44. ARAIII Fuel oil tank ARA710. Camera facing west. Perimeter ...
44. ARA-III Fuel oil tank ARA-710. Camera facing west. Perimeter fence at left side of view. Gable-roofed building beyond tank on right is ARA-622. Gable-roofed building beyond tank on left is ARA-610. Ineel photo no. 3-16. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
LOFT, TAN650. Camera facing southeast. From left to right: stack ...
LOFT, TAN-650. Camera facing southeast. From left to right: stack in distance, pre-amp wing, dome, north side of loft "service building." Note poured concrete wall of pre-amp wing on lower section; pumice block above. Date: May 2004. INEEL negative no. HD-39-19-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LOFT. Containment building (TAN650) detail. Camera facing east. Service building ...
LOFT. Containment building (TAN-650) detail. Camera facing east. Service building corner is at left of view above personnel access. Round feature at left of dome is tank that will contain borated water. Metal stack at right of view. Date: 1973. INEEL negative no. 73-1085 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A&M. A&M building (TAN607). Camera facing east. From left to ...
A&M. A&M building (TAN-607). Camera facing east. From left to right, pool section, hot shop, cold shop, and machine shop. Biparting doors to hot shop are in open position behind shroud. Four rail tracks lead to hot shop and cold shop. Date: August 20, 1954. INEEL negative no. 11706 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR HEAT EXCHANGER BUILDING, TRA644. SOUTH SIDE. CAMERA FACING NORTH. ...
ETR HEAT EXCHANGER BUILDING, TRA-644. SOUTH SIDE. CAMERA FACING NORTH. NOTE POURED CONCRETE WALLS. ETR IS AT LEFT OF VIEW. NOTE DRIVEWAY INSET AT RIGHT FORMED BY DEMINERALIZER WING AT RIGHT. SOUTHEAST CORNER OF ETR, TRA-642, IN VIEW AT UPPER LEFT. INL NEGATIVE NO. HD46-36-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
MTR STACK, TRA710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY ...
MTR STACK, TRA-710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY FENCE AND SECURITY LIGHTING IN VIEW AT LEFT. INL NEGATIVE NO. HD52-1-1. Mike Crane, Photographer, 5/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Cooling Tower contextual view. Camera facing southwest. West wing ...
PBF Cooling Tower contextual view. Camera facing southwest. West wing and north facade (rear) of Reactor Building (PER-620) is at left; Cooling Tower to right. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4913 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ADM. Change House (TAN606) as completed. Camera facing northerly. Note ...
ADM. Change House (TAN-606) as completed. Camera facing northerly. Note proximity to shielding berm. Part of hot shop (A&M Building, TAN-607) at left of view beyond berm. Date: October 29, 1954. INEEL negative no. 12705 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...
PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
1. BUILDING L (LEFT OF CENTER) EAST END AND SOUTH ...
1. BUILDING L (LEFT OF CENTER) EAST END AND SOUTH SIDE (BUILDING K IS ON RIGHT, BUILDING M IS ON LEFT), CAMERA FACING NORTHWEST - Buffalo Ranch, Office Building, 2418 MacArthur Boulevard, Irvine, Orange County, CA
A&M. Hot liquid waste treatment building (TAN616). Camera facing southwest. ...
A&M. Hot liquid waste treatment building (TAN-616). Camera facing southwest. Oblique view of east and north walls. Note three corrugated pipes at lower left indicating location of underground hot waste storage tanks. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Building, roof, with machinery penthouses on left and harbor control ...
Building, roof, with machinery penthouses on left and harbor control tower on right. Camera facing south - Naval Supply Center, Broadway Complex, Warehouse, 911 West Broadway, San Diego, San Diego County, CA
ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTHEAST. WATER HEAT EXCHANGER ...
ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTHEAST. WATER HEAT EXCHANGER IS IN LEFT FOREGROUND. A PARTIALLY ASSEMBLED PLANT AIR CONDITIONER IS AT CENTER. WORKERS AT RIGHT ASSEMBLE 4000 HORSEPOWER COMPRESSOR DRIVE MOTOR AT RIGHT. INL NEGATIVE NO. 56-3714. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
View of steel warehouses (building 710 second in on left); ...
View of steel warehouses (building 710 second in on left); camera facing west. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA
ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETRCRITICAL ...
ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETR-CRITICAL FACILITY BUILDING, ETR CONTROL BUILDING (ATTACHED TO HIGH-BAY ETR), ETR, ONE-STORY SECTION OF ETR BUILDING, ELECTRICAL BUILDING, COOLING TOWER PUMP HOUSE, COOLING TOWER. COMPRESSOR AND HEAT EXCHANGER BUILDING ARE PARTLY IN VIEW ABOVE ETR. DARK-COLORED DUCTS PROCEED FROM GROUND CONNECTION TO ETR WASTE GAS STACK. OTHER STACK IS MTR STACK WITH FAN HOUSE IN FRONT OF IT. RECTANGULAR STRUCTURE NEAR TOP OF VIEW IS SETTLING BASIN. INL NEGATIVE NO. 56-4102. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
View of steel warehouses (from left: building 807, 808, 809, ...
View of steel warehouses (from left: building 807, 808, 809, 810, 811); camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA
PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...
PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ENGINEERING TEST REACTOR (ETR) BUILDING, TRA642. CONTEXTUAL VIEW, CAMERA FACING ...
ENGINEERING TEST REACTOR (ETR) BUILDING, TRA-642. CONTEXTUAL VIEW, CAMERA FACING EAST. VERTICAL METAL SIDING. ROOF IS SLIGHTLY ELEVATED AT CENTER LINE FOR DRAINAGE. WEST SIDE OF ETR COMPRESSOR BUILDING, TRA-643, PROJECTS TOWARD LEFT AT FAR END OF ETR BUILDING. INL NEGATIVE NO. HD46-37-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Contextual view showing H1 on left and H270 in background; ...
Contextual view showing H1 on left and H270 in background; camera facing north. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Contextual view showing building 926 north wing at left and ...
Contextual view showing building 926 north wing at left and hospital historic district at right; camera facing north. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
ETR, TRA642, CAMERA IS BELOW, BUT NEAR THE CEILING OF ...
ETR, TRA-642, CAMERA IS BELOW, BUT NEAR THE CEILING OF THE GROUND FLOOR, AND LOOKS DOWN TOWARD THE CONSOLE FLOOR. CAMERA FACES WESTERLY. THE REACTOR PIT IS IN THE CENTER OF THE VIEW. BEYOND IT TO THE LEFT IS THE SOUTH SIDE OF THE WORKING CANAL. IN THE FOREGROUND ON THE RIGHT IS THE SHIELDING FOR THE PROCESS WATER TUNNEL AND PIPING. SPIRAL STAIRCASE AT LEFT OF VIEW. INL NEGATIVE NO. 56-2237. Jack L. Anderson, Photographer, 7/6/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ADM. Aerial view of administration area. Camera facing westerly. From ...
ADM. Aerial view of administration area. Camera facing westerly. From left to right in foregound: Substation (TAN-605), Warehouse (TAN-628), Gate House (TAN-601), Administration Building (TAN-602). Left to right middle ground: Service Building (TAN-603), Warehouse (later known as Maintenance Shop or Craft Shop, TAN-604), Water Well Pump Houses, Fuel Tanks and Fuel Pump Houses, and Water Storage Tanks. Change House (TAN-606) on near side of berm. Large building beyond berm is A&M. Building, TAN-607. Railroad tracks beyond lead from (unseen) turntable to the IET. Date: June 6, 1955. INEEL negative no. 13201 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, ...
OVERVIEW OF CENTRAL HEATING PLANT, WITH OIL STORAGE ON LEFT, BOILER BUILDING ON RIGHT, SOUTH AND EAST ELEVATIONS, CAMERA FACING NORTH. - New Haven Rail Yard, Central Steam Plant and Oil Storage, Vicinity of Union Avenue, New Haven, New Haven County, CT
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION ...
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION FOR MTR CANAL. CAISSONS FLANK EACH SIDE. COUNTERFORT (SUPPORT PERPENDICULAR TO WHAT WILL BE THE LONG WALL OF THE CANAL) RESTS ATOP LEFT CAISSON. IN LOWER PART OF VIEW, DRILLERS PREPARE TRENCHES FOR SUPPORT BEAMS THAT WILL LIE BENEATH CANAL FLOOR. INL NEGATIVE NO. 739. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Have a Nice Spring! MOC Revisits "Happy Face" Crater
2005-05-16
Smile! Spring has sprung in the martian southern hemisphere. With it comes the annual retreat of the winter polar frost cap. This view of "Happy Face Crater"--officially named "Galle Crater"--shows patches of white water ice frost in and around the crater's south-facing slopes. Slopes that face south will retain frost longer than north-facing slopes because they do not receive as much sunlight in early spring. This picture is a composite of images taken by the Mars Global Surveyor Mars Orbiter Camera (MOC) red and blue wide angle cameras. The wide angle cameras were designed to monitor the changing weather, frost, and wind patterns on Mars. Galle Crater is located on the east rim of the Argyre Basin and is about 215 kilometers (134 miles) across. In this picture, illumination is from the upper left and north is up. http://photojournal.jpl.nasa.gov/catalog/PIA02325
Contextual view showing building H70 at left with building H81 ...
Contextual view showing building H70 at left with building H81 at right in background; camera facing northeast. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
ADM. Tanks: from left to right: fuel oil tank, fuel ...
ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA ...
HOT CELL BUILDING, TRA-632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA FACING EASTERLY. HOT CELL BUILDING IS AT CENTER LEFT OF VIEW; THE LOW-BAY PROJECTION WITH LADDER IS THE TEST TRAIN ASSEMBLY FACILITY, ADDED IN 1968. MTR BUILDING IS IN LEFT OF VIEW. HIGH-BAY BUILDING AT RIGHT IS THE ENGINEERING TEST REACTOR BUILDING, TRA-642. INL NEGATIVE NO. HD46-32-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Cooling Tower and it Auxiliary Building (PER624) to left ...
PBF Cooling Tower and it Auxiliary Building (PER-624) to left of tower. Camera facing west and the east louvered face of the tower. Details include secondary coolant water riser piping and flow control valves (butterfly valves) to distribute water evenly to all sections of tower. Photographer: Holmes. Date: May, 20, 1970. INEEL negative no. 70-2322 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO ...
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO TOP: MTR, MTR SERVICE BUILDING, ETR CRITICAL FACILITY, ETR CONTROL BUILDING (ATTACHED TO ETR), ETR BUILDING (HIGH-BAY), COMPRESSOR BUILDING (ATTACHED AT LEFT OF ETR), HEAT EXCHANGER BUILDING (JUST BEYOND COMPRESSOR BUILDING), COOLING TOWER PUMP HOUSE, COOLING TOWER. OTHER BUILDINGS ARE CONTRACTORS' CONSTRUCTION BUILDINGS. INL NEGATIVE NO. 56-4105. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632. EAST END OF BUILDING. CAMERA FACING ...
HOT CELL BUILDING, TRA-632. EAST END OF BUILDING. CAMERA FACING WEST. TRUCK ENCLOSURE (1986) TO THE LEFT, SMALL ADDITION IN ITS SHADOW IS ENCLOSURE OVER METAL PORT INTO HOT CELL NO. 1 (THE OLDEST HOT CELL). NOTE PERSONNEL LADDER AND PLATFORM AT LOFT LEVEL USED WHEN SERVICING AIR FILTERS AND VENTS OF CELL NO. 1. INL NEGATIVE NO. HD46-32-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
REACTOR SERVICE BUILDING, TRA635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR ...
REACTOR SERVICE BUILDING, TRA-635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR WALL ENCLOSING STORAGE AND OFFICE SPACE ALONG THE WEST SIDE. AT RIGHT EDGE IS DOOR TO MTR BUILDING. FROM RIGHT TO LEFT, SPACE WAS PLANNED FOR A LOCKER ROOM, MTR ISSUE ROOM, AND STORAGE AREAS AND RELATED OFFICES. NOTE SECOND "MEZZANINE" FLOOR ABOVE. INL NEGATIVE NO. 10227. Unknown Photographer, 3/23/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Face recognition system for set-top box-based intelligent TV.
Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Park, Kang Ryoung
2014-11-18
Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer's face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer's face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively.
HOT CELL BUILDING, TRA632, INTERIOR. CELL 3, "HEAVY" CELL. CAMERA ...
HOT CELL BUILDING, TRA-632, INTERIOR. CELL 3, "HEAVY" CELL. CAMERA FACES WEST TOWARD BUILDING EXIT. OBSERVATION WINDOW AT LEFT EDGE OF VIEW. INL NEGATIVE NO. HD46-28-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A&M. Guard house (TAN638), contextual view. Built in 1968. Camera ...
A&M. Guard house (TAN-638), contextual view. Built in 1968. Camera faces south. Guard house controlled access to radioactive waste storage tanks beyond and to left of view. Date: February 4, 2003. INEEL negative no. HD-33-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR CRITICAL FACILITY, TRA654. CONTEXTUAL VIEW. CAMERA ON ROOF OF ...
ETR CRITICAL FACILITY, TRA-654. CONTEXTUAL VIEW. CAMERA ON ROOF OF MTR BUILDING AND FACING SOUTH. ETR AND ITS COOLANT BUILDING AT UPPER PART OF VIEW. ETR COOLING TOWER NEAR TOP EDGE OF VIEW. EXCAVATION AT CENTER IS FOR ETR CF. CENTER OF WHICH WILL CONTAIN POOL FOR REACTOR. NOTE CHOPPER TUBE PROCEEDING FROM MTR IN LOWER LEFT OF VIEW, DIAGONAL TOWARD LEFT. INL NEGATIVE NO. 56-4227. Jack L. Anderson, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETRMTR MECHANICAL SERVICES BUILDING, TRA653, INTERIOR. CAMERA IS INSIDE MEN'S ...
ETR-MTR MECHANICAL SERVICES BUILDING, TRA-653, INTERIOR. CAMERA IS INSIDE MEN'S LAVATORY AND SHOWER FACING SOUTHEAST. SHOWER AND TOILET STALLS ARE IN PLACE. ROUND COMMUNAL SINK AT LEFT. INL NEGATIVE NO. 57-3652. K. Mansfield, Photographer, 7/22/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...
6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA
70. VIEW OF UNIT 2 THROUGH ACCESS DOOR, LOOKING DOWN ...
70. VIEW OF UNIT 2 THROUGH ACCESS DOOR, LOOKING DOWN AT MAIN SHAFT. NOTE WELDER'S SIGNATURE IN SHADOWS IN UPPER LEFT CORNER AND PHOTOGRAPHER'S STROBE POWER CABLE IN LOWER RIGHT CORNER. ORIENTATION OF CAMERA IS FACING LEFT BANK, PERPENDICULAR TO RIVER FLOW - Swan Falls Dam, Snake River, Kuna, Ada County, ID
Power Burst Facility (PBF), PER620, contextual and oblique view. Camera ...
Power Burst Facility (PBF), PER-620, contextual and oblique view. Camera facing northwest. South and east facade. The 1980 west-wing expansion is left of center bay. Concrete structure at right is PER-730. Date: March 2004. INEEL negative no. HD-41-2-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
A&M. Hot liquid waste treatment building (TAN616), south side. Camera ...
A&M. Hot liquid waste treatment building (TAN-616), south side. Camera facing north. Personnel door at left side of wall. Partial view of outdoor stairway to upper level platform. Note concrete construction. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Overview in two parts: Right view showing orchard path on ...
Overview in two parts: Right view showing orchard path on left eucalyptus windbreak bordering knoll on right. Camera facing 278" west. - Goerlitz House, 9893 Highland Avenue, Rancho Cucamonga, San Bernardino County, CA
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...
ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera ...
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera facing southwesterly. Left to right: stack, entry building (TAN-624), door shroud, duct shroud and filter hatches, dome (painted white), pre-amp building, equipment and piping building, shielded control room (TAN-630), airplane hangar (TAN-629). Date: 1975. INEEL negative no. 75-3690 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
IET. Aerial view of project, 95 percent complete. Camera facing ...
IET. Aerial view of project, 95 percent complete. Camera facing east. Left to right: stack, duct, mobile test cell building (TAN-624), four-rail track, dolly. Retaining wall between mobile test building and shielded control building (TAN-620) just beyond. North of control building are tank building (TAN-627) and fuel-transfer pump building (TAN-625). Guard house at upper right along exclusion fence. Construction vehicles and temporary warehouse in view near guard house. Date: June 6, 1955. INEEL negative no. 55-1462 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Contextual view of Warner's Ranch. Second of three sequential views ...
Contextual view of Warner's Ranch. Second of three sequential views (from west to east) of the buildings in relation to the surrounding geography. Ranch house and trading post/barn on left. Note approximate location of Overland Trail crossing left to right. Camera facing north. - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
View of main terrace retaining wall with mature tree on ...
View of main terrace retaining wall with mature tree on left center, camera facing southeast - Naval Training Station, Senior Officers' Quarters District, Naval Station Treasure Island, Yerba Buena Island, San Francisco, San Francisco County, CA
View of steel warehouses at Gilmore Avenue (building 710 second ...
View of steel warehouses at Gilmore Avenue (building 710 second in on left); camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA
MTR BUILDING, TRA603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT ...
MTR BUILDING, TRA-603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT OF VIEW. CAMERA FACING NORTHWEST. LIGHT-COLORED PROJECTION AT LEFT IS ENGINEERING SERVICES BUILDING, TRA-635. SMALL CONCRETE BLOCK BUILDING AT CENTER OF VIEW IS FAST CHOPPER DETECTOR HOUSE, TRA-665. INL NEGATIVE NO. HD46-43-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Intelligent person identification system using stereo camera-based height and stride estimation
NASA Astrophysics Data System (ADS)
Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo
2005-05-01
In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.
1. GENERAL VIEW OF SLC3W SHOWING SOUTH FACE AND EAST ...
1. GENERAL VIEW OF SLC-3W SHOWING SOUTH FACE AND EAST SIDE OF A-FRAME MOBILE SERVICE TOWER (MST). MST IN SERVICE POSITION OVER LAUNCHER AND FLAME BUCKET. CABLE TRAYS BETWEEN LAUNCH OPERATIONS BUILDING (BLDG. 763) AND SLC-3W IN FOREGROUND. LIQUID OXYGEN APRON VISIBLE IMMEDIATELY EAST (RIGHT) OF MST; FUEL APRON VISIBLE IMMEDIATELY WEST (LEFT) OF MST. A PORTION OF THE FLAME BUCKET VISIBLE BELOW THE SOUTH FACE OF THE MST. CAMERA TOWERS VISIBLE EAST OF MST BETWEEN ROAD AND CABLE TRAY, AND SOUTH OF MST NEAR LEFT MARGIN OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
HOT CELL BUILDING, TRA632. CONTEXTUAL AERIAL VIEW OF HOT CELL ...
HOT CELL BUILDING, TRA-632. CONTEXTUAL AERIAL VIEW OF HOT CELL BUILDING, IN VIEW AT LEFT, AS YET WITHOUT ROOF. PLUG STORAGE BUILDING LIES BETWEEN IT AND THE SOUTH SIDE OF THE MTR BUILDING AND ITS WING. NOTE CONCRETE DRIVE BETWEEN ROLL-UP DOOR IN MTR BUILDING AND CHARGING FACE OF PLUG STORAGE. REACTOR SERVICES BUILDING (TRA-635) WILL COVER THIS DRIVE AND BUTT UP TO CHARGING FACE. DOTTED LINE IS ON ORIGINAL NEGATIVE. TRA PARKING LOT IN LEFT CORNER OF THE VIEW. CAMERA FACING NORTHWESTERLY. INL NEGATIVE NO. 8274. Unknown Photographer, 7/2/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A&M. Radioactive parts security storage warehouses: TAN648 on left, and ...
A&M. Radioactive parts security storage warehouses: TAN-648 on left, and dolly storage building, TAN-647, on right. Camera facing south. This was the front entry for the warehouse and the rear of the dolly storage building. Date: August 6, 2003. INEEL negative no. HD-36-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR, TRA642. ETR COMPLEX NEARLY COMPLETE. CAMERA FACES NORTHWEST, PROBABLY ...
ETR, TRA-642. ETR COMPLEX NEARLY COMPLETE. CAMERA FACES NORTHWEST, PROBABLY FROM TOP DECK OF COOLING TOWER. SHADOW IS CAST BY COOLING TOWER UNITS OFF LEFT OF VIEW. HIGH-BAY REACTOR BUILDING IS SURROUNDED BY ITS ATTACHED SERVICES: ELECTRICAL (TRA-648), HEAT EXCHANGER (TRA-644 WITH U-SHAPED YARD), AND COMPRESSOR (TRA-643). THE CONTROL BUILDING (TRA-647) ON THE NORTH SIDE IS HIDDEN FROM VIEW. AT UPPER RIGHT IS MTR BUILDING, TRA-603. INL NEGATIVE NO. 56-3798. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A&M. TAN607. Detail of fuel storage pool under construction. Camera ...
A&M. TAN-607. Detail of fuel storage pool under construction. Camera is on berm and facing northwest. Note depth of excavation. Formwork underway for floor and concrete walls of pool; wall between pool and vestibule. At center left of view, foundation for liquid waste treatment plant is poured. Date: August 25, 1953. INEEL negative no. 8541 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, NORTH HALF. CAMERA IS ...
ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, NORTH HALF. CAMERA IS NEAR NORTHWEST CORNER AND FACING SOUTH ALONG WEST CORRIDOR. STORAGE CANAL IS ALONG LEFT OF VIEW; PERIMETER WALL, ALONG RIGHT. CORRIDOR WAS ONE MEANS OF WALKING FROM NORTH TO SOUTH SIDE OF CONSOLE FLOOR. INL NEGATIVE NO. HD46-18-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Contextual view of Fyffe Avenue and Boone Drive. Dispensary (Naval ...
Contextual view of Fyffe Avenue and Boone Drive. Dispensary (Naval Medical Center Oakland and Dental Clinic San Francisco Branch Clinics, Building no. 417) is shown at left. Camera facing northwest. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA
PBF (PER620) interior of Reactor Room. Camera facing south from ...
PBF (PER-620) interior of Reactor Room. Camera facing south from stairway platform in southwest corner (similar to platform in view at left). Reactor was beneath water in circular tank. Fuel was stored in the canal north of it. Platform and apparatus at right is reactor bridge with control rod mechanisms and actuators. The entire apparatus swung over the reactor and pool during operations. Personnel in view are involved with decontamination and preparation of facility for demolition. Note rails near ceiling for crane; motor for rollup door at upper center of view. Date: March 2004. INEEL negative no. HD-41-3-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CAMERA IS AT MIDPOINT OF ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CAMERA IS AT MIDPOINT OF SOUTH CORRIDOR AND FACES EAST, OPPOSITE DIRECTION FROM VIEWS ID-33-G-98 AND ID-33-G-99. STEEL DOOR AT LEFT OPENS BY ROLLING IT INTO CORRIDOR ON RAILS. TANK AT FAR END OF CORRIDOR IS EMERGENCY CORE COOLING CATCH TANK FOR A TEST LOOP. INL NEGATIVE NO. HD46-30-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND ...
24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND 1920. CAMERA FACES SOUTH. VILLAGE IS TREE-COVERED AREA TO LEFT OF DAM AND POWERHOUSE. SUPERINTENDENT SAM GLASS'S ORCHARD IS DOWNSTREAM OF DAM ABOUT A QUARTER OF A MILE. - Swan Falls Village, Snake River, Kuna, Ada County, ID
A&M. TAN607. Southern sections added in expansion project of 1957. ...
A&M. TAN-607. Southern sections added in expansion project of 1957. Camera facing northwest. Concrete decontamination section on left end. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5337 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Center of parcel with picture tube wall along walkway. Leaning ...
Center of parcel with picture tube wall along walkway. Leaning Tower of Bottle Village at frame right; oblique view of Rumpus Room, remnants of Little Hut destroyed by Northridge earthquake at frame left. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
LPT. Aerial of low power test (TAN640 and 641) and ...
LPT. Aerial of low power test (TAN-640 and -641) and shield test (TAN-645 and -646) facilities. Camera facing north west. Low power test facility at right. Shield test facility at left. Flight engine test area in background at center left of view. Administrative and A&M areas at right. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-991 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
STS-86 Mission Specialist David Wolf in white room
NASA Technical Reports Server (NTRS)
1997-01-01
STS-86 Mission Specialist David A. Wolf, at center facing camera, prepares to enter the Space Shuttle Atlantis at Launch Pad 39A, with the assistance of Rick Welty, in foreground at center, United Space Alliance (USA) orbiter vehicle closeout chief; and closeout team members, in background from left, Jim Davis, NASA quality assurance specialist; and George Schramm, USA mechanical technician. STS-86 Mission Specialist Vladimir Georgievich Titov, in foreground at far left, is awaiting his turn.
Faces of glory: the left-cheek posing bias for medallists of Brazilian jiu-jitsu competitions.
Okubo, Matia
2018-04-20
Laboratory studies have shown that people tend to show the left side of their face when asked to broadly express emotions, while they tend to show the right side when asked to hide emotions. Because emotions are expressed more intensely in the left side of the face, it is hypothesized that an individual's intention to express or hide emotions biases the direction of lateral facial poses. The present study tested this hypothesis using photographic portraits of individuals experiencing emotional events in a naturalistic setting: the reception of medals in Brazilian jiu-jitsu competitions. Portrait photographs of Brazilian jiu-jitsu competitors were sourced online (N = 460) and were rated by two independent raters in terms of posing direction, emotional expression, and medal colour. Gold and silver medallists showed their left cheeks to the camera for commemorative photographs taken immediately after the medal ceremony. Positive emotions were expressed more often for gold medallists than silver ones. The left-cheek posing bias observed in the present study supports the hypothesis that the intended purpose of expressing or hiding emotions determines the direction of lateral posing biases, and extends the laboratory findings to situations in the real world.
PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN ...
PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN LEFT HALF OF VIEW. CAMERA IS IN NORTHWEST CORNER FACING SOUTHEAST. INL NEGATIVE NO. HD46-27-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF (PER620) interior. Detail view of actuator platform and control ...
PBF (PER-620) interior. Detail view of actuator platform and control rod mechanism. Camera facing easterly from floor level. Reactor pool at lower left of view. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...
View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
FAST CHOPPER BUILDING, TRA665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. ...
FAST CHOPPER BUILDING, TRA-665. CONTEXTUAL VIEW: CHOPPER BUILDING IN CENTER. MTR REACTOR SERVICES BUILDING,TRA-635, TO LEFT; MTR BUILDING TO RIGHT. CAMERA FACING WEST. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Contextual view of Warner's Ranch. Third of three sequential views ...
Contextual view of Warner's Ranch. Third of three sequential views (from west to east) of the buildings in relation to the surrounding geography. Note approximate location of Overland Trail crossing left to right. Camera facing northeast - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
View of structures at rear of parcel with 12' scale ...
View of structures at rear of parcel with 12' scale (in tenths). From right: edge of Round House, Pencil house, Shell House, edge of School House. Heart Shrine made from mortared car headlights at frame left. Camera facing east. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In this view from Level 5, wing platform, of Atlantis''' payload bay, the U.S. Lab Destiny can be seen near the bottom. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node of the ISS using the Shuttle'''s robot arm, seen here on the left with the help of an elbow camera, facing left. Measurements of the elbow camera revealed only a one-inch clearance from the U.S. Lab payload, which is under review. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. CAMERA IS IN ...
PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. CAMERA IS IN SOUTHEAST CORNER AND FACES NORTHWEST. CONTROL ROOM AT RIGHT. CRANE MONORAIL IS OVER FLOOR HATCHES AND FLOOR OPENINGS. SIX VALVE HANDWHEELS ALONG FAR WALL IN LEFT CENTER VIEW. SEAL TANK IS ON OTHER SIDE OF WALL; PROCESS WATER PIPES ARE BELOW VALVE WHEELS. NOTE CURBS AROUND FLOOR OPENINGS. INL NEGATIVE NO. HD46-26-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620) under construction. Aerial view with camera ...
PBF Reactor Building (PER-620) under construction. Aerial view with camera facing northeast. Steel framework is exposed for west wing and high bay. Concrete block siding on east wing. Railroad crane set up on west side. Note trenches proceeding from front of building. Left trench is for secondary coolant and will lead to Cooling Tower. Shorter trench will contain cables leading to control area. Photographer: Larry Page. Date: March 22, 1967. INEEL negative no. 67-5025 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...
HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Contextual view of Treasure Island from Yerba Buena Island, showing ...
Contextual view of Treasure Island from Yerba Buena Island, showing Palace of Fine and Decorative Arts (Building 3), far right, Hall of Transportation (Building 2), middle, and The Administration Building (Building 1), far left, Port of Trade Winds is in foreground, camera facing northwest - Golden Gate International Exposition, Treasure Island, San Francisco, San Francisco County, CA
Contextual view of Point Bonita Ridge, showing Bonita Ridge access ...
Contextual view of Point Bonita Ridge, showing Bonita Ridge access road retaining wall and location of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation (see stake at center left), camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA
Trench Reveals Two Faces of Soils
NASA Technical Reports Server (NTRS)
2004-01-01
This approximate true-color image mosaic from the panoramic camera on the Mars Exploration Rover Opportunity shows a trench dug by the rover in the vicinity of the 'Anatolia' region. Two imprints from the rover's Mossbauer spectrometer instrument were left in the exposed soils. Detailed comparisons between soils exposed at the surface and those found at depth reveal that surface soils have higher levels of hematite while subsurface soils show fine particles derived from basalt. The trench is approximately 11 centimeters deep. This image was taken on sol 81 with the panoramic camera's 430-, 530- and 750-nanometer filters.PBF Control Building (PER619). Interior of control room. Control console ...
PBF Control Building (PER-619). Interior of control room. Control console in center of room. Indicator panels along walls. Window shown in ID-33-F-120 is between control panels at left. Camera facing northwest. Date: May 2004. INEEL negative no. HD-41-7-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632, INTERIOR. WRIGHT 3TON HOIST ON EAST ...
HOT CELL BUILDING, TRA-632, INTERIOR. WRIGHT 3-TON HOIST ON EAST SIDE OF CELL 2. SIGN AT LEFT OF VIEW SAYS, "...DO NOT BRING FISSILE MATERIAL INTO AREA WITHOUT APPROVAL." CAMERA FACES NORTHWEST. INL NEGATIVE NO. HD46-29-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
16. ARAII Administration building ARA613. South (front) and east sides. ...
16. ARA-II Administration building ARA-613. South (front) and east sides. Camera facing northwest. Sign at left corner of building says, "Fuels and materials division, materials joining research and development laboratory." Part of south wall already has been demolished. Sign on roof railing says, "Danger--Abestos." Ineel photo no. 2-3. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
2005-01-01
18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes. Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringContextual view of Warner's Ranch. First of three sequential views ...
Contextual view of Warner's Ranch. First of three sequential views (from west to east) of the buildings in relation to the surrounding geography. Ranch House on right. Note approximate locations of Overland Trail on right and San Diego cutoff branching off to left. Camera facing northwest. - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
Snaptran2 experiment mounted on dolly being hauled by shielded locomotive ...
Snaptran-2 experiment mounted on dolly being hauled by shielded locomotive from IET towards A&M turntable. Note leads from experiment gathered at coupling bar in lower right of view. Another dolly in view at left. Camera facing southeast. Photographer: Page Comiskey. Date: August 25, 1965. INEEL negative no. 65-4503 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...
CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LPT. Shield test facility assembly and test building (TAN646). East ...
LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
SPERTI contextual view of instrument cell building, PER606. South facade. ...
SPERT-I contextual view of instrument cell building, PER-606. South facade. Camera facing northwest. PBF Cooling Tower in view at right. High bay of PBF Reactor Building, PER-602, is further to right. PBF-625 at left edge of view. Date: August 2003. INEEL negative no. HD-35-3-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Contextual view of Warner's Ranch (ranch house in center and ...
Contextual view of Warner's Ranch (ranch house in center and trading post/barn on right), showing San Felipe Road and orientation of buildings in San Jose Valley. Note approximate locations of Overland Trail (now paved highway) in front of house and San Diego cutoff (dirt road) on left. Camera facing northwest. - Warner Ranch, Ranch House, San Felipe Road (State Highway S2), Warner Springs, San Diego County, CA
Left Panorama of Spirit's Landing Site
NASA Technical Reports Server (NTRS)
2004-01-01
Left Panorama of Spirit's Landing Site
This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.40. ARAIII Prototype assembly and evaluation building ARA630. East end ...
40. ARA-III Prototype assembly and evaluation building ARA-630. East end and south side of building. Camera facing west. Roof railing is part of demolition preparations. Building beyond ARA-622 is ARA-621. In left of view is reactor building. ARA-607 is low-roofed portion, while high-bay portion is ARA-608. Ineel photo no. 3-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
91. ARAIII. GCRE reactor building (ARA608) at 48 percent completion. ...
91. ARA-III. GCRE reactor building (ARA-608) at 48 percent completion. Camera faces west end of building; shows roll-up door. High bay section on right view. Petro-chem heater stack extends above roof of low-bay section on left. Excavation for 13, 8 kv electrical conduit in foreground. January 20, 1959. Ineel photo no. 59-322. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
LPT. Aerial of low power test facility (TAN640 and 641) ...
LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Expedition 39 Crewmembers Inflight Portrait
2014-04-11
ISS039-E-011175 (11 April 2014) --- Inside the Zvezda service module on the Earth-orbiting International Space Station, the six Expedition 39 crew members face the camera during a call with Russian President Vladimir Putin. From left to right are NASA astronauts Rick Mastracchio and Steve Swanson, both flight engineers; Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and cosmonauts Alexander Skvortsov, Mikhail Tyurin and Oleg Artemyev, all flight engineers with Russia's Federal Space Agency (Roscosmos).
Expedition 39 Crewmembers Inflight Portrait
2014-04-11
ISS039-E-011174 (11 April 2014) --- Inside the Zvezda service module on the Earth-orbiting International Space Station, the six Expedition 39 crew members face the camera during a call with Russian President Vladimir Putin. From left to right are NASA astronauts Rick Mastracchio and Steve Swanson, both flight engineers; Commander Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), and cosmonauts Alexander Skvortsov, Mikhail Tyurin and Oleg Artemyev, all flight engineers with Russia's Federal Space Agency (Roscosmos).
ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...
ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Context View from 11' on ladder from southeast corner of ...
Context View from 11' on ladder from southeast corner of Bottle Village parcel, just inside fence. Doll Head Shrine at far left frame, Living Trailer (c.1960 "Spartanette") in center frame. Little Wishing Well at far right frame. Some shrines and small buildings were destroyed in the January 1994 Northridge earthquake, and only their perimeter walls and foundations exist. Camera facing north northwest. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
A new paradigm of oral cancer detection using digital infrared thermal imaging
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.
2016-03-01
Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.
SPERTI/PBF. Contextual aerial view after PBF had begun operating, but ...
SPERT-I/PBF. Contextual aerial view after PBF had begun operating, but prior to expansion of southwest corner of Reactor Building (PER-620). Camera facing northeast. Reactor Building in center of view. Cooling Tower (PER-720) to its left. Warehouse (PER-625) at lower left was built in 1966. SPERT-I Reactor Building (PER-605) and Instrument Cell Building (PER-604) at right of view. Buried cables and piping proceed from PBF toward lower edge of view to Control Building further south and out of view. Photographer: Farmer. Date: March 26, 1976. INEEL negative no. 76-1344 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
2006-01-01
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows several small, dark sand dunes and a small crater (about 1 kilometer in diameter) within a much larger crater (not visible in this image). The floor of the larger crater is rough and has been eroded with time. The floor of the smaller crater contains windblown ripples. The steep faces of the dunes point to the east (right), indicating that the dominant winds blew from the west (left). This scene is located near 38.5 S, 347.1 W, and covers an area approximately 3 km (1.9 mi) wide. Sunlight illuminates the landscape from the upper left. This southern autumn image was acquired on 1 July 2006.DEMINERALIZER BUILDING, TRA608. CAMERA IS ON RAW WATER TOWER AND ...
DEMINERALIZER BUILDING, TRA-608. CAMERA IS ON RAW WATER TOWER AND FACES WEST. STEAM PLANT, TRA-609, AT UPPER EDGE OF VIEW. ABSENCE OF ROOF EXPOSES FIVE-BAY STRUCTURE AND INTERIOR DIVISION OF SPACE. CORRIDOR AT WEST END OF BUILDING WILL SEPARATE LABORATORY AND OFFICE SPACE FROM POTABLE WATER TANKS. ALONG NORTH WALL ARE SPACES FOR CATION AND ANION EXCHANGE UNITS. PENTHOUSE WILL ENCLOSE DEGASSIFIER. TANK AT LEFT (SOUTH) OF BUILDING STORES DEMINERALIZED WATER. NOTE BRINE STORAGE PIT, TRA-631, AT RIGHT OF VIEW, ABOVE PAIR OF CAUSTIC STORAGE TANKS. NOTE TRENCHES FOR BURIED WATER PIPES. INL NEGATIVE NO. 2732. Unknown Photographer, 6/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...
HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LOFT. Containment building (TAN650) with fourrail tracks in place. Stack ...
LOFT. Containment building (TAN-650) with four-rail tracks in place. Stack has been erected. Curved shroud over doorway and to the right is weather protection for railroad door seen in HAER photo ID-33-E-367. Motor-operated door rolls on wheels to open and close. Service portions of containment building can be seen at rear of dome on left and right. Camera facing north. Date: 1973. INEEL negative no. 73-1600 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Crew of the first manned Apollo mission practice water egress procedures
NASA Technical Reports Server (NTRS)
1966-01-01
Prime crew for the first manned Apollo mission relax in a life raft during water egress training in the Gulf of Mexico with a full scale boilerplate model of their spacecraft. Left to right, are Astronauts Roger B. Chaffee, pilot, Virgil I. Grissom, command pilot, and Edward H. White II (facing camera), senior pilot. In background is the 'Duchess', a yacht owned by La Porte businessman Paul Barkley and provided by him as a press boat for newsmen covering the training.
STS-135 crew during AEM (Animal Enclosure Module) training
2011-03-25
JSC2011-E-029132 (25 March 2011) --- STS-135 crew members participate in an Animal Enclosure Module (AEM) training session in the Jake Garn Simulation and Training Facility at NASA's Johnson Space Center. Pictured from the left (facing camera) are NASA astronauts Rex Walheim and Sandy Magnus, both mission specialists; and Chris Ferguson, commander; along with Doug Hurley (right foreground), pilot. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
HOT CELL BUILDING, TRA632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL ...
HOT CELL BUILDING, TRA-632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL NO. 2 FROM STAIRWAY ALONG NORTH WALL. OBSERVATION WINDOW ALONG WEST SIDE BENEATH "CELL 2" SIGN. DOORWAY IN LEFT OF VIEW LEADS TO CELL 1 WORK AREA OR TO EXIT OUTDOORS TO NORTH. RADIATION DETECTION MONITOR TO RIGHT OF DOOR. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-28-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Schneider, Tobias M.; Carbon, Claus-Christian
2017-01-01
Taking selfies is now becoming a standard human habit. However, as a social phenomenon, research is still in the fledgling stage and the scientific framework is sparse. Selfies allow us to share social information with others in a compact format. Furthermore, we are able to control important photographic and compositional aspects, such as perspective, which have a strong impact on the assessment of a face (e.g., demonstrated by the height-weight illusion, effects of gaze direction, faceism-index). In Study 1, we focused on the impact of perspective (left/right hemiface, above/below vs. frontal presentation) on higher cognitive variables and let 172 participants rate the perceived attractiveness, helpfulness, sympathy, dominance, distinctiveness, and intelligence, plus important information on health issues (e.g., body weight), on the basis of 14 3D faces. We could show that lateral snapshots yielded higher ratings for attractiveness compared to the classical frontal view. However, this effect was more pronounced for left hemifaces and especially female faces. Compared to the frontal condition, 30° right hemifaces were rated as more helpful, but only for female faces while faces viewed from above were perceived as significant less helpful. Direct comparison between left vs. right hemifaces revealed no effect. Relating to sympathy, we only found a significant effect for 30° right male hemifaces, but only in comparison to the frontal condition. Furthermore, female 30° right hemifaces were perceived as more intelligent. Relating to body weight, we replicated the so-called “height-weight illusion.” Other variables remained unaffected. In Study 2, we investigated the impact of a typical selfie-style condition by presenting the respective faces from a lateral (left/right) and tilted (lower/higher) vantage point. Most importantly, depending on what persons wish to express with a selfie, a systematic change of perspective can strongly optimize their message; e.g., increasing their attractiveness by shooting from above left, and in contrast, decreasing their expressed helpfulness by shooting from below. We could further extent past findings relating to the height-weight illusion and showed that an additional rotation of the camera positively affected the perception of body weight (lower body weight). We discuss potential explanations for perspective-related effects, especially gender-related ones. PMID:28649219
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-356, 10 May 2003
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick mantle of dust covering lava flows north of Pavonis Mons so well that the flows are no longer visible. Flows are known to occur here because of the proximity to the volcano, and such flows normally have a very rugged surface. Fine dust, however, has settled out of the atmosphere over time and obscured the flows from view. The cliff at the top of the image faces north (up), the cliff in the middle of the image faces south (down), and the rugged slope at the bottom of the image faces north (up). The dark streak at the center-left was probably caused by an avalanche of dust sometime in the past few decades. The image is located near 4.1oN, 111.3oW. Sunlight illuminates the scene from the right/lower right.MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...
MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
92. ARAIII. Overall view of GCRE area in 1959. From ...
92. ARA-III. Overall view of GCRE area in 1959. From left to right: ARA-607 (control building), ARA-608 (with high-bay, reactor building), ARA-610 (service building), ARA-609 (guard house), ARA-709 (water storage tank) ARA-710 in front of ARA-709 (fuel oil tank), ARA-611 (well pumphouse), and the cooling tower. Note petro-chem stack and other stacks emerging from reactor building. Camera facing northeast. August 1959. Ineel photo no. 59-4444. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
1. Context view includes Building 59 (second from left). Camera ...
1. Context view includes Building 59 (second from left). Camera is pointed ENE along Farragut Aveune. Buildings on left side of street are, from left: Building 856, Building 59 and Building 107. On right side of street they are, from right; Building 38, Building 452 and Building 460. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
Method used to test the imaging consistency of binocular camera's left-right optical system
NASA Astrophysics Data System (ADS)
Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui
2016-09-01
To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.
Deep neural network features for horses identity recognition using multiview horses' face pattern
NASA Astrophysics Data System (ADS)
Jarraya, Islem; Ouarda, Wael; Alimi, Adel M.
2017-03-01
To control the state of horses in the born, breeders needs a monitoring system with a surveillance camera that can identify and distinguish between horses. We proposed in [5] a method of horse's identification at a distance using the frontal facial biometric modality. Due to the change of views, the face recognition becomes more difficult. In this paper, the number of images used in our THoDBRL'2015 database (Tunisian Horses DataBase of Regim Lab) is augmented by adding other images of other views. Thus, we used front, right and left profile face's view. Moreover, we suggested an approach for multiview face recognition. First, we proposed to use the Gabor filter for face characterization. Next, due to the augmentation of the number of images, and the large number of Gabor features, we proposed to test the Deep Neural Network with the auto-encoder to obtain the more pertinent features and to reduce the size of features vector. Finally, we performed the proposed approach on our THoDBRL'2015 database and we used the linear SVM for classification.
Face detection assisted auto exposure: supporting evidence from a psychophysical study
NASA Astrophysics Data System (ADS)
Jin, Elaine W.; Lin, Sheng; Dharumalingam, Dhandapani
2010-01-01
Face detection has been implemented in many digital still cameras and camera phones with the promise of enhancing existing camera functions (e.g. auto exposure) and adding new features to cameras (e.g. blink detection). In this study we examined the use of face detection algorithms in assisting auto exposure (AE). The set of 706 images, used in this study, was captured using Canon Digital Single Lens Reflex cameras and subsequently processed with an image processing pipeline. A psychophysical study was performed to obtain optimal exposure along with the upper and lower bounds of exposure for all 706 images. Three methods of marking faces were utilized: manual marking, face detection algorithm A (FD-A), and face detection algorithm B (FD-B). The manual marking method found 751 faces in 426 images, which served as the ground-truth for face regions of interest. The remaining images do not have any faces or the faces are too small to be considered detectable. The two face detection algorithms are different in resource requirements and in performance. FD-A uses less memory and gate counts compared to FD-B, but FD-B detects more faces and has less false positives. A face detection assisted auto exposure algorithm was developed and tested against the evaluation results from the psychophysical study. The AE test results showed noticeable improvement when faces were detected and used in auto exposure. However, the presence of false positives would negatively impact the added benefit.
Evidence for Recent Liquid Water on Mars: 'Dry' Processes on One Slope; 'Wet' Processes on Another
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site]
How can martian gullies--thought to be caused in part by seepage and runoff of liquid water--be distinguished from the more typical, 'dry' slope erosion processes that also occur on Mars? For one thing, most--though not all--of the gully landforms occur on slopes that face away from the martian equator and toward the pole. For another, slopes that face toward the equator exhibit the same types of features as seen on nearly every other non-gullied slope on Mars.The example shown here comes from northwestern Elysium Planitia in the martian northern hemisphere. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution view (A, left) shows a portion of a 10 kilometer-(6.2 mi)-diameter meteor impact crater at a resolution of about 9 meters (29.5 ft) per pixel. The crater is shown in the context image (B, middle). The north-facing (or, pole-ward) slope in the MOC view is shadowed because sunlight illuminates the scene from the lower left. In this shadowed area, a series of martian gullies--defined by their erosional alcoves, deep channels, and apron deposits--are seen. On the sunlit south-facing (or equator-ward) slope, a scene more typical of most martian impact craters is present--the upper slopes show layered bedrock, the lower slopes show light-toned streaks of dry debris that has slid down the slope forming talus deposits that are distinctly different from the lobe-like form of gully aprons. The picture in (C) has been rotated so that the two slopes--one with gullies (right) and one without (left)--can be compared.The crater is located at 36.7oN, 252.3oW. The MOC image was acquired in November 1999 and covers an area 3 km (1.9 mi) wide by 14 km (8.7 mi) long; north is toward the upper right (in A) and it is illuminated by sunlight from the lower left. The Viking 1 orbiter context image (B) was obtained in 1978 and is illuminated from the left; north is up. The MOC image has been rotated in the Explanatory Figure (C) such that north is toward the upper left, illumination is from the lower right.Ranging Apparatus and Method Implementing Stereo Vision System
NASA Technical Reports Server (NTRS)
Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system for use in telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a left and right video camera mounted on a camera platform, and a remotely positioned operator. The position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. A laser is provided between the left and right video camera and is directed by the user to point to a target device. The images produced by the left and right video cameras are processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. The horizontal disparity between the two processed images is calculated for use in a stereometric ranging analysis from which range is determined.
Thoma, Patrizia; Soria Bauser, Denise; Suchan, Boris
2013-08-30
This article introduces the freely available Bochum Emotional Stimulus Set (BESST), which contains pictures of bodies and faces depicting either a neutral expression or one of the six basic emotions (happiness, sadness, fear, anger, disgust, and surprise), presented from two different perspectives (0° frontal view vs. camera averted by 45° to the left). The set comprises 565 frontal view and 564 averted view pictures of real-life bodies with masked facial expressions and 560 frontal and 560 averted view faces which were synthetically created using the FaceGen 3.5 Modeller. All stimuli were validated in terms of categorization accuracy and the perceived naturalness of the expression. Additionally, each facial stimulus was morphed into three age versions (20/40/60 years). The results show high recognition of the intended facial expressions, even under speeded forced-choice conditions, as corresponds to common experimental settings. The average naturalness ratings for the stimuli range between medium and high. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Computerised anthropomorphometric analysis of images: case report.
Ventura, F; Zacheo, A; Ventura, A; Pala, A
2004-12-02
The personal identification of living subjects through video filmed images can occasionally be necessary, particularly in the following circumstances: (1) the need to identify unknown subjects by comparing two-dimensional images of someone of known identity with the subject. (2) The need to identify subjects taken in photographs or recorded on video camera by using a comparison with individuals of known identity. The final aim of our research was that of analysing a video clip of a bank robbery and to determine whether one of the subjects was identifiable with one of the suspects. Following the correct methodology for personal identification, the original videotape was first analysed, relating to the robbery carried out in the bank so as to study the characteristics of the criminal action and to pinpoint the best scenes for an antropomorphometrical analysis. The scene of the crime was therefore reconstructed by bringing the suspect back to the bank where the robbery took place, who was then filmed with the same closed circuit video cameras and made to assume positions as close as possible to those of the bank robber to be identified. Taking frame no. 17, points of comparable similarity were identified on the face and right ear of the perpetrator of the crime and the same points of similarity identified on the face of the suspect: right and left eyebrows, right and left eyes, "glabella", nose, mouth, chin, fold between nose and upper lip, right ear, elix, tragus,"fossetta", "conca" and lobule. After careful comparative morphometric computer analysis, it was concluded that none of the 17 points of similarity showed the same anthropomorphology (points of negative similarity). It is reasonable to sustain that 17 points of negative similarity (or non coincidental points) is sufficient to exclude the identity of the person compared with the other.
On facial asymmetry and self-perception.
Lu, Stephen M; Bartlett, Scott P
2014-06-01
Self-perception has been an enduring human concern since ancient times and remains a significant component of the preoperative and postoperative consultation. Despite modern technological attempts to reproduce the first-hand experience, there is no perfect substitute for human, stereoscopic, three-dimensional vision in evaluating appearance. Nowadays, however, the primary tools available to a patient for examining his or her own appearance, particularly the face, are photographs and mirrors. Patients are often unaware of how cameras and photographs can distort and degrade image quality, leading to an inaccurate representation of true appearance. Everyone knows that mirrors reverse an image, left and right, and most people recognize their own natural facial asymmetry at some level. However, few realize that emotions are not only expressed unequally by the left and right sides of the face but also perceived unequally by others. The impact and effect of this "facedness" is completely reversed by mirrors, potentially creating a significant discrepancy between what a patient perceives of himself or herself and what the surgeon or other third party sees. This article ties together the diverse threads leading to this problem and suggests several ways of mitigating the issue through technology and patient counseling.
Interior view showing south entrance; camera facing south. Mare ...
Interior view showing south entrance; camera facing south. - Mare Island Naval Shipyard, Machine Shop, California Avenue, southwest corner of California Avenue & Thirteenth Street, Vallejo, Solano County, CA
PBF Reactor Building (PER620). Camera faces southeast. Concrete placement will ...
PBF Reactor Building (PER-620). Camera faces southeast. Concrete placement will leave opening for neutron camera to be installed later. Note vertical piping within rebar. Photographer: John Capek. Date: July 6, 1967. INEEL negative no. 67-3514 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
2016-03-17
This enhanced color view of Pluto's surface diversity was created by merging Ralph/Multispectral Visible Imaging Camera (MVIC) color imagery (650 meters per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 meters per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice also occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The scene in this image is 260 miles (420 kilometers) wide and 140 miles (225 kilometers) from top to bottom; north is to the upper left. http://photojournal.jpl.nasa.gov/catalog/PIA20534
VIEW OF EAST ELEVATION; CAMERA FACING WEST Mare Island ...
VIEW OF EAST ELEVATION; CAMERA FACING WEST - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
VIEW OF SOUTH ELEVATION; CAMERA FACING NORTH Mare Island ...
VIEW OF SOUTH ELEVATION; CAMERA FACING NORTH - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
VIEW OF WEST ELEVATION: CAMERA FACING NORTHEAST Mare Island ...
VIEW OF WEST ELEVATION: CAMERA FACING NORTHEAST - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
VIEW OF NORTH ELEVATION; CAMERA FACING SOUTH Mare Island ...
VIEW OF NORTH ELEVATION; CAMERA FACING SOUTH - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
View of south elevation; camera facing northeast. Mare Island ...
View of south elevation; camera facing northeast. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
View of north elevation; camera facing southeast. Mare Island ...
View of north elevation; camera facing southeast. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of main entrance; camera facing southwest. Mare Island ...
Detail of main entrance; camera facing southwest. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Contextual view of building 733; camera facing southeast. Mare ...
Contextual view of building 733; camera facing southeast. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Interior detail of tower space; camera facing southwest. Mare ...
Interior detail of tower space; camera facing southwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Oblique view of southeast corner; camera facing northwest. Mare ...
Oblique view of southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Polarizing aperture stereoscopic cinema camera
NASA Astrophysics Data System (ADS)
Lipton, Lenny
2012-03-01
The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.
Polarizing aperture stereoscopic cinema camera
NASA Astrophysics Data System (ADS)
Lipton, Lenny
2012-07-01
The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.
Detail of stairway at north elevation; camera facing southwest. ...
Detail of stairway at north elevation; camera facing southwest. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Interior view of second floor sleeping area; camera facing south. ...
Interior view of second floor sleeping area; camera facing south. - Mare Island Naval Shipyard, Marine Barracks, Cedar Avenue, west side between Twelfth & Fourteenth Streets, Vallejo, Solano County, CA
Interior detail of lobby ceiling design; camera facing east. ...
Interior detail of lobby ceiling design; camera facing east. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Interior detail of stairway in tower; camera facing south. ...
Interior detail of stairway in tower; camera facing south. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Volcanoes Ceraunius Tholus and Uranius Tholus
NASA Technical Reports Server (NTRS)
2002-01-01
Acquired in March 2002, this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view shows the martian volcanoes, Ceraunius Tholus (lower) and Uranius Tholus (upper). The presence of impact craters on these volcanoes, particularly on Uranius Tholus; indicates that they are quite ancient and are not active today. The light-toned area on the southeastern face (toward lower right) of Ceraunius Tholus is a remnant of a once more extensive deposit of dust from the global dust storm events that occurred in 2001. The crater at the summit of Ceraunius Tholus is about 25 km (15.5 mi) across. Sunlight illuminates the scene from the lower left.
MTR WING, TRA604, INTERIOR. BASEMENT. INTERIOR VIEW FROM SAME LOCATION ...
MTR WING, TRA-604, INTERIOR. BASEMENT. INTERIOR VIEW FROM SAME LOCATION IN WEST CORRIDOR AS PHOTO ID-33-G-42 BUT CAMERA FACES SOUTH. SIGN ON DOOR FOR "PIPE TUNNEL" WARNS OF RADIOLOGICAL AND ASBESTOS HAZARDS. DOOR HAS METAL HASPS. SIGN ON OVERHEAD WASTE HEAT RECOVERY PIPES SAYS THEY CONTAIN "ASBESTOS FREE INSULATION." FIRE DOOR AT LEFT LEADS TO STAIRWAY TO FIRST FLOOR. DOOR AT RIGHT LEADS TO ROOM WHICH ONCE CONTAINED MTR LIBRARY. INL NEGATIVE NO. HD46-13-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
View of camera station located northeast of Building 70022, facing ...
View of camera station located northeast of Building 70022, facing northwest - Naval Ordnance Test Station Inyokern, Randsburg Wash Facility Target Test Towers, Tower Road, China Lake, Kern County, CA
Interior view of second floor lobby; camera facing south. ...
Interior view of second floor lobby; camera facing south. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Interior detail of first floor lobby; camera facing northeast. ...
Interior detail of first floor lobby; camera facing northeast. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Interior view of second floor space; camera facing southwest. ...
Interior view of second floor space; camera facing southwest. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of columns, cornice and eaves; camera facing southwest. ...
Detail of columns, cornice and eaves; camera facing southwest. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of cupola on south wing; camera facing southeast. ...
Detail of cupola on south wing; camera facing southeast. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Interior view of north wing, south wall offices; camera facing ...
Interior view of north wing, south wall offices; camera facing south. - Mare Island Naval Shipyard, Smithery, California Avenue, west side at California Avenue & Eighth Street, Vallejo, Solano County, CA
NASA Technical Reports Server (NTRS)
Steele, P.; Kirch, D.
1975-01-01
In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.
Interior detail of main entry with railroad tracks; camera facing ...
Interior detail of main entry with railroad tracks; camera facing east. - Mare Island Naval Shipyard, Mechanics Shop, Waterfront Avenue, west side between A Street & Third Street, Vallejo, Solano County, CA
DETAIL OF LAMP ABOVE SOUTH SIDE ENTRANCE; CAMERA FACING EAST ...
DETAIL OF LAMP ABOVE SOUTH SIDE ENTRANCE; CAMERA FACING EAST - Mare Island Naval Shipyard, Bachelor Enlisted Quarters & Offices, Walnut Avenue, east side between D Street & C Street, Vallejo, Solano County, CA
Contextual view of building 926 west elevation; camera facing east. ...
Contextual view of building 926 west elevation; camera facing east. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Detail of main doors on east elevation; camera facing west. ...
Detail of main doors on east elevation; camera facing west. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of main hall porch on east elevation; camera facing ...
Detail of main hall porch on east elevation; camera facing west. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Detail of central portion of southeast elevation; camera facing west. ...
Detail of central portion of southeast elevation; camera facing west. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of windows at center of west elevation; camera facing ...
Detail of windows at center of west elevation; camera facing east. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Interior view of hallway on second floor; camera facing south. ...
Interior view of hallway on second floor; camera facing south. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Detail of balcony and windows on west elevation; camera facing ...
Detail of balcony and windows on west elevation; camera facing northeast. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Contextual view of building 733 along Cedar Avenue; camera facing ...
Contextual view of building 733 along Cedar Avenue; camera facing southwest. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
View of main terrace with mature tree, camera facing southeast ...
View of main terrace with mature tree, camera facing southeast - Naval Training Station, Senior Officers' Quarters District, Naval Station Treasure Island, Yerba Buena Island, San Francisco, San Francisco County, CA
Detail of main entry on east elevation; camera facing west. ...
Detail of main entry on east elevation; camera facing west. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Detail of south wing south elevation wall section; camera facing ...
Detail of south wing south elevation wall section; camera facing northwest - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Detail of large industrial doors on north elevation; camera facing ...
Detail of large industrial doors on north elevation; camera facing south. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
View of steel warehouses, building 710 north sidewalk; camera facing ...
View of steel warehouses, building 710 north sidewalk; camera facing east. - Naval Supply Annex Stockton, Steel Warehouse Type, Between James & Humphreys Drives south of Embarcadero, Stockton, San Joaquin County, CA
Mars at Ls 193°: Acidalia/Mare Erythraeum
2005-04-12
This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 193° during a previous Mars year. This month, Mars looks similar, as Ls 193° occurs in mid-April 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360° around the Sun in 1 Mars year. The year begins at Ls 0°, the start of northern spring and southern autumn. Location near: 47.3°N, 294.0°W Image width: ~3 km (~1.9 mi) Illumination from: lower left Season: Northern Summer. http://photojournal.jpl.nasa.gov/catalog/PIA07837
Mars at Ls 93o: Elysium/Mare Cimmerium
NASA Technical Reports Server (NTRS)
2006-01-01
22 August 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 93o during a previous Mars year. This month, Mars looks similar, as Ls 93o occurred in mid-August 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Location near: 86.1oN, 208.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer/Southern WinterMars at Ls 176o: Elysium/Mare Cimmerium
NASA Technical Reports Server (NTRS)
2005-01-01
22 March 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 176o during a previous Mars year. This month, Mars looks similar, as Ls 176o occurred in mid-March 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Location near: 79.1oN, 228.8oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer/Southern WinterMars at Ls 193o: Acidalia/Mare Erythraeum
NASA Technical Reports Server (NTRS)
2005-01-01
12 April 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 193o during a previous Mars year. This month, Mars looks similar, as Ls 193o occurs in mid-April 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Location near: 47.3oN, 294.0oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern SummerInterior detail of main stairway from first floor; camera facing ...
Interior detail of main stairway from first floor; camera facing west. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Interior detail of arched doorway at second floor; camera facing ...
Interior detail of arched doorway at second floor; camera facing north. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
INTERIOR DETAIL OF STAIRWAY AT SOUTH WING ENTRANCE; CAMERA FACING ...
INTERIOR DETAIL OF STAIRWAY AT SOUTH WING ENTRANCE; CAMERA FACING SOUTH - Mare Island Naval Shipyard, Bachelor Enlisted Quarters & Offices, Walnut Avenue, east side between D Street & C Street, Vallejo, Solano County, CA
Li, Chenglin; Cao, Xiaohua
2017-01-01
For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different. PMID:29018391
Li, Chenglin; Cao, Xiaohua
2017-01-01
For faces and Chinese characters, a left-side processing bias, in which observers rely more heavily on information conveyed by the left side of stimuli than the right side of stimuli, has been frequently reported in previous studies. However, it remains unclear whether this left-side bias effect is modulated by the reference stimuli's location. The present study adopted the chimeric stimuli task to investigate the influence of the presentation location of the reference stimuli on the left-side bias in face and Chinese character processing. The results demonstrated that when a reference face was presented in the left visual field of its chimeric images, which are centrally presented, the participants showed a preference higher than the no-bias threshold for the left chimeric face; this effect, however, was not observed in the right visual field. This finding indicates that the left-side bias effect in face processing is stronger when the reference face is in the left visual field. In contrast, the left-side bias was observed in Chinese character processing when the reference Chinese character was presented in either the left or right visual field. Together, these findings suggest that although faces and Chinese characters both have a left-side processing bias, the underlying neural mechanisms of this left-side bias might be different.
A&M. Hot liquid waste building (TAN616) under construction. Camera facing ...
A&M. Hot liquid waste building (TAN-616) under construction. Camera facing northeast. Date: November 25, 1953. INEEL negative no. 9232 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LPT. Low power assembly and test building (TAN640). Camera facing ...
LPT. Low power assembly and test building (TAN-640). Camera facing west. Rollup doors to each test cell face east. Concrete walls poured in place. Apparatus at right of view was part of a post-ANP program. INEEL negative no. HD-40-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
SPERTI, Instrument Cell Building (PER606). West facade. Camera facing northeast. ...
SPERT-I, Instrument Cell Building (PER-606). West facade. Camera facing northeast. Date: August 2003. INEEL negative no. HD-35-3-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
SPERTI, Instrument Cell Building (PER606). East facade. Camera facing southwest. ...
SPERT-I, Instrument Cell Building (PER-606). East facade. Camera facing southwest. Date: August 2003. INEEL negative no. HD-35-3-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
4. First floor interior. Camera facing west. Mirrored interior supports ...
4. First floor interior. Camera facing west. Mirrored interior supports mark the former division between 11 and 13 North Broad Street. - 11-15 North Broad Street (Commercial Building), 11-15 North Broad Street, Trenton, Mercer County, NJ
2. View from same camera position facing 232 degrees southwest ...
2. View from same camera position facing 232 degrees southwest showing abandoned section of old grade - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT
Automated face detection for occurrence and occupancy estimation in chimpanzees.
Crunchant, Anne-Sophie; Egerer, Monika; Loos, Alexander; Burghardt, Tilo; Zuberbühler, Klaus; Corogenes, Katherine; Leinert, Vera; Kulik, Lars; Kühl, Hjalmar S
2017-03-01
Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably. © 2017 Wiley Periodicals, Inc.
Mast Camera and Its Calibration Target on Curiosity Rover
2013-03-18
This set of images illustrates the twin cameras of the Mastcam instrument on NASA Curiosity Mars rover upper left, the Mastcam calibration target lower center, and the locations of the cameras and target on the rover.
Multiview face detection based on position estimation over multicamera surveillance system
NASA Astrophysics Data System (ADS)
Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh
2012-02-01
In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.
Heumann, Frederick K.; Wilkinson, Jay C.; Wooding, David R.
1997-01-01
A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 24 May 2002) The Science This image is of a portion of Maunder Crater located at about 49 S and 358 W (2 E). There are a number of interesting features in this image. The lower left portion of the image shows a series of barchan dunes that are traveling from right to left. The sand does not always form dunes as can be seen in the dark and diffuse areas surrounding the dune field. The other interesting item in this image are the gullies that can be seen streaming down from just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first seen by the MOC camera on the MGS spacecraft and it is though that they formed by groundwater leaking out of the rock layers on the walls of craters. The water runs down the slope and forms the fluvial features seen in the image. Other researchers think that these features could be formed by other fluids, such as CO2. These features are typically seen on south facing slopes in the southern hemisphere, though this image has gullies on north facing slopes as well. The Story Little black squigglies seem to worm their way down the left-hand side of this image. These land features are called barchan (crescent-shaped) dunes. Barchan dunes are found in sandy deserts on Earth, so it's no surprise the Martian wind makes them a common site on the red planet too. They were first named by a Russian scientist named Alexander von Middendorf, who studied the inland desert dunes of Turkistan. The barchan dunes in this image occur in the basin of Maunder crater on Mars, and are traveling from right to left. The sand does not always form dunes, though, as can be seen in the dark areas of scattered sand surrounding the dune field. Look for the streaming gullies that appear just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first discovered by the Mars Orbital Camera on the Mars Global Surveyor spacecraft. While most crater gullies are found on south-facing slopes in the southern hemisphere of Mars, you can see from this image that they occur on north-facing slopes as well. Comparing where gullies appear will help scientists understand more about the conditions under which they form. Some researchers are really excited about gullies on Mars, because they believe these surface tracings might be signs that groundwater has leaked out of the rock layers on the walls of craters. If that's true, the water runs down the slope and forms the flow-like features seen in the image. Scientists can get into some really hot debates, however. Other researchers think that these features could be formed by other fluids, such as carbon dioxide. No one knows for sure, so a lot of heads will be studiously bent over these images, continuing to study them closely. The neat thing about science is that the way you get closer to the truth is to hypothesize and then test, test, and test again. Debate for scientists is seen as an essential means of making sure that no wrong assumptions are made or that no important factor is left out. It's what keeps the field interesting and dynamic . . . and sometimes quite loud and entertaining!
NASA Astrophysics Data System (ADS)
Muneyasu, Mitsuji; Odani, Shuhei; Kitaura, Yoshihiro; Namba, Hitoshi
On the use of a surveillance camera, there is a case where privacy protection should be considered. This paper proposes a new privacy protection method by automatically degrading the face region in surveillance images. The proposed method consists of ROI coding of JPEG2000 and a face detection method based on template matching. The experimental result shows that the face region can be detected and hidden correctly.
CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. ...
CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. CAMERA FACING EASTERLY. FOREGROUND CORNER CONTAINS OIL STORAGE TANKS. WATER TANKS AND WELL HOUSES ARE BEYOND THEM TO THE LEFT. LARGE LIGHT-COLORED BUILDING IN CENTER OF VIEW IS STEAM PLANT. DEMINERALIZER AND WATER STORAGE TANK ARE BEYOND. SIX-CELL COOLING TOWER AND ITS PUMP HOUSE ARE ABOVE IT IN VIEW. SERVICE BUILDINGS INCLUDING CANTEEN ARE ON NORTH SIDE OF ROAD. "EXCLUSION" AREA IS BEYOND ROAD. COMPARE LOCATION OF EXCLUSION-AREA GATE WITH PHOTO ID-33-G-202. INL NEGATIVE NO. 3608. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2017-01-20
This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-422, 15 July 2003
Have you ever stared up at the clouds in the sky and seen the shapes of animals, people, or objects? Sometimes when the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) team is looking at newly-returned pictures from Mars, the same thing happens. This is a picture of pits and scarps in the frozen south polar carbon dioxide ice cap. Sunlight illuminates the scene from the upper right. At the bottom of the picture is a feature that resembles a long, thin poodle; its head faces to the left, the tail to the right. This picture is located near 86.9oS, 55.8oW.2006-02-07
KENNEDY SPACE CENTER, FLA. - Pilot Steve Fossett (facing camera, left) and Sir Richard Branson (second from right) talk with Virgin Atlantic GlobalFlyer team members about the fuel leak detected in the aircraft. Branson is chairman and founder of Virgin Atlantic. Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett was expected to take off from the KSC SLF before the takeoff was postponed due to the fuel leak that appeared in the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett
SOUTH WING, TRA661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH ...
SOUTH WING, TRA-661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH BAY BEYOND. INL NEGATIVE NO. HD46-45-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Cooling Tower (PER720). Camera faces south to show north ...
PBF Cooling Tower (PER-720). Camera faces south to show north facade. Note enclosed stairway. Date: August 2003. INEEL negative no. HD-35-10-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A&M. Radioactive parts security storage area. camera facing northwest. Outdoor ...
A&M. Radioactive parts security storage area. camera facing northwest. Outdoor storage of concrete storage casks. Photographer: M. Holmes. Date: November 21, 1959. INEEL negative no. 59-6081 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A&M. Hot liquid waste holding tanks. Camera faces southeast. Located ...
A&M. Hot liquid waste holding tanks. Camera faces southeast. Located in vicinity of TAN-616, hot liquid waste treatment plant. Date: November 13, 1953. INEEL negative no. 9159 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
24. ARAIII Reactor building ARA608 interior. Camera facing south. Chalk ...
24. ARA-III Reactor building ARA-608 interior. Camera facing south. Chalk marks on wall indicate presence or absence of spot contamination. Ineel photo no. 3-2. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Calibration Target for Curiosity Arm Camera
2012-09-10
This view of the calibration target for the MAHLI camera aboard NASA Mars rover Curiosity combines two images taken by that camera during Sept. 9, 2012. Part of Curiosity left-front and center wheels and a patch of Martian ground are also visible.
Barrier Coverage for 3D Camera Sensor Networks
Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-01-01
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder’s face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks. PMID:28771167
Barrier Coverage for 3D Camera Sensor Networks.
Si, Pengju; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi; Ji, Peng; Chu, Hao
2017-08-03
Barrier coverage, an important research area with respect to camera sensor networks, consists of a number of camera sensors to detect intruders that pass through the barrier area. Existing works on barrier coverage such as local face-view barrier coverage and full-view barrier coverage typically assume that each intruder is considered as a point. However, the crucial feature (e.g., size) of the intruder should be taken into account in the real-world applications. In this paper, we propose a realistic resolution criterion based on a three-dimensional (3D) sensing model of a camera sensor for capturing the intruder's face. Based on the new resolution criterion, we study the barrier coverage of a feasible deployment strategy in camera sensor networks. Performance results demonstrate that our barrier coverage with more practical considerations is capable of providing a desirable surveillance level. Moreover, compared with local face-view barrier coverage and full-view barrier coverage, our barrier coverage is more reasonable and closer to reality. To the best of our knowledge, our work is the first to propose barrier coverage for 3D camera sensor networks.
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. ...
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. SHOWS RELATIONSHIP BETWEEN DECONTAMINATION ROOM, ADSORBER REMOVAL HATCHES (FLAT ON GRADE), AND BRIDGE CRANE. INEEL PROOF NUMBER HD-17-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
PBF Cooling Tower detail. Camera facing southwest. Wood fill rises ...
PBF Cooling Tower detail. Camera facing southwest. Wood fill rises from foundation piers of cold water basin. Photographer: Kirsh. Date: May 1, 1969. INEEL negative no. 69-2826 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) west facade. Camera facing east. Note 1980 addition ...
PBF (PER-620) west facade. Camera facing east. Note 1980 addition on south side of west wall. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETRMTR MECHANICAL SERVICES BUILDING, TRA653. CAMERA FACING NORTHWEST AS BUILDING ...
ETR-MTR MECHANICAL SERVICES BUILDING, TRA-653. CAMERA FACING NORTHWEST AS BUILDING WAS NEARLY COMPLETE. INL NEGATIVE NO. 57-3653. K. Mansfield, Photographer, 7/22/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11787 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11787 NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim. Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image. This view is presented as a cylindrical-perspective projection with geometric seam correction.PBF (PER620) north facade. Camera facing south. Small metal shed ...
PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MTR BUILDING AND BALCONY FLOORS. CAMERA FACING EASTERLY. PHOTOGRAPHER DID ...
MTR BUILDING AND BALCONY FLOORS. CAMERA FACING EASTERLY. PHOTOGRAPHER DID NOT EXPLAIN DARK CLOUD. MTR WING WILL ATTACH TO GROUND FLOOR. INL NEGATIVE NO. 1567. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A&M. Hot liquid waste treatment building (TAN616). Camera facing east. ...
A&M. Hot liquid waste treatment building (TAN-616). Camera facing east. Showing west facades of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
PBF Control Building (PER619) south facade. Camera faces north. Note ...
PBF Control Building (PER-619) south facade. Camera faces north. Note buried tanks with bollards protecting their access hatches. Date: July 2004. INEEL negative no. HD-41-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Generating Stereoscopic Television Images With One Camera
NASA Technical Reports Server (NTRS)
Coan, Paul P.
1996-01-01
Straightforward technique for generating stereoscopic television images involves use of single television camera translated laterally between left- and right-eye positions. Camera acquires one of images (left- or right-eye image), and video signal from image delayed while camera translated to position where it acquires other image. Length of delay chosen so both images displayed simultaneously or as nearly simultaneously as necessary to obtain stereoscopic effect. Technique amenable to zooming in on small areas within broad scenes. Potential applications include three-dimensional viewing of geological features and meteorological events from spacecraft and aircraft, inspection of workpieces moving along conveyor belts, and aiding ground and water search-and-rescue operations. Also used to generate and display imagery for public education and general information, and possible for medical purposes.
Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.
1997-12-16
A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity captured this vista of 'Victoria Crater' from the viewpoint of 'Cape Verde,' one of the promontories that are part of the scalloped rim of the crater. Opportunity drove onto Cape Verde shortly after arriving at the rim of Victoria in September 2006. The view combines hundreds of exposures taken by the rover's panoramic camera (Pancam). The camera began taking the component images during Opportunity's 970th Martian day, or sol, on Mars (Oct. 16, 2006). Work on the panorama continued through the solar conjunction period, when Mars was nearly behind the sun from Earth's perspective and communications were minimized. Acquisition of images for this panorama was completed on Opportunity's 991st sol (Nov. 7, 2006). The top of Cape Verde is in the immediate foreground at the center of the image. To the left and right are two of the more gradually sloped bays that alternate with the cliff-faced capes or promontories around the rim of the crater. 'Duck Bay,' where Opportunity first reached the rim, is to the right. Beyond Duck Bay counterclockwise around the rim, the next promontory is 'Cabo Frio,' about 150 meters (500 feet) from the rover. On the left side of the panorama is 'Cape St. Mary,' the next promontory clockwise from Cape Verde and about 40 meters (130 feet) from the rover. The vantage point atop Cape Verde offered a good view of the rock layers in the cliff face of Cape St. Mary, which is about 15 meters or 50 feet tall. By about two weeks after the Pancam finished collecting the images for this panorama, Opportunity had driven to Cape St. Mary and was photographing Cape Verde's rock layers. The far side of the crater lies about 800 meters (half a mile) away, toward the southeast. This approximately true-color view combines images taken through three of the Pancam's filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet).Left face matching bias: right hemisphere dominance or scanning habits?
Megreya, Ahmed M; Havard, Catriona
2011-01-01
A large body of work report a leftward bias in face processing. However, it is not clear whether this leftward bias purely reflects the dominance of the right hemisphere or is influenced by scanning habits developed by reading directions. Here, we report two experiments examining how well native readers of right to left Arabic scripts (Egyptians) could match (for identity) a target face that appeared with a companion to a line-up of 10 faces. There was a significant advantage for matching faces that appeared on the left. However, Experiment 2 found that the magnitude of this left face matching bias was almost three times weaker than the magnitude of the leftward bias shown by native readers of left to right English scripts (British). Accordingly, we suggest that the right hemisphere dominance for face processing underlies the leftward face perception bias, but with the interaction of scanning habits.
LPT. Shield test control building (TAN645), north facade. Camera facing ...
LPT. Shield test control building (TAN-645), north facade. Camera facing south. Obsolete sign dating from post-1970 program says "Energy and Systems Technology Experimental Facility, INEL." INEEL negative no. HD-40-5-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
MTR WING, TRA604, INTERIOR. BASEMENT. WEST CORRIDOR. CAMERA FACES NORTH. ...
MTR WING, TRA-604, INTERIOR. BASEMENT. WEST CORRIDOR. CAMERA FACES NORTH. HVAC AREA IS AT RIGHT OF CORRIDOR. INL NEGATIVE NO. HD46-13-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera in first basement, facing south ...
PBF Reactor Building (PER-620). Camera in first basement, facing south and upward toward main floor. Cable trays being erected. Photographer: Kirsh. Date: May 20, 1969. INEEL negative no. 69-3110 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) south facade. Camera facing north. Note pedestrian bridge ...
PBF (PER-620) south facade. Camera facing north. Note pedestrian bridge crossing over conduit. Central high bay contains reactor room and canal. Date: March 2004. INEEL negative no. HD-41-2-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Cooling Tower Auxiliary Building (PER624) interior. Camera facing north. ...
PBF Cooling Tower Auxiliary Building (PER-624) interior. Camera facing north. Deluge valves and automatic fire protection piping for Cooling Tower. Photographer: Holmes. Date: May 20, 1970. INEEL negative no. 70-2323 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
A&M. Hot liquid waste treatment building (TAN616). Camera facing northeast. ...
A&M. Hot liquid waste treatment building (TAN-616). Camera facing northeast. South wall with oblique views of west sides of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A&M. Hot liquid waste treatment building (TAN616). Camera facing north. ...
A&M. Hot liquid waste treatment building (TAN-616). Camera facing north. Detail of personnel entrance door, stoop, and stairway. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Johnson, Marilyn; Newstead, Stuart; Charlton, Judith; Oxley, Jennifer
2011-01-01
This study determined the rate and associated factors of red light infringement among urban commuter cyclists. A cross-sectional observational study was conducted using a covert video camera to record cyclists at 10 sites across metropolitan Melbourne, Australia from October 2008 to April 2009. In total, 4225 cyclists faced a red light and 6.9% were non-compliant. The main predictive factor for infringement was direction of travel, cyclists turning left (traffic travels on the left-side in Australia) had 28.3 times the relative odds of infringement compared to cyclists who continued straight through the intersection. Presence of other road users had a deterrent effect with the odds of infringement lower when a vehicle travelling in the same direction was present (OR=0.39, 95% CI 0.28-0.53) or when other cyclists were present (OR=0.26, 95% CI 0.19-0.36). Findings suggest that some cyclists do not perceive turning left against a red signal to be unsafe and the opportunity to ride through the red light during low cross traffic times influences the likelihood of infringement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Applications of digital image acquisition in anthropometry
NASA Technical Reports Server (NTRS)
Woolford, B.; Lewis, J. L.
1981-01-01
A description is given of a video kinesimeter, a device for the automatic real-time collection of kinematic and dynamic data. Based on the detection of a single bright spot by three TV cameras, the system provides automatic real-time recording of three-dimensional position and force data. It comprises three cameras, two incandescent lights, a voltage comparator circuit, a central control unit, and a mass storage device. The control unit determines the signal threshold for each camera before testing, sequences the lights, synchronizes and analyzes the scan voltages from the three cameras, digitizes force from a dynamometer, and codes the data for transmission to a floppy disk for recording. Two of the three cameras face each other along the 'X' axis; the third camera, which faces the center of the line between the first two, defines the 'Y' axis. An image from the 'Y' camera and either 'X' camera is necessary for determining the three-dimensional coordinates of the point.
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-01-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
NASA Astrophysics Data System (ADS)
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-06-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.
A system for tracking and recognizing pedestrian faces using a network of loosely coupled cameras
NASA Astrophysics Data System (ADS)
Gagnon, L.; Laliberté, F.; Foucher, S.; Branzan Albu, A.; Laurendeau, D.
2006-05-01
A face recognition module has been developed for an intelligent multi-camera video surveillance system. The module can recognize a pedestrian face in terms of six basic emotions and the neutral state. Face and facial features detection (eyes, nasal root, nose and mouth) are first performed using cascades of boosted classifiers. These features are used to normalize the pose and dimension of the face image. Gabor filters are then sampled on a regular grid covering the face image to build a facial feature vector that feeds a nearest neighbor classifier with a cosine distance similarity measure for facial expression interpretation and face model construction. A graphical user interface allows the user to adjust the module parameters.
LPT. Shield test facility test building interior (TAN646). Camera facing ...
LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LOFT. Interior, control room in control building (TAN630). Camera facing ...
LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...
PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera facing south end of high ...
PBF Reactor Building (PER-620). Camera facing south end of high bay. Vertical-lift door is being installed. Later, pneumatic seals will be installed around door. Photographer: Kirsh. Date: September 31, 1968. INEEL negative no. 68-3176 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR CRITICAL FACILITY (ETRCF), TRA654. SOUTH SIDE. CAMERA FACING NORTH ...
ETR CRITICAL FACILITY (ETR-CF), TRA-654. SOUTH SIDE. CAMERA FACING NORTH AND ROLL-UP DOOR. ORIGINAL SIDING HAS BEEN REPLACED WITH STUCCO-LIKE MATERIAL. INL NEGATIVE NO. HD46-40-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Cooling Tower. Camera facing southwest. Round piers will support ...
PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Cubicle 10 detail. Camera facing west ...
PBF Reactor Building (PER-620). Cubicle 10 detail. Camera facing west toward brick shield wall. Valve stems against wall penetrate through east wall of cubicle. Photographer: John Capek. Date: August 19, 1970. INEEL negative no. 70-3469 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
LPT. Low power test control building (TAN641) interior. Camera facing ...
LPT. Low power test control building (TAN-641) interior. Camera facing northeast at what remains of control room console. Cut in wall at right of view shows west wall of northern test cell. INEEL negative no. HD-40-4-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Spirit Studies Rock Outcrop at 'Home Plate'
NASA Technical Reports Server (NTRS)
2006-01-01
NASA's Mars Exploration Rover Spirit acquired this false-color image at 11:48 local true solar time on Mars on the rover's 746th Martian day, or sol (Feb. 26, 2006), after using the rock abrasion tool to brush the surfaces of rock targets informally named 'Stars' (left) and 'Crawfords' (right). Small streaks of dust extend for several centimeters behind the small rock chips and pebbles in the dusty, red soils. Because the rover was looking southwest when this image was taken, the wind streaks indicate that the dominant wind direction was from the southeast. The targets Stars and Crawfords are on a rock outcrop located on top of 'Home Plate.' The outcrop is informally named 'James 'Cool Papa' Bell,' after a Negro Leagues Hall of Famer who played for both the Pittsburgh Crawfords and the Kansas City Stars. To some science team members, the two brushed spots resemble the eyes of a face, with rocks below and between the eyes as a nose and layered rocks at the bottom of the image as a mouth. The image combines frames taken by Spirit's panoramic camera through the camera's 753-nanometer, 535-namometer, and 432-nanometer filters. It is enhanced to emphasize color differences among the rocks, soils and brushed areas. The blue circular area on the left, Stars, was brushed on 761 (Feb. 22, 2006). The one on the right, Crawfords, was brushed on sol 763 (Feb. 25, 2006).ENGINEERING TEST REACTOR, TRA642. CONTEXTUAL VIEW ORIENTATING ETR TO MTR. ...
ENGINEERING TEST REACTOR, TRA-642. CONTEXTUAL VIEW ORIENTATING ETR TO MTR. CAMERA IS ON ROOF OF MTR BUILDING AND FACES DUE SOUTH. MTR SERVICE BUILDING, TRA-635, IN LOWER RIGHT CORNER. STEEL FRAMES SHOW BUILDINGS TO BE ATTACHED TO ETR BUILDING. HIGH-BAY SECTION IN CENTER IS REACTOR BUILDING. TWO-STORY CONTROL ROOM AND OFFICE BUILDING, TRA-647, IS BETWEEN IT AND MTR SERVICE BUILDING. STRUCTURE TO THE LEFT (WITH NO FRAMING YET) IS COMPRESSOR BUILDING, TRA-643, AND BEYOND IT WILL BE HEAT EXCHANGER BUILDING, TRA-644, GREAT SOUTHERN BUTTE ON HORIZON. INL NEGATIVE NO. 56-2382. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
2005-05-02
This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter for observing the surface of Titan. This view was acquired from a distance of 33,000 kilometers (20,500 miles). The pixel scale of this image is 390 meters (0.2 miles) per pixel, although the actual resolution is likely to be several times larger. http://photojournal.jpl.nasa.gov/catalog/PIA06234
Minimum Requirements for Taxicab Security Cameras.
Zeng, Shengke; Amandus, Harlan E; Amendola, Alfred A; Newbraugh, Bradley H; Cantis, Douglas M; Weaver, Darlene
2014-07-01
The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability.
MTR WING A, TRA604. SOUTH SIDE. CAMERA FACING NORTH. THIS ...
MTR WING A, TRA-604. SOUTH SIDE. CAMERA FACING NORTH. THIS VIEW TYPIFIES TENDENCY FOR EXPANSIONS TO TAKE THE FORM OF PROJECTIONS AND INFILL USING AVAILABLE YARD SPACES. INL NEGATIVE NO. HD47-44-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
REACTOR SERVICE BUILDING, TRA635. CROWDED MOCKUP AREA. CAMERA FACES EAST. ...
REACTOR SERVICE BUILDING, TRA-635. CROWDED MOCK-UP AREA. CAMERA FACES EAST. PHOTOGRAPHER'S NOTE SAYS "PICTURE REQUESTED BY IDO IN SUPPORT OF FY '58 BUILDING PROJECTS." INL NEGATIVE NO. 56-3025. R.G. Larsen, Photographer, 9/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...
WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
LPT. Low power test (TAN640) interior. Basement level. Camera facing ...
LPT. Low power test (TAN-640) interior. Basement level. Camera facing north. Cable trays and conduit cross tunnel between critical experiment cell and critical experiment control room. Construction 93% complete. Photographer: Jack L. Anderson. Date: October 23, 1957. INEEL negative no. 57-5339 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
View From Camera Not Used During Curiosity's First Six Months on Mars
2017-12-08
This view of Curiosity's left-front and left-center wheels and of marks made by wheels on the ground in the "Yellowknife Bay" area comes from one of six cameras used on Mars for the first time more than six months after the rover landed. The left Navigation Camera (Navcam) linked to Curiosity's B-side computer took this image during the 223rd Martian day, or sol, of Curiosity's work on Mars (March 22, 2013). The wheels are 20 inches (50 centimeters) in diameter. Curiosity carries a pair of main computers, redundant to each other, in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity operated on its A-side from before the August 2012 landing until Feb. 28, when engineers commanded a switch to the B-side in response to a memory glitch on the A-side. One set of activities after switching to the B-side computer has been to check the six engineering cameras that are hard-linked to that computer. The rover's science instruments, including five science cameras, can each be operated by either the A-side or B-side computer, whichever is active. However, each of Curiosity's 12 engineering cameras is linked to just one of the computers. The engineering cameras are the Navigation Camera (Navcam), the Front Hazard-Avoidance Camera (Front Hazcam) and Rear Hazard-Avoidance Camera (Rear Hazcam). Each of those three named cameras has four cameras as part of it: two stereo pairs of cameras, with one pair linked to each computer. Only the pairs linked to the active computer can be used, and the A-side computer was active from before landing, in August, until Feb. 28. All six of the B-side engineering cameras have been used during March 2013 and checked out OK. Image Credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Three Contemporary Artists Explore Family Photographs
ERIC Educational Resources Information Center
Kanatani, Kim; Vatsky, Sharon
2010-01-01
In 1888, when George Eastman introduced the "Kodak" camera, with the slogan, "you push the button, we do the rest," he ushered in a new era in documenting family history. Photography left the professional studio and entered the home, where the camera became the primary instrument of self-knowledge and self-representation. The camera allowed the…
Construct and face validity of a virtual reality-based camera navigation curriculum.
Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J
2012-10-01
Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P < 0.05). In the individual modules, coordination required 13.3 attempts for novices, 4.2 for intermediates, and 1.7 for the advanced group (P < 0.05). Target visualization required 19.3 attempts for novices, 13.2 for intermediates, and 8.2 for the advanced group (P < 0.05). Participants believe that training improves camera handling skills (95%), is relevant to surgery (95%), and is a valid training tool (93%). Graphics (98%) and realism (93%) were highly regarded. The VR-based camera navigation curriculum demonstrates construct and face validity for our training population. Camera navigation simulation may be a valuable tool that can be integrated into training protocols for residents and medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yu-Che; Huang, Chung-Lin
2013-03-01
This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.
Face processing pattern under top-down perception: a functional MRI study
NASA Astrophysics Data System (ADS)
Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming
2009-02-01
Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.
Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy.
Seidenberg, Michael; Griffith, Randall; Sabsevitz, David; Moran, Maria; Haltiner, Alan; Bell, Brian; Swanson, Sara; Hammeke, Thomas; Hermann, Bruce
2002-01-01
We examined the performance of 21 patients with unilateral temporal lobe epilepsy (TLE) and hippocampal damage (10 lefts, and 11 rights) and 10 age-matched controls on the recognition and identification (name and occupation) of well-known faces. Famous face stimuli were selected from four time periods; 1970s, 1980s, 1990-1994, and 1995-1996. Differential patterns of performance were observed for the left and right TLE group across distinct face processing components. The left TLE group showed a selective impairment in naming famous faces while they performed similar to the controls in face recognition and semantic identification (i.e. occupation). In contrast, the right TLE group was impaired across all components of face memory; face recognition, semantic identification, and face naming. Face naming impairment in the left TLE group was characterized by a temporal gradient with better naming performance for famous faces from more distant time periods. Findings are discussed in terms of the role of the temporal lobe system for the acquisition, retention, and retrieval of face semantic networks, and the differential effects of lateralized temporal lobe lesions in this process.
NASA Technical Reports Server (NTRS)
Sutro, L. L.; Lerman, J. B.
1973-01-01
The operation of a system is described that is built both to model the vision of primate animals, including man, and serve as a pre-prototype of possible object recognition system. It was employed in a series of experiments to determine the practicability of matching left and right images of a scene to determine the range and form of objects. The experiments started with computer generated random-dot stereograms as inputs and progressed through random square stereograms to a real scene. The major problems were the elimination of spurious matches, between the left and right views, and the interpretation of ambiguous regions, on the left side of an object that can be viewed only by the left camera, and on the right side of an object that can be viewed only by the right camera.
PBF Cooling Tower (PER720). Camera faces east to show west ...
PBF Cooling Tower (PER-720). Camera faces east to show west facade. Sloped (louvered) panels in this and opposite facade allow air to enter tower and cool water falling on splash bars within. Date: August 2003. INEEL negative no. HD-35-10-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR HEAT EXCHANGER BUILDING, TRA644. EAST SIDE. CAMERA FACING WEST. ...
ETR HEAT EXCHANGER BUILDING, TRA-644. EAST SIDE. CAMERA FACING WEST. NOTE COURSE OF PIPE FROM GROUND AND FOLLOWING ROOF OF BUILDING. MTR BUILDING IN BACKGROUND AT RIGHT EDGE OF VIEW. INL NEGATIVE NO. HD46-36-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera facing north toward south facade. ...
PBF Reactor Building (PER-620). Camera facing north toward south facade. Note west-wing siding on concrete block; high-bay siding of metal. Excavation and forms for signal and cable trenches proceed from building. Photographer: Kirsh. Date August 20, 1968. INEEL negative no. 68-3332 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera is facing east and down ...
PBF Reactor Building (PER-620). Camera is facing east and down into canal and storage pit for fuel rod assemblies. Stainless steel liner is being applied, temporarily covered with plywood for protection. Photographer: John Capek. Date: August 29, 1969. INEEL negative no. 69-4641 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...
PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Graafland, Maurits; Bok, Kiki; Schreuder, Henk W R; Schijven, Marlies P
2014-06-01
Untrained laparoscopic camera assistants in minimally invasive surgery (MIS) may cause suboptimal view of the operating field, thereby increasing risk for errors. Camera navigation is often performed by the least experienced member of the operating team, such as inexperienced surgical residents, operating room nurses, and medical students. The operating room nurses and medical students are currently not included as key user groups in structured laparoscopic training programs. A new virtual reality laparoscopic camera navigation (LCN) module was specifically developed for these key user groups. This multicenter prospective cohort study assesses face validity and construct validity of the LCN module on the Simendo virtual reality simulator. Face validity was assessed through a questionnaire on resemblance to reality and perceived usability of the instrument among experts and trainees. Construct validity was assessed by comparing scores of groups with different levels of experience on outcome parameters of speed and movement proficiency. The results obtained show uniform and positive evaluation of the LCN module among expert users and trainees, signifying face validity. Experts and intermediate experience groups performed significantly better in task time and camera stability during three repetitions, compared to the less experienced user groups (P < .007). Comparison of learning curves showed significant improvement of proficiency in time and camera stability for all groups during three repetitions (P < .007). The results of this study show face validity and construct validity of the LCN module. The module is suitable for use in training curricula for operating room nurses and novice surgical trainees, aimed at improving team performance in minimally invasive surgery. © The Author(s) 2013.
Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an STS-72 training session. Wakata is a mission specialist, representing Japan's National Space Development Agency (NASDA) and Barry is a United States astronaut assigned as mission specialist for the same mission. The two are on the aft flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC).
Camera Ready to Install on Mars Reconnaissance Orbiter
2005-01-07
A telescopic camera called the High Resolution Imaging Science Experiment, or HiRISE, right was installed onto the main structure of NASA Mars Reconnaissance Orbiter left on Dec. 11, 2004 at Lockheed Martin Space Systems, Denver.
Radionuclide evaluation of left ventricular function with nonimaging probes.
Wexler, J P; Blaufox, M D
1979-10-01
Portable nonimaging probes have been developed that can evaluate left ventricular function using radionuclide techniques. Two modes of data acquisition are possible with these probe systems, first-pass and gated. Precordial radiocardiograms obtained after a bolus injection can be used to determine cardiac output, pulmonary transit time, pulmonary blood volume, left ventricle ejection fraction, and left-to-right shunts. Gated techniques can be used to determine left ventricular ejection fraction and sytolic time intervals. Probe-determined indices of left ventricular function agree excellently with comparable measurements determined by conventional camera-computer methods as well as by invasive techniques. These have begun to be used in a preliminary manner in a variety of clinical problems associated with left ventricular dysfunction. This review discusses the types of probe systems available, the methods used in positioning them, and details the specifics of their data acquisition and processing capacity. The major criticisms of probe methods are that they are nonimaging and that they measure global rather than regional left ventricular function. In spite of these criticisms, probe systems, because of their portability, high sensitivity, and relatively low cost are useful supplements to conventional camera-computer systems for the measurement of parameters of left ventricular performance using radionuclide techniques.
Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery
NASA Astrophysics Data System (ADS)
Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng
2012-10-01
In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.
Cluster of Martian Mesas on Lower Mount Sharp, Sols 1438 and 1439
2016-10-03
The mesa in the center of this scene from the "Murray Buttes" area on Mars' lower Mount Sharp is longer than a football field. It extends more than 361 feet (110 meters) from the left-most outcrop low on the slope to the right side where rock debris is behind a light-toned, dust-covered dune. The panorama combines sets of images taken by the left-eye camera of the Mast Camera (Mastcam) on NASA's Curiosity Mars rover, for the left half of the scene, and by Mastcam's right-eye camera for the right half of the scene. The component images from the left-eye camera were taken on Aug. 22, 2016, during the 1,438th Martian day, or sol, of the rover's work on Mars. The ones from the right-eye camera, which has a telephoto lens, were taken the following day, on Sol 1439. From the rover's position when the component images were taken, the top of the central mesa is about 310 feet (about 95 meters) away and about 52 feet (about 16 meters) above the rover. The relatively flat foreground is part of a geological layer called the Murray formation, which includes lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. They are capped by material that is relatively resistant to erosion, just as is the case with many similarly shaped buttes and mesas on Earth. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20842
Unconstrained face detection and recognition based on RGB-D camera for the visually impaired
NASA Astrophysics Data System (ADS)
Zhao, Xiangdong; Wang, Kaiwei; Yang, Kailun; Hu, Weijian
2017-02-01
It is highly important for visually impaired people (VIP) to be aware of human beings around themselves, so correctly recognizing people in VIP assisting apparatus provide great convenience. However, in classical face recognition technology, faces used in training and prediction procedures are usually frontal, and the procedures of acquiring face images require subjects to get close to the camera so that frontal face and illumination guaranteed. Meanwhile, labels of faces are defined manually rather than automatically. Most of the time, labels belonging to different classes need to be input one by one. It prevents assisting application for VIP with these constraints in practice. In this article, a face recognition system under unconstrained environment is proposed. Specifically, it doesn't require frontal pose or uniform illumination as required by previous algorithms. The attributes of this work lie in three aspects. First, a real time frontal-face synthesizing enhancement is implemented, and frontal faces help to increase recognition rate, which is proved with experiment results. Secondly, RGB-D camera plays a significant role in our system, from which both color and depth information are utilized to achieve real time face tracking which not only raises the detection rate but also gives an access to label faces automatically. Finally, we propose to use neural networks to train a face recognition system, and Principal Component Analysis (PCA) is applied to pre-refine the input data. This system is expected to provide convenient help for VIP to get familiar with others, and make an access for them to recognize people when the system is trained enough.
The ideal subject distance for passport pictures.
Verhoff, Marcel A; Witzel, Carsten; Kreutz, Kerstin; Ramsthaler, Frank
2008-07-04
In an age of global combat against terrorism, the recognition and identification of people on document images is of increasing significance. Experiments and calculations have shown that the camera-to-subject distance - not the focal length of the lens - can have a significant effect on facial proportions. Modern passport pictures should be able to function as a reference image for automatic and manual picture comparisons. This requires a defined subject distance. It is completely unclear which subject distance, in the taking of passport photographs, is ideal for the recognition of the actual person. We show here that the camera-to-subject distance that is perceived as ideal is dependent on the face being photographed, even if the distance of 2m was most frequently preferred. So far the problem of the ideal camera-to-subject distance for faces has only been approached through technical calculations. We have, for the first time, answered this question experimentally with a double-blind experiment. Even if there is apparently no ideal camera-to-subject distance valid for every face, 2m can be proposed as ideal for the taking of passport pictures. The first step would actually be the determination of a camera-to-subject distance for the taking of passport pictures within the standards. From an anthropological point of view it would be interesting to find out which facial features allow the preference of a shorter camera-to-subject distance and which allow the preference of a longer camera-to-subject distance.
NASA Technical Reports Server (NTRS)
2004-01-01
28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.STS-92 crew takes part in a Leak Seal Kit Fit Check in the SSPF
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, STS-92 crew members discuss the Pressurized Mating Adapter -3 in the background with workers from Boeing. At the far left is Mission Specialist William Surles 'Bill' McArthur Jr.; facing the camera are Pilot Pamela A. Melroy and Mission Specialist Koichi Wakata, who represents the National Space Development Agency of Japan (NASDA). Also participating are other crew members Commander Brian Duffy and Mission Specialists Leroy Chiao (Ph.D.), Peter J.K. 'Jeff' Wisoff (Ph.D.), Michael E. Lopez-Alegria and William Surles 'Bill' McArthur Jr. The crew are taking part in a Leak Seal Kit Fit Check. The mission payload also includes an integrated truss structure (Z-1 truss). Launch of STS-92 is scheduled for Feb. 24, 2000.
1998-07-16
STS-95 crew members gather around the Vestibular Function Experiment Unit (VFEU) which includes marine fish called toadfish. In foreground, from left, are Mission Specialist Pedro Duque of the European Space Agency (ESA), a technician from the National Space Development Agency of Japan (NASDA), Payload Specialist Chiaki Mukai of NASDA, Pilot Steven W. Lindsey, and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. At center, facing the camera, are Mission Specialist Scott E. Parazynski and Commander Curtis L. Brown Jr., in back. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery
Self-Portraits: Smartphones Reveal a Side Bias in Non-Artists
2013-01-01
According to surveys of art books and exhibitions, artists prefer poses showing the left side of the face when composing a portrait and the right side when composing a self-portrait. However, it is presently not known whether similar biases can be observed in individuals that lack formal artistic training. We collected self-portraits by naïve photographers who used the iPhone™ front camera, and confirmed a right side bias in this non-artist sample and even when biomechanical constraints would have favored the opposite. This result undermines explanations based on posing conventions due to artistic training or biomechanical factors, and is consistent with the hypothesis that side biases in portraiture and self-portraiture are caused by biologically- determined asymmetries in facial expressiveness. PMID:23405117
Minimum Requirements for Taxicab Security Cameras*
Zeng, Shengke; Amandus, Harlan E.; Amendola, Alfred A.; Newbraugh, Bradley H.; Cantis, Douglas M.; Weaver, Darlene
2015-01-01
Problem The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. Methods Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. Results Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. Practical Applications These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicab-security camera manufacturers to improve the camera facial identification capability. PMID:26823992
PBF Reactor Building (PER620). Camera faces south toward verticallift door, ...
PBF Reactor Building (PER-620). Camera faces south toward vertical-lift door, which is closed. Note crane and its trolley positioned near door; its rails along side walls. Reactor vessel and lifting beams are positioned above reactor pit. Photographer: John Capek. Date: January 9, 1970. INEEL negative no. 70-132 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MTR BUILDING INTERIOR, TRA603. BASEMENT. CAMERA IN WEST CORRIDOR FACING ...
MTR BUILDING INTERIOR, TRA-603. BASEMENT. CAMERA IN WEST CORRIDOR FACING SOUTH. FREIGHT ELEVATOR IS AT RIGHT OF VIEW. AT CENTER VIEW IS MTR VAULT NO. 1, USED TO STORE SPECIAL OR FISSIONABLE MATERIALS. INL NEGATIVE NO. HD46-6-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Perceptual and Gaze Biases during Face Processing: Related or Not?
Samson, Hélène; Fiori-Duharcourt, Nicole; Doré-Mazars, Karine; Lemoine, Christelle; Vergilino-Perez, Dorine
2014-01-01
Previous studies have demonstrated a left perceptual bias while looking at faces, due to the fact that observers mainly use information from the left side of a face (from the observer's point of view) to perform a judgment task. Such a bias is consistent with the right hemisphere dominance for face processing and has sometimes been linked to a left gaze bias, i.e. more and/or longer fixations on the left side of the face. Here, we recorded eye-movements, in two different experiments during a gender judgment task, using normal and chimeric faces which were presented above, below, right or left to the central fixation point or on it (central position). Participants performed the judgment task by remaining fixated on the fixation point or after executing several saccades (up to three). A left perceptual bias was not systematically found as it depended on the number of allowed saccades and face position. Moreover, the gaze bias clearly depended on the face position as the initial fixation was guided by face position and landed on the closest half-face, toward the center of gravity of the face. The analysis of the subsequent fixations revealed that observers move their eyes from one side to the other. More importantly, no apparent link between gaze and perceptual biases was found here. This implies that we do not look necessarily toward the side of the face that we use to make a gender judgment task. Despite the fact that these results may be limited by the absence of perceptual and gaze biases in some conditions, we emphasized the inter-individual differences observed in terms of perceptual bias, hinting at the importance of performing individual analysis and drawing attention to the influence of the method used to study this bias. PMID:24454927
False-Color Image of an Impact Crater on Vesta
2011-08-24
NASA Dawn spacecraft obtained this false-color image right of an impact crater in asteroid Vesta equatorial region with its framing camera on July 25, 2011. The view on the left is from the camera clear filter.
Human Age Estimation Method Robust to Camera Sensor and/or Face Movement
Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung
2015-01-01
Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method. PMID:26334282
STS-38 crewmembers participate in photography training and camera briefing
1990-03-01
STS-38 crewmembers listen as RSOC-JSC crew trainer M. Judy Alexander explains the camera equipment they will be using on their upcoming Department of Defense (DOD) mission. Left to right are Pilot Frank L. Culbertson, Mission Specialist (MS) Carl J. Meade, and MS Charles D. Gemar. Alexander is holding a training version of the 70mm handheld HASSELBLAD camera.
STS-38 crewmembers participate in photography training and camera briefing
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 crewmembers listen as RSOC-JSC crew trainer M. Judy Alexander explains the camera equipment they will be using on their upcoming Department of Defense (DOD) mission. Left to right are Pilot Frank L. Culbertson, Mission Specialist (MS) Carl J. Meade, and MS Charles D. Gemar. Alexander is holding a training version of the 70mm handheld HASSELBLAD camera.
Rangarajan, Vinitha; Hermes, Dora; Foster, Brett L.; Weiner, Kevin S.; Jacques, Corentin; Grill-Spector, Kalanit
2014-01-01
Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception. PMID:25232118
DOT National Transportation Integrated Search
2004-10-01
The parking assistance system evaluated consisted of four outward facing cameras whose images could be presented on a monitor on the center console. The images presented varied in the location of the virtual eye point of the camera (the height above ...
Blur spot limitations in distal endoscope sensors
NASA Astrophysics Data System (ADS)
Yaron, Avi; Shechterman, Mark; Horesh, Nadav
2006-02-01
In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.
Predators of Greater Sage-Grouse nests identified by video monitoring
Coates, P.S.; Connelly, J.W.; Delehanty, D.J.
2008-01-01
Nest predation is the primary cause of nest failure for Greater Sage-Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage-Grouse nests (camera, N = 55; no camera, N = 32) in northeastern Nevada and south-central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage-Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage-Grouse nest failure in the face of land-use changes in the Intermountain West. ?? 2008 Association of Field Ornithologists.
Cross-Platform Mobile Application Development: A Pattern-Based Approach
2012-03-01
Additionally, developers should be aware of different hardware capabilities such as external SD cards and forward facing cameras. Finally, each...applications are written. Additionally, developers should be aware of different hardware capabilities such as external SD cards and forward facing cameras... iTunes library, allowing the user to update software and manage content on each device. However, in iOS5, the PC Free feature removes this constraint
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
MTR BUILDING, TRA603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON ...
MTR BUILDING, TRA-603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON BUILDING MARKED WITH "X" IS TRA-651. TRA-626, TO ITS RIGHT, HOUSED COMPRESSOR EQUIPMENT FOR THE AIRCRAFT NUCLEAR PROPULSION PROGRAM. LATER, IT WAS USED FOR STORAGE. INL NEGATIVE NO. HD46-42-4. Mike Crane, Photographer, April 2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi
2013-06-01
Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased pixel accuracy as compared to Chen and Wang's method [18].
Experimental confirmation of a character-facing bias in literacy development.
McIntosh, Robert D; Anderson, Eilidh L; Henderson, Rowena M
2018-06-01
When learning to write, children often mirror-reverse individual letters. For children learning to use the Latin alphabet, in a left-to-right writing culture, letters that appear to face left (such as J and Z) seem to be more prone to reversal than those that appear to face right (such as B and C). It has been proposed that, because most asymmetrical Latin letters face right, children statistically learn this general regularity and are subsequently biased to write any letter rightward. The evidence for this character-facing bias is circumstantial, however, because letter-facing direction is confounded with other factors that could affect error rates; for instance, J and Z are left-facing, but they are also infrequent. We report the first controlled experimental test of the character-facing bias. We taught 43 Scottish primary schoolchildren (aged 4.8-5.8 years) four artificial, letter-like characters, two of which were left-facing and two of which were right-facing. The characters were novel and so were not subject to prior exposure effects, and alternate groups of children were assigned to identical but mirror-reflected character sets. Children were three times more likely to mirror-write a novel character they had learned in a left-facing format than to mirror-write one they had learned in a right-facing format. This provides the first experimental confirmation of the character-facing bias in literacy development and suggests that implicit knowledge acquired from exposure to written language is readily generalized to novel letter-like forms. Copyright © 2018 Elsevier Inc. All rights reserved.
Centanni, Tracy M; Norton, Elizabeth S; Park, Anne; Beach, Sara D; Halverson, Kelly; Ozernov-Palchik, Ola; Gaab, Nadine; Gabrieli, John DE
2018-03-05
A functional region of left fusiform gyrus termed "the visual word form area" (VWFA) develops during reading acquisition to respond more strongly to printed words than to other visual stimuli. Here, we examined responses to letters among 5- and 6-year-old early kindergarten children (N = 48) with little or no school-based reading instruction who varied in their reading ability. We used functional magnetic resonance imaging (fMRI) to measure responses to individual letters, false fonts, and faces in left and right fusiform gyri. We then evaluated whether signal change and size (spatial extent) of letter-sensitive cortex (greater activation for letters versus faces) and letter-specific cortex (greater activation for letters versus false fonts) in these regions related to (a) standardized measures of word-reading ability and (b) signal change and size of face-sensitive cortex (fusiform face area or FFA; greater activation for faces versus letters). Greater letter specificity, but not letter sensitivity, in left fusiform gyrus correlated positively with word reading scores. Across children, in the left fusiform gyrus, greater size of letter-sensitive cortex correlated with lesser size of FFA. These findings are the first to suggest that in beginning readers, development of letter responsivity in left fusiform cortex is associated with both better reading ability and also a reduction of the size of left FFA that may result in right-hemisphere dominance for face perception. © 2018 John Wiley & Sons Ltd.
Looking northwest, Face B Array to left, Face C (rear) ...
Looking northwest, Face B Array to left, Face C (rear) center, Power Plant (Building 5761), to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Panorama from 'Cape Verde' (False Color)
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity captured this vista of 'Victoria Crater' from the viewpoint of 'Cape Verde,' one of the promontories that are part of the scalloped rim of the crater. Opportunity drove onto Cape Verde shortly after arriving at the rim of Victoria in September 2006. The view combines hundreds of exposures taken by the rover's panoramic camera (Pancam). The camera began taking the component images during Opportunity's 970th Martian day, or sol, on Mars (Oct. 16, 2006). Work on the panorama continued through the solar conjunction period, when Mars was nearly behind the sun from Earth's perspective and communications were minimized. Acquisition of images for this panorama was completed on Opportunity's 991st sol (Nov. 7, 2006). The top of Cape Verde is in the immediate foreground at the center of the image. To the left and right are two of the more gradually sloped bays that alternate with the cliff-faced capes or promontories around the rim of the crater. 'Duck Bay,' where Opportunity first reached the rim, is to the right. Beyond Duck Bay counterclockwise around the rim, the next promontory is 'Cabo Frio,' about 150 meters (500 feet) from the rover. On the left side of the panorama is 'Cape St. Mary,' the next promontory clockwise from Cape Verde and about 40 meters (130 feet) from the rover. The vantage point atop Cape Verde offered a good view of the rock layers in the cliff face of Cape St. Mary, which is about 15 meters or 50 feet tall. By about two weeks after the Pancam finished collecting the images for this panorama, Opportunity had driven to Cape St. Mary and was photographing Cape Verde's rock layers. The far side of the crater lies about 800 meters (half a mile) away, toward the southeast. This view combines images taken through three of the Pancam's filters, admitting light with wavelengths centered at 750 nanometers (near infrared), 530 nanometers (green) and 430 nanometers (violet). It is presented in false color to emphasize differences among materials in the rocks and soils.2003-09-04
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA), (above) threads a camera under the tiles of the orbiter Endeavour, NASA’s Richard Parker (below left) and Peggy Ritchie, with USA, (at right) watch the images on a monitor to inspect for corrosion.
NASA Technical Reports Server (NTRS)
2004-01-01
The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.
Evidence for Recent Liquid Water on Mars: Gullies in Sirenum Fossae Trough
NASA Technical Reports Server (NTRS)
2000-01-01
This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images shows about 20 different gullies coming down the south-facing wall of a trough in the Sirenum Fossae/Gorgonum Chaos region of the martian southern hemisphere. Each channel and its associated fan--or apron--of debris appears to have started just below the same hard, resistant layer of bedrock located approximately 100 meters (about 325 feet) below the top of the trough wall. The layer beneath this hard, resistant bedrock is interpreted to be permeable, which allows ground water to percolate through it and--at the location of this trough--seep out onto the martian surface. The channels and aprons only occur on the south-facing slope of this valley created by faults on each side of the trough. The depression is approximately 1.4 km (0.9 mi) across.The mosaic was constructed from two pictures taken on September 16, 1999, and May 1, 2000. The black line is a gap between the two images that was not covered by MOC. The scene covers an area approximately 5.5 kilometers (3.4 miles) wide by 4.9 km (3.0 mi) high. Sunlight illuminates the area from the upper left. The image is located near 38.5oS, 171.3oW. MOC high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s.NASA Technical Reports Server (NTRS)
Reiber, J. H. C.
1976-01-01
To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.
Ryu, Nam Gyu; Lim, Byung Woo; Cho, Jae Keun; Kim, Jin
2016-09-01
We investigated whether experiencing right- or left-sided facial paralysis would affect an individual's ability to recognize one side of the human face using hybrid hemi-facial photos by preliminary study. Further investigation looked at the relationship between facial recognition ability, stress, and quality of life. To investigate predominance of one side of the human face for face recognition, 100 normal participants (right-handed: n = 97, left-handed: n = 3, right brain dominance: n = 56, left brain dominance: n = 44) answered a questionnaire that included hybrid hemi-facial photos developed to determine decide superiority of one side for human face recognition. To determine differences of stress level and quality of life between individuals experiencing right- and left-sided facial paralysis, 100 patients (right side:50, left side:50, not including traumatic facial nerve paralysis) answered a questionnaire about facial disability index test and quality of life (SF-36 Korean version). Regardless of handedness or hemispheric dominance, the proportion of predominance of the right side in human face recognition was larger than the left side (71% versus 12%, neutral: 17%). Facial distress index of the patients with right-sided facial paralysis was lower than that of left-sided patients (68.8 ± 9.42 versus 76.4 ± 8.28), and the SF-36 scores of right-sided patients were lower than left-sided patients (119.07 ± 15.24 versus 123.25 ± 16.48, total score: 166). Universal preference for the right side in human face recognition showed worse psychological mood and social interaction in patients with right-side facial paralysis than left-sided paralysis. This information is helpful to clinicians in that psychological and social factors should be considered when treating patients with facial-paralysis. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A multi-camera system for real-time pose estimation
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin
2007-04-01
This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.
Wakata and Barratt with cameras at SM window
2009-04-19
ISS019-E-008935 (19 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (left) and NASA astronaut Michael Barratt, both Expedition 19/20 flight engineers, use still cameras at a window in the Zvezda Service Module of the International Space Station.
Laterality and Left-sidedness in the Nose, Face, and Body: A New Finding.
Hafezi, Farhad; Javdani, Ali; Naghibzadeh, Bijan; Ashtiani, Abbas Kazemi
2017-12-01
Asymmetry is a common occurrence in bilaterian animals, particularly human beings. Through examination of patients and their photographs during rhinoplasty, we noted wider left-sided nasal and facial features in most patients. This observation led us to hypothesize that this might be consistent to the whole body. We conducted a study in 3 parts to test the question above. First, we analyzed operating notes of 50 rhinoplasty patients to determine the wider side of the upper, middle, and lower thirds of the nose. Second, we analyzed the width of the face and chest wall in 31 patients to discern any correlation between facial and bodily asymmetry. Third, computerized tomographic scans of the thorax and body of 48 patients were studied to measure the width of the hemithorax and hemipelvic bone. (1) Upper vault width was wider on left side (78%). Left middle vault width was wider (88%). The lower lateral cartilage, lateral crura convexity was more prominent on left side (48%), and a wider scroll area was found and trimmed in 21 (left) and 0 (right) cases. The alar base was wider on left side (56%). (2) In the body and face analysis, 64.5% had a wider left-sided face and body. (3) In the computed tomographic scan analysis, same-sided thorax and pelvis asymmetry was seen (85.35%), 33 and 7 of which were left- and right-sided, respectively. We observed generalized asymmetry of the face and body with left-sided predominance.
Building, north side (original front), detail of original entrance. Camera ...
Building, north side (original front), detail of original entrance. Camera facing south - Naval Supply Center, Broadway Complex, Administration Storehouse, 911 West Broadway, San Diego, San Diego County, CA
R Innes, Bobby; Burt, D Michael; Birch, Yan K; Hausmann, Markus
2015-12-28
Left hemiface biases observed within the Emotional Chimeric Face Task (ECFT) support emotional face perception models whereby all expressions are preferentially processed by the right hemisphere. However, previous research using this task has not considered that the visible midline between hemifaces might engage atypical facial emotion processing strategies in upright or inverted conditions, nor controlled for left visual field (thus right hemispheric) visuospatial attention biases. This study used novel emotional chimeric faces (blended at the midline) to examine laterality biases for all basic emotions. Left hemiface biases were demonstrated across all emotional expressions and were reduced, but not reversed, for inverted faces. The ECFT bias in upright faces was significantly increased in participants with a large attention bias. These results support the theory that left hemiface biases reflect a genuine bias in emotional face processing, and this bias can interact with attention processes similarly localized in the right hemisphere.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-344, 28 April 2003
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image mosaic was constructed from data acquired by the MOC red wide angle camera. The large, circular feature in the upper left is Aram Chaos, an ancient impact crater filled with layered sedimentary rock that was later disrupted and eroded to form a blocky, 'chaotic' appearance. To the southeast of Aram Chaos, in the lower right of this picture, is Iani Chaos. The light-toned patches amid the large blocks of Iani Chaos are known from higher-resolution MOC images to be layered, sedimentary rock outcrops. The picture center is near 0.5oN, 20oW. Sunlight illuminates the scene from the left/upper left.Highest-Resolution View of 'Face on Mars'
NASA Technical Reports Server (NTRS)
2001-01-01
A key aspect of the Mars Global Surveyor (MGS) Extended Mission is the opportunity to turn the spacecraft and point the Mars Orbiter Camera (MOC) at specific features of interest. A chance to point the spacecraft comes about ten times a week. Throughout the Primary Mission (March 1999 - January 2001), nearly all MGS operations were conducted with the spacecraft pointing 'nadir'--that is, straight down. In this orientation, opportunities to hit a specific small feature of interest were in some cases rare, and in other cases non-existent. In April 1998, nearly a year before MGS reached its Primary Mission mapping orbit, several tests of the spacecraft's ability to be pointed at specific features was conducted with great success (e.g., Mars Pathfinder landing site, Viking 1 site, and Cydonia landforms). When the Mars Polar Lander was lost in December 1999, this capability was again employed to search for the missing lander. Following the lander search activities, a plan to conduct similar off-nadir observations during the MGS Extended Mission was put into place. The Extended Mission began February 1, 2001. On April 8, 2001, the first opportunity since April 1998 arose to turn the spacecraft and point the MOC at the popular 'Face on Mars' feature.Viking orbiter images acquired in 1976 showed that one of thousands of buttes, mesas, ridges, and knobs in the transition zone between the cratered uplands of western Arabia Terra and the low, northern plains of Mars looked somewhat like a human face. The feature was subsequently popularized as a potential 'alien artifact' in books, tabloids, radio talk shows, television, and even a major motion picture. Given the popularity of this landform, a new high-resolution view was targeted by pointing the spacecraft off-nadir on April 8, 2001. On that date at 20:54 UTC (8:54 p.m., Greenwich time zone), the MGS was rolled 24.8o to the left so that it was looking at the 'face' 165 km to the side from a distance of about 450 km. The resulting image has a resolution of about 2 meters (6.6 feet) per pixel. If present on Mars, objects the size of typical passenger jet airplanes would be distinguishable in an image of this scale. The large 'face' picture covers an area about 3.6 kilometers (2.2 miles) on a side. Sunlight illuminates the images from the left/lower left.Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions.
Roberts, Daniel J; Lambon Ralph, Matthew A; Kim, Esther; Tainturier, Marie-Josephe; Beeson, Pelagie M; Rapcsak, Steven Z; Woollams, Anna M
2015-11-01
Pure alexia (PA) arises from damage to the left posterior fusiform gyrus (pFG) and the striking reading disorder that defines this condition has meant that such patients are often cited as evidence for the specialisation of this region to processing of written words. There is, however, an alternative view that suggests this region is devoted to processing of high acuity foveal input, which is particularly salient for complex visual stimuli like letter strings. Previous reports have highlighted disrupted processing of non-linguistic visual stimuli after damage to the left pFG, both for familiar and unfamiliar objects and also for novel faces. This study explored the nature of face processing deficits in patients with left pFG damage. Identification of famous faces was found to be compromised in both expressive and receptive tasks. Discrimination of novel faces was also impaired, particularly for those that varied in terms of second-order spacing information, and this deficit was most apparent for the patients with the more severe reading deficits. Interestingly, discrimination of faces that varied in terms of feature identity was considerably better in these patients and it was performance in this condition that was related to the size of the length effects shown in reading. This finding complements functional imaging studies showing left pFG activation for faces varying only in spacing and frontal activation for faces varying only on features. These results suggest that the sequential part-based processing strategy that promotes the length effect in the reading of these patients also allows them to discriminate between faces on the basis of feature identity, but processing of second-order configural information is most compromised due to their left pFG lesion. This study supports a view in which the left pFG is specialised for processing of high acuity foveal visual information that supports processing of both words and faces. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions
Roberts, Daniel J.; Lambon Ralph, Matthew A.; Kim, Esther; Tainturier, Marie-Josephe; Beeson, Pelagie M.; Rapcsak, Steven Z.; Woollams, Anna M.
2015-01-01
Pure alexia (PA) arises from damage to the left posterior fusiform gyrus (pFG) and the striking reading disorder that defines this condition has meant that such patients are often cited as evidence for the specialisation of this region to processing of written words. There is, however, an alternative view that suggests this region is devoted to processing of high acuity foveal input, which is particularly salient for complex visual stimuli like letter strings. Previous reports have highlighted disrupted processing of non-linguistic visual stimuli after damage to the left pFG, both for familiar and unfamiliar objects and also for novel faces. This study explored the nature of face processing deficits in patients with left pFG damage. Identification of famous faces was found to be compromised in both expressive and receptive tasks. Discrimination of novel faces was also impaired, particularly for those that varied in terms of second-order spacing information, and this deficit was most apparent for the patients with the more severe reading deficits. Interestingly, discrimination of faces that varied in terms of feature identity was considerably better in these patients and it was performance in this condition that was related to the size of the length effects shown in reading. This finding complements functional imaging studies showing left pFG activation for faces varying only in spacing and frontal activation for faces varying only on features. These results suggest that the sequential part-based processing strategy that promotes the length effect in the reading of these patients also allows them to discriminate between faces on the basis of feature identity, but processing of second-order configural information is most compromised due to their left pFG lesion. This study supports a view in which the left pFG is specialised for processing of high acuity foveal visual information that supports processing of both words and faces. PMID:25837867
Right-Wing Politicians Prefer the Emotional Left
Thomas, Nicole A.; Loetscher, Tobias; Clode, Danielle; Nicholls, Michael E. R.
2012-01-01
Physiological research suggests that social attitudes, such as political beliefs, may be partly hard-wired in the brain. Conservatives have heightened sensitivity for detecting emotional faces and use emotion more effectively when campaigning. As the left face displays emotion more prominently, we examined 1538 official photographs of conservative and liberal politicians from Australia, Canada, the United Kingdom and the United States for an asymmetry in posing. Across nations, conservatives were more likely than liberals to display the left cheek. In contrast, liberals were more likely to face forward than were conservatives. Emotion is important in political campaigning and as portraits influence voting decisions, conservative politicians may intuitively display the left face to convey emotion to voters. PMID:22567166
Why are faces denser in the visual experiences of younger than older infants?
Jayaraman, Swapnaa; Fausey, Caitlin M.; Smith, Linda B.
2017-01-01
Recent evidence from studies using head cameras suggests that the frequency of faces directly in front of infants declines over the first year and a half of life, a result that has implications for the development of and evolutionary constraints on face processing. Two experiments tested two opposing hypotheses about this observed age-related decline in the frequency of faces in infant views. By the People-input hypothesis, there are more faces in view for younger infants because people are more often physically in front of younger than older infants. This hypothesis predicts that not just faces but views of other body parts will decline with age. By the Face-input hypothesis, the decline is strictly about faces, not people or other body parts in general. Two experiments, one using a time-sampling method (84 infants 3 to 24 months in age) and the other analyses of head camera images (36 infants 1 to 24 months) provide strong support for the Face-input hypothesis. The results suggest developmental constraints on the environment that ensure faces are prevalent early in development. PMID:28026190
Development of camera technology for monitoring nests. Chapter 15
W. Andrew Cox; M. Shane Pruett; Thomas J. Benson; Scott J. Chiavacci; Frank R., III Thompson
2012-01-01
Photo and video technology has become increasingly useful in the study of avian nesting ecology. However, researchers interested in using camera systems are often faced with insufficient information on the types and relative advantages of available technologies. We reviewed the literature for studies of nests that used cameras and summarized them based on study...
PBF Reactor Building (PER620). Camera faces south along west wall. ...
PBF Reactor Building (PER-620). Camera faces south along west wall. Gap between native lava rock and concrete basement walls is being backfilled and compacted. Wire mesh protects workers from falling rock. Note penetrations for piping that will carry secondary coolant water to Cooling Tower. Photographer: Holmes. Date: June 15, 1967. INEEL negative no. 67-3665 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
LOFT complex, camera facing west. Mobile entry (TAN624) is position ...
LOFT complex, camera facing west. Mobile entry (TAN-624) is position next to containment building (TAN-650). Shielded roadway entrance in view just below and to right of stack. Borated water tank has been covered with weather shelter and is no longer visible. ANP hangar (TAN-629) in view beyond LOFT. Date: 1974. INEEL negative no. 74-4191 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS AT DOOR TO M-3 CUBICLE. CUBICLE WALLS ARE MADE OF LEAD SHIELDING BRICKS. VALVE HANDLES AND STEMS PERTAIN TO SAMPLING. METAL SHIELDING DOOR. NOTE GLOVE BOX TO RIGHT OF CUBICLE DOOR. INL NEGATIVE NO. HD-46-21-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Statis omnidirectional stereoscopic display system
NASA Astrophysics Data System (ADS)
Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.
1999-11-01
A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.
9. INTERIOR, WAREHOUSE SPACE AT EAST END OF BUILDING, CAMERA ...
9. INTERIOR, WAREHOUSE SPACE AT EAST END OF BUILDING, CAMERA FACING NORTHEAST. - U.S. Coast Guard Support Center Alameda, Warehouse, Spencer Road & Icarrus Drive, Coast Guard Island, Alameda, Alameda County, CA
Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas
2018-01-01
This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites. PMID:29673230
Tightly-Coupled GNSS/Vision Using a Sky-Pointing Camera for Vehicle Navigation in Urban Areas.
Gakne, Paul Verlaine; O'Keefe, Kyle
2018-04-17
This paper presents a method of fusing the ego-motion of a robot or a land vehicle estimated from an upward-facing camera with Global Navigation Satellite System (GNSS) signals for navigation purposes in urban environments. A sky-pointing camera is mounted on the top of a car and synchronized with a GNSS receiver. The advantages of this configuration are two-fold: firstly, for the GNSS signals, the upward-facing camera will be used to classify the acquired images into sky and non-sky (also known as segmentation). A satellite falling into the non-sky areas (e.g., buildings, trees) will be rejected and not considered for the final position solution computation. Secondly, the sky-pointing camera (with a field of view of about 90 degrees) is helpful for urban area ego-motion estimation in the sense that it does not see most of the moving objects (e.g., pedestrians, cars) and thus is able to estimate the ego-motion with fewer outliers than is typical with a forward-facing camera. The GNSS and visual information systems are tightly-coupled in a Kalman filter for the final position solution. Experimental results demonstrate the ability of the system to provide satisfactory navigation solutions and better accuracy than the GNSS-only and the loosely-coupled GNSS/vision, 20 percent and 82 percent (in the worst case) respectively, in a deep urban canyon, even in conditions with fewer than four GNSS satellites.
Investigation into the use of photoanthropometry in facial image comparison.
Moreton, Reuben; Morley, Johanna
2011-10-10
Photoanthropometry is a metric based facial image comparison technique. Measurements of the face are taken from an image using predetermined facial landmarks. Measurements are then converted to proportionality indices (PIs) and compared to PIs from another facial image. Photoanthropometry has been presented as a facial image comparison technique in UK courts for over 15 years. It is generally accepted that extrinsic factors (e.g. orientation of the head, camera angle and distance from the camera) can cause discrepancies in anthropometric measurements of the face from photographs. However there has been limited empirical research into quantifying the influence of such variables. The aim of this study was to determine the reliability of photoanthropometric measurements between different images of the same individual taken with different angulations of the camera. The study examined the facial measurements of 25 individuals from high resolution photographs, taken at different horizontal and vertical camera angles in a controlled environment. Results show that the degree of variability in facial measurements of the same individual due to variations in camera angle can be as great as the variability of facial measurements between different individuals. Results suggest that photoanthropometric facial comparison, as it is currently practiced, is unsuitable for elimination purposes. Preliminary investigations into the effects of distance from camera and image resolution in poor quality images suggest that such images are not an accurate representation of an individuals face, however further work is required. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-01-01
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350
Perceptual asymmetry during free viewing of words and faces: The effect of context on recognition.
Vakil, Eli; Liberman, Hadas
2016-11-01
There is ample evidence supporting the dissociation between the role of the left and right cerebral hemispheres in processing words and faces, respectively. Nevertheless, research has not yet studied the effect of perceptual asymmetry in memory context effect tasks using words and faces. Thus, the present study researches the advantages of presenting information in the right versus left hemispace and the effect of context on recognition when using faces compared to words presented in the right versus left hemispace. Participants (n=60) were assigned either to the group presented with pairs of words, or with pairs of faces. One stimulus in each pair was designated as the target (i.e., to be remembered) and the other served as context (i.e., to be ignored). Half of the targets were presented in the right hemispace, and half were presented in the left hemispace. As predicted, words were better recognized when presented in the right hemispace, while faces were better remembered when presented in the left hemispace. The most interesting finding is the influence of context on lateralized processing of words and pictures. That is, only when words or faces were presented in the left hemispace did contextual information affect target memory (though it yielded a different pattern of effect). Hence, the findings of the present study may be interpreted either as reflecting attentional bias to the left hemispace or structural differences between the hemispheres. Thus, cognitive processes and the content of the stimuli determine which hemisphere will be involved in processing contextual information. Copyright © 2016 Elsevier Inc. All rights reserved.
Teacher-in-Space Trainees - Arriflex Motion Picture Camera
1985-09-20
S85-40668 (18 Sept. 1985) --- The two teachers, Sharon Christa McAuliffe (left) and Barbara R. Morgan have hands-on experience with an Arriflex motion picture camera following a briefing on space photography. The two began training Sept. 10, 1985 with the STS-51L crew and learning basic procedures for space travelers. The second week of training included camera training, aircraft familiarization and other activities. Photo credit: NASA
Mastcam Telephoto of a Martian Dune Downwind Face
2016-01-04
This view combines multiple images from the telephoto-lens camera of the Mast Camera (Mastcam) on NASA's Curiosity Mars rover to reveal fine details of the downwind face of "Namib Dune." The site is part of the dark-sand "Bagnold Dunes" field along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year. Sand on this face of Namib Dune has cascaded down a slope of about 26 to 28 degrees. The top of the face is about 13 to 17 feet (4 to 5 meters) above the rocky ground at its base. http://photojournal.jpl.nasa.gov/catalog/PIA20283
Vervloed, Mathijs P J; Hendriks, Angélique W; van den Eijnde, Esther
2011-04-01
Face processing development is negatively affected when infants have not been exposed to faces for some time because of congenital cataract blocking all vision (Le Grand, Mondloch, Maurer, & Brent, 2001). It is not clear, however, whether more subtle differences in face exposure may also have an influence. The present study looked at the effect of the mother's preferred side of holding an infant, on her adult child's face processing lateralisation. Adults with a mother who had a left-arm preference for holding infants were compared with adults with a mother who had a right-arm holding preference. All participants were right-handed and had been exclusively bottle-fed during infancy. The participants were presented with two chimeric faces tests, one involving emotion and the other one gender. The left-arm held individuals showed a normal left-bias on the chimeric face tests, whereas the right-arm held individuals a significantly decreased left-bias. The results might suggest that reduced exposure to high quality emotional information on faces in infancy results in diminished right-hemisphere lateralisation for face processing. Copyright © 2011 Elsevier Inc. All rights reserved.
Spatial location in brief, free-viewing face encoding modulates contextual face recognition
Felisberti, Fatima M.; McDermott, Mark R.
2013-01-01
The effect of the spatial location of faces in the visual field during brief, free-viewing encoding in subsequent face recognition is not known. This study addressed this question by tagging three groups of faces with cheating, cooperating or neutral behaviours and presenting them for encoding in two visual hemifields (upper vs. lower or left vs. right). Participants then had to indicate if a centrally presented face had been seen before or not. Head and eye movements were free in all phases. Findings showed that the overall recognition of cooperators was significantly better than cheaters, and it was better for faces encoded in the upper hemifield than in the lower hemifield, both in terms of a higher d′ and faster reaction time (RT). The d′ for any given behaviour in the left and right hemifields was similar. The RT in the left hemifield did not vary with tagged behaviour, whereas the RT in the right hemifield was longer for cheaters than for cooperators. The results showed that memory biases in contextual face recognition were modulated by the spatial location of briefly encoded faces and are discussed in terms of scanning reading habits, top-left bias in lighting preference and peripersonal space. PMID:24349694
NASA Astrophysics Data System (ADS)
Joshi, V.; Manivannan, N.; Jarry, Z.; Carmichael, J.; Vahtel, M.; Zamora, G.; Calder, C.; Simon, J.; Burge, M.; Soliz, P.
2018-02-01
Diabetic peripheral neuropathy (DPN) accounts for around 73,000 lower-limb amputations annually in the US on patients with diabetes. Early detection of DPN is critical. Current clinical methods for diagnosing DPN are subjective and effective only at later stages. Until recently, thermal cameras used for medical imaging have been expensive and hence prohibitive to be installed in primary care setting. The objective of this study is to compare results from a low-cost thermal camera with a high-end thermal camera used in screening for DPN. Thermal imaging has demonstrated changes in microvascular function that correlates with nerve function affected by DPN. The limitations for using low-cost cameras for DPN imaging are: less resolution (active pixels), frame rate, thermal sensitivity etc. We integrated two FLIR Lepton (80x60 active pixels, 50° HFOV, thermal sensitivity < 50mK) as one unit. Right and left cameras record the videos of right and left foot respectively. A compactible embedded system (raspberry pi3 model Bv1.2) is used to configure the sensors, capture and stream the video via ethernet. The resulting video has 160x120 active pixels (8 frames/second). We compared the temperature measurement of feet obtained using low-cost camera against the gold standard highend FLIR SC305. Twelve subjects (aged 35-76) were recruited. Difference in the temperature measurements between cameras was calculated for each subject and the results show that the difference between the temperature measurements of two cameras (mean difference=0.4, p-value=0.2) is not statistically significant. We conclude that the low-cost thermal camera system shows potential for use in detecting early-signs of DPN in under-served and rural clinics.
Which Cheek did the Resurrected Jesus Turn?
Acosta, Lealani Mae Y; Williamson, John B; Heilman, Kenneth M
2015-06-01
Secular portraits are likely to show more of the left than right side of the face (hemiface). Prior research has shown that emotions are more strongly expressed by the left hemiface. In addition, the valence theory of emotion proposes that the right hemisphere is dominant for mediating negative emotions, and the left hemisphere for positive emotions. Since religious art depicting a scene such as the Resurrection of Jesus is more likely to be associated with positive emotions, we postulated that there would be a significant smaller percentage number of artistic works of the Resurrection that reveal the left side of the face of Jesus than in those art works portraying the Crucifixion. Thus, we analyzed artistic portrayals of the Resurrection of Jesus and compared them to the artistic scenes of the Crucifixion. This analysis revealed that the left side of the face of Jesus is less commonly depicted in portraits of the Resurrection than the Crucifixion. In addition, both the right hemiface, and forward-facing faces were also more commonly portrayed in painting of the Resurrection than the Crucifixion. Whereas this right-left hemiface, Resurrection-Crucifixion dichotomy may be related to right-left hemispheric difference in the mediation of emotional valence other factors such as agency, action-intention, and biblical text may have influenced these differences.
Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys
2013-03-01
right panel). ............17 Figure 10. DWR-G external sensor configuration (left panel). GT-31 GPS receiver is visible on the bottom left. Two GoPro ...receiver is visible on the bottom left. Two GoPro cameras are attached to the top of the buoy. DWR-G internal sensor configuration (right panel
The effect of encoding strategy on the neural correlates of memory for faces.
Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L
2002-01-01
Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.
DETAIL OF DOORS ON EAST ELEVATION AT SOUTH END; CAMERA ...
DETAIL OF DOORS ON EAST ELEVATION AT SOUTH END; CAMERA FACING WEST. - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
INTERIOR VIEW OF FIRST STORY SPACE SHOWING CONCRETE BEAMS; CAMERA ...
INTERIOR VIEW OF FIRST STORY SPACE SHOWING CONCRETE BEAMS; CAMERA FACING NORTH - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA
IET. Weather instrumentation tower, located south of control building. Camera ...
IET. Weather instrumentation tower, located south of control building. Camera facing west. Date: August 17, 1955. INEEL negative no. 55-2414 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Detail of second story balcony porch at southeast corner; camera ...
Detail of second story balcony porch at southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Detail of main entry at center of southeast elevation; camera ...
Detail of main entry at center of southeast elevation; camera facing west. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of basement level concrete beams at southwest corner; camera ...
Detail of basement level concrete beams at southwest corner; camera facing west. - Mare Island Naval Shipyard, Hospital Ward, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA
Detail of windows at north portion of west elevation; camera ...
Detail of windows at north portion of west elevation; camera facing east. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Detail of portico at main entry on east elevation; camera ...
Detail of portico at main entry on east elevation; camera facing southwest. - Mare Island Naval Shipyard, WAVES Officers Quarters, Cedar Avenue, west side between Tisdale Avenue & Eighth Street, Vallejo, Solano County, CA
Interior detail of lobby terrazzo floor inlaid NPG insignia; camera ...
Interior detail of lobby terrazzo floor inlaid NPG insignia; camera facing west. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Interior detail of fourpart moveable doors in east hallway; camera ...
Interior detail of four-part moveable doors in east hallway; camera facing south. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Detail of southeast corner with spandrel and window pattern; camera ...
Detail of southeast corner with spandrel and window pattern; camera facing northeast. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Detail of tower and entry doors on north elevation; camera ...
Detail of tower and entry doors on north elevation; camera facing southwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Detail of northeast corner with spandrel and window pattern; camera ...
Detail of northeast corner with spandrel and window pattern; camera facing southwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA
Interior detail of main entrance doors on south wall; camera ...
Interior detail of main entrance doors on south wall; camera facing south. - Mare Island Naval Shipyard, Old Administrative Offices, Eighth Street, north side between Railroad Avenue & Walnut Avenue, Vallejo, Solano County, CA
Mars Orbiter Camera Views the 'Face on Mars' - Comparison with Viking
NASA Technical Reports Server (NTRS)
1998-01-01
Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.
The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.In this comparison, the best Viking image has been enlarged to 3.3 times its original resolution, and the MOC image has been decreased by a similar 3.3 times, creating images of roughly the same size. In addition, the MOC images have been geometrically transformed to a more overhead projection (different from the mercator map projection of PIA01440 & 1441) for ease of comparison with the Viking image. The left image is a portion of Viking Orbiter 1 frame 070A13, the middle image is a portion of MOC frame shown normally, and the right image is the same MOC frame but with the brightness inverted to simulate the approximate lighting conditions of the Viking image.Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps: The image was processed to remove the sensitivity differences between adjacent picture elements (calibrated). This removes the vertical streaking. The contrast and brightness of the image was adjusted, and 'filters' were applied to enhance detail at several scales. The image was then geometrically warped to meet the computed position information for a mercator-type map. This corrected for the left-right flip, and the non-vertical viewing angle (about 45o from vertical), but also introduced some vertical 'elongation' of the image for the same reason Greenland looks larger than Africa on a mercator map of the Earth. A section of the image, containing the 'Face' and a couple of nearly impact craters and hills, was 'cut' out of the full image and reproduced separately.See PIA01440-1442 for additional processing steps. Also see PIA01236 for the raw image.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.PBF Reactor Building (PER620). Camera facing southeast in second basement. ...
PBF Reactor Building (PER-620). Camera facing southeast in second basement. Round form and reinforcing steel surround reactor vessel pit, which will be heavily shielded by several feet of concrete. Block-out is for door to sub-pile room. Rectangular form and rebar beyond pit is for canal wall. Photographer: John Capek. Date: March 10, 1967. INEEL negative no. 67-1643 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665. CAMERA FACING NORTH. NOTE BRICKEDIN WINDOW ...
FAST CHOPPER BUILDING, TRA-665. CAMERA FACING NORTH. NOTE BRICKED-IN WINDOW ON RIGHT SIDE (BELOW PAINTED NUMERALS "665"). SLIDING METAL DOOR ON COVERED RAIL AT UPPER LEVEL. SHELTERED ENTRANCE TO STEEL SHIELDING DOOR. DOOR INTO MTR SERVICE BUILDING, TRA-635, STANDS OPEN. MTR BEHIND CHOPPER BUILDING. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...
ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A 3D camera for improved facial recognition
NASA Astrophysics Data System (ADS)
Lewin, Andrew; Orchard, David A.; Scott, Andrew M.; Walton, Nicholas A.; Austin, Jim
2004-12-01
We describe a camera capable of recording 3D images of objects. It does this by projecting thousands of spots onto an object and then measuring the range to each spot by determining the parallax from a single frame. A second frame can be captured to record a conventional image, which can then be projected onto the surface mesh to form a rendered skin. The camera is able of locating the images of the spots to a precision of better than one tenth of a pixel, and from this it can determine range to an accuracy of less than 1 mm at 1 meter. The data can be recorded as a set of two images, and is reconstructed by forming a 'wire mesh' of range points and morphing the 2 D image over this structure. The camera can be used to record the images of faces and reconstruct the shape of the face, which allows viewing of the face from various angles. This allows images to be more critically inspected for the purpose of identifying individuals. Multiple images can be stitched together to create full panoramic images of head sized objects that can be viewed from any direction. The system is being tested with a graph matching system capable of fast and accurate shape comparisons for facial recognition. It can also be used with "models" of heads and faces to provide a means of obtaining biometric data.
Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene
2014-01-01
The adult human brain would appear to have specialized and independent neural systems for the visual processing of words and faces. Extensive evidence has demonstrated greater selectivity for written words in the left over right hemisphere, and, conversely, greater selectivity for faces in the right over left hemisphere. This study examines the emergence of these complementary neural profiles, as well as the possible relationship between them. Using behavioral and neurophysiological measures, in adults, we observed the standard finding of greater accuracy and a larger N170 ERP component in the left over right hemisphere for words, and conversely, greater accuracy and a larger N170 in the right over the left hemisphere for faces. We also found that, although children aged 7-12 years revealed the adult hemispheric pattern for words, they showed neither a behavioral nor a neural hemispheric superiority for faces. Of particular interest, the magnitude of their N170 for faces in the right hemisphere was related to that of the N170 for words in their left hemisphere. These findings suggest that the hemispheric organization of face recognition and of word recognition do not develop independently, and that word lateralization may precede and drive later face lateralization. A theoretical account for the findings, in which competition for visual representations unfolds over the course of development, is discussed. PMID:24933662
Dundas, Eva M; Plaut, David C; Behrmann, Marlene
2014-08-01
The adult human brain would appear to have specialized and independent neural systems for the visual processing of words and faces. Extensive evidence has demonstrated greater selectivity for written words in the left over right hemisphere, and, conversely, greater selectivity for faces in the right over left hemisphere. This study examines the emergence of these complementary neural profiles, as well as the possible relationship between them. Using behavioral and neurophysiological measures, in adults, we observed the standard finding of greater accuracy and a larger N170 ERP component in the left over right hemisphere for words, and conversely, greater accuracy and a larger N170 in the right over the left hemisphere for faces. We also found that although children aged 7-12 years revealed the adult hemispheric pattern for words, they showed neither a behavioral nor a neural hemispheric superiority for faces. Of particular interest, the magnitude of their N170 for faces in the right hemisphere was related to that of the N170 for words in their left hemisphere. These findings suggest that the hemispheric organization of face recognition and of word recognition does not develop independently, and that word lateralization may precede and drive later face lateralization. A theoretical account for the findings, in which competition for visual representations unfolds over the course of development, is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
PBF Cooling Tower detail. Camera facing southwest into north side ...
PBF Cooling Tower detail. Camera facing southwest into north side of Tower. Five horizontal layers of splash bars constitute fill decks, which will break up falling water into droplets, promoting evaporative cooling. Louvered faces, through which air enters tower, are on east and west sides. Louvers have been installed. Support framework for one of two venturi-shaped fan stacks (or "vents") is in center top. Orifices in hot basins (not in view) will distribute water over fill. Photographer: Kirsh. Date: May 15, 1969. INEEL negative no. 69-3032 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Crew Training - STS-33/51L (Photography)
1985-09-27
View of STS-33/51L Prime Teacher, Christa McAuliffe (left foreground) and Barbara Morgan (second left), both "Teacher in Space" Trainees, review film shot while training with Arriflex camera. 1. McAuliffe, S. Christa - Photography 2. Morgan, Barbara - Photography
A Set of Blast Marks in Color, Left Side
2012-08-09
This cut-out from a color panorama image taken by NASA Curiosity rover shows the effects of the descent stage rocket engines blasting the ground. It comes from the left side of the thumbnail panorama obtained by Curiosity Mast Camera.
Astronauts Sullivan and Leestma perform in-space simulation of refueling
1984-10-14
S84-43432 (11 Oct. 1984) --- Appearing small in the center background of this image, astronauts Kathryn D. Sullivan, left, and David C. Leestma, both 41-G mission specialists, perform an in-space simulation of refueling another spacecraft in orbit. Their station on the space shuttle Challenger is the orbital refueling system (ORS), positioned on the mission peculiar support structure (MPR ESS). The Large Format Camera (LFC) is left of the two mission specialists. In the left foreground is the antenna for the shuttle imaging radar (SIR-B) system onboard. The Canadian-built remote manipulator system (RMS) is positioned to allow close-up recording capability of the busy scene. A 50mm lens on a 70mm camera was used to photograph this scene. Photo credit: NASA
9. FACING NORTH, WATER POWER PENSTOCK RUNS RIGHT TO LEFT, ...
9. FACING NORTH, WATER POWER PENSTOCK RUNS RIGHT TO LEFT, ONE OF TWO DRAFT TUBES AT LOWER RIGHT. TOWERS, BUILDING CROSSWALKS, AND MILL NO. 2 IN BACKGROUND; DAM GATES TO LEFT. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas
2017-01-01
We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.
Reuter-Lorenz, P A; Givis, R P; Moscovitch, M
1983-01-01
Right-handers and inverted and non-inverted left-handers viewed emotional expressions in one hemifield and, simultaneously, a neutral expression of the same poser in the other hemifield. Subjects were required to identify the side containing the affective face. Happy faces with open (i.e. salient) and closed mouth smiles and sad faces were used as stimuli. For right-handers and inverters reaction time was faster to right hemifield presentations for happy faces and to left hemifield presentations for sad faces. Non-inverters showed the reverse pattern. The saliency of the happy expressions had no effect on the magnitude and direction of asymmetry for any group. The data support the hypothesis of differential hemispheric specialization for positive and negative emotion and demonstrate opposite patterns of asymmetry in affect perception for inverted and non-inverted left-handers.
STS-41 crew is briefed on camera equipment during training session at JSC
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 crewmembers are briefed on camera equipment during training session at JSC. Trainer Judy M. Alexander explains the use 16mm motion picture equipment to (left to right) Pilot Robert D. Cabana, Mission Specialist (MS) Bruce E. Melnick, and MS Thomas D. Akers.
Davies-Thompson, Jodie; Johnston, Samantha; Tashakkor, Yashar; Pancaroglu, Raika; Barton, Jason J S
2016-08-01
Visual words and faces activate similar networks but with complementary hemispheric asymmetries, faces being lateralized to the right and words to the left. A recent theory proposes that this reflects developmental competition between visual word and face processing. We investigated whether this results in an inverse correlation between the degree of lateralization of visual word and face activation in the fusiform gyri. 26 literate right-handed healthy adults underwent functional MRI with face and word localizers. We derived lateralization indices for cluster size and peak responses for word and face activity in left and right fusiform gyri, and correlated these across subjects. A secondary analysis examined all face- and word-selective voxels in the inferior occipitotemporal cortex. No negative correlations were found. There were positive correlations for the peak MR response between word and face activity within the left hemisphere, and between word activity in the left visual word form area and face activity in the right fusiform face area. The face lateralization index was positively rather than negatively correlated with the word index. In summary, we do not find a complementary relationship between visual word and face lateralization across subjects. The significance of the positive correlations is unclear: some may reflect the influences of general factors such as attention, but others may point to other factors that influence lateralization of function. Copyright © 2016 Elsevier B.V. All rights reserved.
Department of Defense Data Model, Version 1, Fy 1998, Volume 7.
1998-05-31
POSITIVE/NEGATIVE SIGN: A POSITIVE (+) VALUE IS TO THE RIGHT OF THE CENTERLINE FACING FORWARD; A NEGATIVE (-) VALUE IS TO THE LEFT OF THE CENT...TIVE (+) VALUE IS TO THE RIGHT OF THE CENTERLINE FACING FORWARD; A NEGATIVE (-) V ALUE IS TO THE LEFT OF THE CENTERLINE. Attribute Name: AIRCRAFT...POSITIVE/NEGATIVE SIGN: A POSITIV E (+) VALUE IS TO THE RIGHT OF THE CENTERLINE FACING FORWARD; A NEGATIVE (-) VALU E IS TO THE LEFT OF THE
Application of robust face recognition in video surveillance systems
NASA Astrophysics Data System (ADS)
Zhang, De-xin; An, Peng; Zhang, Hao-xiang
2018-03-01
In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis (FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.
Calibration Image of Earth by Mars Color Imager
NASA Technical Reports Server (NTRS)
2005-01-01
Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils. The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results. The images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to Earth was about 1,170,000 kilometers (about 727,000 miles). This image shows a color composite view of Mars Color Imager's image of Earth. As expected, it covers only five pixels. This color view has been enlarged five times. The Sun was illuminating our planet from the left, thus only one quarter of Earth is seen from this perspective. North America was in daylight and facing toward the camera at the time the picture was taken; the data from the camera were being transmitted in real time to the Deep Space Network antennas in Goldstone, California.NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-411, 4 July 2003
July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.Face Liveness Detection Using Defocus
Kim, Sooyeon; Ban, Yuseok; Lee, Sangyoun
2015-01-01
In order to develop security systems for identity authentication, face recognition (FR) technology has been applied. One of the main problems of applying FR technology is that the systems are especially vulnerable to attacks with spoofing faces (e.g., 2D pictures). To defend from these attacks and to enhance the reliability of FR systems, many anti-spoofing approaches have been recently developed. In this paper, we propose a method for face liveness detection using the effect of defocus. From two images sequentially taken at different focuses, three features, focus, power histogram and gradient location and orientation histogram (GLOH), are extracted. Afterwards, we detect forged faces through the feature-level fusion approach. For reliable performance verification, we develop two databases with a handheld digital camera and a webcam. The proposed method achieves a 3.29% half total error rate (HTER) at a given depth of field (DoF) and can be extended to camera-equipped devices, like smartphones. PMID:25594594
High-precision method of binocular camera calibration with a distortion model.
Li, Weimin; Shan, Siyu; Liu, Hui
2017-03-10
A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.
PBF Reactor Building (PER620). In subpile room, camera faces southeast ...
PBF Reactor Building (PER-620). In sub-pile room, camera faces southeast and looks up toward bottom of reactor vessel. Upper assembly in center of view is in-pile tube as it connects to vessel. Lower lateral constraints and rotating control cable are in position. Other connections have been bolted together. Note light bulbs for scale. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3494 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera on main floor faces south ...
PBF Reactor Building (PER-620). Camera on main floor faces south (open) doorway. In foreground is canal gate, lined with stainless steel and painted with protective coatings. Reactor pit is round with protective coatings. Reactor put is round form discernible beyond. Lifting beams and rigging are in place for a load test before reactor vessel arrives. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-347 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DEMINERALIZER BUILDING,TRA608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL ...
DEMINERALIZER BUILDING,TRA-608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL BOARD IS IN RIGHT HALF OF VIEW, WITH FOUR PUMPS BEYOND. SMALLER PUMPS FILL DEMINERALIZED WATER TANK ON SOUTH SIDE OF BUILDING. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3997A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2017-11-27
These two images illustrate just how far Cassini traveled to get to Saturn. On the left is one of the earliest images Cassini took of the ringed planet, captured during the long voyage from the inner solar system. On the right is one of Cassini's final images of Saturn, showing the site where the spacecraft would enter the atmosphere on the following day. In the left image, taken in 2001, about six months after the spacecraft passed Jupiter for a gravity assist flyby, the best view of Saturn using the spacecraft's high-resolution (narrow-angle) camera was on the order of what could be seen using the Earth-orbiting Hubble Space Telescope. At the end of the mission (at right), from close to Saturn, even the lower resolution (wide-angle) camera could capture just a tiny part of the planet. The left image looks toward Saturn from 20 degrees below the ring plane and was taken on July 13, 2001 in wavelengths of infrared light centered at 727 nanometers using the Cassini spacecraft narrow-angle camera. The view at right is centered on a point 6 degrees north of the equator and was taken in visible light using the wide-angle camera on Sept. 14, 2017. The view on the left was acquired at a distance of approximately 317 million miles (510 million kilometers) from Saturn. Image scale is about 1,900 miles (3,100 kilometers) per pixel. The view at right was acquired at a distance of approximately 360,000 miles (579,000 kilometers) from Saturn. Image scale is 22 miles (35 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21353
En face view of the mitral valve: definition and acquisition.
Mahmood, Feroze; Warraich, Haider Javed; Shahul, Sajid; Qazi, Aisha; Swaminathan, Madhav; Mackensen, G Burkhard; Panzica, Peter; Maslow, Andrew
2012-10-01
A 3-dimensional echocardiographic view of the mitral valve, called the "en face" or "surgical view," presents a view of the mitral valve similar to that seen by the surgeon from a left atrial perspective. Although the anatomical landmarks of this view are well defined, no comprehensive echocardiographic definition has been presented. After reviewing the literature, we provide a definition of the left atrial and left ventricular en face views of the mitral valve. Techniques used to acquire this view are also discussed.
Stereo View of Martian Rock Target 'Funzie'
2018-02-08
The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212
ERIC Educational Resources Information Center
Milshtein, Amy
1997-01-01
The University of Maryland at College Park installed 25 surveillance cameras to combat crime. A minimum of disruption occurred because unused twisted pair wires left in place when the conversion to a fiber optic telephone system was made could be used for the camera installations. The campus is safer, and its budget is intact. (RE)
Functional dissociation of the left and right fusiform gyrus in self-face recognition.
Ma, Yina; Han, Shihui
2012-10-01
It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.
DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM ESOUTH, ...
DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM E-SOUTH, HB-3, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Astronauts Garriott and Merbold monitoring experiemnts in Spacelab
1983-11-28
STS009-123-340 (28 Nov 1983) --- Astronaut Owen K. Garriott, STS-9 mission specialist, left, and Ulf Merbold, payload specialist, take a break from monitoring experimentation aboard Spacelab to be photographed. Dr. Garriott, holds in his left hand a data/log book for the solar spectrum experiment. Dr. Merbold, holds a map in his left hand for the monitoring of ground objectives of the metric camera.
Lateralization of kin recognition signals in the human face
Dal Martello, Maria F.; Maloney, Laurence T.
2010-01-01
When human subjects view photographs of faces, their judgments of identity, gender, emotion, age, and attractiveness depend more on one side of the face than the other. We report an experiment testing whether allocentric kin recognition (the ability to judge the degree of kinship between individuals other than the observer) is also lateralized. One hundred and twenty-four observers judged whether or not pairs of children were biological siblings by looking at photographs of their faces. In three separate conditions, (1) the right hemi-face was masked, (2) the left hemi-face was masked, or (3) the face was fully visible. The d′ measures for the masked left hemi-face and masked right hemi-face were 1.024 and 1.004, respectively (no significant difference), and the d′ measure for the unmasked face was 1.079, not significantly greater than that for either of the masked conditions. We conclude, first, that there is no superiority of one or the other side of the observed face in kin recognition, second, that the information present in the left and right hemi-faces relevant to recognizing kin is completely redundant, and last that symmetry cues are not used for kin recognition. PMID:20884584
Slip Face on Downwind Side of Namib Sand Dune on Mars
2016-01-04
This view from NASA's Curiosity Mars Rover shows the downwind side of "Namib Dune," which stands about 13 feet (4 meters) high. The site is part of Bagnold Dunes, a band of dark sand dunes along the northwestern flank of Mars' Mount Sharp. The component images stitched together into this scene were taken with Curiosity's Navigation Camera (Navcam) on Dec. 17, 2015, during the 1,196th Martian day, or sol, of the rover's work on Mars. In late 2015 and early 2016, Curiosity is conducting the first up-close studies ever made of active sand dunes anywhere but on Earth. Under the influence of Martian wind, the Bagnold Dunes are migrating up to about one yard or meter per Earth year. The view spans from westward on the left to east-southeastward on the right. It is presented as a cylindrical perspective projection. http://photojournal.jpl.nasa.gov/catalog/PIA20281
2018-05-14
Two kinds of dramatic shadows play across the face of Saturn in this view from NASA's Cassini spacecraft from Dec. 6, 2007. The planet's rings cast dark bands across the cloud tops in the northern hemisphere. Near the pole, an elongated shadow can be seen from Saturn's moon Tethys, which appears as a bright sphere left of center. Other icy moons make an appearance as well, including Dione (front right) and Enceladus (back right). A bright storm can be seen in Saturn's southern hemisphere at lower right. This natural color view is a mosaic of images taken using red, green and blue spectral filters. The images were acquired with the Cassini spacecraft wide-angle camera at a distance of approximately 1 million miles (about 1.7 million kilometers) from Saturn. The Cassini spacecraft ended its mission on Sept. 15, 2017 https://photojournal.jpl.nasa.gov/catalog/PIA18320
Unseen fearful faces promote amygdala guidance of attention.
Troiani, Vanessa; Price, Elinora T; Schultz, Robert T
2014-02-01
Little is known about the network of brain regions activated prior to explicit awareness of emotionally salient social stimuli. We investigated this in a functional magnetic resonance imaging study using a technique that combined elements of binocular rivalry and motion flash suppression in order to prevent awareness of fearful faces and houses. We found increased left amygdala and fusiform gyrus activation for fearful faces compared to houses, despite suppression from awareness. Psychophysiological interaction analyses showed that amygdala activation was associated with task-specific (fearful faces greater than houses) modulation of an attention network, including bilateral pulvinar, bilateral insula, left frontal eye fields, left intraparietal sulcus and early visual cortex. Furthermore, we report an unexpected main effect of increased left parietal cortex activation associated with suppressed fearful faces compared to suppressed houses. This parietal finding is the first report of increased dorsal stream activation for a social object despite suppression, which suggests that information can reach parietal cortex for a class of emotionally salient social objects, even in the absence of awareness.
Spirit Near 'Stapledon' on Sol 1802 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11781 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11781 NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this stereo, full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. South is at the center; north is at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season. This view is presented as a cylindrical-perspective projection with geometric seam correction.2015-07-01
This pair of approximately true color images of Pluto and its big moon Charon, taken by NASA's New Horizons spacecraft, highlight the dramatically different appearance of different sides of the dwarf planet, and reveal never-before-seen details on Pluto's varied surface. The views were made by combining high-resolution black-and-white images from the Long Range Reconnaissance Imager (LORRI) with color information from the lower-resolution color camera that is part of the Ralph instrument. The left-hand image shows the side of Pluto that always faces away from Charon -- this is the side that will be seen at highest resolution by New Horizons when it makes its close approach to Pluto on July 14th. This hemisphere is dominated by a very dark region that extends along the equator and is redder than its surroundings, alongside a strikingly bright, paler-colored region which straddles the equator on the right-hand side of the disk. The opposite hemisphere, the side that faces Charon, is seen in the right-hand image. The most dramatic feature on this side of Pluto is a row of dark dots arranged along the equator. The origin of all these features is still mysterious, but may be revealed in the much more detailed images that will be obtained as the spacecraft continues its approach to Pluto. In both images, Charon shows a darker and grayer color than Pluto, and a conspicuous dark polar region. The left-hand image was obtained at 5:37 UT on June 25th 2015, at a distance from Pluto of 22.9 million kilometers (14.3 million miles) and has a central longitude of 152 degrees. The right-hand image was obtained at 23:15 UT on June 27th 2015, at a distance from Pluto of 19.7 million kilometers (12.2 million miles) with a central longitude of 358 degrees. Insets show the orientation of Pluto in each image -- the solid lines mark the equator and the prime meridian, which is defined to be the longitude that always faces Charon. The smallest visible features are about 200 km (120 miles) across. http://photojournal.jpl.nasa.gov/catalog/PIA19693
Mars Orbiter Camera Views the 'Face on Mars' - Calibrated, contrast enhanced, filtered,
NASA Technical Reports Server (NTRS)
1998-01-01
Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.
The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long. Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps: The image was processed to remove the sensitivity differences between adjacent picture elements (calibrated). This removes the vertical streaking. The contrast and brightness of the image was adjusted, and 'filters' were applied to enhance detail at several scales. The image was then geometrically warped to meet the computed position information for a mercator-type map. This corrected for the left-right flip, and the non-vertical viewing angle (about 45o from vertical), but also introduced some vertical 'elongation' of the image for the same reason Greenland looks larger than Africa on a mercator map of the Earth. A section of the image, containing the 'Face' and a couple of nearly impact craters and hills, was 'cut' out of the full image and reproduced separately.See PIA01440-1442 for additional processing steps. Also see PIA01236 for the raw image.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Mars Orbiter Camera Views the 'Face on Mars' - Calibrated, contrast enhanced, filtered
NASA Technical Reports Server (NTRS)
1998-01-01
Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.
The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long. Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps: The image was processed to remove the sensitivity differences between adjacent picture elements (calibrated). This removes the vertical streaking. The contrast and brightness of the image was adjusted, and 'filters' were applied to enhance detail at several scales. The image was then geometrically warped to meet the computed position information for a mercator-type map. This corrected for the left-right flip, and the non-vertical viewing angle (about 45o from vertical), but also introduced some vertical 'elongation' of the image for the same reason Greenland looks larger than Africa on a mercator map of the Earth. A section of the image, containing the 'Face' and a couple of nearly impact craters and hills, was 'cut' out of the full image and reproduced separately.See PIA01441-1442 for additional processing steps. Also see PIA01236 for the raw image.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Teacher-in-Space Trainees - Arriflex Motion Picture Camera
1985-09-20
S85-40669 (18 Sept. 1985) --- The two teachers, Sharon Christa McAuliffe (left) and Barbara R. Morgan have hands-on experience with an Arriflex motion picture camera following a briefing on space photography. The two began training Sept. 10, 1985 with the STS-51L crew and learning basic procedure for space travelers. The second week of training included camera training, aircraft familiarization and other activities. Morgan adjusts a lens as a studious McAuliffe looks on. Photo credit: NASA
Slight Blurring in Newer Image from Mars Orbiter
2018-02-09
These two frames were taken of the same place on Mars by the same orbiting camera before (left) and after some images from the camera began showing unexpected blur. The images are from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. They show a patch of ground about 500 feet or 150 meters wide in Gusev Crater. The one on the left, from HiRISE observation ESP_045173_1645, was taken March 16, 2016. The one on the right was taken Jan. 9, 2018. Gusev Crater, at 15 degrees south latitude and 176 degrees east longitude, is the landing site of NASA's Spirit Mars rover in 2004 and a candidate landing site for a rover to be launched in 2020. HiRISE images provide important information for evaluating potential landing sites. The smallest boulders with measurable diameters in the left image are about 3 feet (90 centimeters) wide. In the blurred image, the smallest measurable are about double that width. As of early 2018, most full-resolution images from HiRISE are not blurred, and the cause of the blur is still under investigation. Even before blurred images were first seen, in 2017, observations with HiRISE commonly used a technique that covers more ground area at half the resolution. This shows features smaller than can be distinguished with any other camera orbiting Mars, and little blurring has appeared in these images. https://photojournal.jpl.nasa.gov/catalog/PIA22215
NASA Technical Reports Server (NTRS)
2004-01-01
15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.3. Context view includes Building 78 (second from left) and ...
3. Context view includes Building 78 (second from left) and Building 59 (partially seen at right edge). Camera is pointed WSW along Farragut Avenue. Buildings on left side of street are, from left: Building 38, Building 78 and Building 431. Crane No. 80 is at Drydock No. 1. Buildings on right side of street are, from right: Building 59 (with porch posts) and Building 856 (two sections). - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA
Right perceptual bias and self-face recognition in individuals with congenital prosopagnosia.
Malaspina, Manuela; Albonico, Andrea; Daini, Roberta
2016-01-01
The existence of a drift to base judgments more on the right half-part of facial stimuli, which falls in the observer's left visual field (left perceptual bias (LPB)), in normal individuals has been demonstrated. However, less is known about the existence of this phenomenon in people affected by face impairment from birth, namely congenital prosopagnosics. In the current study, we aimed to investigate the presence of the LPB under face impairment conditions using chimeric stimuli and the most familiar face of all: the self-face. For this purpose we tested 10 participants with congenital prosopagnosia and 21 healthy controls with a face matching task using facial stimuli, involving a spatial manipulation of the left and the right hemi-faces of self-photos and photos of others. Even though congenital prosopagnosics performance was significantly lower than that of controls, both groups showed a consistent self-face advantage. Moreover, congenital prosopagnosics showed optimal performance when the right side of their face was presented, that is, right perceptual bias, suggesting a differential strategy for self-recognition in those subjects. A possible explanation for this result is discussed.
Orienting asymmetries and physiological reactivity in dogs' response to human emotional faces.
Siniscalchi, Marcello; d'Ingeo, Serenella; Quaranta, Angelo
2018-06-19
Recent scientific literature shows that emotional cues conveyed by human vocalizations and odours are processed in an asymmetrical way by the canine brain. In the present study, during feeding behaviour, dogs were suddenly presented with 2-D stimuli depicting human faces expressing the Ekman's six basic emotion (e.g. anger, fear, happiness, sadness, surprise, disgust, and neutral), simultaneously into the left and right visual hemifields. A bias to turn the head towards the left (right hemisphere) rather than the right side was observed with human faces expressing anger, fear, and happiness emotions, but an opposite bias (left hemisphere) was observed with human faces expressing surprise. Furthermore, dogs displayed higher behavioural and cardiac activity to picture of human faces expressing clear arousal emotional state. Overall, results demonstrated that dogs are sensitive to emotional cues conveyed by human faces, supporting the existence of an asymmetrical emotional modulation of the canine brain to process basic human emotions.
Public Speaking Anxiety: Comparing Face-to-Face and Web-Based Speeches
ERIC Educational Resources Information Center
Campbell, Scott; Larson, James
2013-01-01
This study is to determine whether or not students have a different level of anxiety between giving a speech to a group of people in a traditional face-to-face classroom setting to a speech given to an audience (visible on a projected screen) into a camera using distance or web-based technology. The study included approximately 70 students.…
Parting Moon Shots from NASAs GRAIL Mission
2013-01-10
Video of the moon taken by the NASA GRAIL mission's MoonKam (Moon Knowledge Acquired by Middle School Students) camera aboard the Ebb spacecraft on Dec. 14, 2012. Features forward-facing and rear-facing views.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
A Well-Traveled 'Eagle Crater' (left-eye)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the Mars Exploration Rover Opportunity's view on its 56th sol on Mars, before it left its landing-site crater. To the right, the rover tracks are visible at the original spot where the rover attempted unsuccessfully to exit the crater. After a one-sol delay, Opportunity took another route to the plains of Meridiani Planum. This image was taken by the rover's navigation camera.
71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO ...
71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO RIGHT: HELIUM TANKS, GASEOUS NITROGEN TANKS, DIESEL FUEL TANK AND BACKUP GENERATOR, AND ROCKET FUEL TANKS. NORTHWEST CORNER OF THE LSB (BLDG. 751) AND LAUNCHER IN BACKGROUND ON LEFT; SOUTH CAMERA TOWER IN BACKGROUND ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Applications of a shadow camera system for energy meteorology
NASA Astrophysics Data System (ADS)
Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert
2018-02-01
Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.
Face Coding Is Bilateral in the Female Brain
Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto
2010-01-01
Background It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. Methodology/Principal Findings In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. Conclusions/Significance LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face perception during processing of face identity, structure, familiarity or affective content. PMID:20574528
Face coding is bilateral in the female brain.
Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto
2010-06-21
It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face perception during processing of face identity, structure, familiarity or affective content.
Naming and recognizing famous faces in temporal lobe epilepsy.
Glosser, G; Salvucci, A E; Chiaravalloti, N D
2003-07-08
To assess naming and recognition of faces of familiar famous people in patients with epilepsy before and after anterior temporal lobectomy (ATL). Color photographs of famous people were presented for naming and description to 63 patients with temporal lobe epilepsy (TLE) either before or after ATL and to 10 healthy age- and education-matched controls. Spontaneous naming of photographed famous people was impaired in all patient groups, but was most abnormal in patients who had undergone left ATL. When allowed to demonstrate knowledge of the famous faces through verbal descriptions, rather than naming, patients with left TLE, left ATL, and right TLE improved to normal levels, but patients with right ATL were still impaired, suggesting a new deficit in identifying famous faces. Naming of famous people was related to naming of other common objects, verbal memory, and perceptual discrimination of faces. Recognition of the identity of pictured famous people was more related to visuospatial perception and memory. Lesions in anterior regions of the right temporal lobe impair recognition of the identities of familiar faces, as well as the learning of new faces. Lesions in the left temporal lobe, especially in anterior regions, disrupt access to the names of known people, but do not affect recognition of the identities of famous faces. Results are consistent with the hypothesized role of lateralized anterior temporal lobe structures in facial recognition and naming of unique entities.
View of Mission Street facing south west. Williams Building is ...
View of Mission Street facing south west. Williams Building is at left background, Aron (Mercantile) Building is at right background. Parking lot is in left foreground - Williams Building, 693 Mission Street, San Francisco, San Francisco County, CA
Late afternoon view of the interior of the westernmost wall ...
Late afternoon view of the interior of the westernmost wall section to be removed; camera facing north. (Note: lowered camera position significantly to minimize background distractions including the porta-john, building, and telephone pole) - Beaufort National Cemetery, Wall, 1601 Boundary Street, Beaufort, Beaufort County, SC
Moore, Michelle W; Durisko, Corrine; Perfetti, Charles A; Fiez, Julie A
2014-04-01
Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face-phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech.
NASA Technical Reports Server (NTRS)
2004-01-01
Dubbed 'Carousel,' the rock in this image was the target of the Mars Exploration Rover Opportunity science team's outcrop 'scuff test.' The image on the left, taken by the rover's navigation camera on sol 48 of the mission (March 12, 2004), shows the rock pre-scuff. On sol 51 (March 15, 2004), Opportunity slowly rotated its left front wheel on the rock, abrading it in the same way that geology students use a scratch test to determine the hardness of minerals. The image on the right, taken by the rover's navigation camera on sol 51, shows the rock post-scuff. In this image, it is apparent that Opportunity scratched the surface of 'Carousel' and deposited dirt that it was carrying in its wheel rims.
Huveneers, Charlie; Fairweather, Peter G.
2018-01-01
Counting errors can bias assessments of species abundance and richness, which can affect assessments of stock structure, population structure and monitoring programmes. Many methods for studying ecology use fixed viewpoints (e.g. camera traps, underwater video), but there is little known about how this biases the data obtained. In the marine realm, most studies using baited underwater video, a common method for monitoring fish and nekton, have previously only assessed fishes using a single bait-facing viewpoint. To investigate the biases stemming from using fixed viewpoints, we added cameras to cover 360° views around the units. We found similar species richness for all observed viewpoints but the bait-facing viewpoint recorded the highest fish abundance. Sightings of infrequently seen and shy species increased with the additional cameras and the extra viewpoints allowed the abundance estimates of highly abundant schooling species to be up to 60% higher. We specifically recommend the use of additional cameras for studies focusing on shyer species or those particularly interested in increasing the sensitivity of the method by avoiding saturation in highly abundant species. Studies may also benefit from using additional cameras to focus observation on the downstream viewpoint. PMID:29892386
MARS PATHFINDER CAMERA TEST IN SAEF-2
NASA Technical Reports Server (NTRS)
1996-01-01
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers from the Jet Propulsion Laboratory (JPL) are conducting a systems test of the imager for the Mars Pathfinder. The imager (white and metallic cylindrical element close to hand of worker at left) is a specially designed camera featuring a stereo- imaging system with color capability provided by a set of selectable filters. It is mounted atop an extendable mast on the Pathfinder lander. Visible to the far left is the small rover which will be deployed from the lander to explore the Martian surface. Transmitting back to Earth images of the trail left by the rover will be one of the mission objectives for the imager. To the left of the worker standing near the imager is the mast for the low-gain antenna; the round high-gain antenna is to the right. Visible in the background is the cruise stage that will carry the Pathfinder on a direct trajectory to Mars. The Mars Pathfinder is one of two Mars-bound spacecraft slated for launch aboard Delta II expendable launch vehicles this year.
ETRCF, TRA654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE ...
ETR-CF, TRA-654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE HOOKS. ELECTRICAL EQUIPMENT IS PART OF PAST EXPERIMENT. DOOR AT LEFT EDGE OF VIEW LEADS TO REACTOR SERVICE BUILDING, TRA-635. INL NEGATIVE NO. HD24-1-2. Mike Crane, Photographer, ca. 2003 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
APOLLO 16 ASTRONAUTS JOHN YOUNG AND CHARLES DUKE EXAMINE FAR ULTRAVIOLET CAMERA
NASA Technical Reports Server (NTRS)
1971-01-01
Apollo 16 Lunar Module Pilot Charles M. Duke, Jr., left and Mission Commander John W. Young examine Far Ultraviolet Camera they will take to the Moon in March. They will measure the universe's ultraviolet spectrum. They will be launched to the Moon no earlier than March 17, 1972, with Command Module Pilot Thomas K. Mattingly, II.
Astronauts Cooper and Conrad prepare cameras during visual acuity tests
NASA Technical Reports Server (NTRS)
1965-01-01
Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.
17. Machines in middle 1904 section of Building 59, Camera ...
17. Machines in middle 1904 section of Building 59, Camera is pointed SW. Large wheel is part of Post Lathe, or Bull Lathe, manufactured by Oliver Machinery Co. Machine at left is a smaller Lathe made by Yates American Machinery Co., also seen in photo WA-116-A-20. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
Proietti, Valentina; Pavone, Sarah; Ricciardelli, Paola; Macchi Cassia, Viola
2015-01-01
A large number of studies have shown that adults rely more heavily on information conveyed by the left side of the face in judging emotional state, gender and identity. This phenomenon, called left perceptual bias (LPB), suggests a right hemisphere lateralization of face processing mechanisms. Although specialization of neural mechanisms for processing over-experienced face categories begins during the first year of life, little is known about the developmental trajectory of the LPB and whether or when the bias becomes selective for specific face categories as a result of experience. To address these questions we tested adults (Experiment 1) and 5-year-old children (Experiment 2) with null or limited experience with infants in an identity matching-to-sample task with chimeric adult and infant faces, for which both adults and children have been shown to manifest differential processing abilities. Results showed that 5-year-olds manifest a leftward bias selective for adult faces, and the magnitude of the bias is larger for adult compared to infant faces in adults. This evidence is in line with earlier demonstrations of a perceptual processing advantage for adult faces in adults and children and points to the role of experience in shaping neurocognitive specialization for face processing.
LOFT. Interior view of entry (TAN624) rollup door. Camera is ...
LOFT. Interior view of entry (TAN-624) rollup door. Camera is inside entry building facing south. Rollup door was a modification of the original ANP door arrangement. Date: March 2004. INEEL negative no. HD-39-5-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Identifying People with Soft-Biometrics at Fleet Week
2013-03-01
onboard sensors. This included: Color Camera: Located in the right eye, Octavia stored 640x480 RGB images at ~4 Hz from a Point Grey Firefly camera. A...Face Detection The Fleet Week experiments demonstrated the potential of soft biometrics for recognition, but all of the existing algorithms currently
1. VIEW OF ARVFS BUNKER TAKEN FROM GROUND ELEVATION. CAMERA ...
1. VIEW OF ARVFS BUNKER TAKEN FROM GROUND ELEVATION. CAMERA FACING NORTH. VIEW SHOWS PROFILE OF BUNKER IN RELATION TO NATURAL GROUND ELEVATION. TOP OF BUNKER HAS APPROXIMATELY THREE FEET OF EARTH COVER. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Astronaut Ronald Evans photographed during transearth coast EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.
Who is who: areas of the brain associated with recognizing and naming famous faces.
Giussani, Carlo; Roux, Franck-Emmanuel; Bello, Lorenzo; Lauwers-Cances, Valérie; Papagno, Costanza; Gaini, Sergio M; Puel, Michelle; Démonet, Jean-François
2009-02-01
It has been hypothesized that specific brain regions involved in face naming may exist in the brain. To spare these areas and to gain a better understanding of their organization, the authors studied patients who underwent surgery by using direct electrical stimulation mapping for brain tumors, and they compared an object-naming task to a famous face-naming task. Fifty-six patients with brain tumors (39 and 17 in the left and right hemispheres, respectively) and with no significant preoperative overall language deficit were prospectively studied over a 2-year period. Four patients who had a partially selective famous face anomia and 2 with prosopagnosia were not included in the final analysis. Face-naming interferences were exclusively localized in small cortical areas (< 1 cm2). Among 35 patients whose dominant left hemisphere was studied, 26 face-naming specific areas (that is, sites of interference in face naming only and not in object naming) were found. These face naming-specific sites were significantly detected in 2 regions: in the left frontal areas of the superior, middle, and inferior frontal gyri (p < 0.001) and in the anterior part of the superior and middle temporal gyri (p < 0.01). Variable patterns of interference were observed (speech arrest, anomia, phonemic, or semantic paraphasia) probably related to the different stages in famous face processing. Only 4 famous face-naming interferences were found in the right hemisphere. Relative anatomical segregation of naming categories within language areas was detected. This study showed that famous face naming was preferentially processed in the left frontal and anterior temporal gyri. The authors think it is necessary to adapt naming tasks in neurosurgical patients to the brain region studied.
32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...
32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the 3-D cylindrical-perspective mosaic showing the view south of the martian crater dubbed 'Bonneville.' The image was taken by the navigation camera on the Mars Exploration Rover Spirit. The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
STS-45 crewmembers during LINHOF camera briefing in JSC's Bldg 4 rm 2026A
1992-01-14
S92-26522 (Feb 1992) --- Crewmembers assigned to NASA's STS-45 mission are briefed on the use of the Linhof camera in the flight operations facility at the Johnson Space Center (JSC). Charles F. Bolden, mission commander, stands at left. Other crewmembers (seated clockwise around the table from lower left) are Dirk Frimout of Belgium representing the European Space Agency as payload specialist; Charles R. (Rick) Chappell, backup payload specialist; Brian Duffy, pilot; Kathryn D. Sullivan, payload commander; David C. Leestma, mission specialist; Byron K. Lichtenberg, payload specialist; and C. Michael Foale, mission specialist. James H. Ragan (far right), head of the flight equipment section of the flight systems branch in JSC's Man Systems Division, briefs the crewmembers. Donald C. Carico, of the crew training staff and Rockwell International, stands near Bolden. The camera, used for out-the-window observations, is expected to be used frequently on the Atmospheric Laboratory for Applications and Science (ATLAS-1) mission, scheduled for a March date with the Space Shuttle Atlantis.
Höflin, F; Ledermann, H; Noelpp, U; Weinreich, R; Rösler, H
1989-12-01
There is a recent need to study glucose metabolism of the heart in ischemic, as well as in "hibernating or stunned" myocardium, and compare it with that in perfusion studies. In non-positron emission tomography centers, positron imaging is possible with a standard Anger-type camera if proper collimation and adequate shielding of the camera crystal can be achieved. For the study with fast-decaying isotopes, seven-pinhole tomography (7PHT), a limited-angle method designed for transaxial tomography of the left ventricle using a nonrotating camera, is well suited, because projections are acquired simultaneously. Individual adjustment (patient supine) of the camera's view axis (CAx) with the left ventricular axis (LVAx) gives excellent results: sensitivity for CHD 82%, specificity 72% in a prospective 201TI study (48 patients, x-ray coronarography as reference). Good alignment of CAx with LVAx is also achieved with the patient prone in LAO in a hammock above the camera surface. In this setting additional lead shielding of the camera is possible using a table reinforced with 5 cm of lead with a central hole for the 7PH-collimator, which has a special lead inlay. This allows utilization of the 511 KeV emitter 18F-FDG, which with a half-life of 109 minutes, can be transported a reasonable distance from the production site. System sensitivity and resolution for 18F was found comparable to 201Tl, 99mTc, and 123I using a phantom. First clinical examinations after 201Tl stress/redistribution studies showed increased 18F-FDG uptake in ischemic heart segments, as well as in "hibernating" nonperfused or "stunned" myocardium.
Cherk, Martin H; Ky, Jason; Yap, Kenneth S K; Campbell, Patrina; McGrath, Catherine; Bailey, Michael; Kalff, Victor
2012-08-01
To evaluate the reproducibility of serial re-acquisitions of gated Tl-201 and Tc-99m sestamibi left ventricular ejection fraction (LVEF) measurements obtained on a new generation solid-state cardiac camera system during myocardial perfusion imaging and the importance of manual operator optimization of left ventricular wall tracking. Resting blinded automated (auto) and manual operator optimized (opt) LVEF measurements were measured using ECT toolbox (ECT) and Cedars-Sinai QGS software in two separate cohorts of 55 Tc-99m sestamibi (MIBI) and 50 thallium (Tl-201) myocardial perfusion studies (MPS) acquired in both supine and prone positions on a cadmium zinc telluride (CZT) solid-state camera system. Resting supine and prone automated LVEF measurements were similarly obtained in a further separate cohort of 52 gated cardiac blood pool scans (GCBPS) for validation of methodology and comparison. Appropriate use of Bland-Altman, chi-squared and Levene's equality of variance tests was used to analyse the resultant data comparisons. For all radiotracer and software combinations, manual checking and optimization of valve planes (+/- centre radius with ECT software) resulted in significant improvement in MPS LVEF reproducibility that approached that of planar GCBPS. No difference was demonstrated between optimized MIBI/Tl-201 QGS and planar GCBPS LVEF reproducibility (P = .17 and P = .48, respectively). ECT required significantly more manual optimization compared to QGS software in both supine and prone positions independent of radiotracer used (P < .02). Reproducibility of gated sestamibi and Tl-201 LVEF measurements obtained during myocardial perfusion imaging with ECT toolbox or QGS software packages using a new generation solid-state cardiac camera with improved image quality approaches that of planar GCBPS however requires visual quality control and operator optimization of left ventricular wall tracking for best results. Using this superior cardiac technology, Tl-201 reproducibility also appears at least equivalent to sestamibi for measuring LVEF.
Panoramic Views of the Landing site from Sagan Memorial Station
NASA Technical Reports Server (NTRS)
1997-01-01
Each of these panoramic views is a controlled mosaic of approximately 300 IMP images covering 360 degrees of azimuth and elevations from approximately 4 degrees above the horizon to 45 degrees below it. Simultaneous adjustment of orientations of all images has been performed to minimize discontinuities between images. Mosaics have been highpass-filtered and contrast-enhanced to improve discrimination of details without distorting relative colors overall.
TOP IMAGE: Enhanced true-color image created from the 'Gallery Pan' sequence, acquired on sols 8-10 so that local solar time increases nearly continuously from about 10:00 at the right edge to about 12:00 at the left. Mosaics of images obtained by the right camera through 670 nm, 530 nm, and 440 nm filters were used as red, green and blue channels. Grid ticks indicate azimuth clockwise from north in 30 degree increments and elevation in 15 degree increments.BOTTOM IMAGE: Anaglyphic stereoimage created from the 'monster pan' sequence, acquired in four sections between about 8:30 and 15:00 local solar time on sol 3. Mosaics of images obtained through the 670 nm filter (left camera) and 530 and 440 nm filters (right camera) were used where available. At the top and bottom, left- and right-camera 670 nm images were used. Part of the northern horizon was not imaged because of the tilt of the lander. This image may be viewed stereoscopically through glasses with a red filter for the left eye and a cyan filter for the right eye.NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Accurate measurement of imaging photoplethysmographic signals based camera using weighted average
NASA Astrophysics Data System (ADS)
Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji
2018-01-01
Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.
Why Are Faces Denser in the Visual Experiences of Younger than Older Infants?
ERIC Educational Resources Information Center
Jayaraman, Swapnaa; Fausey, Caitlin M.; Smith, Linda B.
2017-01-01
Recent evidence from studies using head cameras suggests that the frequency of faces directly in front of infants "declines" over the first year and a half of life, a result that has implications for the development of and evolutionary constraints on face processing. Two experiments tested 2 opposing hypotheses about this observed…
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung; Lee, Seung-Hwan
2017-08-01
Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE's effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. © The Author (2017). Published by Oxford University Press.
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung
2017-01-01
Abstract Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE’s effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. PMID:28379584
Lucas, Nadia; Vuilleumier, Patrik
2008-04-01
In normal observers, visual search is facilitated for targets with salient attributes. We compared how two different types of cue (expression and colour) may influence search for face targets, in healthy subjects (n=27) and right brain-damaged patients with left spatial neglect (n=13). The target faces were defined by their identity (singleton among a crowd of neutral faces) but could either be neutral (like other faces), or have a different emotional expression (fearful or happy), or a different colour (red-tinted). Healthy subjects were the fastest for detecting the colour-cued targets, but also showed a significant facilitation for emotionally cued targets, relative to neutral faces differing from other distracter faces by identity only. Healthy subjects were also faster overall for target faces located on the left, as compared to the right side of the display. In contrast, neglect patients were slower to detect targets on the left (contralesional) relative to the right (ipsilesional) side. However, they showed the same pattern of cueing effects as healthy subjects on both sides of space; while their best performance was also found for faces cued by colour, they showed a significant advantage for faces cued by expression, relative to the neutral condition. These results indicate that despite impaired attention towards the left hemispace, neglect patients may still show an intact influence of both low-level colour cues and emotional expression cues on attention, suggesting that neural mechanisms responsible for these effects are partly separate from fronto-parietal brain systems controlling spatial attention during search.
88. VIEW OF OXIDIZER APRON ON EAST SIDE OF LSB ...
88. VIEW OF OXIDIZER APRON ON EAST SIDE OF LSB (BLDG. 751). LIQUID OXYGEN TOPPING TANK ON RIGHT; GASEOUS NITROGEN IN CENTER; LIQUID OXYGEN RAPID-LOAD TANK ON LEFT. SKID 9 ON RIGHT; SKID 7 IN CENTER; SKID 9A ON LEFT. FEATURES LEFT TO RIGHT IN BACKGROUND: LAUNCH DECK, UMBILICAL MAST, MST, AND NORTH CAMERA TOWER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
An arc control and protection system for the JET lower hybrid antenna based on an imaging system.
Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C
2014-11-01
Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Chaitavon, Kosom
2009-07-01
This paper introduces a parallel measurement approach for fast infrared-based human temperature screening suitable for use in a large public area. Our key idea is based on the combination of simple image processing algorithms, infrared technology, and human flow management. With this multidisciplinary concept, we arrange as many people as possible in a two-dimensional space in front of a thermal imaging camera and then highlight all human facial areas through simple image filtering, image morphological, and particle analysis processes. In this way, an individual's face in live thermal image can be located and the maximum facial skin temperature can be monitored and displayed. Our experiment shows a measured 1 ms processing time in highlighting all human face areas. With a thermal imaging camera having an FOV lens of 24° × 18° and 320 × 240 active pixels, the maximum facial skin temperatures from three people's faces located at 1.3 m from the camera can also be simultaneously monitored and displayed in a measured rate of 31 fps, limited by the looping process in determining coordinates of all faces. For our 3-day test under the ambient temperature of 24-30 °C, 57-72% relative humidity, and weak wind from the outside hospital building, hyperthermic patients can be identified with 100% sensitivity and 36.4% specificity when the temperature threshold level and the offset temperature value are appropriately chosen. Appropriately locating our system away from the building doors, air conditioners and electric fans in order to eliminate wind blow coming toward the camera lens can significantly help improve our system specificity.
SOUTH WING, MTR661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA ...
SOUTH WING, MTR-661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA FACING NORTHEAST. NOTE CONCRETE BLOCK WALLS. SAFETY SHOWER AND EYE WASHER AT REAR WALL. INL NEGATIVE NO. HD46-7-2. Mike Crane, Photographer, 2/2005. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Aerial view of early construction. Camera ...
PBF Reactor Building (PER-620). Aerial view of early construction. Camera facing northwest. Excavation and concrete placement in two basements are underway. Note exposed lava rock. Photographer: Farmer. Date: March 22, 1965. INEEL negative no. 65-2219 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
26. VIEW OF METAL SHED OVER SHIELDING TANK WITH CAMERA ...
26. VIEW OF METAL SHED OVER SHIELDING TANK WITH CAMERA FACING SOUTHWEST. SHOWS OPEN SIDE OF SHED ROOF, HERCULON SHEET, AND HAND-OPERATED CRANE. TAKEN IN 1983. INEL PHOTO NUMBER 83-476-2-9, TAKEN IN 1983. PHOTOGRAPHER NOT NAMED. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Tablet based simulation provides a new solution to accessing laparoscopic skills training.
Bahsoun, Ali Nehme; Malik, Mohsan Munir; Ahmed, Kamran; El-Hage, Oussama; Jaye, Peter; Dasgupta, Prokar
2013-01-01
Access to facilities that allow trainees to develop their laparoscopic skills is very limited in the hospital environment and courses can be very expensive. We set out to build an inexpensive yet effective trainer to allow laparoscopic skill acquisition in the home or classroom environment based on using a tablet as a replacement for the laparoscopic stack and camera. The cavity in which to train was made from a cardboard box; we left the sides and back open to allow for natural light to fill the cavity. An iPad 2 (Apple Inc.) was placed over the box to act as our camera and monitor. We provided 10 experienced laparoscopic surgeons with the task of passing a suture needle through 3 hoops; then they filled in a questionnaire to assess Face (training capacity) and Content (performance) validity. On a 5-point Likert scale, the tablet-based laparoscopic trainer scored a mean 4.2 for training capacity (hand eye coordination, development, and maintenance of lap skills) and for performance (graphics, video, and lighting quality) it scored a mean 4.1. The iPad 2-based laparoscopic trainer was successfully validated for training. It allows students and trainees to practice at their own pace and for inexpensive training on the go. Future "app-"based skills are planned. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
High-definition television evaluation for remote handling task performance
NASA Astrophysics Data System (ADS)
Fujita, Y.; Omori, E.; Hayashi, S.; Draper, J. V.; Herndon, J. N.
Described are experiments designed to evaluate the impact of HDTV (High-Definition Television) on the performance of typical remote tasks. The experiments described in this paper compared the performance of four operators using HDTV with their performance while using other television systems. The experiments included four television systems: (1) high-definition color television, (2) high-definition monochromatic television, (3) standard-resolution monochromatic television, and (4) standard-resolution stereoscopic monochromatic television. The stereo system accomplished stereoscopy by displaying two cross-polarized images, one reflected by a half-silvered mirror and one seen through the mirror. Observers wore spectacles with cross-polarized lenses so that the left eye received only the view from the left camera and the right eye received only the view from the right camera.
Facial color processing in the face-selective regions: an fMRI study.
Nakajima, Kae; Minami, Tetsuto; Tanabe, Hiroki C; Sadato, Norihiro; Nakauchi, Shigeki
2014-09-01
Facial color is important information for social communication as it provides important clues to recognize a person's emotion and health condition. Our previous EEG study suggested that N170 at the left occipito-temporal site is related to facial color processing (Nakajima et al., [2012]: Neuropsychologia 50:2499-2505). However, because of the low spatial resolution of EEG experiment, the brain region is involved in facial color processing remains controversial. In the present study, we examined the neural substrates of facial color processing using functional magnetic resonance imaging (fMRI). We measured brain activity from 25 subjects during the presentation of natural- and bluish-colored face and their scrambled images. The bilateral fusiform face (FFA) area and occipital face area (OFA) were localized by the contrast of natural-colored faces versus natural-colored scrambled images. Moreover, region of interest (ROI) analysis showed that the left FFA was sensitive to facial color, whereas the right FFA and the right and left OFA were insensitive to facial color. In combination with our previous EEG results, these data suggest that the left FFA may play an important role in facial color processing. Copyright © 2014 Wiley Periodicals, Inc.
A Practice Indexes for Improving Facial Movements of Brass Instrument Players
NASA Astrophysics Data System (ADS)
Ito, Kyoko; Hirano, Takeshi; Noto, Kazufumi; Nishida, Shogo; Ohtsuki, Tatsuyuki
Two experimental studies have been conducted in order to propose practice indexes for the improvement of the embouchure of French horn players, two experimental studies have been conducted. In both studies, the same task was performed by advanced and amateur French horn players. The first study investigated the activity, while performing the above-mentioned task, of the 5 facial muscles (levator labii superioris, zygomaticus major, depressor anguli oris, depressor labii inferioris, and risorius muscles) on the right side of the face by surface electromyography, and the facial movement on the left side of the face by attaching two markers above each muscle and using two high-speed cameras simultaneously. The results of the study showed that it is possible for the four markers around the lower lip to practice indexes. The second study evaluated whether the above-mentioned markers are appropriate as practice indexes using a 3-D tracking system and questionnaires. The results showed that both the advanced and the amateur players assessed that the markers were suitable as practice indexes for improving the embouchure. This set of approaches could be useful for selecting practice indexes and developing scientific practice methods not only for the French horn but also for other instruments and other fields.
The Potential of Low-Cost Rpas for Multi-View Reconstruction of Sub-Vertical Rock Faces
NASA Astrophysics Data System (ADS)
Thoeni, K.; Guccione, D. E.; Santise, M.; Giacomini, A.; Roncella, R.; Forlani, G.
2016-06-01
The current work investigates the potential of two low-cost off-the-shelf quadcopters for multi-view reconstruction of sub-vertical rock faces. The two platforms used are a DJI Phantom 1 equipped with a Gopro Hero 3+ Black and a DJI Phantom 3 Professional with integrated camera. The study area is a small sub-vertical rock face. Several flights were performed with both cameras set in time-lapse mode. Hence, images were taken automatically but the flights were performed manually as the investigated rock face is very irregular which required manual adjustment of the yaw and roll for optimal coverage. The digital images were processed with commercial SfM software packages. Several processing settings were investigated in order to find out the one providing the most accurate 3D reconstruction of the rock face. To this aim, all 3D models produced with both platforms are compared to a point cloud obtained with a terrestrial laser scanner. Firstly, the difference between the use of coded ground control targets and the use of natural features was studied. Coded targets generally provide the best accuracy, but they need to be placed on the surface, which is not always possible, as sub-vertical rock faces are not easily accessible. Nevertheless, natural features can provide a good alternative if wisely chosen as shown in this work. Secondly, the influence of using fixed interior orientation parameters or self-calibration was investigated. The results show that, in the case of the used sensors and camera networks, self-calibration provides better results. To support such empirical finding, a numerical investigation using a Monte Carlo simulation was performed.
The structural and functional correlates of the efficiency in fearful face detection.
Wang, Yongchao; Guo, Nana; Zhao, Li; Huang, Hui; Yao, Xiaonan; Sang, Na; Hou, Xin; Mao, Yu; Bi, Taiyong; Qiu, Jiang
2017-06-01
Human visual system is found to be much efficient in searching for a fearful face. Some individuals are more sensitive to this threat-related stimulus. However, we still know little about the neural correlates of such variability. In the current study, we exploited a visual search paradigm, and asked the subjects to search for a fearful face or a target gender. Every subject showed a shallower search function for fearful face search than face gender search, indicating a stable fearful face advantage. We then used voxel-based morphometry (VBM) analysis and correlated this advantage to the gray matter volume (GMV) of some presumably face related cortical areas. The result revealed that only the left fusiform gyrus showed a significant positive correlation. Next, we defined the left fusiform gyrus as the seed region and calculated its resting state functional connectivity to the whole brain. Correlations were also calculated between fearful face advantage and these connectivities. In this analysis, we found positive correlations in the inferior parietal lobe and the ventral medial prefrontal cortex. These results suggested that the anatomical structure of the left fusiform gyrus might determine the search efficiency of fearful face, and frontoparietal attention network involved in this process through top-down attentional modulation. Copyright © 2017. Published by Elsevier Ltd.
Rangarajan, Vinitha; Parvizi, Josef
2016-03-01
The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23391 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, Evans, command module pilot, retrieved film cassettes from the lunar sounder, mapping camera and panoramic camera. The cylindrical object at Evans' left side is the mapping camera cassette. The total time for the trans-Earth EVA was one hour, seven minutes, 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at G.E.T. of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Astronaut Ronald Evans photographed during transearth coast EVA
1972-12-17
AS17-152-23393 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, command module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans' left side is the Mapping Camera cassette. The total time for the trans-Earth EVA was one hour seven minutes 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at ground elapsed timed of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.
Target Acquisition for Projectile Vision-Based Navigation
2014-03-01
Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the
Typical and atypical neurodevelopment for face specialization: An fMRI study
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2014-01-01
Individuals with Autism Spectrum Disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5–18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex (vmPFC), with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal-amygdala-fusiform system which is strongly linked to detecting salience and processing facial information. PMID:25479816
NASA Technical Reports Server (NTRS)
2004-01-01
The wheel tracks seen above and to the left of the lander trace the path the Mars Exploration Rover Opportunity has traveled since landing in a small crater at Meridiani Planum, Mars. After this picture was taken, the rover excavated a trench near the soil seen at the lower left corner of the image. This image mosaic was taken by the rover's navigation camera.
Dust Devil in Spirit's View Ahead on Sol 1854 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11960 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11960 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854. West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.' This view is presented as a cylindrical-perspective projection with geometric seam correction.HEAT EXCHANGER BUILDING, TRA644. NORTHEAST CORNER. CAMERA IS ON PIKE ...
HEAT EXCHANGER BUILDING, TRA-644. NORTHEAST CORNER. CAMERA IS ON PIKE STREET FACING SOUTHWEST. ATTACHED STRUCTURE AT RIGHT OF VIEW IS ETR COMPRESSOR BUILDING, TRA-643. INL NEGATIVE NO. HD46-36-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Cooling Tower (PER720) and its Auxiliary Building (PER625). Camera ...
PBF Cooling Tower (PER-720) and its Auxiliary Building (PER-625). Camera facing west shows east facades. Center pipe carried secondary coolant water from reactor. Building to distributor basin. Date: August 2003. INEEL negative no. HD-35-10-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Faces of the Fleet | Navy Live
annual training exercise at Ft. Knox, Ky. (U.S. Navy Combat Camera photo by Mass Communication Specialist ), navigates a waterway during an annual training exercise at Ft. Knox, Ky. (U.S. Navy Combat Camera photo by , coxswain assigned to Coastal Riverine Squadron Four (CRS-4), navigates a waterway during an annual training
A Framework for People Re-Identification in Multi-Camera Surveillance Systems
ERIC Educational Resources Information Center
Ammar, Sirine; Zaghden, Nizar; Neji, Mahmoud
2017-01-01
People re-identification has been a very active research topic recently in computer vision. It is an important application in surveillance system with disjoint cameras. This paper is focused on the implementation of a human re-identification system. First the face of detected people is divided into three parts and some soft-biometric traits are…
Validation of Viewing Reports: Exploration of a Photographic Method.
ERIC Educational Resources Information Center
Fletcher, James E.; Chen, Charles Chao-Ping
A time lapse camera loaded with Super 8 film was employed to photographically record the area in front of a conventional television receiver in selected homes. The camera took one picture each minute for three days, including in the same frame the face of the television receiver. Family members kept a conventional viewing diary of their viewing…
The Joint Development of Hemispheric Lateralization for Words and Faces
ERIC Educational Resources Information Center
Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene
2013-01-01
Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been…
ERIC Educational Resources Information Center
Smith, Stephen; Myers, John L.; Underwood, Julie
2003-01-01
Vermont is the only state that does not require a balanced budget every fiscal year. Facing state budget shortfalls, many states were left with no choice but to examine possible cuts or at least flat levels of funding for schools. States are also facing costs with implementing new federal mandates under the No Child Left Behind Act. Additional…
Face transplant: is it feasible in developing countries?
González-García, Ignacio; Lyra-González, Iván; Medina-Preciado, David; Guerrero-Torres, Alejandro; Ramos-Gallardo, Guillermo; Armendáriz-Borunda, Juan
2013-01-01
This article is based on the case of a 28-year-old woman who was involved in a car accident, with diagnosis of polytrauma, loss of left eye, and second- and third-degree burns over the left midface, rendering an exposed area of 8 cm wide and 19 cm length, ranging from glabella to mandible, with skull exposure and loss of left eye.A latissimus dorsi musculocutaneous free flap was transferred into the defect; left eye and nose prosthetics were necessary to restore normal appearance. Excellent results were obtained; reinsertion to patient's normal life and reinstatement of facial appearance were achieved with minimal costs and no postsurgical complications.Analysis of the current situation in developing countries demonstrates that technique and infrastructure do not represent a real challenge to carry on face transplants. However, socioeconomic reality in these societies makes it difficult to establish face transplant as a feasible therapeutic opportunity for the overwhelming majority of patients who are victims of severe facial damage.Therefore, strategies such as latissimus dorsi free flap remains as an excellent therapy to face off our complex facial reconstructive challenges in developing countries such as Mexico.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Reporters (bottom) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members seen here discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. Facing the camera (from left) are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.
Curiosity Rover View of Alluring Martian Geology Ahead
2015-08-05
A southward-looking panorama combining images from both cameras of the Mast Camera Mastcam instrument on NASA Curiosity Mars Rover shows diverse geological textures on Mount Sharp. A southward-looking panorama combining images from both cameras of the Mast Camera (Mastcam) instrument on NASA's Curiosity Mars Rover shows diverse geological textures on Mount Sharp. Three years after landing on Mars, the mission is investigating this layered mountain for evidence about changes in Martian environmental conditions, from an ancient time when conditions were favorable for microbial life to the much-drier present. Gravel and sand ripples fill the foreground, typical of terrains that Curiosity traversed to reach Mount Sharp from its landing site. Outcrops in the midfield are of two types: dust-covered, smooth bedrock that forms the base of the mountain, and sandstone ridges that shed boulders as they erode. Rounded buttes in the distance contain sulfate minerals, perhaps indicating a change in the availability of water when they formed. Some of the layering patterns on higher levels of Mount Sharp in the background are tilted at different angles than others, evidence of complicated relationships still to be deciphered. The scene spans from southeastward at left to southwestward at right. The component images were taken on April 10 and 11, 2015, the 952nd and 953rd Martian days (or sols) since the rover's landing on Mars on Aug. 6, 2012, UTC (Aug. 5, PDT). Images in the central part of the panorama are from Mastcam's right-eye camera, which is equipped with a 100-millimeter-focal-length telephoto lens. Images used in outer portions, including the most distant portions of the mountain in the scene, were taken with Mastcam's left-eye camera, using a wider-angle, 34-millimeter lens. http://photojournal.jpl.nasa.gov/catalog/PIA19803
1973-09-29
S73-34619 (28 July 1973) --- A composite of four frames taken from 16mm movie camera footage showing an overhead view of the Skylab space station cluster in Earth orbit. The Maurer motion picture camera scenes were being filmed during the Skylab 3 Command/Service Module's (CSM) first "fly around" inspection of the space station. Close comparison of the four frames reveals movement of the improvised parasol solar shield over the Orbital Workshop (OWS). The "flapping" of the sun shade was caused from the exhaust of the reaction control subsystem (RCS) thrusters of the Skylab 3 CSM. The one remaining solar array system wing on the OWS is in the lower left background. The solar panel in the lower left foreground is on the Apollo Telescope Mount (ATM). Photo credit: NASA
Rajesh, P G; Thomas, Bejoy; Pammi, V S Chandrasekhar; Kesavadas, C; Alexander, Aley; Radhakrishnan, Ashalatha; Thomas, S V; Menon, R N
2018-05-26
To validate concurrent utility of within-scanner encoding and delayed recognition-memory paradigms to ascertain hippocampal activations during task-based memory fMRI. Memory paradigms were designed for faces, word-pairs and abstract designs. A deep-encoding task was designed comprising of a total of 9 cycles run within a 1.5T MRI scanner. A recall session was performed after 1 h within the scanner using an event-related design. Group analysis was done with 'correct-incorrect' responses applied as parametric modulators in Statistical Parametric Mapping version 8 using boot-strap method to enable estimation of laterality indices (LI) using custom anatomical masks involving the medio-basal temporal structures. Twenty seven subjects with drug-resistant mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE-HS) [17 patients of left-MTLE and 10 patients of right-MTLE] and 21 right handed age-matched healthy controls (HC) were recruited. For the encoding paradigm blood oxygen level dependent (BOLD) responses in HC demonstrated right laterality for faces, left laterality for word pairs, and bilaterality for design encoding over the regions of interest. Both right and left MTLE-HS groups revealed left lateralisation for word-pair encoding, bilateral activation for face encoding, with design encoding in right MTLE-HS demonstrating a left shift. As opposed to lateralization shown in controls, group analysis of cued-recall BOLD signals acquired within scanner in left MTLE-HS demonstrated right lateralization for word-pairs with bilaterality for faces and designs. The right MTLE-HS group demonstrated bilateral activations for faces, word-pairs and designs. Recall-based fMRI paradigms indicate hippocampal plasticity in MTLE-HS, maximal for word-pair associate recall tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional face model reproduction method using multiview images
NASA Astrophysics Data System (ADS)
Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio
1991-11-01
This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.
PBF Control Building (PER619). Interior of control room shows control ...
PBF Control Building (PER-619). Interior of control room shows control console from direction facing visitors room and its observation window. Camera facing northeast. Date: May 2004. INEEL negative no. HD-41-7-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Jig For Stereoscopic Photography
NASA Technical Reports Server (NTRS)
Nielsen, David J.
1990-01-01
Separations between views adjusted precisely for best results. Simple jig adjusted to set precisely, distance between right and left positions of camera used to make stereoscopic photographs. Camera slides in slot between extreme positions, where it takes stereoscopic pictures. Distance between extreme positions set reproducibly with micrometer. In view of trend toward very-large-scale integration of electronic circuits, training method and jig used to make training photographs useful to many companies to reduce cost of training manufacturing personnel.
Real Time 3D Facial Movement Tracking Using a Monocular Camera
Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng
2016-01-01
The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714
Real Time 3D Facial Movement Tracking Using a Monocular Camera.
Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng
2016-07-25
The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.
Computer vision research with new imaging technology
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Liu, Fei; Sun, Zhenan
2015-12-01
Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.
Three-dimensional face pose detection and tracking using monocular videos: tool and application.
Dornaika, Fadi; Raducanu, Bogdan
2009-08-01
Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.
View Ahead After Spirit's Sol 1861 Drive (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11977 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11977 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this stereo, 210-degree view of the rover's surroundings during the 1,861st to 1,863rd Martian days, or sols, of Spirit's surface mission (March 28 to 30, 2009). This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The center of the scene is toward the south-southwest. East is on the left. West-northwest is on the right. The rover had driven 22.7 meters (74 feet) southwestward on Sol 1861 before beginning to take the frames in this view. The drive brought Spirit past the northwestern corner of Home Plate. In this view, the western edge of Home Plate is on the portion of the horizon farthest to the left. A mound in middle distance near the center of the view is called 'Tsiolkovsky' and is about 40 meters (about 130 feet) from the rover's position. This view is presented as a cylindrical-perspective projection with geometric seam correction.NASA Technical Reports Server (NTRS)
2005-01-01
22 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark teardrop-shaped sand dunes in eastern Copernicus Crater. The winds responsible for these dunes generally blow from the south-southwest (lower left). Location near: 48.7oS, 167.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerVoss videotapes the STS-105 crewmembers in the U.S. Laboratory
2001-08-17
ISS003-E-5188 (17 August 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, photographs astronauts Scott J. Horowitz (front left), STS-105 mission commander, Frederick W. (Rick) Sturckow, pilot, Daniel T. Barry (back left), and Patrick G. Forrester, both mission specialists, in the Destiny laboratory on the International Space Station (ISS). This image was taken with a digital still camera.
Mars Exploration Rover engineering cameras
Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.
2003-01-01
NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.
NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska
Bob Busey; Larry Hinzman
2012-04-01
The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff
2010-01-01
These two studies assessed camera-based microswitch technology for eyelid and mouth responses of two persons with profound multiple disabilities and minimal motor behavior. This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on the participants' face but only small color…
Developing a Side Bias for Conspecific Faces during Childhood
ERIC Educational Resources Information Center
Balas, Benjamin; Moulson, Margaret C.
2011-01-01
Adults preferentially use information from the left side of face images to judge gender, emotion, and identity. In this study, we examined the development of this visual-field bias over middle childhood (5-10 years). Our goal was to both characterize the developmental trajectory of the left-side bias (should one exist) and examine the selectivity…
Robinson, Amanda K; Plaut, David C; Behrmann, Marlene
2017-07-01
Words and faces have vastly different visual properties, but increasing evidence suggests that word and face processing engage overlapping distributed networks. For instance, fMRI studies have shown overlapping activity for face and word processing in the fusiform gyrus despite well-characterized lateralization of these objects to the left and right hemispheres, respectively. To investigate whether face and word perception influences perception of the other stimulus class and elucidate the mechanisms underlying such interactions, we presented images using rapid serial visual presentations. Across 3 experiments, participants discriminated 2 face, word, and glasses targets (T1 and T2) embedded in a stream of images. As expected, T2 discrimination was impaired when it followed T1 by 200 to 300 ms relative to longer intertarget lags, the so-called attentional blink. Interestingly, T2 discrimination accuracy was significantly reduced at short intertarget lags when a face was followed by a word (face-word) compared with glasses-word and word-word combinations, indicating that face processing interfered with word perception. The reverse effect was not observed; that is, word-face performance was no different than the other object combinations. EEG results indicated the left N170 to T1 was correlated with the word decrement for face-word trials, but not for other object combinations. Taken together, the results suggest face processing interferes with word processing, providing evidence for overlapping neural mechanisms of these 2 object types. Furthermore, asymmetrical face-word interference points to greater overlap of face and word representations in the left than the right hemisphere. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth
2015-08-05
This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2016-01-01
Abstract Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery. PMID:26754787
Can we match ultraviolet face images against their visible counterparts?
NASA Astrophysics Data System (ADS)
Narang, Neeru; Bourlai, Thirimachos; Hornak, Lawrence A.
2015-05-01
In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. However, face recognition (FR) for face images captured using different camera sensors, and under variable illumination conditions, and expressions is very challenging. In this paper, we investigate the advantages and limitations of the heterogeneous problem of matching ultra violet (from 100 nm to 400 nm in wavelength) or UV, face images against their visible (VIS) counterparts, when all face images are captured under controlled conditions. The contributions of our work are three-fold; (i) We used a camera sensor designed with the capability to acquire UV images at short-ranges, and generated a dual-band (VIS and UV) database that is composed of multiple, full frontal, face images of 50 subjects. Two sessions were collected that span over the period of 2 months. (ii) For each dataset, we determined which set of face image pre-processing algorithms are more suitable for face matching, and, finally, (iii) we determined which FR algorithm better matches cross-band face images, resulting in high rank-1 identification rates. Experimental results show that our cross spectral matching (the heterogeneous problem, where gallery and probe sets consist of face images acquired in different spectral bands) algorithms achieve sufficient identification performance. However, we also conclude that the problem under study, is very challenging, and it requires further investigation to address real-world law enforcement or military applications. To the best of our knowledge, this is first time in the open literature the problem of cross-spectral matching of UV against VIS band face images is being investigated.
Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum †
Kresnaraman, Brahmastro; Deguchi, Daisuke; Takahashi, Tomokazu; Mekada, Yoshito; Ide, Ichiro; Murase, Hiroshi
2016-01-01
During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations. PMID:27110781
A&M. TAN607. Construction view, facing southwest. At upper left of ...
A&M. TAN-607. Construction view, facing southwest. At upper left of view, north-wall equipment and operating galleries take shape on hot shop. Pumice-block side of storage pool section in center left of view. Water filter building (TAN-608) next to north wall of pool. Hot liquid waste building (TAN-616) at right of view. Note concrete construction of TAN-608 and 616. Date: January 18, 1954. INEEL negative no. 9604 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
2002-07-10
KENNEDY SPACE CENTER, FLA. -- With the engines removed from Endeavour, the flow line can be inspected. On the right, Gerry Kathka, with United Space Alliance, hands part of a fiber-optic camera system to Scott Minnick, left. Minnick wears a special viewing apparatus that sees where the camera is going. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.
Reconditioning of Cassini Narrow-Angle Camera
NASA Technical Reports Server (NTRS)
2002-01-01
These five images of single stars, taken at different times with the narrow-angle camera on NASA's Cassini spacecraft, show the effects of haze collecting on the camera's optics, then successful removal of the haze by warming treatments.
The image on the left was taken on May 25, 2001, before the haze problem occurred. It shows a star named HD339457.The second image from left, taken May 30, 2001, shows the effect of haze that collected on the optics when the camera cooled back down after a routine-maintenance heating to 30 degrees Celsius (86 degrees Fahrenheit). The star is Maia, one of the Pleiades.The third image was taken on October 26, 2001, after a weeklong decontamination treatment at minus 7 C (19 F). The star is Spica.The fourth image was taken of Spica January 30, 2002, after a weeklong decontamination treatment at 4 C (39 F).The final image, also of Spica, was taken July 9, 2002, following three additional decontamination treatments at 4 C (39 F) for two months, one month, then another month.Cassini, on its way toward arrival at Saturn in 2004, is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.Teleoperated control system for underground room and pillar mining
Mayercheck, William D.; Kwitowski, August J.; Brautigam, Albert L.; Mueller, Brian K.
1992-01-01
A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.
Spirit Beside 'Home Plate,' Sol 1809 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11803 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11803 NASA Mars Exploration Rover Spirit used its navigation camera to take the images assembled into this stereo, 120-degree view southward after a short drive during the 1,809th Martian day, or sol, of Spirit's mission on the surface of Mars (February 3, 2009). By combining images from the left-eye and right-eye sides of the navigation camera, the view appears three-dimensional when viewed through red-blue glasses with the red lens on the left. Spirit had driven about 2.6 meters (8.5 feet) that sol, continuing a clockwise route around a low plateau called 'Home Plate.' In this image, the rocks visible above the rovers' solar panels are on the slope at the northern edge of Home Plate. This view is presented as a cylindrical-perspective projection with geometric seam correction.Opportunity's Surroundings on Sol 1818 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11846 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11846 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical-perspective projection with geometric seam correction.Opportunity's Surroundings on Sol 1798 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11850 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11850 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical-perspective projection with geometric seam correction.A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE
NASA Technical Reports Server (NTRS)
2002-01-01
This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)
Decoding facial blends of emotion: visual field, attentional and hemispheric biases.
Ross, Elliott D; Shayya, Luay; Champlain, Amanda; Monnot, Marilee; Prodan, Calin I
2013-12-01
Most clinical research assumes that modulation of facial expressions is lateralized predominantly across the right-left hemiface. However, social psychological research suggests that facial expressions are organized predominantly across the upper-lower face. Because humans learn to cognitively control facial expression for social purposes, the lower face may display a false emotion, typically a smile, to enable approach behavior. In contrast, the upper face may leak a person's true feeling state by producing a brief facial blend of emotion, i.e. a different emotion on the upper versus lower face. Previous studies from our laboratory have shown that upper facial emotions are processed preferentially by the right hemisphere under conditions of directed attention if facial blends of emotion are presented tachistoscopically to the mid left and right visual fields. This paper explores how facial blends are processed within the four visual quadrants. The results, combined with our previous research, demonstrate that lower more so than upper facial emotions are perceived best when presented to the viewer's left and right visual fields just above the horizontal axis. Upper facial emotions are perceived best when presented to the viewer's left visual field just above the horizontal axis under conditions of directed attention. Thus, by gazing at a person's left ear, which also avoids the social stigma of eye-to-eye contact, one's ability to decode facial expressions should be enhanced. Published by Elsevier Inc.
2000-12-11
Across from the Vehicle Assembly Building and Launch Control Center, Steve Thomas (left), host of This Old House, and Norm Abram (second from left), master carpenter on the series, watch as a a videographer (in front) checks his camera. With them is astronaut John Herrington. The cast and crew of This Old House are filming at KSC for an episode of the show. Herrington is accompanying the film crew on their tour of KSC
The Terrain of Margaritifer Chaos
NASA Technical Reports Server (NTRS)
1999-01-01
The jumbled and broken terrain in the picture on the left is known as chaotic terrain. Chaotic terrain was first observed in Mariner 6 and 7 images of Mars more than 30 years ago, and is thought to result from collapse after material--perhaps water or ice--was removed from the subsurface by events such as the formation of giant flood channels. The region shown here is named 'Margaritifer Chaos'. The left picture is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle camera context frame that covers an area 115 km (71 miles) across. The small white box is centered at 10.3oS, 21.4oW and indicates the location of the high-resolution view on the right. The high resolution view (right) covers a small portion of the Margaritifer Chaos at 1.8 meters (6 feet) per pixel. The area shown is 3 km (1.9 miles) across. Uplands are lumpy with small bright outcrops of bedrock. Lowlands or valleys in the chaotic terrain have floors covered by light-toned windblown d rifts. This image is typical of the very highest-resolution views of the equatorial latitudes of Mars. Both pictures are illuminated from the left/upper left, north is toward the top.Closeups of IECM grappled by RMS and positioned above payload bay (PLB)
1982-07-04
STS004-23-119 (27 June-4 July 1982) --- This is a close-up view of the Marshall Space Flight Center-developed Induced Environment Contamination Monitor (IECM), a multi-instrument box designed to check for contaminants in and around the space shuttle orbiter cargo bay which might adversely affect delicate experiments carried aboard. The astronaut crew of Thomas K. Mattingly II and Henry W. Hartsfield Jr. maneuvered the Canadian-built robot arm (called the remote manipulator system) very near their overhead flight deck windows and captured this scene with a 35mm camera. HOLD PICTURE HORIZONTALLY WITH FRAME NUMBER AT TOP CENTER. Cameras for the 11 instruments are pictured as black circles at the bottom of the frame. The access door to the arm and safe plug is located about halfway up the left edge of the box. A cascade injector device is immediately to the right of the plug. The rectangular opening at right center of the monitor is the optical effects module. Mass spectrometer is at upper left. Air sampler bottles are at upper left. The colorful rectangle near upper left of the monitor is the passive array. Not easily seen, but also a part of the instrument, are the cryogenic quartz crystal micro balance and the temperature controlled quartz micro balance. Photo credit: NASA
LOFT. Interior view of entry to reactor building, TAN650. Camera ...
LOFT. Interior view of entry to reactor building, TAN-650. Camera is inside entry (TAN-624) and facing north. At far end of domed chamber are penetrations in wall for electrical and other connections. Reactor and other equipment has been removed. Date: March 2004. INEEL negative no. HD-39-5-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Drane, Daniel L.; Ojemann, Jeffrey G.; Phatak, Vaishali; Loring, David W.; Gross, Robert E.; Hebb, Adam O.; Silbergeld, Daniel L.; Miller, John W.; Voets, Natalie L.; Saindane, Amit M.; Barsalou, Lawrence; Meador, Kimford J.; Ojemann, George A.; Tranel, Daniel
2012-01-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre-and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. PMID:23040175
Drane, Daniel L; Ojemann, Jeffrey G; Phatak, Vaishali; Loring, David W; Gross, Robert E; Hebb, Adam O; Silbergeld, Daniel L; Miller, John W; Voets, Natalie L; Saindane, Amit M; Barsalou, Lawrence; Meador, Kimford J; Ojemann, George A; Tranel, Daniel
2013-06-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2005-01-01
This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles. The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left. Saturn's shadow carves a dark triangle out of the lower right corner of this image. The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .Towards next generation 3D cameras
NASA Astrophysics Data System (ADS)
Gupta, Mohit
2017-03-01
We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.
Schulz, Claudia; Kaufmann, Jürgen M; Kurt, Alexander; Schweinberger, Stefan R
2012-10-15
Distinctive faces are easier to learn and recognise than typical faces. We investigated effects of natural vs. artificial distinctiveness on performance and neural correlates of face learning. Spatial caricatures of initially non-distinctive faces were created such that their rated distinctiveness matched a set of naturally distinctive faces. During learning, we presented naturally distinctive, caricatured, and non-distinctive faces for later recognition among novel faces, using different images of the same identities at learning and test. For learned faces, an advantage in performance was observed for naturally distinctive and caricatured over non-distinctive faces, with larger benefits for naturally distinctive faces. Distinctive and caricatured faces elicited more negative occipitotemporal ERPs (P200, N250) and larger centroparietal positivity (LPC) during learning. At test, earliest distinctiveness effects were again seen in the P200. In line with recent research, N250 and LPC were larger for learned than for novel faces overall. Importantly, whereas left hemispheric N250 was increased for learned naturally distinctive faces, right hemispheric N250 responded particularly to caricatured novel faces. We conclude that natural distinctiveness induces benefits to face recognition beyond those induced by exaggeration of a face's idiosyncratic shape, and that the left hemisphere in particular may mediate recognition across different images. Copyright © 2012 Elsevier Inc. All rights reserved.
Niina, Megumi; Okamura, Jun-ya; Wang, Gang
2015-10-01
Scalp event-related potential (ERP) studies have demonstrated larger N170 amplitudes when subjects view faces compared to items from object categories. Extensive attempts have been made to clarify face selectivity and hemispheric dominance for face processing. The purpose of this study was to investigate hemispheric differences in N170s activated by human faces and non-face objects, as well as the extent of overlap of their sources. ERP was recorded from 20 subjects while they viewed human face and non-face images. N170s obtained during the presentation of human faces appeared earlier and with larger amplitude than for other category images. Further source analysis with a two-dipole model revealed that the locations of face and object processing largely overlapped in the left hemisphere. Conversely, the source for face processing in the right hemisphere located more anterior than the source for object processing. The results suggest that the neuronal circuits for face and object processing are largely shared in the left hemisphere, with more distinct circuits in the right hemisphere. Copyright © 2015 Elsevier B.V. All rights reserved.
Brain activation while forming memories of fearful and neutral faces in women and men.
Fischer, Håkan; Sandblom, Johan; Nyberg, Lars; Herlitz, Agneta; Bäckman, Lars
2007-11-01
Event-related functional MRI (fMRI) was used to assess brain activity during encoding of fearful and neutral faces in 12 women and 12 men. In a subsequent memory analysis, the authors separated successful from unsuccessful encoding of both types of faces, based on whether they were remembered or forgotten in a later recognition memory test. Overall, women and men recruited overlapping neural circuitries. Both sexes activated right-sided medial-temporal regions during successful encoding of fearful faces. Successful encoding of neutral faces was associated with left-sided lateral prefrontal and right-sided superior frontal activation in both sexes. In women, relatively greater encoding related activity for neutral faces was seen in the superior parietal and parahippocampal cortices. By contrast, men activated the left and right superior/middle frontal cortex more than women during successful encoding of the same neutral faces. These findings suggest that women and men use similar neural networks to encode facial information, with only subtle sex differences observed for neutral faces.
On HMI's Mod-L Sequence: Test and Evaluation
NASA Astrophysics Data System (ADS)
Liu, Yang; Baldner, Charles; Bogart, R. S.; Bush, R.; Couvidat, S.; Duvall, Thomas L.; Hoeksema, Jon Todd; Norton, Aimee Ann; Scherrer, Philip H.; Schou, Jesper
2016-05-01
HMI Mod-L sequence can produce full Stokes parameters at a cadence of 90 seconds by combining filtergrams from both cameras, the front camera and the side camera. Within the 90-second, the front camera takes two sets of Left and Right Circular Polarizations (LCP and RCP) at 6 wavelengths; the side camera takes one set of Linear Polarizations (I+/-Q and I+/-U) at 6 wavelengths. By combining two cameras, one can obtain full Stokes parameters of [I,Q,U,V] at 6 wavelengths in 90 seconds. In norminal Mod-C sequence that HMI currently uses, the front camera takes LCP and RCP at a cadence of 45 seconds, while the side camera takes observation of the full Stokes at a cadence of 135 seconds. Mod-L should be better than Mod-C for providing vector magnetic field data because (1) Mod-L increases cadence of full Stokes observation, which leads to higher temporal resolution of vector magnetic field measurement; (2) decreases noise in vector magnetic field data because it uses more filtergrams to produce [I,Q,U,V]. There are two potential issues in Mod-L that need to be addressed: (1) scaling intensity of the two cameras’ filtergrams; and (2) if current polarization calibration model, which is built for each camera separately, works for the combined data from both cameras. This presentation will address these questions, and further place a discussion here.
Cantwell-Bartl, Annie M; Tibballs, James
2017-09-01
To evaluate the experiences of parenting a child with hypoplastic left heart syndrome after the child has been discharged home from hospital. A study of the parents' experiences using face-to-face interviews and psychometric measures with parents whose child had survived stage surgery. Parents were interviewed within the home environment or within the hospital if that was their choice. A total of 29 parents (16 mothers and 13 fathers) of surviving children. Intervention A semi-structured face-to-face interview plus psychometric tests (parent demographics, Maslach Burnout Inventory, Impact on Family Scale, and the Psychological Check List - Civilian). Measurements and main results The parents' experience in supporting a child with hypoplastic left heart syndrome is one of stress, of commitment, and of love. Although parents experienced joy in their child, they were also subjected to anxiety with four parents test positive to post-traumatic stress disorder and hypervigilance while monitoring their child's condition. Parents lived with many difficulties, and demands.
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
NASA Technical Reports Server (NTRS)
Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken
2005-01-01
This slide presentation details the Mars Exploration Rover (MER) imaging system. Over 144,000 images have been gathered from all Mars Missions, with 83.5% of them being gathered by MER. Each Rover has 9 cameras (Navcam, front and rear Hazcam, Pancam, Microscopic Image, Descent Camera, Engineering Camera, Science Camera) and produces 1024 x 1024 (1 Megapixel) images in the same format. All onboard image processing code is implemented in flight software and includes extensive processing capabilities such as autoexposure, flat field correction, image orientation, thumbnail generation, subframing, and image compression. Ground image processing is done at the Jet Propulsion Laboratory's Multimission Image Processing Laboratory using Video Image Communication and Retrieval (VICAR) while stereo processing (left/right pairs) is provided for raw image, radiometric correction; solar energy maps,triangulation (Cartesian 3-spaces) and slope maps.
A multiple camera tongue switch for a child with severe spastic quadriplegic cerebral palsy.
Leung, Brian; Chau, Tom
2010-01-01
The present study proposed a video-based access technology that facilitated a non-contact tongue protrusion access modality for a 7-year-old boy with severe spastic quadriplegic cerebral palsy (GMFCS level 5). The proposed system featured a centre camera and two peripheral cameras to extend coverage of the frontal face view of this user for longer durations. The child participated in a descriptive case study. The participant underwent 3 months of tongue protrusion training while the multiple camera tongue switch prototype was being prepared. Later, the participant was brought back for five experiment sessions where he worked on a single-switch picture matching activity, using the multiple camera tongue switch prototype in a controlled environment. The multiple camera tongue switch achieved an average sensitivity of 82% and specificity of 80%. In three of the experiment sessions, the peripheral cameras were associated with most of the true positive switch activations. These activations would have been missed by a centre-camera-only setup. The study demonstrated proof-of-concept of a non-contact tongue access modality implemented by a video-based system involving three cameras and colour video processing.
ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...
ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
An Application for Driver Drowsiness Identification based on Pupil Detection using IR Camera
NASA Astrophysics Data System (ADS)
Kumar, K. S. Chidanand; Bhowmick, Brojeshwar
A Driver drowsiness identification system has been proposed that generates alarms when driver falls asleep during driving. A number of different physical phenomena can be monitored and measured in order to detect drowsiness of driver in a vehicle. This paper presents a methodology for driver drowsiness identification using IR camera by detecting and tracking pupils. The face region is first determined first using euler number and template matching. Pupils are then located in the face region. In subsequent frames of video, pupils are tracked in order to find whether the eyes are open or closed. If eyes are closed for several consecutive frames then it is concluded that the driver is fatigued and alarm is generated.
High-emulation mask recognition with high-resolution hyperspectral video capture system
NASA Astrophysics Data System (ADS)
Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin
2014-11-01
We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.
2. SOUTH FACE OF PYROTECHNIC SHED (BLDG. 757) SHOWING SIGN ...
2. SOUTH FACE OF PYROTECHNIC SHED (BLDG. 757) SHOWING SIGN HOLDER ON LEFT AND ENTRANCE TO TEST CELL. METEOROLOGICAL TOWER AND METEOROLOGICAL SHED (BLDG. 756) IN BACKGROUND ON LEFT; SOUTHEAST CORNER OF GPS AZIMUTH STATION (BLDG. 775) IN BACKGROUND BEHIND AND RIGHT OF PYROTECHNIC SHED. - Vandenberg Air Force Base, Space Launch Complex 3, Pyrotechnic Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish
2018-01-01
Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially in the middle and outer retina. Young adults may be especially vulnerable and need to be better informed of the risks of viewing the sun with inadequate protective eyewear.
Methods and new approaches to the calculation of physiological parameters by videodensitometry
NASA Technical Reports Server (NTRS)
Kedem, D.; Londstrom, D. P.; Rhea, T. C., Jr.; Nelson, J. H.; Price, R. R.; Smith, C. W.; Graham, T. P., Jr.; Brill, A. B.; Kedem, D.
1976-01-01
A complex system featuring a video-camera connected to a video disk, cine (medical motion picture) camera and PDP-9 computer with various input/output facilities has been developed. This system enables the performance of quantitative analysis of various functions recorded in clinical studies. Several studies are described, such as heart chamber volume calculations, left ventricle ejection fraction, blood flow through the lungs and also the possibility of obtaining information about blood flow and constrictions in small cross-section vessels
MS Grunsfeld wearing EMU in Airlock joined by MS Newman and Massimino
2002-03-08
STS109-E-5722 (8 March 2002) --- Astronaut John M. Grunsfeld (center), STS-109 payload commander, attired in the extravehicular mobility unit (EMU) space suit, is photographed with astronauts James H. Newman (left) and Michael J. Massimino, both mission specialists, prior to the fifth space walk. Activities for EVA-5 centered around the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) to install a Cryogenic Cooler and its Cooling System Radiator. The image was recorded with a digital still camera.
2004-05-19
KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Worthington (left) and Kenny Allen work on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.
2004-05-19
KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Wetherington (left) and Kenny Allen work on two of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.
2001-12-01
KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Richard Lennehan (left) and Payload Commander John Grunsfeld get a feel for tools and equipment that will be used on the mission. The crew is at KSC to take part in Crew Equipment Interface Test activities that include familiarization with the orbiter and equipment. The goal of the mission is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the Advanced Camera for Surveys, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002
Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno
2011-01-01
Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect. PMID:22275889