Sample records for led reference light

  1. Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light.

    PubMed

    Araki, Hiromitsu; Takada, Naoki; Niwase, Hiroaki; Ikawa, Shohei; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-12-01

    We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.

  2. Cr/ITO semi-transparent n-type electrode for high-efficiency AlGaN/InGaN-based near ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon

    2017-11-01

    We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.

  3. Method of Reproduction of the Luminous Flux of the LED Light Sources by a Spherical Photometer

    NASA Astrophysics Data System (ADS)

    Huriev, M.; Neyezhmakov, P.

    2018-02-01

    In connection with transition to energy-efficient temporally stable light-emitting diodes (LEDs) lighting, a problem of ensuring the traceability of results of measurement of characteristics of light sources arises. The problem is related to existing measurement standards of luminous flux based on spherical photometers optimized for the reference incandescent lamps with a relative spectral characteristic different from the spectrum of the LEDs. We propose a method for reproduction of the luminous flux, which solves this problem.

  4. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  5. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  6. [Study on the safety of blue light leak of LED].

    PubMed

    Shen, Chong-Yu; Xu, Zheng; Zhao, Su-Ling; Huang, Qing-Yu

    2014-02-01

    In this paper, the blue light properties of LED illumination devices have been investigated. Against the status quo of China's LED lighting, we measured the spectrum component of LED lamps and analyzed the photobiological safety under the current domestic and international standards GB/T 20145-2006/CIE S009/E: 2002 and IEC62471: 2006 standards as well as CTL-0744_2009-laser resolution, which provides the reference to the manufacture of LED lighting lamps as well as related safety standards and laws. If the radiance intensity of blue light in LED is lower than 100 W x m(-2) x Sr(-1), there is no harm to human eyes. LEDs will not cause harm to human eyes under normal use, but we should pay attention to the protection of special populations (children), and make sure that they avoid looking at a light source for a long time. The research has found that the blue-rich lamps can affect the human rule of work and rest, and therefore, the LED lamps with color temperature below 4 000 K and color rendering index of 80 are suitable for indoor use. At the same time, the lamps with different parameters should be selected according to the different distances.

  7. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  8. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  9. Ag/SiO2 nanoparticle-based plasmonic enhancement of light output in nanohole-patterned InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan

    2017-10-01

    Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.

  10. Evaluation of light-emitting diodes for signage applications

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Zhou, Yutao; Ramamurthy, Vasudha; Bierman, Andrew; Bullough, John D.; Narendran, Nadarajah

    2004-01-01

    This paper outlines two parts of a study designed to evaluate the use of light-emitting diodes (LEDs) in channel-letter signs. The first part of the study evaluated the system performance of red LED signs and white LED signs against reference neon and cold-cathode signs. The results show a large difference between the actual performance and potential savings from red and white LEDs. Depending on the configuration, a red LED sign could use 20% to 60% less power than a neon sign at the same light output. The light output of the brightest white LED sign tested was 15% lower than the cold-cathode reference, but its power was 53% higher. It appears from this study that the most efficient white LED system is still 40% less efficient than the cold-cathode system tested. One area that offers a great potential for further energy savings is the acrylic diffuser of the signs. The acrylic diffusers measured absorb between 60% and 66% of the light output produced by the sign. Qualitative factors are also known to play an important role in signage systems. One of the largest issues with any new lighting technology is its acceptance by the end user. Consistency of light output and color among LEDs, even from the same manufacturing batch, and over time, are two of the major issues that also could affect the advantages of LEDs for signage applications. To evaluate different signage products and to identify the suitability of LEDs for this application, it is important to establish a criterion for brightness uniformity. Building upon this information, the second part of the study used human factors evaluations to determine a brightness-uniformity criterion for channel-letter signs. The results show that the contrast modulation between bright and dark areas within a sign seems to elicit the strongest effect on how people perceive uniformity. A strong monotonic relationship between modulation and acceptability was found in this evaluation. The effect of contrast seems to be stronger than that of spatial frequency or background luminance, particularly for contrast modulation values of less than 0.20 or greater than 0.60. A sign with luminance variations of less than 20% would be accepted by at least 80% of the population in any given context.

  11. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  12. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators

    NASA Astrophysics Data System (ADS)

    Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten

    2017-08-01

    Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.

  13. Forward and correctional OFDM-based visible light positioning

    NASA Astrophysics Data System (ADS)

    Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng

    2017-09-01

    Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.

  14. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition

    NASA Astrophysics Data System (ADS)

    Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.

    2018-04-01

    We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.

  15. Controllable spectrum artificial sunlight source system using LEDs with 32 different peak wavelengths of 385-910 nm.

    PubMed

    Fujiwara, Kazuhiro; Yano, Akira

    2011-04-01

    This study developed a lighting system that produces an approximate spectral irradiance (SI) of ground level sunlight in the wavelength range of 385-910 nm (GLS₃₈₅₋₉₁₀) using 547 light-emitting diodes (LEDs) with 32 different peak wavelengths. The produced SI can be modified over an arbitrary wavelength band. The SI at the light outlet reached up to 1/2 of the GLS₃₈₅₋₉₁₀ of a sunny April day, although the produced SI deviated from the GLS₃₈₅₋₉₁₀ at some wavelengths. For subsequent experiments, the reference SI was defined as 1/4 GLS₃₈₅₋₉₁₀ of a sunny April day. The SI produced from the lighting system was adjusted to approximate the reference SI. The ratios of the produced SI and the reference SI were within 0.72-1.28. As an application of the lighting system for biological studies, the transmitted SI of a green leaf of perilla (Perilla frutescens L.) was investigated. The curve shape of the transmitted SI, which had characteristically low transmission percentages of blue and red light, reflected the characteristics of the absorption spectra of chlorophylls. The lighting system is therefore potentially beneficial for use in diagnosing physiological conditions of plant leaves, although its application is not limited to plant physiological studies. Copyright © 2010 Wiley-Liss, Inc.

  16. New developments in electronic reference controls for frequency domain optical sensing

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Li, G.; Porterfield, D. M.

    2009-05-01

    The reference optical path is essential for optical systems which function on the basis of light interference. In the case of frequency domain (FD) fluorescence life-time optrodes, a reference LED is used as a standard for calculating the phase angle. The reference LED is configured so that radiation travels the same length to the detector as that of the fluorescence signal being analyzed. The phase shift, which provides details of fluorescence lifetime, is measured between these two signals - the fluorescence signal and reference LED signal, using a photodetector. We have designed, developed and implemented a FD optrode system without a reference LED. The key requirement of such a system is that phase shifts due to optics at wavelength of fluorescence and electronics have to be calibrated. In the reference-free system, the reference signal comes from the lock-in-amplifier which also drives the excitation LED. The lock-in-amplifier measures the phase shift between the excitation signal and the fluorescence emission signal from the photodetector and is locked at the frequency of modulation of the excitation signal. This insures higher signal to noise ratio and low-noise measurements. The reference-free optrode system removes some constraints on the coupling optics, which help improve the overall performance of the system. After development of electronics, and optimization of coupling optics, the system was calibrated in different oxygen concentration solutions to measure fluorescence intensity and lifetime of the oxygen sensitive dye platinum tetrakis (pentafluorophenyl) porphine (PtTFPP).

  17. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control.

    PubMed

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-07-08

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).

  18. The use of light-emitting diode fluorescence to diagnose mycobacterial lymphadenitis in fine-needle aspirates from children

    PubMed Central

    van Wyk, A. C.; Marais, B. J.; Warren, R. M.; van Wyk, S. S.; Wright, C. A.

    2011-01-01

    SUMMARY BACKGROUND Fine-needle aspiration biopsy (FNAB) is a simple, safe and effective method for investigating suspected mycobacterial lymphadenitis in children. Fluorescence microscopy can provide rapid mycobacterial confirmation. Light-emitting diodes (LEDs) provide a cheap and robust excitation light source, making fluorescence microscopy feasible in resource-limited settings. OBJECTIVE To compare the diagnostic performance of LED fluorescence microscopy on Papanicolaou (PAP) stained smears with the conventional mercury vapour lamp (MVL). METHODS FNAB smears routinely collected from palpable lymph nodes in children with suspected mycobacterial disease were PAP-stained and evaluated by two independent microscopists using different excitatory light sources (MVL and LED). Mycobacterial culture results provided the reference standard. A manually rechargeable battery-powered LED power source was evaluated in a random subset. RESULTS We evaluated 182 FNAB smears from 121 children (median age 31 months, interquartile range 10–67). Mycobacterial cultures were positive in 84 of 121 (69%) children. The mean sensitivity with LED (mains-powered), LED (rechargeable battery-powered) and MVL was respectively 48.2%, 50.0% and 51.8% (specificity 78.4%, 86.7% and 78.4%). Inter-observer variation was similar for LED and MVL (κ = 0.5). CONCLUSION LED fluorescence microscopy provides a reliable alternative to conventional methods and has many favourable attributes that would facilitate improved, decentralised diagnostic services. PMID:21276297

  19. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-03-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.

  20. An inter-lighting interference cancellation scheme for MISO-VLC systems

    NASA Astrophysics Data System (ADS)

    Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan

    2017-08-01

    In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.

  1. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes.

    PubMed

    Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju

    2016-02-28

    ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.

  2. Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED

    NASA Astrophysics Data System (ADS)

    Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian

    2017-11-01

    Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.

  3. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control

    PubMed Central

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-01-01

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720

  4. Evaluation of inorganic and organic light-emitting diode displays for signage application

    NASA Astrophysics Data System (ADS)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the conventional, inorganic LEDs. But, signage panels based on OLEDs can be made cheaper by avoiding the use of acrylic sheet and reflective gratings. Moreover, the distributed light output and light weight of OLEDs and the potential to be built inexpensively on flexible substrates can make OLEDs more beneficial for future signage applications than the inorganic LEDs.

  5. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J., E-mail: j.bai@sheffield.ac.uk; Xu, B.; Guzman, F. G.

    2015-12-28

    We demonstrate semipolar InGaN single-quantum-well light emitting diodes (LEDs) in the green, yellow-green, yellow and amber spectral region. The LEDs are grown on our overgrown semipolar (11-22) GaN on micro-rod array templates, which are fabricated on (11-22) GaN grown on m-plane sapphire. Electroluminescence measurements on the (11-22) green LED show a reduced blue-shift in the emission wavelength with increasing driving current, compared to a reference commercial c-plane LED. The blue-shifts for the yellow-green and yellow LEDs are also significantly reduced. All these suggest an effective suppression in quantum confined Stark effect in our (11-22) LEDs. On-wafer measurements yield a linearmore » increase in the light output with the current, and external quantum efficiency demonstrates a significant improvement in the efficiency-droop compared to a commercial c-plane LED. Electro-luminescence polarization measurements show a polarization ratio of about 25% in our semipolar LEDs.« less

  6. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates

    NASA Astrophysics Data System (ADS)

    Lin, Zhiting; Wang, Haiyan; Lin, Yunhao; Wang, Wenliang; Li, Guoqiang

    2017-11-01

    High-performance blue GaN-based light-emitting diodes (LEDs) on Si substrates have been achieved by applying a suitable tensile stress in the underlying n-GaN. It is demonstrated by simulation that tensile stress in the underlying n-GaN alleviates the negative effect from polarization electric fields on multiple quantum wells but an excessively large tensile stress severely bends the band profile of the electron blocking layer, resulting in carrier loss and large electric resistance. A medium level of tensile stress, which ranges from 4 to 5 GPa, can maximally improve the luminous intensity and decrease forward voltage of LEDs on Si substrates. The LED with the optimal tensile stress shows the largest simulated luminous intensity and the smallest simulated voltage at 35 A/cm2. Compared to the LEDs with a compressive stress of -3 GPa and a large tensile stress of 8 GPa, the improvement of luminous intensity can reach 102% and 28.34%, respectively. Subsequent experimental results provide evidence of the superiority of applying tensile stress in n-GaN. The experimental light output power of the LEDs with a tensile stress of 1.03 GPa is 528 mW, achieving a significant improvement of 19.4% at 35 A/cm2 in comparison to the reference LED with a compressive stress of -0.63 GPa. The forward voltage of this LED is 3.08 V, which is smaller than 3.11 V for the reference LED. This methodology of stress management on underlying GaN-based epitaxial films shows a bright feature for achieving high-performance LED devices on Si substrates.

  7. A new approach to preparation of standard LEDs for luminous intensity and flux measurement of LEDs

    NASA Astrophysics Data System (ADS)

    Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2006-09-01

    This work presents an alternative approach for preparing photometric standard LEDs, which is based on a novel functional seasoning method. The main idea of our seasoning method is simultaneously monitoring the light output and the junction voltage to obtain quantitative information on the temperature dependence and the aging effect of the LED emission. We suggested a general model describing the seasoning process by taking junction temperature variation and aging effect into account and implemented a fully automated seasoning facility, which is capable of seasoning 12 LEDs at the same time. By independent measurements of the temperature dependence, we confirmed the discrepancy of the theoretical model to be less than 0.5 % and evaluate the uncertainty contribution of the functional seasoning to be less than 0.5 % for all the seasoned samples. To demonstrate assigning the reference value to a standard LED, the CIE averaged LED intensity (ALI) of the seasoned LEDs was measured with a spectroradiometer-based instrument and the measurement uncertainty was analyzed. The expanded uncertainty of the standard LED prepared by the new approach amounts to be 4 % ~ 5 % (k=2) depending on color without correction of spectral stray light in the spectroradiometer.

  8. Comparison between Different Types of Sensors Used in the Real Operational Environment Based on Optical Scanning System.

    PubMed

    Flores-Fuentes, Wendy; Miranda-Vega, Jesús Elías; Rivas-López, Moisés; Sergiyenko, Oleg; Rodríguez-Quiñonez, Julio C; Lindner, Lars

    2018-05-24

    The present paper describes the experimentation in a controlled environment and a real environment using different photosensors, such as infrared light emitting diode (IRLED-as receiver), photodiode, light dependent resistor (LDR), and blue LED for the purpose of selecting those devices, which can be employed in adverse conditions, such as sunlight or artificial sources. The experiments that are described in this paper confirmed that the blue LED and phototransistor could be used as a photosensor of an Optical Scanning System (OSS), because they were less sensitive to sunlight radiation. Moreover, they are appropriate as reference sources that are selected for the experiment (blue LED flashlight and light bulb). The best experimental results that were obtained contained a digital filter that was applied to the output of the photosensor, which reduced the standard deviation for the best case for the phototransistor LED from 100.26 to 0.15. For the best case, using the blue LED, the standard deviation was reduced from 86.08 to 0.11. Using these types of devices the cost of the Optical Scanning System can be reduced and a considerable increase in resolution and accuracy.

  9. Highly Reflective Nonalloyed Ni/Ag/Pt Contact to Mg-Si Codoped p-GaN for Enhanced Efficiency of Light-Emitting Diodes.

    PubMed

    Oh, Munsik; Kim, Hyunsoo

    2015-10-01

    The authors report enhanced efficiency of GaN-based light-emitting diodes (LEDs) fabricated with highly reflective nonalloyed Ni/Ag/Pt contact. The Ni/Ag/Pt contact formed on the Mg-Si codoped p-GaN produced the low specific contact resistance of 7.9 x 10(-4) Ωcm2 under as-deposited condition, which is comparable to the reference reflector (annealed at 500 °C for 1 min in oxygen ambient). Current-voltage-temperature measurements and the secondary ion mass spectroscopy revealed that the ohmic mechanism of the nonalloyed Ni/Ag/Pt contact is due to the more generated deep-level states associated with Mg-Si codoping, which act as the efficient hopping centers for the carrier transport at the contact/p-GaN interface. Due to the absence of interfacial reaction, the nonalloyed Ni/Ag/Pt contact showed much higher optical reflectivity (93.4% at 450 nm) as compared to the annealed sample (57.7%), resulting in a 40.5% brighter light output power as compared to the reference LEDs.

  10. Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes

    NASA Astrophysics Data System (ADS)

    Liang, Junqing; Guo, Xiaoyang; Song, Li; Lin, Jie; Hu, Yongsheng; Zhang, Nan; Liu, Xingyuan

    2017-11-01

    Perovskite light-emitting diodes (PeLEDs) have attracted much attention in the past two years due to their high photoluminescence quantum efficiencies and wavelength tuneable characteristics. In this work, transparent PeLEDs (TPeLEDs) have been reported with organic-inorganic multilayer transparent top electrodes that have more convenient control of the organic/electrode interface. By optimizing the thickness of the MoO3 layer in the top electrode, the best average transmittance of 47.21% has been obtained in the TPeLED in the wavelength range of 380-780 nm. In addition, the TPeLED exhibits a maximum luminance of 6380 cd/m2, a maximum current efficiency (CE) of 3.50 cd/A, and a maximum external quantum efficiency (EQE) of 0.85% from the bottom side together with a maximum luminance of 3380 cd/m2, a maximum CE of 1.47 cd/A, and a maximum EQE of 0.36% from the top side. The total EQE of the TPeLED is about 86% of that of the reference device, indicating efficient TPeLED achieved in this work, which could have significant contribution to PeLEDs for see-through displays.

  11. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450 nm) light emitting diode. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 × 10{sup −2} Ω cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5 × 10{sup −4} Ω cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. Themore » depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.« less

  12. Eye safety related to near infrared radiation exposure to biometric devices.

    PubMed

    Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2011-03-01

    Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.

  13. Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam.

    PubMed

    Chaisson, L H; Reber, C; Phan, H; Switz, N; Nilsson, L M; Myers, F; Nhung, N V; Luu, L; Pham, T; Vu, C; Nguyen, H; Nguyen, A; Dinh, T; Nahid, P; Fletcher, D A; Cattamanchi, A

    2015-09-01

    Hanoi Lung Hospital, Hanoi, Viet Nam. To compare the accuracy of CellScopeTB, a manually operated mobile digital fluorescence microscope, with conventional microscopy techniques. Patients referred for sputum smear microscopy to the Hanoi Lung Hospital from May to September 2013 were included. Ziehl-Neelsen (ZN) smear microscopy, conventional light-emitting diode (LED) fluorescence microscopy (FM), CellScopeTB-based LED FM and Xpert(®) MTB/RIF were performed on sputum samples. The sensitivity and specificity of microscopy techniques were determined in reference to Xpert results, and differences were compared using McNemar's paired test of proportions. Of 326 patients enrolled, 93 (28.5%) were Xpert-positive for TB. The sensitivity of ZN microscopy, conventional LED FM, and CellScopeTB-based LED FM was respectively 37.6% (95%CI 27.8-48.3), 41.9% (95%CI 31.8-52.6), and 35.5% (95%CI 25.8-46.1). The sensitivity of CellScopeTB was similar to that of conventional LED FM (difference -6.5%, 95%CI -18.2 to 5.3, P = 0.33) and ZN microscopy (difference -2.2%, 95%CI -9.2 to 4.9, P = 0.73). The specificity was >99% for all three techniques. CellScopeTB performed similarly to conventional microscopy techniques in the hands of experienced TB microscopists. However, the sensitivity of all sputum microscopy techniques was low. Options enabled by digital microscopy, such as automated imaging with real-time computerized analysis, should be explored to increase sensitivity.

  14. Novel sensor for color control in solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Gourevitch, Alex; Thurston, Thomas; Singh, Rajiv; Banachowicz, Bartosz; Korobov, Vladimir; Drowley, Cliff

    2010-02-01

    LED wavelength and luminosity shifts due to temperature, dimming, aging, and binning uncertainty can cause large color errors in open-loop light-mixing illuminators. Multispectral color light sensors combined with feedback circuits can compensate for these LED shifts. Typical color light sensor design variables include the choice of light-sensing material, filter configuration, and read-out circuitry. Cypress Semiconductor has designed and prototyped a color sensor chip that consists of photodiode arrays connected to a I/F (Current to Frequency) converter. This architecture has been chosen to achieve high dynamic range (~100dB) and provide flexibility for tailoring sensor response. Several different optical filter configurations were evaluated in this prototype. The color-sensor chip was incorporated into an RGB light color mixing system with closed-loop optical feedback. Color mixing accuracy was determined by calculating the difference between (u',v') set point values and CIE coordinates measured with a reference colorimeter. A typical color precision ▵u'v' less than 0.0055 has been demonstrated over a wide range of colors, a temperature range of 50C, and light dimming up to 80%.

  15. LED deep UV source for charge management of gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Allard, Brett; Buchman, Saps; Williams, Scott; Byer, Robert L.

    2006-04-01

    Proof mass electrical charge management is an important functionality for the ST-7-LTP technology demonstration flight and for LISA. Photoemission for charge control is accomplished by using deep ultraviolet (UV) light to excite photoelectron emission from an Au alloy. The conventional UV source is a mercury vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED) source. We have acquired selected AlGaN UV LEDs, characterized their performance and successfully used them to realize charge management. The UV LEDs emit at a 257 nm central wavelength with a bandwidth of ~12 nm. The UV power for a free-space LED is ~120 µW, and after fibre coupling is ~16 µW, more than sufficient for LISA applications. We have directly observed the LED UV light-induced photocurrent response from an Au photocathode and an Au-coated GRS/ST-7 proof mass. We demonstrated fast switching of UV LEDs and associated fast changes in photocurrent. This allows modulation and continuous discharge to meet stringent LISA disturbance reduction requirements. We propose and demonstrate AC charge management outside the gravitational wave signal band. Further, the megahertz bandwidth for UV LED switching allows for up to six orders of magnitude dynamic power range and a number of novel modes of operations. The UV LED based charge management system offers the advantages of small-size, lightweight, fibre-coupled operation with very low power consumption. Presented at 'Amaldi6', Poster 73, Space Detector, 6th Edoardo Almadi Conference on Gravitational Waves, 20-24 June 2005.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, Bruce R.; Perrin, Tess E.; Miller, Naomi J.

    A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as "blue light") of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarkedmore » on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.« less

  17. A short-range optical wireless transmission method based on LED

    NASA Astrophysics Data System (ADS)

    Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu

    2016-10-01

    As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.

  18. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program.

  19. Modeling the effects of phosphor converted LED lighting to the night sky of the Haleakala Observatory, Hawaii

    NASA Astrophysics Data System (ADS)

    Aubé, M.; Simoneau, A.; Wainscoat, R.; Nelson, L.

    2018-05-01

    The goal of this study is to evaluate the current level of light pollution in the night sky at the Haleakala Observatory on the island of Maui in Hawaii. This is accomplished with a numerical model that was tested in the first International Dark Sky Reserve located in Mont-Mégantic National Park in Canada. The model uses ground data on the artificial light sources present in the region of study, geographical data, and remotely sensed data for: 1) the nightly upward radiance; 2) the terrain elevation; and, 3) the ground spectral reflectance of the region. The results of the model give a measure of the current state of the sky spectral radiance at the Haleakala Observatory. Then, using the current state as a reference point, multiple light conversion plans are elaborated and evaluated using the model. We can thus estimate the expected impact of each conversion plan on the night sky radiance spectrum. A complete conversion to white (LEDs) with (CCT) of 4000K and 3000K are contrasted with a conversion using (PC) amber (LEDs). We include recommendations concerning the street lamps to be used in sensitive areas like the cities of Kahului and Kihei and suggest best lighting practices related to the color of lamps used at night.

  20. Development and Performance Assessment of White LED Dimmer

    NASA Astrophysics Data System (ADS)

    Maiti, Pradip Kr.; Roy, Biswanath

    2017-10-01

    A microcontroller based electronic dimmer is developed using pulse width modulation technique. This dimmer is controllable by infra-red remote within a distance of 4 m and can be electrically connected between LED module and its driver. The performance of a developed LED dimmer is assessed on basis of variation of the photometric parameters of commercially available warm white and cool white LED luminaire used in indoor lighting applications. Four equally spaced dimming levels are considered to measure luminous efficacy, spectral power distribution, CIE 1931 chromaticity coordinates, CIE 1976 CIELUV color difference, correlated color temperature, general color rendering index and one specific color rendering index for saturated red color sample. Variations of above parameters are found out with reference to the values measured at rated voltage without the developed dimmer. Analysis of experimentally measured data shows that the developed LED dimmer is capable to vary light output of the WLED luminaire within a range of 25-100% without appreciable variation of its photometric and color parameters. The only exception is observed for the luminous efficacy parameter where it shows about 17 and 14.7% reduction for warm white and cool white LED luminaire at 25% dimming level.

  1. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  2. A light-emitting diode- (LED-) based absorption sensor for simultaneous detection of carbon monoxide and carbon dioxide

    DOE PAGES

    Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.; ...

    2016-04-18

    Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less

  3. AlN/ITO-Based Hybrid Electrodes with Conducting Filaments: Their Application to Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun

    2017-07-19

    A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.

  4. Cryogenic characterization of LEDs for space application

    NASA Astrophysics Data System (ADS)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  5. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  6. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.

    PubMed

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S

    2016-06-01

    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.

  7. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis.

    PubMed

    Yang, Yefeng; Pan, Chenhao; Zhong, Renhai; Pan, Jinming

    2018-06-01

    Although many experiments have been conducted to clarify the response of broiler chickens to light-emitting diode (LED) light, those published results do not provide a solid scientific basis for quantifying the response of broiler chickens. This study used a meta-analysis to establish light spectral models of broiler chickens. The results indicated that 455 to 495 nm blue LED light produced the greatest positive response in body weight by 10.66% (BW; P < 0.001) and 515 to 560 nm green LED light increased BW by 6.27% (P < 0.001) when compared with white light. Regression showed that the wavelength (455 to 660 nm) was negatively related to BW change of birds, with a decrease of about 4.9% BW for each 100 nm increase in wavelength (P = 0.002). Further analysis suggested that a combination of the two beneficial light sources caused a synergistic effect. BW was further increased in birds transferred either from green LED light to blue LED light (17.23%; P < 0.001) or from blue LED light to green LED light (17.52%; P < 0.001). Moreover, birds raised with a mixture of green and blue LED light showed a greater BW promotion (10.66%; P < 0.001) than those raised with green LED light (6.27%). A subgroup analysis indicated that BW response to monochromatic LED light was significant regardless of the genetic strain, sex, control light sources, light intensity and regime of LED light, environmental temperature, and dietary ME and CP (P > 0.05). However, there was an interaction between the FCR response to monochromatic LED light with those covariant factors (P < 0.05). Additionally, green and yellow LED light played a role in affecting the meat color, quality, and nutrition of broiler chickens. The results indicate that the optimal ratio of green × blue of mixed LED light or shift to green-blue of combined LED light may produce the optimized production performance, whereas the optimal ratio of green/yellow of mixed or combined LED light may result in the optimized meat quality.

  8. Visualization of the contact line during the water exit of flat plates

    NASA Astrophysics Data System (ADS)

    Tassin, A.; Breton, T.; Forest, B.; Ohana, J.; Chalony, S.; Le Roux, D.; Tancray, A.

    2017-08-01

    We investigate experimentally the time evolution of the wetted surface during the lifting of a body initially floating at the water surface. This phenomenon is referred to as the water exit problem. The water exit experiments were conducted with transparent (PMMA) mock-ups of two different shapes: a circular disc and a square flat plate. Two different lighting systems were used to diffuse light in the mock-up material: a central high-power LED light normal to the surface and an edge-lighting system featuring an array of LED lights. These setups make it possible to illuminate the contact line, which delimits the surface of contact between the mock-up and the water. The characteristic size of the mock-ups is about 20 cm and the acceleration of the mock-up oscillates between 0 and 25 m/s^2. We show that the central light setup gives satisfactory results for the circular disc and that the edge lighting technique makes it possible to follow a contact line with a time-evolving complex shape (strong changes of convexity) up to 1000 fps. The observations presented in the paper support the possibility of extending this promising technique to more general three-dimensional bodies with arbitrary motion (e.g., including pitch motion).

  9. A comparison of color fidelity metrics for light sources using simulation of color samples under lighting conditions

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo

    2017-09-01

    Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.

  10. Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types?

    PubMed

    Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen

    2016-11-01

    LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.

  11. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    PubMed

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Employing the conventional edge-lighting technology into ultraviolet-range: a preliminary study by optical simulation

    NASA Astrophysics Data System (ADS)

    Ye, Linchao; Belloni, Paola; Möller, Knut

    2011-10-01

    Within the framework of a project conducted together with an industrial partner, a self-disinfecting operation interface with a glass panel is being developed. The concept of self-disinfection is based on the exploitation of the photocatalytical effect induced by a TiO2-coating on the glass surface under UV(A) light, which would make the touch screen antimicrobial. High-power UV-LEDs instead of conventional UV-lamps have been employed as light source. The main goal and challenge of the optical design is to generate an efficient and preferably homogeneous UV field on the TiO2-coated side while keeping the UV-LEDs concealed, i.e. invisible to the user. Therefore common backlighting systems have been used as reference and modified to meet the concrete requirements. Primary analysis and optical simulations have been performed with the software LightTools®. Several patterns for light redirection (i.e. 3D-spherical texture, 3D-rectangular texture and 2D-circular serigraph) have been investigated, compared and evaluated. Finally the pattern design which both fulfills all the predefined boundary conditions and simultaneously reduces the costs has been chosen.

  13. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  14. Off-axis digital holographic microscopy with LED illumination based on polarization filtering.

    PubMed

    Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong

    2013-12-01

    A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result.

  15. Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

    PubMed Central

    Lan, Wensheng; Chen, Guoping; Cui, Feng; Tan, Feng; Liu, Ran; Yushupujiang, Maolidan

    2012-01-01

    We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH) enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP) compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol). Briefly, MPH containing six sequential histidines (6× His tag) at its N-terminal was bound to nitrilotriacetic acid (NTA) agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs) and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP) concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications. PMID:23012501

  16. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  17. Refrigerated display case lighting with LEDs

    NASA Astrophysics Data System (ADS)

    Raghavan, Ramesh; Narendran, Nadarajah

    2002-11-01

    The rapid development of high brightness light emitting diodes (LEDs) has triggered many applications, especially in the area of display lighting. This paper focuses on the application of white LEDs in refrigerated display cases. The fluorescent lighting presently used in commercial refrigerators is inefficient in the application and also it provides poor lighting for merchandising. A laboratory human factors experiment was conducted to assess the preference for the different lighting systems, namely, fluorescent and LED. Two refrigerated display cases, one with the traditional fluorescent lighting system and the other with a prototype LED lighting system, were placed side-by-side in a laboratory setting. Illuminance measurements made within the two display cases showed that the lighting was more uniform with the LED system compared to the traditional fluorescent system. Sixteen human subjects participated in this study and rated their preference for the two lighting systems. The results show that human subjects strongly preferred the display case with the LED lighting. The authors of this manuscript believe a field study would be greatly beneficial to further confirm these results and to understand the relationship between preference and sales. Considering the luminous efficacy of white LEDs presently available in the marketplace, it is possible to develop a LED based lighting system for commercial refrigerators that is competitive with fluorescent lighting system in terms of energy use. The LED based lighting would provide better lighting than traditional fluorescent lighting.

  18. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  19. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  20. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Tarsa, Eric; Ibbetson, James; Morgan, Frederick; Dowling, Kevin; Lys, Ihor

    2017-10-17

    An LED component according to the present invention comprising an array of LED chips mounted on a submount with the LED chips capable of emitting light in response to an electrical signal. The array can comprise LED chips emitting at two colors of light wherein the LED component emits light comprising the combination of the two colors of light. A single lens is included over the array of LED chips. The LED chip array can emit light of greater than 800 lumens with a drive current of less than 150 milli-Amps. The LED chip component can also operate at temperatures less than 3000 degrees K. In one embodiment, the LED array is in a substantially circular pattern on the submount.

  1. Thermoresponsive scattering coating for smart white LEDs.

    PubMed

    Bauer, Jurica; Verbunt, Paul P C; Lin, Wan-Yu; Han, Yang; Van, My-Phung; Cornelissen, Hugo J; Yu, Joan J H; Bastiaansen, Cees W M; Broer, Dirk J

    2014-12-15

    White light emitting diode (LED) systems, capable of lowering the color temperature of emitted light on dimming, have been reported in the literature. These systems all use multiple color LEDs and complex control circuitry. Here we present a novel responsive lighting system based on a single white light emitting LED and a thermoresponsive scattering coating. The coated LED automatically emits light of lower correlated color temperature (CCT) when the power is reduced. We also present results on the use of multiple phosphors in the white light LED allowing for the emission of warm white light in the range between 2900 K and 4150 K, and with a chromaticity complying with the ANSI standards (C78.377). This responsive warm white light LED-system with close-to-ideal emission characteristics is highly interesting for the lighting industry.

  2. Plant Habitat-Conscious White Light Emission of Dy(3+) in Whitlockite-like Phosphates: Reduced Photosynthesis and Inhibition of Bloom Impediment.

    PubMed

    Nakajima, Tomohiko; Tsuchiya, Tetsuo

    2015-09-30

    It has been pointed out that agricultural crops and other natural plants may be damaged by outdoor lighting systems. Therefore, lighting that does not affect plant growth is needed. To address this problem, we have prepared a new whitlockite-like phosphate Dy-phosphor Ca8MgY1-x-yLaxDyy(PO4)7, which exhibits a yellow-white Dy(3+) luminescence that has a maximum internal quantum efficiency of 65.6% under a 387 nm excitation light for x = 0.10 and y = 0.05. The x dependence of IQE showed two maxima at x = 0.10-0.15 and 0.80-0.85, which could be due to the partial allowance of f-f forbidden transitions by local lattice distortion around the Dy(3+) ions originating from the La incorporation at near end members of Ca8MgY1-x-yLaxDyy(PO4)7. Concentration quenching occurred for x > 0.05. A white light-emitting diode (LED) was fabricated from a UV LED emitting at 385 nm and a Ca8MgY1-x-yLaxDyy(PO4)7 phosphor (Dy-WLED) for which the CIE color coordinates and correlated color temperature were CIE(0.350,0.378) and 4919 K, respectively. Plant cultivation experiments on Chlorella photosynthetic growth and blooming of the short-day plant Cosmos were carried out using the prepared Dy-WLED and reference commercial LEDs. We found that the Dy-WLED substantially reduced the photosynthesis of Chlorella and inhibited bloom impediment in Cosmos. These effects originated especially from the reduction of red-near-IR emissions. Thus, we conclude that the Dy-WLED is a very promising candidate for plant habitat-conscious white LEDs for outdoor lights that can protect both natural plant habitats and crop yields.

  3. Light Emitting Diodes and Astronomy - a chance for restoration of the dark night sky - or for further loss

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard

    2015-08-01

    Across the planet, conventional light sources such as high pressure sodium, are rapidly being replaced by light emitting diodes (LEDs). As light fixtures are being replaced, there is a tremendous opportunity for restoration of dark night skies through replacement of poorly shielded fixtures by fully shielded fixtures. However, it is critically important to limit the amount of blue light from the LEDs.Sales people are strongly promoting LEDs with high correlated color temperature (CCT), such as 5000K. They are promoting them on energy efficiency grounds - higher energy efficiency is easier to sell. These LEDs have tremendous amounts of blue light near 450 nm. The photopic human eye is relatively insensitive to this blue light, but the dark adapted scotopic eye is much more sensitive, and CCDs are also very sensitive to this wavelength of light. As a consequence, both professional and amateur astronomers are very seriously impacted by high CCT LED lighting. The sodium lighting that the LEDs are replacing has relatively little blue light. Blue light is strongly scattered by air molecules in the atmosphere.Use of high CCT LED lighting will cause further deterioration of night sky quality.In contrast, use of LED lighting with low CCT (e.g., 2400K or 2700K), or use of filters to remove the blue light, can restore the dark night sky. LED lighting is much easier to direct, meaning that an area such as a roadway can be lit with many less lumens with LEDs compared to conventional lights such as high pressure sodium. And use of fully shielded fixtures will eliminate direct uplighting.It is therefore critically important at this time to require that all new LED lighting be fully shielded, and for strong limits to be placed the amount of blue light from LEDs. This is crucial near observatories, but is important everywhere.

  4. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  5. White LED sources for vehicle forward lighting

    NASA Astrophysics Data System (ADS)

    Van Derlofske, John F.; McColgan, Michele W.

    2002-11-01

    Considerations for the use of white light emitting diode (LED) sources to produce illumination for automotive forward lighting is presented. Due to their reliability, small size, lower consumption, and lower heat generation LEDs are a natural choice for automotive lighting systems. Currently, LEDs are being sucessfully employed in most vehicle lighting applications. In these applications the light levels, distributions, and colors needed are achievable by present LED technologies. However, for vehicle white light illumination applications LEDs are now only being considered for low light level applications, such as back-up lamps. This is due to the relatively low lumen output that has been available up to now in white LEDs. With the advent of new higher lumen packages, and with the promise of even higher light output in the near future, the use of white LEDs sources for all vehicle forward lighting applications is beginning to be considered. Through computer modeling and photometric evaluation this paper examines the possibilities of using currently available white LED technology for vehicle headlamps. It is apparent that optimal LED sources for vehicle forward lighting applications will be constructed with hereto undeveloped technology and packaging configurations. However, the intent here in exploring currently available products is to begin the discussion on the design possibilities and significant issues surrounding LEDs in order to aid in the design and development of future LED sources and systems. Considerations such as total light output, physical size, optical control, power consumption, color appearance, and the effects of white LED spectra on glare and peripheral vision are explored. Finally, conclusions of the feasibility of current LED technology being used in these applications and recommendations of technology advancements that may need to occur are made.

  6. Newly patented process enables low-cost solution for increasing white light spectrum of LEDs

    NASA Astrophysics Data System (ADS)

    Spanard, Jan-Marie

    2017-10-01

    A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.

  7. Comparison of LED and Conventional Fluorescence Microscopy for Detection of Acid Fast Bacilli in a Low-Incidence Setting

    PubMed Central

    Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina

    2011-01-01

    Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622

  8. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU)

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.

    1996-01-01

    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  9. LED lighting efficacy: Status and directions

    DOE PAGES

    Morgan Pattison, Paul; Hansen, Monica; Tsao, Jeffrey Y.

    2017-12-28

    A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor converted LED packages have the potential for efficacy improvement from 160 lm/W to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacymore » sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. Finally, none of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.« less

  10. LED lighting efficacy: Status and directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan Pattison, Paul; Hansen, Monica; Tsao, Jeffrey Y.

    A monumental shift from conventional lighting technologies (incandescent, fluorescent, high intensity discharge) to LED lighting is currently transpiring. The primary driver for this shift has been energy and associated cost savings. LED lighting is now more efficacious than any of the conventional lighting technologies with room to still improve. Near term, phosphor converted LED packages have the potential for efficacy improvement from 160 lm/W to 255 lm/W. Longer term, color-mixed LED packages have the potential for efficacy levels conceivably as high as 330 lm/W, though reaching these performance levels requires breakthroughs in green and amber LED efficiency. LED package efficacymore » sets the upper limit to luminaire efficacy, with the luminaire containing its own efficacy loss channels. In this paper, based on analyses performed through the U.S. Department of Energy Solid State Lighting Program, various LED and luminaire loss channels are elucidated, and critical areas for improvement identified. Beyond massive energy savings, LED technology enables a host of new applications and added value not possible or economical with previous lighting technologies. These include connected lighting, lighting tailored for human physiological responses, horticultural lighting, and ecologically conscious lighting. Finally, none of these new applications would be viable if not for the high efficacies that have been achieved, and are themselves just the beginning of what LED lighting can do.« less

  11. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model

    PubMed Central

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling

    2013-01-01

    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357

  12. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  13. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  14. LED Lighting Facts® Program Supports Accuracy in SSL Product Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Fact sheet that provides a summary of LED Lighting Facts, a program to assure that LED lighting is accurately represented in the marketplace, illustrated by the LED Lighting Facts label to disclose product performance data.

  15. Spectral design flexibility of LED brings better life

    NASA Astrophysics Data System (ADS)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  16. Interpretation of digital chest radiographs: comparison of light emitting diode versus cold cathode fluorescent lamp backlit monitors.

    PubMed

    Lim, Hyun-ju; Chung, Myung Jin; Lee, Geewon; Yie, Miyeon; Shin, Kyung Eun; Moon, Jung Won; Lee, Kyung Soo

    2013-01-01

    To compare the diagnostic performance of light emitting diode (LED) backlight monitors and cold cathode fluorescent lamp (CCFL) monitors for the interpretation of digital chest radiographs. We selected 130 chest radiographs from health screening patients. The soft copy image data were randomly sorted and displayed on a 3.5 M LED (2560 × 1440 pixels) monitor and a 3 M CCFL (2048 × 1536 pixels) monitor. Eight radiologists rated their confidence in detecting nodules and abnormal interstitial lung markings (ILD). Low dose chest CT images were used as a reference standard. The performance of the monitor systems was assessed by analyzing 2080 observations and comparing them by multi-reader, multi-case receiver operating characteristic analysis. The observers reported visual fatigue and a sense of heat. Radiant heat and brightness of the monitors were measured. Measured brightness was 291 cd/m(2) for the LED and 354 cd/m(2) for the CCFL monitor. Area under curves for nodule detection were 0.721 ± 0.072 and 0.764 ± 0.098 for LED and CCFL (p = 0.173), whereas those for ILD were 0.871 ± 0.073 and 0.844 ± 0.068 (p = 0.145), respectively. There were no significant differences in interpretation time (p = 0.446) or fatigue score (p = 0.102) between the two monitors. Sense of heat was lower for the LED monitor (p = 0.024). The temperature elevation was 6.7℃ for LED and 12.4℃ for the CCFL monitor. Although the LED monitor had lower maximum brightness compared with the CCFL monitor, soft copy reading of the digital chest radiographs on LED and CCFL showed no difference in terms of diagnostic performance. In addition, LED emitted less heat.

  17. Optical properties of phosphor-in-glass through modification of pore properties for LED packaging

    NASA Astrophysics Data System (ADS)

    Kim, Sunil; Kim, Hyungsun

    2018-01-01

    The volume and size of the voids present between the frit and the phosphor particles used before sintering determine the pore properties of the resulting phosphor-in-glass (PIG). The pores formed from the voids influence the path of the incident light, thus changing the optical properties of the PIG. Therefore, the trends observed for the shrinkage and the green and sintered densities of the PIG were investigated using SiO2-B2O3-ZnO-K2O glass frit of four sizes to understand the tendency for the pore size, porosity, and optical properties of PIG. It has been demonstrated that variation in the pore properties according to the particle size influences parameters defining the light scattering phenomenon, such as the scattering angle of the light and the scattering coefficient, as well as the color rendering index, correlated color temperature, and package efficacy. The results obtained for the variation in the optical properties with the frit size can be used as a reference to select the appropriate glass frit size to achieve the required optical properties for a light-emitting diode (LED) package.

  18. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  20. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    NASA Technical Reports Server (NTRS)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  1. Optimal colour quality of LED clusters based on memory colours.

    PubMed

    Smet, Kevin; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Hanselaer, Peter

    2011-03-28

    The spectral power distributions of tri- and tetrachromatic clusters of Light-Emitting-Diodes, composed of simulated and commercially available LEDs, were optimized with a genetic algorithm to maximize the luminous efficacy of radiation and the colour quality as assessed by the memory colour quality metric developed by the authors. The trade-off of the colour quality as assessed by the memory colour metric and the luminous efficacy of radiation was investigated by calculating the Pareto optimal front using the NSGA-II genetic algorithm. Optimal peak wavelengths and spectral widths of the LEDs were derived, and over half of them were found to be close to Thornton's prime colours. The Pareto optimal fronts of real LED clusters were always found to be smaller than those of the simulated clusters. The effect of binning on designing a real LED cluster was investigated and was found to be quite large. Finally, a real LED cluster of commercially available AlGaInP, InGaN and phosphor white LEDs was optimized to obtain a higher score on memory colour quality scale than its corresponding CIE reference illuminant.

  2. Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.

    PubMed

    Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng

    2017-05-15

    We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.

  3. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.

    Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less

  5. The possible ocular hazards of LED dental illumination applications.

    PubMed

    Stamatacos, Catherine; Harrison, Janet L

    2014-04-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands - the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a laboratory setting, the aim of this review is to raise awareness of the potential risk for eye damage when singular or combinations of LED illumination are used.

  6. The possible ocular hazards of LED dental illumination applications.

    PubMed

    Stamatacos, Catherine; Harrison, Janet L

    2013-01-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands--the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a laboratory setting, the aim of this review is to raise awareness of the potential risk for eye damage when singular or combinations of LED illumination are used.

  7. White LED visible light communication technology research

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  8. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    PubMed Central

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  9. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  10. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit.

    PubMed

    Huang, Jen-Yi; Xu, Fengying; Zhou, Weibiao

    2018-04-24

    With the ability to tailor wavelengths necessary to the photosynthetically active radiation spectrum of plant pigments, light-emitting diodes (LEDs) offer vast possibilities in horticultural lighting. The influence of LED light irradiation on major postharvest features of banana was investigated. Mature green bananas were treated daily with selected blue (464-474 nm), green (515-525 nm) and red (617-627 nm) LED lights for 8 days, and compared with non-illuminated control. The positive effect of LED lighting on the acceleration of ripening in bananas was greatest for blue, followed by red and green. Under the irradiation of LED lights, faster peel de-greening and flesh softening, and increased ethylene production and respiration rate in bananas were observed during storage. Furthermore, the accumulations of ascorbic acid, total phenols, and total sugars in banana fruit were enhanced by LED light exposure. LED light treatment can induce the ripening of bananas and improve their quality and nutrition potential. These findings might provide new chemical-free strategies to shorten the time to ripen banana after harvest by using LED light source. This article is protected by copyright. All rights reserved.

  11. Solid State Light Evaluation in the U.S. Lab Mockup

    NASA Technical Reports Server (NTRS)

    Maida, James c.; Bowen, Charles K.; Wheelwright, Chuck

    2009-01-01

    This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application.

  12. Medical Applications of White LEDs for Surgical Operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.

  13. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    NASA Astrophysics Data System (ADS)

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  14. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    NASA Astrophysics Data System (ADS)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.

  15. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 < y < 0.11. By inserting 2 nm GaN interlayers into the growing InyGa1-yN film, and subsequently annealing the structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  16. LEDs for solid state lighting and other emerging applications: status, trends, and challenges

    NASA Astrophysics Data System (ADS)

    Craford, M. George

    2005-09-01

    LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.

  17. Light colour and intensity alters reproductive/seasonal responses in Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2015-08-01

    An extensive literature is available on the photoperiodic responses of avian species but studies on light colour and wavelength from light emitting diode (LED) sources on reproduction are limited. Hence, an experiment was designed to study the effect of different colours and intensities of light on the reproductive responses of Japanese quail. Three-week old quail were exposed to five different light conditions with a long photoperiod (LD 16:8): WT (white fluorescent light 100 lux as control), W LED (white light emitting diode, 30 lux), B LED (blue LED, 30 lux), G LED (green LED, 30 lux) and R-LED (red LED, 30 lux). The cloacal gland size, an indicator of androgenic activity, was monitored weekly. The results indicated an early initiation of gonadal growth in WT quail which continued and maintained a plateau throughout the period of study. On the other hand, in general low intensity light, there was a decreased amplitude of the reproductive cycle and the quail exposed to different colour lights (green, red and blue lights) used different incubation times to initiate their gonadal growth and exhibited a gonadal cycle of a different duration up to 15.5 weeks. Thereafter, the gonad of quail of all the LED groups started developing again (including the blue LED exposed quail which remained undeveloped until this age) and attained the increased degree of growth until 26.5 weeks of age. During the second cycle, gonads of green and red light exposed quail continued to increase and maintained a plateau of development similar to WT exposed control while white and blue LED exposed quail exhibited spontaneous regression and attained complete sexual quiescence. Based on our study, it is suggested that long term exposure to blue LED light of low intensity may induce gonadal regression even under long-day conditions (LD 16:8), while exposure to green and red lights appears to maintain a constant photosensitivity after one complete gonadal cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The innovations with the medical applications of white LEDs and the breakthrough for new business

    NASA Astrophysics Data System (ADS)

    Shimada, Jun-ichi; Itoh, Kazuhiro; Nishimura, Motohiro; Kawakami, Youichi; Tsuji, Kiyotsugu

    2006-02-01

    The distance between the LED and the surface of the target organ is about 4-5 cm, and we think this will become the "ultimate super-localized LED lighting". In an experiment with swine, we placed a LED module at the tip of the retractor. When compared to endoscopic lighting, this method illuminated the entire thoracic cavity more brightly. Since the light is emitted from the cylinder-shaped camera component, the light is unidirectional, and the shadows from the surgical instruments are moved to the side of the incision. Retractor LED lights provided enough light in the thoracic cavity. we believe that "medical white LEDs" can contribute in clinical settings as a light source for performing safe operations with bright surgical fields in the near future. Also, we use our LEDs for new real business. In the summer of 2004, LED lighting was world first used in the 1200 year-old Gion Festival for the first time in history as "a lighting device that does not destroy cultural assets by light heat". And the next is "Lighting at the "Diva status at diva gate" and the "Thousand Armed Avalokiteshwara in innermost sanctuary in the main hall" at Kiyomizudera in Kyoto". It was a great success, and we were invited back in the spring of 2005 and for future applications. We think this is the first real application of LEDs as an outdoor lighting device. The number of people who visit Kiyomizudera is 4000,000 annually, and LEDs were adopted to illuminate the diva gate.

  19. Changes in the quality of medicines during storage under LED lighting and consideration of countermeasures.

    PubMed

    Yamashita, Shuuji; Iguchi, Kazuhiro; Noguchi, Yoshihiro; Sakai, Chihiro; Yokoyama, Satoshi; Ino, Yoko; Hayashi, Hideki; Teramachi, Hitomi; Sako, Magoichi; Sugiyama, Tadashi

    2018-01-01

    In recent years, the popularity of LED lighting has rapidly increased, owing to its many advantages, including economic benefits. We examined the change in the quality of drugs during storage under LED and fluorescent lighting and found that some medicines exhibited a different degree of color change depending on the light source. The purpose of this study was to investigate the effects of different plastic storage bags on the color change over time when various medicines were stored under LED and fluorescent lighting conditions. Photostability tests were conducted on several types of target drugs. Subsequently, subjective evaluation by ten evaluators and objective evaluation by image analysis software were carried out regarding color change. A similar change in color tone was observed after all types of illumination. Subjective evaluation by 10 evaluators revealed that "change in color tone" occurred in the order of bulb-color LED lighting < daylight-color LED lighting < fluorescent lighting, regardless of the type of plastic bags. A similar tendency was observed also in objective evaluation. In this study, it was considered that a brown light-shielding plastic bag was more effective than a normal plastic bag for the prevention of the color change of medicines stored under LED lighting. The above results suggested that the most appropriate combination of plastic bag and light source for medicine storage was a brown light-shielding plastic bag and bulb-color LED lighting.

  20. Design of the optical structure of airfield in-pavement LED runway edge lights

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodan; Yang, Jianhong; Peng, Jun; Li, Lei

    2017-02-01

    Airfield lighting system is an important aiding system of civil aviation airport that guarantees the taking off, landing, taxiing of airplanes at night, with low visibility, or under other complicated weather conditions. In-pavement LED runway edge lights, with the highest degree of light intensity, are the most important lights for safe civil aviation and are most difficult to design within airfield lighting system. With LED as the source of light and the secondary optical design as the core, in light of basic laws of Fresnel loss and total reflection and the principles of edge-ray etendue conservation and the conservation of energy to design major optical elements as lens, prism of the lamp, the in-pavement LED runway edge lights design successfully solves the designing problem of high-power, high-intensity LED airfield lights with narrow beam angle at closed environment. This success is of great significance for the improvement of LED airfield lighting system in China.

  1. LED lighting increases the ecological impact of light pollution irrespective of color temperature.

    PubMed

    Pawson, S M; Bader, M K-F

    Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.

  2. Phototaxis of Propsilocerus akamusi (Diptera: Chironomidae) From a Shallow Eutrophic Lake in Response to Led Lamps.

    PubMed

    Hirabayashi, Kimio; Nagai, Yoshinari; Mushya, Tetsuya; Higashino, Makoto; Taniguchi, Yoshio

    2017-06-01

    A study on the attraction of adult Propsilocerus akamusi midges to different-colored light traps was carried out from October 21 to November 15, 2013. The 6 colored lights used in light-emitting diode (LED) lamps were white, green, red, blue, amber, and ultraviolet (UV). The UV lamp attracted the most P. akamusi, followed by green, white, blue, amber, and red. A white pulsed LED light attracted only half the number of midges as did a continuous-emission white LED light. The result indicated that manipulation of light color, considering that the red LED light and/or pulsed LED light are not as attractive as the other colors, may be appropriate for the development of an overall integrated strategy to control nuisance P. akamusi in the Lake Suwa area.

  3. A brief history of LED photopolymerization.

    PubMed

    Jandt, Klaus D; Mills, Robin W

    2013-06-01

    The majority of modern resin-based oral restorative biomaterials are cured via photopolymerization processes. A variety of light sources are available for this light curing of dental materials, such as composites or fissure sealants. Quartz-tungsten-halogen (QTH) light curing units (LCUs) have dominated light curing of dental materials for decades and are now almost entirely replaced by modern light emitting diode light curing units (LED LCUs). Exactly 50 years ago, visible LEDs were invented. Nevertheless, it was not before the 1990s that LEDs were seriously considered by scientists or manufactures of commercial LCUs as light sources to photopolymerize dental composites and other dental materials. The objective of this review paper is to give an overview of the scientific development and state-of-the-art of LED photopolymerization of oral biomaterials. The materials science of LED LCU devices and dental materials photopolymerized with LED LCU, as well as advantages and limits of LED photopolymerization of oral biomaterials, are discussed. This is mainly based on a review of the most frequently cited scientific papers in international peer reviewed journals. The developments of commercial LED LCUs as well as aspects of their clinical use are considered in this review. The development of LED LCUs has progressed in steps and was made possible by (i) the invention of visible light emitting diodes 50 years ago; (ii) the introduction of high brightness blue light emitting GaN LEDs in 1994; and (iii) the creation of the first blue LED LCUs for the photopolymerization of oral biomaterials. The proof of concept of LED LCUs had to be demonstrated by the satisfactory performance of resin based restorative dental materials photopolymerized by these devices, before LED photopolymerization was generally accepted. Hallmarks of LED LCUs include a unique light emission spectrum, high curing efficiency, long life, low energy consumption and compact device form factor. By understanding the physical principles of LEDs, the development of LED LCUs, their strengths and limitations and the specific benefits of LED photopolymerization will be better appreciated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Remote monitoring of LED lighting system performance

    NASA Astrophysics Data System (ADS)

    Thotagamuwa, Dinusha R.; Perera, Indika U.; Narendran, Nadarajah

    2016-09-01

    The concept of connected lighting systems using LED lighting for the creation of intelligent buildings is becoming attractive to building owners and managers. In this application, the two most important parameters include power demand and the remaining useful life of the LED fixtures. The first enables energy-efficient buildings and the second helps building managers schedule maintenance services. The failure of an LED lighting system can be parametric (such as lumen depreciation) or catastrophic (such as complete cessation of light). Catastrophic failures in LED lighting systems can create serious consequences in safety critical and emergency applications. Therefore, both failure mechanisms must be considered and the shorter of the two must be used as the failure time. Furthermore, because of significant variation between the useful lives of similar products, it is difficult to accurately predict the life of LED systems. Real-time data gathering and analysis of key operating parameters of LED systems can enable the accurate estimation of the useful life of a lighting system. This paper demonstrates the use of a data-driven method (Euclidean distance) to monitor the performance of an LED lighting system and predict its time to failure.

  5. The photocytotoxicity of different lights on mammalian cells in interior lighting system.

    PubMed

    Song, Jiayin; Gao, Tingting; Ye, Maole; Bi, Hongtao; Liu, Gang

    2012-12-05

    In the present paper, two light sources commonly used in interior lighting system: incandescent light and light emitting diode (LED) were chosen to evaluate their influences on three kinds of mammalian cells, together with UVA and UVB, and the mechanism of the photocytotoxicity was investigated in terms of intracellular ROS production, lipid peroxidation, SOD activity and GSH level assays. The results showed that LED and incandescent light both had some photocytotoxicities. In the interior lighting condition (100lx-250lx), the cytotoxicities of LED and incandescent lamp on RF/6A cells (rhesus retinal pigment epithelium cell line) were stronger than that on two fibroblast cell lines, while the cytotoxicity of UVA and UVB on HS68 cells (fibroblast cell line) was highest in the tests. The mechanism analysis revealed that the photocytotoxicities of LED and incandescent lamp were both caused by cell lipid peroxidation. LED and incandescent light could promote the production of ROS, raise lipid peroxidation level and lower the activity of the antioxidant key enzymes in mammalian cells, and finally cause a number of cells death. However, the negative function of LED was significantly smaller than incandescent light and ultraviolet in daily interior lighting condition. And the significantly lower photocytotoxicity of LED might be due to the less existence of ultraviolet. Therefore, LED is an efficient and relative safe light source in interior lighting system, which should be widely used instead of traditional light source. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  7. Improving “color rendering” of LED lighting for the growth of lettuce

    NASA Astrophysics Data System (ADS)

    Han, Tao; Vaganov, Vitaliy; Cao, Shixiu; Li, Qiang; Ling, Lili; Cheng, Xiaoyao; Peng, Lingling; Zhang, Congzhi; Yakovlev, Alexey N.; Zhong, Yang; Tu, Mingjing

    2017-04-01

    Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m-2·s-1 for a 16 hd-1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2-3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth.

  8. Effect of light-emitting diode vs. fluorescent lighting on laying hens in aviary hen houses: Part 1 - Operational characteristics of lights and production traits of hens.

    PubMed

    Long, H; Zhao, Y; Wang, T; Ning, Z; Xin, H

    2016-01-01

    Light-emitting diode (LED) lights are becoming more affordable for agricultural applications. Despite many lab-scale studies concerning impact of LED on poultry, little research has been documented under field production conditions, especially for laying hens. This 15-month field study was carried out to evaluate the effects of LED vs. fluorescent (FL) lights on laying hens (Dekalb white breed) using 4 (2 pairs) aviary hen houses each at a nominal capacity of 50,000 hens. The evaluation was done regarding operational characteristics of the lights and hen production traits. The results show that spatial distribution of the LED light was less uniform than that of the FL light. Light intensity of the LED light decreased by 27% after 3,360 h use but remained quite steady from 3,360 to 5,760 h use. Eleven out of 762 (1.44%) LED lamps (new at onset of the study) in the 2 houses failed during the 15-month experiment period. The neck area of the LED lamp was hottest, presumably the primary reason for the lamp failure as cracks were noticed in the neck region of all failed LED lamps. No differences were observed in egg weight, hen-day egg production, feed use, and mortality rate between LED and FL regimens. However, hens under the FL had higher eggs per hen housed and better feed conversion than those under the LED during 20 to 70 wk production (P < 0.05). Hens under the LED tended to have less feather uniformity and insulation than those under the FL (P < 0.05). Moreover, hens under the LED showed a larger median avoidance distance than those under the FL at 36 wk age (P < 0.05), indicating that hens under the LED were more alert; but no difference at 60 wk age. More comparative research to quantify behavioral and production responses of different breeds of hens to LED vs. FL lighting seems warranted. © 2015 Poultry Science Association Inc.

  9. Colour differences in Caucasian and Oriental women's faces illuminated by white LED sources.

    PubMed

    Melgosa, M; Richard, N; Fernández-Maloigne, C; Xiao, K; de Clermont-Gallerande, H; Jost-Boissard, S; Okajima, K

    2018-04-10

    To provide an approach to facial contrast, analysing CIELAB colour differences (ΔE* ab,10 ) and its components in women's faces from two different ethnic groups, illuminated by modern white light-emitting diodes (LEDs) or traditional illuminants recommended by the International Commission on Illumination (CIE). We performed spectrophotometric measurements of spectral reflectance factors on forehead and cheek of 87 young healthy women (50 Caucasians and 37 Orientals), plus 5 commercial red lipsticks. We considered a set of 10 white LED illuminants, representative of technologies currently available on the market, plus 8 main illuminants currently recommended by the CIE, representative of conventional incandescent, daylight, and fluorescent light sources. Under each of these 18 illuminants we analysed the magnitude and components of ΔE* ab,10 between Caucasian and Oriental women (considering cheek and forehead), as well as for cheek-forehead and cheek-lipsticks in Caucasian and Oriental women. Colour-inconstancy indices for cheek, forehead, and lipsticks were computed, assuming D65 and A as reference illuminants. ΔE* ab,10 between forehead and cheek were quantitatively and qualitatively different in Orientals and Caucasians, but discrepancies with respect to average values for 18 illuminants were small (1.5% and 5.0% for Orientals and Caucasians, respectively). ΔE* ab,10 between Caucasians and Orientals were also quantitatively and qualitatively different both for forehead and cheek, and discrepancies with respect to average values were again small (1.0% and 3.9% for forehead and cheek, respectively). ΔE* ab,10 between lipsticks and cheek were at least 2 times higher than those between forehead and cheek. Regarding ΔE* ab,10 between lipsticks and cheeks, discrepancies with respect to average values were in the range 1.5% - 12.3%, although higher values of up to 54.2% were found for a white RGB LED. This white RGB LED provided the highest average colour-inconstancy indices: 17.1 and 11.5 CIELAB units, under reference illuminants D65 and A, respectively. Colour contrasts in women's faces under CIE standard illuminants for outdoor and indoor conditions may be strongly altered by using specific white LEDs. More research needs to be done on the impact of spectral power distribution of light sources with high colour rendering indices on visual colour appearance of cosmetic products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Effects of blue light on the circadian system and eye physiology.

    PubMed

    Tosini, Gianluca; Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.

  11. Light emitting diodes (LED): applications in forest and native plant nurseries

    Treesearch

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese

    2013-01-01

    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  12. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  13. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    PubMed

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  14. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  15. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2011-05-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  16. A novel amblyopia treatment system based on LED light source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling

    2010-12-01

    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  17. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture.

    PubMed

    Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye

    2014-01-01

    Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.

  18. Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs

    NASA Astrophysics Data System (ADS)

    Spanard, Jan-Marie A.

    2014-02-01

    Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.

  19. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Iwano, Takayuki; Umeyama, Shinji

    2015-12-01

    fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.

  20. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer.

    PubMed

    Tewolde, Fasil T; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.

  1. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer

    PubMed Central

    Tewolde, Fasil T.; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m-2 s-1 measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter. PMID:27092163

  2. Effects of blue light on the circadian system and eye physiology

    PubMed Central

    Ferguson, Ian; Tsubota, Kazuo

    2016-01-01

    Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health. PMID:26900325

  3. Improved Heat Dissipation of High-Power LED Lighting by a Lens Plate with Thermally-Conductive Plastics.

    PubMed

    Lee, Dong Kyu; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop

    2018-03-01

    The junction temperature of high-power LED lighting was reduced effectively using a lens plate made from a thermally-conductive plastics (TCP). TCP has an excellent thermal conductivity, approximately 5 times that of polymethylmethacrylate (PMMA). Two sets of high-power LED lighting were designed using a multi array LED package with a lens plate for thermal simulation. The difference between two models was the materials of the lens plate. The lens plates of first and second models were fabricated by PMMA (PMMA lighting) and TCP (TCP lighting), respectively. At the lens plate, the simulated temperature of the TCP lighting was higher than that of the PMMA lighting. Near the LED package, the temperature of the TCP lighting was 2 °C lower than that of the PMMA lighting. This was well matched with the measured temperature of the fabricated lighting with TCP and PMMA.

  4. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  5. Theoretical and experimental luminous characteristics of white LEDs composed of multiphosphors and near-UV LED for lighting

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2003-07-01

    We have performed theoretical studies on the luminous characeristics of white LED light source which composed of multi phosphors and near ultraviolet (UV) LED for general lighting. White LED source for general lighting applications requires the conditions that have high-flux, high luminous efficacy of radiation (> 100 lm/W) in addition to high color rendering index (Ra > 90) and variable color temperatures. Recently, we have proposed a novel type white LED based on multi phosphors and near UV LED system in order to high-Ra (>93). We will describe the excellent luminescence properties of white LED consisting of orange (O), yellow (Y), green (G) and blue (B) phosphor materials, and near UV LED. The color spectral contributions of individual phosphor-coated LED are theoretically analyzed using our multi LED lighting theory calculated the maximum luminous efficacy can be estimated to be approximately 300 lm/W having a high Ra of about 90 taking into account individual radiation spectrum. Illuminance distribution of white LED is in fairly good agreement with the experimental data.

  6. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  7. Significant growth in. LED use predicted.

    PubMed

    Simpson, Mike

    2012-03-01

    Although LED lighting has its critics, a number of whom (see article 'LED--panacea or marketing hype', HEJ--February 2012) are concerned about what they claim are some manufacturers' 'exaggerated claims' about lighting efficiency and lamp lifetime, Philips Lighting believes that, such are the advances being made in this innovative lighting technology, that LED's overall share of the European lighting market will have risen from around 7% in 2008 to 25% by 2020 and that, a decade later, it will account for a remarkable 75% of lighting sales. In the UK, Philips' technical and design director for Lighting, Mike Simpson, told HEJ editor, Jonathan Baillie, healthcare estates and facilities managers are increasingly recognising the potential to save energy, reduce carbon emissions, and cut maintenance costs, using LED.

  8. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  9. Complete solid state lighting (SSL) line at CEA LETI

    NASA Astrophysics Data System (ADS)

    Robin, I. C.; Ferret, P.; Dussaigne, A.; Bougerol, C.; Salomon, D.; Chen, X. J.; Charles, M.; Tchoulfian, P.; Gasse, A.; Lagrange, A.; Consonni, M.; Bono, H.; Levy, F.; Desieres, Y.; Aitmani, A.; Makram-Matta, S.; Bialic, E.; Gorrochategui, P.; Mendizabal, L.

    2014-09-01

    With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.

  10. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  11. Reviews

    NASA Astrophysics Data System (ADS)

    2007-01-01

    WE RECOMMEND The Cloudspotter's Guide Not a reference book, but well written and pleasing to read. The Virtual Physical Laboratory This free CD contains useful simulations for the classroom. The Science of Ice Cream A comprehensive text suitable for A-level students. Singapore Science Centre A must-see centre for physics enthusiasts in Singapore. Weatherbytes A DVD containing five programmes explaining the weather. WORTH A LOOK How Teachers Learn Best, An Ongoing Professional Development Model A book to help you spot a school with good CPD opportunities. Fifex LED Array An expensive but well-made LED array. School Stop-Clock A sturdy clock suitable for a variety of timing experiments. WEB WATCH A collection of websites related to light.

  12. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  13. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    PubMed

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  14. Integrated LED-based luminaire for general lighting

    DOEpatents

    Dowling, Kevin J.; Lys, Ihor A.; Williamson, Ryan C.; Roberge, Brian; Roberts, Ron; Morgan, Frederick; Datta, Michael Jay; Mollnow, Tomas Jonathan

    2016-08-30

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  15. Integrated LED-based luminare for general lighting

    DOEpatents

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

    2013-03-05

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  16. Side-emitting illuminators using LED sources

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Van Derlofske, John F.

    2003-11-01

    This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.

  17. White LEDs and modules in chip-on-board technology for general lighting

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Wenzl, Franz P.; Sommer, Christian; Pachler, Peter; Hoschopf, Hans; Schweighart, Marko; Hartmann, Martin; Kuna, Ladislav; Jakopic, Georg; Leising, Guenther; Tasch, Stefan

    2006-08-01

    At present, light-emitting diode (LED) modules in various shapes are developed and designed for the general lighting, advertisement, emergency lighting, design and architectural markets. To compete with and to surpass the performance of traditional lighting systems, enhancement of Lumen output and the white light quality as well as the thermal management and the luminary integration are key factors for success. Regarding these issues, white LEDs based on the chip-on-board (COB) technology show pronounced advantages. State-of-the-art LEDs exploiting this technology are now ready to enter the general lighting segments. We introduce and discuss the specific properties of the Tridonic COB technology dedicated for general lighting. This technology, in combination with a comprehensive set of tools to improve and to enhance the Lumen output and the white light quality, including optical simulation, is the scaffolding for the application of white LEDs in emerging areas, for which an outlook will be given.

  18. LED roadway lighting, volume 2 : field evaluations and software comparisons.

    DOT National Transportation Integrated Search

    2012-10-01

    The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...

  19. The effect of 580 nm-based-LED mixed light on growth, adipose deposition, skeletal development, and body temperature of chickens.

    PubMed

    Yang, Yefeng; Zhen, Chenghuang; Yang, Bo; Yu, Yonghua; Pan, Jinming

    2018-06-01

    Though previous study indicated that the 580 nm-yellow-LED-light showed an stimulating effect on growth of chickens, the low luminous efficiency of the yellow LED light cannot reflect the advantage of energy saving. In present study, the cool white LED chips and yellow LED chips have been combined to fabricate the white × yellow mixed LED light, with an enhanced luminous efficiency. A total 300 newly hatched chickens were reared under various mixed LED light. The results indicated that the white × yellow mixed LED light had "double-edged sword" effects on bird's body weight, bone development, adipose deposition, and body temperature, depending on variations in ratios of yellow component. Low yellow ratio of mixed LED light (Low group) inhibited body weight, whereas medium and high yellow ratio of mixed LED light (Medium and High groups) promoted body weight, compared with white LED light (White group). A progressive change in yellow component gave rise to consistent changes in body weight over the entire experiment. Moreover, a positive relationship was observed between yellow component and feed conversion ratio. High group-treated birds had greater relative abdominal adipose weight than Medium group-treated birds (P = 0.048), whereas Medium group-treated birds had greater relative abdominal adipose weight than Low group-treated birds (P = 0.044). We found that mixed light improved body weight by enhancing skeletal development (R 2  = 0.5023, P = 0.0001) and adipose deposition (R 2  = 0.6012, P = 0.0001). Birds in the Medium, High and Yellow groups attained significantly higher surface temperatures compared with the White group (P = 0.010). The results suggest that the application of the mixed light with high level of yellow component can be used successfully to improve growth and productive performance in broilers. Copyright © 2018. Published by Elsevier B.V.

  20. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  1. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  2. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds

    DTIC Science & Technology

    2017-11-01

    sent from light-emitting diodes (LEDs) of 5 colors ( green , red, white, amber, and blue). Experiment 1 involved controlled laboratory measurements of...A-4 Red LED calibration curves and quadratic curve fits with R2 values . 37 Fig. A-5 Green LED calibration curves and quadratic curve fits with R2...36 Table A-4 Red LED calibration measurements ................................................... 36 Table A-5 Green LED

  3. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  4. R&D100: LED Pulser

    ScienceCinema

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    2018-06-12

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  5. Solution of multi-element LED light sources development automation problem

    NASA Astrophysics Data System (ADS)

    Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.

    2014-09-01

    The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.

  6. Essentials for Successful and Widespread LED Lighting Adoption

    NASA Astrophysics Data System (ADS)

    Khan, Nisa

    2011-03-01

    Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity. Such solutions are expected to make LED lights more energy efficient, pleasant in appearance, longer-lasting, affordable, and thus suitable for green living.

  7. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  8. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch.

    PubMed

    Grubisic, Maja; van Grunsven, Roy H A; Manfrin, Alessandro; Monaghan, Michael T; Hölker, Franz

    2018-05-14

    The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Choosing surgical lighting in the LED era.

    PubMed

    Knulst, Arjan J; Stassen, Laurents P S; Grimbergen, Cornelis A; Dankelman, Jenny

    2009-12-01

    The aim of this study is to evaluate the illumination characteristics of LED lights objectively to ease the selection of surgical lighting. The illuminance distributions of 5 main and 4 auxiliary lights were measured in 8 clinically relevant scenarios. For each light and scenario, the maximum illuminance E(c) (klux) and the size of the light field d(10) (mm) were computed. The results showed: that large variations for both E(c) (25-160 klux) and d(10) (109-300 mm) existed; that using auxiliary lights reduced both E(c) and d(10) by up to 80% and 30%; that with segmented lights, uneven light distributions occurred; and that with colored LED lights shadow edges on the surgical field became colored. Objective illuminance measurements show a wide variation between lights and a superiority of main over auxiliary lights. Uneven light distributions and colored shadows indicate that LED lights still need to converge to an optimal design.

  10. Automated platform for determination of LEDs spatial radiation pattern

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Vuza, Dan Tudor

    2015-02-01

    Nowadays technologies lead to remarkable properties of the light-emitting diodes (LEDs), making them attractive for more and more applications, such as: interior and exterior lighting, outdoor LED panels, traffic signals, automotive (tail and brake lights, backlighting in dashboard and switches), backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales. Usually, LEDs are small light sources consisting of a chip placed into a package, which may bring additional optics to this encapsulated ensemble, resulting in a less or more complex spatial distribution of the light intensity, with particular radiation patterns. This paper presents an automated platform designed to allow a quick and accurate determination of the spatial radiation patterns of LEDs encapsulated in various packages. Keywords: LED, luminous

  11. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE PAGES

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  12. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.

  13. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes

    PubMed Central

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  14. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    PubMed

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  15. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  16. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2015-07-07

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  17. Solid state lighting component

    DOEpatents

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  18. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions.

    PubMed

    Zhong, Yu; Jin, Peng; Cheng, Jay J

    2018-05-19

    Microalgae treated with blue light have potential for production of human nutrition supplement and biofuel due to their higher biomass productivity and favorable fatty acid composition. Chlorella vulgaris, Chlorella pyrenoidosa, Scenedesmus quadricauda and Scenedesmus obliquus are representative green microalgae which are widely reported for algal production. In this study, we provide a systematic investigation of the biomass productivity, photosynthetic pigments, chlorophyll fluorescence and fatty acid content of the four green microalgae. The strains were grown in two primary monochromatic light wavelengths [red and blue LEDs (light emitting diode)], and in white LED conditions, respectively. Among them, blue LED light was determined as the best light for growth rate, followed by red LED and white LED. The chlorophyll generation was more sensitive to the monochromatic blue light. The polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (18:3), which were perfect for human nutrition supplementation, showed high concentrations in these algae strains under blue LED. Collectively, the results indicate that the blue LED is suitable for various food, feed, and algal biofuel productions due to both biomass and fatty acid productivity.

  19. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paget, Maria L.; McCullough, Jeffrey J.; Steward, Heidi E.

    Solid-state lighting products for general lighting applications are now gaining a market presence, and more and more people are asking, “Which of these are ‘good’ products? Do they perform as claimed? How do they compare? Light Emitting Diodes (LEDs) differ from other light sources enough to require new procedures for measuring their performance and comparing to other lighting options, so both manufacturers and buyers are facing a learning curve. The energy-efficiency community has traditionally compared light sources based on system efficacy: rated lamp lumens divided by power into the system. This doesn’t work for LEDs because there are no standardmore » LED “lamp” packages and no lamp ratings, and because LED performance depends heavily on thermal, electrical, and optical design of complete lighting unit or ‘luminaire’. Luminaire efficacy is the preferred metric for LEDs because it measures the net light output from the luminaire divided by power into the system.« less

  1. Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Higuchi, Sei; Goh, Allex; Allard, Brett; Gill, Dale; Buchman, Saps; Byer, Robert

    2006-11-01

    Deep ultraviolet (UV) LEDs have recently been used in AC charge management experiments to support gravitational reference sensors for future space missions. The UV LED based charge management system offers compact size, light weight, and low power consumption compared to plasma sources. The AC charge management technique, which is enabled by easy modulation of UV LED output, achieves higher dynamic range for charge control. Further, the high modulation frequency, which is out of the gravitational wave detection band, reduces disturbances to the proof mass. However, there is a need to test and possibly improve the lifetime of UV LEDs, which were developed only a year ago. We have initiated a series of spectral and power stability tests for UV LEDs and designed experiments according to the requirements of AC charge management. We operate UV LEDs with a modulated current drive and maintain the operating temperature at 22 °C,28 similar to the LISA spacecraft working condition. The testing procedures involve measuring the baseline spectral shape and output power level prior to the beginning of the tests and then re-measuring the same quantities periodically. As of the date of submission (August 28th, 2006), we have operated a UV LED for more than 2,700 hours.

  2. Developing a new supplemental lighting device with ultra-bright white LED for vegetables

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Jiang, Jianghai

    2007-02-01

    It has been proved that monochromatic or compound light-emitting diode (LED) or laser diode (LD) can promote the photosynthesis of horticultural crops, but the promotion of polychromatic light like white LED is unclear. A new type of ultra-bright white LED (LUW56843, InGaN, \

  3. Shelf life of fresh meat products under LED or fluorescent lighting.

    PubMed

    Steele, K S; Weber, M J; Boyle, E A E; Hunt, M C; Lobaton-Sulabo, A S; Cundith, C; Hiebert, Y H; Abrolat, K A; Attey, J M; Clark, S D; Johnson, D E; Roenbaugh, T L

    2016-07-01

    Enhanced pork loin chops, beef longissimus lumborum steaks, semimembranosus steaks (superficial and deep portions), ground beef, and ground turkey were displayed under light emitting diode (LED) and fluorescent (FLS) lighting in two multi-shelf, retail display cases with identical operating parameters. Visual and instrumental color, internal product temperature, case temperature, case cycling, thiobarbituric acid reactive substances (TBARS), and Enterobacteriaceae and aerobic plate counts were evaluated. Under LED, beef products (except the deep portion of beef semimembranosus steaks) showed less (P<0.05) visual discoloration. Pork loin chops had higher (P<0.05) L* values for LED lighting. Other than beef longissimus lumborum steaks, products displayed under LED lights had colder internal temperatures than products under FLS lights (P<0.05). Under LED, pork loin chops, ground turkey, and beef semimembranosus steaks had higher (P<0.05) values for TBARS. LED provides colder case and product temperatures, more case efficiency, and extended color life by at least 0.5d for longissimus and semimembranosus steaks; however, some LED cuts showed increased lipid oxidation. Copyright © 2016. Published by Elsevier Ltd.

  4. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  5. Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method.

    PubMed

    Shen, S C; Huang, H J

    2012-11-19

    This study employs a sub-module concept to develop high-brightness light-emitting diode (HB-LED) fishing light arrays to replace traditional fishing light attractors. The horizontal/vertical (H/V) plane light intensity distribution curve (LIDC) of a LED light source are mapped to assist in the design of a non-axisymmetric lens with a fish-attracting light pattern that illuminates sufficiently large areas and alternates between bright and dark. These LED fishing light attractors are capable of attracting schools of fish toward the perimeter of the luminous zone surrounding fishing boats. Three CT2 boats (10 to 20 ton capacity) were recruited to conduct a field test for 1 y on the sea off the southwestern coast of Taiwan. Field tests show that HB-LED fishing light array installed 5 m above the boat deck illuminated a sea surface of 5 × 12 m and achieved an illuminance of 2000 lx. The test results show that the HB-LED fishing light arrays increased the mean catch of the three boats by 5% to 27%. In addition, the experimental boats consumed 15% to 17% less fuel than their counterparts.

  6. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  7. Circadian Behavioral Study: LED vs Cool White Fluorescent - 0.1, 1, 10, 40, 80 lux. Part 2

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Syrkin, N.; Mele, G.

    2000-01-01

    Currently, the light source most commonly used in animal habitat lighting is cool white fluorescent (CWF) light. It was the objective of this study to evaluate a novel LED light source for use in animal habitat lighting by comparing its effectiveness to CWF light in producing and maintaining a normal circadian entrainment. The LED and CWF lights had similar spectral power distributions. Sprague-Dawley rats (175-350 g) were kept individually in metabolic cages, under a strict lighting control: 4 days of acclimation at 12:12 LD, 14 days of 12:12 LD, 14 days of 24:0 LD (free-run), and finally 12:12 LD. Food and water were provided ad libitum. Three behavioral parameters were monitored continuously: gross locomotor activity, drinking, and feeding. Combined mean free run periods (tau) were (mean +/- SEM): 24.6 +/- 0.1 and 24.7 +/- 0.2 at 0.1 lux, 25.5 +/- 0.1 and 25.7 +/- 0.1 at 1.0 lux, 25.3 +/- 0.2 and 25.4 +/- 0.2 at 10 lux, 25.8 +/- 0.1 and 25.9 +/- 0.1 at 40 lux, and 25.9 +/- 0.1 and 25.9 +/- 0.1 at 80 lux, CWF and LED respectively. ANOVA found a significant effect (p < 0.05) due to light level, but no difference in tau between rats exposed to constant CWF light and rats exposed to constant LED light. This study has shown that LED light can produce the same entrainment pattern as a conventional CWT light at similar intensities (0.1, 1, 10, 40, and 80 lux). LED light sources may be a suitable replacement for conventional light sources used in animal habitat lighting while providing many mechanical and economical advantages.

  8. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  9. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    NASA Astrophysics Data System (ADS)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  10. Thermal and optical design analyses, optimizations, and experimental verification for a novel glare-free LED lamp for household applications.

    PubMed

    Khan, M Nisa

    2015-07-20

    Light-emitting diode (LED) technologies are undergoing very fast developments to enable household lamp products with improved energy efficiency and lighting properties at lower cost. Although many LED replacement lamps are claimed to provide similar or better lighting quality at lower electrical wattage compared with general-purpose incumbent lamps, certain lighting characteristics important to human vision are neglected in this comparison, which include glare-free illumination and omnidirectional or sufficiently broad light distribution with adequate homogeneity. In this paper, we comprehensively investigate the thermal and lighting performance and trade-offs for several commercial LED replacement lamps for the most popular Edison incandescent bulb. We present simulations and analyses for thermal and optical performance trade-offs for various LED lamps at the chip and module granularity levels. In addition, we present a novel, glare-free, and production-friendly LED lamp design optimized to produce very desirable light distribution properties as demonstrated by our simulation results, some of which are verified by experiments.

  11. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes.

    PubMed

    Costa-Neta, B M; da Silva, A A; Brito, J M; Moraes, J L P; Rebêlo, J M M; Silva, F S

    2017-11-07

    Numerous advantages over the standard incandescent lamp favor the use of light-emitting diodes (LEDs) as an alternative and inexpensive light source for sampling medically important insects in surveillance studies. Previously published studies examined the response of mosquitoes to different wavelengths, but data on anopheline mosquito LED attraction are limited. Center for Disease Control and Prevention-type light traps were modified by replacing the standard incandescent lamp with 5-mm LEDs, one emitting at 520 nm (green) and the other at 470 nm (blue). To test the influence of moon luminosity on LED catches, the experiments were conducted during the four lunar phases during each month of the study period. A total of 1,845 specimens representing eight anopheline species were collected. Anopheles (Nyssorhynchus) evansae (35.2%) was the most frequently collected, followed by An. (Nys.) triannulatus (21.9%), An. (Nys.) goeldii (12.9%), and An. (Nys.) argyritarsis (11.5%). The green LED was the most attractive light source, accounting for 43.3% of the individuals collected, followed by the blue (31.8%) and control (24.9%) lights. The LED traps were significantly more attractive than the control, independent of the lunar phase. Light trapping of anopheline mosquitoes was more efficient when the standard incandescent lamp was replaced with LEDs, regardless of the moon phase. The efficiency of LEDs improves light trapping results, and it is suggested that the use of LEDs as an attractant for anopheline mosquitoes should be taken into consideration when sampling anopheline mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Light-emitting diodes (LED) for domestic lighting: any risks for the eye?

    PubMed

    Behar-Cohen, F; Martinsons, C; Viénot, F; Zissis, G; Barlier-Salsi, A; Cesarini, J P; Enouf, O; Garcia, M; Picaud, S; Attia, D

    2011-07-01

    Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards. Copyright © 2011. Published by Elsevier Ltd.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregonmore » (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.« less

  14. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    PubMed

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.

  15. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  16. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  17. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  19. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  20. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit.

    PubMed

    Deng, Lili; Yuan, Ziyi; Xie, Jiao; Yao, Shixiang; Zeng, Kaifang

    2017-08-02

    Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.

  1. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  2. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  3. Intense pulse light and 5-ALA PDT: phototoxic effects in vitro depend on the spectral overlap with protoporphyrine IX but do not match cut-off filter notations.

    PubMed

    Maisch, Tim; Moor, Anne C E; Regensburger, Johannes; Ortland, Christoph; Szeimies, Rolf-Markus; Bäumler, Wolfgang

    2011-02-01

    Successful photodynamic therapy (PDT) requires a light source by which light is absorbed by the photosensitizer. Such absorption is achieved by adapting the emission spectrum of the lamp to the absorption-spectrum of the photosensitizer. Intense pulsed light sources (IPLs) are widely used in dermatology, but a standardized protocol for IPL-PDT is not available. Five different IPLs were chosen to evaluate their efficacy for PDT in vitro and the possibility for developing a standard protocol for PDT. Emission-spectra of IPLs were measured with an optical spectrograph and compared with the absorption spectrum of protoporphyrine IX (PpIX). Keratinocytes were incubated with 5-ALA and illuminated with the IPLs. Cell viability was determined for radiant exposures ranging from 0 to 504 J/cm(2) and pulse durations from 8 to 100 milliseconds. A standard LED light source was used as a reference. Cell viability is less effectively reduced by 5-ALA-PDT with IPLs than by a LED light source. Radiant exposures of the five IPLs ranged between 80 and 311 J/cm(2) to achieve the EC(50) value. This value correlated with the spectral overlap of the respective IPL and the absorption-spectrum of PpIX but not with the cut-off filter notations supplied by the manufacturer. All IPLs assessed emit different spectra because of different filter technologies. Different radiant exposures (J/cm(2) ) were necessary to achieve a photodynamic effect with 5-ALA in vitro depending on these spectra similar to the photodynamic effect of the standard LED light source. IPLs may be applicable in clinical PDT but radiant exposure protocols must be separately evaluated for each single IPL despite similar cut-off filter specifications. Such protocols are highly important for clinical practice to avoid a potential mismatch of excitation wavelengths and to prevent photothermal side effects when light intensities of up to hundreds of W/cm(2) are applied. Copyright © 2011 Wiley-Liss, Inc.

  4. Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    During clinical interventions objective and quantitative information of the tissue perfusion, oxygenation or temperature can be useful for the surgical strategy. Local (point) measurements give limited information and affected areas can easily be missed, therefore imaging large areas is required. In this study a LED based multispectral imaging system (MSI, 17 different wavelengths 370nm-880nm) and a thermo camera were applied during clinical interventions: tissue flap transplantations (ENT), local anesthetic block and during open brain surgery (epileptic seizure). The images covered an area of 20x20 cm, when doing measurements in an (operating) room, they turned out to be more complicated than laboratory experiments due to light fluctuations, movement of the patient and limited angle of view. By constantly measuring the background light and the use of a white reference, light fluctuations and movement were corrected. Oxygenation concentration images could be calculated and combined with the thermal images. The effectively of local anesthesia of a hand could be predicted in an early stage using the thermal camera and the reperfusion of transplanted skin flap could be imaged. During brain surgery, a temporary hyper-perfused area was witnessed which was probably related to an epileptic attack. A LED based multispectral imaging system combined with thermal imaging provide complementary information on perfusion and oxygenation changes and are promising techniques for real-time diagnostics during clinical interventions.

  5. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of Depth of Cure, Hardness and Heat Generation of LED and High Intensity QTH Light Sources.

    PubMed

    Mousavinasab, Sayed Mostafa; Meyers, Ian

    2011-07-01

    To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time.

  7. Recent developments in white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.

  8. Cost and energy-efficient (LED, induction and plasma) roadway lighting.

    DOT National Transportation Integrated Search

    2013-11-01

    There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...

  9. LIGHT-EMITTING DIODE TECHNOLOGY IMPROVES INSECT TRAPPING

    PubMed Central

    GILLEN, JONATHON I.; MUNSTERMANN, LEONARD E.

    2008-01-01

    In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50–60%. The LEDs were incorporated into 2 lighting designs, 1) a LED combination bulb for current light traps and 2) a chip-based LED design for a modified Centers for Disease Control and Prevention light trap. Detailed descriptions of the 2 designs are presented. PMID:18666546

  10. Effects of light-emitting diode supplementary lighting on the winter growth of greenhouse plants in the Yangtze River Delta of China.

    PubMed

    Li, Xue; Lu, Wei; Hu, Guyue; Wang, Xiao Chan; Zhang, Yu; Sun, Guo Xiang; Fang, Zhichao

    2016-12-01

    The winter in the Yangtze River Delta area of China involves more than 1 month of continuous low temperature and poor light (CLTL) weather conditions, which impacts horticultural production in an unheated greenhouse; however, few greenhouses in this area are currently equipped with a heating device. The low-cost and long-living light-emitting diode (LED) was used as an artificial light source to explore the effects of supplementary lighting during the dark period in CLTL winter on the vegetative characteristics, early yield, and physiology of flowering for pepper plants grown in a greenhouse without heating. Two LED lighting sets were employed with different light source to provide 65 μmol m -2  s -1 at night: (1) LED-A: red LEDs (R, peak wavelength 660 nm) and blue LEDs (B, peak wavelength 460 nm) with an R:B ratio of 6:3; and (2) LED-B: R and B LEDs at an R:B ratio of 8:1. Plants growth parameters and chlorophyll fluorescence characteristics were compared between lighting treatments and the control group. Plants' yield and photosynthesis ability were improved by LED-A. Pepper grown under the LED-A1 strategy showed a 303.3 % greater fresh weight of fruits and a 501.3 % greater dry mass compared with the control group. Plant leaves under LED-A1 showed maximum efficiency of the light quantum yield of PSII, electron transfer rate, and the proportion of the open fraction of PSII centers, with values 113.70, 114.34, and 211.65 % higher than those of the control group, respectively, and showed the lowest rate constant of thermal energy dissipation of all groups. LED-B was beneficial to the plant height and stems diameter of the pepper plants more than LED-A. These results can serve as a guide for environment control and for realizing low energy consumption for products grown in a greenhouse in the winter in Southern China.

  11. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  12. Life of LED-Based White Light Sources

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Gu, Yimin

    2005-09-01

    Even though light-emitting diodes (LEDs) may have a very long life, poorly designed LED lighting systems can experience a short life. Because heat at the p-n-junction is one of the main factors that affect the life of the LED, by knowing the relationship between life and heat, LED system manufacturers can design and build long-lasting systems. In this study, several white LEDs from the same manufacturer were subjected to life tests at different ambient temperatures. The exponential decay of light output as a function of time provided a convenient method to rapidly estimate life by data extrapolation. The life of these LEDs decreases in an exponential manner with increasing temperature. In a second experiment,several high-power white LEDs from different manufacturers were life-tested under similar conditions. Results show that the different products have significantly different life values.

  13. High-power LED package requirements

    NASA Astrophysics Data System (ADS)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  14. DEVELOPMENT, DESIGN AND CONSUMER TESTING OF MARKETABLE RESIDENTIAL LED LIGHT LUMINAIRES

    EPA Science Inventory

    Developing marketable LED luminaires poses challenges, even though LEDs are energy-efficient and an ecological alternative to conventionally lighting. Challenges include: perceptions that the color rendition of LEDs is unacceptable to the public; numbers of LEDs must be grou...

  15. Warm white LEDs lighting over Ra=95 and its applications

    NASA Astrophysics Data System (ADS)

    Kobashi, Katsuya; Taguchi, Tsunemasa

    2007-02-01

    We have for the first time developed warm white LEDs lighting using a combination of near ultraviolet LED and three-band (red, green and blue) white phosphors. This LED has the average color-rendering index Ra=96. Moreover, special color-rendering index R9 (red) and R15 (face color of Japanese) are estimated to be 95 and 97, respectively. We will describe the results of evaluation on the medical lighting applications such as operation, treatment and endoscope experiments, application to the LED fashions and application to the Japanese antique art (ink painting) lighting.

  16. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  17. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    PubMed

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.

  18. Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis

    PubMed Central

    WANG, THOMAS D.; VAN DAM, JACQUES

    2007-01-01

    Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274

  19. Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Liu, N. Y.; Tao, Y. B.; Massoubre, D.; Xie, E. Y.; Hu, X. D.; Chen, Z. Z.; Zhang, G. Y.; Pan, Y. B.; Hao, M. S.; Watson, I. M.; Gu, E.; Dawson, M. D.

    2012-01-01

    Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0 0 0 1) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-2 (4.4 W cm-2) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm-2, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm-2) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, B. R.; Myer, M. A.

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  1. Applications of Light Emitting Diodes in Health Care.

    PubMed

    Dong, Jianfei; Xiong, Daxi

    2017-11-01

    Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.

  2. IN VITRO STUDY OF THE PULP CHAMBER TEMPERATURE RISE DURING LIGHT-ACTIVATED BLEACHING

    PubMed Central

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)-laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66°C). The LED unit produced the lowest temperature increase (0.29±0.13°C); but there was no significant difference between LED unit and LED-laser system (0.35±0.15°C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64°C), and LED-laser system the lowest (0.33±0.12°C); however, there was no difference between LED-laser system and LED unit (0.44±0.11°C). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health. PMID:19089234

  3. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    PubMed

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  5. Evaluation of OLED and edge-lit LED lighting panels

    NASA Astrophysics Data System (ADS)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul

    2016-09-01

    Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.

  6. Assessment of end-of-life design in solid-state lighting

    NASA Astrophysics Data System (ADS)

    Dzombak, Rachel; Padon, Jack; Salsbury, Josh; Dillon, Heather

    2017-08-01

    Consumers in the US market and across the globe are beginning to widely adopt light emitting diode (LED) lighting products while the technology continues to undergo significant changes. While LED products are evolving to consume less energy, they are also more complex than traditional lighting products with a higher number of parts and a larger number of electronic components. Enthusiasm around the efficiency and long expected life span of LED lighting products is valid, but research to optimize product characteristics and design is needed. This study seeks to address that gap by characterizing LED lighting products' suitability for end of life (EOL) recycling and disposal. The authors disassembled and assessed 17 different lighting products to understand how designs differ between brands and manufacture year. Products were evaluated based on six parameters to quantify the design. The analysis indicates that while the efficiency of LED products has improved dramatically in the recent past, product designers and manufacturers could incorporate design strategies to improve environmental performance of lighting products at end-of-life.

  7. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  8. Monitoring and Detecting the Cigarette Beetle (Coleoptera: Anobiidae) Using Ultraviolet (LED) Direct and Reflected Lights and/or Pheromone Traps in a Laboratory and a Storehouse.

    PubMed

    Miyatake, Takahisa; Yokoi, Tomoyuki; Fuchikawa, Taro; Korehisa, Nobuyoshi; Kamura, Toru; Nanba, Kana; Ryouji, Shinsuke; Kamioka, Nagisa; Hironaka, Mantaro; Osada, Midori; Hariyama, Takahiko; Sasaki, Rikiya; Shinoda, Kazutaka

    2016-12-01

    The cigarette beetle, Lasioderma serricorne (F.), is an important stored-product pest worldwide because it damages dry foods. Detection and removal of the female L. serricorne will help to facilitate the control of the insect by removal of the egg-laying populations. In this manuscript, we examined the responses by L. serricorne to direct and reflected light in transparent cube (50 m3) set in a chamber (200 m3) and a stored facility with both direct and reflected UV-LED lights. The study also examined the responses by the beetles to light in the presence or absence of pheromone in traps that are placed at different heights. Reflected light attracted more beetles than the direct light in the experimental chamber, but the direct light traps attracted more beetles than the reflected light traps in the storehouse. Pheromone traps attracted only males; UV-LED traps attracted both sexes. The UV-LED traps with a pheromone, i.e., combined trap, attracted more males than UV-LED light traps without a pheromone, whereas the attraction of UV-LED traps with and without the pheromone was similar in females. The results suggest that UV-LED light trap combined with a sex pheromone is the best solution for monitoring and controlling L. serricorne. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  10. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  11. ZnO-nanorods: A possible white LED phosphor

    NASA Astrophysics Data System (ADS)

    Sarangi, Sachindra Nath; T., Arun; Ray, Dinseh K.; Sahoo, Pratap Kumar; Nozaki, Shinji; Sugiyama, Noriyuki; Uchida, Kazuo

    2017-05-01

    The white light-emitting diodes (LEDs) have drawn much attention to replace conventional lighting sources because of low energy consumption, high light efficiency and long lifetime. Although the most common approach to produce white light is to combine a blue LED chip and a yellow phosphor, such a white LED cannot be used for a general lighting application, which requires a broad luminescence spectrum in the visible wavelength range. We have successfully chemically synthesized the ZnO nanorods showing intense broad luminescence in the visible wavelength range and made a white LED using the ZnO nanorods as phosphor excited with a blue LED. Their lengths and diameters were 2 - 10 μm and 200 - 800 nm, respectively. The wurtzite structure was confirmed by the x-ray diffraction measurement. The PL spectrum obtained by exciting the ZnO nanorods with the He-Cd laser has two peaks, one associated with the near band-edge recombination and the other with recombination via defects. The peak intensity of the near band-edge luminescence at 388 nm is much weaker than that of the defect-related luminescence. The latter luminescence peak ranges from 450 to 850 nm and broad enough to be used as a phosphor for a white LED. A white LED has been fabricated using a blue LED with 450 nm emission and ZnO nanorod powders. The LED performances show a white light emission and the electroluminescence measurement shows a stiff increase in white light intensity with increasing blue LED current. The Commission International de1'Eclairage (CIE) chromaticity colour coordinates of 450 nm LED pumped white emission shows a coordinate of (0.31, 0.32) for white LED at 350 mA. These results indicate that ZnO nanorods provides an alternate and effective approach to achieve high-performance white LEDs and also other optoelectronic devices.

  12. Scintillation probe with photomultiplier tube saturation indicator

    DOEpatents

    Ruch, Jeffrey F.; Urban, David J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  13. Improved light extraction efficiency of InGaN-based multi-quantum well light emitting diodes by using a single die growth.

    PubMed

    Park, Min Joo; Kwon, K W; Kim, Y H; Park, S H; Kwak, Joon Seop

    2011-05-01

    We have demonstrated that the light extraction efficiency of the InGaN based multi-quantum well light-emitting diodes (LEDs) can be improved by using a single die growth (SDG) method. The SDG was performed by patterning the n-GaN and sapphire substrate with a size of single chip (600 x 250 microm2) by using a laser scriber, followed by the regrowth of the n-GaN and LED structures on the laser patterned n-GaN. We fabricated lateral LED chips having the SDG structures (SDG-LEDs), in which the thickness of the regrown n-GaN was varied from 2 to 6 microm. For comparison, we also fabricated conventional LED chips without the SDG structures. The SDG-LEDs showed lower operating voltage when compared to the conventional LEDs. In addition, the output power of the SDG-LEDs was significantly higher than that of the conventional LEDs. From optical ray tracing simulations, the increase in the thickness and sidewall angle of the regrown n-GaN and LED structures may enhance photon escapes from the tilted facets of the regrown n-GaN, followed by the increase in light output power and extraction efficiency of the SDG-LEDs.

  14. Development of High-power LED Lighting Luminaires Using Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Huang, Bin-Juine; Huang, Huan-Hsiang; Chen, Chun-Wei; Wu, Min-Sheng

    High-power LED should reject about 6 times of heat of the conventional lighting device and keep the LED junction temperature below 80°C to assure reliability and low light decay. In addition, no fan is allowed and the heat dissipation design should not interfere with the industrial design of lighting fixture and have a light weight. This thus creates an extreme thermal management problem. The present study has shown that, using a special heat dissipation technology (loop heat pipe), the high-power LED lighting luminaire with input power from 36 to 150W for outdoor and indoor applications can be achieved with light weight, among 0.96 to 1.57 kg per 1,000 lumen of net luminous flux output from the luminaire. The loop heat pipe uses a flexible connecting pipe as the condenser which can be wounded around the reflector of the luminaire to dissipate the heat to the ambient air by natural convection. For roadway or street lighting application, the present study shows that a better optical design of LED lamps can further result in power consumption reduction, based on the same illumination on road surface. The high-power LED luminaries developed in the present study have shown that the energy saving is > 50% in road lighting applications as compared to sodium light or > 70% compared to mercury light.

  15. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Cruse, Dave; Blumgart, Dan; Inger, Richard; Gaston, Kevin J

    2017-07-01

    White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether. © 2017 John Wiley & Sons Ltd.

  16. LED surgical lighting system with multiple free-form surfaces for highly sterile operating theater application.

    PubMed

    Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-06-01

    Although the ventilation system is widely employed in the operating theater, a strictly sterile surgical environment still cannot be ensured because of laminar disturbance, which is mainly caused by the surgical lighting system. Abandoning traditional products, we propose an LED surgical lighting system, which can alleviate the laminar disturbance and provide an appropriate lighting condition for surgery. It contains a certain amount of LED lens units, which are embedded in the ceiling and arranged around the air supply smallpox. The LED lens unit integrated with an LED light source and a free-form lens is required to produce a uniform circular illumination with a large tolerance to the change of lighting distance. To achieve such a dedicated lens, two free-form refractive surfaces, which are converted into two ordinary differential equations by the design method presented in this paper, are used to deflect the rays. The results show that the LED surgical lighting system can provide an excellent illumination environment for surgery, and, apparently, the laminar disturbance also can be relieved.

  17. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    PubMed Central

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-01-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10−3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters. PMID:26333768

  18. A perspective perception on the applications of light-emitting diodes.

    PubMed

    Nair, Govind B; Dhoble, S J

    2015-12-01

    Light-emitting diodes (LEDs) continue to penetrate the global market; their pervasiveness clearly being felt in such diverse fields as technological, socio-economic and commercial interests. The multi-billion dollar LED market is shared by various segments, including office and household lighting, street lighting, the automobile industry, traffic signals, backlighting for hand-held devices, indoor and outdoor signs and indicators, medicine, communication systems, crop cultivation using artificial light and many more. The technological development of LEDs has undergone many phases in different parts of the world. From the early discovery of luminescence to the invention of highly efficient organic LEDs, researchers have worked with the prime purpose of improving the performance of luminaires. The need to infuse the market with more efficient and cheaper products has been prevalent from the start. LEDs are a result of this uncontrolled desire of researchers to develop superior products that would displace existing products in the market. To understand what led to the current prominence of LEDs, we give a brief historical overview of the field followed by a thorough discussion of the positive features of LEDs. This work includes the basic requirements, advantages and disadvantages of LEDs in a variety of applications. A brief description of the diverse applications of LED in fields such as lighting, indicators and displays, farming, medicine and communication is given. Considerable importance is placed on discussing the possible difficulties that must be overcome before using LEDs in commercial applications. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Caenorhabditis elegans as a model to study the impact of exposure to light emitting diode (LED) domestic lighting.

    PubMed

    Abdel-Rahman, Fawzia; Okeremgbo, Bethel; Alhamadah, Fatimah; Jamadar, Sakha; Anthony, Kevin; Saleh, Mahmoud A

    2017-04-16

    This study aimed to investigate the biological impact of exposure on domestic light emitting diodes (LED) lighting using the free-living nematode Caenorhabditis elegans as a model. Nematodes were separately exposed to white LED light covering the range of 380-750 nm, blue light at 450 nm and black light at 380-420 nm for one life cycle (egg to adult) with dark exposure as the control. Each light range induced stress to the nematode C. elegans such as reducing the number of the hatched eggs and/or delayed the maturation of the hatched eggs to the adult stage. In addition, it lowered or prevented the ability of adults to lay eggs and impaired the locomotion in the exposed worms. The observed type of biological stress was also associated with the production of reactive oxygen species (ROS) as compared to nematodes grown in the dark. It is concluded that the blue light component of white LED light may cause health problems, and further investigation is required to test commercial brands of white LEDs that emit different amounts of blue light.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Lyle; Manin, Julien; Eagle, Ethan

    A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.

  1. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    NASA Astrophysics Data System (ADS)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  2. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  3. Expeditionary Lighting Systems for Military Shelters

    DTIC Science & Technology

    2009-11-04

    Lumiled LED Housing Nonimaging Beamformer Heat Sink Connector Retractable Cable O Transportation Configuration Physical Optics Corporation (POC) LED...New Lighting Technologies: • Technology: Light Emitting Diode (LED) o Physical Optics Corp [SBIR] o Techshot [SBIR] [Congressional Effort o Jameson LED...rugged and durable—no lamp to damage or replace • Custom designed optical diffuser prevents glare and “eye spots” • Operates on universal voltage, 90

  4. Advances in light-curing units: four generations of LED lights and clinical implications for optimizing their use: Part 2. From present to future.

    PubMed

    Shortall, Adrian C; Palin, Will M; Jacquot, Bruno; Pelissier, Bruno

    2012-01-01

    The first part of this series of two described the history of light curing in dentistry and developments in LED lights since their introduction over 20 years ago. Current second- and third-generation LED light units have progressively replaced their halogen lamp predecessors because of their inherent advantages. The background to this, together with the clinical issues relating to light curing and the possible solutions, are outlined in the second part of this article. Finally, the innovative features of what may be seen as the first of a new fourth-generation of LED lights are described and guidance is given for the practitioner on what factors to consider when seeking to purchase a new LED light activation unit. Adequate curing in depth is fundamental to clinical success with any light-activated restoration. To achieve this goal predictably, an appropriate light source needs to be combined with materials knowledge, requisite clinical skills and attention to detail throughout the entire restoration process. As dentists increasingly use light-cured direct composites to restore large posterior restorations they need to appreciate the issues central to effective and efficient light curing and to know what to look for when seeking to purchase a new light-curing unit.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  6. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    PubMed

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  7. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  8. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    PubMed Central

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575

  9. Linking language to the visual world: Neural correlates of comprehending verbal reference to objects through pointing and visual cues.

    PubMed

    Peeters, David; Snijders, Tineke M; Hagoort, Peter; Özyürek, Aslı

    2017-01-27

    In everyday communication speakers often refer in speech and/or gesture to objects in their immediate environment, thereby shifting their addressee's attention to an intended referent. The neurobiological infrastructure involved in the comprehension of such basic multimodal communicative acts remains unclear. In an event-related fMRI study, we presented participants with pictures of a speaker and two objects while they concurrently listened to her speech. In each picture, one of the objects was singled out, either through the speaker's index-finger pointing gesture or through a visual cue that made the object perceptually more salient in the absence of gesture. A mismatch (compared to a match) between speech and the object singled out by the speaker's pointing gesture led to enhanced activation in left IFG and bilateral pMTG, showing the importance of these areas in conceptual matching between speech and referent. Moreover, a match (compared to a mismatch) between speech and the object made salient through a visual cue led to enhanced activation in the mentalizing system, arguably reflecting an attempt to converge on a jointly attended referent in the absence of pointing. These findings shed new light on the neurobiological underpinnings of the core communicative process of comprehending a speaker's multimodal referential act and stress the power of pointing as an important natural device to link speech to objects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Time dependence of composite shrinkage using halogen and LED light curing.

    PubMed

    Uhl, Alexander; Mills, Robin W; Rzanny, Angelika E; Jandt, Klaus D

    2005-03-01

    The polymerization shrinkage of light cured dental composites presents the major drawback for these aesthetically adaptable restorative materials. LED based light curing technology has recently become commercially available. Therefore, the aim of the present study was to investigate if there was a statistically significant difference in linear and volumetric composite shrinkage strain if a LED LCU is used for the light curing process rather than a conventional halogen LCU. The volumetric shrinkage strain was determined using the Archimedes buoyancy principle after 5, 10, 20, 40 s of light curing and after 120 s following the 40 s light curing time period. The linear shrinkage strain was determined with a dynamic mechanical analyzer for the composites Z100, Spectrum, Solitaire2 and Definite polymerized with the LCUs Trilight (halogen), Freelight I (LED) and LED63 (LED LCU prototype). The changes in irradiance and spectra of the LCUs were measured after 0, 312 and 360 min of duty time. In general there was no considerable difference in shrinkage of the composites Z100, Spectrum or Solitaire2 when the LED63 was used instead of the Trilight. There was, however, a statistically significant difference in shrinkage strain when the composite Definite was polymerized with the LED63 instead of the Trilight. The spectrum of the Trilight changed during the experiment considerably whereas the LED63 showed an almost constant light output. The Freelight I dropped considerably in irradiance and had to be withdrawn from the study because of technical problems. The composites containing only the photoinitiator camphorquinone showed similar shrinkage strain behaviour when a LED or halogen LCU is used for the polymerization. The irradiance of some LED LCUs can also decrease over time and should therefore be checked on a regular basis.

  11. [Functional state of the visual analyzer in the conditions of the use of traditional and LED light sources].

    PubMed

    Kaptsov, V A; Sosunov, N N; Shishchenko, I I; Viktorov, V S; Tulushev, V N; Deynego, V N; Bukhareva, E A; Murashova, M A; Shishchenko, A A

    2014-01-01

    There was performed the experimental work on the study of the possibility of the application of LED lighting (LED light sources) in rail transport for traffic safety in related professions. Results of 4 series of studies involving 10 volunteers for the study and a comparative evaluation of the functional state of the visual analyzer, the general functional state and mental capacity under the performing the simulated operator activity in conditions of traditional light sources (incandescent, fluorescent lamp) and the new LED (LED lamp, LED panel) light sources have revealed changes in the negative direction. This was pronounced in a some decrease of functional stability to color discrimination between green and red cone signals, as well as an increase in response time in complex visual--motor response and significant reduction in readiness for emergency action of examinees.

  12. CALiPER Snapshot Report: Outdoor Area Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-09-30

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  13. CALiPER Snapshot Report: Outdoor Area Lighting - 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-09-29

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  14. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  15. Comparison of Light Emitting Diodes (LED) and Fluorescent Light on Suppression of Pineal Melatonin in the Rat

    NASA Technical Reports Server (NTRS)

    Winget, Charles M.; Heeke, D. S.; Holley, D. C.; Mele, G.; Brainard, G. C.; Hanifin, J. P.; Rollag, M. D.; Savage, Paul D. (Technical Monitor)

    1997-01-01

    To validate a novel LED array for use in animal habitat lighting by comparing its effectiveness to cool-white fluorescent (CWF) lighting in suppressing pineal gland melatonin. Male Sprague-Dawley rats, 175-200 g, were maintained under control conditions for 2 weeks (food and water ad lib, 12L: 12D CWF, 18 uW/square cm). Dark adapted animals (animals before lights on) were exposed to 5 min of LED or CWF light of similar spectral power distribution. Two groups of rats (LED vs. CWF) were compared at 5 light intensities (100, 40, 1, 1.0, and 0. 1 lux). A control group was placed into the exposure apparatus but not exposed to light. After exposure, pineal glands were rapidly removed and assayed for melatonin by RIA. Results. The dark-exposed control groups matched with the 5 intensity groups (100, 40, 10, 1.0, and 0.1 lux) showed mean + SEM pineal melatonin values of 1167 +/- 136, 1569 +/- 126, 353 +/- 34, 650 +/- 124, and 464 +/- 85, pg/ml respectively. The corresponding CWF exposure data were 393 1 41, 365 +34, 257 +/- 13, 218 +/- 42, and 239 +/- 71 pg/ml, respectively. Corresponding LED exposure data were 439 +/- 25, 462 +/- 50, 231 +/- 6, 164 +/- 12, and 158 +/- 12 pg/ml, respectively. Rats exposed to both experimental light conditions at all illuminances studied showed significant melatonin suppression (p less than 0.01, ANOVA). In no case was the melatonin suppression induced by LED illuminance significantly different from the melatonin suppression elicited by the same intensity of CWF light. The results show that a novel LED light source can suppress pineal melatonin equal to that of a conventional CWF light source.

  16. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

    PubMed

    de Jong, Ebbing P; Lucy, Charles A

    2006-05-01

    Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

  17. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  18. An overview of LED applications for general illumination

    NASA Astrophysics Data System (ADS)

    Pelka, David G.; Patel, Kavita

    2003-11-01

    This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems

  19. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  20. Regression analysis for LED color detection of visual-MIMO system

    NASA Astrophysics Data System (ADS)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  1. Light emitting diodes as a plant lighting source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C.

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used inmore » a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.« less

  2. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs.

    PubMed

    Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya

    2015-04-01

    In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of pitch and shape for diffraction grating in LED fog lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Lin, Jun-Yu; Wu, Jih-Huah; Ma, Shih-Hsin; Yang, Chi-Hao

    2011-10-01

    The characteristics of light-emitting diodes (LEDs) that make them energy-efficient and long-lasting light source for general illumination have attracted a great attention from the lighting industry and commercial market. As everyone know LEDs have the advantages of environmental protection, long lifetime, fast response time (μs), low voltage and good mechanical properties. Their high luminance and the wide region of the dominant wavelengths within the entire visible spectrum mean that people have high anticipations for the applications of LEDs. The output lighting from reflector in the traditional fog lamp was required to fit the standard of the ECE R19 F3 regulation. Therefore, this study investigated the effects of pitch and angle for a diffraction grating in LED fog lamp. The light pattern of fog lamp must be satisfied ECE regulations, so a design of diffraction grating to shift down the lighting was required. There are three LEDs (Cree XLamp XPE LEDs) as the light source in the fog lamp for the illumination efficiency. Then, an optimal simulation of diffraction grating was done for the pitch and angle of the diffraction grating at the test distance of 25 meters. The best pitch and angle was 2mm and 60 degree for the grating shape of wedge type.

  4. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    PubMed Central

    Seiler, Franka; Soll, Jürgen; Bölter, Bettina

    2017-01-01

    Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions. PMID:28608805

  5. The potential influence of LED lighting on mental illness.

    PubMed

    Bauer, Michael; Glenn, Tasha; Monteith, Scott; Gottlieb, John F; Ritter, Philipp S; Geddes, John; Whybrow, Peter C

    2018-02-01

    Two recent scientific breakthroughs may alter the treatment of mental illness, as discussed in this narrative review. The first was the invention of white light-emitting diodes (LEDs), which enabled an ongoing, rapid transition to energy-efficient LEDs for lighting, and the use of LEDs to backlight digital devices. The second was the discovery of melanopsin-expressing photosensitive retinal ganglion cells, which detect environmental irradiance and mediate non-image forming (NIF) functions including circadian entrainment, melatonin secretion, alertness, sleep regulation and the pupillary light reflex. These two breakthroughs are interrelated because unlike conventional lighting, white LEDs have a dominant spectral wavelength in the blue light range, near the peak sensitivity for the melanopsin system. Pertinent articles were identified. Blue light exposure may suppress melatonin, increase alertness, and interfere with sleep in young, healthy volunteers and in animals. Areas of concern in mental illness include the influence of blue light on sleep, other circadian-mediated symptoms, prescribed treatments that target the circadian system, measurement using digital apps and devices, and adolescent sensitivity to blue light. While knowledge in both fields is expanding rapidly, future developments must address the potential impact of blue light on NIF functions for healthy individuals and those with mental illness.

  6. Analysis of LED arrangement in an array with respect to lens geometry

    NASA Astrophysics Data System (ADS)

    Ley, Peer-Phillip; Held, Marcel Philipp; Lachmayer, Roland

    2018-02-01

    Highly adaptive light sources such as LED arrays have been surpassing conventional light sources (halogen, xenon) for automotive applications. Individual LED arrangements within the array, high durability and low energy consumption of the LEDs are some of the reasons. With the introduction of Audi's Matrix beam system, efforts to increase the quantity of pixels were already underway and the stage was practically set for pixel light systems. Current efforts are focused towards the exploration of an optimal LED array density and the use of spatial light modulators. In both cases, one question remains - What arrangement of LEDs is the most suitable in terms of light output efficiency for a given lens geometry? The radiation characteristics of an LED usually shows a Lambertian pattern. Following from the definition of luminous efficacy, this characteristic property of LEDs has a decisive impact on the lens geometry in a given array. Due to the proportional correlation between the lens diameter and the distance of LEDs emission surface to the lens surface. Assuming a constant viewing angle an increase of the distance leads to an increase of the lens diameter. In this paper, two different approaches for an optimized LED array with regards to the LED arrangement will be presented. The introduced designs result from one imaging and one non-imaging optical system, which will be investigated. The paper is concluded with a comparative analysis of the LED array design as a function of the LED pitch and the luminous efficacy.

  7. Investigation on bandgap, diffraction, interference, and refraction effects of photonic crystal structure in GaN/InGaN LEDs for light extraction.

    PubMed

    Patra, Saroj Kanta; Adhikari, Sonachand; Pal, Suchandan

    2014-06-20

    In this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode. Beyond a certain periodicity, diffraction effect starts dominating and light extraction improves further. The interference effect is observed in embedded photonic crystal LEDs, where depth of etching supports constructive interference of outward light waves. We have also shed light on refraction effects exhibited by the PhCs and whether negative refraction properties of PhCs may be useful in case of LED light extraction.

  8. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

    PubMed Central

    Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon

    2013-01-01

    Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259

  9. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  10. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  11. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less

  12. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  13. Preliminary studies on LED-activated pyropheophorbide-α methyl ester killing cisplatin-resistant ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang

    2009-05-01

    In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.

  14. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may also modulate the gonadal responses to blue (suppressive) and red (stimulatory) light. These studies led us to conclude that the temporal phase relation of serotonergic and dopaminergic oscillations is not only an important regulator of avian reproduction but may also override the classical effects of light colours in Japanese quail. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  16. Effects of colored light-emitting diode illumination on behavior and performance of laying hens.

    PubMed

    Huber-Eicher, B; Suter, A; Spring-Stähli, P

    2013-04-01

    The best method for lighting poultry houses has been an issue for many decades, generating much interest in any new systems that become available. Poultry farmers are now increasingly using colored LED (light-emitting diodes) to illuminate hen houses (e.g., in Germany, Austria, the Netherlands, and England). In Switzerland all newly installed systems are now equipped with LED, preferably green ones. The LED give monochromatic light from different wavelengths and have several advantages over conventional illuminants, including high energy efficiency, long life, high reliability, and low maintenance costs. The following study examines the effects of illumination with white, red, and green LED on behavior and production parameters of laying hens. Light intensities in the 3 treatments were adjusted to be perceived by hens as equal. Twenty-four groups of 25 laying hens were kept in identical compartments (5.0 × 3.3 m) equipped with a litter area, raised perches, feed and drinking facilities, and nest boxes. Initially, they were kept under white LED for a 2-wk adaptation period. For the next 4 wk, 8 randomly chosen compartments were lit with red LED (640 nm) and 8 others with green LED (520 nm). Behavior was monitored during the last 2 wk of the trial. Additionally weight gain, feed consumption, onset of lay, and laying performance were recorded. The results showed minor effects of green light on explorative behavior, whereas red light reduced aggressiveness compared with white light. The accelerating effect of red light on sexual development of laying hens was confirmed, and the trial demonstrated that this effect was due to the specific wavelength and not the intensity of light. However, an additional effect of light intensity may exist and should not be excluded.

  17. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    PubMed

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow < 0.37 × 10 -3 W/m 2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  18. High-efficiency Light-emitting Devices based on Semipolar III-Nitrides

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho

    In the future, the light-emitting diodes (LEDs) are expected to fully penetrate into the lighting market. A tremendous amount of energy will be saved through the LED-based lighting. Apparently, the amount of the energy saving strongly depends on the efficiency of the LEDs: this dissertation is all about the efficiency. First, the III-nitride LEDs grown on free-standing semipolar (202¯1¯) GaN substrates will be discussed. In many studies, LEDs grown on semipolar III-nitride substrates exhibited high efficiency at high current density. In this dissertation, "droop-free" (202¯1¯) blue LEDs will be demonstrated, especially for the standard industrial chip size. In addition, contact optimization process for (202¯1¯) LEDs will be discussed. Series resistance of the (202¯1¯) LED devices has been improved through the contact optimization. As a result, the wall-plug efficiency (WPE) of the device was boosted by ˜50%, compared to that of the previously reported (202¯1¯) LEDs. Also, chip shaping for the semipolar LEDs to enhance the extraction efficiency will be covered as well. A new mesa design will be introduced, and the cleaving scheme for semipolar LED wafers will be thoroughly discussed. Lastly, as a future work, selective area growth of ZnO light extraction features will be introduced and its preliminary result will be demonstrated.

  19. GaN-based LEDs with a high light extraction composite surface structure fabricated by a modified YAG laser lift-off technology and the patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yongjian; Trieu, Simeon; Yu, Tongjun; Chen, Zhizhong; Qi, Shengli; Tian, Pengfei; Deng, Junjing; Jin, Xiaoming; Zhang, Guoyi

    2011-08-01

    Vertical structure LEDs have been fabricated with a novel light extraction composite surface structure composed of a micron grating and nano-structure. The composite surface structure was generated by using a modified YAG laser lift-off technique, separating the wafers from cone-shaped patterned sapphire substrates. LEDs thus fabricated showed the light output power increase about 1.7-2.5 times when compared with conventional vertical structure LEDs grown on plane sapphire substrates. A three-dimensional finite difference time domain method was used to simulate this new kind of LED device. It was determined that nano-structures in composite surface patterns play a key role in the improvement of light extraction efficiency of LEDs.

  20. Evaluation of light intensity output of QTH and LED curing devices in various governmental health institutions.

    PubMed

    Al Shaafi, Mm; Maawadh, Am; Al Qahtani, Mq

    2011-01-01

    The purpose of this study was to evaluate the light intensity output of quartz-tungsten-halogen (QTH) and light emitting diode (LED) curing devices located at governmental health institutions in Riyadh, Saudi Arabia.Eight governmental institutions were involved in the study. The total number of evaluated curing devices was 210 (120 were QTH and 90 were LED). The reading of the light intensity output for each curing unit was achieved using a digital spectrometer; (Model USB4000 Spectrometer, Ocean Optics Inc, Dunedin, FL, USA). The reading procedure was performed by a single investigator; any recording of light intensity below 300 mW/cm2 was considered unsatisfactory.The result found that the recorded mean values of light intensity output for QTH and LED devices were 260 mW/cm2 and 598 mW/cm2, respectively. The percentage of QTH devices and LED devices considered unsatisfactory was 67.5% and 15.6%, respectively. Overall, the regular assessment of light curing devices using light meters is recommended to assure adequate output for clinical use.

  1. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    NASA Astrophysics Data System (ADS)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  2. Demonstration of UV LED versatility when paired with molded UV transmitting glass optics to produce unique irradiance patterns

    NASA Astrophysics Data System (ADS)

    Jasenak, Brian

    2017-02-01

    Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.

  3. Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion

    NASA Astrophysics Data System (ADS)

    Barentine, John C.; Walker, Constance E.; Kocifaj, Miroslav; Kundracik, František; Juan, Amy; Kanemoto, John; Monrad, Christian K.

    2018-06-01

    The transition from earlier lighting technologies to white light-emitting diodes (LEDs) is a significant change in the use of artificial light at night. LEDs emit considerably more short-wavelength light into the environment than earlier technologies on a per-lumen basis. Radiative transfer models predict increased skyglow over cities transitioning to LED unless the total lumen output of new lighting systems is reduced. The City of Tucson, Arizona (U.S.), recently converted its municipal street lighting system from a mixture of fully shielded high- and low-pressure sodium (HPS/LPS) luminaires to fully shielded 3000 K white LED luminaires. The lighting design intended to minimize increases to skyglow in order to protect the sites of nearby astronomical observatories without compromising public safety. This involved the migration of over 445 million fully shielded HPS/LPS lumens to roughly 142 million fully shielded 3000 K white LED lumens and an expected concomitant reduction in the amount of visual skyglow over Tucson. SkyGlow Simulator models predict skyglow decreases on the order of 10-20% depending on whether fully shielded or partly shielded lights are in use. We tested this prediction using visual night sky brightness estimates and luminance-calibrated, panchromatic all-sky imagery at 15 locations in and near the city. Data were obtained in 2014, before the LED conversion began, and in mid-2017 after approximately 95% of ∼ 18,000 luminaires was converted. Skyglow differed marginally, and in all cases with valid data changed by < ± 20%. Over the same period, the city's upward-directed optical radiance detected from Earth orbit decreased by approximately 7%. While these results are not conclusive, they suggest that LED conversions paired with dimming can reduce skyglow over cities.

  4. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  5. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    PubMed

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  6. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  7. A spectrally tunable solid-state source for radiometric, photometric, and colorimetric applications

    NASA Astrophysics Data System (ADS)

    Fryc, Irena; Brown, Steven W.; Eppeldauer, George P.; Ohno, Yoshihiro

    2004-10-01

    A spectrally tunable light source using a large number of LEDs and an integrating sphere has been designed and being developed at NIST. The source is designed to have a capability of producing any spectral distributions mimicking various light sources in the visible region by feedback control of individual LEDs. The output spectral irradiance or radiance of the source will be calibrated by a reference instrument, and the source will be used as a spectroradiometric as well as photometric and colorimetric standard. The use of the tunable source mimicking spectra of display colors, for example, rather than a traditional incandescent standard lamp for calibration of colorimeters, can reduce the spectral mismatch errors of the colorimeter measuring displays significantly. A series of simulations have been conducted to predict the performance of the designed tunable source when used for calibration of colorimeters. The results indicate that the errors can be reduced by an order of magnitude compared with those when the colorimeters are calibrated against Illuminant A. Stray light errors of a spectroradiometer can also be effectively reduced by using the tunable source producing a blackbody spectrum at higher temperature (e.g., 9000 K). The source can also approximate various CIE daylight illuminants and common lamp spectral distributions for other photometric and colorimetric applications.

  8. Interfacial engineering with ultrathin poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) layer for high efficient perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang

    2018-02-01

    Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.

  9. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm.

    PubMed

    da Silveira Petruci, João Flavio; Liebetanz, Michael G; Cardoso, Arnaldo Alves; Hauser, Peter C

    2017-08-25

    In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    PubMed

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Human-Friendly Light-Emitting Diode Source Stimulates Broiler Growth.

    PubMed

    Pan, Jinming; Yang, Yefeng; Yang, Bo; Dai, Wenhua; Yu, Yonghua

    2015-01-01

    Previous study and our laboratory have reported that short-wavelength (blue and green) light and combination stimulate broiler growth. However, short-wavelength stimuli could have negative effects on poultry husbandry workers. The present study was conducted to evaluate the effects of human-friendly yellow LED light, which is acceptable to humans and close to green light, on broiler growth. We also aimed to investigate the potential quantitative relationship between the wavelengths of light used for artificial illumination and growth parameters in broilers. After hatching, 360 female chicks ("Meihuang" were evenly divided into six lighting treatment groups: white LED strips (400-700 nm, WL); red LED strips (620 nm, RL); yellow LED strips (580 nm, YL); green LED strips (514 nm, GL); blue LED strips (455 nm, BL); and fluorescent strips (400-700 nm, FL). From 30 to 72 days of age, broilers reared under YL and GL were heavier than broilers treated with FL (P < 0.05). Broilers reared under YL obtained the similar growth parameters with the broilers reared under GL and BL (P > 0.05). Moreover, YL significantly improved feeding efficiency when compared with GL and BL at 45 and 60 days of age (P < 0.05). In addition, we found an age-dependent effect of light spectra on broiler growth and a quantitative relationship between LED light spectra (455 to 620 nm) and the live body weights of broilers. The wavelength of light (455 to 620 nm) was found to be negatively related (R2 = 0.876) to live body weight at an early stage of development, whereas the wavelength of light (455 to 620 nm) was found to be positively correlated with live body weight (R2 = 0.925) in older chickens. Our results demonstrated that human-friendly yellow LED light (YL), which is friendly to the human, can be applied to the broilers production.

  12. Human-Friendly Light-Emitting Diode Source Stimulates Broiler Growth

    PubMed Central

    Yang, Bo; Dai, Wenhua; Yu, Yonghua

    2015-01-01

    Previous study and our laboratory have reported that short-wavelength (blue and green) light and combination stimulate broiler growth. However, short-wavelength stimuli could have negative effects on poultry husbandry workers. The present study was conducted to evaluate the effects of human-friendly yellow LED light, which is acceptable to humans and close to green light, on broiler growth. We also aimed to investigate the potential quantitative relationship between the wavelengths of light used for artificial illumination and growth parameters in broilers. After hatching, 360 female chicks (“Meihuang” were evenly divided into six lighting treatment groups: white LED strips (400–700 nm, WL); red LED strips (620 nm, RL); yellow LED strips (580 nm, YL); green LED strips (514 nm, GL); blue LED strips (455 nm, BL); and fluorescent strips (400–700 nm, FL). From 30 to 72 days of age, broilers reared under YL and GL were heavier than broilers treated with FL (P < 0.05). Broilers reared under YL obtained the similar growth parameters with the broilers reared under GL and BL (P > 0.05). Moreover, YL significantly improved feeding efficiency when compared with GL and BL at 45 and 60 days of age (P < 0.05). In addition, we found an age-dependent effect of light spectra on broiler growth and a quantitative relationship between LED light spectra (455 to 620 nm) and the live body weights of broilers. The wavelength of light (455 to 620 nm) was found to be negatively related (R 2 = 0.876) to live body weight at an early stage of development, whereas the wavelength of light (455 to 620 nm) was found to be positively correlated with live body weight (R 2 = 0.925) in older chickens. Our results demonstrated that human-friendly yellow LED light (YL), which is friendly to the human, can be applied to the broilers production. PMID:26270988

  13. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  14. Effect of red and blue light emitting diodes "CRB-LED" on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr.

    PubMed

    Al-Mayahi, Ahmed Madi Waheed

    2016-10-01

    The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

  15. Efficient conceptual design for LED-based pixel light vehicle headlamps

    NASA Astrophysics Data System (ADS)

    Held, Marcel Philipp; Lachmayer, Roland

    2017-12-01

    High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.

  16. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    PubMed Central

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690

  17. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    PubMed

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  18. Medical lighting composed of LED arrays for surgical operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-05-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN- blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs.

  19. Study and Implementation of White Power-LED Based Indoor Lighting Application for the Healthcare Sector

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Ganguly, R.

    With the current technological growth in the field of device fabrication, white power-LED's are available for solid state lighting applications. This is a paradigm shift from electrical lighting to electronic lighting. The implemented systems are showing some promise by saving a considerable amount of energy as well as providing a good and acceptable illumination level. However, the `useful life' of such devices is an important parameter. If the proper device is not chosen, the desired reliability and performance will not be obtained. In the present work, different parameters associated with reliability of such LED's are studied. Four different varieties of LED's are put to test the `useful life' as per IESNA LM 79 standard. From the results obtained, the proper LED is chosen for further application. Subsequently, lighting design is done for a hospital waiting room (indoor application) with 24 × 7 lighting requirements for replacement of existing CFLs there. The calculations show that although the initial cost is higher for LED based lighting, yet the savings on energy and replacement of the lamp results in a payback time of less than a year.

  20. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device.

    PubMed

    Paschoal, Marco Aurelio; Lin, Meng; Santos-Pinto, Lourdes; Duarte, Simone

    2015-02-01

    Photodynamic antimicrobial chemotherapy (PACT) is an antimicrobial approach that uses photosensitizers (PS) in combination with light sources at specific wavelengths aiming the production of reactive oxygen species. The long illumination time necessary to active PS is a challenge in PACT. Thus, this study investigated the antimicrobial effect of a novel single source of light-emitting diode (LED) light that covers the entire spectrum of visible light beyond interchangeable probes at high power intensity. Blue and red LED probes were used into different exposure times to active different concentrations of curcumin (C) and toluidine blue (T) on planktonic suspensions of Streptococcus mutans UA 159 (S. mutans). S. mutans were standardized and submitted to (1) PACT treatment at three concentrations of C and T exposure at three radiant exposures of a blue LED (BL) (C+BL+) and a red LED (RL) (T+RL+), (2) C (C+BL-) or T alone (T+RL-), (3) both LED lights (C-BL+ and T-RL+), and (4) neither PS nor LED illumination (control group: C-BL- and T-RL-). Aliquots of the suspensions were diluted and cultured on blood agar plates. The number of colony-forming units was calculated after 48 h. The groups submitted to PACT presented a lethal photokilling rate to all PS concentrations at tested dosimetries. The comparison to control group when PS and LED lights used alone demonstrated no decrease in the number of viable bacterial counts. The novel LED device in combination with curcumin and toluidine blue promoted an effective photoinactivation of S. mutans suspensions at ultrashort light illumination times.

  1. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  2. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  3. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system

    PubMed Central

    Yang, Yefeng; Yu, Yonghua; Pan, Jinming; Ying, Yibin; Zhou, Hong

    2016-01-01

    Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds’ glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology. PMID:27170597

  4. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system.

    PubMed

    Yang, Yefeng; Yu, Yonghua; Pan, Jinming; Ying, Yibin; Zhou, Hong

    2016-05-12

    Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds' glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.

  5. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system

    NASA Astrophysics Data System (ADS)

    Yang, Yefeng; Yu, Yonghua; Pan, Jinming; Ying, Yibin; Zhou, Hong

    2016-05-01

    Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G × B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G × B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G × B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G × B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds’ glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.

  6. Intensity output and effectiveness of light curing units in dental offices.

    PubMed

    Omidi, Baharan-Ranjbar; Gosili, Armin; Jaber-Ansari, Mona; Mahdkhah, Ailin

    2018-06-01

    The aims of the study were measuring the light intensity of light curing units used in Qazvin's dental offices, determining the relationship between the clinical age of these units and their light intensity, and identifying the reasons for repairing them. In this cross-sectional study, the output intensity of 95 light curing devices was evaluated using a radiometer. The average output intensity was divided up into four categories (less than 200, 200-299, 300-500, and more than 500 mW/cm2). In addition, a questionnaire was designed to obtain information mainly about the type, clinical age, and frequency of maintenance of the units and the reasons for fixing them. Data were analyzed using Kolmogorov-Smirnov, chi-squared, and t-tests ( p < 0.05) on SPSS 24. A total of 95 light curing units were examined, with 61 (64.2%) of them being of the LED type and 34 (35.8%) of the QTH type. While average light intensity in LED units was significantly higher than in QTH devices, the two device types were not significantly different regarding desirable light intensity (i.e., ≥ 300 mw/cm2). A negative correlation was observed between clinical age and light intensity. In addition, bulb replacement in QTH devices was over three times as much as in LED units. Also, repairing QTHs was more than twice as much frequent as fixing LEDs. The most common reason for repair was the breakage of the tip of the device. The light intensity of LED units is significantly higher than that of QTH devices, and the frequency of repairing in QTHs was significantly more than in LEDs. Furthermore, light intensity decreases with aging, and dentists should regularly monitor the conditions of light units. Key words: Light curing unit, radiometer, light intensity, dental equipment, dental offices.

  7. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery

    PubMed Central

    Bernstein, Jacob G.; Allen, Brian D.; Guerra, Alexander A.; Boyden, Edward S.

    2016-01-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology. PMID:26798482

  8. "Light-box" accelerated growth of poinsettias: LED-only illumination

    NASA Astrophysics Data System (ADS)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius

    2018-01-01

    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  9. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  10. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program

    DTIC Science & Technology

    2015-09-01

    usually on most of the time. • Consider replacing existing CFL, high-intensity discharge (HID), or halogen lamp light fixtures/ lamps with LED fixtures... lamps . What is the Technology? An LED is a semiconductor-diode that emits light when power is applied. A driver is used, much as a ballast, to...available in integrated luminaires that can be used to replace existing luminaires. LEDs are also available as direct replacement lamps for many

  12. Shining a Light on Electronics

    ERIC Educational Resources Information Center

    Statler, James D.

    2009-01-01

    While they produced a limited amount of light when first introduced, light-emitting diode (LED) lights offered the benefit of rarely burning out. As a result, they were initially used primarily as indicator lights. Advances in the technology have made available LEDs that produce far brighter light, and one application that has come to market is…

  13. Kansas highway LED illumination manual : a guide for the use of LED lighting systems.

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  14. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  15. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.

    2017-06-01

    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  16. Visual color matching system based on RGB LED light source

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  17. Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale.

    PubMed

    Kopsell, Dean A; Sams, Carl E; Morrow, Robert C

    2017-02-01

    Nutritionally important carotenoids in 21-day-old brassica microgreens increase following short and long-term exposure to narrow-band wavelengths from light-emitting diodes (LED). The present study aimed to measure the impact of: (1) fluorescent/incandescent light and different percentages of blue/red LED light and (2) different levels of nutrient fertility on biomass and pigment concentrations in 30-day-old 'Green Lance' Chinese kale (Brassica oleracea var. alboglabra). Kale plants were exposed to four light treatments and two fertility levels and were harvested 30 days after seeding and analyzed for nutritionally important shoot pigments. Kale under the fluorescent/incandescent light treatment had a significantly higher shoot fresh and dry mass. The shoot tissue concentrations of most pigment were significantly higher under blue/red LED light treatments. The higher fertility level resulted in higher concentrations for most pigments. Interestingly, the pool of xanthophyll cycle pigments and de-epoxidized xanthophylls was higher under all LED treatments. The results obtained in the present study support previous data demonstrating the stimulation of nutritionally important shoot tissue pigment concentrations following exposure to sole source blue/red LEDs compared to traditional lighting. Xanthophyll cycle flux was impacted by LEDs and this may support the role of zeaxanthin in blue light perception in leafy specialty crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Retail lighting and packaging influence consumer acceptance of fluid milk.

    PubMed

    Potts, H L; Amin, K N; Duncan, S E

    2017-01-01

    Little is known about the effect of retail light-emitting diode (LED) exposure on consumer acceptance of milk. The study objective was to determine effects of fluorescent and LED lighting under retail storage conditions on consumer acceptance of milk. Consumer acceptance of milk stored under retail conditions was determined through sensory evaluation (2 studies; n=150+ each) and analytical measures (dissolved oxygen, secondary oxidation products, riboflavin retention). Study 1 evaluated milk stored in high-density polyethylene (HDPE) packages for 4h under LED light (960 lx). Commercially available HDPE package treatments included translucent HDPE (most commonly used), white HDPE [low concentration (1.3%) TiO 2 ], and yellow HDPE; in addition, HDPE with a higher TiO 2 concentration (high white; 4.9% TiO 2 ) and a foil-wrapped translucent HDPE (control) were tested. Translucent and control packages also were tested under fluorescent light. Study 2 evaluated polyethylene terephthalate (PET) packages for 4h under fluorescent and LED light (1,460 lx). The PET packaging included 2 treatments (medium, 4.0% TiO 2 ; high, 6.6% TiO 2 ) as well as translucent HDPE (exposed to fluorescent), clear PET (fluorescent and LED), and light-protected control. Overall mean acceptability of milk ranged from "like slightly" to "like moderately" with significantly lower acceptability for milk exposed to fluorescent light. Milk in HDPE and PET packages had comparable overall acceptability scores when exposed to LED light. Only the fluorescent light condition (both PET and HDPE) diminished overall acceptability. Fluorescent light exposure negatively influenced flavor with significant penalty (2.0-2.5 integers) to overall acceptability of milk in translucent HDPE and clear PET. The LED also diminished aftertaste of milk packaged in translucent HDPE. Changes in dissolved oxygen content, as an indication of oxidation, supported the observed differences in consumer acceptance of milk stored under fluorescent and LED light. Consumers like the flavor of fresh milk, which can be protected by selecting appropriate packaging that blocks detrimental light wavelengths. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. LEDs/ALAN-Working To Be Good Neighbors

    NASA Astrophysics Data System (ADS)

    Adams, Robert

    2015-08-01

    ALAN (Artificial Light At Night) and LEDs have recently become major discussion topics in the areas of astronomy, light pollution, endangered species and human health to mention but a few. In years past, MH, LPS and HPS dominated night lighting with LPS and its associated narrow spectrum as the preferred source around observatories and shorelines. LEDs offer the ability to modify the spectrum, realize substantial energy savings and other associated benefits while meeting the requirements of the astronomy community.The primary concern of the different groups relates to blue light content of the LED. For astronomers, the molecular (Raleigh) scattering related to the blue light interferes with certain portions of the spectrum used for deep space studies. The ecologists studying various endangered species find blue and green light can be related to declining leatherback turtle population in certain areas of the world. Other animals ranging from bats to moths and other insects are now being studied to determine the effect of the blue light spectrum on their behavior. The impact of blue light on the human circadian rhythm and vision, especially in the older population, is being extensively studied today.This presentation will discuss the spectral power distribution (SPD) of various light sources, the performance of new LED solutions and how the SPD of these new LED’s can be adapted to address some of the issues raised by various constituencies. A discussion describing why some of the metrics used to describe standard lighting are not adequate for specifying the new LED solutions with the modified spectra will be included.Today, lighting plans and implementation are all too often based on opinions and limited data. The ensuing problems and repercussions make it imperative to collect accurate and thorough information. Data collection is now ongoing using a variety of techniques analyzing the “before” and “after” lighting results from the C of HI LED streetlight conversion. The studies will focus on any quantifiable impact LEDs may have on such topics as light pollution, endangered animals, astronomy and, most importantly, the citizens of our local communities.

  20. Commerical Transition to LEDs: A Pathway to High-Value Products

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.

    2015-01-01

    The use of light-emitting diodes (LEDs) to support plant growth is a radical departure from use of gas-discharge lamps, which were developed in mid-19th and widely adopted by the industry during the 20th century. Initial investigation by the National Aeronautics and Space Administration (NASA) in the late 1980s on the use of LEDs to grow plant in space is resulting in an industry-wide transition from gas discharge to solid-state lighting systems. This global transformation is given urgency by national policies to reduce energy consumption and being facilitated by ready access to information on LEDs. The combination of research, government policy, and information technology has resulted in an exponential increase in research into the use and application of LED technology in horticulture. Commercial horticulture has identified the opportunities provided by LEDs to optimize light spectra to promote growth, regulate morphology, increase nutrient content, and reduce operating costs. LED-light technology is enabling the development of innovative lighting systems, and is being incorporated into large-scale plant factories for the production of edible, ornamental, and medicinal plants. An overview of prevalence of readily accessible information on LEDs and implications for future adoption in horticulture is discussed.

  1. LED Street Lighting Solutions: Flagstaff, Arizona as a Case Study

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2018-01-01

    Dark-sky protection in Flagstaff, Arizona extends back to 1958, with the first ordinance in the City banning advertising floodlights. The current ordinance, adopted in 1989, is comprehensive and has played a critical role in maintaining the quality of the night sky for astronomy, tourism, public enjoyment, and other purposes. Flagstaff, like many communities around the world, is now working on a transition from legacy bulb-based technology to LED for its outdoor lighting. The City, Lowell Observatory, the U. S. Naval Observatory, and the Flagstaff Dark Skies Coalition have been working intensively for two years to identify an LED-based street lighting solution that will preserve the City's dark skies while meeting municipal needs. We will soon be installing test fixtures for an innovative solution incorporating narrow-band amber LED and modest amounts of low-CCT white LED. In this talk, I will review the types of LEDs available for outdoor lighting and discuss the plans for Flagstaff's street lighting in the LED era, which we hope will be a model for communities worldwide.

  2. Visual ergonomic evaluations on four different designs of LED traffic signs

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Huang, Ting-Yuan; Lee, Tsung-Xian; Sun, Ching-Cherng

    2017-08-01

    To investigate the legibility and visual comfort of LED traffic signs, an ergonomic experiment is performed on four custom-designed LED traffic signs, including three self-luminous ones as LED lightbox, LED backlight and regional LED backlight, and one non-self-luminous sign with external LED lighting. The four signs are hanged side-by-side and evaluated by observers through questionnaires. The signage dimension is one-sixth of the real freeway traffic signs, and the observation distance is 25 m. The luminance of three self-luminous signs is 216 cd/m2. The illuminance of external LED lighting is 400 lux on the traffic sign. The ambient illuminance is 2.8 and 6.0 lux in two rounds. The results show that self-luminous traffic signs provide superior legibility, visual comfort and user preference than the non-self-luminous one. Among the three self-luminous signs, regional LED backlight is most susceptible to the ambient illumination. LED lightbox has significantly better preference score than LED backlight under darker ambient lighting. Only LED lightbox has significantly better visual comfort than external LED lighting in the brighter environment. Based on the four LED traffic signs evaluated in this study, we suggest LED lightbox as the prior choice. Further investigations on the effect of ambient illumination and other designs of self-luminous traffic signs are in progress.

  3. Darwin and barnacles.

    PubMed

    Deutsch, Jean

    2010-02-01

    In this essay, I discuss the origin of Charles Darwin's interest in cirripedes (barnacles). Indeed, he worked intensively on cirripedes during the years in which he was developing the theory that eventually led to the publication of The Origin of Species. In the light of our present knowledge, I present Darwin's achievements in the morphology, systematics and biology of these small marine invertebrates, and also his mistakes. I suggest that the word that sheds the most light here is homology, and that his mistakes were due to following Richard Owen's method of determining homologies by reference to an ideal archetype. I discuss the ways in which his studies on cirripedes influenced the writing of The Origin. 2009 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Head-mounted LED for optogenetic experiments of freely-behaving animal

    NASA Astrophysics Data System (ADS)

    Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.

    2016-03-01

    Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.

  5. Shear bond strength of a bracket-bonding system cured with a light-emitting diode or halogen-based light-curing unit at various polymerization times

    PubMed Central

    Gupta, Sanjay Prasad; Shrestha, Basanta Kumar

    2018-01-01

    Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633

  6. Effects of monochromatic light stimuli during embryogenesis on some performance traits, behavior, and fear responses in Japanese quails.

    PubMed

    Sabuncuoglu, Kübra Melis; Korkmaz, Firdevs; Gürcan, Eser Kemal; Narinç, Dogan; Saml X, Hasan Ersin

    2018-04-14

    Lighting is crucial in poultry rearing and the subjects with light intensity, source, and color having been addressed in numerous studies. Numerous studies with monochromatic light from light-emitting diode (LED) bulbs have been reported. In the current study, fertile Japanese quail eggs were exposed to a dark environment (Control) or monochromatic green (560 nm) and blue (480 nm) lighting throughout incubation. There were no significant differences in hatch weight, hatchability, total embryonic mortality, hatch time, growth performance, and slaughter-carcass traits in the study (P > 0.05). Furthermore, the lowest mean in terms of early embryonic mortalities (12.37%) was determined in the group treated with green LED lighting (P < 0.05), whereas it was discovered that the lowest mean in terms of late embryonic mortalities (13.59%) was in the group treated with blue LED lighting (P < 0.05). During the test time, the green LED group showed higher averages in terms of the number of peeps and first defecation time as response to environmental stimuli (P < 0.05). The highest mean for jumping (7.6 times) was detected in the group treated with blue LED lighting (P < 0.05). In conclusion, it was revealed that the blue and green LED lighting applied to the Japanese quail eggs in incubation had no effects on incubation traits, growth, and slaughter-carcass traits but had positive effects on some behavioral traits.

  7. Kansas highway LED illumination manual : a guide for the use of LED lighting systems : [technical summary].

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  8. Study on method to simulate light propagation on tissue with characteristics of radial-beam LED based on Monte-Carlo method.

    PubMed

    Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G

    2013-01-01

    In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.

  9. Dr. Harry Whelan With the Light Emitting Diode Probe

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  10. VLC-based indoor location awareness using LED light and image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Ju; Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    Recently, indoor LED lighting can be considered for constructing green infra with energy saving and additionally providing LED-IT convergence services such as visible light communication (VLC) based location awareness and navigation services. For example, in case of large complex shopping mall, location awareness to navigate the destination is very important issue. However, the conventional navigation using GPS is not working indoors. Alternative location service based on WLAN has a problem that the position accuracy is low. For example, it is difficult to estimate the height exactly. If the position error of the height is greater than the height between floors, it may cause big problem. Therefore, conventional navigation is inappropriate for indoor navigation. Alternative possible solution for indoor navigation is VLC based location awareness scheme. Because indoor LED infra will be definitely equipped for providing lighting functionality, indoor LED lighting has a possibility to provide relatively high accuracy of position estimation combined with VLC technology. In this paper, we provide a new VLC based positioning system using visible LED lights and image sensors. Our system uses location of image sensor lens and location of reception plane. By using more than two image sensor, we can determine transmitter position less than 1m position error. Through simulation, we verify the validity of the proposed VLC based new positioning system using visible LED light and image sensors.

  11. Surgical operation using lighting goggle composed of white LED arrays

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-12-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. To improve the color rendering in red colors, some adjustments should be given in the fluorescents layers. Design of goggle is also very important for cutting into the real practical market of white LEDs.

  12. A Review on Experimental Measurements for Understanding Efficiency Droop in InGaN-Based Light-Emitting Diodes

    PubMed Central

    Jin, Jie; Mi, Chenziyi; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2017-01-01

    Efficiency droop in GaN-based light emitting diodes (LEDs) under high injection current density perplexes the development of high-power solid-state lighting. Although the relevant study has lasted for about 10 years, its mechanism is still not thoroughly clear, and consequently its solution is also unsatisfactory up to now. Some emerging applications, e.g., high-speed visible light communication, requiring LED working under extremely high current density, makes the influence of efficiency droop become more serious. This paper reviews the experimental measurements on LED to explain the origins of droop in recent years, especially some new results reported after 2013. Particularly, the carrier lifetime of LED is analyzed intensively and its effects on LED droop behaviors are uncovered. Finally, possible solutions to overcome LED droop are discussed. PMID:29072611

  13. Light-emitting diode technology status and directions: Opportunities for horticultural lighting

    DOE PAGES

    Tsao, Jeffrey Y.; Pattison, P. Morgan; Krames, Michael R.

    2016-01-01

    Here, light-emitting diode (LED) technology has advanced rapidly over the last decade, primarily driven by display and general illumination applications ("solid-state lighting (SSL) for humans"). These advancements have made LED lighting technically and economically advantageous not only for these applications, but also, as an indirect benefit, for adjacent applications such as horticultural lighting ("SSL for plants"). Moreover, LED technology has much room for continued improvement. In the near-term, these improvements will continue to be driven by SSL for humans (with indirect benefit to SSL for plants), the most important of which can be anticipated.

  14. Spectral quality affects disease development of three pathogens on hydroponically grown plants.

    PubMed

    Schuerger, A C; Brown, C S

    1997-02-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the effects of spectral quality on disease development when other wavelengths were included in the light source (MH-, 660/BF-, and 660/735-grown plants) were equivocal. These results demonstrate that spectral quality may be useful as a component of an integrated pest management program for future space-based controlled ecological life support systems.

  15. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the effects of spectral quality on disease development when other wavelengths were included in the light source (MH-, 660/BF-, and 660/735-grown plants) were equivocal. These results demonstrate that spectral quality may be useful as a component of an integrated pest management program for future space-based controlled ecological life support systems.

  16. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  17. Thermal Analysis of LED Phosphor Layer

    NASA Astrophysics Data System (ADS)

    Perera, Ukwatte Lokuliyanage Indika Upendra

    Solid-state lighting technology has progressed to a level where light-emitting diode (LED) products are either on par or better than their traditional lighting technology counterparts with respect to efficacy and lifetime. At present, the most common method to create "white" light from LEDs for illumination applications is by using the LED primary radiation and wavelength-converting materials. In this method, the re-emission from the wavelength-converting materials excited by the LED primary radiation is combined with the LED primary radiation to create the "white" light. During this conversion process, heat is generated as a result of conversion inefficiencies and other loss mechanisms in the LED and the wavelength-converting materials. This generated heat, if not properly dissipated, increases the operating temperature, thereby increasing the light output degradation of the system over both the short and long term. The heat generation of the LED and thermal management of the LED have been studied extensively. Methods to effectively dissipate heat from the LEDs and maintain lower LED operating temperature are well understood. However, investigation of factors driving heat generation, the resulting temperature distribution in the phosphor layer, and the influence of the phosphor layer temperature on LED performance and reliability have not received the same focus. The goal of this dissertation was to understand the main factors driving heat and light generation and the transport of light and heat in the wavelength-converting layer of an LED system. Another goal was to understand the interaction between heat and light in the system and to develop and analyze a solution to reduce the wavelength-converting layer operating temperature, thereby improving light output and reliability. Even though past studies have explored generation and transfer separately for light and heat, to the best of the author's knowledge, this is the first study that has analyzed both factors simultaneously to optimize the performance of a phosphor-converted LED system, thus contributing new knowledge to the field. In this dissertation, a theoretical model was developed that modeled both light propagation and heat transfer in the wavelength-converting layer for identifying the factors influencing heat generation. This theoretical model included temperature-dependent phosphor efficiency and light absorption in the phosphor layer geometry. Experimental studies were used to validate the developed model. The model indicated good agreement with the experimental results. The developed theoretical model was then used to model experimental studies. These experiment results were compared with the model predicted results for total radiant power output of LED systems and phosphor layer surface temperature. These comparisons illustrated the effectiveness of a dedicated heat dissipation method in reducing the operating temperature of the wavelength-converting layer, and the contribution of different heat dissipation mechanisms were quantified using the developed numerical model. In addition to these short-term studies, an experiment was conducted to validate the effectiveness of the dedicated wavelength-converting heat sink design to improve system lifetime by reducing phosphor layer operating temperature. The proposed heat sink design decreased the operating temperature of the phosphor layer by ~10°C, improving lifetime by twofold. Finally, this dissertation investigated the potential of the developed theoretical model being used as a tool for prioritizing research tasks and as a design tool during the material selection and system configuration phases.

  18. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu

    2013-05-17

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Jennifer; Mills, Evan

    The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than halfmore » the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or kerosene lighting, reduced crowding which in turn created a less stressful environment for the chickens. The far higher levels of illumination also created a better environment for the workers, while eliminating the time required for obtaining fuel and maintaining kerosene lanterns. An additional advantage of the LED system relative to the solar fluorescent system was that the former does not require a skilled technician to carry out the installation. The portable LED system lighting layout is also more easily adjusted than that of the hardwired fluorescent systems. Furthermore, switching to the LED system avoids over one metric ton of carbon dioxide emissions per house on an annual basis compared to kerosene. There is high potential for replication of this particular LED lighting strategy in the developing world. In order to estimate the scale of kerosene use and the potential for savings, more information is needed on the numbers of chickens produced off-grid, as well as lighting uses for other categories of poultry production (egg layers, indigenous broilers ). Our discovery that weight gain did not slow in the solar-fluorescent house after it experienced extended lighting outages beginning on day 14 of the 35-day study suggests that conventional farming practices in Kenyan broiler operations may call for more hours of lighting than is needed to achieve least-cost production.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Tao; Letoquin, Ronan; Keller, Bernd

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less

  1. Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints.

    PubMed

    Wu, Haining; Dong, Jianfei; Qi, Gaojin; Zhang, Guoqi

    2015-07-01

    Enhancing the colorfulness of illuminated objects is a promising application of LED lighting for commercial, exhibiting, and scientific purposes. This paper proposes a method to enhance the color of illuminated objects for a given polychromatic lamp. Meanwhile, the light color is restricted to white. We further relax the white light constraints by introducing soft margins. Based on the spectral and electrical characteristics of LEDs and object surface properties, we determine the optimal mixing of the LED light spectrum by solving a numerical optimization problem, which is a quadratic fractional programming problem by formulation. Simulation studies show that the trade-off between the white light constraint and the level of the color enhancement can be adjusted by tuning an upper limit value of the soft margin. Furthermore, visual evaluation experiments are performed to evaluate human perception of the color enhancement. The experiments have verified the effectiveness of the proposed method.

  2. Light-extraction efficiency and forward voltage in GaN-based light-emitting diodes with different patterns of V-shaped pits

    NASA Astrophysics Data System (ADS)

    Wang, Min-Shuai; Huang, Xiao-Jing

    2013-08-01

    We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.

  3. LED Outdoor Area Lighting Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  4. LED roadway luminaires evaluation.

    DOT National Transportation Integrated Search

    2012-02-01

    This research explores whether LED roadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting : enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluati...

  5. Emergency Lighting Technology Evolves To Save Lives.

    ERIC Educational Resources Information Center

    Gregory, Dennis

    2001-01-01

    Explores the benefits of including high-brightness Light Emitting Diodes (LEDs) for emergency systems and its use in residence halls. LED emergency lighting options and their qualifications are also highlighted.(GR)

  6. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  7. Advantages of III-nitride laser diodes in solid-state lighting: Advantages of III-nitride laser diodes in solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jonathan J.; Tsao, Jeffrey Y.

    2015-01-14

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less

  8. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements

    PubMed Central

    Lanoue, Jason; Leonardos, Evangelos D.; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production. PMID:28676816

  9. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements.

    PubMed

    Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  10. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    PubMed

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  11. CMOS-compatible plenoptic detector for LED lighting applications.

    PubMed

    Neumann, Alexander; Ghasemi, Javad; Nezhadbadeh, Shima; Nie, Xiangyu; Zarkesh-Ha, Payman; Brueck, S R J

    2015-09-07

    LED lighting systems with large color gamuts, with multiple LEDs spanning the visible spectrum, offer the potential of increased lighting efficiency, improved human health and productivity, and visible light communications addressing the explosive growth in wireless communications. The control of this "smart lighting system" requires a silicon-integrated-circuit-compatible, visible, plenoptic (angle and wavelength) detector. A detector element, based on an offset-grating-coupled dielectric waveguide structure and a silicon photodetector, is demonstrated with an angular resolution of less than 1° and a wavelength resolution of less than 5 nm.

  12. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    PubMed

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  13. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  14. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  15. A comparative study of fluorescent and LED lighting in industrial facilities

    NASA Astrophysics Data System (ADS)

    Perdahci PhD, C.; Akin BSc, H. C.; Cekic Msc, O.

    2018-05-01

    Industrial facilities have always been in search for reducing outgoings and minimizing energy consumption. Rapid developments in lighting technology require more energy efficient solutions not only for industries but also for many sectors and for households. Addition of solid-state technology has brought LED lamps into play and with LED lamp usage, efficacy level has reached its current values. Lighting systems which uses fluorescent and LED lamps have become the prior choice for many industrial facilities. This paper presents a comparative study about fluorescent and LED based indoor lighting systems for a warehouse building in an industrial facility in terms of lighting distribution values, colour rendering, power consumption, energy efficiency and visual comfort. Both scenarios have been modelled and simulated by using Relux and photometric data for the luminaires have been gathered by conducting tests and measurements in an accredited laboratory.

  16. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth.

    PubMed

    Huth, Jesse C; Archer, Gregory S

    2015-12-01

    Providing light during incubation has been shown to affect hatchability, but the use of LED lights has not been evaluated. This experiment evaluated the effects of LED lighting during embryogenesis on White Leghorn and commercial broiler eggs. To determine this, two experiments were conducted, the first using White Leghorn eggs (N=3456) and the second using commercial broiler eggs (N=3456) where eggs were incubated 12 h of light and 12 h of darkness (LED) or complete darkness (DARK); the light level was 250 lux. Hatchability, embryo mortality, and chick quality were measured in both studies, and a subset of one of the broiler egg trials were grown out to investigate fear and stress parameters. There was no effect (P>0.05) on hatchability of layer eggs; however, there was a difference (P=0.02) observed in chick quality, with the LED group having more chicks (75.34%) with no defects than the DARK group (56.53%). Broiler eggs exposed to LED light showed an increase in hatchability (90.12%, P=0.03) and an increase in no-defect chick percentage (86.12%, P=0.04) at hatch compared to the DARK chicks (85.76% and 69.43%, respectively). Differences were observed between treatments during the 14 d grow-out. The LED birds had lower (P<0.05) physical asymmetry (0.90±0.05 mm) and heterophil/lymphocyte ratios (0.279±0.021), indicating that they were less susceptible to stress than the DARK birds (1.16±0.07 mm and 0.347±0.021, respectively). There was no difference (P>0.05) observed between treatments in growth, FCR, or fear measures at 14 d. These results indicate that providing LED light during incubation can improve chick quality in both white layer and broiler eggs; however, it only appears to improve hatchability in broilers, which could be related to shell pigmentation. It was also demonstrated that providing LED light during incubation can reduce the stress susceptibility of broilers post-hatch. Utilizing light during incubation may be useful tool for the poultry industry. © 2015 Poultry Science Association Inc.

  17. 240 nm UV LEDs for LISA test mass charge control

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  18. NASA light emitting diode medical applications from deep space to deep sea

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James

    2001-02-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .

  19. Surface photonic crystal structures for LED emission modification

    NASA Astrophysics Data System (ADS)

    Uherek, Frantisek; Škriniarová, Jaroslava; Kuzma, Anton; Šušlik, Łuboš; Lettrichova, Ivana; Wang, Dong; Schaaf, Peter

    2017-12-01

    Application of photonic crystal structures (PhC) can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode (LED) surface. We used interference and near-field scanning optical microscope lithography for patterning of the surface of GaAs/AlGaAs based LEDs emitted at 840 nm. Also new approach with patterned polydimethylsiloxane (PDMS) membrane applied directly on the surface of red emitting LED was investigated. The overall emission properties of prepared LED with patterned structure show enhanced light extraction efficiency, what was documented from near- and far-field measurements.

  20. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  1. Beacon system based on light-emitting diode sources for runways lighting

    NASA Astrophysics Data System (ADS)

    Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio

    2014-06-01

    New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.

  2. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  3. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  4. Evaluation of an LED Retrofit Project at Princeton University's Carl Icahn Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert; Murphy, Arthur; Perrin, Tess

    At Princeton University’s Carl Icahn Laboratory, DOE’s Commercial Buildings Integration Program documented the implementation of LED retrofit products for recessed troffers, linear cove lighting, and downlights – as part of Princeton’s first building-wide interior LED project. The conversion to LED enables more extensive use of lighting controls to tailor the lighting to the task and limit the operating hours based on occupancy, and the estimated energy savings including controls is 62% compared to the incumbent system.

  5. Application of high-brightness LEDs in aircraft position lights

    NASA Astrophysics Data System (ADS)

    Machi, Nicolo; Mangum, Scott; Singer, Jeffrey M.

    2004-10-01

    Solid state lighting devices have made their way into a number of niche markets and continue to make inroads into other markets as their price / performance ratios improve. One of these markets is aviation lighting. Although this paper will focus on the use of LEDs for aircraft position lights, much of the discussion is applicable to other installations on the interior and exterior of the aircraft. The color, light distribution and intensity levels for a position light are all closely regulated through Code of Federal Regulation (CFR; formerly Federal Aviation Regulation (FAR)) documents. These lighting requirements, along with harsh thermal and environmental requirements, drive the design. In this paper, we will look at these requirements and discuss what is required in order to use LEDs for this type of application. We will explore the optical, thermal and electrical issues associated with the use of LEDs for position lights and examine the specific case study of the Astreon forward position lights. Finally, we will discuss some of the challenges that we see with solid state lighting in current and future aircraft applications.

  6. Fuselage mounted anti-collision lights utilizing high power LEDs

    NASA Astrophysics Data System (ADS)

    Lundberg, John; Machi, Nicolo; Mangum, Scott; Singer, Jeffrey

    2005-09-01

    As LEDs continue to improve in efficacy and total light output, they are increasingly finding their way in to new applications in the aviation industry as well as adjacent markets. One function that is particularly challenging and may reap substantial benefits from this new technology is the fuselage mounted anti-collision light. Anti-collision lights provide conspicuity for the aircraft by periodically emitting bright flashes of light. The color, light distribution and intensity levels for these lights are all closely regulated through Federal Aviation Regulation (FAR) documents. These lighting requirements, along with thermal, environmental and aerodynamic requirements, drive the overall design. In this paper, we will discuss the existing technologies used in anti-collision lights and the advantages and challenges associated with an LED solution. Particular attention will be given to the optical, thermal, electrical and aerodynamic aspects associated with an LED approach. A specific case study will be presented along with some of the challenges that have arisen during the design process. These challenges include the addition of an integrated covert anti-collision lighting.

  7. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  8. Modular design of the LED vehicle projector headlamp system.

    PubMed

    Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching

    2013-07-20

    A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the advances of the semiconductor technology, the LED has become the fourth generation lighting source in the auto industry. In this study, we will propose a LED vehicle projector headlamp system. This headlamp system contains several LED headlamp modules, and every module of it includes four components: focused LEDs, asymmetric metal-based plates, freeform surfaces, and condenser lenses. By optimizing the number of LED headlamp modules, the proposed LED vehicle projector headlamp system has only five LED headlamp modules. It not only provides the low-beam cutoff without a shield, but also meets the requirements of the ECE R112 regulation. Finally, a prototype of the LED vehicle projector headlamp system was assembled and fabricated to create the correct light pattern.

  9. Point to point multispectral light projection applied to cultural heritage

    NASA Astrophysics Data System (ADS)

    Vázquez, D.; Alvarez, A.; Canabal, H.; Garcia, A.; Mayorga, S.; Muro, C.; Galan, T.

    2017-09-01

    Use of new of light sources based on LED technology should allow the develop of systems that combine conservation and exhibition requirements and allow to make these art goods available to the next generations according to sustainability principles. The goal of this work is to develop light systems and sources with an optimized spectral distribution for each specific point of the art piece. This optimization process implies to maximize the color fidelity reproduction and the same time to minimize the photochemical damage. Perceived color under these sources will be similar (metameric) to technical requirements given by the restoration team uncharged of the conservation and exhibition of the goods of art. Depending of the fragility of the exposed art objects (i.e. spectral responsivity of the material) the irradiance must be kept under a critical level. Therefore, it is necessary to develop a mathematical model that simulates with enough accuracy both the visual effect of the illumination and the photochemical impact of the radiation. Spectral reflectance of a reference painting The mathematical model is based on a merit function that optimized the individual intensity of the LED-light sources taking into account the damage function of the material and color space coordinates. Moreover the algorithm used weights for damage and color fidelity in order to adapt the model to a specific museal application. In this work we show a sample of this technology applied to a picture of Sorolla (1863-1923) an important Spanish painter title "woman walking at the beach".

  10. Effect of LED photobiomodulation on fluorescent light induced changes in cellular ATPases and Cytochrome c oxidase activity in Wistar rat.

    PubMed

    A, Ahamed Basha; C, Mathangi D; R, Shyamala

    2016-12-01

    Fluorescent light exposure at night alters cellular enzyme activities resulting in health defects. Studies have demonstrated that light emitting diode photobiomodulation enhances cellular enzyme activities. The objectives of this study are to evaluate the effects of fluorescent light induced changes in cellular enzymes and to assess the protective role of pre exposure to 670 nm LED in rat model. Male Wistar albino rats were divided into 10 groups of 6 animals each based on duration of exposure (1, 15, and 30 days) and exposure regimen (cage control, exposure to fluorescent light [1800 lx], LED preexposure followed by fluorescent light exposure and only LED exposure). Na + -K + ATPase, Ca 2+ ATPase, and cytochrome c oxidase of the brain, heart, kidney, liver, and skeletal muscle were assayed. Animals of the fluorescent light exposure group showed a significant reduction in Na + -K + ATPase and Ca 2+ ATPase activities in 1 and 15 days and their increase in animals of 30-day group in most of the regions studied. Cytochrome c oxidase showed increase in their level at all the time points assessed in most of the tissues. LED light preexposure showed a significant enhancement in the degree of increase in the enzyme activities in almost all the tissues and at all the time points assessed. This study demonstrates the protective effect of 670 nm LED pre exposure on cellular enzymes against fluorescent light induced change.

  11. Longitudinal useful life analysis and replacement strategies for LED traffic indicators.

    DOT National Transportation Integrated Search

    2014-04-01

    The application of Light Emitting Diode (LED) lighting systems has experienced significant gro : wth in the transportation : sector over the past : ten : years. LED indication lifespans have significantly greater durations than previous technologies,...

  12. Longitudinal useful life analysis and replacement strategies for LED traffic indicators.

    DOT National Transportation Integrated Search

    2014-04-01

    The application of Light Emitting Diode (LED) lighting systems has experienced significant growth in : the transportation sector over the past 10 years. LED indication lifespans have significantly greater durations than : previous technologies, howev...

  13. Experimental effective intensity of steady and flashing light emitting diodes for aircraft anti-collision lighting.

    DOT National Transportation Integrated Search

    2013-08-01

    Research was conducted to determine the effective intensity of flashing lights that incorporate light-emitting diodes (LEDs). LEDs require less power and have the ability to flash without the addition of moving parts. Compared with incandescent bulbs...

  14. [Hygienic aspects of the use of LED light sources for general illumination in schools].

    PubMed

    Kuchma, V R; Sukhareva, L M; Teksheva, L M; Stepanova, M I; Sazaniuk, Z I

    2013-01-01

    For the time present becoming more common semiconductor sources of artificial lighting has become a more and more frequent practice. With the aim to study the impact of LEDs on the health of schoolchildren studies in experimental conditions (specially equipped classrooms) were performed. The comparative analysis of the state of vision, mental health and emotional state of pupils in primary, middle and high schools under fluorescent and LED lighting, meeting to the regulatory requirements, has revealed that the physiological cost of schooling in the use of LED units in classrooms is lower than in a traditional, fluorescent lighting.

  15. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOEpatents

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  16. Physiological and genetic characterization of plant growth and gravitropism in LED light sources

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald F.

    1994-01-01

    Among the many problems of growing plants in completely controlled environments, such as those anticipated for the space station and the CELSS program, is the need to provide light that is both adequate for photosynthesis and of proper quality for normal growth and development. NASA scientists and engineers have recently become interested in the possibility of utilizing densely packed, solid state, light emitting diodes (LED's) as a source for this light. Unlike more conventional incandescent or electrical discharge lamps, these sources are highly monochromatic and lack energy in spectral regions thought to be important for normal plant development. In addition, a recent observation by NASA scientist has suggested that infra-red LED's, that are routinely used as photographic safelights for plants grown in darkness, may interact with the ability of plants to detect gravity. In order to establish how plants respond to light from these LED light sources we carried out a series of experiments with known pigment mutants of the model mustard plant, Arabidopsis thaliana, growing in either a gravity field or on a clinostat to simulate a micro-gravity environment. Results indicate that only red light from the 665 nm LED's disrupts the ability of normal wildtype seedlings to detect a gravity stimulus. There was no consistent effect found for the far-red (735 nm) LED's or either of the infrared (880 nm or 935 nm) LED sources but both showed some effect in one or more of the genotypes tested. Of these five members of the phytochrome multigene family in Arabidopsis, only the phytochrome B pigment mutant (hy3) lacked the ability to detect gravity under all conditions. There was no effect of either micro-gravity (clinostat) or the infra-red LED's on the light induced inhibition of hypocotyl elongation. Measurements of the pigment phytochrome in oats also showed no photoconversion by 15 min irradiations with the infra-red LED's. We conclude that phytochrome B is required for the perception of gravity and that only red light is able to disrupt this perception. The infra-red LED's also do not appear to interact with gravity perception in Arabidopsis, but caution should be exercised if infra-red LED's are to be used as photographic safelights for these types of experiments.

  17. Blue light hazard optimization for white light-emitting diode sources with high luminous efficacy of radiation and high color rendering index

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Guo, Weihong; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Yu, Zhihua; Wang, Hong; Jin, Xing

    2017-09-01

    Blue light hazard of white light-emitting diodes (LED) is a hidden risk for human's photobiological safety. Recent spectral optimization methods focus on maximizing luminous efficacy and improving color performances of LEDs, but few of them take blue hazard into account. Therefore, for healthy lighting, it's urgent to propose a spectral optimization method for white LED source to exhibit low blue light hazard, high luminous efficacy of radiation (LER) and high color performances. In this study, a genetic algorithm with penalty functions was proposed for realizing white spectra with low blue hazard, maximal LER and high color rendering index (CRI) values. By simulations, white spectra from LEDs with low blue hazard, high LER (≥297 lm/W) and high CRI (≥90) were achieved at different correlated color temperatures (CCTs) from 2013 K to 7845 K. Thus, the spectral optimization method can be used for guiding the fabrication of LED sources in line with photobiological safety. It is also found that the maximum permissible exposure duration of the optimized spectra increases by 14.9% than that of bichromatic phosphor-converted LEDs with equal CCT.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, wemore » found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.« less

  19. The Endockscope Using Next Generation Smartphones: "A Global Opportunity".

    PubMed

    Tse, Christina; Patel, Roshan M; Yoon, Renai; Okhunov, Zhamshid; Landman, Jaime; Clayman, Ralph V

    2018-06-02

    The Endockscope combines a smartphone, a battery powered flashlight and a fiberoptic cystoscope allowing for mobile videocystoscopy. We compared conventional videocystoscopy to the Endockscope paired with next generation smartphones in an ex-vivo porcine bladder model to evaluate its image quality. The Endockscope consists of a three-dimensional (3D) printed attachment that connects a smartphone to a flexible fiberoptic cystoscope plus a 1000 lumen light-emitting diode (LED) cordless light source. Video recordings of porcine cystoscopy with a fiberoptic flexible cystoscope (Storz) were captured for each mobile device (iPhone 6, iPhone 6S, iPhone 7, Samsung S8, and Google Pixel) and for the high-definition H3-Z versatile camera (HD) set-up with both the LED light source and the xenon light (XL) source. Eleven faculty urologists, blinded to the modality used, evaluated each video for image quality/resolution, brightness, color quality, sharpness, overall quality, and acceptability for diagnostic use. When comparing the Endockscope coupled to an Galaxy S8, iPhone 7, and iPhone 6S with the LED portable light source to the HD camera with XL, there were no statistically significant differences in any metric. 82% and 55% of evaluators considered the iPhone 7 + LED light source and iPhone 6S + LED light, respectively, appropriate for diagnostic purposes as compared to 100% who considered the HD camera with XL appropriate. The iPhone 6 and Google Pixel coupled with the LED source were both inferior to the HD camera with XL in all metrics. The Endockscope system with a LED light source when coupled with either an iPhone 7 or Samsung S8 (total cost: $750) is comparable to conventional videocystoscopy with a standard camera and XL light source (total cost: $45,000).

  20. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

    PubMed

    Rahman, Shadab A; St Hilaire, Melissa A; Lockley, Steven W

    2017-08-01

    We compared the effects of bedroom-intensity light from a standard fluorescent and a blue- (i.e., short-wavelength) depleted LED source on melatonin suppression, alertness, and sleep. Sixteen healthy participants (8 females) completed a 4-day inpatient study. Participants were exposed to blue-depleted circadian-sensitive (C-LED) light and a standard fluorescent light (FL, 4100K) of equal illuminance (50lx) for 8h prior to a fixed bedtime on two separate days in a within-subject, randomized, cross-over design. Each light exposure day was preceded by a dim light (<3lx) control at the same time 24h earlier. Compared to the FL condition, control-adjusted melatonin suppression was significantly reduced. Although subjective sleepiness was not different between the two light conditions, auditory reaction times were significantly slower under C-LED conditions compared to FL 30min prior to bedtime. EEG-based correlates of alertness corroborated the reduced alertness under C-LED conditions as shown by significantly increased EEG spectral power in the delta-theta (0.5-8.0Hz) bands under C-LED as compared to FL exposure. There was no significant difference in total sleep time (TST), sleep efficiency (SE%), and slow-wave activity (SWA) between the two conditions. Unlike melatonin suppression and alertness, a significant order effect was observed on all three sleep variables, however. Individuals who received C-LED first and then FL had increased TST, SE% and SWA averaged across both nights compared to individuals who received FL first and then C-LED. These data show that the spectral characteristics of light can be fine-tuned to attenuate non-visual responses to light in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  2. Multiple LEDs luminous system in capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mang, Ou-Yang; Huang, Shih-Wei; Lee, Hsin-Hung; Chen, Yung-Lin; Huang, Ko-Chih; Kuo, Yi-Ting

    2007-02-01

    Developing the luminous system in a capsule endoscope, it is difficult to obtain an uniform illumination[1] on the observed object because of several reasons: the light pattern of LED is sensitively depend on the driving current, location and projective angles; the optical path of LED light source is not parallel to the optical axis of the nearby imaging lenses; the strong reflection from the inner surface of the dome may saturate the CMOS sensors; the object plane of the observed intestine is not flat. Those reasons induce the over-blooming and deep-dark contrast in a picture and distort the original image strongly. The purpose of the article is to construct a photometric model to analyze the LED projection light pattern, and, furthermore, design a novel multiple LEDs luminous system for obtaining an uniform-brightness image. Several key parameters resulting as illumination uniformity has been taken under the model consideration and proven by experimental results. Those parameters include LED light pattern accuracy, choosing LED position relative to the imaging optical axis, LED numbers, arrangement, and the inner curvature of the dome. The novel structure improves the uniformity from 41% to 71% and reduces the light energy loss under 2%. The progress will help medical professionals to diagnose diseases and give treatment precisely based on the vivid image.

  3. High-Fluence Light-Emitting Diode-Generated Red Light Modulates the Transforming Growth Factor-Beta Pathway in Human Skin Fibroblasts.

    PubMed

    Mamalis, Andrew; Jagdeo, Jared

    2018-05-24

    Skin fibrosis is a significant medical problem with limited available treatment modalities. The key cellular characteristics include increased fibroblast proliferation, collagen production, and transforming growth factor-beta (TGF-B)/SMAD pathway signaling. The authors have previously shown that high-fluence light-emitting diode red light (HF-LED-RL) decreases cellular proliferation and collagen production. Herein, the authors investigate the ability of HF-LED-RL to modulate the TGF-B/SMAD pathway. Normal human dermal fibroblasts were cultured and irradiated with a commercially available hand-held LED array. After irradiation, cell lysates were collected and levels of pSMAD2, TGF-Beta 1, and TGF-Beta I receptor were measured using Western blot. High-fluence light-emitting diode red light decreased TGF-Beta 1 ligand (TGF-B1) levels after irradiation. 320 J/cm HF-LED-RL resulted in 59% TGF-B1 and 640 J/cm HF-LED-RL resulted in 54% TGF-B1, relative to controls. 640 J/cm HF-LED-RL resulted in 62% pSMAD2 0 hours after irradiation, 65% pSMAD2 2 hours after irradiation, and 95% 4 hours after irradiation, compared with matched controls. High-fluence light-emitting diode red light resulted in no significant difference in transforming growth factor-beta receptor I levels compared with matched controls. Skin fibrosis is a significant medical problem with limited available treatment modalities. Light-emitting diode-generated red light is a safe, economic, and noninvasive modality that has a body of in vitro evidence supporting the reduction of key cellular characteristics associated with skin fibrosis.

  4. Innovations in LED lighting for reduced-ESM crop production in space

    NASA Astrophysics Data System (ADS)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission of lower leaves. One system modification has led to lightsicles of different lengths, allowing a wider array of intracanopy lighting configurations. Another development is an adaptive system in which each light engine can be operated independently, and photodiodes can detect reflectance patterns off of leaves from flashing green LEDs, thereby indicating positions of leaves within the foliar canopy relative to any given light engine on a lightsicle. When this advanced hardware is coupled to tailored software, the reflectance can be used to auto-detect changes in plant growth and adjust the lighting accordingly. These lighting systems have been tested with cowpea, pepper (Capsicum annuum L. cv. Triton) and Lettuce (Lactuca sativa L. cv. Waldmanns Green) with limited testing of other ALS candidate crop species. The versatility of these LED lighting systems will allow energy-efficient light delivery to a wide variety of crops with different growth habits, including planophile, erectophile, and rosette species. This research has been supported by NASA grants NAG5-12686 (NSCORT) and NNK05OA20C (SBIR Phase 1) and NNK06OM01C (SBIR Phase 2).

  5. LED luminaire longevity strategy models comparison

    NASA Astrophysics Data System (ADS)

    Lemieux, Hugo; Thibault, Simon; Martel, Alain A.

    2010-08-01

    As energy efficiency becomes more and more important, light-emitting diodes (LEDs) are a promising alternative to traditional lighting. Indeed, the energy efficiency of LEDs is still improving as their luminosity is modulated by current. Moreover, for applications such as exterior lamp posts, their small size, directionality, colors and high frequency response allow to combine them and provide design possibilities which are impossible with any other light source. However, as any lamp, LEDs have a lumen depreciation which is a function of both current and temperature. Thus, to take advantage of the full characteristics of LEDs, LED luminaire longevity strategies must be carefully studied and planned, especially since the IES and CIE guidelines state clearly that the luminaire must maintain the rated recommended light level until the end of the system's operating life. The recommended approach for LED luminaire specification is therefore to use the end-of-life light level when evaluating the luminaire. Different power supply strategies have been simulated to determine which one maximizes energy saving and lifetime. With these results, it appears that active control can save at least 25% in energy, but the best strategy cannot be determined because of uncertainties in luminosity degradation models.

  6. Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs)

    NASA Astrophysics Data System (ADS)

    Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook

    2017-06-01

    In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.

  7. LED and Semiconductor Photo-effects on Living Things

    NASA Astrophysics Data System (ADS)

    Fujiyasu, Hiroshi; Ishigaki, Takemitsu; Fujiyasu, Kentarou; Ujihara, Shirou; Watanabe, Naoharu; Sunayama, Shunji; Ikoma, Shuuji

    We have studied LED irradiation effects on plants and animals in the visible to UV region of light from GaN LEDs. The results are as follows. Blue light considers to be effective for pearl cultivation or for attraction of small fishes living in near the surface of sea such as Pompano or Sardine, white light radiation is effective for cultivation of botanical plankton for shells. Other experiments of UV light irradiation attracting effect on baby sea turtle and the germination UV effect of mushroom, green light weight enhance effect on baby pigs, light vernalization effect of vegitable and Ge far infrared therapic effect on human body are also given.

  8. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong

    2012-02-27

    The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

  9. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  10. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing conditions with red and blue LED lighting required 12 times less energy than with a traditional high-intensity discharge lighting system. This study paves the way for refinement of the smart lighting system and further, major reductions in ESM for space life-support systems and for ground-based controlled-environment agriculture. Project supported by NASA grant number NNX09AL99G.

  11. Safety assessment of near infrared light emitting diodes for diffuse optical measurements

    PubMed Central

    Bozkurt, Alper; Onaral, Banu

    2004-01-01

    Background Near infrared (NIR) light has been used widely to monitor important hemodynamic parameters in tissue non-invasively. Pulse oximetry, near infrared spectroscopy, and diffuse optical tomography are examples of such NIR light-based applications. These and other similar applications employ either lasers or light emitting diodes (LED) as the source of the NIR light. Although the hazards of laser sources have been addressed in regulations, the risk of LED sources in such applications is still unknown. Methods Temperature increase of the human skin caused by near infrared LED has been measured by means of in-vivo and in-vitro experiments. Effects of the conducted and radiated heat in the temperature increase have been analyzed separately. Results Elevations in skin temperature up to 10°C have been observed. The effect of radiated heat due to NIR absorption is low – less than 0.5°C – since emitted light power is comparable to the NIR part of sunlight. The conducted heat due to semiconductor junction of the LED can cause temperature increases up to 9°C. It has been shown that adjusting operational parameters by amplitude modulating or time multiplexing the LED decreases the temperature increase of the skin significantly. Conclusion In this study, we demonstrate that the major risk source of the LED in direct contact with skin is the conducted heat of the LED semiconductor junction, which may cause serious skin burns. Adjusting operational parameters by amplitude modulating or time multiplexing the LED can keep the LED within safe temperature ranges. PMID:15035670

  12. Long-term Testing Results for the 2008 Installation of LED Luminaires at the I-35 West Bridge in Minneapolis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, Bruce R.; Davis, Robert G.

    2014-09-30

    This document reports the long-term testing results from an extended GATEWAY project that was first reported in “Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, in Minneapolis, MN,” August 2009. That original report presented the results of lighting the newly reconstructed I 35W Bridge using LEDs in place of conventional high-pressure sodium (HPS) roadway luminaires, comparing energy use and illuminance levels with a simulated baseline condition. That installation was an early stage implementation of LED lighting and remains one of the oldest installations in continued operation today. This document provides an update of the LED system’smore » performance since its installation in September 2008.« less

  13. Evaluation of a LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode.

    PubMed

    Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Treviño-Palacios, Carlos; Herrera-González, José Alfredo

    2018-03-01

    Flatbed scanners are the most frequently used reading instrument for radiochromic film dosimetry because its low cost, high spatial resolution, among other advantages. These scanners use a fluorescent lamp and a CCD array as light source and detector, respectively. Recently, manufacturers of flatbed scanners replaced the fluorescent lamp by light emission diodes (LED) as a light source. The goal of this work is to evaluate the performance of a commercial flatbed scanner with LED based source light for radiochromic film dosimetry. Film read out consistency, response uniformity, film-scanner sensitivity, long term stability and total dose uncertainty was evaluated. In overall, the performance of the LED flatbed scanner is comparable to that of a cold cathode fluorescent lamp (CCFL). There are important spectral differences between LED and CCFL lamps that results in a higher sensitivity of the LED scanner in the green channel. Total dose uncertainty, film response reproducibility and long-term stability of LED scanner are slightly better than those of the CCFL. However, the LED based scanner has a strong non-uniform response, up to 9%, that must be adequately corrected for radiotherapy dosimetry QA. The differences in light emission spectra between LED and CCFL lamps and its potential impact on film-scanner sensitivity suggest that the design of a dedicated flat-bed scanner with LEDs may improve sensitivity and dose uncertainty in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Modular, Microprocessor-Controlled Flash Lighting System

    NASA Technical Reports Server (NTRS)

    Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William

    2006-01-01

    A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations of the LEDs. The system is configured to limit the overdrive according to values specific to each type of LED in the array. These values are coded into firmware to prevent inadvertent damage to the LED panels.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  16. Polymerization of a dual-cured cement through ceramic: LED curing light vs halogen lamp.

    PubMed

    Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Name Neto, Abrão; Herrera, Francyle S; Kurachi, Cristina; Castañeda-Espinosa, Juan C; Lauris, José Roberto Pereira

    2004-12-01

    The aim of this study was to investigate the influence of light source, LED unit and halogen lamp (HL), on the effectiveness of Enforce dual-cured cement cured under a ceramic disc. Three exposure times (60, 80 and 120 s) were also evaluated. Two experimental groups, in which the polymerization of the dual-cured cement was performed through a ceramic disc, and two control groups, in which the polymerization of the dual-cured cement was performed directly without presence of ceramic disc were subdivided into three subgroups (three different exposure times), with five specimens each: G1A- HL 60s; G1B- HL 80s; G1C- HL 120s; G2A- LED 60s; G2B- LED 80s; G2C- LED 120s; and control groups: G3A- HL 60s; G3B- HL 80s; G3C- HL 120s; G4A- LED 60s; G4B- LED 80s and G4C- LED 120s. Cement was applied in a steel matrix (4mm diameter, 1.2mm thickness). In the experimental groups, a ceramic disc was placed on top. The cement was light-cured through the ceramic by a HL and LED, however, the control groups were cured without the ceramic disc. The specimens were stored in a light-proof container at 37ºC for 24 hours, then Vickers hardness was determined. A four-way ANOVA and Tukey test (p£ 0.05) were performed. All specimens cured by LED for 60s showed inferior values compared with the halogen groups. In general, light-curing by LED for 80s and 120s was comparable to halogen groups (60s and 80s) and their control groups. LED technology can be viable for light-curing through conventional ceramic indirect restorations, when curing time is increased in relation to HL curing time.

  17. Stakeholder Values and Perspectives when Implementing Led Lights on Navy Ships

    DTIC Science & Technology

    2014-06-01

    Additionally, the M1 IntelliTube is a retrofit lamp , 32 which works with line power or any of the legacy ballasts.” ( LED /IntelliTube NAVSEA: LED ...only factor taken into consideration, then break-even point for LED lighting, Navy- wide, is approximately one hour to change the lamp . Of note...Energy Focus. (2013, July 3). Energy Focus: Specifications: IntelliTube LED replacement lamp , 24”, T12 LED lamp . Retrieved from http

  18. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  19. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  20. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Speck; Evelyn Hu; Claude Weisbuch

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methodsmore » for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.« less

  1. Preparation of balanced trichromatic white phosphors for solid-state white lighting.

    PubMed

    Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-08-01

    High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Kanie, Takahito; Ban, Seiji

    2009-07-01

    The purpose of this study was to investigate effects of various visible light photoinitiators on the polymerization efficiency and color of the light-activated resins. Four photoinitiators, including camphorquinone, phenylpropanedione, monoacrylphosphine oxide (TPO), and bisacrylphosphine oxide (Ir819), were used. Each photoinitiator was dissolved in a Bis-GMA and TEGDMA monomer mixture. Materials were polymerized using dental quartz-tungsten halogen lamp (QTH), plasma-ark lamp and blue LED light-curing units, and a custom-made violet LED light unit. The degree of monomer conversion and CIE L*a*b* color values of the resins were measured using a FTIR and spectral transmittance meter. The degree of monomer conversions of TPO- and Ir819-containing resins polymerized with the violet-LED unit were higher than camphorquinone-containing resin polymerized with the QTH light-curing unit. The lowest color values were observed for the TPO-containing resin. Our results indicate that the TPO photoinitiator and the violet-LED light unit may provide a useful and improved photopolymerization system for dental light-activated resins.

  3. Light source comprising a common substrate, a first led device and a second led device

    DOEpatents

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  4. Application of 265-nm UVC LED Lighting to Sterilization of Typical Gram Negative and Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Lee, Yong Wook; Yoon, Hyung Do; Park, Jae-Hyoun; Ryu, Uh-Chan

    2018-05-01

    UV LED lightings have been displacing conventional UV lamps due to their high efficiency, long lifetime, etc. A sterilizing lighting was prepared by assembling a UV LED module composed of 265-nm UVC LEDs and a silica lens array with a driver module comprised of a driver IC controlling pulse width modulation and constant current. The silica lens array was designed and fabricated to focus UV beam and simultaneously to give a uniform light distribution over specimens. Then pasteurizing effect of the lighting was analyzed for four kinds of bacteria and one yeast which are dangerous to people with low immunity. Sterilizing tests on these germs were carried out at the both exposure distances of 10 and 100 mm for various exposure durations up to 600 s.

  5. Controllable light beam shaper in LED lamp

    NASA Astrophysics Data System (ADS)

    Nessemon, K. D.; Popov, I. V.; Belyaev, V. V.; Belyaev, A. A.; Velichko, V. K.

    2018-03-01

    A design of an LED lamp with controllable shape and intensity of the light beam formed is described. The effect is achieved by dividing the light irradiating area for four section and their special fixation and fastening.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; McCullough, Jeffrey J.

    The Yuma Sector Border Patrol Area is a high flux lighting application in a high temperature environment, presenting a formidable challenge for light-emitting diodes (LEDs). This retrofit is an Energy Savings Performance Contract ENABLE project under the U.S. Department of Energy (DOE) Federal Energy Management Program. If high flux LED technology performs well in a region with high ambient temperature and solar radiation, it can perform well in most outdoor environments. The design process for the Yuma retrofit has already provided valuable knowledge to CBP and DOE. The LED lighting system selected for the retrofit is expected to reduce energymore » consumption 69% compared to the incumbent quartz metal halide (QMH) lighting system. If the LED lighting system is installed, GATEWAY will continue to document and disseminate information regarding the installation and long-term performance so that others may also gain valuable knowledge from the Yuma Sector Border Patrol Area lighting retrofit.« less

  7. LEDs as light source: examining quality of acquired images

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Funtanilla, Jeng; Hernandez, Jose

    2004-05-01

    Recent advances in technology have made light emitting diodes (LEDs) viable in a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. This paper presents the results of comparing images taken by a videoscope using two different light sources. One of the sources is the internal metal halide lamp and the other is a LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. The paper will present the results and discuss the usefulness and shortcomings of various comparison methods.

  8. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  9. Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs.

    PubMed

    Soh, C B; Wang, B; Chua, S J; Lin, Vivian K X; Tan, Rayson J N; Tripathy, S

    2008-10-08

    We report on the fabrication of a nano-cone structured p-GaN surface for enhanced light extraction from tunable wavelength light emitting diodes (LEDs). Prior to p-contact metallization, self-assembled colloidal particles are deposited and used as a mask for plasma etching to create nano-cone structures on the p-GaN layer of LEDs. A well-defined periodic nano-cone array, with an average cone diameter of 300 nm and height of 150 nm, is generated on the p-GaN surface. The photoluminescence emission intensity recorded from the regions with the nano-cone array is increased by two times as compared to LEDs without surface patterning. The light output power from the LEDs with surface nano-cones shows significantly higher electroluminescence intensity at an injection current of 70 mA. This is due to the internal multiple scattering of light from the nano-cone sidewalls. Furthermore, we have shown that with an incorporation of InGaN nanostructures in the quantum well, the wavelength of these surface-patterned LEDs can be tuned from 517 to 488 nm with an increase in the injection current. This methodology may serve as a practical approach to increase the light extraction efficiency from wavelength tunable LEDs.

  10. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    NASA Astrophysics Data System (ADS)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  11. Smooth light extraction in lighting optical fibre

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; Garcia-Botella, A.; Martinez-Anton, J. C.; Bernabeu, E.

    2011-10-01

    Recent advances in LED technology have relegated the use of optical fibre for general lighting, but there are several applications where it can be used as scanners lighting systems, daylight, cultural heritage lighting, sensors, explosion risky spaces, etc. Nowadays the use of high intensity LED to inject light in optical fibre increases the possibility of conjugate fibre + LED for lighting applications. New optical fibres of plastic materials, high core diameter up to 12.6 mm transmit light with little attenuation in the visible spectrum but there is no an efficient and controlled way to extract the light during the fibre path. Side extracting fibres extracts all the light on 2π angle so is not well suited for controlled lighting. In this paper we present an extraction system for mono-filament optical fibre which provides efficient and controlled light distribution. These lighting parameters can be controlled with an algorithm that set the position, depth and shape of the optical extraction system. The extraction system works by total internal reflection in the core of the fibre with high efficiency and low cost. A 10 m length prototype is made with 45° sectional cuts in the fibre core as extraction system. The system is tested with a 1W white LED illuminator in one side.

  12. GATEWAY Demonstrations: Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert G.; Wilkerson, Andrea M.

    This report documents a trial installation of LED apron lighting that replaced the existing high-pressure sodium luminaires at Philadelphia International Airport. Such high-mast applications remain challenging for LED technology, and the lessons learned from this project may help facility managers and LED product manufacturers better meet those challenges.

  13. High-luminance LEDs replace incandescent lamps in new applications

    NASA Astrophysics Data System (ADS)

    Evans, David L.

    1997-04-01

    The advent of high luminance AlInGaP and InGaN LED technologies has prompted the use of LED devices in new applications formally illuminated by incandescent lamps. The luminous efficiencies of these new LED technologies equals or exceeds that attainable with incandescent sources, with reliability factors that far exceed those of incandescent sources. The need for a highly efficient, dependable, and cost effective replacement for incandescent lamps is being fulfilled with high luminance LED lamps. This paper briefly described some of the new applications incorporating high luminance LED lamps, traffic signals and roadway signs for traffic management, automotive exterior lighting, active matrix and full color displays for commercial advertising, and commercial aircraft panel lighting and military aircraft NVG compatible lighting.

  14. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs

    DOE PAGES

    Zhang, Yuewei; Allerman, Andrew A.; Krishnamoorthy, Sriram; ...

    2016-04-11

    The efficiency of ultra violet LEDs has been critically limited by the absorption losses in p-type and metal layers. In this work, surface roughening based light extraction structures are combined with tunneling based p-contacts to realize highly efficient top-side light extraction efficiency in UV LEDs. Surface roughening of the top n-type AlGaN contact layer is demonstrated using self-assembled Ni nano-clusters as etch mask. The top surface roughened LEDs were found to enhance external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can enable highly efficient UV LEDs withoutmore » the need for complex manufacturing methods such as flip chip bonding.« less

  15. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    NASA Astrophysics Data System (ADS)

    Chiong, W. L.; Omar, A. F.

    2017-07-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  16. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong

    2008-01-01

    Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.

  17. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    PubMed Central

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  18. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage.

  19. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    PubMed Central

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  20. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model.

    PubMed

    Han, Le; Liu, Ben; Chen, Xianyan; Chen, Haiyan; Deng, Wenjia; Yang, Changsheng; Ji, Bin; Wan, Miaojian

    2018-04-01

    Activation of the Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis and hair growth. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth in numerous clinical studies, in which 655-nm red light was found to be most effective and practical for stimulating hair growth. We evaluated whether 655-nm red light + light-emitting diode (LED) could promote human hair growth by activating Wnt/β-catenin signaling. An in vitro culture of human hair follicles (HFs) was irradiated with different intensities of 655-nm red light + LED, 21 h7 (an inhibitor of β-catenin), or both. Immunofluorescence staining was performed to assess the expression of β-catenin, GSK3β, p-GSK3β, and Lef1 in the Wnt/β-catenin signaling. The 655-nm red light + LED not only enhanced hair shaft elongation, but also reduced catagen transition in human hair follicle organ culture, with the greatest effectiveness observed at 5 min (0.839 J/cm 2 ). Additionally, 655-nm red light + LED enhanced the expression of β-catenin, p-GSK3β, and Lef1, signaling molecules of the Wnt/β-catenin pathway, in the hair matrix. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in vitro and therefore may serve as an alternative therapeutic option for alopecia.

  1. Combatant Eye Protection: An Introduction to the Blue Light Hazard

    DTIC Science & Technology

    2015-12-01

    visible solar radiation (i.e., blue light ), as well as from light - emitting diode (LED)-generated radiant energy remains a questionable factor under...Garcia, M., Picaud, S., Attia D. 2011. Light - emitting diodes (LED) for domestic lighting : Any risks for the eye?. Progress in retinal and eye research...C., Sliney, D. H., Rollag, M., D., Hanifin, J. P., and Brainard, G. C. 2011. Blue light from light - emitting diodes elicits a dose-dependent

  2. RGB LED with smart control in the backlight and lighting

    NASA Astrophysics Data System (ADS)

    Ku, Johnson C. S.; Lee, C. J.

    2008-02-01

    To improve the LED (Light Emitting Diode) efficacy is the major consideration when the backlight and lighting system are implemented. An important source of poor efficacy come from the chip process or heat dissipation. White LED used blue chip with phosphor is the current solution and inadequate for the tunable color temperature system. The use of RGB (Red, Green and Blue) LED with smart control is presented in this study. The resulting coupled optical and thermal shows the better performance when it is synthesized in conjunction with a degree of color mixing technology.

  3. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods

    PubMed Central

    Longcore, Travis; Aldern, Hannah L.; Eggers, John F.; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N.; Yan, Wilson A.; Barroso, André M.

    2015-01-01

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. PMID:25780237

  4. Anti-glare LED lamps with adjustable illumination light field.

    PubMed

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  5. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  6. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGES

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  7. AZO films with Al nano-particles to improve the light extraction efficiency of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chou, Ying-Hung; Yan, Jheng-Tai; Lee, Hsin-Ying; Lee, Ching-Ting

    2008-02-01

    The co-sputtering Al-doped ZnO (AZO) films with Al nano-particles were used to increase the extraction efficiency of GaN-based light-emitting diodes (LEDs). Fixing the ZnO radio frequency (RF) power of 100W and changing the Al DC power from 0 to 13W, the AZO films with various Al contents can be obtained. In the experimental results, the AZO films deposited with Al DC power of 0, 4.5 and 7W do not have Al segregation. However, the segregated Al nano-particles can be found in the AZO films deposited by Al DC power of 10W and 13W. The co-sputtering 170 nm-thick AZO films with and without Al nano-particles were deposited on the transparent area of LEDs and compared the light output intensity of conventional LEDs. The light intensity of LEDs with AZO films with Al DC power 0, 4.5 and 7W increased 10% than that of conventional LEDs. This was due to the AZO film played a role of anti-reflection coating (ARC) layer. The light intensity of LEDs with AZO film deposited using Al DC power of 10W and 13W increased about 35% and 30%, respectively. It can be deduced that the output light is scattered by the Al nano-particles existed in the AZO film.

  8. Materials and Designs for High-Efficacy LED Light Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbetson, James; Gresback, Ryan

    Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative tomore » conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.« less

  9. Study of LED modulation effect on the photometric quantities and beam homogeneity of automotive lighting

    NASA Astrophysics Data System (ADS)

    Koudelka, Petr; Hanulak, Patrik; Jaros, Jakub; Papes, Martin; Latal, Jan; Siska, Petr; Vasinek, Vladimir

    2015-07-01

    This paper discusses the implementation of a light emitting diode based visible light communication system for optical vehicle-to-vehicle (V2V) communications in road safety applications. The widespread use of LEDs as light sources has reached into automotive fields. For example, LEDs are used for taillights, daytime running lights, brake lights, headlights, and traffic signals. Future in the optical vehicle-to-vehicle (V2V) communications will be based on an optical wireless communication technology that using LED transmitter and a camera receiver (OCI; optical communication image sensor). Utilization of optical V2V communication systems in automotive industry naturally brings a lot of problems. Among them belongs necessity of circuit implementation into the current concepts of electronic LED lights control that allows LED modulation. These circuits are quite complicated especially in case of luxury cars. Other problem is correct design of modulation circuits so that final vehicle lightning using optical vehicle-to-vehicle (V2V) communication meets standard requirements on Photometric Quantities and Beam Homogeneity. Authors of this article performed research on optical vehicle-to-vehicle (V2V) communication possibilities of headlight (Jaguar) and taillight (Skoda) in terms of modulation circuits (M-PSK, M-QAM) implementation into the lamp concepts and final fulfilment of mandatory standards on Photometric Quantities and Beam Homogeneity.

  10. Integrated Nanoscale Antenna-LED for On-Chip Optical Communication

    NASA Astrophysics Data System (ADS)

    Fortuna, Seth

    Traditional semiconductor light emitting diodes (LEDs) have low modulation speed because of long spontaneous emission lifetime. Spontaneous emission in semiconductors (and indeed most light emitters) is an inherently slow process owing to the size mismatch between the dipole length of the optical dipole oscillators responsible for light emission and the wavelength of the emitted light. More simply stated: semiconductors behave as a poor antenna for its own light emission. By coupling a semiconductor at the nanoscale to an external antenna, the spontaneous emission rate can be dramatically increased alluding to the exciting possibility of an antenna-LED that can be directly modulated faster than the laser. Such an antenna-LED is well-suited as a light source for on-chip optical communication where small size, fast speed, and high efficiency are needed to achieve the promised benefit of reduced power consumption of on-chip optical interconnect links compared with less efficient electrical interconnect links. Despite the promise of the antenna-LED, significant challenges remain to implement an antenna-coupled device in a monolithically integrated manner. Notably, most demonstrations of antenna-enhanced spontaneous emission have relied upon optical pumping of the light emitting material which is useful for fundamental studies; however, an electrical injection scheme is required for practical implementation of an antenna-LED. In this dissertation, demonstration of an electrically-injected III-V antenna-LED is reported: an important milestone toward on-chip optical interconnects. In the first part of this dissertation, the general design principles of enhancing the spontaneous emission rate of a semiconductor with an optical antenna is discussed. The cavity-backed slot antenna is shown to be uniquely suited for an electrically-injected antenna-LED because of large spontaneous emission enhancement, simple fabrication, and directional emission of light. The design, fabrication, and experimental results of the electrically-injected III-V antenna-LED is then presented. Clear evidence of antenna-enhanced electroluminescence is demonstrated including a large increase in the emitted light intensity with respect to an LED without antenna. Furthermore, it is shown that the active region emission wavelength is influenced by the antenna resonance and the emitted light is polarized; consistent with the expected behavior of the cavity-backed slot antenna. An antenna-LED consisting of a InGaAs quantum well active region is shown to have a large 200-fold enhancement of the spontaneous emission rate. In the last half of this dissertation, the performance of the antenna-LED is discussed. Remarkably, despite the high III-V surface recombination velocity, it is shown that an efficient antenna-LED consisting of an InGaAs active region is possible with an antenna-enhanced spontaneous emission rate. This is true provided the active region surface quality is preserved through the entire device process. A novel technique to preserve and clean InGaAs surfaces is reported. Finally, a rate-equation analysis shows that the optimized antenna-LED with cavity-backed slot antenna is fundamentally capable of achieving greater than 100 GHz direct modulation rate at high efficiency thus showing that an antenna-LED faster than the laser is achievable with this device architecture.

  11. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.

    PubMed

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira

    2015-01-01

    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, p<0.001) between ceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  12. Calculating the Areas of Polygons with a Smartphone Light Sensor

    ERIC Educational Resources Information Center

    Kapucu, Serkan; Simsek, Mertkan; Öçal, Mehmet Fatih

    2017-01-01

    This study explores finding the areas of polygons with a smartphone light sensor. A square and an irregular pentagon were chosen as our polygons. During the activity, the LED light was placed at the vertices of our polygons, and the illuminance values of this LED light were detected by the smartphone light sensor. The smartphone was placed on a…

  13. Light Emitting Diode Flashlights as Effective and Inexpensive Light Sources for Fluorescence Microscopy

    PubMed Central

    Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie

    2009-01-01

    Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530

  14. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    NASA Astrophysics Data System (ADS)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform detailed tasks of reading and assembling mechanical parts for an extended period of two uninterrupted hours. However, human subjects self-reported that blue LEDs provided the most white light and the favored light source over the white LED and the ISS fluorescent as a sole artificial light source for space travel. According to NASA standards, findings from this study indicate that LEDs meet criteria for the NASA TRL 7 rating, as study findings showed that commercial LED manufacturers passed the rigorous testing standards of suitability for space flight environments and human factor effects. Recommendations for future research include further testing for space flight using the basis of this study for replication, but reduce study limitations by 1) testing human subjects exposure to LEDs in a simulated space capsule environment over several days, and 2) installing and testing LEDs in space modules being tested for human spaceflight.

  15. Comparative and quantitative analysis of white light-emitting diodes and other lamps used for home illumination

    NASA Astrophysics Data System (ADS)

    Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson

    2015-01-01

    We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.

  16. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  17. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    PubMed

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  18. LED array designing and its bactericidal effect researching on Pseudomonas aeruginosa in vitro

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Xing, Jin; Gao, Liucun; Shen, Benjian; Kang, Hongxiang; Jie, Liang; Peng, Chen

    2015-10-01

    Lights with some special waveband and output power density have a bactericidal effect to some special bacteria. In this paper, the bactericidal effect of light at wavelength of 470 nm on P. aeruginosa (ATCC 27853) is researched with different irradiation dose. The light source is a LED array which is obtained by incoherent combine of 36 LEDs with emitting wavelength of 470 nm. The P. aeruginosa suspension is exposed with the LED array at the light power density of 100 mW/cm2 with exposures time of 0, 5, 10, 20, 40, and 80 min, respectively. The numbers of CFU are then determined by serial dilutions on LB agar plates. The bactericidal effect research results of 470 nm LED on P. aeruginosa show that the killing ratio increases with increasing of the exposure time. For the 80 min irradiation, as much as 92.4% reduction of P. aeruginosa is achieved. The results indicate that, in vitro, 470-nm lights produce dose dependent bactericidal effects on P. aeruginosa.

  19. Dynamic control of supplemental lighting for greenhouse

    NASA Astrophysics Data System (ADS)

    Wang, Yuanxv; Wei, Ruihua; Xu, Lihong

    2018-04-01

    The development of light-emitting diodes (LED) technology to a large extent reduce the energy consumption of greenhouse, however, the light control methods to realize the energy saving still have great potential. The aim of this paper is to develop a more efficient control method of dynamic control of the LED top-lighting (TL) intensity and the LED inter-lighting (IL) intensity for the greatest economic benefits. A dynamic lighting control algorithm (DLC) based on model is proposed, which defines the economic benefit performance criterion of the supplemental lighting control. The optimal light intensity of TL and IL is calculated in real time according to the algorithm. The simulation shows that economic benefit can be increased by up to 107.35% compared to TL on-off control. It is concluded that DLC is a feasible supplemental light control method, especially under low natural light conditions.

  20. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition of ROS production and activation of pro-apoptotic proteins. PMID:24690313

  1. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H 2O 2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.

  2. Bridging the "green gap" of LEDs: giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals.

    PubMed

    Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin D B; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau

    2016-01-14

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is the so-called "green gap". In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boost the light extraction efficiency of LEDs with an enhancement of 78% but also collimate the view angle of LEDs from 131.5° to 114.0°. This could be because of the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs point the way towards a promising avenue of solid-state lighting.

  3. Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640 ± 20 nm) on the repair of third-degree burns in rats.

    PubMed

    Neves, Silvana Maria Véras; Nicolau, Renata Amadei; Filho, Antônio Luiz Martins Maia; Mendes, Lianna Martha Soares; Veloso, Ana Maria

    2014-01-01

    Recent studies have demonstrated the efficacy of coherent light therapy from the red region of the electromagnetic spectrum on the tissue-healing process. This study analysed the effect of non-coherent light therapy (light-emitting diode-LED) with or without silver sulfadiazine (sulpha) on the healing process of third-degree burns. In this study, 72 rats with third-degree burns were randomly divided into six groups (n = 12): Gr1 (control), Gr2 (non-contact LED), Gr3 (contact LED), Gr4 (sulfadiazine), Gr5 (sulfadiazine + non-contact LED) and Gr6 (sulfadiazine + contact LED). The groups treated with LED therapy received treatment every 48 h (λ = 640 ± 20 nm, 110 mW, 16 J/cm(2); 41 s with contact and 680 s without contact). The digital photometric and histomorphometric analyses were conducted after the burn occurred. The combination of sulpha and LED (contact or non-contact) improved the healing of burn wounds. These results demonstrate that the combination of silver sulfadiazine with LED therapy (λ = 640 ± 20 nm, 4 J/cm(2), without contact) improves healing of third-degree burn wounds, significantly reduces the lesion area and increases the granulation tissue, increases the number of fibroblasts, promotes collagen synthesis and prevents burn infections by accelerating recovery.

  4. Comparison of halogen, plasma and LED curing units.

    PubMed

    Nomoto, Rie; McCabe, John F; Hirano, Susumu

    2004-01-01

    This study evaluated the characteristics of two kinds of recently developed light-curing unit; plasma arc and blue light emitting diodes (LED), in comparison with a conventional tungsten-halogen light-curing unit. The light intensity and spectral distribution of light from these light-curing units, the temperature rise of the bovine enamel surface and the depth of cure of composites exposed to each unit were investigated. The light intensity and depth of cure were determined according to ISO standards. The spectral distributions of emitted light were measured using a spectro-radiometer. The temperature increase induced by irradiation was measured by using a thermocouple. Generally, light intensities in the range 400-515 nm emitted from the plasma arc were greater than those from other types. Light in the UV-A region was emitted from some plasma arc units. The required irradiation times were six to nine seconds for the plasma arc units and 40 to 60 seconds for the LED units to create a depth of cure equal to that produced by the tungsten-halogen light with 20 seconds of irradiation. The temperature increased by increasing the irradiation time for every light-curing unit. The temperature increases were 15 degrees C to 60 degrees C for plasma arc units, around 15 degrees C for a conventional halogen unit and under 10 degrees C for LED units. Both the plasma arc and LED units required longer irradiation times than those recommended by their respective manufacturers. Clinicians should be aware of potential thermal rise and UV-A hazard when using plasma arc units.

  5. A quality assurance program for clinical PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.

    2018-02-01

    Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.

  6. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment in vitro and in vivo.

    PubMed

    Nakajima, Kohei; Kimura, Toshihiro; Takakura, Hideo; Yoshikawa, Yasuo; Kameda, Atsushi; Shindo, Takayuki; Sato, Kazuhide; Kobayashi, Hisataka; Ogawa, Mikako

    2018-04-13

    The aim of this study was to develop and assess a novel implantable, wireless-powered, light-emitting diode (LED) for near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a recently developed cancer therapy that uses NIR light and antibody-photosensitizer conjugates and is able to induce cancer-specific cell death. Due to limited light penetration depth it is currently unable to treat tumors in deep tissues. Use of implanted LED might potentially overcome this limitation. The wireless LED system was able to emit NIR light up to a distance of 20 cm from the transmitter coil by using low magnetic fields as compliant with limits for use in humans. Results indicated that the LED system was able to kill tumor cells in vitro and to suppress tumor growth in implanted tumor-bearing mice. Results indicated that the proposed implantable wireless LED system was able to suppress tumor growth in vivo . These results are encouraging as wireless LED systems such as the one here developed might be a possible solution to treat tumors in deep regions in humans. Further research in this area would be important. An implantable LED system was developed. It consisted of a LED capsule including two LED sources and a receiver coil coupled with an external coil and power source. Wireless power transmission was guaranteed by using electromagnetic induction. The system was tested in vitro by using EGFR-expressing cells and HER2-expressing cells. The system was also tested in vivo in tumor-bearing mice.

  7. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Goettel, Russell T.

    2010-06-29

    A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

  8. LED Lighting in a Performing Arts Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Kaye, S. M.; Coleman, P. M.

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  9. Uniformity of LED light illumination in application to direct imaging lithography

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi

    2016-09-01

    Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.

  10. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation

    PubMed Central

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Lai, Chao-Sung; Ying, Shang-Ping

    2018-01-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts’ material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method. PMID:29494534

  11. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation.

    PubMed

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Tan, Cher Ming; Lai, Chao-Sung; Chow, Lee; Ying, Shang-Ping

    2018-03-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.

  12. Optical design of a high-power LED-based solar simulator

    NASA Astrophysics Data System (ADS)

    Toro-Betancur, Veronica; Velásquez-López, Alejandro; Velásquez, David; Acevedo-Gómez, David

    2016-04-01

    The optical design of a High-Power LED based Solar Simulator was made in order to reach the AM1.5G spectrum standards. An optical model of the light emitted by the LEDs was made and used for spectral intensities calculations and the light intensity uniformity was optimized. A class AAA solar simulator was designed using a hexagonal LED distribution.

  13. Hybrid GaN LED with capillary-bonded II-VI MQW color-converting membrane for visible light communications

    NASA Astrophysics Data System (ADS)

    Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.

    2015-03-01

    The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.

  14. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  15. A 1024-channel 6 mW/mm2 optical stimulator for in-vitro neuroscience experiments.

    PubMed

    Cai, Lei; Wang, Baitong; Huang, Xiuxiang; Yang, Zhi

    2014-01-01

    Recent optical stimulation technologies allow improved selectivity and have been widely used in neuroscience research. This paper presents an optical stimulator based on high power LEDs. It has 1024 channels and can produce flexible stimulation patterns in each frame, refreshed at above 20 Hz. To increase the light intensity, each LED has an optical package that directs the light into a small angle. To ensure the light of each LED can reach the lens, the LEDs have been specially placed and oriented to the lens. With these efforts, the achieved power efficiency (defined as the mount of LED light power passing through the lens divided by the LED total power consumption) is 5 × 10(-5). In our current prototype, an individual LED unit can source 60 mW electrical power, where the induced irradiance on neural tissues is 6 mW/mm(2) integrating from 460 nm to 480 nm. The light spot is tunable in size from 18 μm to 40 μm with an extra 5-10 μm separation for isolating two adjacent spots. Through both bench-top measurement and finite element simulation, we found the cross channel interference is below 10%. A customized software interface has been developed to control and program the stimulator operation.

  16. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  17. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: preferential outcoupling of strong in-plane emission (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Lee, Jong Won; Kim, Dong-Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Kim, Yong-Il

    2016-09-01

    AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al< 30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.

  18. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Yuan, Ye; Yan, Gege; Gong, Rui; Zhang, Lai; Liu, Tianyi; Feng, Chao; Du, Weijie; Wang, Ying; Yang, Fan; Li, Yuan; Guo, Shuyuan; Ding, Fengzhi; Ma, Wenya; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Cai, Benzhi; Yang, Lei

    2017-01-01

    Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach.

    PubMed

    Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael

    2017-07-18

    With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.

  20. CALiPER Snapshot Report: Troffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-12-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  1. CALiPER Snapshot Report: Industrial Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-03-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  2. Comparative clinical study using laser and LED-therapy for orofacial pain relief: dentin hypersensitivity and cervicogenic headache

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.

    2015-06-01

    Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.

  3. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    PubMed Central

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  4. Bridgeless SEPIC PFC Converter for Multistring LED Driver

    NASA Astrophysics Data System (ADS)

    Jha, Aman; Singh, Bhim

    2018-05-01

    This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.

  5. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  6. Benefit from NASA

    NASA Image and Video Library

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. "A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back," said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  7. Projecting LED product life based on application

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe

    2016-09-01

    LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and the shorter of the two failure modes must be selected as the system life. The results of this study show a shorter time test procedure can be developed to accurately predict LED system life in any application by knowing the LED temperature and the switching cycle.

  8. Light use efficiency for vegetables production in protected and indoor environments

    NASA Astrophysics Data System (ADS)

    Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio

    2017-01-01

    In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.

  9. [The dangers of blue light: True story!].

    PubMed

    Renard, G; Leid, J

    2016-05-01

    The dangers of the blue light are the object of numerous publications, for both the scientific community and the general public. The new prolific development of light sources emitting potentially toxic blue light (415-455nm) ranges from LED (Light Emitting Diodes) lamps for interior lighting to television screens, computers, digital tablets and smartphones using OLED (Organic Light Emitting Diode) or AMOLED (Active-Matrix Organic Light Emitting Diode) technology. First we will review some technical terms and the main characteristics of light perceived by the human eye. Then we will discuss scientific proof of the toxicity of blue light to the eye, which may cause cataract or macular degeneration. Analysis of the light spectra of several light sources, from natural light to LED lamps, will allow us to specify even better the dangers related to each light source. LED lamps, whether used as components for interior lighting or screens, are of concern if they are used for extended viewing times and at short distance. While we can protect ourselves from natural blue light by wearing colored glasses which filter out, on both front and back surfaces, the toxic wavelengths, it is more difficult to protect oneself from LED lamps in internal lighting, the use of which should be restricted to "white warmth" lamps (2700K). As far as OLED or AMOLED screens are concerned, the only effective protection consists of using them occasionally and only for a short period of time. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Solid-State Lighting Module (SSLM)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The project's goal was to build a light-emitting-diode (LED)-based light fixture that is identical in fit, form, and function to the existing International Space Station (ISS) General Luminaire Assembly (GLA) light fixture and fly it on the ISS in early FY 2008 as a Station Detailed Test Objective (SDTO). Our design offers the following strengths: proven component hardware: Our design uses components flown in other KSC-developed hardware; heat path thermal pad: LED array heat is transferred from the circuit board by silicon pad, negating the need for a cooling fan; variable colorimetry: The output light color can be changed by inserting different LED combinations.

  11. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    PubMed

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology and histology similar to xenon light.

  12. Construction of an array of LEDs coupled to a concentrator for phototherapy

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-07-01

    The use of LED devices for phototherapy has been expanding in the last decade. This technology provides a safer emission spectrum in large target tissue areas when compared to laser emissions. For enhancing the phototherapeutic effects of red light emitted by LEDs, a simple optical concentrator capable of efficient light concentration and homogenization was developed. The LEDs wavelength of 660 nm is coincident with an absorption peak of the mitochondrial photoreceptor molecule cytochrome c oxidase. The prototype was optimized by non-sequential ray-tracing software ZEMAX, attaining both excellent light uniformity and 50mW/cm2 irradiance at the concentrator output end. Heat emanated from the LEDs source is effectively dissipated by the side walls of the concentrator, ensuring a nearly constant temperature environment for tissue treatment. The prototype was tested on cutaneous hyperpigmented marks caused by cupping in two healthy volunteers. Marks were irradiated by LEDs radiations with or without the use of concentrator respectively. Equal exposure durations and light fluences were tested. The use of the concentrator-coupled LEDs source revealed an activation of blood movement immediately after LEDs exposure, an effect not attainable by the LEDs source without the concentrator even at extended exposure time. Promising futures for the treatment of inflammation, tissue repair and skin rejuvenation could be expected by adopting this simple technique.

  13. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  14. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode.

    PubMed

    Garcia-Sucerquia, Jorge

    2013-01-01

    By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

  15. Selective-area nanoheteroepitaxy for light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.

    Over 20% of the electricity in the United States is consumed for lighting, and the majority of this energy is wasted as heat during the lighting process. A solid-state (or light emitting diode (LED)-based) light source has the potential of saving the United States billions of dollars in electricity and reducing megatons of global CO2 emissions annually. While white light LEDs are currently on the market with efficiencies that are superior to incandescent and fluorescent light sources, their high up-front cost is inhibiting mass adoption. One reason for the high cost is the inefficiency of green and amber LEDs that can used to make white light. The inefficiency of green and amber LEDs results in more of these chips being required, and thus a higher cost. Improvements in the performance of green and amber LEDs is also required in order to realize the full potential of solid-state lighting. Nanoheteroepitaxy is an interesting route towards achieving efficient green and amber LEDs as it resolves major challenges that are currently plaguing III-nitride LEDs such as high dislocation densities and limited active region critical thicknesses. A method for fabricating III-nitride nanopyramid LEDs is presented that employs conventional processing used in industry. The present document begins with an overview of the current challenges in III-nitride LEDs and the benefits of nanoheteroepitaxy. A process for controlled selective-area growth of nanopyramid LEDs by organometallic vapor phase epitaxy has been developed throughout the course of this work. Dielectric templates used for the selective-area growth are patterned by two methods, namely porous anodic alumina and electron-beam lithography. The dielectric templates serve as efficient dislocation filters; however, planar defects are initiated during lower temperature growth on the nanopyramids. The quantum wells outline six semipolar planes that form each hexagonal pyramid. Quantum wells grown on these semipolar planes generate built-in electric fields with magnitudes that are one-tenth those on the polar c-plane with the same (In,Ga)N composition. The lateral strain relaxation innate in the nanoheterostructures allows greater coherent InN incorporation in the nanopyramids as compared to thin-film heterostructures, as confirmed by electroluminescence and transmission electron microscopy. In addition to applications for light emitting diodes, selective area growth of GaN nanostructures is also important for biological and sensing applications. A process for fabricating porous GaN nanorods is presented that also relies on selective-area organometallic vapor phase epitaxy. The nanopore walls are primarily outlined by nonpolar planes, and the diameter of the nanopore can be controlled by the diameter of the opening in the dielectric template and the growth time. The lining of the nanopore walls is comprised of crystalline GaN, which makes these structures interesting for sensing, electrical and optical applications.

  16. Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors

    NASA Astrophysics Data System (ADS)

    Do, Trong Hop; Yoo, Myungsik

    2018-01-01

    This paper proposes a vehicle positioning system using LED street lights and two rolling shutter CMOS sensor cameras. In this system, identification codes for the LED street lights are transmitted to camera-equipped vehicles through a visible light communication (VLC) channel. Given that the camera parameters are known, the positions of the vehicles are determined based on the geometric relationship between the coordinates of the LEDs in the images and their real world coordinates, which are obtained through the LED identification codes. The main contributions of the paper are twofold. First, the collinear arrangement of the LED street lights makes traditional camera-based positioning algorithms fail to determine the position of the vehicles. In this paper, an algorithm is proposed to fuse data received from the two cameras attached to the vehicles in order to solve the collinearity problem of the LEDs. Second, the rolling shutter mechanism of the CMOS sensors combined with the movement of the vehicles creates image artifacts that may severely degrade the positioning accuracy. This paper also proposes a method to compensate for the rolling shutter artifact, and a high positioning accuracy can be achieved even when the vehicle is moving at high speeds. The performance of the proposed positioning system corresponding to different system parameters is examined by conducting Matlab simulations. Small-scale experiments are also conducted to study the performance of the proposed algorithm in real applications.

  17. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    PubMed

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis.

    DOT National Transportation Integrated Search

    2015-01-01

    Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...

  19. Safety Evaluation of Converting Traffic Signals From Incandescent to Light-emitting Diodes : Summary Report

    DOT National Transportation Integrated Search

    2013-08-01

    Across the Nation, many agencies have been replacing conventional incandescent light bulbs in traffic signals with light-emitting diodes (LED) (see figure 1 and figure 2). LEDs are primarily installed to reduce energy consumption and decrease mainten...

  20. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: Augmented light output of GaN UV-LED

    PubMed Central

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-01

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology. PMID:25586148

  1. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: augmented light output of GaN UV-LED.

    PubMed

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-14

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology.

  2. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  3. Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs

    PubMed Central

    He, Jie; Qin, Lin; Chong, Emma L. C.; Choong, Tsui-Wei; Lee, Sing Kong

    2017-01-01

    Mesembryanthemum crystallinum is a succulent, facultative crassulacean acid metabolism (CAM) plant. Plant growth and photosynthetic characteristics were studied when M. crystallinum plants were grown indoor under light emitting diodes (LED)-lighting with adequate water supply. Plants were cultured aeroponically for a 16-h photoperiod at an equal photosynthetic photon flux density of 350 μmol m-2 s-1 under different red:blue LED ratios: (1) 100:0 (0B); (2) 90:10 (10B); (3) 80:20 (20B); (4) 70:30 (30B); (5) 50:50 (50B); and (6)100:0 (100B). M. crystallinum grown under 10B condition had the highest shoot and root biomass and shoot/root ratio while those grown under 0B condition exhibited the lowest values. Compared to plants grown under 0B condition, all other plants had similar but higher total chlorophyll (Chl) and carotenoids (Car) contents and higher Chl a/b ratios. However, there were no significant differences in Chl/Car ratio among all plants grown under different red- and blue-LEDs. Photosynthetic light use efficiency measured by photochemical quenching, non-photochemical quenching, and electron transport rate, demonstrated that plants grown under high blue-LED utilized more light energy and had more effective heat dissipation mechanism compared to plants grown under 0B or lower blue-LED. Statistically, there were no differences in photosynthetic O2 evolution rate, light-saturated CO2 assimilation rate (Asat), and light-saturated stomatal conductance (gssat) among plants grown under different combined red- and blue-LEDs but they were significantly higher than those of 0B plants. No statistically differences in total reduced nitrogen content were found among all plants. For the total soluble protein, all plants grown under different combined red- and blue-LEDs had similar values but they were significantly higher than that of plants grown under 0B condition. However, plants grown under higher blue-LEDs had significant higher ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) protein than those plants grown under lower blue-LED. High Asat and gssat but very low CAM acidity of all M. crystallinum plants during light period, imply that this facultative CAM plant performed C3 photosynthesis when supplied with adequate water. Results of this study suggest that compared to red- or blue-LED alone, appropriate combination of red- and blue-LED lighting enhanced plant growth and photosynthetic capacities of M. crystallinum. PMID:28367156

  4. Agile Robust Autonomy: Inspired by Connecting Natural Flight and Biological Sensors

    DTIC Science & Technology

    2017-03-01

    stabilization in insects while tethered. The stimulating is a rotating horizon line produced by UV and green LEDs (Figure 2). DISTRIBUTION A 12...recordings from the eyes. In the damselflies, we recorded from the compound eyes. The stimulation is a xenon light lamp producing light from the UV to near...addition to a green LED . One green light LED recording was taken after each spectral measurement. ............... 29 24. KHILS Projector Spectral

  5. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Lung; Liu, Hsueh-Hsing; Chen, Jun-Wei; Lu, Chien-Pin; Ikenaga, Kazutada; Tabuchi, Toshiya; Matsumoto, Koh; Fu, Yi-Keng

    2017-12-01

    We demonstrate that the light output power of deep ultraviolet light-emitting diodes (DUV-LEDs) can be improved by introducing an intrinsic last quantum barrier interlayer to a high quality AlN template. The light output power of the DUV-LEDs can be doubled by substituting the last quantum barrier with an intrinsic last quantum barrier (u-LQB)/Mg-doped LQB for only pure u-LQB in the same thickness with a 35 A/cm2 injection current. It is believed that the improved performance of the DUV LED could be attributed to the decreased diffusion of Mg tunneling into MQW and the reduction of sub-band parasitic emissions.

  6. Yuma Border Patrol Lighting Retrofit: Final LED System Performance Assessment of Trial and Full Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea; Sullivan, Gregory P.; Davis, Robert G.

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial evaluation in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations, and illuminance measurements were recorded initially and at 2500 hours, 5000 hours, 7000, and 11,000 hours of operation. Additionally, four second-generation LED luminaires installed as part of the full installation were evaluated initially and again after 4,000 hours of operation. While the initial energy, lighting quality, and maintenance benefits relative to the incumbent high-pressure sodium system were very satisfactory, the study raises important questions regarding themore » long-term performance of LED lighting systems in high-temperature environments.« less

  7. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy.

    PubMed

    Trouwborst, Govert; Oosterkamp, Joke; Hogewoning, Sander W; Harbinson, Jeremy; van Ieperen, Wim

    2010-03-01

    Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse-grown Cucumis sativus'Samona' crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 micromol photosynthetic photon flux m(-2) s(-1) (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High-Pressure Sodium (HPS)-lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED-light spectrum used, and partly because of the relatively low irradiances from above.

  8. Photochemical methods to assay DNA photocleavage using supercoiled pUC18 DNA and LED or xenon arc lamp excitation.

    PubMed

    Prussin, Aaron J; Zigler, David F; Jain, Avijita; Brown, Jared R; Winkel, Brenda S J; Brewer, Karen J

    2008-04-01

    Methods for the study of DNA photocleavage are illustrated using a mixed-metal supramolecular complex [{(bpy)(2)Ru(dpp)}(2)RhCl(2)]Cl(5). The methods use supercoiled pUC18 plasmid as a DNA probe and either filtered light from a xenon arc lamp source or monochromatic light from a newly designed, high-intensity light-emitting diode (LED) array. Detailed methods for performing the photochemical experiments and analysis of the DNA photoproduct are delineated. Detailed methods are also given for building an LED array to be used for DNA photolysis experiments. The Xe arc source has a broad spectral range and high light flux. The LEDs have a high-intensity, nearly monochromatic output. Arrays of LEDs have the advantage of allowing tunable, accurate output to multiple samples for high-throughput photochemistry experiments at relatively low cost.

  9. Design a light pattern of multiple concentric circles for LED fishing lamps using Fourier series and an energy mapping method.

    PubMed

    Shen, S C; Li, J S; Huang, M C

    2014-06-02

    Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.

  10. Miniature LED endoilluminators for vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Hessling, M.; Koelbl, P. S.; Lingenfelder, C.; Koch, F.

    2015-07-01

    Two innovative approaches for intraocular illumination during vitreoretinal surgery by application of white LEDs are being developed. Both techniques are less harmful to the patient, more convenient for the surgeon and smaller and cheaper compared to conventional illumination by Xenon light sources and optical fibers. These two novel approaches are: I) The miniature LED chandelier endoilluminator consisting of a single white LED with a "light probe" on top of the LED housing that fits in a small incision in the wall of the eye. II) The alternative transscleral LED endoilluminator is integrated into an eye speculum that presses the flat LED top against the eye. The intraocular space is only illuminated by light transmitted through the sclera. In contrast to conventional illumination techniques for vitreoretinal surgery no incision is necessary. Both approaches are evaluated with regard to potential photochemical and thermal risks for the patient's retina and they are tested on porcine eyes.

  11. Characteristics of white LED transmission through a smoke screen

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Yang, Aiying; Feng, Lihui; Guo, Peng

    2018-01-01

    The characteristics of white LED transmission through a smoke screen is critical for visible light communication through a smoke screen. Based on the Mie scattering theory, the Monte Carlo transmission model is established. Based on the probability density function, the white LED sampling model is established according to the measured spectrum of a white LED and the distribution angle of the lambert model. The sampling model of smoke screen particle diameter is also established according to its distribution. We simulate numerically the influence the smoke thickness, the smoke concentration and the angle of irradiance of white LED on transmittance of the white LED. We construct a white LED smoke transmission experiment system. The measured result on the light transmittance and the smoke concentration agreed with the simulated result, and demonstrated the validity of simulation model for visible light transmission channel through a smoke screen.

  12. Lighting the Way for Quicker, Safer Healing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Who's to say that a little light can t go a long way? Tiny light-emitting diode (LED) chips used to grow plants in space are lighting the way for cancer treatment, wound healing, and chronic pain alleviation on Earth. In 1993, Quantum Devices, Inc. (QDI), of Barneveld, Wisconsin, began developing the HEALS (High Emissivity Aluminiferous Light-emitting Substrate) technology to provide high-intensity, solid-state LED lighting systems for NASA Space Shuttle plant growth experiments. The company evolved out of cooperative efforts with the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison a NASA center for the Commercial Development of Space. Ronald W. Ignatius, QDI s president and chairman, represented one of WCSAR s industrial partners at the time. WCSAR was conducting research on light sources for promoting food growth within closed environments where humans would be present for a long duration, such as the Space Shuttle and the International Space Station. With the support of WCSAR, Ignatius experimented with LEDs, which provide high-energy efficiency and virtually no heat, despite releasing waves of light 10 times brighter than the Sun. Ignatius admits that some scientists involved in the project were skeptical at first, thinking that the idea of using LEDs to promote plant growth was far-fetched. The experiments, however, demonstrated that red LED wavelengths could boost the energy metabolism of cells to advance plant growth and photosynthesis. This finding prompted Ignatius to develop a line of LED products that emit the exact wavelength of light that plants use in photosynthesis. Our company gives credit to Dr. Ray Bula, the director of WCSAR, for having the foresight to go against the prevailing dogma of the time and design the first plant experiment using monochromatic light to grow lettuce plants, Ignatius proclaims. In 1989, Ignatius formed QDI to bring the salt grain-sized LEDs to market, and in October 1995, the light sources made their Space Shuttle flight debut on the second U.S. Microgravity Laboratory Spacelab mission (STS-73, Columbia)

  13. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  14. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer

    PubMed Central

    de Visser, Pieter H. B.; Buck-Sorlin, Gerhard H.; van der Heijden, Gerie W. A. M.

    2014-01-01

    Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20°) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential. PMID:24600461

  15. An LED light source and novel fluorophore combinations improve fluorescence laparoscopic detection of metastatic pancreatic cancer in orthotopic mouse models.

    PubMed

    Metildi, Cristina A; Kaushal, Sharmeela; Lee, Claudia; Hardamon, Chanae R; Snyder, Cynthia S; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2012-06-01

    The aim of this study was to improve fluorescence laparoscopy of pancreatic cancer in an orthotopic mouse model with the use of a light-emitting diode (LED) light source and optimal fluorophore combinations. Human pancreatic cancer models were established with fluorescent FG-RFP, MiaPaca2-GFP, BxPC-3-RFP, and BxPC-3 cancer cells implanted in 6-week-old female athymic mice. Two weeks postimplantation, diagnostic laparoscopy was performed with a Stryker L9000 LED light source or a Stryker X8000 xenon light source 24 hours after tail-vein injection of CEA antibodies conjugated with Alexa 488 or Alexa 555. Cancer lesions were detected and localized under each light mode. Intravital images were also obtained with the OV-100 Olympus and Maestro CRI Small Animal Imaging Systems, serving as a positive control. Tumors were collected for histologic analysis. Fluorescence laparoscopy with a 495-nm emission filter and an LED light source enabled real-time visualization of the fluorescence-labeled tumor deposits in the peritoneal cavity. The simultaneous use of different fluorophores (Alexa 488 and Alexa 555), conjugated to antibodies, brightened the fluorescence signal, enhancing detection of submillimeter lesions without compromising background illumination. Adjustments to the LED light source permitted simultaneous detection of tumor lesions of different fluorescent colors and surrounding structures with minimal autofluorescence. Using an LED light source with adjustments to the red, blue, and green wavelengths, it is possible to simultaneously identify tumor metastases expressing fluorescent proteins of different wavelengths, which greatly enhanced the signal without compromising background illumination. Development of this fluorescence laparoscopy technology for clinical use can improve staging and resection of pancreatic cancer. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and delivers about 55 lm at 3000K with the requested radiation pattern and sparkle effect. Some field tests were done with positive feedback.

  17. Design of a Borescope for Extravehicular Non-Destructive Applications

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic

    2003-01-01

    Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.

  18. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  19. Effects of color temperatures (Kelvin) of LED bulbs on blood physiological variables of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2015-08-01

    Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weights (>3 kg). The present study evaluated the effects of color temperature (Kelvin) of LED bulbs on blood physiological variables of heavy broilers in 2 trials with 4 replicates/trial. The study was a randomized complete block design. Four light treatments consisted of 3 LED light bulbs [2,700 K, (Warm-LED); 5,000 K, (Cool-LED-#1); 5,000 K, (Cool-LED-#2)] and incandescent light (ICD, standard) from 1 to 56 d age. A total of 960 1-day-old Ross × Ross 708 chicks (30 males/room 30 females/room) were equally and randomly distributed among 16 environmentally controlled rooms at 50% RH. Each of the 4 treatments was represented by 4 rooms. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on d 21, 28, 42, and 56 for immediate analysis of selected physiological variables and plasma collection. In comparison with ICD, Cool-LED-#1 had greater (P < 0.05) effects on pH, partial pressure of CO₂(pCO₂), partial pressure of O₂(pO₂), saturated O₂(sO₂), and K⁺. However, all these acid-base changes remained within the normal venous acid-base homeostasis and physiological ranges. In addition, no effect of treatments was observed on HCO(3)(-), hematocrit (Hct), hemoglobin (Hb), Na⁺, Ca²⁺, Cl⁻, mean corpuscular hemoglobin concentration (McHc), osmolality, and anion gap. Moreover, blood glucose concentrations were not affected by treatments. This study shows that the 3 LED light bulbs evaluated in this study may be suitable for replacement of ICD light sources in commercial poultry facilities to reduce energy cost and optimize production efficiency without inducing physiological stress on broilers grown to heavy weights. © 2015 Poultry Science Association Inc.

  20. LED-based endoscopic light source for spectral imaging

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.

    2016-03-01

    Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.

  1. Conversion degrees of resin composites using different light sources.

    PubMed

    Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz

    2013-01-01

    The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. DC was significantly influenced by two variables, light source and composite (P<.05). QTH revealed significantly higher DC values than LED (P<.05). However, there were no significant differences between DC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance.

  2. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs.

    PubMed

    Kitazaki, Kazuyoshi; Fukushima, Atsushi; Nakabayashi, Ryo; Okazaki, Yozo; Kobayashi, Makoto; Mori, Tetsuya; Nishizawa, Tomoko; Reyes-Chin-Wo, Sebastian; Michelmore, Richard W; Saito, Kazuki; Shoji, Kazuhiro; Kusano, Miyako

    2018-05-21

    Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m -2 ·s -1 , respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.

  3. Design of TIR collimating lens for ordinary differential equation of extended light source

    NASA Astrophysics Data System (ADS)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  4. The LED outdoor lighting revolution : Opportunities, threats and mitigation

    NASA Astrophysics Data System (ADS)

    Aube, Martin

    2017-01-01

    The presence of artificial light at night (ALAN) in environment is now known to have non negligible consequences on the night sky, the fauna, the flora and the human health. A real revolution is undergoing in the outdoor lighting industry threatens the night integrity. This revolution is driven by the advent of the cost-effective Light-Emitting Diode (LED) technology into the outdoor lighting industry. The LEDs provides many opportunities: they are long lasting, easily controlled, and generally allow a more efficient photometric design which, in term, may result in energy savings.After explaining the complex and non-linear behaviour of the propagation of the ALAN into the nocturnal environment, we will outline the potential impact of the ALAN on the human health and on the night sky, and we will introduce some dedicated indicators for its evaluation. We will focus on the role of the blue content of the ALAN in the evaluation of its impact. More specifically we will show how white LED technology, that often shows increased blue light content, compares to the traditional High Pressure Sodium technology. Finally, we will identify the possible mitigations to restrict the adverse impacts of the white LEDs in the urban and rural environment.

  5. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    NASA Astrophysics Data System (ADS)

    Kong, H. J.; Park, J. W.; Kim, Y. M.

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m-2, the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system.

  6. Energy efficient lighting and communications

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Kavehrad, M.; Deng, P.

    2012-01-01

    As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.

  7. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology.

    PubMed

    Dauchy, Robert T; Wren-Dail, Melissa A; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2016-01-01

    Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465-485 nm), compared with standard broadspectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO 2 , pCO 2 , insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes.

  8. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology

    PubMed Central

    Dauchy, Robert T; Wren-Dail, Melissa A; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2016-01-01

    Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465–485 nm), compared with standard broad-spectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes. PMID:27780004

  9. New reversing design method for LED uniform illumination.

    PubMed

    Wang, Kai; Wu, Dan; Qin, Zong; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2011-07-04

    In light-emitting diode (LED) applications, it is becoming a big issue that how to optimize light intensity distribution curve (LIDC) and design corresponding optical component to achieve uniform illumination when distance-height ratio (DHR) is given. A new reversing design method is proposed to solve this problem, including design and optimization of LIDC to achieve high uniform illumination and a new algorithm of freeform lens to generate the required LIDC by LED light source. According to this method, two new LED modules integrated with freeform lenses are successfully designed for slim direct-lit LED backlighting with thickness of 10mm, and uniformities of illuminance increase from 0.446 to 0.915 and from 0.155 to 0.887 when DHRs are 2 and 3 respectively. Moreover, the number of new LED modules dramatically decreases to 1/9 of the traditional LED modules while achieving similar uniform illumination in backlighting. Therefore, this new method provides a practical and simple way for optical design of LED uniform illumination when DHR is much larger than 1.

  10. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOEpatents

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  11. Color design model of high color rendering index white-light LED module.

    PubMed

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  12. Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands.

    PubMed

    Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing

    2011-01-17

    InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Fact sheet that provides a brief overview of the viability of LED street lighting in municipalities and highlights case studies of two cities—Los Angeles and Seattle—that have invested in LED street lighting.

  14. Light box for investigation of characteristics of optoelectronics detectors

    NASA Astrophysics Data System (ADS)

    Szreder, Agnieszka; Mazikowski, Adam

    2017-09-01

    In this paper, a light box for investigation of characteristics of optoelectronic detectors is described. The light box consists of an illumination device, an optical power sensor and a mechanical enclosure. The illumination device is based on four types of high-power light emitting diodes (LED): white light, red, green and blue. The illumination level can be varied for each LED independently by the driver and is measured by optical power sensor. The mechanical enclosure provides stable mounting points for the illumination device, sensor and the examined detector and protects the system from external light, which would otherwise strongly influence the measurement results. Uniformity of illumination distribution provided by the light box for all colors is good, making the measurement results less dependent on the position of the examined detector. The response of optoelectronic detectors can be investigated using the developed light box for each LED separately or for any combination of up to four LED types. As the red, green and blue LEDs are rather narrow bandwidth sources, spectral response of different detectors can be examined for these wavelength ranges. The described light box can be used for different applications. Its primary use is in a student laboratory setup for investigation of characteristics of optoelectronic detectors. Moreover, it can also be used in various colorimetric or photographic applications. Finally, it will be used as a part of demonstrations from the fields of vision and color, performed during science fairs and outreach activities increasing awareness of optics and photonics.

  15. Degree of conversion of two lingual retainer adhesives cured with different light sources.

    PubMed

    Usümez, Serdar; Büyükyilmaz, Tamer; Karaman, Ali Ihya; Gündüz, Beniz

    2005-04-01

    The aim of this study was to evaluate the degree of conversion (DC) of two lingual retainer adhesives, Transbond Lingual Retainer (TLR) and Light Cure Retainer (LCR), cured with a fast halogen light, a plasma arc light and a light-emitting diode (LED) at various curing times. A conventional halogen light served as the control. One hundred adhesive samples (five per group) were cured for 5, 10 or 15 seconds with an Optilux 501 (fast halogen light), for 3, 6 or 9 seconds with a Power Pac (plasma arc light), or for 10, 20 or 40 seconds with an Elipar Freelight (LED). Samples cured for 40 seconds with the conventional halogen lamp were used as the controls. Absorbance peaks were recorded using Fourier transform infrared (FT-IR) spectroscopy. DC values were calculated. Data were analysed using Kruskal-Wallis and Mann-Whitney U-tests. For the TLR, the highest DC values were achieved in 6 and 9 seconds with the plasma arc light. Curing with the fast halogen light for 15 seconds and with the LED for 40 seconds produced statistically similar DC values, but these were lower than those with the plasma arc light. All of these light exposures yielded a statistically significantly higher DC than 40 seconds of conventional halogen light curing. The highest DC value for the LCR was achieved in 15 seconds with the fast halogen light, then the plasma arc light curing for 6 seconds. These two combinations produced a statistically significantly higher DC when compared with the 40 seconds of conventional halogen light curing. The lowest DC for the LCR was achieved with 10 seconds of LED curing. The overall DC of the LCR was significantly higher than that of the TLR. The results suggest that a similar or higher DC than the control values could be achieved in 6-9 seconds by plasma arc curing, in 10-15 seconds by fast halogen curing or in 20 seconds by LED curing.

  16. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach

    PubMed Central

    Mohamed, Moumouni Guero; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael

    2017-01-01

    With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life. PMID:28773176

  17. Characteristics of GaN-based 500 nm light-emitting diodes with embedded hemispherical air-cavity structure

    NASA Astrophysics Data System (ADS)

    Zhang, Minyan; Li, Yufeng; Li, Qiang; Su, Xilin; Wang, Shuai; Feng, Lungang; Tian, Zhenhuan; Guo, Maofeng; Zhang, Guowei; Ding, Wen; Yun, Feng

    2018-03-01

    GaN-based 500 nm light-emitting diodes (LEDs) with an air-cavity formed on a laser-drilled hemispherical patterned sapphire substrate (HPSS) were investigated. The cross-section transmission electron microscopy image of the HPSS-LED epilayer indicated that most of the threading dislocations were bent towards the lateral directions. It was found that in InGaN/GaN multiple quantum wells (MQWs) of HPSS-LEDs, there were fewer V-pits and lower surface roughness than those of conventional LEDs which were grown on flat sapphire substrates (FSSs). The high-resolution x-ray diffraction showed that the LED grown on a HPSS has better crystal quality than that grown on a FSS. Compared to FSS-LEDs, the photoluminescence (PL) intensity, the light output power, and the external quantum efficiency at an injected current of 20 mA for the HPSS-LED were enhanced by 81%, 65%, and 62%, respectively, such enhancements can be attributed to better GaN epitaxial quality and higher light extraction. The slightly peak wavelength blueshift of electroluminescence for the HPSS-LED indicated that the quantum confined Stark effect in the InGaN/GaN MQWs has been reduced. Furthermore, it was found that the far-field radiation patterns of the HPSS-LED have smaller view angles than that of the FSS-LED. In addition, the scanning near field optical microscope results revealed that the area above the air-cavity has a larger PL intensity than that without an air-cavity, and the closer to the middle of the air-cavity the stronger the PL intensity. These nano-light distribution findings were in good agreement with the simulation results obtained by the finite difference time domain method.

  18. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  19. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    NASA Astrophysics Data System (ADS)

    Grandjean, N.

    2010-09-01

    Generating white light from electricity with maximum efficacy has been a long quest since the first incandescent lamp was invented by Edison at the end of the 19th century. Nowadays, semiconductors are making reality the holy grail of converting electrons into photons with 100% efficiency and with colours that can be mixed for white light illumination. The revolution in solid-state lighting (SSL) dates to 1994 when Nakamura reported the first high-brightness blue LED based on GaN semiconductors. Then, white light was produced by simply combining a blue dye with a yellow phosphor. After more than a decade of intensive research the performance of white LEDs is quite impressive, beating by far the luminous efficacy of compact fluorescent lamps. We are likely close to replacing our current lighting devices by SSL lamps. However, there are still technological and fabrication cost issues that could delay large market penetration of white LEDs. Interestingly, SSL may create novel ways of using light that could potentially limit electricity saving. Whatever the impact of SSL, it will be significant on our daily life. The purpose of this special cluster issue is to produce a snapshot of the current situation of SSL from different viewing angles. In an introductory paper, Tsao and co-workers from Sandia National Laboratories, present an energy-economics perspective of SSL considering societal changes and SSL technology evolution. In a second article, Narukawa et al working at Nichia Corporation—the pioneer and still the leading company in SSL—describe the state of the art of current research products. They demonstrate record performance with white LEDs exhibiting luminous efficacy of 183 lm W-1 at high-current injection. Then, a series of topical papers discuss in detail various aspects of the physics and technology of white LEDs Carrier localization in InGaN quantum wells has been considered the key to white LEDs' success despite the huge density of defects. A comprehensive review of the different localization mechanisms and their implication for internal quantum efficiency (IQE) is proposed by Oliver and co-workers from Cambridge University. When discussing IQE in InGaN-based LEDs, the efficiency droop at high-current injection always emerges, which is a major concern for the future of SSL technology. Here, a collaborative work between Samsung and the Gwangju Institute of Science and Technology (Korea) proves that a specific design of the active region can limit this detrimental effect. Once the issue of the IQE is solved, one still has to let the photons out of the chip. Matioli and Weisbuch from the University of California at Santa Barbara introduce the use of photonic crystals (PhCs) to improve light extraction efficiency. They describe different approaches to overcoming the main limitation of LEDs when implementing surface PhCs. The technology of SSL, and in particular of colour rendering, is tackled by Zukauskas et al who studied in detail different white light sources. They show that extreme colour-fidelity indices need to cover the entire spectrum, with a broad-band at 530-610 nm and a component beyond 610 nm. Then, the reliability of GaN-based LEDs is discussed in the paper of Meneghesso and co-workers. The authors consider the most important physical mechanisms that are (i) the degradation of the active layer of LEDs, (ii) the degradation of the package/phosphor system, (iii) the failure of GaN-based LEDs against electrostatic discharge. Finally, GaN LEDs on silicon developed in the group of Egawa at the Nagoya Institute of Technology are presented. This technology could allow a significant decrease in the fabrication cost of white LEDs.

  20. Scalable Testing Platform for CMOS Read In Integrated Circuits

    DTIC Science & Technology

    2016-03-31

    light - emitting - diode (SLED) current on a monitor out (MOUT) pin. The MOUT pin can produce voltage or current readings, depending on the test case. The...in it means the SPI communication works correctly. Lighting up LEDs: All the RIICs have the corner pixels brought out to output pins. Thus...external LEDs can be connected to pins in order to test the behavior of the pixel drive circuitry. Lighting up LEDs is a great visual representation that

Top