Homodimerization of Wheat Germ Agglutinin
Portillo-Téllez, María del Carmen; Bello, Martiniano; Salcedo, Guillermo; Gutiérrez, Gabriel; Gómez-Vidales, Virginia; García-Hernández, Enrique
2011-01-01
Wheat germ agglutinin (WGA) is emblematic of proteins that specialize in the recognition of carbohydrates. It was the first lectin reported to have a capacity for discriminating between normal and malignant cells. Since then, it has become a preferred model for basic research and is frequently considered in the development of biomedical and biotechnological applications. However, the molecular basis for the structural stability of this homodimeric lectin remains largely unknown, a situation that limits the rational manipulation and modification of its function. In this work we performed a thermodynamic characterization of WGA folding and self-association processes as a function of pH and temperature by using differential scanning and isothermal dilution calorimetry. WGA is monomeric at pH 2, and one of its four hevein-like domains is unfolded at room temperature. Under such conditions, the agglutinin exhibits a fully reversible thermal unfolding that consists of three two-state transitions. At higher pH values, the protein forms weak, nonobligate dimers. This behavior contrasts with that observed for the other plant lectins studied thus far, which form strong, obligate oligomers, indicating a distinctly different molecular basis for WGA function. For dimer formation, the four domains must be properly folded. Nevertheless, depending on the solution conditions, self-association may be coupled with folding of the labile domain. Therefore, dimerization may proceed as a rigid-body-like association or a folding-by-binding event. This hybrid behavior is not seen in other plant lectins. The emerging molecular picture for the WGA assembly highlights the need for a reexamination of existing ligand-binding data in the literature. PMID:21943423
Feder, Denise; Gomes, Suzete A O; de Thomaz, André A; Almeida, Diogo B; Faustino, Wagner M; Fontes, Adriana; Stahl, Cecília V; Santos-Mallet, Jacenir R; Cesar, Carlos L
2009-12-01
Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals markers that allow long photobleaching and do not destroy the parasites. In this paper, we used fluorescent core shell quantum dots to perform studies of live parasite-vector interaction processes without any observable effect on the vitality of parasites. These nanocrystals were synthesized in aqueous medium and physiological pH, which is very important for monitoring live cells activities, and conjugated with molecules such as lectins to label specific carbohydrates involved on the parasite-vector interaction. These QDs were successfully used for the study of in vitro and in vivo interaction of Trypanosoma cruzi and the triatomine Rhodnius prolixus. These QDs allowed us to acquire real time confocal images sequences of live T. cruzi-R. prolixus interactions for an extended period, causing no damage to the cells. By zooming to the region of interest, we have been able to acquire confocal images at the three to four frames per second rate. Our results show that QDs are physiological fluorescent markers capable to label living parasites and insect vector cells. QDs can be functionalized with lectins to specifically mark surface carbohydrates on perimicrovillar membrane of R. prolixus to follow, visualize, and understand interaction between vectors and its parasites in real-time.
Ramos, Eliézer L P; Santana, Silas S; Silva, Murilo V; Santiago, Fernanda M; Mineo, Tiago W P; Mineo, José R
2016-01-01
Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii . The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model.
Ramos, Eliézer L. P.; Santana, Silas S.; Silva, Murilo V.; Santiago, Fernanda M.; Mineo, Tiago W. P.; Mineo, José R.
2016-01-01
Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii. The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model. PMID:27933277
Moscona, A; Peluso, R W
1991-01-01
Cells persistently infected with human parainfluenza virus type 3 (HPF3) exhibit a novel phenotype. They are completely resistant to fusion with each other but readily fuse with uninfected cells. We demonstrate that the inability of these cells to fuse with each other is due to a lack of cell surface neuraminic acid. Neuraminic acid is the receptor for the HPF3 hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. Uninfected CV-1 cells were treated with neuraminidase and then tested for their ability to fuse with the persistently infected (pi) cells. Neuraminidase treatment totally abolished cell fusion. To extend this result, we used a cell line deficient in sialic acid and demonstrated that these cells, like the neuraminidase-treated CV-1 cells, were unable to fuse with pi cells. We then tested whether mimicking the agglutinating function of the HN molecule with lectins would result in cell fusion. We added a panel of five lectins to the neuraminic acid-deficient cells and showed that binding of these cells to the pi cells did not result in fusion; the lectins could not substitute for interaction of neuraminic acid with the HN molecule in promoting membrane fusion. These results provide compelling evidence that the HN molecule of HPF3 and its interaction with neuraminic acid participate in membrane fusion and that cell fusion is mediated by an interaction more complex than mere juxtaposition of the cell membranes. Images PMID:1851852
Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal
2016-02-15
Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol. Copyright © 2015 Elsevier Inc. All rights reserved.
A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *
Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce
2016-01-01
Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157
Vetchinkina, Elena P; Pozdnyakova, Natalia N; Nikitina, Valentina E
2008-10-01
The white-rot fungus Lentinus edodes produced D-melibiose-specific lectins and two laccase forms in a lignin-containing medium. The maxima of laccase and lectin activities coincided, falling within the period of active mycelial growth. The enzymes and lectins were isolated and purified by gel filtration followed by anion-exchange chromatography. The L. edodes lectins were found to be able to stabilize the activity of the fungus's own laccases. Lectin activity during the formation of lectin-enzyme complexes remained unchanged.
Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Jung, Pil-Mun; Byun, Myung-Woo; Lee, Ju-Woon; Park, Sang-Hyun; Kim, Jae-Hun
2013-01-01
This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-α) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response. PMID:23847758
Williams, B A; Chervenak, M C; Toone, E J
1992-11-15
Despite years of study, a comprehensive picture of the binding of the lectin from Canavalia ensiformis, concanavalin A, to carbohydrates remains elusive. We report here studies on the interaction of concanavalin A with methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, the minimum carbohydrate epitope that completely fills the oligosaccharide binding site, and the two conceptual disaccharide "halves" of the trisaccharide, methyl 3-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside and methyl 6-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, using titration microcalorimetry. In all cases the interaction of protein and carbohydrate is enthalpically driven, with an unfavorable entropic contribution. The choice of concentration scales has an important impact on both the magnitude and, in some cases, the sign of the entropic component of the free energy of binding. The thermodynamic data suggest binding of the two disaccharides may take place in distinct sites, as opposed to binding in a single high affinity site. In contrast to carbohydrate-antibody binding, delta Cp values were small and negative, pointing to possible differences in the motifs used by the two groups of proteins to bind carbohydrates. The thermodynamic data are interpreted in terms of solvent reorganization. Cooperativity during lectin-carbohydrate binding was also investigated. Significant cooperativity was observed only for binding of the trisaccharide, and gave a Hill plot coefficient of 1.3 for dimeric protein.
Glycobiology simplified: diverse roles of glycan recognition in inflammation
Schnaar, Ronald L.
2016-01-01
Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978
van Vliet, Sandra J.; Steeghs, Liana; Bruijns, Sven C. M.; Vaezirad, Medi M.; Snijders Blok, Christian; Arenas Busto, Jésus A.; Deken, Marcel; van Putten, Jos P. M.; van Kooyk, Yvette
2009-01-01
Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival. PMID:19834553
Varshosaz, Jaleh; Moazen, Ellaheh
2014-08-01
Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.
Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities.
Hu, Dan; Tateno, Hiroaki; Hirabayashi, Jun
2015-04-27
In the post genomic era, glycomics--the systematic study of all glycan structures of a given cell or organism--has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as "decipherers of glycans", being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.
Histological and Lectin Histochemical Studies on the Olfactory and Respiratory Mucosae of the Sheep
IBRAHIM, Dalia; NAKAMUTA, Nobuaki; TANIGUCHI, Kazumi; YAMAMOTO, Yoshio; TANIGUCHI, Kazuyuki
2013-01-01
ABSTRACT The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman’s glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman’s glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman’s glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively. PMID:24200894
Histochemical analysis of glycoconjugates in the skin of a catfish (arius tenuispinis, day).
Al-Banaw, A; Kenngott, R; Al-Hassan, J M; Mehana, N; Sinowatz, F
2010-02-01
A histochemical study using conventional carbohydrate histochemistry (periodic-acid staining including diastase controls, alcian blue staining at pH 1 and 2.5) as well as using a battery of 14 fluorescein isothiocyanate (FITC)-labelled lectins to identify glycoconjugates present in 10 different areas of the skin of a catfish (Arius tenuispinis) was carried out. The lectins used were: mannose-binding lectins (Con A, LCA and PSA), galactose-binding lectins (PNA, RCA), N-acetylgalactosamine-binding lectins (DBA, SBA, SJA and GSL I), N-acetylglucosamine-binding lectins (WGA and WGAs), fucose-binding lectins (UEA) and lectins which bind to complex carbohydrate configurations (PHA E, PHA L). Conventional glycoconjugate staining (PAS staining, alcian blue at pH 1 and 2.5) showed that the mucous goblet cells contain a considerable amount of glycoconjugates in all locations of the skin, whereas the other unicellular gland type, the club cells, lacked these glycoconjugates. The glycoproteins found in goblet cells are neutral and therefore stain magenta when subjected to PAS staining. Alcian blue staining indicating acid glycoproteins was distinctly positive at pH 1, but gave only a comparable staining at pH 2.5. The mucus of the goblet cells therefore also contains acid glycoproteins rich in sulphate groups. Using FITC-labelled lectins, the carbohydrate composition of the glycoproteins of goblet cells could be more fully characterized. A distinct staining of the mucus of goblet cells was found with the mannose-binding lectins LCA and PSA; the galactosamine-binding lectins DBA, SBA and GLS I; the glucosamine-binding lectin WGA; and PHA E which stains glycoproteins with complex carbohydrate configurations. No reaction occurred with the fucose-binding lectin UEA and the sialic acid-specific lectin SNA. In addition, the galactose-binding lectins PNA and RCA showed only a weak or completely negative staining of the mucus in the goblet cells. The specificity of the lectin staining could be proved by inhibiting binding of the lectins by competitive inhibition with the corresponding sugars. From these data, we can conclude that the mucus produced by the epidermal goblet cells of A. tenuispinis is rich in mannose, N-acetylgalactosamine and N-acetylglucosamine residues.
Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao
2015-01-01
A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583
Reina, José J; Maldonado, Olivia S; Tabarani, Georges; Fieschi, Franck; Rojo, Javier
2007-01-01
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.
Dawson, Heather; André, Sabine; Karamitopoulou, Eva; Zlobec, Inti; Gabius, Hans-Joachim
2013-08-01
Human lectins translate sugar-encoded signals of cell surface glycoconjugates into biological effects, and this is what is known for the adhesion/growth-regulatory galectins. In addition, the multifunctional members of this group can be intracellular, binding to distinct proteins. The presence of galectins and galectin reactivity were exemplarily studied in the present article. We combined immuno- and lectin histochemical monitoring in colon cancer on tissue arrays. Intracellular presence of galectins-7 and -9 in colon cancer is detected, extending the previously known set of five expressed lectins this tumor type. The assumed significance of intracellular galectin presence, e.g. for an interplay with BCL2, β-catenin, oncogenic KRAS or synexin, is underscored by respective staining with labeled galectin-3. Statistical significance was obtained for galectin-3 staining with respect to tumor differentiation (p=0.0376), lymph node metastasis (p=0.0069) and lymphatic invasion (p=0.0156). Survival was correlated to staining, galectin-3 reactivity indicating a favorable prognosis (p=0.0183), albeit not as an independent marker. No correlation to KRAS/BRAF status was detected. These results encourage further testing of labeled human galectins as probes and immunohistochemical fingerprinting instead of measuring single or few activities, in colon cancer and other tumor types.
Effects of concanavalin A on chondrocyte hypertrophy and matrix calcification.
Yan, W; Pan, H; Ishida, H; Nakashima, K; Suzuki, F; Nishimura, M; Jikko, A; Oda, R; Kato, Y
1997-03-21
Resting chondrocytes do not usually undergo differentiation to the hypertrophic stage and calcification. However, incubating these cells with concanavalin A resulted in 10-100-fold increases in alkaline phosphatase activity, binding of 1,25(OH)2-vitamin D3, type X collagen synthesis, 45Ca incorporation into insoluble material, and calcium content. On the other hand, other lectins tested (including wheat germ agglutinin, lentil lectin, pea lectin, phytohemagglutinin-L, and phytohemagglutinin-E) marginally affected alkaline phosphatase activity, although they activate lymphocytes. Methylmannoside reversed the effect of concanavalin A on alkaline phosphatase within 48 h. Concanavalin A did not increase alkaline phosphatase activity in articular chondrocyte cultures. In resting chondrocyte cultures, succinyl concanavalin A was as potent as concanavalin A in increasing alkaline phosphatase activity, the incorporation of [35S]sulfate, D-[3H]glucosamine, and [3H]serine into proteoglycans, and the incorporation of [3H]serine into protein, although concanavalin A, but not succinyl concanavalin A, induced a rapid change in the shape of the cells from flat to spherical. These findings suggest that concanavalin A induces a switch from the resting, to the growth-plate stage, and that this action of concanavalin A is not secondary to changes in the cytoskeleton. Chondrocytes exposed to concanavalin A may be useful as a novel model of endochondral bone formation.
Mukaro, Violet R.; Bylund, Johan; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N.; Hodge, Sandra
2013-01-01
We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells (‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH) availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin polymerisation, rac activation, and the involvement of PI3K (using β-actin probing and wortmannin inhibition) in vitro using human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP bound Rac1. This was confirmed with β-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential macrophage-targeted therapies. PMID:23441163
Interlandi, Gianluca; Thomas, Wendy E
2016-07-01
The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs.
Engleder, Elisabeth; Demmerer, Elisabeth; Wang, Xueyan; Honeder, Clemens; Zhu, Chengjing; Studenik, Christian; Wirth, Michael; Arnoldner, Christoph; Gabor, Franz
2015-04-30
In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.
Kim, Seonghun
2018-02-01
Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.
Bachhawat, K; Kapoor, M; Dam, T K; Surolia, A
2001-06-19
Allium sativum agglutinin (ASAI) is a heterodimeric mannose-specific bulb lectin possessing two polypeptide chains of molecular mass 11.5 and 12.5 kDa. The thermal unfolding of ASAI, characterized by differential scanning calorimetry and circular dichroism, shows it to be highly reversible and can be defined as a two-state process in which the folded dimer is converted directly to the unfolded monomers (A2 if 2U). Its conformational stability has been determined as a function of temperature, GdnCl concentration, and pH using a combination of thermal and isothermal GdnCl-induced unfolding monitored by DSC, far-UV CD, and fluorescence, respectively. Analyses of these data yielded the heat capacity change upon unfolding (DeltaC(p) and also the temperature dependence of the thermodynamic parameters, namely, DeltaG, DeltaH, and DeltaS. The fit of the stability curve to the modified Gibbs-Helmholtz equation provides an estimate of the thermodynamic parameters DeltaH(g), DeltaS(g), and DeltaC(p) as 174.1 kcal x mol(-1), 0.512 kcal x mol(-1) x K(-1), and 3.41 kcal x mol(-1) x K(-1), respectively, at T(g) = 339.4 K. Also, the free energy of unfolding, DeltaG(s), at its temperature of maximum stability (T(s) = 293 K) is 13.13 kcal x mol(-1). Unlike most oligomeric proteins studied so far, the lectin shows excellent agreement between the experimentally determined DeltaC(p) (3.2 +/- 0.28 kcal x mol(-1) x K(-1)) and those evaluated from a calculation of its accessible surface area. This in turn suggests that the protein attains a completely unfolded state irrespective of the method of denaturation. The absence of any folding intermediates suggests the quaternary interactions to be the major contributor to the conformational stability of the protein, which correlates well with its X-ray structure. The small DeltaC(p) for the unfolding of ASAI reflects a relatively small, buried hydrophobic core in the folded dimeric protein.
Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam
2015-01-01
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment. PMID:26730242
Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam
2015-11-01
Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.
Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Miranda Santos, I.K.; Pereira, M.E.
1984-09-01
Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeusmore » and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.« less
Garner, Omai B.; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C.; Park, Arnold; Bowden, Thomas A.; Freiberg, Alexander N.
2014-01-01
ABSTRACT Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. IMPORTANCE Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by “bridging” the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. PMID:25505064
Sorafenib induced alteration of protein glycosylation in hepatocellular carcinoma cells
Liu, Tianhua; Liu, Riqiang; Zhang, Shu; Guo, Kun; Zhang, Qinle; Li, Wei; Liu, Yinkun
2017-01-01
Sorafenib is a multikinase inhibitor and is effective in treating hepatocellular carcinoma (HCC). However, it remains unknown whether sorafenib induces the alteration of protein glycosylation. The present study treated HCC MHCC97L and MHCC97H cells with a 50% inhibitory concentration of sorafenib. Following this treatment, alteration of protein glycosylation was detected using a lectin microarray. Compared with the controls, the binding capacity of glycoproteins extracted from sorafenib-treated HCC cells to the lectins Bauhinia purpurea lectin, Dolichos biflorus agglutinin, Euonymus europaeus lectin, Helix aspersa lectin, Helix pomatia lectin, Jacalin, Maclura pomifera lectin and Vicia villosa lectin were enhanced; while, the binding capacities to the lectins Caragana arborescens lectin, Lycopersicon esculentum lectin, Limulus polyphemus lectin, Maackia amurensis lecin I, Phaseolus vulgaris leucoagglutinin, Ricinus communis agglutinin 60, Sambucus nigra lectin and Solanum tuberosum lectin were reduced (spot intensity median/background intensity median ≥2, P<0.05). This difference in glycoprotein binding capacity indicates that cells treated with sorafenib could increase α-1,3GalNAc/Gal, β-1,3 Gal, GalNAcα-Ser/Thr(Tn) and α-GalNAc structures and decrease GlcNAc, sialic acid, tetra-antennary complex-type N-glycan and β-1,4Gal structures. These results were additionally confirmed by lectin blotting. Expression levels of signaling molecules including erythroblastosis 26–1 (Ets-1), extracellular signal-related kinases (ERK) and phosphorylated-ERK were measured by western blotting. There was a reduction in the expression of Ets-1 and ERK phosphorylation in sorafenib or 1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene treated cells suggesting that sorafenib may reduce the expression levels of Ets-1 by blocking the Ras/Raf/mitogen activated protein kinase signaling pathway. In the present study, it was clear that sorafenib could inhibit the proliferation of HCC cells and alter protein glycosylation. The findings of this study may lead to providing a novel way of designing new anti-HCC drugs. PMID:28693200
Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis.
Tawakoli, Pune N; Neu, Thomas R; Busck, Mette M; Kuhlicke, Ute; Schramm, Andreas; Attin, Thomas; Wiedemeier, Daniel B; Schlafer, Sebastian
2017-01-01
The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence of sucrose. For five lectins that proved particularly suitable, stained biovolumes were quantified and correlated to the bacterial composition of the biofilms. Additionally, combinations of up to three differently labeled lectins were tested. Of the 10 lectins, five bound particularly well in 48-h-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates in the dental biofilm matrix. The characterization and quantification of glycoconjugates in dental biofilms require a combination of several lectins. For 48-h-biofilms grown in absence of sucrose, AAL, Calsepa, HPA, LEA, and MNA-G are recommendable.
Purification and characterization of liver lectins from a lizard, Sceloporus spinosus.
Fenton, N Bertha; Arreguín, L Barbarin; Méndez, C Fausto; Arreguín, E Roberto
2004-05-01
This study discusses the purification of soluble beta-galactose lectins obtained from the lizard liver of Sceloporus spinosus. The first lectin named lizard hepatic lectin-1 (LHL-1) presented a molecular weight of 31,750, with an isoelectric point of 4.25. The highest specific hemagglutinating activity was achieved using human blood type A1: N-acetylgalactosamine (GalNAc)-galactose (Gal)-fucose (Fuc). Carbohydrate inhibition assays indicated a higher lectin specificity for GalNAc. For LHL-2 the molecular weight obtained was 23,850 with an isoelectric point of 3.25. The highest carbohydrate specificity was observed for Gal. These lizard hepatic lectins are similar to the mammal hepatic lectins previously reported. However, it is different from the alligator hepatic lectin (AHL). The homology analyses of LHL-1 resulted in 100% identity with the Steroidogenic acute regulatory protein (StAR), while LHL-2 was similar to adenylate kinase (75% identity). We suggest that these liver lectins are related to the inherent functions of liver previously reported.
Galectin-3 in autoimmunity and autoimmune diseases
de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo
2015-01-01
Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116
Datta, Pradip K.; Figueroa, Maria O. D. C. R.; Lajolo, Franco M.
1991-01-01
Two major lectins (lectin I and lectin II) were purified to homogeneity from the seeds of Araucaria brasiliensis (Gymnospermae). The purity of the lectins was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and high performance liquid chromatography. They are glycoproteins in nature containing 6.3 and 2.9%, respectively, of neutral sugar and have absorption coefficients of 3.8 and 4.7, respectively, at 280 nanometers. The molecular weights of both lectins obtained by gel filtration on Sephacryl S-400 were equal: 200,000. After dissociation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, molecular weights were 20,000 and 34,000, respectively, for lectin I and lectin II, suggesting they are decameric and hexameric in nature. The amino acid composition of both lectins showed little difference, but both had high amounts of acidic amino acids and lacked methionine in their molecule. The carbohydrate binding specificity of lectins was directed towards mannose, glucose, and their oligomers. High inhibitory activity was also found with thyroglobulin. The erythroagglutinating activity of the lectins was enhanced in the presence of high-molecular-weight substances both at 37 and 4°C. Divalent cations do not appear to be essential for activity. They maintained their agglutinating activity over a broad but different range of pH: 5.5 to 7.5 and 6.5 to 7.5, respectively. Both lectins agglutinated erythrocytes of human ABO blood types equally well. ImagesFigure 2Figure 3 PMID:16668523
Lagarda-Diaz, I.; Geiser, D.; Guzman-Partida, A.M.; Winzerling, J.; Vazquez-Moreno, L.
2014-01-01
Abstract Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 ( Olneya tesota ) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography−tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. PMID:25528751
Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya
The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less
Roy, M J
1987-06-01
Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.
Peumans, Willy J.; Barre, Annick; Bras, Julien; Rougé, Pierre; Proost, Paul; Van Damme, Els J.M.
2002-01-01
A mannose (Man)-binding lectin has been isolated and characterized from the thallus of the liverwort Marchantia polymorpha. N-terminal sequencing indicated that the M. polymorpha agglutinin (Marpola) shares sequence similarity with the superfamily of monocot Man-binding lectins. Searches in the databases yielded expressed sequence tags encoding Marpola. Sequence analysis, molecular modeling, and docking experiments revealed striking structural similarities between Marpola and the monocot Man-binding lectins. Activity and specificity studies further indicated that Marpola is a much stronger agglutinin than the Galanthus nivalis agglutinin and exhibits a preference for methylated Man and glucose, which is unprecedented within the family of monocot Man-binding lectins. The discovery of Marpola allows us, for the first time, to corroborate the evolutionary relationship between a lectin from a lower plant and a well-established lectin family from flowering plants. In addition, the identification of Marpola sheds a new light on the molecular evolution of the superfamily of monocot Man-binding lectins. Beside evolutionary considerations, the occurrence of a G. nivalis agglutinin homolog in a lower plant necessitates the rethinking of the physiological role of the whole family of monocot Man-binding lectins. PMID:12114560
Ottinger, C.A.; Johnson, S.C.; Ewart, K.V.; Brown, L.L.; Ross, N.W.
1999-01-01
We investigated the effects of a calcium-dependent mannose-binding lectin isolated from the serum of Atlantic salmon on Aeromonassalmonicida viability and the anti-A. salmonicida activity of Atlantic salmon macrophages. In the absence of other factors, binding of this lectin at concentrations of 0.8, 4.0 and 20.0 ng ml−1 to virulent A. salmonicida failed to significantly reduce (P>0.05) cell viability. However, binding of the lectin to A. salmonicida did result in significant (P≤0.05) dose-dependent increases in phagocytosis, and bactericidal activity. Significant increases (P≤0.05) were also observed in phagocyte respiratory burst activity within the lectin concentration range of 4.0–20.0 ng ml−1 but the stimulation was not dose dependent at these lectin concentrations. At the lowest lectin concentration tested (0.32 ng ml−1), a significant decrease (P≤0.05) in respiratory burst was observed. The structure and activity of this lectin are similar to that of mammalian mannose-binding lectins, which are known to play a pivotal role in innate immunity. The presence of this lectin may be an important defense mechanism against Gram-negative bacteria such as A. salmonicida.
A thermostable lectin from the rhizomes of Kaempferia parviflora.
Konkumnerd, Wichchulada; Karnchanatat, Aphichart; Sangvanich, Polkit
2010-08-30
Kaempferia parviflora, or black galingale (Kra-Chai-Dam), belongs to the Zingiberaceae family and is used as both a food ingredient and a medicinal plant. There are diverse reports on the biological activities of compounds extracted from the plant, such as antimalarial, antifungal and an effective sexual-enhancing role, but not on the lectins. A lectin was isolated from the rhizomes of Kaempferia parviflora using affinity chromatography on Concanavalin A followed by gel filtration chromatography on Sephacryl S-100. The molecular weight of the purified lectin was about 41.7 kDa. This lectin showed haemagglutinating activity against erythrocytes from several sources, with the highest level being against those from rabbits. Moreover, the lectin was thermostable, with significant haemagglutinating activity detectable up to 75 degrees C. The results of trypsin digestion and liquid chromatography/tandem mass spectrometry analysis suggested that this protein could be a member of the lectin/endochitnase1 family. A lectin that showed thermotolerant haemagglutinating activity against erythrocytes from several sources was successfully purified from K. paviflora rhizomes. Peptide sequence analysis indicated that this lectin is similar to lectin/endochitinase 1 (Urtica dioica) or Hevein-like protein (Hevea brasiliensis). Copyright (c) 2010 Society of Chemical Industry.
Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina
2011-01-01
ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163
Removal of tetracycline from contaminated water by Moringa oleifera seed preparations.
Santos, Andréa F S; Matos, Maria; Sousa, Ângela; Costa, Cátia; Nogueira, Regina; Teixeira, José A; Paiva, Patrícia M G; Parpot, Pier; Coelho, Luana C B B; Brito, António G
2016-01-01
The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid-phase extraction followed by high-performance liquid chromatography-mass spectrometry. Moringa extract and flour removed TA from water. The extract removed TA in all concentrations, and better removal (40%) was obtained with 40 mg L(-1); seed flour (particles < 5 mm), 1.25 and 2.50 g L(-1) removed 28% and 29% of tetracycline, respectively; particles > 5 mm (0.50 g L(-1)) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L(-1)); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L(-1) and tetracycline 50 mg L(-1) , pH range 5-8, showed different results. Extract ZP was more negative (-10.73 to -16.00 mV) than tetracycline ZP (-0.27 to -20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since Moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin-binding sites. This is a natural process, which do not promote environmental damage.
Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
Simon, Dominic; Derer, Anja; Andes, Fabian T; Lezuo, Patrick; Bozec, Aline; Schett, Georg; Herrmann, Martin; Harre, Ulrike
2017-12-01
Bone tissue undergoes permanent and lifelong remodeling with a concerted action of bone-building osteoblasts and bone-resorbing osteoclasts. A precise cooperation between those two cell types is critical in the complex process of bone renewal. Galectin-3 is a member of the β-galactoside-binding lectin family playing multiple roles in cell growth, differentiation and aggregation. As it has been described to be expressed in bone, galectin-3 might influence bone homeostasis by regulating the function and/or interplay of osteoblasts and osteoclasts. Here, we investigated the role of galectin-3 in osteoclastogenesis and osteoblast-osteoclast interactions. Bone histomorphometric analysis and μCT measurements revealed a decreased trabecular bone volume and an increased osteoclast number in 12weeks old male galectin-3 knockout mice compared to wildtype littermates. Galectin-3 deficient bone marrow cells displayed a higher osteoclastogenic capacity in ex vivo differentiation assays, associated with elevated TRAF6 mRNA levels, suggesting an intrinsic inhibition of osteoclastogenesis by galectin-3 interfering with RANKL-mediated signaling. Furthermore, the addition of extracellular galectin-3 to murine or human osteoclastogenesis assays inhibited osteoclast formation and osteoclast numbers were higher in co-culture assays with galectin-3 deficient osteoblasts. In conclusion, our data suggest the secretion of galectin-3 as a novel mechanism for osteoblasts to control osteoclastogenesis and to maintain trabecular bone homeostasis independently of the RANKL/OPG-axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Konami, Y; Yamamoto, K; Osawa, T
1991-02-01
A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.
Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X
2016-07-05
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Jacobs, Thomas; Erdmann, Hanna; Fleischer, Bernhard
2010-01-01
The protozoan parasite Trypanosoma cruzi (T. cruzi) is transmitted by blood-sucking insect vectors. After transmission, parasites circulate in the blood as trypomastigotes and invade a variety of cells to multiply intracellularly as amastigotes. The acute phase triggers an immune response that restricts the dissemination and proliferation of parasites. However, parasites are able to persist in different tissues for decades causing the pathology of Chagas' disease. T. cruzi expresses a trans-sialidase (TS). This unique enzyme transfers sialic acid from host glycoconjugates to mucin-like molecules on the parasite and is supposed to be a major virulence factor. TS and sialylated structures were implicated in the persistence of parasites. We discuss here the recent findings on the function of sialylated structures on the surface of T. cruzi with a special emphasis on their property to interact with sialic acid-binding Ig-like lectins, which may allow the parasite to modulate the immune system of the host. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar
2017-02-01
The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.
Tateno, H; Saneyoshi, A; Ogawa, T; Muramoto, K; Kamiya, H; Saneyoshi, M
1998-07-24
Two L-rhamnose-binding lectins named STL1 and STL2 were isolated from eggs of steelhead trout (Oncorhynchus mykiss) by affinity chromatography and ion exchange chromatography. The apparent molecular masses of purified STL1 and STL2 were estimated to be 84 and 68 kDa, respectively, by gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry of these lectins revealed that STL1 was composed of noncovalently linked trimer of 31.4-kDa subunits, and STL2 was noncovalently linked trimer of 21.5-kDa subunits. The minimum concentrations of STL1, a major component, and STL2, a minor component, needed to agglutinate rabbit erythrocytes were 9 and 0.2 microg/ml, respectively. The most effective saccharide in the hemagglutination inhibition assay for both STL1 and STL2 was L-rhamnose. Saccharides possessing the same configuration of hydroxyl groups at C2 and C4 as that in L-rhamnose, such as L-arabinose and D-galactose, also inhibited. The amino acid sequence of STL2 was determined by analysis of peptides generated by digestion of the S-carboxamidomethylated protein with Achromobacter protease I or Staphylococcus aureus V8 protease. The STL2 subunit of 195 amino acid residues proved to have a unique polypeptide architecture; that is, it was composed of two tandemly repeated homologous domains (STL2-N and STL2-C) with 52% internal homology. These two domains showed a sequence homology to the subunit (105 amino acid residues) of D-galactoside-specific sea urchin (Anthocidaris crassispina) egg lectin (37% for STL2-N and 46% for STL2-C, respectively). The N terminus of the STL1 subunit was blocked with an acetyl group. However, a partial amino acid sequence of the subunit showed a sequence similarity to STL2. Moreover, STL2 also showed a sequence homology to the ligand binding domain of the vitellogenin receptor. We have also employed surface plasmon resonance biosensor methodology to investigate the interactions between STL2 and major egg yolk proteins from steelhead trout, lipovitellin, and beta'-component, which are known as vitellogenin digests. Interestingly, STL2 showed distinct interactions with both egg yolk proteins. The estimated values for the affinity constant (Ka) of STL2 to lipovitellin and beta' component were 3.44 x 10(6) and 4.99 x 10(6), respectively. These results suggest that the fish egg lectins belong to a new family of animal lectin structurally related to the low density lipoprotein receptor super- family.
Lectin cDNA and transgenic plants derived therefrom
Raikhel, Natasha V.
2000-10-03
Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.
Purification and Characterization of a Lectin from Phaseolus vulgaris cv. (Anasazi Beans)
Sharma, Arishya; Ng, Tzi Bun; Wong, Jack Ho; Lin, Peng
2009-01-01
A lectin has been isolated from seeds of the Phaseolus vulgaris cv. “Anasazi beans” using a procedure that involved affinity chromatography on Affi-gel blue gel, fast protein liquid chromatography (FPLC)-ion exchange chromatography on Mono S, and FPLC-gel filtration on Superdex 200. The lectin was comprised of two 30-kDa subunits with substantial N-terminal sequence similarity to other Phaseolus lectins. The hemagglutinating activity of the lectin was stable within the pH range of 1–14 and the temperature range of 0–80°C. The lectin potently suppressed proliferation of MCF-7 (breast cancer) cells with an IC50 of 1.3 μM, and inhibited the activity of HIV-1 reverse transcriptase with an IC50 of 7.6 μM. The lectin evoked a mitogenic response from murine splenocytes as evidenced by an increase in [3H-methyl]-thymidine incorporation. The lectin had no antifungal activity. It did not stimulate nitric oxide production by murine peritoneal macrophages. Chemical modification results indicated that tryptophan was crucial for the hemagglutinating activity of the lectin. PMID:19343172
Chan, Yau Sang; Xia, Lixin; Ng, Tzi Bun
2015-01-01
A lectin exhibiting antiproliferative activity on tumor cell lines but devoid of antifungal activity has been purified from Phaseolus vulgaris cv. Green Dragon no. 8 seeds. The lectin was a 60 kDa dimeric protein with two 30 kDa subunits. It was a glucosamine-specific lectin as implied from the inhibitory effect of glucosamine on hemagglutinating activity of the lectin. The steps for isolation of the lectin involved Affi-gel blue gel (affinity gel), Mono Q (anion exchanger), and Superdex 75 column (size exclusion). The lectin was purified 20.8-fold from the crude extract of the beans. The purified lectin showed antiproliferative activity on breast cancer MCF7 cell line and nasopharyngeal cancer HONE1 and CNE2 cell lines, but a low activity on normal skin fibroblast HSF98 cell line. The lectin was shown to induce apoptosis on HONE1 cells, as indicated by increased phosphatidylserine externalization and mitochondrial depolarization. It also blocked HONE1 cell division and kept the cells at the G2/M phase of the cell cycle. PMID:26290674
Taylor, U; Rath, D; Zerbe, H; Schuberth, H J
2008-04-01
New insemination techniques allow a tremendous sperm reduction for successful artificial insemination (AI) if highly diluted semen is deposited in the tip of the uterine horn and close to the utero-tubal junction. High sperm losses are known to occur during uterine passage and it was the general question whether specific binding mechanisms are involved. Upon arrival in the uterus, spermatozoa are confronted with mainly two different cell types: uterine epithelial cells (UEC) and neutrophilic granulocytes (polymorphonuclear neutrophil, PMN). As cell-sperm interactions can hardly be observed in vivo, an ex vivo system was established to study the interaction between spermatozoa and the UEC. Uterine segments (10 cm) from freshly slaughtered synchronized juvenile gilts were inseminated for 60 min at 38 degrees C. Thereafter spermatozoa were recovered, counted flow cytometrically and examined for changes in viability and mitochondrial membrane potential (MMP). Significantly less spermatozoa with a functioning MMP and intact plasma membranes could be retrieved (55 +/- 7%), while the number of damaged spermatozoa hardly changed (93 +/- 12%), indicating retention of viable sperm cells in the uterine lumen. The interactions between porcine PMN and spermatozoa (motile, immotile, membrane-damaged) were studied in coincubation assays in vitro. The binding of membrane-damaged sperm cells to PMN was virtually non-existent (3 +/- 2%). Viable and motile spermatozoa attached to PMN without being phagocytosed within 60 min (45 +/- 3%), whereas binding to sodium fluoride (NaF)-immobilized spermatozoa was reduced to 20 +/- 2%. The binding of viable sperm to PMN is most likely not lectin-dependent; although both viable cell types were shown to express a broad range of different lectin-binding sugar residues, none of the lectins tested was able to selectively block PMN-sperm binding significantly. The results of the study suggest that viable spermatozoa are already subject to selective processes within the uterus before further selection is initiated at the utero-tubal junction and in the oviductal isthmus.
Rock, K L
1982-10-01
A model of accessory cell-dependent lectin-mediated T cell activation was investigated by utilizing a mitogen-inducible T cell hybridoma. A continuous MHC-restricted antigen-specific T cell line was fused with the azaguanine-resistant AKR thymoma BW5147. A hybrid, RF1.16B, was identified that is minimally inducible by Con A stimulation alone but is stimulated by Con A in the presence of T cell-depleted accessory cells to produce interleukin 2. The accessory cell function can be replaced by the monokine interleukin 1. Thus the lectin is a sufficient trigger for the hybrid in the absence of MHC restriction elements. The accessory cell function from splenocytes is provided by a non-B, non-T, predominantly Ia-bearing radioresistant cell. The interaction between the RF1.16B hybrid and the accessory cell population is not H-2-restricted. Control experiments, including the use of a cloned source of accessory cells, ruled out contaminating T cells or direct lectin effects as an explanation for the lack of H-2 restriction. The finding that an Ia-bearing cell is required for activation in an MHC-nonrestricted manner is discussed, and a hypothesis is raised that Ia antigens may play a role in addition to that of being a restriction element.
Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer
2007-06-30
The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.
Peláez, J; Bongalhardo, D C; Long, J A
2011-02-01
The carbohydrate-rich zone on the sperm surface is essential for inmunoprotection in the female tract and early gamete interactions. We recently have shown the glycocalyx of chicken sperm to be extensively sialylated and to contain residues of mannose, glucose, galactose, fucose, N-acetyl-galactosamine, N-acetyl-glucosamine, and N-acetyl-lactosamine. Our objective here was to evaluate the effects of 3 different cryopreservation methods on the sperm glycocalyx. Semen from roosters was pooled, diluted, cooled to 5°C, and aliquoted for cryopreservation using 6% dimethylacetamide (DMA), 11% dimethylsulfoxide (DMSO), or 11% glycerol (GOH). For the DMA method, semen was equilibrated for 1 min with cryoprotectant and rapidly frozen by dropping 25-µL aliquots into liquid nitrogen. For the other methods, semen was equilibrated for either 1 min (DMSO) or 20 min (GOH), loaded into straws, and frozen with a programmable freezer. Thawing rates mimicked the freezing rates (e.g., rapid for DMA; moderate for DMSO and GOH). Aliquots of thawed and fresh, unfrozen semen were incubated with 1 of 12 fluorescein isothiocyanate-conjugated lectins and counterstained with propidium iodide, and mean fluorescence intensity (MFI) was assessed by flow cytometry. For each lectin, the MFI of propidium iodide-negative (viable sperm) was compared among the fresh and frozen-thawed treatments (n = 5). For sperm frozen with GOH and DMA, the MFI of most lectins was similar (P > 0.05) to that of fresh sperm, whereas only 5 of 12 lectins were similar between fresh and DMSO-frozen sperm. Sperm from all 3 methods had higher (P < 0.05) MFI for lectins specific for N-acetyl-glucosamine and β-galactose than did fresh sperm. Fewer sperm were damaged (P < 0.001) with GOH than with DMA or DMSO, and membrane integrity was correlated with MFI for 9 of 12 lectins (P < 0.05). These data indicate that surface carbohydrates are altered during cryopreservation, and that cryoprotectant type and freezing-thawing rates affect the degree of modification. Although the glycoconjugates have not yet been identified, it is likely that these cryopreservation-induced changes contribute to the reduced fertility of frozen-thawed chicken semen.
Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikeska, Ruth; Wacker, Roland; Arni, Raghuvir
2005-01-01
The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chainmore » has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.« less
Glycodendritic structures: promising new antiviral drugs.
Rojo, Javier; Delgado, Rafael
2004-09-01
DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.
Supramolecular nanofiber of pyrene-lactose conjugates and its two-photon fluorescence imaging.
Sun, Qian; Zhu, Hong-Yu; Wang, Jun-Fang; Chen, Xiao; Wang, Ke-Rang; Li, Xiao-Liu
2018-04-23
A lactose modified pyrene derivative (Py-Lac) was synthesized, with which novel twisted supramolecular nanofibers in diameter about 20 nm were constructed by self-assembly. The nanofibers showed solid-state fluorescence between 400 nm and 650 nm with the maximum emission at 495 nm. Furthermore, its recognition reaction with PNA lectin was investigated by fluorescence spectra and turbidity assays. It is interesting found that the supramolecular assembly as multivalent glycocluster exhibited unique and selectively binding interactions with PNA lectin with the binding constant of 5.74 × 10 6 M -1 . Moreover, compound Py-Lac showed two-photon fluorescence imaging with Hep G2 cells. Copyright © 2018 Elsevier Inc. All rights reserved.
[Lectins, adhesins, and lectin-like substances of lactobacilli and bifidobacteria].
Lakhtin, V M; Aleshkin, V A; Lakhtin, M V; Afanas'ev, S S; Pospelova, V V; Shenderov, B A
2006-01-01
Cell-surface adhesion factors of lactobacilli and bifidobacteria, such as lectin/adhesin proteins of S-layers, secreted lectin-like bacteriocins, and lectin-like complexes, are considered and classified in the article. Certain general and specific properties of these factors are noted, such as in vitro and in vivo adhesion, cell co(aggregation), participation in the forming of microbial biofilms and colonization of mammalian alimentary tract, as well as complexation with biopolymers and bioeffectors, specificity to glycanes and natural glycoconjugates, domain and spatial organization of adhesion factors, co-functioning with other cytokines (pro- and anti-inflammatory ones), regulation of target cell properties, and other biological and physiological activities. The authors also note possibilities of application of lectins and lectin-like proteins of probiotic strains of lactobacilli and bifidobacteria in medicine and biotechnology.
Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J
2011-01-01
Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237
Benzeval, Ian; Bowyer, Adrian; Hubble, John
2012-01-01
The interactions of a number of commercially available dextran preparations with the lectin Concanavalin A (ConA) have been investigated. Dextrans over the molecular mass range 6 × 10³-2 × 10⁶ g mol⁻¹ were initially characterised in terms of their branching and hence terminal ligand density, using NMR. This showed a range of branching ratios between 3% and 5%, but no clear correlation with molecular mass. The bio-specific interaction of these materials with ConA was investigated using microcalorimetry. The data obtained were interpreted using a number of possible binding models reflecting the known structure of both dextran and the lectin. The results of this analysis suggest that the interaction is most appropriately described in terms of a two-site model. This offers the best compromise for the observed relationship between data and model predictions and the number of parameters used based on the chi-squared values obtained from a nonlinear least-squares fitting procedure. A two-site model is also supported by analysis of the respective sizes of the dextrans and the ConA tetramer. Using this model, the relationship between association constants, binding energy and molecular mass was determined. Copyright © 2011 Elsevier B.V. All rights reserved.
CancerLectinDB: a database of lectins relevant to cancer.
Damodaran, Deepa; Jeyakani, Justin; Chauhan, Alok; Kumar, Nirmal; Chandra, Nagasuma R; Surolia, Avadhesha
2008-04-01
The role of lectins in mediating cancer metastasis, apoptosis as well as various other signaling events has been well established in the past few years. Data on various aspects of the role of lectins in cancer is being accumulated at a rapid pace. The data on lectins available in the literature is so diverse, that it becomes difficult and time-consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. Not only do the lectins vary significantly in their individual functional roles, but they are also diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities and specificities as well as their potential applications. An organization of these seemingly independent data into a common framework is essential in order to achieve effective use of all the data towards understanding the roles of different lectins in different aspects of cancer and any resulting applications. An integrated knowledge base (CancerLectinDB) together with appropriate analytical tools has therefore been developed for lectins relevant for any aspect of cancer, by collating and integrating diverse data. This database is unique in terms of providing sequence, structural, and functional annotations for lectins from all known sources in cancer and is expected to be a useful addition to the number of glycan related resources now available to the community. The database has been implemented using MySQL on a Linux platform and web-enabled using Perl-CGI and Java tools. Data for individual lectins pertain to taxonomic, biochemical, domain architecture, molecular sequence and structural details as well as carbohydrate specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value for various studies on lectin cancer biology. CancerLectinDB can be accessed through http://proline.physics.iisc.ernet.in/cancerdb .
Flower, Robert L P
2012-01-01
A lectin detected in haemolymph from the Australian spiny lobster Panulirus cygnus agglutinated human ABO Group A cells to a higher titre than Group O or B. The lectin also agglutinated rat and sheep erythrocytes, with reactivity with rat erythrocytes strongly enhanced by treatment with the proteolytic enzyme papain, an observation consistent with reactivity via a glycolipid. The lectin, purified by affinity chromatography on fixed rat-erythrocyte stroma, was inhibited equally by N-acetylglucosamine and N-acetylgalactosamine. Comparison of data from gel filtration of haemolymph (behaving as a 1,800,000 Da macromolecule), and polyacrylamide gel electrophoresis of purified lectin (a single 67,000 Da band), suggested that in haemolymph the lecin was a multimer. The purified anti-A lectin autoprecipitated unless the storage solution contained chaotropic inhibitors (125 mmol/L sucrose: 500 mmol/L urea). The properties of this anti-A lectin and other similar lectins are consistent with a role in innate immunity in these invertebrates.
Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2009-12-01
Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2013-01-01
Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882
Fungal lectins: a growing family.
Kobayashi, Yuka; Kawagishi, Hirokazu
2014-01-01
Fungi are members of a large group of eukaryotic organisms that include yeasts and molds, as well as the most familiar member, mushrooms. Fungal lectins with unique specificity and structures have been discovered. In general, fungal lectins are classified into specific families based on their amino acid sequences and three-dimensional structures. In this chapter, we provide an overview of the approximately 80 types of mushroom and fungal lectins that have been isolated and studied to date. In particular, we have focused on ten fungal lectins (Agaricus bisporus, Agrocybe cylindracea, Aleuria aurantia, Aspergillus oryzae, Clitocybe nebularis, Marasmius oreades, Psathyrella velutina, Rhizopus stolonifer, Pholiota squarrosa, Polyporus squamosus), many of which are commercially available and their properties, sugar-binding specificities, structural grouping into families, and applications for biological research being described. The sialic acid-specific lectins (Agrocybe cylindracea and Polyporus squamosus) and fucose-specific lectins (Aleuria aurantia, Aspergillus oryzae, Rhizopus stolonifer, and Pholiota squarrosa) each showed potential for use in identifying sialic acid glycoconjugates and fucose glycoconjugates. Although not much is currently known about fungal lectins compared to animal and plant lectins, the knowledge accumulated thus far shows great promise for several applications in the fields of taxonomy, biomedicine, and molecular and cellular biology.
Modulation of ionotropic glutamate receptor function by vertebrate galectins.
Copits, Bryan A; Vernon, Claire G; Sakai, Ryuichi; Swanson, Geoffrey T
2014-05-15
AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are β-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Modulation of ionotropic glutamate receptor function by vertebrate galectins
Copits, Bryan A; Vernon, Claire G; Sakai, Ryuichi; Swanson, Geoffrey T
2014-01-01
AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are β-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors. PMID:24614744
Defaus, Sira; Avilés, Manuel; Andreu, David; Gutiérrez-Gallego, Ricardo
2018-04-04
Seminal plasma proteins are relevant for sperm functionality and some appear responsible for establishing sperm interactions with the various environments along the female genital tract towards the oocyte. In recent years, research has focused on characterizing the role of these proteins in the context of reproductive biology, fertility diagnostics and treatment of related problems. Herein, we focus on the main protein of bovine seminal plasma, PDC-109 (BSP-A1/-A2), which by virtue of its lectin properties is involved in fertilization. By means of surface plasmon resonance, the interaction of PDC-109 with a panel of the most relevant glycosidic epitopes of mammals has been qualitatively and quantitatively characterized, and a higher affinity for carbohydrates containing fucose has been observed, in line with previous studies. Additionally, using the orthogonal technique of Carbohydrate REcognition Domain EXcision-Mass Spectrometry (CREDEX-MS), the recognition domain of the interaction complexes between PDC-109 and all fucosylated disaccharides [(Fuc-α1,(3,4,6)-GlcNAc)] has been defined, revealing the specific glycotope and the peptide domain likely to act as the PDC-109 carbohydrate binding site.
Ferreira, José A; Daniel-da-Silva, Ana Luísa; Alves, Renato M P; Duarte, Daniel; Vieira, Igor; Santos, Lúcio Lara; Vitorino, Rui; Amado, Francisco
2011-09-15
Biomedical sciences, and in particular biomarker research, demand efficient glycoprotein enrichment platforms. Herein magnetic nanoprobes (MNP), after being coated with three broad-spectrum lectins-concanavalin A (ConA), wheat germ agglutinin (WGA), and Maackia amurensis lectin (MA)-were utilized to selectively capture glycoproteins from human body fluids. Additionally, a new methodology, based on protection of the lectins with their target sugars prior to coupling with MNPs, was proposed to overcome the nonspecific nature of conjugation. This approach contributed to preserve lectin conformation, increasing by 40% and 90% the affinity of ConA and MA for glycoproteins in relation to synthesis with nonprotected lectins. Optimal operating conditions (temperature, time) and maximum binding capacities were further determined for each lectin by use of fetuin as a reference. The enhanced performance of lectin-based nanoplatforms was demonstrated by comparing MNP@ConA with conventional Sepharose@ConA. These experiments have shown that ConA immobilized on MNP exhibited 5 times higher affinity for fetuin and ovalbumin when compared with Sepharose@ConA with the same amount of immobilized lectin. MNP@Lectins were then applied to human serum, saliva, and urine and the recovered proteins were digested with trypsin and analyzed by nano-HPLC MALDI-TOF/TOF. This allowed the identification of 180 proteins, 90% of which were found to be glycosylated by use of bioinformatics tools, therefore revealing low levels of unspecific binding. Thus, MNP@lectins have proved to be a valuable tool for glycoproteomic studies, particularly when dealing with minute amounts of material.
Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok
2014-01-01
Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.
Zhou, Zhi; Zhao, Shuimiao; Ni, Junyi; Su, Yilu; Wang, Lingui; Xu, Yanlai
2018-08-01
C-type lectin is a superfamily of Ca 2+ -dependent carbohydrate-recognition proteins that play significant roles in nonself-recognition and pathogen clearance. In the present study, a C-type lectin (PdC-Lectin) was chosen from stony coral Pocillopora damicornis to understand its recognition characteristics to zooxanthellae. PdC-Lectin protein contained a signal peptide and a carbohydrate-recognition domain with EPN motif in Ca 2+ -binding site 2. The PdC-Lectin recombinant protein was expressed and purified in vitro. The binding of PdC-Lectin protein to zooxanthellae was determined with western blotting method, and the bound protein to 10-10 5 cell mL -1 zooxanthellae was detectable in a concentration-dependent manner. Less PdC-Lectin protein binding to zooxanthellae was observed for the incubation at 36 °C than that at 26 °C. Furthermore, the PAMP recognition spectrum of PdC-Lectin protein was tested through surface plasmon resonance method, and it bound to LPS and Lipid A, but not to LTA, β-glucan, mannose or Poly (I:C). When PdC-Lectin protein was preincubated with LPS, there was less protein binding to zooxanthellae compared with that in non-preincubation group. These results collectively suggest that PdC-Lectin could recognize zooxanthellae, and the recognition could be repressed by high temperature and pathogenic bacteria, which would help to further understand the molecular mechanism of coral bleaching and the establishment of coral-zooxanthella symbiosis in the stony coral P. damicornis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition.
Sadeghi, Amin; Van Damme, Els J M; Peumans, Willy J; Smagghe, Guy
2006-09-01
A set of 14 plant lectins was screened in a binary choice bioassay for inhibitory activity on cowpea weevil Callosobruchus maculatus (F.) oviposition. Coating of chickpea seeds (Cicer arietinum L.) with a 0.05% (w/v) solution of plant lectins caused a significant reduction in egg laying. Control experiments with heat inactivated lectin and BSA indicated that the observed deterrent effects are specific and require carbohydrate-binding activity. However, no clear correlation could be established between deterrent activity and sugar-binding specificity/molecular structure of the lectins. Increasing the insect density reduced the inhibitory effect of the lectins confirming that female insects are capable of adjusting their oviposition rates as a function of host availability.
Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J.
2017-01-01
A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out. PMID:27277703
Sandoval-Altamirano, Catalina; Sanchez, Susana A; Ferreyra, Nancy F; Gunther, German
2017-10-01
The specificity of carbohydrate-protein interaction is a key factor in many biological processes and it is the foundation of technologies using glycoliposomes in drug delivery. The incorporation of glycolipids in vesicles is expected to increase their specificity toward particular targets such as lectins; however, the degree of exposure of the carbohydrate moiety at the liposome surface is a crucial parameter to be considered in the interaction. Herein we report the synthesis of mannose derivatives with one or two hydrophobic chains of different length, designed with the purpose of modifying the degree of exposure of the mannose when they were incorporated into liposomes. The interaction of glycovesicles with Con A was studied using: (i) agglutination assays; measured by dynamic laser light scattering (DLS); (ii) time resolved fluorescence methods and (iii) surface plasmon resonance (SPR) kinetic measurements. DLS data showed that an increase in hydrophobic chain length promotes a decrease of liposomes hydrodynamic radius. A longer hydrocarbon chain favors a deeper insertion into the bilayer and mannose moiety results less exposed at the surface to interact with lectin. Fluorescence experiments showed changes in the structure of glycovesicles due to the interaction with the protein. From SPR measurements the kinetic and equilibrium constants associated to the interaction of ConA with the different glycolipid synthetized were determined. The combination of SPR and fluorescence techniques allowed to study the interaction of Con A with mannosyl glycovesicles at three levels: at the surface, at the interface and deeper into the bilayer. Copyright © 2017 Elsevier B.V. All rights reserved.
High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica.
Ito, Shigeru; Shimizu, Masahiro; Nagatsuka, Maki; Kitajima, Seiji; Honda, Michiyo; Tsuchiya, Takahide; Kanzawa, Nobuyuki
2011-01-01
To understand better the host defense mechanisms of mollusks against pathogens, we examined the anti-microbial activity of mucus from the giant African snail Achatina fulica. Hemagglutination activity of the mucus secreted by the integument of snails inoculated with Escherichia coli was observed to increase and to cause hemagglutination of rabbit red blood cells. Purification of the snail mucus lectin by sequential column chromatography revealed that the relative molecular mass of the lectin was 350 kDa. The hemagglutination activity of the lectin was Ca(2+)-dependent and was inhibited by galactose. Growth arrest tests showed that the lectin did not inhibit bacterial growth, but did induce agglutination of gram-positive and gram-negative bacteria. Tissue distribution analyses using a polyclonal antibody revealed that the lectin was expressed in the tissues of the mantle collar. The lectin isolated from the mucus of the snail appeared to contribute to its innate immunity.
Lectins from Mycelia of Basidiomycetes
Nikitina, Valentina E.; Loshchinina, Ekaterina A.; Vetchinkina, Elena P.
2017-01-01
Lectins are proteins of a nonimmunoglobulin nature that are capable of specific recognition of and reversible binding to the carbohydrate moieties of complex carbohydrates, without altering the covalent structure of any of the recognized glycosyl ligands. They have a broad range of biological activities important for the functioning of the cell and the whole organism and, owing to the high specificity of reversible binding to carbohydrates, are valuable tools used widely in biology and medicine. Lectins can be produced by many living organisms, including basidiomycetes. Whereas lectins from the fruit bodies of basidiomycetes have been studied sufficiently well, mycelial lectins remain relatively unexplored. Here, we review and comparatively analyze what is currently known about lectins isolated from the vegetative mycelium of macrobasidiomycetes, including their localization, properties, and carbohydrate specificities. Particular attention is given to the physiological role of mycelial lectins in fungal growth and development. PMID:28640205
Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas
2013-10-14
Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two D-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)--blo from blossoms--were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.
Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E.; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas
2013-01-01
Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two d-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity. PMID:24129061
Plant lectins as defense proteins against phytophagous insects.
Vandenborre, Gianni; Smagghe, Guy; Van Damme, Els J M
2011-09-01
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel
2014-04-01
A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.
Tomioka, H; Saito, H
1980-01-01
Concanavalin A and phytohemagglutinin were found to cause marked inhibition of H2O2 release from macrophages induced with killed streptococci (preparation OK-432). The inhibitory effect of these two lectins on the H2O2 release from macrophages was observed with spontaneous and wheat germ lectin-triggered H2O2 release. This suggests that the lectins act directly on the macrophage H2O2-releasing function, per se, but not on the wheat germ lectin-H2O2 release-enhancing process. Concanavalin A exhibited its inhibitory action on macrophage H2O2 release by specific binding to D-mannopyranoside receptor sites on the macrophage cell surface. Galactose-binding lectins, peanut agglutinin, and soybean agglutinin failed to inhibit, but, on the other hand, slightly enhanced macrophage H2O2 release. The effect of these five lectins on the phagocytosis of latex particles by macrophages was tested. Wheat germ lectin, concanavalin A, and phytohemagglutinin significantly depressed the macrophage phagocytosis, whereas peanut agglutinin and soybean agglutinin failed to show any inhibitory action. PMID:7399666
The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search
Bauters, Lander; Naalden, Diana; Gheysen, Godelieve
2017-01-01
Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species. PMID:28054982
The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search.
Bauters, Lander; Naalden, Diana; Gheysen, Godelieve
2017-01-04
Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.
Karpova, I S; Korets'ka, N V; Pal'chykovs'ka, L H; Nehruts'ka, V V
2007-01-01
Isolation of lectins from extracts of the Sambucus nigra inflorescences and of pollen material have been performed using isoelectric focusing without carrier ampholytes (autofocusing). Fractions active in agglutination tests with different carbohydrate specificity were subjected to SDS-PAGE. The major lectin found in whole inflores-cences was GalNAc specific and is proposed to be a heterotetramer with subunits of about 30 and 33 kDa. It was called SNAflu-I. At least two other lectins were present in the pollen material and supposed to consist of identical subunits. Major positively charged lectin was Glc/Man specific with subunit of 26 kDa and called SNApol-I. Other pollen component (SNApol-II) was Gal specific with subunit of about 20 kDa. In order to elucidate cell targets sensitive for the S. nigra lectin's activity the combined effects of the lectins and transcriptional of phenazine origin on B. subtilis cells growth have been studied. Only SNApol-I demonstrated the antagonistic activity against these inhibitors in vivo. This lectin but not the SNAflu-I can also inhibit transcription in vitro. It is supposed that lectins from the same source may act in different directions on cell metabolism. Particularly one of the common targets may be the DNA-dependent synthesis of RNA.
Stern, M; Gellermann, B
1988-01-01
To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.
Parajuli, Bibek; Acharya, Kriti; Bach, Harry C.; Parajuli, Bijay; Zhang, Shiyu; Smith, Amos B.; Abrams, Cameron F.; Chaiken, Irwin
2018-01-01
We previously reported a first-generation recombinant DAVEI construct, a dual action virus entry inhibitor composed of cyanovirin-N (CVN) fused to a membrane proximal external region or its derivative peptide Trp3. DAVEI exhibits potent and irreversible inactivation of HIV-1 (human immunodeficiency virus) viruses by dual engagement of gp120 and gp41. However, the promiscuity of CVN to associate with multiple glycosylation sites in gp120 and its multivalency limit current understanding of the molecular arrangement of the DAVEI molecules on trimeric spike. Here, we constructed and investigated the virolytic function of second-generation DAVEI molecules using a simpler lectin, microvirin (MVN). MVN is a monovalent lectin with a single glycan-binding site in gp120, is structurally similar to CVN and exhibits no toxicity or mitogenicity, both of which are liabilities with CVN. We found that, like CVN-DAVEI-L2-3Trp (peptide sequence DKWASLWNW), MVN-DAVEI2-3Trp exploits a similar mechanism of action for inducing HIV-1 lytic inactivation, but by more selective gp120 glycan engagement. By sequence redesign, we significantly increased the potency of MVN-DAVEI2-3Trp protein. Unlike CVN-DAVEI2-3Trp, re-engineered MVN-DAVEI2-3Trp(Q81K/M83R) virolytic activity and its interaction with gp120 were both competed by 2G12 antibody. That the lectin domain in DAVEIs can utilize MVN without loss of virolytic function argues that restricted HIV-1 Env (envelope glycoprotein) glycan engagement is sufficient for virolysis. It also shows that DAVEI lectin multivalent binding with gp120 is not required for virolysis. MVN-DAVEI2-3Trp(Q81K/M83R) provides an improved tool to elucidate productive molecular arrangements of Env-DAVEI enabling virolysis and also opens the way to form DAVEI fusions made up of gp120-binding small molecules linked to Trp3 peptide. PMID:29343613
Klassert, Tilman E; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R; Flores, Carlos; Slevogt, Hortense
2018-01-01
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro . In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.
Klassert, Tilman E.; Goyal, Surabhi; Stock, Magdalena; Driesch, Dominik; Hussain, Abid; Berrocal-Almanza, Luis Carlos; Myakala, Rajashekar; Sumanlatha, Gaddam; Valluri, Vijayalakshmi; Ahmed, Niyaz; Schumann, Ralf R.; Flores, Carlos; Slevogt, Hortense
2018-01-01
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance. PMID:29515573
Vozza, Nicolás F.; Abdian, Patricia L.; Russo, Daniela M.; Mongiardini, Elías J.; Lodeiro, Aníbal R.; Molin, Søren; Zorreguieta, Angeles
2016-01-01
In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like β sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial biofilm matrix assembly and remodeling. PMID:27790205
Cai, Zhongyu; Sasmal, Aniruddha; Liu, Xinyu; Asher, Sanford A
2017-10-27
Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10 -8 M for ricin, a LoD of 2.3 × 10 -7 M for jacalin, and a LoD of 3.8 × 10 -8 M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-04-20
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.
Lagarda-Diaz, I; Geiser, D; Guzman-Partida, A M; Winzerling, J; Vazquez-Moreno, L
2014-01-01
Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Functions of galectins as 'self/non-self'-recognition and effector factors.
Vasta, Gerardo R; Feng, Chiguang; González-Montalbán, Nuria; Mancini, Justin; Yang, Lishi; Abernathy, Kelsey; Frost, Graeme; Palm, Cheyenne
2017-07-31
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Xie, Qiuhong; Matsunaga, Shigeru; Shi, Xiaohua; Ogawa, Setsuko; Niimi, Setsuko; Wen, Zhesheng; Tokuyasu, Ken; Machida, Sachiko
2003-11-01
Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.
Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren
2016-01-01
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)2) by modulating the surrounding pH. The CV peak currents of Fc(COOH)2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes. PMID:27104542
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.
Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Van Damme, Els J. M.; Balzarini, Jan; González-Pacanowska, Dolores
2015-01-01
Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents. PMID:25746926
Development of Seaweed-based Biopolymers for Edible Films and Lectins
NASA Astrophysics Data System (ADS)
Praseptiangga, D.
2017-04-01
Marine macroalgae (seaweeds) as one of important groups of biopolymers play an important role in human life. Biopolymers have been studied regarding their film-forming properties to produce edible films intended as food packaging and active ingredient carriers. Edible film, a thin layer or which is an integral part of food and can be eaten together with, have been used to avoid food quality deterioration due to physico-chemical changes, texture changes, or chemical reactions. Film-forming materials can be utilized individually or as mixed composite blends. Proteins and polysaccharides used for their mechanical and structural properties, and hydrophobic substances (lipids, essential oils, and emulsifiers) to provide good moisture barrier properties. In addition, bioactive substances from marine natural products, including seaweeds, have been explored for being used in the fields of medicine, food science, pharmaceutical science, biochemistry, and glycobiology. Among them, lectins or carbohydrate-binding proteins from seaweeds have recently been remarked. Lectins (hemagglutinins) are widely distributed in nature and also good candidates in such prospecting of seaweeds. They are useful as convenient tools to discriminate differences in carbohydrate structures and reveal various biological activities through binding and interacting to carbohydrates, suggesting that they are promising candidates for medicinal and clinical application.
Ashford, David; Desai, Nila N.; Allen, Anthony K.; Neuberger, Albert; O'Neill, Malcolm A.; Selvendran, Robert R.
1982-01-01
1. Methylation analysis of potato (Solanum tuberosum) lectin and thorn-apple (Datura stramonium) lectin confirmed previous conclusions that both glycoproteins contained high proportions of l-arabinofuranosides and lesser amounts of d-galactopyranosides. The arabinofuranosides are present in both lectins as short unbranched chains containing 1→2- and 1→3-linkages, which are known to be linked to hydroxyproline. Galactopyranosides are present as monosaccharides, which are known to be attached to serine, in potato lectin and as both the monosaccharide and the 1→3-linked disaccharide in Datura lectin. 2. Alkaline digestion of potato lectin and subsequent separation of the components by gel filtration led to the isolation of four fractions corresponding to the mono-, di-, tri- and tetra-arabinosides of hydroxyproline. The latter two fractions accounted for over 70% of the total hydroxyproline. 3. Methylation analysis was used to show that the triarabinoside contained only 1→2-linkages between sugars, but that the tetra-arabinoside contained both 1→2- and 1→3-linkages. Direct-insertion mass spectrometry of these compounds using electron impact and chemical ionization, in a comparison with other known structural patterns, was used to determine the sequences of the sugars, which were Araƒ1→2Araƒ1→2Araƒ1→Hyp and Araƒ1→3Araƒ1→2Araƒ1→2Araƒ 1→Hyp. 4. On the basis of optical rotation it had previously been suggested [Allen, Desai, Neuberger & Creeth (1978) Biochem. J. 171, 665–674] that all the arabinose of potato lectin was present as the β-l-furanoside. However, measurement of the optical rotations of the hydroxyprolyl arabinosides showed that whereas the diarabinoside had a molar rotation ([m]) value close to that predicted, the triarabinoside was more dextrorotatory and the tetra-arabinoside was less dextrorotatory than expected. Possible explanations for these findings are that, although the di- and tri-arabinosides contain exclusively β-arabinofuranosides, in the tri-arabinoside, interactions between pentose units lead to an enhanced positive rotation. The tetra-arabinoside, however, is proposed to contain a single α-arabinofuranoside residue, which is responsible for the lower than expected positive rotation. The observed rotation of the tetra-arabinoside was found to be close to the theoretical value predicted on that basis. Furthermore, the action of a specific α-arabinofuranosidase on the tetrasaccharide was to remove a single arabinose residue, presumably the terminal non-reducing sugar, and to produce a product that was indistinguishable on electrophoresis from the triarabinoside. Changes in rotation were compatible with this assumption. 5. It is concluded that the structures of the hydroxyprolyl tri- and tetra-arabinosides of potato lectin are: βAraƒ1→2βAraƒ1→2βAraƒ1→Hyp and αAraƒ1→3βAraƒ1→2βAraƒ 1→2βAraƒ1→Hyp. These are identical with compounds that have been isolated from the insoluble hydroxyproline-rich glycoproteins of plant cell walls. PMID:7082284
Chouquet, Anne; Païdassi, Helena; Ling, Wai Li; Frachet, Philippe; Houen, Gunnar; Arlaud, Gérard J.; Gaboriaud, Christine
2011-01-01
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca2+-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 Å resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism. PMID:21423620
Ulex europeus agglutinin-I binding as a potential prognostic marker in ovarian cancer.
Blonski, Katharina; Milde-Langosch, Karin; Bamberger, Ana-Maria; Osterholz, Tina; Utler, Christian; Berger, Jürgen; Löning, Thomas; Schumacher, Udo
2007-01-01
Ovarian cancer represents the malignant tumour of the female genital tract with the worst prognosis, mainly caused by early intraperitoneal spread. Cell-to-cell and cell-to-matrix interactions play a functionally important role in this spread and are both mediated by the cell membrane. Changes in the glycosylation of the cell membrane, as detected by lectin histochemistry, are sometimes associated with a poor prognosis. The expression of lectin binding of 164 ovarian cancer patients was analysed and the staining results were correlated with the clinical data of the patients. The univariate and multivariate statistical analysis revealed an independent prognostic significance for Ulex europeus agglutinin-I (UEA-I) binding. These findings indicate that UEA-I binding can serve as a prognostic factor in ovarian cancer.
Childs, R A; Feizi, T
1979-01-01
Endogenous beta-galactoside-binding lectins were isolated from human heart and from human and rhesus-monkey skeletal muscles. Gel precipitation and radioimmunoassays with rabbit antisera to calf heart lectin revealed antigenic cross-reactions between the primate and bovine muscle lectins. Images Fig. 1. Fig. 2. PMID:120198
Mitogenic activity of new lectins from seeds of wild Artocarpus species from Vietnam.
Blasco, E; Ngoc, L D; Aucouturier, P; Preud'Homme, J L; Barra, A
1996-05-01
Proliferative response of human peripheral blood mononuclear cells (PBMC) stimulated by new lectins purified from seeds of differents Artocarpus species from Vietnam (A. asperulus, A. heterophyllus, A. masticata, A. melinoxylus, A. parva and A. petelotii) was studied and compared to those of the lectin jacalin purified from jackfruit (A. heterophyllus) seeds collected in the island La Réunion. All lectins stimulated human PBMC to proliferate, with a variable efficiency of the mitogenic activity. Phenotypic analysis of cells recovered after 7 day-cultures showed that these lectins mostly stimulated CD4+ T lymphocytes. These results suggest that these lectins from different Artocarpus species are similar in terms of their mitogenic activity although their structural features are not identical.
Chabrol, Eric; Nurisso, Alessandra; Daina, Antoine; Vassal-Stermann, Emilie; Thepaut, Michel; Girard, Eric; Vivès, Romain R; Fieschi, Franck
2012-01-01
Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs), a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+)-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions.
Transcriptome analyses to investigate symbiotic relationships between marine protists
Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice
2015-01-01
Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650
Surface Glycosylation Profiles of Urine Extracellular Vesicles
Gerlach, Jared Q.; Krüger, Anja; Gallogly, Susan; Hanley, Shirley A.; Hogan, Marie C.; Ward, Christopher J.
2013-01-01
Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. PMID:24069349
Shimura, Kiyohito; Tamura, Mayumi; Toda, Tosifusa; Yazawa, Shin; Kasai, Ken-ichi
2011-08-01
α(1)-Acid glycoprotein (AGP) was previously shown to be a marker candidate of disease progression and prognosis of patients with malignancies by analysis of its glycoforms via lectins. Herein, affinity capillary electrophoresis of fluorescein-labeled AGP using lectins with the aid of laser-induced fluorescence detection was developed for quantitative evaluation of the fractional ratios of concanavalin A-reactive or Aleuria aurantia lectin-reactive AGP. Labeled AGP was applied at the anodic end of a fused-silica capillary (50 μm id, 360 μm od, 27 cm long) coated with linear polyacryloyl-β-alanyl-β-alanine, and electrophoresis was carried out for about 10 min in 60 mM 3-morpholinopropane-1-sulfonic acid-NaOH buffer (pH 7.35). Addition of the lectins to the anode buffer resulted in the separation of lectin-reactive glycoform peaks from lectin-non-reactive glycoform peaks. Quantification of the peak area of each group revealed that the percent of lectin-reactive AGP is independent of a labeling ratio ranging from 0.4 to 1.5 mol fluorescein/mol AGP, i.e. the standard deviation of 0.5% for an average of 59.9% (n=3). In combination with a facile procedure for micro-purification of AGP from serum, the present procedure, marking the reactivity of AGP with lectins, should be useful in determining the prognosis for a large number of patients with malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garner, Omai B; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C; Park, Arnold; Bowden, Thomas A; Freiberg, Alexander N; Lee, Benhur; Baum, Linda G
2015-03-01
Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by "bridging" the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Neu, Thomas R; Kuhlicke, Ute
2017-02-10
Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems. Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.
Van Damme, E J; Barre, A; Smeets, K; Torrekens, S; Van Leuven, F; Rougé, P; Peumans, W J
1995-01-01
Two lectins were isolated from the inner bark of Robinia pseudoacacia (black locust). The first (and major) lectin (called RPbAI) is composed of five isolectins that originate from the association of 31.5- and 29-kD polypeptides into tetramers. In contrast, the second (minor) lectin (called RPbAII) is a hometetramer composed of 26-kD subunits. The cDNA clones encoding the polypeptides of RPbAI and RPbAII were isolated and their sequences determined. Apparently all three polypeptides are translated from mRNAs of approximately 1.2 kb. Alignment of the deduced amino acid sequences of the different clones indicates that the 31.5- and 29-kD RPbAI polypeptides show approximately 80% sequence identity and are homologous to the previously reported legume seed lectins, whereas the 26-kD RPbAII polypeptide shows only 33% sequence identity to the previously described legume lectins. Modeling the 31.5-kD subunit of RPbAI predicts that its three-dimensional structure is strongly related to the three-dimensional models that have been determined thus far for a few legume lectins. Southern blot analysis of genomic DNA isolated from Robinia has revealed that the Robinia bark lectins are the result of the expression of a small family of lectin genes. PMID:7716244
Lima, Thâmarah A; Fernandes, Kenner M; Oliveira, Ana Patrícia S; Dornelles, Leonardo P; Martins, Gustavo F; Napoleão, Thiago H; Paiva, Patrícia Mg
2017-05-01
Myracrodruon urundeuva is a hardwood tree, and its bark, heartwood and leaf contain lectins (MuBL, MuHL and MuLL respectively) with termiticidal activity against Nasutitermes corniger. In this work, the effects of these lectins on the midgut of N. corniger workers were evaluated. The insects were supplied with an artificial diet containing the lectins at their respective LC 50 (previously determined). At 48 h after treatment, the midguts were dissected and fixed for histopathology analyses. Toluidine-blue-stained midguts from lectin-treated workers showed disorganisation, with the presence of debris in the lumen and the absence of brush border. Fluorescence microscopy revealed that the numbers of digestive and proliferating cells were lower in lectin-treated individuals than in the control, and caspase-3 staining confirmed the occurrence of cell apoptosis. Enteroendocrine cells were not seen in the treated individuals. The midguts from treated insects showed greater staining for peroxidase than the control, suggesting that the lectins caused oxidative stress. Staining with wheat germ agglutinin conjugated to FITC revealed that the lectins interfered with the integrity of the peritrophic matrix. This study showed that termiticidal lectins from M. urundeuva cause severe injuries, oxidative stress and cell death in the midgut of N. corniger workers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Potential immunomodulatory effects of plant lectins in Schistosoma mansoni infection.
Reis, Eliana A G; Athanazio, Daniel A; Cavada, Benildo Sousa; Teixeira, Edson Holanda; de Paulo Teixeira Pinto, Vicente; Carmo, Theomira M A; Reis, Alice; Trocolli, Graziela; Croda, Julio; Harn, Donald; Barral-Netto, Manoel; Reis, Mitermayer G
2008-01-01
Lectins are sugar-binding glycoproteins that can stimulate, in a non-antigen-specific fashion, lymphocytes, leading to proliferation and cytokine production. Some lectins are utilized as in vitro mitogenic lymphocyte stimulators and their use as immunomodulators against infectious diseases has been evaluated experimentally. In the experimental murine model, the immune response to schistosomiasis is Th1-like during the initial stage of infection, with a shift towards a Th2-like response after oviposition. We report the response of schistosomiasis patients' (n=37) peripheral blood mononuclear cells (PBMC) to stimulation by lectins, including newly isolated lectins from Brazilian flora, and by Schistosomamansoni soluble egg antigens (SEA). Cytokine production upon lectin stimulation ex vivo was assessed in PBMC supernatants, collected at 24 and 72 h, by sandwich ELISA to IL-5, IL-10, TNF-alpha and IFN-gamma. In PBMC from infected patients all but one of the lectins induced a Th2-like cytokine response, characterized by elevated IL-5 production that was higher than that induced by SEA stimulation alone. Our results show that the Th2 environment present during schistosomiasis is not affected and that it may be further stimulated by the presence of lectins.
Mistry, A C; Honda, S; Hirose, S
2001-11-15
Using a Japanese-eel (Anguilla japonica) gill cDNA subtraction library, two novel beta-d-galactose-binding lectins were identified that belong to group VII of the animal C-type lectin family. The eel C-type lectins, termed eCL-1 and eCL-2, are simple lectins composed of 163 amino acid residues, including a 22-residue signal peptide for secretion and a single carbohydrate-recognition domain (CRD) of approximately 130 residues typical of C-type lectins. The galactose specificity of the CRD was suggested by the presence of a QPD motif and confirmed by a competitive binding assay. Using Ruthenium Red staining, the lectins were shown to bind Ca(2+) ions. SDS/PAGE showed that native eCL-1 and eCL-2 have an SDS-resistant octameric structure (a tetramer of disulphide-linked dimers). Northern and Western blot analyses demonstrated high-level expression of eCL-1 and eCL-2 mRNAs and their protein products in gills from freshwater eels, which decreased markedly when the eels were transferred from freshwater to seawater. Immunohistochemistry showed that the eel lectins are localized in the exocrine mucous cells of the gill.
Li, Qiong; Ye, Xiao-Li; Zeng, Hong; Chen, Xin; Li, Xue-Gang
2012-03-01
To extract lectins from Trichosanthes kirilowi and study their hypoglycemic activity. The optimal extraction process included the following parameters were conformed by optimization analysis,lectins extracted from Trichosanthes kirilowi was achieved by ammonium sulfate precipitation; The agglutinate activity was determined by using the agglutination test with 5% human blood cells. Human hepatocarcinoma cell HepG2 and the alloxan-induced diabetic mice model were used to assess hypoglycemic activity of Lectin in Trichosanthes kirilowi. The agglutination indexes of lectins extraction buffer were 32; The cell and mice tests indicated that the lectins exhibited hypoglycemic activity in the 70% saturation. The optimum extraction technology is as follows: extraction with PBS, the material-water ratio is 1:30, the extraction time is 24 h, while the concentration of sodium chloride is 0 mol/L and pH is 7.2. Precipitate lectins by ammonium sulfate in the 70% saturation, centrifugal speed is 10 000 tracted from Trichosanthes kirilowi exposes proper hypoglycemic activity.
Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes.
Coriolano, M C; de Melo, C M L; Santos, A J G; Pereira, V R A; Coelho, L C B B
2012-12-01
The mitogenic lectins are invaluable tools to study the biochemical changes associated with lymphocyte activation and proliferation of various immune cells. Rachycentron canadum lectin (RcaL) was detected and purified from serum of cobia fish. The aim of this study was to evaluate the proliferative response and cytokine production in splenocytes of mice in vitro stimulated with RcaL lectin; Canavalia ensiformis lectin (Con A) was used as positive control. A high proliferation index was induced by RcaL in relation to control cells. Furthermore, RcaL induced higher IL-2 and IL-6 production in relation to control. The cell viability was 90% in splenocytes treated with RcaL lectin, but RcaL promoted significant late apoptosis after 24 and 48 h in relation to control. RcaL induced proliferative responses suggesting that this lectin can be used as a mitogenic agent in immunostimulatory assays. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.
High-Throughput Lectin Microarray-Based Analysis of Live Cell Surface Glycosylation
Li, Yu; Tao, Sheng-ce; Zhu, Heng; Schneck, Jonathan P.
2011-01-01
Lectins, plant-derived glycan-binding proteins, have long been used to detect glycans on cell surfaces. However, the techniques used to characterize serum or cells have largely been limited to mass spectrometry, blots, flow cytometry, and immunohistochemistry. While these lectin-based approaches are well established and they can discriminate a limited number of sugar isomers by concurrently using a limited number of lectins, they are not amenable for adaptation to a high-throughput platform. Fortunately, given the commercial availability of lectins with a variety of glycan specificities, lectins can be printed on a glass substrate in a microarray format to profile accessible cell-surface glycans. This method is an inviting alternative for analysis of a broad range of glycans in a high-throughput fashion and has been demonstrated to be a feasible method of identifying binding-accessible cell surface glycosylation on living cells. The current unit presents a lectin-based microarray approach for analyzing cell surface glycosylation in a high-throughput fashion. PMID:21400689
Lectins in human pathogenic fungi.
Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro
2014-01-01
Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Bänfer, Sebastian; Schneider, Dominik; Dewes, Jenny; Strauss, Maximilian T; Freibert, Sven-A; Heimerl, Thomas; Maier, Uwe G; Elsässer, Hans-Peter; Jungmann, Ralf; Jacob, Ralf
2018-05-08
The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4a E228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.
Antiviral Lectins: Selective Inhibitors of Viral Entry
Mitchell, Carter A.; Ramessar, Koreen; O’Keefe, Barry R.
2017-01-01
Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities. The review concludes with a brief discussion of several of the pertinent hurdles that heterologous proteins must clear to be useful clinical candidates and cites examples where such studies have been reported for antiviral lectins. Though the clearest path currently being followed is the use of antiviral lectins as anti-HIV microbicides via topical mucosal administration, some investigators have also found systemic efficacy against acute infections following subcutaneous administration. PMID:28322922
Naidu, Rayapati A; Ingle, Caroline J; Deom, Carl M; Sherwood, John L
2004-02-05
Tomato spotted wilt virus (TSWV, Genus: Tospovirus, Family: Bunyaviridae) is a major constraint to the production of several different crops of agronomic and horticultural importance worldwide. The amino acid sequence of the two envelope membrane glycoproteins, designated as G(N) (N-terminal) and G(C) (C-terminal), of TSWV contain several tripeptide sequences, Asn-Xaa-Ser/Thr, suggesting that the proteins are N-glycosylated. In this study, the lectin-binding properties of the viral glycoproteins and their sensitivities to glycosidases were examined to obtain information on the nature of potential oligosaccharide moieties present on G(N) and G(C). The viral proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and probed by affinoblotting using a battery of biotinylated lectins with specificity to different oligosaccharide structures. G(C) showed strong binding with five mannose-binding lectins, four N-acetyllactosamine-binding lectins and one fucose-binding lectin. G(N) was resolved into two molecular masses and only the slow migrating form showed binding, albeit to a lesser extent than G(C), with three of the five mannose-binding lectins. The N-acetyllactosamine- and fucose-specific lectins did not bind to either molecular mass form of G(N). None of the galactose-, N-acetylgalactosamine-, or sialic acid-binding lectins tested showed binding specificity to G(C) or G(N). Treatment of the denatured virions with endoglycosidase H and peptide:N-glycosidase F (PNGase F) resulted in a significant decrease in the binding of G(C) to high mannose- and N-acetyllactosamine-specific lectins. However, no such differences in lectin binding were apparent with G(N). These results indicate the presence of N-linked oligosaccharides of high mannose- and complex-type on G(C) and possibly high mannose-type on G(N). Differences in the extent of binding of the two envelope glycoproteins to different lectins suggest that G(C) is likely to be more heavily N-glycosylated than G(N). No evidence was observed for the presence of O-linked oligosaccharides on G(N) or G(C).
Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline
2017-12-01
Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.
Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs.
Rådberg, K; Biernat, M; Linderoth, A; Zabielski, R; Pierzynowski, S G; Weström, B R
2001-10-01
The present investigation characterized the effect of red kidney bean lectin exposure on gut maturation and function in young piglets. Eleven suckling pigs were given by stomach tube a crude red kidney bean lectin preparation (containing about 25% lectin, 400 mg/kg BW) (lectin-treated pigs) at 10, 11, and 12 d of life, and an additional 16 pigs (control pigs) were given saline instead. On the next day, the intestinal absorptive capacity was determined in vivo, and on the 14th d of life the piglets were killed and organs and small intestine samples were collected for analyses and in vitro permeability experiments. The lectin-treated pigs showed an increase in stomach weights and mucosa thickness, whereas no weight effect was found for the small intestine, spleen, liver, or adrenals. Morphometric analyses of the small intestine in lectin-treated pigs showed a decrease in villus heights, an increase in crypt depths and crypt cell mitotic indices, and fewer vacuolated enterocytes per villus and reduced vacuole size. Lectin treatment also resulted in a decrease in the absorption of different-sized marker molecules after gavage feeding, a decrease in intestinal marker permeability, and a change in small intestinal disaccharidase activities, with increased maltase and sucrase activities. The size of the pancreatic acini was also greater in the lectin-treated pigs, but no increases in enzyme content or pancreatic weight could be determined. In addition, the blood plasma levels of cholecystokinin were higher in the lectin-treated than in the control pigs. The results indicate that exposure to crude red kidney bean lectin induces structural and functional maturation of the gut and pancreatic growth in young suckling piglets. This possibility of inducing gut maturation may lead to an improvement in the piglets' ability to adapt to weaning and to an increase in the growth and health of these animals.
Glycoprofiling of Early Gastric Cancer Using Lectin Microarray Technology.
Li, Taijie; Mo, Cuiju; Qin, Xue; Li, Shan; Liu, Yinkun; Liu, Zhiming
2018-01-01
Recently, studies have reported that protein glycosylation plays an important role in the occurrence and development of cancer. Gastric cancer is a common cancer with high morbidity and mortality owing to most gastric cancers are discovered only at an advanced stage. Here, we aim to discover novel specific serum glycanbased biomarkers for gastric cancer. A lectin microarray with 50 kinds of tumor-associated lectin was used to detect the glycan profiles of serum samples between early gastric cancer and healthy controls. Then lectin blot was performed to validate the differences. The result of the lectin microarray showed that the signal intensities of 13 lectins showed significant differences between the healthy controls and early gastric cancer. Compared to the healthy, the normalized fluorescent intensities of the lectins PWA, LEL, and STL were significantly increased, and it implied that their specifically recognized GlcNAc showed an especially elevated expression in early gastric cancer. Moreover, the binding affinity of the lectins EEL, RCA-II, RCA-I, VAL, DSA, PHA-L, UEA, and CAL were higher in the early gastric cancer than in healthy controls. These glycan structures containing GalNAc, terminal Galβ 1-4 GlcNAc, Tri/tetraantennary N-glycan, β-1, 6GlcNAc branching structure, α-linked fucose residues, and Tn antigen were elevated in gastric cancer. While the two lectins CFL GNL reduced their binding ability. In addition, their specifically recognized N-acetyl-D-galactosamine structure and (α-1,3) mannose residues were decreased in early gastric cancer. Furthermore, lectin blot results of LEL, STL, PHA-L, RCA-I were consistent with the results of the lectin microarray. The findings of our study clarify the specific alterations for glycosylation during the pathogenesis of gastric cancer. The specific high expression of GlcNAc structure may act as a potential early diagnostic marker for gastric cancer.
The Lectin Pathway in Thrombotic Conditions-A Systematic Review.
Larsen, Julie Brogaard; Hvas, Christine Lodberg; Hvas, Anne-Mette
2018-06-04
The lectin pathway of the complement system can activate the coagulation system in vitro, but the role of the lectin pathway in haemostatic activation and thrombosis in vivo is not clear. We performed a systematic review of the existing literature on associations between the lectin pathway and arterial and venous thrombosis, in accordance with the Assessing the Methodological Quality of Systematic Reviews guidelines. PubMed and Embase were searched from January 1990 to March 2017. We included original studies on human study populations investigating associations between the lectin pathway (protein serum levels, genotype or gene expression) and thrombotic conditions or laboratory coagulation markers. Exclusion criteria were case studies including fewer than five cases, conference abstracts or any other language than English. In total, 43 studies were included which investigated associations between the lectin pathway and cardiovascular thrombotic events (CVEs) ( n = 22), ischaemic stroke ( n = 9), CVE and stroke ( n = 1) and other conditions (systemic lupus erythematosus [ n = 6], sepsis-related coagulopathy [ n = 3], pulmonary embolism [ n = 1], asparaginase treatment [ n = 1]). Studies on the lectin pathway and CVE risk reported discrepant results, as both high and low mannose-binding lectin (MBL) serum levels were found to correlate with increased CVE risk. In ischaemic stroke patients, occurrence of stroke as well as increased stroke severity and poor outcome were consistently associated with high serum MBL. For other thromboembolic conditions, only few studies were identified. In conclusion, lectin pathway activation may negatively influence outcome after ischaemic stroke and possibly contribute to CVE risk. Further research is warranted to elucidate the role of the lectin pathway in other thrombotic conditions. Schattauer GmbH Stuttgart.
Dong, Qing; Sugiura, Tsutomu; Toyohira, Yumiko; Yoshida, Yasuhiro; Yanagihara, Nobuyuki; Karasaki, Yuji
2011-02-15
Several lectins, present in beans and edible plant products, have immuno-potentiating and anti-tumor activities. We here report the effects of garlic lectin purified from garlic bulbs on the production of cytokines such as interleukin-12 (IL-12) and interferon-γ (IFN-γ) in the mouse. Garlic lectin induced IFN-γ production in spleen cells in a bell-shaped time (24-60 h)- and concentration (0.25-2.0 mg/ml)-dependent manner. The maximal enhancement was observed at 36 h with 0.5 mg/ml of garlic lectin. The stimulatory effect of garlic lectin on IFN-γ production was completely inhibited by both actinomycin D and cycloheximide, an inhibitor of ribosomal protein synthesis and DNA-dependent RNA polymerase, respectively, and was associated with an increase in IFN-γ mRNA level. Garlic lectin also induced IL-12 production in mouse peritoneal macrophages in a concentration (0.25-1.0 mg/ml)- and bell-shaped time (3-24 h)-dependent manner. The lectin increased the phosphorylation of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) in macrophages. Furthermore, specific pharmacological inhibitors of ERK kinase (U0126) and p38 MAPK (SB203580) also suppressed the production of IL-12 induced by garlic lectin. The present findings suggest that garlic lectin induces IL-12 production via activation of p38 MAPK and ERK in mouse macrophages, which, in turn, stimulates IFN-γ production through an increase in IFN-γ mRNA in the spleen cells. Copyright © 2010 Elsevier GmbH. All rights reserved.
Antibacterial activity of lactose-binding lectins from Bufo arenarum skin.
Sánchez Riera, Alicia; Daud, Adriana; Gallo, Adriana; Genta, Susana; Aybar, Manuel; Sánchez, Sara
2003-04-01
Amphibians respond to microbial infection through cellular and humoral defense mechanisms such as antimicrobial protein secretion. Most humoral defense proteins are synthetized in the skin. In this study we isolated two beta-galactoside-binding lectins with molecular weights of 50 and 56 KDa from the skin of Bufo arenarum. These lectins have significant hemagglutination activity against trypsinized rabbit erythrocytes, which was inhibited by galactose-containing saccharides. They are water-soluble and independent of the presence of calcium. The antimicrobial analysis for each lectin was performed. At mumolar concentration lectins show strong bacteriostatic activity against Gram negative bacteria (Escherichia coli K12 4100 and wild strains of Escherichia coli and Proteus morganii) and Gram positive bacteria (Enterococcus faecalis). The antibacterial activity of these lectins may provide an effective defense against invading microbes in the amphibian Bufo arenarum.
Developmental changes in the distribution of cecal lectin-binding sites of Balb-c mice.
Doehrn, S; Breipohl, W; Lierse, W; Romaniuk, K; Young, W
1992-01-01
The existence of lectin-binding sites was investigated in the cecum of Balb-c mice at seven developmental stages ranging from 18 days post conception (p.c.) to 8 weeks after birth. Nine horseradish-peroxidase-conjugated lectins (concanavalin A, Triticum vulgaris, Dolichus biflorus, Helix pomatia, Arachis hypogaea, Glycine maximus, Lotus tetragonolobus, Ulex europaeus, Limulus polyphemus) were applied to 5- to 7-microns thin paraffin sections of Bouin-fixed tissue. After DAB staining the sections were evaluated by light microscopy. It was shown that each lectin exhibits a unique developmental pattern. The adult binding patterns were established at the age of 3-4 weeks with only minor changes occurring thereafter. Considerable differences in binding patterns occurred not only between lectins of different groups but also between lectins with the same nominal monosaccharide specificity.
The identification of plant lectins with mucosal adjuvant activity.
Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O'Hagan, D T
2001-01-01
To date, the most potent mucosal vaccine adjuvants to be identified have been bacterial toxins. The present data demonstrate that the type 2 ribosome-inactivating protein (type 2 RIP), mistletoe lectin I (ML-I) is a strong mucosal adjuvant of plant origin. A number of plant lectins were investigated as intranasal (i.n.) coadjuvants for a bystander protein, ovalbumin (OVA). As a positive control, a potent mucosal adjuvant, cholera toxin (CT), was used. Co-administration of ML-I or CT with OVA stimulated high titres of OVA-specific serum immunoglobulin G (IgG) in addition to OVA-specific IgA in mucosal secretions. CT and ML-I were also strongly immunogenic, inducing high titres of specific serum IgG and specific IgA at mucosal sites. None of the other plant lectins investigated significantly boosted the response to co-administered OVA. Immunization with phytohaemagglutinin (PHA) plus OVA elicited a lectin-specific response but did not stimulate an enhanced response to OVA compared with the antigen alone. Intranasal delivery of tomato lectin (LEA) elicited a strong lectin-specific systemic and mucosal antibody response but only weakly potentiated the response to co-delivered OVA. In contrast, administration of wheatgerm agglutinin (WGA) or Ulex europaeus lectin 1 (UEA-I) with OVA stimulated a serum IgG response to OVA while the lectin-specific responses (particularly for WGA) were relatively low. Thus, there was not a direct correlation between immunogenicity and adjuvanticity although the strongest adjuvants (CT, ML-I) were also highly immunogenic.
The identification of plant lectins with mucosal adjuvant activity
Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O'hagan, D T
2001-01-01
To date, the most potent mucosal vaccine adjuvants to be identified have been bacterial toxins. The present data demonstrate that the type 2 ribosome-inactivating protein (type 2 RIP), mistletoe lectin I (ML-I) is a strong mucosal adjuvant of plant origin. A number of plant lectins were investigated as intranasal (i.n.) coadjuvants for a bystander protein, ovalbumin (OVA). As a positive control, a potent mucosal adjuvant, cholera toxin (CT), was used. Co-administration of ML-I or CT with OVA stimulated high titres of OVA-specific serum immunoglobulin G (IgG) in addition to OVA-specific IgA in mucosal secretions. CT and ML-I were also strongly immunogenic, inducing high titres of specific serum IgG and specific IgA at mucosal sites. None of the other plant lectins investigated significantly boosted the response to co-administered OVA. Immunization with phytohaemagglutinin (PHA) plus OVA elicited a lectin-specific response but did not stimulate an enhanced response to OVA compared with the antigen alone. Intranasal delivery of tomato lectin (LEA) elicited a strong lectin-specific systemic and mucosal antibody response but only weakly potentiated the response to co-delivered OVA. In contrast, administration of wheatgerm agglutinin (WGA) or Ulex europaeus lectin 1 (UEA-I) with OVA stimulated a serum IgG response to OVA while the lectin-specific responses (particularly for WGA) were relatively low. Thus, there was not a direct correlation between immunogenicity and adjuvanticity although the strongest adjuvants (CT, ML-I) were also highly immunogenic. PMID:11168640
Plant as a plenteous reserve of lectin
Hivrale, AU; Ingale, AG
2013-01-01
Lectins are clusters of glycoproteins of nonimmune foundation that combine specifically and reversibly to carbohydrates, mainly the sugar moiety of glycoconjugates, resulting in cell agglutination and precipitation of glycoconjugates. They are universally distributed in nature, being established in plants, fungi, viruses, bacteria, crustacea, insects, and animals, but leguminacae plants are rich source of lectins. The present review reveals the structure, biological properties, and application of plant lectins. PMID:24084524
Lectin cDNA and transgenic plants derived therefrom
Raikhel, N.V.
1994-01-04
Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .
Lectin cDNA and transgenic plants derived therefrom
Raikhel, Natasha V.
1994-01-04
Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.
Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics
Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.
2017-01-01
Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095
Ang, Andrew Si Wo; Cheung, Randy Chi Fai; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Ng, Tzi Bun
2014-01-01
A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg(2+)-dependent hemagglutinating activity was stable at pH 7-8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.
Tsutsui, Shigeyuki; Yamaguchi, Motoki; Hirasawa, Ai; Nakamura, Osamu; Watanabe, Tasuku
2009-08-01
A lactose-specific lectin with a molecular mass of about 25 kDa was purified from the skin mucus of a cartilaginous fish-the common skate (Raja kenojei). The complementary DNA sequence of the lectin was 1540 bp long and contained a reading frame encoding 226 amino acids, which showed approximately 38% identity to pentraxins of mammals and teleosts. Gene expression was observed in the skin, gill, stomach and intestine in the healthy skate. We also identified an isotype gene from the liver whose deduced amino-acid sequence shared 69.0% identity with the skin type gene. The antiserum detected protein in the skin, where the lectin is localized in the epidermal cells, and in the blood plasma. The lectin genes are multicopied in the common skate genome. Although pentraxins are acute phase proteins, mRNAs of both the isotypes were not upregulated after the in vivo challenge with formalin-killed Escherichia coli, which suggests that they are constantly present in the skin mucus and blood plasma to protect against pathogenic invasion. This lectin is the fifth type of lectin found in the cutaneous secretions of fish, demonstrating that skin mucus lectins have evolved with marked molecular diversity in fish.
Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, E.C.; Barondes, S.H.
Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In bothmore » muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found.« less
Klafke, G B; Borsuk, S; Gonçales, R A; Arruda, F V S; Carneiro, V A; Teixeira, E H; Coelho da Silva, A L; Cavada, B S; Dellagostin, O A; Pinto, L S
2013-11-01
The aim of the present work was to study the in vitro effect of native and recombinant Bauhinia variegata var. variegata lectins in inhibiting early adhesion of Streptococcus mutans, Streptococcus sanguis and Streptococcus sobrinus to experimentally acquired pellicle. Native lectin from B. variegata (BVL) was purified by affinity chromatography of extract of seeds. The recombinant lectin (rBVL-I) was expressed in E. coli strain BL21 (DE3) from a genomic clone encoding the mature B. variegata lectin gene using the vector pAE-bvlI. Recombinant protein deposited in inclusion bodies was solubilized and subsequently purified by affinity chromatography. The rBVL-I was compared to BVL for agglutination of erythrocytes and initial adherence of oral bacteria on a saliva-coated surface. The results revealed that rBVL-I acts similarly to BVL for agglutination of erythrocytes. Both lectins showed adhesion inhibition effect on Step. sanguis, Step. mutans and Step. sobrinus. We report, for the first time, the inhibition of early adhesion of oral bacteria by a recombinant lectin. Our results support the proposed biotechnological application of lectins in a strategy to reduce development of dental caries by inhibiting the initial adhesion and biofilm formation. © 2013 The Society for Applied Microbiology.
Mistry, A C; Honda, S; Hirose, S
2001-01-01
Using a Japanese-eel (Anguilla japonica) gill cDNA subtraction library, two novel beta-d-galactose-binding lectins were identified that belong to group VII of the animal C-type lectin family. The eel C-type lectins, termed eCL-1 and eCL-2, are simple lectins composed of 163 amino acid residues, including a 22-residue signal peptide for secretion and a single carbohydrate-recognition domain (CRD) of approximately 130 residues typical of C-type lectins. The galactose specificity of the CRD was suggested by the presence of a QPD motif and confirmed by a competitive binding assay. Using Ruthenium Red staining, the lectins were shown to bind Ca(2+) ions. SDS/PAGE showed that native eCL-1 and eCL-2 have an SDS-resistant octameric structure (a tetramer of disulphide-linked dimers). Northern and Western blot analyses demonstrated high-level expression of eCL-1 and eCL-2 mRNAs and their protein products in gills from freshwater eels, which decreased markedly when the eels were transferred from freshwater to seawater. Immunohistochemistry showed that the eel lectins are localized in the exocrine mucous cells of the gill. PMID:11695997
Affinity entrapment of oligosaccharides and glycopeptides using free lectin solution.
Yodoshi, Masahiro; Oyama, Takehiro; Masaki, Ken; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo
2011-01-01
Two procedures were proposed for the specific recovery of fluorescent derivatives of glycoprotein-derived oligosaccharides and tryptic glycopeptides using certain plant lectins. The first was based on the salting out of oligosaccharide-lectin conjugates with ammonium sulfate. Oligosaccharides specifically bound to lectins were recovered free from lectins using ethanol precipitation after dissolution in water. This method enabled group separation of 2-aminopyridine-labeled oligosaccharides derived from ovalbumin to galacto-oligosaccharides and agalacto-oligosaccharides by Ricinus communis agglutinin, and to high mannose- and hybrid-type oligosaccharides by wheat-germ agglutinin. Fractional precipitation based on differences in affinity for concanavalin A was accomplished by adding an appropriate concentration of methyl α-mannoside as an inhibitor. In the second method, tryptic digests of glycoproteins were mixed with a lectin solution, and the glycopeptide-lectin conjugates were specifically trapped on a centrifugal ultrafiltration membrane with cut-off of 10 kD. Trapped glycopeptides, as retentates, were passed through membranes by resuspension in diluted acid. This method is particularly useful for the enrichment of glycopeptides in protease digestion mixtures for glycosylation analyses by liquid chromatography-mass spectrometry.
Kongtawelert, P
1998-12-01
A lectin from Thai marine carb (Scylla serrata) hemolymph has been isolated and purified by affinity column chromatography and preparative electrophoresis. The amino acid composition and 10 amino-terminal residues have been deduced, and its reactivities have been studied using a biotin labeling technique. A method for the determination of sialoglycoconjugates in human serum is described using this lectin. The principle is based on the reaction between the sialoglycoconjugates and biotinylated lectin. The bovine submaxillary mucin (BSM) is immobilized on polystyrene microplate. The unknown sample or sialoglycoconjugate (BSM equivalent) standards, together with excess biotinylated purified lectin (B-lectin), are then added. The B-lectin that binds to the immobilized BSM is then incubated with the peroxidase-conjugated monoclonal antibiotin antibody, and the color that develops after the addition of enzyme substrate is determined by light absorption using a microplate reader. The assay is not only convenient and reliable, but also capable of measuring sialoglycoconjugates in solution at the submicrogram level. It was used in determining the sialoglycoconjugates in human serum from normal subjects and samples positive for carcinoembryonic antigen.
Vasta, Gerardo R.; Ahmed, Hafiz; Bianchet, Mario A.; Fernández-Robledo, José A.; Amzel, L. Mario
2013-01-01
Although lectins are “hard-wired” in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins—the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc—has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity. PMID:22973821
Lectin of Bacillus subtilis sp. as overinducer of gamma-interferonogenesis.
Kishko, Ia H; Vasylenko, M I; Pidhors'kyĭ, V S; Kovalenko, E O
1997-01-01
It has been demonstrated experimentally that lectin of Bacillus subtilis sp. in comparison with generally accepted Con A, PHA and lectin of "gold rain" grass--Laburnum anagyroides M e d i k in trials on white mice of CBA line gave in 4 hours of induction maximal titers of gamma-IFN in blood serum of animals--153.6 +/- 17.0 IU/ml. Practically identical titers had been obtained after induction by lectin "gold rain", some lower--after Con A and PHA. At swine gamma-IFN synthesis optimal density of cell suspension must contain 2.5 + 10(7) immunocytes in 1 ml, owing to which it is possible to obtain the titer equal 1 : 2150. Materials with using of bacterial lectins at various degree of purification had shown that maximal titers in blood serum of mongrel white mice were registered at administration to animals of non-purified lectin, 4 times lower--at using of half-purified and purified lectins. Data of these trials in vivo were confirmed by materials of gamma-IFN induction by immunocytes of swine, cattle and even man.
Identification of immunodominant antigens for the laboratory diagnosis of toxocariasis.
Zhan, Bin; Ajmera, Ravi; Geiger, Stefan Michael; Gonçalves, Marco Túlio Porto; Liu, Zhuyun; Wei, Junfei; Wilkins, Patricia P; Fujiwara, Ricardo; Gazzinelli-Guimaraes, Pedro Henrique; Bottazzi, Maria Elena; Hotez, Peter
2015-12-01
To identify immunodominant antigens of Toxocara canis recognised by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis. Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. Eleven antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity within the functional domain of Tc-CTL-1. The E. coli-expressed recombinant Tc-CTL-1 was strongly recognised by the Toxocara-positive serum pool or sera from animals experimentally infected with T. canis. Reactivity with recombinant Tc-CTL-1 was higher when the unreduced protein was used in an enzyme-linked immunosorbent assay (ELISA), dot-blot assay or Western blot test compared to the protein under reduced condition. Both recombinant Tc-CTL-1- and Tc-CTL-2-based ELISAs were able to differentiate T. canis infection from other helminth infections in experimentally infected mice. Both Tc-CTL-1 and Tc-CTL-2 were able to differentiate Toxocara infection from other helminth infections and could potentially be used as sensitive and specific immunodiagnostic antigens. © 2015 John Wiley & Sons Ltd.
Konami, Y; Yamamoto, K; Osawa, T; Irimura, T
1995-04-01
The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).
Insecticidal activity of plant lectins and potential application in crop protection.
Macedo, Maria Lígia R; Oliveira, Caio F R; Oliveira, Carolina T
2015-01-27
Lectins constitute a complex group of proteins found in different organisms. These proteins constitute an important field for research, as their structural diversity and affinity for several carbohydrates makes them suitable for numerous biological applications. This review addresses the classification and insecticidal activities of plant lectins, providing an overview of the applicability of these proteins in crop protection. The likely target sites in insect tissues, the mode of action of these proteins, as well as the use of lectins as biotechnological tools for pest control are also described. The use of initial bioassays employing artificial diets has led to the most recent advances in this field, such as plant breeding and the construction of fusion proteins, using lectins for targeting the delivery of toxins and to potentiate expected insecticide effects. Based on the data presented, we emphasize the contribution that plant lectins may make as tools for the development of integrated insect pest control strategies.
Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.
von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H
2012-08-01
Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and survival of newborn cells rather than hippocampal cell proliferation. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination. PMID:28553281
NASA Astrophysics Data System (ADS)
Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli
2017-12-01
As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.
Jančaříková, Gita; Houser, Josef; Dobeš, Pavel; Demo, Gabriel; Hyršl, Pavel; Wimmerová, Michaela
2017-08-01
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Flow Cytometry of Spinach Chloroplasts 1
Schröder, Wolfgang P.; Petit, Patrice X.
1992-01-01
Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right-side-out vesicles of the thylakoid membranes. Images Figure 1 Figure 1 Figure 1 PMID:16653090
Manipulating the Lewis antigen specificity of the cholesterol-dependent cytolysin lectinolysin
Lawrence, Sara L.; Feil, Susanne C.; Holien, Jessica K.; Kuiper, Michael J.; Doughty, Larissa; Dolezal, Olan; Mulhern, Terrence D.; Tweten, Rodney K.; Parker, Michael W.
2012-01-01
The cholesterol-dependent cytolysins (CDCs) attack cells by punching large holes in their membranes. Lectinolysin from Streptococcus mitis is unique among CDCs due to the presence of an N-terminal lectin domain that enhances the pore-forming activity of the toxin. We recently determined the crystal structures of the lectin domain in complex with various glycans. These structures revealed the molecular basis for the Lewis antigen specificity of the toxin. Based on this information we have used in silico molecular modeling to design a mutant toxin, which we predicted would increase its specificity for Lewis y, an antigen found on the surface of cancer cells. Surprisingly, we found by surface plasmon resonance binding experiments that the resultant mutant lectin domain exhibited higher specificity for Lewis b antigens instead. We then undertook comparative crystallographic and molecular dynamics simulation studies of the wild-type and mutant lectin domains to understand the molecular basis for the disparity between the theoretical and experimental results. The crystallographic results revealed that the net number of interactions between Lewis y and wild-type versus mutant was unchanged whereas there was a loss of a hydrogen bond between mutant and Lewis b compared to wild-type. In contrast, the molecular dynamics studies revealed that the Lewis b antigen spent more time in the binding pocket of the mutant compared to wild-type and the reverse was true for Lewis y. The results of these simulation studies are consistent with the conclusions drawn from the surface plasmon resonance studies. This work is part of a program to engineer lectinolysin so that it will target and kill specific cells in human diseases. PMID:23181061
Nictaba Homologs from Arabidopsis thaliana Are Involved in Plant Stress Responses
Eggermont, Lore; Stefanowicz, Karolina; Van Damme, Els J. M.
2018-01-01
Plants are constantly exposed to a wide range of environmental stresses, but evolved complicated adaptive and defense mechanisms which allow them to survive in unfavorable conditions. These mechanisms protect and defend plants by using different immune receptors located either at the cell surface or in the cytoplasmic compartment. Lectins or carbohydrate-binding proteins are widespread in the plant kingdom and constitute an important part of these immune receptors. In the past years, lectin research has focused on the stress-inducible lectins. The Nicotiana tabacum agglutinin, abbreviated as Nictaba, served as a model for one family of stress-related lectins. Here we focus on three non-chimeric Nictaba homologs from Arabidopsis thaliana, referred to as AN3, AN4, and AN5. Confocal microscopy of ArathNictaba enhanced green fluorescent protein (EGFP) fusion constructs transiently expressed in N. benthamiana or stably expressed in A. thaliana yielded fluorescence for AN4 and AN5 in the nucleus and the cytoplasm of the plant cell, while fluorescence for AN3 was only detected in the cytoplasm. RT-qPCR analysis revealed low expression for all three ArathNictabas in different tissues throughout plant development. Stress application altered the expression levels, but all three ArathNictabas showed a different expression pattern. Pseudomonas syringae infection experiments with AN4 and AN5 overexpression lines demonstrated a significantly higher tolerance of several transgenic lines to P. syringae compared to wild type plants. Finally, AN4 was shown to interact with two enzymes involved in plant defense, namely TGG1 and BGLU23. Taken together, our data suggest that the ArathNictabas represent stress-regulated proteins with a possible role in plant stress responses. On the long term this research can contribute to the development of more stress-resistant plants. PMID:29375596
Kaltner, H; Lips, K S; Reuter, G; Lippert, S; Sinowatz, F; Gabius, H J
1997-10-01
The display of cellular oligosaccharide chains is known to undergo marked developmental changes, as monitored histochemically with plant lectins. In conjunction with endogenous lectins respective ligand structures may have a functional role during fetal development. The assumption of a recognitive, functionally productive interplay prompts the study of the expression of a tissue lectin and of lectin-reactive glycoconjugates concomitantly. Focusing on common beta-galactosides as constituents of oligosaccharide chains and the predominant member of the family of galectins in mammals, namely galectin-1, the question therefore is addressed as to whether expression of lectin and lectin-reactive glycoconjugates exhibits alterations, assessed in three morphologically defined fetal stages and in adult bovine organs. Using a sandwich ELISA, the level of the rather ubiquitous galectin-1 is mostly increased in adult organs relative to respective fetal stages, except for the case of kidney. This developmental course is seen rather seldom, when the amounts of lectin-reactive glycoproteins or glycolipids are quantitated in solid-phase assays after tissue homogenization. Western blotting, combined with probing by labeled galectin-1, discloses primarily quantitative changes in the reactivity of individual glycoproteins. Performing the same assays on extract aliquots with a plant agglutinin, namely the galactoside-binding mistletoe lectin, whose fine specificity is different from galectin-1, its reduced extent of binding in solid-phase assays and the disparate profile of lectin-reactive glycoproteins reveal a non-uniform developmental alteration within the group of structural variants of beta-galactosides. Although sample preparation can affect ligand preservation and/or presentation and thus restricts the comparability of biochemical and histochemical results, especially for soluble reactants, the histochemical studies on frozen and paraffin-embedded sections of bovine heart, kidney and liver demonstrate that the localization of the galectin and of lectin-reactive epitopes can show a similar distribution, as seen in liver and heart, with organ-typical quantitative changes of a rather similar staining profile (heart, kidney) or notable changes in the spatial distribution (liver) in the course of development. This report emphasizes the potential value of combined monitoring of the lectin and its potential in vivo ligands to contribute to eventually unravel organ-related function(s) of a tissue lectin.
Legume Lectins: Proteins with Diverse Applications
Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz
2017-01-01
Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616
Poiroux, Guillaume; Barre, Annick; van Damme, Els J M; Benoist, Hervé; Rougé, Pierre
2017-06-09
Aberrant O -glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O -glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola , and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O -glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.
Poiroux, Guillaume; Barre, Annick; van Damme, Els J. M.; Benoist, Hervé; Rougé, Pierre
2017-01-01
Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors. PMID:28598369
Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).
Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho
2015-11-01
Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.
Kawsar, S M A; Matsumoto, R; Fujii, Y; Yasumitsu, H; Dogasaki, C; Hosono, M; Nitta, K; Hamako, J; Matsui, T; Kojima, N; Ozeki, Y
2009-07-01
A lectin was purified from Japanese sea hare Aplysia kurodai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 56 and 32 kDa by SDS-PAGE under non-reducing and reducing conditions, respectively. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the absence of divalent cations. The lectin exhibited stable thermo-tolerance as it retained hemagglutinating activity for 1 h even at 80 degrees C and showed stability at pH 10. By contrast, it was very sensitive at pH less than 5 and in the presence of the sulfhydryl-group preserving reagent, beta-mercaptoethanol. The hemagglutinating activity by the lectin was specifically inhibited by D-galactose, galacturonic acid, methyl-alpha- and methyl-beta-D-galactopyranoside, lactose, melibiose, and asialofetuin. The association rate constant (k(ass)) and dissociation rate constant (k(diss)) were determined for the lectin to be 4.3 x 10(5) M(-1) x sec(-1) and 2.2 x 10(-3) sec(-1), respectively, using a surface plasmon resonance biosensor. The lectin moderately inhibited cell proliferation in the P388 cell line dose dependently. Interestingly, lectin-treated cells did not show a fragmented DNA ladder as is caused by apoptosis, suggesting that the cell proliferation inhibition was caused by another unknown mechanism.
He, Rui; Yu, Guohong; Han, Xiaori; Han, Jiao; Li, Wei; Wang, Bing; Huang, Shengcai; Cheng, Xianguo
2017-12-01
An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na + /K + in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H + antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.
Zhang, Y; Suankratay, C; Zhang, X-H; Jones, D R; Lint, T F; Gewurz, H
1999-01-01
We previously reported that complement-dependent haemolysis of sheep erythrocytes (E) coated with mannan (M) and sensitized with human mannan-binding lectin (MBL) via the lectin pathway in man occurs in Mg-EGTA and requires alternative pathway amplification. Calcium was required for MBL binding to E-M, but once the E-M-MBL intermediate was formed, MBL was retained and haemolysis occurred in the absence of calcium. Comparable or greater lectin pathway haemolysis in the absence of calcium was observed upon incubation of E-M-MBL in guinea-pig, rat, dog and pig sera, and was further investigated in the guinea-pig, in which titres were much higher (∼14-fold) than in man, and in contrast to humans, greater than classical pathway haemolytic activity. As in human serum, no lysis was observed in C4- or C2-deficient guinea-pig serum until purified C4 or C2, respectively, were restored. However, lectin pathway haemolytic activity in the guinea-pig did not require the alternative pathway. Removal (>98%) of factor D activity by three sequential passages through Sephadex G-75, resulting in serum which retained a normal classical pathway but no alternative pathway haemolytic activity, did not reduce the ability of guinea-pig serum to mediate haemolysis via the lectin pathway. Further, the C3-convertase formed via the lectin pathway (E-M-MBL-C4,2) lysed in C2-deficient guinea-pig but not human serum chelated with EDTA, a condition which precludes alternative pathway amplification. Thus, lectin pathway haemolysis occurs efficiently in guinea-pig serum, in the absence of calcium and without requirement for alternative pathway amplification. The guinea-pig provides a model for studying the assembly and haemolytic function of a lectin pathway which contrasts with the lectin pathway of man, and allows for comparisons that may help clarify the role of this pathway in complement biology. PMID:10457224
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.
Tsutsui, Shigeyuki; Komatsu, Yukie; Sugiura, Takaya; Araki, Kyosuke; Nakamura, Osamu
2011-11-01
The present study reports a new type of skin mucus lectin found in catfish Silurus asotus. The lectin exhibited calcium-dependent mannose-binding activity. When mannose eluate from chromatography with mannose-conjugated agarose was analysed by SDS-PAGE, the lectin appeared as a single 35-kDa band. Gel filtration showed that the lectin forms monomers and dimers. A 1216-bp cDNA sequence obtained by RACE-PCR from the skin encoded a 308 amino acid secretory protein with homology to mammalian and fish intelectins. RT-PCR demonstrated that the lectin gene was expressed in the gill, kidney and skin. Subsequent sequencing revealed the presence of an isoform in the gills. Antiserum detected the intelectin protein in club cells in the skin and gill, renal tubules and blood plasma. Although intelectin gene expression was not induced by in vivo bacterial stimulation, the intelectin showed agglutination activity against the pathogenic bacterium Aeromonas salmonicida, suggesting that the lectin plays an important role in self-defence against bacteria in the skin surface of the catfish. These findings represent one of the few examples of characterization and functional analysis of a fish intelectin protein.
Toxocara canis: Molecular basis of immune recognition and evasion
Maizels, Rick M.
2013-01-01
Toxocara canis has extraordinary abilities to survive for many years in the tissues of diverse vertebrate species, as well as to develop to maturity in the intestinal tract of its definitive canid host. Human disease is caused by larval stages invading musculature, brain and the eye, and immune mechanisms appear to be ineffective at eliminating the infection. Survival of T. canis larvae can be attributed to two molecular strategies evolved by the parasite. Firstly, it releases quantities of ‘excretory–secretory’ products which include lectins, mucins and enzymes that interact with and modulate host immunity. For example, one lectin (CTL-1) is very similar to mammalian lectins, required for tissue inflammation, suggesting that T. canis may interfere with leucocyte extravasation into infected sites. The second strategy is the elaboration of a specialised mucin-rich surface coat; this is loosely attached to the parasite epicuticle in a fashion that permits rapid escape when host antibodies and cells adhere, resulting in an inflammatory reaction around a newly vacated focus. The mucins have been characterised as bearing multiple glycan side-chains, consisting of a blood-group-like trisaccharide with one or two O-methylation modifications. Both the lectins and these trisaccharides are targeted by host antibodies, with anti-lectin antibodies showing particular diagnostic promise. Antibodies to the mono-methylated trisaccharide appear to be T. canis-specific, as this epitope is not found in the closely related Toxocara cati, but all other antigenic determinants are very similar between the two species. This distinction may be important in designing new and more accurate diagnostic tests. Further tools to control toxocariasis could also arise from understanding the molecular cues and steps involved in larval development. In vitro-cultivated larvae express high levels of four mRNAs that are translationally silenced, as the proteins they encode are not detectable in cultured larvae. However, these appear to be produced once the parasite has entered the mammalian host, as they are recognised by specific antibodies in infected patients. Elucidating the function of these genes, or analysing if micro-RNA translational silencing suppresses production of the proteins, may point towards new drug targets for tissue-phase parasites in humans. PMID:23351972
Zinger-Yosovich, Keren; Sudakevitz, Dvora; Imberty, Anne; Garber, Nachman C; Gilboa-Garber, Nechama
2006-02-01
Chromobacterium violaceum is a versatile, violet pigment (violacein)-producing beta-proteobacterium, confined to tropical and subtropical regions, dwelling in soil and water, like Pseudomonas aeruginosa and Ralstonia solanacearum. These three bacteria are saprophytes that occasionally become aggressive opportunistic pathogens virulently attacking animals (the first two) and plants (the third). The recent availability of their genome sequences enabled identification in the C. violaceum genome of an ORF (locus no. 1744) that is similar to those of P. aeruginosa and R. solanacearum lectins, PA-IIL and RS-IIL, respectively. A recombinant protein, CV-IIL, encoded by that ORF exhibited fucose>mannose-specific lectin activity resembling PA-IIL. This paper describes production and properties of the native CV-IIL, which, like PA-IIL and RS-IIL, is probably also a quorum-sensing-driven secondary metabolite, appearing concomitantly with violacein. Its formation is repressed in the CV026 mutant of C. violaceum, which lacks endogenous N-acylhomoserine lactone. The upstream extragenic sequence of its ORF contains a 20 bp sequence (5'-101-120) with partial similarities to the luxI-box and the related P. aeruginosa and R. solanacearum promoter boxes of quorum-sensing-controlled genes. The lectin level is augmented by addition of trehalose to the medium. The subunit size of CV-IIL (around 11.86 kDa) is similar to those of PA-IIL (11.73 kDa) and RS-IIL (11.60 kDa). Like PA-IIL, in the tetrameric form CV-IIL preferentially agglutinates alpha1-2 fucosylated H-positive human erythrocytes (regardless of their A, B or O type), as opposed to the O(h) Bombay type, but differs from it in having no interaction with rabbit erythrocytes and in displaying stronger affinity to l-galactose than to l-fucose. The greater similarity of CV-IIL to PA-IIL than to RS-IIL might be related to the selective adaptation of both C. violaceum and P. aeruginosa to animal tissues versus the preferential homing of R. solanacearum to plants.
Plant Lectins: Wheat Defense Strategy Against Hessian Fly
USDA-ARS?s Scientific Manuscript database
Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...
21 CFR 864.9550 - Lectins and protectins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... antigens. These substances are used to detect blood group antigens for in vitro diagnostic purposes. (b...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture Blood and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins are...
A sperm-agglutinating lectin from seeds of Jack fruit (Artocarpus heterophyllus).
Namjuntra, P; Muanwongyathi, P; Chulavatnatol, M
1985-04-30
A lectin specific for N-acetylgalactosamine was isolated from seed extract of Jack fruit (Artocarpus heterophyllus) by ammonium sulfate precipitation, followed by affinity chromatography on a Affigel-galactosamine-agarose column. The lectin possessed agglutinating activities for human and rat sperm as well as human red blood cells. It was found to have Mr = 62,000 consisting of two dissimilar subunits of Mr = 18,000 and 13,000. It also cross-reacted with an antibody against the lectin of Osage Orange (Maclura pomifera).
Glycoconjugate pattern of membranes in the acinar cell of the rat pancreas.
Willemer, S; Köhler, H; Naumann, R; Kern, H F; Adler, G
1990-01-01
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.
Stability of Curcuma longa rhizome lectin: Role of N-linked glycosylation.
Biswas, Himadri; Chattopadhyaya, Rajagopal
2016-04-01
Curcuma longa rhizome lectin, a mannose-binding protein of non-seed portions of turmeric, is known to have antifungal, antibacterial and α-glucosidase inhibitory activities. We studied the role of complex-type glycans attached to asparagine (Asn) 66 and Asn 110 to elucidate the role of carbohydrates in lectin activity and stability. Apart from the native lectin, the characteristics of a deglycosylated Escherichia coli expressed lectin, high-mannose oligosaccharides at both asparagines and its glycosylation mutants N66Q and N110Q expressed in Pichia pastoris, were compared to understand the relationship between glycosylation and activity. Far UV circular dichroism (CD) spectra, fluorescence emission maximum, hemagglutination assay show no change in secondary or tertiary structures or sugar-binding properties between wild-type and aforementioned recombinant lectins under physiological pH. But reduced agglutination activity and loss of tertiary structure are observed in the acidic pH range for the deglycosylated and the N110Q protein. In thermal and guanidine hydrochloride (GdnCl)-induced unfolding, the wild-type and high-mannose lectins possess higher stability compared with the deglycosylated recombinant lectin and both mutants, as measured by a higher Tm of denaturation or a greater free energy change, respectively. Reversibility experiments after thermal denaturation reveal that deglycosylated proteins tend to aggregate during thermal inactivation but the wild type shows a much greater recovery to the native state upon refolding. These results suggest that N-glycosylation in turmeric lectin is important for the maintenance of its proper folding upon changes in pH, and that the oligosaccharides help in maintaining the active conformation and prevent aggregation in unfolded or partially folded molecules. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana
Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal
2015-01-01
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296
Bhattarai, Jay K.; Sharma, Abeera; Fujikawa, Kohki; Demchenko, Alexei V.; Stine, Keith J.
2014-01-01
Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100 ± 2 nm RIU−1 and the initial peak in the reflectance spectrum is at 518 ± 1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-D-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan–protein interactions and other bioanalytical purposes. PMID:25442712
Glucosylated pH-sensitive liposomes as potential drug delivery systems.
Giansanti, Luisa; Mauceri, Alessandro; Galantini, Luciano; Altieri, Barbara; Piozzi, Antonella; Mancini, Giovanna
2016-10-01
The inclusion of pH-sensitive components in liposome formulations can allow a more controlled and efficient release in response to low pH typical of some pathological tissues and/or subcellular compartments. On the other hand decorating the surface of liposomes with sugar moieties attributes to lipid vesicles specificity toward lectins, sugar-binding proteins overexpressed in many tumor tissues. A novel multifunctional pH-sensitive glucosylated amphiphile was synthesized and characterized as pure aggregate component and in mixtures with a natural phospholipid. The comparison of the properties of the new glucosylated amphiphile with respect to those of a previously described cationic structural analogue demonstrates that the pH-sensitivity can strongly affect drug release, lipid organization, as well as the exposure of the glucose residues on liposome surface and their ability to interact with Concanavalin A, a plant lectin used as model system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, M.; Haan, K.M.; Longnecker, R.
Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms amore » large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlits, Oksana O.; Coates, Leighton; Woods, Robert J.
Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 andmore » Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.« less
Ribeiro, Carolina H.; Lynch, Nicholas J.; Stover, Cordula M.; Ali, Youssif M.; Valck, Carolina; Noya-Leal, Francisca; Schwaeble, Wilhelm J.; Ferreira, Arturo
2015-01-01
Trypanosoma cruzi is the causative agent of Chagas' disease, a chronic illness affecting 10 million people around the world. The complement system plays an important role in fighting microbial infections. The recognition molecules of the lectin pathway of complement activation, mannose-binding lectin (MBL), ficolins, and CL-11, bind to specific carbohydrates on pathogens, triggering complement activation through MBL-associated serine protease-2 (MASP-2). Previous in vitro work showed that human MBL and ficolins contribute to T. cruzi lysis. However, MBL-deficient mice are only moderately compromised in their defense against the parasite, as they may still activate the lectin pathway through ficolins and CL-11. Here, we assessed MASP-2-deficient mice, the only presently available mouse line with total lectin pathway deficiency, for a phenotype in T. cruzi infection. Total absence of lectin pathway functional activity did not confer higher susceptibility to T. cruzi infection, suggesting that it plays a minor role in the immune response against this parasite. PMID:25548381
Lectin from embryos and oocytes of Xenopus laevis. Purification and properties.
Roberson, M M; Barondes, S H
1982-07-10
Soluble extracts of Xenopus laevis blastula stage embryos, oocytes, and adult liver contain lectin activities detected by agglutination of trypsinized, glutaraldehyde-fixed rabbit erythrocytes. Lectin from the embryos and oocytes was purified by affinity chromatography on a column derivatized with melibiose. Trace contaminants were removed either by preparative isoelectric focusing or by gel filtration. Based on its behavior on Sepharose 6B the purified oocyte lectin has an apparent molecular weight of approximately 480,000. On sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions there were two major bands with molecular weight ranges of about 43,000 and 45,000, with diffuse trails. Since the purified lectin contains about 20% saccharides by weight and since both bands are glycosylated, diffuseness might be due to variable glycosylation. Heterogeneity was indicated by isoelectric focusing in polyacrylamide gels, which showed four protein bands with isoelectric points ranging from 4.4 to 4.9. Lectins from both embryos and oocytes comprised about 1 to 2% of the total soluble protein and could not be distinguished by sodium dodecyl sulfate polyacrylamide gel electrophoresis. However, the specific hemagglutination activity of the purified oocyte lectin was, on the average, 7-fold higher. Levels in crude extracts of liver were 3 orders of magnitude lower than those from oocytes. The hemagglutination activities of the lectins from embryos, oocytes, and adult liver required Ca2+ and were blocked by similar concentrations of both alpha- and beta-galactosides.
Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta
2009-01-01
Background Cloning of the Euonymus lectin led to the discovery of a novel domain that also occurs in some stress-induced plant proteins. The distribution and the diversity of proteins with an Euonymus lectin (EUL) domain were investigated using detailed analysis of sequences in publicly accessible genome and transcriptome databases. Results Comprehensive in silico analyses indicate that the recently identified Euonymus europaeus lectin domain represents a conserved structural unit of a novel family of putative carbohydrate-binding proteins, which will further be referred to as the Euonymus lectin (EUL) family. The EUL domain is widespread among plants. Analysis of retrieved sequences revealed that some sequences consist of a single EUL domain linked to an unrelated N-terminal domain whereas others comprise two in tandem arrayed EUL domains. A new classification system for these lectins is proposed based on the overall domain architecture. Evolutionary relationships among the sequences with EUL domains are discussed. Conclusion The identification of the EUL family provides the first evidence for the occurrence in terrestrial plants of a highly conserved plant specific domain. The widespread distribution of the EUL domain strikingly contrasts the more limited or even narrow distribution of most other lectin domains found in plants. The apparent omnipresence of the EUL domain is indicative for a universal role of this lectin domain in plants. Although there is unambiguous evidence that several EUL domains possess carbohydrate-binding activity further research is required to corroborate the carbohydrate-binding properties of different members of the EUL family. PMID:19930663
Lectin-based food poisoning: a new mechanism of protein toxicity.
Miyake, Katsuya; Tanaka, Toru; McNeil, Paul L
2007-08-01
Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.
Chatterjee, Aparajita; Ratner, Daniel M.; Ryan, Christopher M.; Johnson, Patricia J.; O’Keefe, Barry R.; Secor, W. Evan; Anderson, Deborah J.; Robbins, Phillips W.; Samuelson, John
2015-01-01
Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas. PMID:26252012
Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose.
Sarabia-Sainz, Andre-I; Ramos-Clamont, Gabriela; Winzerling, Joy; Vázquez-Moreno, Luz
2011-01-01
Recently, glyco-therapy is proposed to prevent the interaction of bacterial lectins with host ligands (glycoconjugates). This interaction represents the first step in infection. Neoglycans referred to as PSA-Lac (PSA-Glu (β1-4) Gal) were obtained by conjugation of porcine serum albumin (PSA) with lactose at 80 °C, 100 °C and 120 ºC. Characterization studies of the products showed that PSA could contain 1, 38 or 41 added lactoses, depending on the reaction temperature. These neoglycans were approximately 10 times more glycated than PSA-Lac obtained in previous work. Lactose conjugation occurred only at lysines and PSA-Lac contained terminal galactoses as confirmed by Ricinus communis lectin recognition. Furthermore, Escherichia coli K88+, K88ab, K88ac and K88ad adhesins showed affinity toward all PSA-Lac neoglycans, and the most effective was the PSA-Lac obtained after 100 ºC treatment. In vitro, this neoglycan partially inhibited the adhesion of E. coli K88+ to piglet mucin (its natural ligand). These results provide support for the hypothesis that glycated proteins can be used as an alternative for bioactive compounds for disease prevention.
Condori, Jose; Acosta, Walter; Ayala, Jorge; Katta, Varun; Flory, Ashley; Martin, Reid; Radin, Jonathan; Cramer, Carole L; Radin, David N
2016-02-01
New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was cleaved and rapidly degraded. The activated β-gal was still detected at 48h suggesting interactions with protective protein/cathepsin A. Uptake-saturation analyses indicated that the RTB adsorptive-mediated mechanisms of β-gal:RTB supported significantly greater accumulation of β-galactose activity in fibroblasts compared to the receptor-mediated mechanisms of the mammalian cell-derived β-gal. These data demonstrate that plant-made β-gal:RTB functions as an effective replacement enzyme for GM1-gangliosidosis - delivering enzyme into cells, enabling essential lysosomal processing, and mediating disease substrate clearance at the cellular level. RTB provides novel uptake behaviors and thus may provide new receptor-independent strategies that could broadly impact lysosomal disease treatments. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential requirements for activation and growth of unprimed cytotoxic and helper T lymphocytes.
Gullberg, M; Pobor, G; Bandeira, A; Larsson, E L; Coutinho, A
1983-09-01
The requirements for activation and growth of T lymphocytes capable of mediating either cytolytic activity or help to B lymphocytes were studied in unprimed splenic T cell populations. The selectivity of expression of Lyt-2 antigens, the reactivity to soluble concanavalin A (Con A), to partially purified interleukin 2 (IL 2, T cell growth factor[s]) and to lectin-pulsed macrophages (M phi) were used in this analysis. Lectin-dependent cytotoxicity assays and a novel method that allows for the detection of all effector helper cells, regardless of their clonal specificities, were used for the functional identification of the responding T cells. The results show a marked contrast between cytolytic and helper T cells in their growth and activation requirements. Thus, while Lyt-2+ cytotoxic T lymphocyte precursors grow exponentially in IL 2 after a short pulse with soluble Con A in the absence of accessory cells, Lyt-2- helper cell precursors completely fail to proliferate under the same conditions and require the continuous presence of lectin-pulsed M phi for significant growth. Furthermore, addition of IL 2 to M phi-stimulated cultures of Lyt-2- cells has no effect. T cells which produce IL 2 have the same growth characteristics as helper cells. In both cases, effector helper functions could be expanded more than 10-fold on a per cell basis by a 5-day-culture period under those growth supporting conditions. The development of effector helper functions, however, was strongly inhibited by the presence of Lyt-2+ T cells.
Characterization of mannose binding lectin from channel catfish Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...
Alen'kina, S A; Petrova, L P; Sokolova, M K; Chernyshova, M P; Trutneva, K A; Bogatyrev, V A; Nikitina, V E
2014-01-01
The lectins of associative nitrogen-fixing bacteria Azospirillum brasilense Sp7 and its mutant A. brasilense Sp7.2.3 were shown to have different effects on the components of the wheat seedling root signal system, namely to regulate the levels of cAMP, nitric oxide, diacylglycerol, and salicylic acid, as well as to induce the activities of superoxide dismutase and lipoxygenase. Our results make it possible to consider azospirilla lectins as inducers of the signal systems in wheat seedling roots, since they cause development of several flows of primary signals. These data are of general biological importance, since lectins are present in all living organisms and most ot the functions of lectins remain insufficiently understood.
[Effect of thyroid hormones on the histotopography of lectin receptors in the rat salivary gland].
Lutsik, A D; Iashchenko, A M; Detiuk, E S
1987-04-01
Using lectin-peroxidase technique, the influence of hypo- and hyperthyroidism on histotopography of glycoconjugates has been investigated in rat submandibular gland. The following lectins were used: peanut agglutinin (PNA), wheat germ agglutinin (WGA), Laburnum anagyroides lectin (LAL) and concanavalin A (con A). It has been demonstrated that hyperthyroidism is accompanied by the loss of con A, WGA and LAL receptor sites. Hypothyrodism enhanced con A binding to granular duct cells with a parallel reduction in WGA and LAL binding to these or other duct cells. Hypothyroidism as well as hyperthyroidism markedly enhanced PNA binding to duct epitheliocytes with redistribution of these lectin binding sites from the luminal surface of salivary ducts into the cytoplasm of duct cells. Possible interpretations of the observed phenomena are discussed.
Singh, Kuljinder; Kaur, Manpreet; Rup, Pushpinder J; Singh, Jatinder
2008-11-01
The lectin from tubers of cobra lily, Arisaema curvatum Kunth was purified by affinity chromatography using asialofetuin-linked amino activated porous silica beads. The concentration dependent effect of lectin was studied on second instar larvae (64-72 hr) of Bactrocera cucurbitae (Coq.). The treatment not only resulted in a significant reduction in the percentage pupation and emergence of the adults from treated larvae but it also prolonged the remaining larval development period. A very low LC50 value, 39 mgl(-1) of lectin was obtained on the basis of adult emergence using probit analysis. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (GSTs: Glutathione S-transferases) was assayed in second instar larvae under the influence of the LC50 of lectin at increasing exposure intervals (0, 24, 48 and 72 hr). The Arisaema curvatum lectin significantly decreased the activity of all the enzymes except for esterases, where the activity increased as compared to control at all exposure intervals. The decrease in pupation and emergence as well as significant suppression in the activities of two hydrolases, one oxidoreductase and one GST enzyme in treated larvae of B. cucurbitae indicated that this lectin has anti-metabolic effect on the melon fruit fly larvae.
2013-01-01
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212
Leite, Ricardo B; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, Tomaso; Cancela, M Leonor; Bargelloni, Luca
2013-10-29
The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival
Goossens, Katty V. Y.; Ielasi, Francesco S.; Nookaew, Intawat; Stals, Ingeborg; Alonso-Sarduy, Livan; Daenen, Luk; Van Mulders, Sebastiaan E.; Stassen, Catherine; van Eijsden, Rudy G. E.; Siewers, Verena; Delvaux, Freddy R.; Kasas, Sandor; Nielsen, Jens; Devreese, Bart
2015-01-01
ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. PMID:25873380
Hung, Le Dinh; Ly, Bui Minh; Hao, Vo Thi; Trung, Dinh Thanh; Trang, Vo Thi Dieu; Trinh, Phan Thi Hoai; Ngoc, Ngo Thi Duy; Quang, Thai Minh
2018-02-01
SFL, a lectin from the marine sponge Stylissa flexibilis was purified by cold ethanol precipitation followed by ion exchange chromatography on DEAE Sepharose column and Sephacryl S-200 gel filtration. SFL is a dimeric glycoprotein of 32kDa subunits linked by a disulfide bridge with a molecular mass of 64kDa by SDS-PAGE and 65kDa by Sephacryl S-200 gel filtration. SFL preferentially agglutinated enzyme treated human A erythrocytes. The activity of lectin was strongly inhibited by monosaccharide d-galactose and glycoproteins asialo-porcine stomach mucin and asialo-fetuin. The lectin was Ca 2+ dependent, stable over a range of pH from 5 to 8, and up to 60°C for 30min. The N-terminal amino acid sequence of SFL was also determined and a blast search on amino acid sequences revealed that the protein showed similarity only with lectins from the marine sponge Spheciospongia vesparia. SFL caused agglutination of Vibrio alginolyticus and V. parahaemolyticus in a dose dependent manner and inhibited the growth rates of the virulent bacterial strains. Growth inhibition of V. alginolyticus and V. parahaemolyticus with SFL was not observed in the presence of d-galactose or asialo-porcine stomach mucin, suggesting that the lectin caused the agglutination through binding to the target receptor(s) on the surface of Vibrios. Thus, the marine sponge S. flexibilis could promise to be a good source of a lectin(s) that may be useful as a carbohydrate probe and an antibacterial reagent. Copyright © 2017 Elsevier Inc. All rights reserved.
Methylated glycans as conserved targets of animal and fungal innate defense
Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus
2014-01-01
Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
Davis, Carl W; Nguyen, Hai-Yen; Hanna, Sheri L; Sánchez, Melissa D; Doms, Robert W; Pierson, Theodore C
2006-02-01
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.
USDA-ARS?s Scientific Manuscript database
Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...
Düllmann, Jochen; Van Damme, Els J M; Peumans, Willy J; Ziesenitz, Maike; Schumacher, Udo
2002-01-01
The lectin Chelidonium majus agglutinin (CMA) was previously shown to visualise endothelia of all blood vessels and those lining sinuses of red pulp, stromal reticular meshwok (RM) and dendritic cells of lymphatic follicles in white pulp of the spleen in rats. The aim of the present study was the analysis of CMA and some other lectins in labelling RM, vascular structures and macrophages in lymph nodes of rats. It appeared that CMA stained the entire RM, dendritic cells, lining cells of sinuses and all types of blood vessels. Sinus-lining cells of lymph nodes were labelled with CMA and mannose-, GalNac-, and sialic acid-specific lectins. Moreover, lymph node macrophages were labelled above all by mannose specific lectins. The broad lectin-binding pattern of sinuses--not observed in rat spleen- and CMA-reactivity of both sinus-lining and dendritic cells corroborates the hypothesis that lymph node sinus-lining endothelia are precursors or a special type of immune accessory cells.
A descriptive and comparative lectin histochemical study of the vomeronasal system in pigs and sheep
SALAZAR, IGNACIO; SANCHEZ-QUINTEIRO, PABLO; LOMBARDERO, MATILDE; CIFUENTES, JOSE MANUEL
2000-01-01
The accessory olfactory bulb (AOB) is the primary target of the sensory epithelium of the vomeronasal organ (VNO), and thus constitutes a fundamental component of the accessory olfactory system, which is involved in responses to behaviour-related olfactory stimuli. In this study we investigated the characteristics of the AOB, VNO, vomeronasal nerves (VNNs) and caudal nasal nerve (CdNN) in pigs and sheep, species in which olfaction plays a key behavioural role both in the neonatal period and in adulthood. The patterns of staining of the AOB by the Bandeiraea simplicifolia and Lycopersicon esculentum lectins were the same in the 2 species, whereas the Ulex europeus and Dolichos biflorus lectins gave different patterns. In both species, lectin staining of the AOB was consistent with that of the VNNs, while the CdNN did not label any of the structures studied. The entire sensory epithelium of the pig was labelled by Ulex europeus and Lycopersicum esculentum lectins, and all 4 lectins used labelled the mucomicrovillar surface of the sensory epithelium in sheep. PMID:10697284
Allen, H J; Johnson, E A
1977-10-01
L-Fucose-binding lectins from Ulex europeaus and Lotus tetragonolobus were isolated by affinity chromatography on columns of L-fucose-Sepharose 6B. L-Fucose was coupled to Sepharose 6B after divinyl sulfone-activation of the gel to give an affinity adsorbent capable of binding more than 1.2 mg of Ulex lextin/ml of gel, which could then be eluted with 0.1M or 0.05M L-fucose. Analysis of the isolated lectins by hemagglutination assay, by gel filtration, and polyacrylamide disc-electrophoresis revealed the presence of isolectins, or aggregated species, or both. The apparent mol. wt. of the major lectin fraction from Lotus was 35000 when determined on Sephadex G-200 or Ultrogel AcA 34. In contrast, the apparent mol. wt. of the major lectin fraction from Ulex was 68 000 when chromatographed on Sephadex G-200 and 45 000 when chromatographed on Ultrogel AcA 34. The yields of lectins were 4.5 mg/100 g of Ulex seeds and 394 mg/100 g of Lotus seeds.
Parisi, M G; Benenati, G; Cammarata, M
2015-11-01
The F-lectin, a fucose-binding protein found from invertebrates to ectothermic vertebrates, is the last lectin family to be discovered. Here, we describe effects of two different types of stressors, bacterial infection and confinement stress, on the modulation of European sea bass Dicentrarchus labrax (L.) F-lectin (DlFBL), a well-characterized serum opsonin, using a specific antibody. The infection of the Vibrio alginolyticus bacterial strain increased the total haemagglutinating activity during the 16-day testing period. The DlFBL value showed an upward regulation on the first, second and last days and underwent a slight downward regulation 4 days post-challenge. In contrast, the effect of confinement and density stress showed a decrease in the plasma concentration of lectin, ranging from 50% to 60% compared with the control. The modulation of DlFBL is in line with the hypothesis that humoral lectins could be involved and recruited in the initial recognition step of the inflammation, which leads to agglutination, and the activation of mechanisms responsible for killing of the pathogens. © 2014 John Wiley & Sons Ltd.
Neto, Luiz Gonzaga do Nascimento; Pinto, Luciano da Silva; Bastos, Rafaela Mesquita; Evaristo, Francisco Flávio Vasconcelos; Vasconcelos, Mayron Alves de; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Porto, Ana Lúcia Figueiredo; Leal, Rodrigo Bainy; Júnior, Valdemiro Amaro da Silva; Cavada, Benildo Sousa; Teixeira, Edson Holanda
2011-11-07
Lectins are a structurally heterogeneous group of highly specific carbohydrate-binding proteins. Due to their great biotechnological potential, lectins are widely used in biomedical research. The purpose of the present study was to evaluate the healing potential of the lectin of Bauhinia variegata (nBVL) and its recombinant isoform (rBVL-1). Following surgical creation of dorsal skin wounds, seven groups of mice were submitted to topical treatment for 12 days with lectin, D-galactose, BSA and saline. The animals were anesthetized and euthanized on POD 2, 7 and 12 in order to evaluate the healing potential of each treatment. The parameters considered included wound size, contraction rate, epithelialization rate and histopathological findings. Wound closure was fastest in animals treated with rBVL-1 (POD 7). nBVL was more effective than the controls. All skin layers were reconstructed and keratin deposition increased. Our findings indicate that the lectin of Bauhinia variegata possesses pro-healing properties and may be employed in the treatment of acute skin wounds.
Temperature effect on affinity chromatography of two lectins from the seeds of Ricinus communis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, H.W.; Davis, D.S.; Wei, C.H.
1976-06-01
Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as III/sub L/ and III/sub H/, from the seed of Ricinus communis (castor bean) was measured from 7 to 24/sup 0/C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18/sup 0/C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ..delta..G, ..delta..H, and ..delta..S. It is suggested that the difference in the temperature dependence ofmore » the binding energy of these two lectins may be used for their separation at selected temperature.« less
Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.
2013-01-01
Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572
Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S
2013-01-01
Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.
Ulex europaeus I and glycine max bind to the human olfactory bulb.
Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J
1993-12-24
The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.
2004-12-16
mistletoe lectin I. The ricin and mistle- toe lectin I structures revealed a domain architec- ture that are similar to HA33/A with two b-trefoil...domains. The complex crystal structures of ricin bound to lactose and mistletoe lectin I bound to galactose revealed that only the 1a and 2g repeats of...H., Tonevitsky, A. G., Agapov, I. I., Saward, S., Pfuller, U. & Palmer, R. A. (2003). Crystal structure at 3 Å of mistletoe lectin I, a dimeric
Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, K.; College of Food Science, Heilongjiang August First Land Reclamation University, Daqing 163319; Liu, Q.H.
2006-07-14
From the dried fruiting bodies of the mushroom Armillaria luteo-virens, a dimeric lectin with a molecular mass of 29.4 kDa has been isolated. The purification procedure involved (NH{sub 4}){sub 2}SO{sub 4} precipitation, ion exchange chromatography on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The hemagglutinating activity of the lectin could not be inhibited by simple sugars but was inhibited by the polysaccharide inulin. The activity was stable up to 70 {sup o}C but was acid- and alkali-labile. Salts including FeCl{sub 3}, AlCl{sub 3}, and ZnCl{sub 2} inhibited the activity whereas MgCl{sub 2},more » MnCl{sub 2}, and CaCl{sub 2} did not. The lectin stimulated mitogenic response of mouse splenocytes with the maximal response achieved by 1 {mu}M lectin. Proliferation of tumor cells including MBL2 cells, HeLa cells, and L1210 cells was inhibited by the lectin with an IC{sub 5} of 2.5, 5, and 10 {mu}M, respectively. However, proliferation of HepG2 cells was not affected. The novel aspects of the isolated lectin include a novel N-terminal sequence, fair thermostability, acid stability, and alkali stability, together with potent mitogenic activity toward spleen cells and antiproliferative activity toward tumor cells.« less
Seco-Rovira, V; Beltrán-Frutos, E; Ferrer, C; Sánchez-Huertas, M M; Madrid, J F; Saez, F J; Pastor, L M
2013-12-01
Lectins have been widely used to study the pattern of cellular glycoconjugates in numerous species. In the process of cellular apoptosis, it has been observed that changes occur in the membrane sugar sequences of these apoptotic cells. The aim of our work was to identify which lectins, out of an extensive battery of the same (PNA, SBA, HPA, LTA, Con-A, UEA-I, WGA, DBA, MAA, GNA, AAA, SNA), show affinity for germinal cells in apoptosis, at what stage of cell death they do so and in which germinal cell types they can be detected. For this, we studied testis sections during testicular regression in Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Several lectins showed an affinity for the glycoconjugate residues of germ cells in apoptosis: Gal β1,3-GalNAcα1, α-d-mannose, N-acetylgalactosamine and l-fucose. Furthermore, lectin specificity was observed for some specific germinal cells and in certain stages of apoptosis. It was also observed that one of these lectins (PNA) showed affinity for Sertoli cells undergoing apoptosis. Therefore, we conclude that the use of lectin histochemistry could be a very useful tool for studying apoptosis in the seminiferous epithelium because of the specificity shown towards germinal cells in pathological or experimentally induced epithelial depletion models. © 2013 Blackwell Verlag GmbH.
Duarte, Christiane E M; Abranches, Monise V; Silva, Patrick F; de Paula, Sérgio O; Cardoso, Silvia A; Oliveira, Leandro L
2017-01-01
Lectins are involved in a wide range of biological mechanisms, like immunomodulatory agent able to activate the innate immunity. In this study, we purified and characterized a new lectin from cauliflower (Brassica oleracea ssp. botrytis - BOL) by three sequential chromatographic steps and confirmed the purity by SDS-PAGE. Additionally, we evaluated the role of the lectin in innate immunity by a phagocytosis assay, production of H 2 O 2 and NO. BOL was characterized like a non-glycosylated protein that showed a molecular mass of ∼34kDa in SDS-PAGE. Its N-terminal sequence (ETRAFREERPSSKIVTIAG) did not reveal any similarity to the other lectins; nevertheless, it showed 100% homology to a putative TRAF-like protein from Brassica rapa and Brassica napus. This is a first report of the TRAF-protein with lectinic activity. The BOL retained its complete hemagglutination activity from 4°C up to 60°C, with stability being more apparent between pH 7.0 and 8.0. Moreover, the lectin was able to stimulate phagocytosis and induce the production of H 2 O 2 and NO. Therefore, BOL can be explored as an immunomodulatory agent by being able to activate the innate immunity and favor antigen removal. Copyright © 2016 Elsevier B.V. All rights reserved.
Qaddoumi, Mohamed; Lee, Vincent H L
2004-07-01
To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.
Moura, M C; Napoleão, T H; Coriolano, M C; Paiva, P M G; Figueiredo, R C B Q; Coelho, L C B B
2015-09-01
This work evaluated the antibacterial activity of a water-soluble Moringa oleifera seed lectin (WSMoL) by evaluating its effect on growth, survival and cell permeability of Bacillus sp., Bacillus cereus, Bacillus pumillus, Bacillus megaterium, Micrococcus sp., Pseudomonas sp., Pseudomonas fluorescens, Pseudomonas stutzeri and Serratia marcescens. In addition, the effect of lectin on membrane integrity of most sensitive species was also evaluated. All the tested bacteria are able to cause biocorrosion and some are also responsible for human infections. WSMoL inhibited the bacterial growth, induced agglutination and promoted the leakage of proteins from cells of all strains. Bactericidal effect was detected against Bacillus sp., B. pumillus, B. megaterium, Ps. fluorescens and Ser. marcescens. The bacteriostatic effect of lectin was evident with only 6 h of incubation. Fluorescence microscopy of Ser. marcescens showed that WSMoL caused loss of cell integrity and indicated an anti-biofilm activity of the lectin. WSMoL was active against the bacteria by inhibiting growth and affecting cell permeability. The lectin also interfered with membrane integrity of Ser. marcescens, the most sensitive species. The study indicates that WSMoL was active against bacteria that cause serious problems in both industrial and health sectors. Also, the study contributes for the 'state-of-art' on antibacterial mechanisms of lectins. © 2015 The Society for Applied Microbiology.
Benmoussa, Khaddouj; Authier, Hélène; Prat, Mélissa; AlaEddine, Mohammad; Lefèvre, Lise; Rahabi, Mouna Chirine; Bernad, José; Aubouy, Agnès; Bonnafé, Elsa; Leprince, Jérome; Pipy, Bernard; Treilhou, Michel; Coste, Agnès
2017-01-01
Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida , to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.
Benmoussa, Khaddouj; Authier, Hélène; Prat, Mélissa; AlaEddine, Mohammad; Lefèvre, Lise; Rahabi, Mouna Chirine; Bernad, José; Aubouy, Agnès; Bonnafé, Elsa; Leprince, Jérome; Pipy, Bernard; Treilhou, Michel; Coste, Agnès
2017-01-01
Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases. PMID:29250064
Ito, N; Imai, S; Haga, S; Nagaike, C; Morimura, Y; Hatake, K
1996-09-01
Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such as Helix pomatia agglutinin (HPA) and Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins and Ulex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-beta-galactosidase or N-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity with Griffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-beta-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine, Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these lectins corresponded well to those stained with both HPA and GSAI-B4, and in some cases, with UEA-I. These results demonstrate that the binding sites of UEA-I, HPA, and GSAI-B4 are expressed concomitantly in the same carcinoma cells and all carry linear and branched poly-N-acetyllactosamine on N-glycans, suggesting that the synthesis of this complex carbohydrate is one of the most important and basic processes leading to the malignant transformation of cells, invasion, and metastasis of carcinoma cells.
Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne
2012-01-01
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206
Safety testing of GM-rice expressing PHA-E lectin using a new animal test design.
Poulsen, Morten; Schrøder, Malene; Wilcks, Andrea; Kroghsbo, Stine; Lindecrona, Rikke Hvid; Miller, Andreas; Frenzel, Thomas; Danier, Jürgen; Rychlik, Michael; Shu, Qingyao; Emami, Kaveh; Taylor, Mark; Gatehouse, Angharad; Engel, Karl-Heinz; Knudsen, Ib
2007-03-01
The 90-day animal study is the core study for the safety assessment of genetically modified foods in the SAFOTEST project. The model compound tested in the 90-day study was a rice variety expressing the kidney bean Phaseolus vulgaris lectin agglutinin E-form (PHA-E lectin). Female Wistar rats were given a nutritionally balanced purified diet with 60% parental rice, 60% PHA-E rice or 60% PHA-E rice spiked with 0.1% recombinant PHA-E lectin for 90 days. This corresponded to a mean daily PHA-E lectin intake of approximately 0, 30 and 100mg/kg body weight for each group, respectively. The spiking was used to increase the specificity and to demonstrate the sensitivity of the study. A range of biological, biochemical, microbiological and pathological parameters were examined and significant differences in weight of small intestine, stomach and pancreas and plasma biochemistry were seen between groups. Included in this paper are also data from the molecular characterisation and chemical analysis of the PHA-E rice, from the construction and production of the PHA-E lectin, and from the preceding 28-day in vivo study where the toxicity of the pure PHA-E lectin was determined. In conclusion, the combined use of information from the compositional analysis, the 28-day study and the characterisation of the PHA-E rice and the PHA-E lectin has improved the design of the 90-day study. The spiking procedure has facilitated the interpretation of the results of the study and transferred it into a valuable tool for the future safety testing of genetically modified foods.
Bryk, S G; Sgambati, E; Gheri Bryk, G
1999-04-01
The anlage of duodenum, ileum and colon were removed from chick embryos of day 8-21 of incubation and from 1-day-old chicks. A battery of seven different horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, Con A, WGA, LTA and UEAI) was used to study the carbohydrate residues of the glycoconjugates in the goblet cells of the three parts of the intestine. The main results can be summarized as follows: differences in lectin binding were absent in the proximal and distal parts of the duodenum, ileum and colon. Lectin histochemistry showed differences among the three intestinal segments for the time of appearance of the oligosaccharides in the goblet mucus. In the colonic goblet cells of 1-day-old chicks, LTA and UEAI lectins showed two different types of linkage of alpha-L-fucose. This is the first demonstration of UEAI reactive sites in Gallus domesticus.
NASA Astrophysics Data System (ADS)
Anam, C.; Chasanah, E.; Perdhana, B. P.; Fajarningsih, ND; Yusro, N. F.; Sari, A. M.; Nursiwi, A.; Praseptiangga, D.; Yunus, A.
2017-04-01
Lectins or carbohydrate-binding proteins, are widely distributed in nature, including in marine algae. It may have been considered that binding specificity of lectins to some carbohydrates provokes to produce many unique biological activities, including cell agglutination, mitogenic activity, and antitumor activity. The aim of this study was to determine the cytotoxicity of crude lectins from red macroalgae collected from the southern coast of Java Island, Gunung Kidul Regency, Yogyakarta against MCF-7 and HeLa cancer cells. In vitro MTT assay was used in this study. The results showed that less than 50% of MCF-7 and HeLa cancer cells growth were inhibited by the crude lectins from five species of red macro algae used in this study. The highest inhibition ability shown in the red alga A. nana was able to kill 47.68% of HeLa cervical cancer cells.
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?
Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé
2017-01-01
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth. PMID:28561754
Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.
Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A
1982-07-01
Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?
Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé
2017-05-31
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Singh, D D; Saikrishnan, K; Kumar, Prashant; Dauter, Z; Sekar, K; Surolia, A; Vijayan, M
2004-11-01
The banana lectin from Musa paradisiaca, MW 29.4 kDa, has been isolated, purified and crystallized. The trigonal crystals contain one dimeric molecule in the asymmetric unit. The structure has been solved using molecular replacement to a resolution of 3 A. The structure of the subunit is similar to that of jacalin-like lectins.
Parkia pendula lectin as histochemistry marker for meningothelial tumour.
Beltrão, E I C; Medeiros, P L; Rodrigues, O G; Figueredo-Silva, J; Valença, M M; Coelho, L C B B; Carvalho, L B
2003-01-01
Lectins have been intensively used in histochemical techniques for cell surface characterization. These proteins are involved in several biological processes and their use as histochemical markers have been evaluated since they can indicate differences in cell surfaces. Parkia pendula lectin (PpeL) was evaluated as histochemical marker for meningothelial meningioma biopsies. Tissue slices were incubated with PpeL conjugated to horseradish peroxidase (PpeL-HRP) and Concanavalin A-HRP (ConA-HPR) and the binding visualized with diaminobenzidine and hydrogen peroxide. The lectin-tissue binding was inhibited with D-glucose. PpeL showed to be a useful tool for the characterization of meningothelial tumour and clinico-pathological diagnosis.
Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles
Kavunja, Herbert W.; Voss, Patricia G.
2016-01-01
Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities. PMID:27110035
Oligolysine-based saccharide clusters: synthesis and specificity.
Frison, Natacha; Marceau, Philippe; Roche, Annie-Claude; Monsigny, Michel; Mayer, Roger
2002-01-01
In search of specific and highly selective sugar clusters for cell receptors, such as membrane lectins, various disaccharides were coupled to small peptide cores through an amide bond. In a first step, the reducing disaccharides, i.e. lactose and three different dimannoses, were converted into glycosyl-pyroglutamyl-beta-alanine derivatives. The free carboxylic group of these conjugates was then coupled to the alpha and epsilon amino groups of the core peptide (Lys( n )-Ala-Cys-NH2) with n =1 to 5, with complete substitution leading to homogeneous glycoclusters. The thiol group of the cysteine residue was used to tag the glycosylated oligolysines upon reaction with fluorescein iodoacetamide. The affinity of these glycoclusters towards two plant lectins was assessed by surface plasmon resonance. The selectivity of their cell uptake was investigated by flow cytometry using two types of cells: a human hepatoma cell line (HepG2 cells) expressing the plasma membrane galactose-specific lectin, and monocyte-derived dendritic cells expressing the plasma membrane mannose-specific lectin. The glycoclusters containing four or five disaccharides were shown to bind plant lectins and cell surface membrane lectins with a narrow selectivity and with a high affinity. PMID:12119048
Oliveira, Carla; Teixeira, José A.; Domingues, Lucília
2014-01-01
Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that “batch-to-batch” variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine. PMID:25152749
Sun, Yuan-yuan; Liu, Li; Li, Jun; Sun, Li
2016-02-01
Lectins are a group of sugar-binding proteins that are important factors of the innate immune system. In this study, we examined, in a comparative manner, the expression and function of three Bulb-type (B-type) mannose-specific lectins (named CsBML1, CsBML2, and CsBML3) from tongue sole. All three lectins possess three repeats of the conserved mannose binding motif QXDXNXVXY. Expression of CsBML1, CsBML2, and CsBML3 was most abundant in liver and upregulated by bacterial infection. Recombinant (r) CsBML1, CsBML2, and CsBML3 bound to a wide arrange of bacteria in a dose-dependent manner and with different affinities. All three lectins displayed mannose-specific and calcium-dependent agglutinating capacities but differed in agglutinating profiles. rCsBML1 and rCsBML2, but not rCsBML3, killed target bacteria in vitro and inhibited bacterial dissemination in fish tissues in vivo. These results indicate for the first time that in teleost, different members of B-type mannose-specific lectins likely play different roles in antibacterial immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yanrui; Zhang, Guoqing; Ng, Tzi Bun; Wang, Hexiang
2010-01-01
A lectin designated as Hericium erinaceum agglutinin (HEA) was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70°C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2) and breast cancer (MCF7) cells with an IC50 of 56.1 μM and 76.5 μM, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 μM. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity. PMID:20625408
Effects of lectins on calcification by vesicles isolated from aortas of cholesterol-fed rabbits.
Hsu, H H; Tawfik, O; Sun, F
2000-04-05
Advanced vascular calcification in atherosclerosis weakens arterial walls, thereby imposing a serious rupturing effect. However, the mechanism of dystrophic calcification remains unknown. Although accumulating morphological and biochemical evidence reveals a role for calcifiable vesicles in plaque calcification, the mechanism of vesicle-mediated calcification has not been fully explored. To study whether vesicles' membrane components, such as carbohydrates, may have a role in vesicle-mediated calcification, the effect of sugar-binding lectins on calcification was investigated. Atherosclerosis was developed by feeding rabbits with a diet supplemented with 0.5% cholesterol and 2% peanut oil for 4 months. Calcifiable vesicles were then isolated from thoracic aortas by collagenase digestion. The histological examination of aortas with hematoxylin counter-staining indicated abnormal formation of large plaques enriched with macrophage-derived foam cells. Fourier transform spectroscopy revealed mild calcification in aortas indicating that advanced stages of heavy calcification have yet to be reached. However, vesicles isolated from the aortas were capable of calcification in the presence of physiological levels of Ca(2+), Pi, and ATP. Thus, at this stage of atherosclerosis, aortas may start to produce calcifiable vesicles, but at a level insufficient for substantial formation of mineral in aortas. The assessments by FT-IR analysis and Alizarin red staining indicated that concanavalin A (Con A) substantially increased mineral formation by isolated vesicles. Con A also exerted a marked stimulatory effect on (45)Ca and (32)Pi deposition in a dose-dependent fashion with a half-maximal effect at 6-10 microg/ml. Either alpha-methylmannoside or alpha-methylglucoside, but not mannitol, at 10 mM abolished the stimulation. Con A stimulation was abolished after Con A was removed from calcifying media, suggesting that covalent binding may not be involved in the effect. Galactosides appear to also be implicated in (45)Ca and (32)Pi deposition since Abrus precartorius agglutinin, which specifically binds galactosides, enhanced the deposition. Neither wheat-germ agglutinin that binds N-acetylglucoside nor N-acetylgalactoside-specific Helix pomatia agglutinin was effective, suggesting that the acetylated forms of carbohydrate moieties are either absent in vesicles or may not be involved in calcification. None of these lectins exerted an effect on ATPase. Thus, the effects of lectins appeared to be mediated through interactions with carbohydrate moieties of calcifiable vesicles. Whether stimulation of vesicle-calcification by lectins is of pathological significance in atherosclerotic calcification requires further investigation.
NASA Astrophysics Data System (ADS)
Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sebastien; Cosnier, Serge
2013-07-01
This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3’-sialyllactosyl at 0.95 V vs Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3’-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3’-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2×10-3 mol L-1) as a redox probe in phosphate buffer. The resuting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilised lectins towards the permeation of the redox probe.
New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum.
Molchanova, Valentina; Chikalovets, Irina; Li, Wei; Kobelev, Stanislav; Kozyrevskaya, Svetlana; Bogdanovich, Raisa; Howard, Eric; Belogortseva, Natalia
2005-05-25
Previously we isolated GlcNAc-specific lectin (DTL) from the ascidian Didemnum ternatanum by affinity chromatography on cross-linked ovalbumin. Here we report the purification and characterization of new D-GlcNAc/D-GalNAc-specific lectin DTL-A from the same ascidian. This lectin was isolated from non-bound cross-linked ovalbumin fraction and further was purified by gel filtration on Sepharose CL-4B, affinity chromatography on GlcNAc-agarose and gel filtration on Superdex 200. SDS-polyacrylamide gel electrophoresis and gel filtration of purified lectin on Sepharose CL-4B indicates that it exists as large aggregates in the native state. Investigations of the carbohydrate specificity of DTL-A by enzyme-linked lectin assay suggest the multi-specificity of this lectin. DTL-A binds BSM, asialo-BSM as well as heparin and dextran sulfate. The binding of DTL-A to BSM was inhibited by monosaccharides D-GlcNAc and D-GalNAc, their alpha- but not beta-anomers. Among polysaccharides and glycoconjugates, DTL-A binding to BSM was effectively inhibited by BSM, asialo-BSM, pronase-treated BSM and synthetic alpha-D-GalNAc-PAA. Fetuin and asialofetuin showed a much lower inhibitory potency, heparin and dextran sulfate were noninhibitory. On the other hand, DTL-A binding to heparin was effectively inhibited by dextran sulfate, fucoidan, whereas BSM showed insignificantly inhibitory effect. DTL-A binding to heparin was not inhibited by D-GlcNAc and D-GalNAc.
Singh, Kuljinder; Kaur, Manpreet; Rup, Pushpinder J; Singh, Jatinder
2009-07-01
Present study was undertaken to investigate the influence of D-galactose binding lectin from Erythrina indica Lam. on the eggs and second instar larvae (64-72 hr) of melon fruit fly, Bactrocera cucurbitae (Coquillett). The lectin from E. indica seeds was extracted and purified by affinity chromatography using asilofetuin linked porous amino activated silica beads. The effects of various concentrations (0, 125, 250, 500 and 1000 microg ml(-1)) of lectin were studied on freshly laid eggs (0-8 hr) of B. cucurbitae which showed non-significant reduction in percent hatching of eggs. However, the treatment of second instar larvae (64-72 hr) with various test concentrations (0, 25, 50, 100 and 200 microg ml(-1)) of lectin significantly reduced the percent pupation and percent emergence of B. cucurbitae depicting a negative correlation with the lectin concentration. The LC50 (81 microg ml(-1)) treatment significantly decreased the pupal weight. Moreover, the treatment of larvae had also induced a significant increase in the remaining development duration. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (glutathione S-transferases) was assayed in second instar larvae under the influence of LC50 concentration of lectin for three exposure intervals (24, 48 and 72 hr). It significantly suppressed the activity of all the enzymes after all the three exposure intervals except for esterases which increased significantly.
Chang, Xiu-bao; Mengos, April; Hou, Yue-xian; Cui, Liying; Jensen, Timothy J.; Aleksandrov, Andrei; Riordan, John R.; Gentzsch, Martina
2009-01-01
Summary The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, ΔF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and ΔF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and ΔF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated Δ F508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497
Chang, Xiu-Bao; Mengos, April; Hou, Yue-Xian; Cui, Liying; Jensen, Timothy J; Aleksandrov, Andrei; Riordan, John R; Gentzsch, Martina
2008-09-01
The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, DeltaF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and DeltaF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and DeltaF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated DeltaF508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway.
Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi
2015-01-01
In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction. PMID:26212518
Melanosome transfer to and translocation in the keratinocyte.
Boissy, Raymond E
2003-01-01
Complexion coloration in humans is primarily regulated by the amount and type of melanin synthesized by the epidermal melanocyte. However, additional and equally contributing factors consist of (1) efficient transfer of melanin from the melanocytes to the neighboring keratinocytes and (2) distribution and degradation of the transferred melanosomes by the recipient keratinocytes. Once synthesized in the cell body of the epidermal melanocyte, pigmented melanosomes are translocated down the dendrites and captured at the dendritic tips via various cytoskeletal elements. Molecules recently identified that participate in this process consist of Rab27a, myosin-Va and melanophilin. Eventually, these peripherally localized melanosomes are transferred to keratinocytes by a presently undefined mechanism. The protease-activated receptor-2 (PAR-2) and unidentified surface lectins and glycoproteins facilitate this transfer process. Once incorporated into the keratinocytes, melanosomes are distributed individually or as clusters, aggregated towards the apical pole of the nucleus, and degraded as the keratinocytes undergo terminal differentiation and desquamation. Ultraviolet irradiation (UVR) can modulate the process of melanosome transfer from the melanocytes to the keratinocytes. UVR can upregulate expression of PAR-2 and lectin-binding receptors and increase phagocytic activity of cultured keratinocytes. Therefore, many cellular and molecular events that occur after melanogenesis contribute to skin color.
Palaniyar, Nades; Nadesalingam, Jeya; Clark, Howard; Shih, Michael J; Dodds, Alister W; Reid, Kenneth B M
2004-07-30
Collectins are a family of innate immune proteins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). The CRDs of these proteins recognize various microbial surface-specific carbohydrate patterns, particularly hexoses. We hypothesized that collectins, such as pulmonary surfactant proteins (SPs) SP-A and SP-D and serum protein mannose-binding lectin, could recognize nucleic acids, pentose-based anionic phosphate polymers. Here we show that collectins bind DNA from a variety of origins, including bacteria, mice, and synthetic oligonucleotides. Pentoses, such as arabinose, ribose, and deoxyribose, inhibit the interaction between SP-D and mannan, one of the well-studied hexose ligands for SP-D, and biologically relevant d-forms of the pentoses are better competitors than the l-forms. In addition, DNA and RNA polymer-related compounds, such as nucleotide diphosphates and triphosphates, also inhibit the carbohydrate binding ability of SP-D, or approximately 60 kDa trimeric recombinant fragments of SP-D that are composed of the alpha-helical coiled-coil neck region and three CRDs (SP-D(n/CRD)) or SP-D(n/CRD) with eight GXY repeats (SPD(GXY)(8)(n/CRD)). Direct binding and competition studies suggest that collectins bind nucleic acid via their CRDs as well as by their collagen-like regions, and that SP-D binds DNA more effectively than do SP-A and mannose-binding lectin at physiological salt conditions. Furthermore, the SP-D(GXY)(8)(n/CRD) fragments co-localize with DNA, and the protein competes the interaction between propidium iodide, a DNA-binding dye, and apoptotic cells. In conclusion, we show that collectins are a new class of proteins that bind free DNA and the DNA present on apoptotic cells by both their globular CRDs and collagen-like regions. Collectins may therefore play an important role in decreasing the inflammation caused by DNA in lungs and other tissues.
Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel
2007-02-23
Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional domains.
Wang, Mingyong; Chen, Yue; Zhang, Yani; Zhang, Liyun; Lu, Xiao; Chen, Zhengliang
2011-01-01
Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-κB (NF-κB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-α and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-κB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks. PMID:21383675
Jančaříková, Gita; Demo, Gabriel; Hyršl, Pavel
2017-01-01
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1–4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer—the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts. PMID:28806750
Ciencewicki, Jonathan M.; Verhein, Kirsten C.; Gerrish, Kevin; McCaw, Zachary R.; Li, Jianying; Bushel, Pierre R.
2016-01-01
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model. PMID:27106289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharkar, Poorva D.; Anuradha, P.; Gaikwad, Sushama M.
2006-03-01
A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. Unit-cell parameters were a = b = 167.54, c = 77.42 Å. The crystals diffracted to a Braggmore » spacing of 2.8 Å. Both the structures of abrin-a and T. kirilowii lectin could be used as a model in structure determination using the molecular-replacement method; however, T. kirilowii lectin coordinates gave better values of reliability and correlation parameters. The thermal, chemical and pH stability of this lectin have also been studied. When heated, its haemagglutination activity remained unaffected up to 363 K. Other stability studies show that 4 M guanidinium hydrochloride (Gdn–HCl) initiates unfolding and that the protein is completely unfolded at 6 M Gdn–HCl. Treatment with urea resulted in a total loss of activity at higher concentrations of denaturant with no major structural changes. The protein remained stable over a wide pH range, from pH 6 to pH 12, except for partial unfolding at extremely alkaline pH. The role of disulfide bonds in the protein stability was found to be insignificant. Rayleigh light-scattering studies showed no molecular aggregation in any of the extreme treated conditions. The unusual stability of this lectin resembles that of type II ribosome-inactivating proteins (type II RIPs), which is also supported by structure determination. The structural features observed in a preliminary electron-density map were compared with the other two available Trichosanthes lectin structures.« less
Liu, Yi-Chen; Li, Fu-Hua; Dong, Bo; Wang, Bing; Luan, Wei; Zhang, Xiao-Jun; Zhang, Liu-Suo; Xiang, Jian-Hai
2007-01-01
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have 11 amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site 1 are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control.
Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu
2017-11-01
We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.
Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille
2017-12-14
Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galectin-3 as a Potential Target to Prevent Cancer Metastasis
Ahmed, Hafiz; AlSadek, Dina M. M.
2015-01-01
Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395