Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina
2017-07-01
To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.
Li, Yumeng; Kakar, Rumit S; Fu, Yang-Chieh; Mahoney, Ormonde M; Kinsey, Tracy L; Simpson, Kathy J
2018-04-13
Unicompartmental knee arthroplasty (UKA) has been shown to demonstrate some satisfactory short-term outcomes. However, to our knowledge, there have been no reports on midterm or long-term knee extensor strength and leg extensor power post-UKA. Therefore, the purposes of this study were: (1) to assess the isokinetic knee extensor strength, leg extensor power and stair performance of elderly participants at 5 years UKA post-operation; (2) to compare the differences in knee extensor strength and leg extensor power between the UKA and contralateral healthy limbs. Nineteen elderly participants (75 ± 5 years) who had a medial or a lateral compartment UKA at 5 years post-operation were recruited. The isokinetic knee extensor strength and leg extensor power were measured. The stair performance was tested on a 4-step stair, and ascent and descent velocities were calculated. The pain level was assessed. The UKA limbs' knee extensor strength and leg extensor power were 1.01 ± 0.39 Nm/kg and 0.98 ± 0.27 W/kg, respectively. The stair ascent and descent velocities were 0.37 ± 0.07 and 0.38 ± 0.11 m/s, respectively. In addition, the UKA limbs exhibited comparable knee strength and leg power relative to the contralateral limbs. In general, the knee extensor strength and leg extensor power exhibited by the UKA limbs at 5 years post-operation may be typical in comparison with the normative data. We suggest that UKA is a satisfactory treatment in regard to the recovery of knee strength, leg power and ability to climb up and down stairs.
Vahtrik, Doris; Gapeyeva, Helena; Ereline, Jaan; Pääsuke, Mati
2014-01-01
The aim of the present study was to evaluate an isometric maximal voluntary contraction (MVC) force of the leg extensor muscles and its relationship with knee joint loading during gait prior and after total knee arthroplasty (TKA). Custom-made dynamometer was used to assess an isometric MVC force of the leg extensor muscles and 3-D motion analysis system was used to evaluate the knee joint loading during gait in 13 female patients (aged 49-68 years) with knee osteoarthritis. Patients were evaluated one day before, and three and six months following TKA in the operated and non-operated leg. Six months after TKA, MVC force of the leg extensor muscles for the operated leg did not differ significantly as compared to the preoperative level, whereas it remained significantly lower for the non-operated leg and controls. The knee flexion moment and the knee joint power during mid stance of gait was improved six months after TKA, remaining significantly lowered compared with controls. Negative moderate correlation between leg extensor muscles strength and knee joint loading for the operated leg during mid stance was noted three months after TKA. The correlation analysis indicates that due to weak leg extensor muscles, an excessive load is applied to knee joint during mid stance of gait in patients, whereas in healthy subjects stronger knee-surrounding muscles provide stronger knee joint loading during gait. III (correlational study). Copyright © 2013 Elsevier B.V. All rights reserved.
Do oarsmen have asymmetries in the strength of their back and leg muscles?
Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H
2001-07-01
The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.
Ward, Rachel E; Beauchamp, Marla K; Latham, Nancy K; Leveille, Suzanne G; Percac-Lima, Sanja; Kurlinski, Laura; Ni, Pengsheng; Goldstein, Richard; Jette, Alan M; Bean, Jonathan F
2016-08-01
To identify neuromuscular impairments most predictive of unfavorable mobility outcomes in late life. Longitudinal cohort study. Research clinic. Community-dwelling primary care patients aged ≥65 years (N=391) with self-reported mobility modifications, randomly selected from a research registry. Not applicable. Categories of decline in and persistently poor mobility across baseline, 1 and 2 years of follow-up in the Lower-Extremity Function scales of the Late-Life Function and Disability Instrument. The following categories of impairment were assessed as potential predictors of mobility change: strength (leg strength), speed of movement (leg velocity, reaction time, rapid leg coordination), range of motion (ROM) (knee flexion/knee extension/ankle ROM), asymmetry (asymmetry of leg strength and knee flexion/extension ROM measures), and trunk stability (trunk extensor endurance, kyphosis). The largest effect sizes were found for baseline weaker leg strength (odds ratio [95% confidence interval]: 3.45 [1.72-6.95]), trunk extensor endurance (2.98 [1.56-5.70]), and slower leg velocity (2.35 [1.21-4.58]) predicting a greater likelihood of persistently poor function over 2 years. Baseline weaker leg strength, trunk extensor endurance, and restricted knee flexion motion also predicted a greater likelihood of decline in function (1.72 [1.10-2.70], 1.83 [1.13-2.95], and 2.03 [1.24-3.35], respectively). Older adults exhibiting poor mobility may be prime candidates for rehabilitation focused on improving these impairments. These findings lay the groundwork for developing interventions aimed at optimizing rehabilitative care and disability prevention, and highlight the importance of both well-recognized (leg strength) and novel impairments (leg velocity, trunk extensor muscle endurance). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla
2013-01-01
Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.
Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati
2013-01-01
BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.
Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati
2017-01-01
The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.
Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin
2017-06-01
Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship ( r =-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Level 2a.
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.
Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin
2017-01-01
Background Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Study Design Controlled Laboratory Study; Cross-sectional Methods Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants’ height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Results Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=<.01) and landed with greater hip adduction (9.0 º vs. 0.8 º, p=<.01) compared with their healthy counterparts. In the ACL group, Pearson's r demonstrated a moderate and indirect relationship (r=-.62, p=.03) between hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved (r=.62) and uninvolved limb (r=.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. Conclusion The results suggest that hip extensors may play a role in minimizing hip adduction in the involved limb while the hip abductors seem to play a role in facilitating hip flexion during the landing phase of a single leg hop for both limbs following ACL reconstruction. Researchers and clinicians alike should consider the importance of the hip extensors in playing a more prominent role in contributing to frontal plane motion. Levels of Evidence Level 2a PMID:28593088
Taechasubamorn, Panada; Nopkesorn, Tawesak; Pannarunothai, Supasit
2010-12-01
To compare physical fitness between rice farmers with chronic low back pain (CLBP) and a healthy control group. Sixty-eight rice farmers with CLBP were matched according to age and sex with healthy farmers. All subjects underwent nine physical fitness tests for body composition, lifting capacity, static back extensor endurance, leg strength, static abdominal endurance, handgrip strength, hamstring flexibility, posterior leg and back muscles flexibility and abdominal flexibility. There was no significant difference between CLBP and healthy groups for all tests, except the static back extensor endurance. The back extensor endurance times of the CLBP group was significantly lower than that of the control group (p = 0.002). Static back extensor endurance is the deficient physical fitness in CLBP rice farmers. Back extensor endurance training should be emphasized in both prevention and rehabilitation programs.
Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T
2015-12-01
To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.
Sekir, U; Arabaci, R; Akova, B; Kadagan, S M
2010-04-01
The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.
Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew J
2018-05-01
Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r 2 = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors can increase leg strength and muscle activation while reducing motor unit recruitment thresholds.
Esmaeilzadeh, S.; Akpinar, M.; Polat, S.; Yildiz, A.; Oral, A.
2015-01-01
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women. PMID:26636279
NASA Technical Reports Server (NTRS)
Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul; Gollnick, Philip A.; Dudley, Gary A.
1989-01-01
The effect of transcutaneous electromyostimulation (EMS) on the development of atrophy and the loss of strength in lower limb musculature in humans exposed to microgravity was determined in three subjects who received EMS twice daily in a 3-d on/1-d off cycle on their dominant leg during 30 days of bedrest. The output waveform from the stimulator was sequenced to the knee extensors, knee flexors, ankle extensors, and ankle flexors, and caused three isometric contractions of each muscle group per minute. It was found that, in the dominant leg, EMS acted to attenuate the changes caused by bedrest, such as reductions in the leg volume, muscle compartment size, cross-sectional area of slow- and fast-twitch fibers, strength, and aerobic enzyme activities, and an increase in leg compliance.
A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults’ Gait Speed
Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobágyi, Tibor; Suzuki, Shuji
2014-01-01
We examined a behavioral mechanism of how increases in leg strength improve healthy old adults’ gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of healthy old adults (age 74, n = 15) but not in no-exercise control group (age 74, n = 8). Gait speed increased similarly in the training (9.9%) and control (8.6%) groups (time main effect, p = 0.001). However, in the training group only, in line with the concept of biomechanical plasticity of aging gait, hip extensors and ankle plantarflexors became the only significant predictors of self-selected and maximal gait speed. The study provides the first behavioral evidence regarding a mechanism of how increases in leg strength improve healthy old adults’ gait speed. PMID:25310220
The relation between knee muscle strength and performance tests in orienteering athletes.
Çinar-Medeni, Özge; Colakoglu, Fatma F; Yüce, Koray; Ipekoğlu, Gökhan; Baltaci, Gul
2016-11-01
The aim of this study was to analyze the effect of knee muscle strength on performance tests in orienteers. Thirty-seven orienteers were voluntarily included in this study. Isokinetic knee flexor and extensor muscles' strength was assessed at 120°/s velocity for both "dominant leg" (DL) and "non-dominant leg" (NDL). "Single-legged hop test" (SLHT), "flamingo balance test" (FBT), "star excursion balance test" (SEBT), vertical jump-and-reach test (for anaerobic power), T-drill test and 20-meter shuttle run test (for aerobic power) were carried out. Correlation and regression analyses were performed on the data. VO2max levels showed moderate correlations with DL's "flexor peak torque" (FPT) and NDL's "extensor peak torque" (EPT) and FPT values respectively (r=0.49, r=0.38, r=0.58). FPT of NDL was a predictor of VO2max level (R2=0.33). Anaerobic power has a relationship with EPT of NDL (r=0.43) and T-drill test with EPT and FPT values of both DL and NDL respectively (r=-0.35, r=-0.63, r=-0.53, r=-0.58). EPT of NDL was a predictor for anaerobic power (R2=0.19) and FPT of DL for agility (R2=0.40). Nonparametric linear regression results showed that EPT is a predictor in DL (median slope=-0.71, P=0.01), and FPT in NDL (median slope=-0.90, P=0.006) for FBT. FPT was a predictor of SEBT scores for both legs (0.13
Measures of Strength and Fitness for Older Populations.
ERIC Educational Resources Information Center
Osness, Wayne H.; Hiebert, Lujean M.
The overall strength of the musculature does not require testing of large numbers of muscle groups and can be accomplished from three or four tests. Small batteries of strength tests have been devised to predict total strength. The best combination of tests for males are thigh flexors, leg extensors, arm flexors, and pectoralis major. The battery…
Muscle power is an independent determinant of pain and quality of life in knee osteoarthritis
USDA-ARS?s Scientific Manuscript database
OBJECTIVE: This study examined the relationships between leg muscle strength, power, and perceived disease severity in subjects with knee osteoarthritis (OA) in order to determine whether dynamic leg extensor muscle power would be associated with pain and quality of life in knee OA. METHODS: Baseli...
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2015-04-01
To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.
Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp
2017-01-01
Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm2) were of no importance regarding the prediction of the strength deficit. The quadriceps strength deficit between the injured and the uninjured leg was best predicted by the results of the single-leg hop test. Conclusion: Patients with isolated cartilage defects of the knee joint have significant deficits in quadriceps muscle strength of the injured leg compared with the uninjured leg. The single-leg hop test may be used to predict quadriceps strength deficits. Future research should address whether preoperative strength training in patients with cartilage defects of the knee could be effective and should be taken into consideration in addition to surgical treatment. PMID:28596973
Gorgey, Ashraf S; Caudill, Caelb; Khalil, Refka E
2016-01-01
Single-subject case (male, 33 years of age, T6 SCI AIS A). To determine the effect of surface neuromuscular electrical stimulation (NMES) training conducted once weekly on improving fatigue resistance as well as regional and whole body composition in an individual with spinal cord injury (SCI). Laboratory setting within a SCI Center. Surface NMES resistance training (RT) of the paralyzed knee extensors was conducted once weekly for 12 weeks using ankle weights. Knee extensor fatigue index was determined by the number of repetitions (reps) achieved out of 30 reps. Total and regional body composition including percentage body fat (%BF), fat mass (FM), lean mass (LM) were conducted before the first session and one week after the last training session using whole-body dual-energy X-ray absorptiometry. The participant had a compliance rate of 83% and he was able to lift 6 and 2 lbs on the right and left legs, respectively. Right knee extensors showed greater fatigue resistance compared to the left one. Leg LM increased by 6% accompanied with decrease in arm, trunk and total body LM by -4.7%, -13%, -5%, respectively. The %BF increased by 8%, 7.3%, 15.5%, 11.5% for arm, legs, trunk and total body. Once weekly of NMES RT evokes local positive changes in leg LM without reciprocating the continuous loss in LM or gain in FM in other regions and total body. Training was effective in increasing strength as well as fatigue resistance of the trained knee extensors.
Back Strength Predicts Walking Improvement in Obese, Older Adults With Chronic Low Back Pain
Vincent, Heather K.; Vincent, Kevin R.; Seay, Amanda N.; Conrad, Bryan P.; Hurley, Robert W.; George, Steven Z.
2014-01-01
Objective To compare the effects of 4 months of isolated lumbar resistance exercise and total body resistance exercise on walking performance in obese, older adults with chronic low back pain. A secondary analysis examined whether responsiveness to training modulated walking improvement. Design Randomized, controlled trial. Setting Research laboratory affiliated with tertiary care facility. Methods and Intervention Participants (N = 49; 60–85 years) were randomized into a 4-month resistance exercise intervention (TOTRX), lumbar extensor exercise intervention (LEXT), or a control group (CON). Main Outcome Measurements Walking performance, maximal low back strength and leg strength, and average resting and low back pain severity score (from an 11-point numerical pain rating scale; NRSpain) were collected at baseline and month 4. Results The TOTRX and LEXT improved lumbar extensor strength relative to CON and the TOTRX (P < .05). NRSpain scores at month 4 were lowest in the TOTRX group compared with the LEXT and CON groups, respectively (2.0 ± 1.7 points vs 3.7 ± 2.6 points and 4.6 ± 2.4 points; P < .006). A total of 53% and 67% of participants in the TOTRX and LEXT groups were responders who made lumbar extensor strength gains that achieved ≥20% greater than baseline values. Although the TOTRX demonstrated the greatest improvement in walking endurance among the intervention groups, this did not reach significance (10.1 ± 12.2% improvement in TOTRX vs 7.4 ± 30.0% LEXT and −1.7 ± 17.4% CON; P = .11). Gait speed increased most in the TOTRX (9.0 ± 13.5%) compared with the LEXT and CON groups (P < .05). The change in lumbar extensor strength explained 10.6% of the variance of the regression model for the change in walking endurance (P = .024). Conclusions The use of LEXT and TOTRX produced similar modest improvements in patients’ walking endurance. Lumbar extensor strength gain compared with leg strength gain is a moderate but important contributor to walking endurance in obese older adults with chronic low back pain. Responders to resistance exercise programs (event those with only lumbar extension exercise) who make at least a 20% improvement in strength can expect better improvement in walking endurance than those who do not achieve this strength improvement. PMID:24211698
Relationship between strength qualities and short track speed skating performance in young athletes.
Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S
2016-02-01
This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reactivity, stability, and strength performance capacity in motor sports.
Baur, H; Müller, S; Hirschmüller, A; Huber, G; Mayer, F
2006-11-01
Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. To compare reaction time, stability performance capacity, and strength performance capacity of élite racing drivers with those of age-matched, physically active controls. Eight élite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at +30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. The reaction time of the racing drivers was significantly faster than the controls (p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p>0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved.
Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio
2015-05-20
Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.
Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L
2013-09-01
The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.
Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John
2016-08-01
We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.
The relationships of eccentric strength and power with dynamic balance in male footballers.
Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle
2015-01-01
Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P < 0.0002). The ability to generate power correlates moderately with dynamic balance on the non-dominant leg in male footballers.
Francis, Peter; Toomey, Clodagh; Mc Cormack, William; Lyons, Mark; Jakeman, Philip
2017-07-01
Muscle quality is defined as strength per unit muscle mass. The aim of this study was to measure the maximal voluntary isometric torque of the knee extensor and flexor muscle groups in healthy older women and to develop an index of muscle quality based on the combined knee extensor and flexor torque per unit lean tissue mass (LTM) of the upper leg. One hundred and thirty-six healthy 50- to 70-year-old women completed an initial measurement of isometric peak torque of the knee extensors and flexors (Con-Trex MJ; CMV AG, Dubendorf, Switzerland) that was repeated 7 days later. Subsequently, 131 women returned for whole- and regional-body composition analysis (iDXA ™ ; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK). Isometric peak torque demonstrated excellent within-assessment reliability for both the knee extensors and flexors (ICC range: 0·991-1·000). Test-retest reliability was lower (ICC range: 0·777-0·828) with an observed mean increase of 5% in peak torque [6·2 (17·2) N m] on the second day of assessment (P<0·001). The relative mean decrease in combined isometric peak torque (-12·2%; P = 0·001) was double that of the relative, non-significant, median difference in upper leg LTM (-5·3%; P = 0·102) between those in the 5th and 6th decade. The majority of difference in peak isometric torque came from the knee extensors (15·1 N m, P<0·001 versus 2·4 N m, P = 0·234). Isometric peak torque normalized for upper leg LTM (muscle quality) was 8% lower between decades (P = 0·029). These findings suggest strength per unit tissue may provide a better indication of age-related differences in muscle quality prior to change in LTM. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Effects of a salsa dance training on balance and strength performance in older adults.
Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W
2012-01-01
Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Granacher, Urs; Gollhofer, Albert; Kriemler, Susi
2010-01-01
Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…
Goldberg, Allon; Alexander, Neil B.
2010-01-01
Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678
Loenneke, Jeremy P; Loprinzi, Paul D; Murphy, Caoileann H; Phillips, Stuart M
2016-12-01
It has been hypothesized that for older adults evenly distributing consumption of protein at 30-40 g per meal throughout the day may result in more favorable retention of lean mass and muscular strength. Such a thesis has not, to our knowledge, been tested outside of short-term studies or acute measures of muscle protein synthesis. To examine whether the number of times an individual consumed a minimum of 30 g of protein at a meal is associated with leg lean mass and knee extensor strength. Data from the 1999-2002 NHANES were used, with 1081 adults (50-85 y) constituting the analytic sample. A "multiple pass" 24-h dietary interview format was used to collect detailed information about the participants' dietary intake. Knee extensor strength was assessed objectively using the Kin Com MP dynamometer. Leg lean mass was estimated from whole-body dual-energy X-ray absorptiometry (DXA) scans. Participants with 1 vs. 0 (β adjusted = 23.6, p = 0.002) and 2 vs. 0 (β adjusted = 51.1, p = 0.001) meals of ≥30 g protein/meal had greater strength and leg lean mass (1 vs. 0, β adjusted = 1160, p < 0.05 and 2 vs. 0, β adjusted = 2389, p < 0.05). The association of protein frequency with leg lean mass and strength plateaued at ∼45 g protein/meal for those consuming 2 vs. 0 meals above the evaluated protein/meal threshold. However, for those with only 1 meal at or above the evaluated threshold, the response plateaued at 30 g/meal. Leg lean mass mediated the relationship between protein frequency and strength, with the proportion of the total effect mediated being 64%. We found that more frequent consumption of meals containing between 30 and 45 g protein/meal produced the greatest association with leg lean mass and strength. Thus, the consumption of 1-2 daily meals with protein content from 30 to 45 g may be an important strategy for increasing and/or maintaining lean body mass and muscle strength with aging. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T
2014-10-01
To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.
Madarame, Haruhiko; Nakada, Satoshi; Ohta, Takahisa; Ishii, Naokata
2018-05-01
To test the applicability of postexercise blood flow restriction (PEBFR) in practical training programmes, we investigated whether PEBFR enhances muscle hypertrophy induced by multiple-set high-load resistance exercise (RE). Seven men completed an eight-week RE programme for knee extensor muscles. Employing a within-subject design, one leg was subjected to RE + PEBFR, whereas contralateral leg to RE only. On each exercise session, participants performed three sets of unilateral knee extension exercise at approximately 70% of their one-repetition maximum for RE leg first, and then performed three sets for RE + PEBFR leg. Immediately after completion of the third set, the proximal portion of the RE + PEBFR leg was compressed with an air-pressure cuff for 5 min at a pressure ranging from 100 to 150 mmHg. If participants could perform 10 repetitions for three sets in two consecutive exercise sessions, the work load was increased by 5% at the next exercise session. Muscle thickness and strength of knee extensor muscles were measured before and after the eight-week training period and after the subsequent eight-week detraining period. There was a main effect of time but no condition × time interaction or main effect of condition for muscle thickness and strength. Both muscle thickness and strength increased after the training period independent of the condition. This result suggests that PEBFR would not be an effective training method at least in an early phase of adaptation to high-load resistance exercise. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Wu, Brian; Lorezanza, Dan; Badash, Ido; Berger, Max; Lane, Christianne; Sum, Jonathan C; Hatch, George F; Schroeder, E Todd
2017-08-01
Rehabilitation after repair of the anterior cruciate ligament (ACL) is complicated by the loss of leg muscle mass and strength. Prior studies have shown that preoperative rehabilitation may improve muscle strength and postoperative outcomes. Testosterone supplementation may likewise counteract this muscle loss and potentially improve clinical outcomes. The purpose was to investigate the effect of perioperative testosterone administration on lean mass after ACL reconstruction in men and to examine the effects of testosterone on leg strength and clinical outcome scores. It was hypothesized that testosterone would increase lean mass and leg strength and improve clinical outcome scores relative to placebo. Randomized controlled trial; Level of evidence, 1. Male patients (N = 13) scheduled for ACL reconstruction were randomized into 2 groups: testosterone and placebo. Participants in the testosterone group received 200 mg of intramuscular testosterone weekly for 8 weeks beginning 2 weeks before surgery. Participants in the placebo group received saline following the same schedule. Both groups participated in a standard rehabilitation protocol. The primary outcome was the change in total lean body mass at 6 and 12 weeks. Secondary outcomes were extensor muscle strength, Tegner activity score, and Knee injury and Osteoarthritis Outcome Score. There was an increase in lean mass of a mean 2.7 ± 1.7 kg at 6 weeks postoperatively in the testosterone group compared with a decrease of a mean 0.1 ± 1.5 kg in the placebo group ( P = .01). Extensor muscle strength of the uninjured leg also increased more from baseline in the testosterone group (+20.8 ± 25.6 Nm) compared with the placebo group (-21.4 ± 36.7 Nm) at 12 weeks ( P = .04). There were no significant between-group differences in injured leg strength or clinical outcome scores. There were no negative side effects of testosterone noted. Perioperative testosterone supplementation increased lean mass 6 weeks after ACL reconstruction, suggesting that this treatment may help minimize the effects of muscle atrophy associated with ACL injuries and repair. This study was not powered to detect differences in strength or clinical outcome scores to assess the incidence of testosterone-related adverse events. Supraphysiological testosterone supplementation may be a useful adjunct therapy for counteracting muscle atrophy after ACL reconstruction. Further investigation is necessary to determine the safety profile and effects of perioperative testosterone administration on leg strength and clinical outcomes after surgery. NCT01595581 (ClinicalTrials.gov).
Factors predicting dynamic balance and quality of life in home-dwelling elderly women.
Karinkanta, S; Heinonen, A; Sievanen, H; Uusi-Rasi, K; Kannus, P
2005-01-01
Proper balance seems to be a critical factor in terms of fall prevention among the elderly. The purpose of this cross-sectional study was to examine factors that are associated with dynamic balance and health-related quality of life in home-dwelling elderly women. One hundred and fifty-three healthy postmenopausal women (mean age: 72 years, height: 159 cm, weight: 72 kg) were examined. General health and physical activity were assessed by a questionnaire. Quality of life was measured using a health-related quality of life questionnaire (Rand 36-Item Health Survey 1.0). Dynamic balance (agility) was tested by a figure-of-eight running test. Static balance (postural sway) was tested on an unstable platform. Maximal isometric strength of the leg extensors was measured with a leg press dynamometer. Dynamic muscle strength of lower limbs was tested by measuring ground reaction forces with a force platform during common daily activities (sit-to-stand and step-on-a-stair tests). Concerning physical activity, 33% of the subjects reported brisk exercise (walking, Nordic walking, cross-country skiing, swimming and aquatic exercises) at least twice a week, and 22% some kind of brisk activity once a week in addition to lighter physical exercise. The remaining 45% did not exercise regularly and were classified as sedentary. The correlations of step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength to dynamic balance were from -0.32 to -0.43 (the better the strength, the better the balance). In the regression analysis with backward elimination, step-on-a-stair and sit-to-stand ground reaction forces, and leg extensor strength, age, brisk physical activity, number of diseases and dynamic postural stability explained 42% of the variance in the dynamic balance. Similarly, dynamic balance (figure-of-eight running time), number of diseases and walking more than 3 km per day explained 14% of the variance in the quality of life score. Of these, figure-of-eight running time was the strongest predictor of the quality of life score, explaining 9% of its variance. This study emphasizes the concept that in home-dwelling elderly women good muscle strength in lower limbs is crucial for proper body balance and that dynamic balance is an independent predictor of a standardized quality of life estimate. The results provide important and useful information when planning meaningful contents for studies related to fall prevention and quality of life and interventions in elderly women. Copyright (c) 2005 S. Karger AG, Basel.
Relationship between hip and core strength and frontal plane alignment during a single leg squat.
Stickler, Laurie; Finley, Margaret; Gulgin, Heather
2015-02-01
The purpose of this study was to examine the relationship between frontal plane kinematics of the single leg squat and strength of the trunk and hip in females. Forty healthy females participated in this study. An isometric "make" test using a dynamometer was used to assess peak force normalized to body weight for hip abduction, hip extension, hip external rotation, and a sidelying plank test. Two-dimensional software was used to analyze the frontal plane projection angle (FPPA) and pelvic angle during a single leg squat to 60°. All 4 strength factors were significantly correlated with the FPPA, ranging from r = 0.396 to r = 0.466. During multiple regression analysis, hip abduction strength was the greatest predictor of the variation in FPPA at r(2) = 0.22, p = 0.002. Thus, hip abduction strength accounted for 22% of the variation in the FPPA during the single leg squat. The only strength factor demonstrating a significant correlation with the pelvic angle was hip extension strength (r = 0.550, p < 0.001). Clinicians should consider the role of the hip abductors, hip external rotators, hip extensors and core musculature on the impact on the FPPA during a single squat, with focus on the hip abductors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H; Strutton, Paul H
2006-01-01
The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key PointsMartial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only.The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly.The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time was due to the movement time component of the total reaction time.The training involved for the practice of the hard-style martial arts increases the strength of muscles involved in kicking. This increased strength is not seen in the trunk muscles. Furthermore, martial artists have a faster response time; the cause of which appears to be only the faster movement time.
Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H.; Strutton, Paul H.
2006-01-01
The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key Points Martial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only. The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly. The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time was due to the movement time component of the total reaction time. The training involved for the practice of the hard-style martial arts increases the strength of muscles involved in kicking. This increased strength is not seen in the trunk muscles. Furthermore, martial artists have a faster response time; the cause of which appears to be only the faster movement time. PMID:24376366
Pelzer, Thiemo; Ullrich, Boris; Pfeiffer, Mark
2017-03-01
During resistance training, volume and load can be altered either gradually (traditional periodization: TP) or with frequent changes between subsequent sessions (daily undulating periodization: DUP). We hypothesized that the periodization model employed would not impact upon training-induced adaptations when exercise variables are equated. Nineteen females (22.0 years, moderate resistance training experience of 27.9 months) performed 6 weeks of knee extensor training with 3 weekly sessions exercising one leg using TP and the contralateral leg using DUP. Training load varied between 40, 60, and 80% of one repetition maximum (1RM). Volume, range of motion, and time under tension were equated for each leg with a biofeedback software. Dynamometry, surface EMG and ultrasonography were used to determine temporal changes of knee extensor maximum voluntary strength (MVC), neural drive of the M. quadriceps femoris (QF) and vastus lateralis (VL) and rectus femoris (RF) muscle architecture. Significant (P < 0.05) gains for isometric (TP 15%, DUP 13%) and isokinetic-concentric (TP 8%, DUP 10%) MVC and knee extensor 1RM (TP 18%, DUP 24%) occurred post training. VL and RF-muscle thickness showed significant (P < 0.05) increases ranging from 12 to 20% for TP and from 13 to 19% for DUP. Furthermore, significant (P < 0.05) increases in VL-pennation angle and VL-fascicle length occurred in both legs while QF EMG remained unchanged. No significant temporal differences were found between both models, displaying similar small to large effect sizes. Periodization is no adaptation trigger during short-term resistance training with equated exercise variables.
Holviala, Jarkko H S; Sallinen, Janne M; Kraemer, William J; Alen, Markku J; Häkkinen, Keijo K T
2006-05-01
Progressive strength training can lead to substantial increases in maximal strength and mass of trained muscles, even in older women and men, but little information is available about the effects of strength training on functional capabilities and balance. Thus, the effects of 21 weeks of heavy resistance training--including lower loads performed with high movement velocities--twice a week on isometric maximal force (ISOmax) and force-time curve (force produced in 500 milliseconds, F0-500) and dynamic 1 repetition maximum (1RM) strength of the leg extensors, 10-m walking time (10WALK) and dynamic balance test (DYN.D) were investigated in 26 middle-aged (MI; 52.8 +/- 2.4 years) and 22 older women (O; 63.8 +/- 3.8 years). 1RM, ISOmax, and F0-500 increased significantly in MI by 28 +/- 10%, 20 +/- 19%, 31 +/- 34%, and in O by 27 +/- 8%, 20 +/- 16%, 18 +/- 45%, respectively. 10WALK (MI and O, p < 0.001) shortened and DYN.D improved (MI and O, p < 0.001). The present strength-training protocol led to large increases in maximal and explosive strength characteristics of leg extensors and in walking speed, as well to an improvement in the present dynamic balance test performance in both age groups. Although training-induced increase in explosive strength is an important factor for aging women, there are other factors that contribute to improvements in dynamic balance capacity. This study indicates that total body heavy resistance training, including explosive dynamic training, may be applied in rehabilitation or preventive exercise protocols in aging women to improve dynamic balance capabilities.
Häkkinen, K; Mero, A; Kauhanen, H
1989-03-01
Three prebubescent athlete groups of endurance runners (E; n = 4), sprinters (S; n = 4) and weightlifters (WL; n = 4) and one control group (C; n = 6) as well as one junior but postpubescent weightlifter group (JWL; n = 6) volunteered as subjects in order to investigate specific effects of endurance, sprint and strength training on physical performance capacity during a 1 year follow-up period. The prepubescent E-group had higher (p less than 0.05) VO2 max (66.5 +/- 2.9 ml x kg1 x min-1) already at the beginning of the study than the other three groups. The prepubescent WL-group demonstrated greater (p less than 0.05) maximal muscular strength than the E-group and the WL-group increased its strength greatly by 21.4% (p less than 0.05) during the follow-up. No significant differences were observed in physical performance capacity between the prepubescent WL- and S-groups. Both groups demonstrated a slightly (ns.) better force-time curve recorded from the leg extensor muscles than the E-group and significant (p less than 0.05) increases occurred in these two groups in dynamic explosive performance during the follow-up. The postpubescent JWL-group demonstrated much greater (p less than 0.001) muscular mass and maximal strength than the prepubescent groups. No significant changes occurred in explosive types of performances in these athletes but significant (p less than 0.05) increase took place in the maximal neural activation and strength of the leg extensor muscles during the 1 year.(ABSTRACT TRUNCATED AT 250 WORDS)
Muscular strength profile in Tunisian male national judo team.
Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos
2014-04-01
it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the "supporting leg" had higher PT than in the "attacking leg"; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder' rotators higher in the dominant side.
Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza
2010-11-01
The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.
The Effects of Blood Flow Restricted Electrostimulation on Strength and Hypertrophy.
Slysz, Joshua T; Burr, Jamie F
2018-05-22
The combined effect of neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) on muscle mass and strength has not been thoroughly investigated. To examine the effects of combined and independent BFR and a low-intensity NMES on skeletal muscle adaptation. Exploratory study. Laboratory. Twenty recreationally active subjects. Subjects had each leg randomly allocated to 1 of 4 possible intervention groups: (1) cyclic BFR alone, (2) NMES alone, (3) BFR + NMES, or (4) control. Each leg was stimulated in its respective intervention group for 32 minutes, 4 days per week for 6 weeks. Mean differences in size (in grams) and isometric strength (in kilograms), between week 0 and week 6, were calculated for each group. Leg strength increased 32 (19) kg in the BFR + NMES group, which differed from the 3 (11) kg change in the control group (P = .03). The isolated NMES and BFR groups revealed increases of 16 (28) kg and 18 (17) kg, respectively, but these did not statistically differ from the control, or one another. No alterations were statistically significant for leg size. Compared with a control that received no treatment, the novel combination of BFR and NMES led to increasing muscular strength of the knee extensors, but not muscle mass which had a large interindividual variability in response.
Motor unit number estimates correlate with strength in polio survivors.
Sorenson, Eric J; Daube, Jasper R; Windebank, Anthony J
2006-11-01
Motor unit number estimation (MUNE) has been proposed as an outcome measure in clinical trials for the motor neuron diseases. One major criticism of MUNE is that it may not represent a clinically meaningful endpoint. We prospectively studied a cohort of polio survivors over a period of 15 years with respect to MUNE and strength. We identified a significant association between thenar MUNE and arm strength, extensor digitorum brevis MUNE and leg strength, and the summated MUNE and global strength of the polio survivors. These findings confirm the clinical relevance of MUNE as an outcome measure in the motor neuron diseases and provide further validation for its use in clinical trial research.
Yasuda, Tomohiro; Fukumura, Kazuya; Nakajima, Toshiaki
2017-04-01
[Purpose] To examine if the SPPB is higher with healthy subjects than outpatients, which was higher than inpatients and if the SPPB can be validated assessment tool for strength tests and lower extremity morphological evaluation in cardiovascular disease patients. [Subjects and Methods] Twenty-four middle aged and older adults with cardiovascular disease were recruited from inpatient and outpatient facilities and assigned to separate experimental groups. Twelve age-matched healthy volunteers were assigned to a control group. SPPB test was used to assess balance and functional motilities. The test outcomes were compared with level of care (inpatient vs. outpatient), physical characteristics, strength and lower extremity morphology. [Results] Total SPPB scores, strength tests (knee extensor muscle strength), and lower extremity morphological evaluation (muscle thickness of anterior and posterior mid-thigh and posterior lower-leg) were greater in healthy subjects and outpatients groups compared with inpatients. To predict total Short Physical Performance Battery scores, the predicted knee extension and anterior mid-thigh muscle thickness were calculated. [Conclusion] The SPPB is an effective tool as the strength tests and lower extremity morphological evaluation for middle-aged and older adult cardiovascular disease patients. Notably, high knee extensor muscle strength and quadriceps femoris muscle thickness are positively associated with high SPPB scores.
Madsen, O R; Lauridsen, U B; Hartkopp, A; Sørensen, O H
1997-01-01
Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass: LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18-87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30 degrees.s-1 were assessed using an isokinetic dynamometer. The women aged 71-87 years had 35% lower KES and KFS than the women aged 18-40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r(partial) = -0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r(partial) = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = -0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+ 12%, P < 0.0001) and vice versa for the women with previous hip fractures (-36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM.
Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.
2015-01-01
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID:26664263
Effect of cold indoor environment on physical performance of older women living in the community.
Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens
2014-07-01
the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hayter, Kane J.; Schumann, Moritz; Deakin, Glen B.
2016-01-01
This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791
McQuade, Kevin James; de Oliveira, Anamaria Siriani
2011-01-01
Background The goal of this study was to determine if increasing strength in primary knee extensors and flexors would directly affect net knee joint moments during a common functional task in persons with knee osteoarthritis. Methods An exploratory single sample clinical trial with pre-post treatment measures was used to study volunteers with clinical diagnosis of mild knee OA in one knee. Subjects participated in an individually supervised training program 3 times a week for eight weeks consisting of progressive resistive exercises for knee extensors and knee flexors. Pre and post training outcome assessments included: 1. Net internal knee joint moments, 2. Electromyography of primary knee extensors and flexors, and 3. Self-report measures of knee pain and function. The distribution of lower extremity joint moments as a percent of the total support moment was also investigated. Findings Pain, symptoms, activities of daily life, quality of life, stiffness, and function scores showed significant improvement following strength training. Knee internal valgus and hip internal rotation moments showed increasing but non-statistically significant changes post-training. There were no significant differences in muscle co-contraction activation of the Quadriceps and Hamstrings. Interpretations While exercise continues to be an important element of OA management, the results of this study suggest improvements in function, pain, and other symptoms, as a result of strength training may not be causally related to specific biomechanical changes in net joint moments. PMID:21514018
Isometric muscle strength and mobility capacity in children with cerebral palsy.
Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G
2017-01-01
To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.
Clague, J E; Wu, F C; Horan, M A
1999-08-01
Muscle wasting in older men may be related to androgen deficiency. We have assessed the effect of testosterone replacement therapy on muscle function in the upper and lower limbs of older (age > 60 years) men with blood testosterone levels < 14 nmol/L. Subjects (n = 7 per group) received testosterone enanthate 200 mg i.m. or placebo every 2 weeks in a double blind study over a 12-week period and underwent muscle testing every 4 weeks. A significant increase in blood levels of testosterone and a reduction in levels of sex hormone binding globulin occurred in the treatment group. Total body mass, haemoglobin and packed cell volume also increased significantly (p < 0.05). No improvements in handgrip strength, isometric strength of knee flexors and extensors or leg extensor power were seen in either group. Wide variability in all measures of muscle function were observed in these elderly men suggesting that very large study groups would be required to determine potential treatment benefits on muscle function.
Beurskens, Rainer; Gollhofer, Albert; Muehlbauer, Thomas; Cardinale, Marco; Granacher, Urs
2015-01-01
The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. PMID:25695770
An approach to counteracting long-term microgravity-induced muscle atrophy
NASA Technical Reports Server (NTRS)
Tesch, P. A.; Buchanan, P.; Dudley, G. A.
1990-01-01
To find means of alleviating muscle atrophy induced by long-term microgravity, the effects of a 19-week-long heavy-resistance training regime (using either concentric muscle actions only or concentric and eccentric muscle actions) on the strengths of the exercised knee extensor muscle group were investigated in two groups of male human subjects performing two types of training exercises: supine leg press or/and seated knee extension. Results show that a training program in which both the concentric and the eccentric muscle action was performed led to substantially greater increases in maximal muscle strength than when only concentric exercises were performed.
Explosive Strength Imbalances in Professional Basketball Players
Schiltz, Marc; Lehance, Cédric; Maquet, Didier; Bury, Thierry; Crielaard, Jean-Michel; Croisier, Jean-Louis
2009-01-01
Context: Despite the high rate of lower limb injuries in basketball players, studies of the dominant-limb effect in elite athletes often neglect injury history. Objective: To determine lower limb explosive-strength asymmetries in professional basketball players compared with junior basketball players and control participants. Design: Cohort study. Setting: Academic medical institution. Patients or Other Participants: 15 professional basketball players, 10 junior basketball players, and 20 healthy men. Main Outcome Measure(s): We performed an isokinetic examination to evaluate the knee extensor (Ext) and flexor (Fl) concentric peak torque at 60°·s−1 and 240°·s−1 and (Fl only) eccentric peak torque at 30°·s−1 and 120°·s−1. Functional evaluation included countermovement jump, countermovement jump with arms, 10-m sprint, single-leg drop jump, and single-leg, 10-second continuous jumping. Variables were compared among groups using analysis of variance or a generalized linear mixed model for bilateral variables. Results: The 2 groups of basketball players demonstrated better isokinetic and functional performances than the control group did. No differences in functional or relative isokinetic variables were noted between professional and junior basketball players. Professional players with a history of knee injury failed to reach normal knee extensor strength at 60°·s−1. Knee Ext (60°·s−1) and Fl (eccentric 120°·s−1) torque values as well as 10-second continuous jumping scores were higher in those professional players without a history of knee injury than those with such a history. Compared with the group without a history of knee injury, the group with a history of knee injury maintained leg asymmetry ratios greater than 10% for almost all isokinetic variables and more than 15% for unilateral functional variables. Conclusions: The relative isokinetic and functional performances of professional basketball players were similar to those of junior players, with no dominant-side effect. A history of knee injury in the professional athlete, however, was reflected in bilateral isokinetic and functional asymmetries and should be considered in future studies of explosive strength. PMID:19180217
Cronin, Baker; Johnson, Samuel T.; Chang, Eunwook; Pollard, Christine D.; Norcross, Marc F.
2016-01-01
Background: The relationships between hip abductor and extensor strength and frontal plane hip and knee motions that are associated with anterior cruciate ligament injury risk are equivocal. However, previous research on these relationships has evaluated relatively low-level movement tasks and peak torque rather than a time-critical strength measure such as the rate of torque development (RTD). Hypothesis: Females with greater hip abduction and extension RTD would exhibit lesser frontal plane hip and knee motion during a single-leg jump-cutting task. Study Design: Descriptive laboratory study. Methods: Forty recreationally active females performed maximal isometric contractions and single-leg jump-cuts. From recorded torque data, hip extension and abduction RTD was calculated from torque onset to 200 ms after onset. Three-dimensional motion analysis was used to quantify frontal plane hip and knee kinematics during the movement task. For each RTD measure, jump-cut biomechanics were compared between participants in the highest (high) and lowest (low) RTD tertiles. Results: No differences in frontal plane hip and knee kinematics were identified between high and low hip abduction RTD groups. However, those in the high hip extension RTD group exhibited lower hip adduction (high, 3.8° ± 3.0°; low, 6.5° ± 3.0°; P = .019) and knee valgus (high, –2.5° ± 2.3°; low, –4.4° ± 3.2°; P = .046) displacements during the jump-cut. Conclusion: In movements such as cutting that are performed with the hip in a relatively abducted and flexed position, the ability of the gluteus medius to control hip adduction may be compromised. However, the gluteus maximus, functioning as a hip abductor, may take on a pivotal role in controlling hip adduction and knee valgus motion during these types of tasks. Clinical Relevance: Training with a specific emphasis on increasing explosive strength of the hip extensors may be a means through which to improve frontal plane hip and knee control during high-risk maneuvers such as cutting. PMID:27104207
Lilja, M; Mandić, M; Apró, W; Melin, M; Olsson, K; Rosenborg, S; Gustafsson, T; Lundberg, T R
2018-02-01
This study tested the hypothesis that high doses of anti-inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses. Healthy men and women (aged 18-35 years) were randomly assigned to daily consumption of ibuprofen (IBU; 1200 mg; n = 15) or acetylsalicylic acid (ASA; 75 mg; n = 16) for 8 weeks. During this period, subjects completed supervised knee-extensor resistance training where one leg was subjected to training with maximal volitional effort in each repetition using a flywheel ergometer (FW), while the other leg performed conventional (work-matched across groups) weight-stack training (WS). Before and after training, muscle volume (MRI) and strength were assessed, and muscle biopsies were analysed for gene and protein expression of muscle growth regulators. The increase in m. quadriceps volume was similar between FW and WS, yet was (averaged across legs) greater in ASA (7.5%) compared with IBU (3.7%, group difference 34 cm 3 ; P = 0.029). In the WS leg, muscle strength improved similarly (11-20%) across groups. In the FW leg, increases (10-23%) in muscle strength were evident in both groups yet they were generally greater (interaction effects P < 0.05) for ASA compared with IBU. While our molecular analysis revealed several training effects, the only group interaction (P < 0.0001) arose from a downregulated mRNA expression of IL-6 in IBU. Maximal over-the-counter doses of ibuprofen attenuate strength and muscle hypertrophic adaptations to 8 weeks of resistance training in young adults. Thus, young individuals using resistance training to maximize muscle growth or strength should avoid excessive intake of anti-inflammatory drugs. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A
2017-05-01
Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aue Sobol, Nanna; Andersen, Lars L.; Kiel, Peter; Løfholm, Peter; Magnusson, S. Peter; Krogsgaard, Michael R.
2014-01-01
Objective. Persistent weakness is a common problem after anterior cruciate ligament- (ACL-) reconstruction. This study investigated the effects of high-intensity (HRT) versus low-intensity (LRT) resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. Methods. 31 males and 19 females were randomized to HRT (n = 24) or LRT (n = 26) from week 8–20 after ACL-reconstruction. Leg extensor power, joint laxity, and self-reported knee function were measured before and 7, 14, and 20 weeks after surgery. Hop tests were assessed before and after 20 weeks. Results. Power in the injured leg was 90% (95% CI 86–94%) of the noninjured leg, decreasing to 64% (95% CI 60–69%) 7 weeks after surgery. During the resistance training phase there was a significant group by time interaction for power (P = 0.020). Power was regained more with HRT compared to LRT at week 14 (84% versus 73% of noninjured leg, resp.; P = 0.027) and at week 20 (98% versus 83% of noninjured leg, resp.; P = 0.006) without adverse effects on joint laxity. No other between-group differences were found. Conclusion. High-intensity resistance training during rehabilitation after ACL-reconstruction can improve muscle power without adverse effects on joint laxity. PMID:24877078
Schmitz, Randy J; Shultz, Sandra J
2010-01-01
Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Cross-sectional study. Laboratory environment. Recreationally active, college-aged students (41 women: age = 22.1 ± 2.9 years, height = 1.63 ± 0.07 m, mass = 59.3 ± 8.0 kg; 40 men: age = 22.4 ± 2.8 years, height = 1.77 ± 0.1 m, mass = 80.9 ± 14.1 kg). Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Lower extremity joint energetics (J × N(-1) × m(-1)) and torsional joint stiffnesses (Nm × N(-1) × m(-1) × degrees(-1)) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R(2) = 0.11, P = .04), and greater knee flexor strength predicted greater hip torsional stiffness (R(2) = 0.12, P = .03). Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences.
Muscular strength profile in Tunisian male national judo team
Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos
2014-01-01
Summary Background: it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. Methods: the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. Results: MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the “supporting leg” had higher PT than in the “attacking leg”; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). Conclusion: the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder’ rotators higher in the dominant side. PMID:25332926
Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias
2013-01-01
To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.
Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running.
Teng, Hsiang-Ling; Powers, Christopher M
2016-07-01
Diminished hip-muscle performance has been proposed to contribute to various knee injuries. To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Descriptive laboratory study. Musculoskeletal biomechanical laboratory. A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = -0.39, P = .01). All the correlations remained after adjusting for sex. Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee.
Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running
Teng, Hsiang-Ling; Powers, Christopher M.
2016-01-01
Context: Diminished hip-muscle performance has been proposed to contribute to various knee injuries. Objective: To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Design: Descriptive laboratory study. Setting: Musculoskeletal biomechanical laboratory. Patients or Other Participants: A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Main Outcome Measure(s): Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Results: Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = −0.39, P = .01). All the correlations remained after adjusting for sex. Conclusions: Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee. PMID:27513169
Goossens, L; Witvrouw, E; Vanden Bossche, L; De Clercq, D
2015-01-01
Hamstring injuries have not been under research in physical education teacher education (PETE) students so far. Within the frame of the development of an injury prevention program, for this study we conducted an analysis of modifiable risk factors for hamstring injuries in PETE students. Hamstring injuries of 102 freshmen bachelor PETE students were registered prospectively during one academic year. Eighty-one students completed maximum muscle strength tests of hip extensors, hamstrings, quadriceps (isometric) and hamstrings (eccentric) at the start of the academic year. Sixty-nine of the latter completed a single leg hop for distance (SLHD). Risk factors for hamstring injuries were statistically detected using logistic regression. Sixteen hamstring injuries (0.16 injuries/student/academic year; 0.46 injuries/1000 h) occurred to 10 participants. Eight cases were included in the risk factor analysis. Lower eccentric hamstring strength (odds ratio (ODD) = 0.977; p = 0.043), higher isometric/eccentric hamstring strength ratio (ODD = 970.500; p = 0.019) and lower score on the SLHD (ODD = 0.884; p = 0.005) were significant risk factors for hamstring injury. A combination of eccentric hamstring strength test and SLHD could give a good risk analysis of hamstring injuries in PETE students. This might offer great perspectives for easily applicable screening in a clinical setting.
Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women
Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop
2014-01-01
[Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122
Yang, Eun Joo; Lim, Soo; Lim, Jae-Young; Kim, Ki Woong; Jang, Hak Chul; Paik, Nam-Jong
2012-03-01
The objective of the study was to investigate the association between metabolic syndrome (MS) and muscle strength in community-dwelling older men and women in Korea. Korean men and women 65 years and older living in a single, typical South Korean city (n = 647) were enrolled in the Korean Longitudinal Study on Health and Aging study. The diagnosis of MS was evaluated according to the definition of the National Cholesterol Education Program Adult Treatment Panel III. Isokinetic muscle strength of the knee extensors, as determined by peak torque per body weight (newton meter per kilogram) and hand-grip strength per body weight (newton per kilogram), was measured. Participants without MS had greater leg muscle strength and grip strength per weight. The effect of MS on muscle strength was more prominent in men than in women in our study population. Only men showed a significant interaction between MS and age for muscle strength (P = .014), and the effect was greater in men aged 65 to 74 years compared with those older than 75 years (119.2 ± 31.2 vs 134.5 ± 24.3 N m/kg). Participants with MS had weaker knee extensor strength after controlling the covariates (β = -90.80, P = .003), and the interaction term (age × MS × male sex) was significant (β = 1.00, P = .017). Metabolic syndrome is associated with muscle weakness, and this relationship is particularly pronounced in men. Age can modify the impact of MS on muscle strength. Men aged 65 to 74 years with MS need a thorough assessment of muscle strength to prevent disability. Copyright © 2012 Elsevier Inc. All rights reserved.
Jones, Julian V; Pyne, David B; Haff, G Greg; Newton, Robert U
2018-06-01
Jones, JV, Pyne, DB, Haff, GG, and Newton, RU. Comparison between elite and subelite swimmers on dry land and tumble turn leg extensor force-time characteristics. J Strength Cond Res 32(6): 1762-1769, 2018-Elite swimmers demonstrate faster swimming turn times that are potentially a result of having better strength-power characteristics than subelite swimmers. We quantified differences between dry-land and swimming turn force-time characteristics in elite swimmers and subelite swimmers. Subelite (11 males: 17.4 ± 0.6 years; 10 females: 17.1 ± 0.6 years) and elite swimmers (15 male: 23.2 ± 2.3 years; 7 female: 21.6 ± 2.5 years) were tested in a cross-sectional design. All swimmers performed a body weight and loaded (20 kg females, 30 kg males) squat jump (SJ) on a portable force platform. On the same day, all swimmers completed swimming turn analyses using a force platform fixed within the pool wall. The magnitude of difference between groups was estimated using a standardized mean difference (effect size statistic). Elite male and female swimmers had superior swimming turn and dry-land force-time characteristics to subelite swimmers in all tests. The standardized mean differences between groups ranged from small to very large. The largest differences were SJ peak velocity unloaded (3.07 ± 1.0 m·s males, 3.49 ± 2.29 m·s females; standardized mean difference ± 90% confidence limits) and SJ peak power unloaded (2.59 ± 0.79 w male, 2.80 ± 1.64 w female) with elite male and female swimmers having a ∼25-50% higher performance than the subelites in both characteristics. Elite swimmers exhibit superior strength and power characteristics for the swimming turn compared with younger and less experienced swimmers. A well-planned and executed strength and conditioning program is needed for emerging swimmers to develop these qualities, as they transition to senior levels.
Reconceptualizing Balance: Attributes associated with balance performance
Thomas, Julia C.; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K.; Jette, Alan M.; Bean, Jonathan F.
2014-01-01
Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the The Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking ½ of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (± 7.0) years, an average of 4.1 (± 2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (± 2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model. PMID:24952097
Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi
2008-08-01
Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.
NASA Technical Reports Server (NTRS)
Duvoisin, Marc R.; Convertino, Victor A; Buchanan, Paul; Gollinick, Philip D.; Dudley, Gary A.
1989-01-01
During 30 days (d) of bedrest, the practicality of using Elec- troMyoStimulation (EMS) as a deterrent to atrophy and strength loss of lower limb musculature was examined. An EMS system was developed that provided variable but quantifiable levels of EMS, and measured torque. The dominant log of three male subjects was stimulated twice daily in a 3-d on/1-d off cycle during bedrest. The non-dominant leg of each subject acted as a control. A stimulator, using a 0.3 ms monophasic 60 Hz pulse waveform, activated muscle tissue for 4 s. The output waveform from the stimulator was sequenced to the Knee Extensors (KE), Knee Flex- ors (KF), Ankle Extensors (AE), and Ankle Flexors (AF), and caused three isometric contractions of each muscle group per minute. Subject tolerance determined EMS Intensity. Each muscle group received four 5-min bouts of EMS each session with a 10 -min rest between bouts. EMS and torque levels for each muscle action were recorded directly an a computer. Overall average EMS Intensity was 197, 197, 195, and 188 mA for the KE, KF, AF, and AE, respectively. Overall average torque development for these muscle groups was 70, 16, 12, and 27 Nm, respectively. EMS intensity doubled during the study, and average torque increased 2.5 times. Average maximum torque throughout a session reached 54% of maximal voluntary for the KE and 29% for the KF. Reductions in leg volume, muscle compartment size, cross-sectional area of slow and fast-twitch fibers, strength, and aerobic enzyme activities, and increased log compliance were attenuated in the legs which received EMS during bedrest. These results indicate that similar EMS levels induce different torques among different muscle groups and that repeated exposure to EMS increases tolerance and torque development. Longer orien- tation periods, therefore, may enhance its effectiveness. Our preliminary data suggest that the efficacy of EMS as an effective countermeasure for muscle atrophy and strength loss during long duration space travel warrants further investigation.
Health-related quality of life and fitness of the caregiver of patient with dementia.
Gusi, Narcís; Prieto, Josue; Madruga, Miguel; Garcia, Jose M; Gonzalez-Guerrero, Jose L
2009-06-01
: The aim was to assess the health-related quality of life and physical fitness of women who care for a relative with dementia compared with an age-matched group of noncaregiver women, for the purpose of designing adequate physical exercise programs. : A cross-sectional study was conducted in Extremadura, Spain, with 54 caregivers and 56 noncaregivers who were assessed by the SF-36 questionnaire and a battery of fitness tests. : The reported mental health (mental, emotional role, and social categories of SF-36) of the carers was 22% lower than that of the noncaregivers, but both groups were similar in physical health. On the whole, the reported general health of the carers was 11% lower than that of the noncarers. In fitness outcomes, caregivers had better scores in body composition, bimanual strength, and leg strength but lower scores in the endurance capacity of the trunk extensor muscles. : Relative to the standard exercise programs of the general population, exercise programs for female caregivers should be more focused on preventing back pain by developing the endurance strength of the trunk extensors. A supervised exercise program including the interaction between caregiver and health professional could also help to minimize the psychosocial components that affect the health-related quality of life.
Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y
2017-01-01
Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P < 0.001) rotations, resulting in a smaller knee flexion range of motion (P < 0.001). At maximum squat depth, ankle plantar flexor (P < 0.001) and knee extensor (P < 0.001) NJM were higher in unrestricted squats. Hip extensor NJM (P = 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (P > 0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.
Early reduction in toe flexor strength is associated with physical activity in elderly men.
Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi
2016-05-01
[Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18-23 years) and elderly (n=60, 65-88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men's mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men.
Musculoskeletal profile of middle-aged Ving Tsun Chinese martial art practitioners
Fong, Shirley S.M.; Chan, Jessie S.M.; Bae, Young-Hyeon; Yam, Timothy T.T.; Chung, Louisa M.Y.; Ma, Ada W.W.; Kuisma, Raija
2017-01-01
Abstract This cross-sectional exploratory study aimed to quantify and compare the axial and appendicular bone mineral density (BMD), muscle mass, and muscle strength of middle-aged practitioners of Ving Tsun (VT; a hard-style Chinese martial art) with those of nonpractitioners. Eighteen VT practitioners (mean age ± standard deviation = 51.8 ± 17.7 years; 12 men and six women) and 36 active controls (mean age ± standard deviation = 58.7 ± 11.0 years; 18 men and 18 women) participated in the study. All participants underwent a 1-day battery of musculoskeletal examinations. The BMD of the total radius, total hip, femoral neck, and lumbar spine was measured using dual-energy X-ray absorptiometry, as was the lean mass of the arm, leg, and trunk. Muscle strength of the upper and lower limbs was assessed using a Jamar dynamometer and an isokinetic dynamometer at 60°/second, respectively. VT-trained participants had a 11.5% higher total radius BMD (P = 0.023), a 17.8% higher leg lean mass (P = 0.014), a 56.4% higher isokinetic body weight-adjusted peak torque of the knee extensors (P < 0.001), a 60.8% higher isokinetic body weight-adjusted peak torque of knee flexors (P < 0.001), and a 31.4% shorter time to reach peak torque in the knee flexors (P = 0.001) than the active controls. No significant differences were found in any of the other musculoskeletal outcomes between the 2 groups (P > 0.05). Middle-aged VT practitioners displayed a higher total radius BMD and leg lean mass and better knee extensor and flexor muscular performances than their healthy active counterparts. Healthcare professionals may consider using this alternative method of training to improve the musculoskeletal health of middle-aged adults. PMID:28121945
Fong, Shirley S M; Chan, Jessie S M; Bae, Young-Hyeon; Yam, Timothy T T; Chung, Louisa M Y; Ma, Ada W W; Kuisma, Raija
2017-01-01
This cross-sectional exploratory study aimed to quantify and compare the axial and appendicular bone mineral density (BMD), muscle mass, and muscle strength of middle-aged practitioners of Ving Tsun (VT; a hard-style Chinese martial art) with those of nonpractitioners.Eighteen VT practitioners (mean age ± standard deviation = 51.8 ± 17.7 years; 12 men and six women) and 36 active controls (mean age ± standard deviation = 58.7 ± 11.0 years; 18 men and 18 women) participated in the study. All participants underwent a 1-day battery of musculoskeletal examinations. The BMD of the total radius, total hip, femoral neck, and lumbar spine was measured using dual-energy X-ray absorptiometry, as was the lean mass of the arm, leg, and trunk. Muscle strength of the upper and lower limbs was assessed using a Jamar dynamometer and an isokinetic dynamometer at 60°/second, respectively.VT-trained participants had a 11.5% higher total radius BMD (P = 0.023), a 17.8% higher leg lean mass (P = 0.014), a 56.4% higher isokinetic body weight-adjusted peak torque of the knee extensors (P < 0.001), a 60.8% higher isokinetic body weight-adjusted peak torque of knee flexors (P < 0.001), and a 31.4% shorter time to reach peak torque in the knee flexors (P = 0.001) than the active controls. No significant differences were found in any of the other musculoskeletal outcomes between the 2 groups (P > 0.05).Middle-aged VT practitioners displayed a higher total radius BMD and leg lean mass and better knee extensor and flexor muscular performances than their healthy active counterparts. Healthcare professionals may consider using this alternative method of training to improve the musculoskeletal health of middle-aged adults.
Effect of resistance exercise training combined with relatively low vascular occlusion.
Sumide, Takahiro; Sakuraba, Keishoku; Sawaki, Keisuke; Ohmura, Hirotoshi; Tamura, Yoshifumi
2009-01-01
Previous studies have demonstrated that a low-intensity resistance exercise, combined with vascular occlusion, results in a marked increase in muscular size and strength. We investigated the optimal pressure for reduction of muscle blood flow with resistance exercise to increase the muscular strength and endurance. Twenty-one subjects were randomly divided into four groups by the different application of vascular occlusion pressure at the proximal of thigh: without any pressure (0-pressure group), with a pressure of 50mmHg (50-pressure group), with a pressure of 150mmHg (150-pressure group), and with a pressure of 250mmHg (250-pressure group). The isokinetic muscle strength at angular velocities of 60 and 180 degrees /s, total muscle work, and the cross-sectional knee extensor muscle area were assessed before and after exercise. Exercise was performed three times a week over an 8-week period at an intensity of approximately 20% of one-repetition maximum for straight leg raising and hip joint adduction and maximum force for abduction training. A significant increase in strength at 180 degrees /s was noted after exercise in all subjects who exercised under vascular occlusion. Total muscle work increased significantly in the 50- and 150-pressure groups (P<0.05, P<0.01, respectively). There was no significant increase in cross-sectional knee extensor muscle area in any groups. In conclusion, resistance exercise with relatively low vascular occlusion pressure is potentially useful to increase muscle strength and endurance without discomfort.
Schmitz, Randy J.; Shultz, Sandra J.
2010-01-01
Abstract Context: Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. Objective: To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Design: Cross-sectional study. Setting: Laboratory environment. Patients or Other Participants: Recreationally active, college-aged students (41 women: age = 22.1 ± 2.9 years, height = 1.63 ± 0.07 m, mass = 59.3 ± 8.0 kg; 40 men: age = 22.4 ± 2.8 years, height = 1.77 ± 0.1 m, mass = 80.9 ± 14.1 kg). Intervention(s): Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Main Outcome Measure(s): Lower extremity joint energetics (J × N−1 × m−1) and torsional joint stiffnesses (Nm × N−1 × m−1 × degrees−1) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Results: Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R2 = 0.11, P = .04), and greater knee flexor strength predicted greater hip torsional stiffness (R2 = 0.12, P = .03). Conclusions: Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences. PMID:20831388
Validity and test–retest reliability of a novel simple back extensor muscle strength test
Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth
2017-01-01
Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442
Maurelli, Olivier; Bernard, Pierre L; Dubois, Romain; Ahmaidi, Said; Prioux, Jacques
2018-05-25
Maurelli, O, Bernard, PL, Dubois, R, Ahmaidi, S, and Prioux, J. Effects of the competitive season on the isokinetic muscle parameters changes in world-class handball players. J Strength Cond Res XX(X): 000-000, 2018-The aim of this study is to investigate the effects of the competitive season on isokinetic muscular parameters of the lower limbs in world-class handball players. Nineteen, male, world-class, handball players (age, 26.6 ± 5.4 years) participated in the study. Two bilateral isokinetic tests of knee joint flexors (H; hamstring) and extensors (Q; quadriceps) were performed in the beginning and end of the competitive season to determine the peak torque (PT), the mean power, and agonist-antagonist ratio, dominant-nondominant ratio (DNDR), and combined ratio. The results showed a significant decrease in PT values at low angular velocity (60°·s) in concentric mode for Q on dominant leg (p < 0.001). The other PT values for dominant and nondominant legs at low and high angular velocities (240°·s) and in eccentric mode (30°·s) were not significantly different for Q and H. For mean power, values did not change at 60°·s. At 240°·s, we found a significant decrease in H for dominant leg (p < 0.001) but not for nondominant leg. In eccentric mode, the results showed a significant increase on both legs (p < 0.001). For the ratios, values significantly decreased for DNDR at 60°·s for Q (p < 0.03) and for agonist/antagonist ratio at 240°·s for the dominant leg (p < 0.01). The present results highlight the importance of integrating regular strength training sessions during the competitive season in world-class handball players. Accordingly, this study should help trainers to modify their planning to maximize strength and power qualities of the lower limbs of their players in addition to avoiding injuries.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.
Aye, Thanda; Thein, Soe; Hlaing, Thaingi
2016-01-01
[Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561
Hsu, Chao-Jung; George, Steven Z; Chmielewski, Terese L
2016-12-01
Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Descriptive laboratory study. A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD 0-200ms and RTD 0-peak torque ). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD 0-200ms , and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD 0-200ms , and the knee extension moment was positively associated with RTD 0-200ms . At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD 0-200ms , and RTD 0-peak torque . Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance.
Hsu, Chao-Jung; George, Steven Z.; Chmielewski, Terese L.
2016-01-01
Background: Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. Purpose: To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Study Design: Descriptive laboratory study. Methods: A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD0-200ms and RTD0–peak torque). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Results: Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD0-200ms, and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD0-200ms, and the knee extension moment was positively associated with RTD0-200ms. At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD0-200ms, and RTD0–peak torque. Conclusion: Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Clinical Relevance: Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance. PMID:28210647
Campos de Oliveira, Laís; Gonçalves de Oliveira, Raphael; Pires-Oliveira, Deise Aparecida de Almeida
2015-01-01
[Purpose] The aim of the present study was to determine the effects of Pilates on lower leg strength, postural balance and the health-related quality of life (HRQoL) of older adults. [Subjects and Methods] Thirty-two older adults were randomly allocated either to the experimental group (EG, n = 16; mean age, 63.62 ± 1.02 years), which performed two sessions of Pilates per week for 12 weeks, or to the control group (CG, n = 16; mean age, 64.21 ± 0.80), which performed two sessions of static stretching per week for 12 weeks. The following evaluations were performed before and after the interventions: isokinetic torque of knee extensors and flexors at 300°/s, the Timed Up and Go (TUG) test, the Berg Balance Scale, and the Health Survey assessment (SF-36). [Results] In the intra-group analysis, the EG demonstrated significant improvement in all variables. In the inter-group analysis, the EG demonstrated significant improvement in most variables. [Conclusion] Pilates exercises led to significant improvement in isokinetic torque of the knee extensors and flexors, postural balance and aspects of the health-related quality of life of older adults. PMID:25931749
Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T
2003-12-01
To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.
Suzuki, Hidetomo; Omori, Go; Uematsu, Daisuke; Nishino, Katsutoshi; Endo, Naoto
2015-10-01
A smaller knee flexion angle and larger knee valgus angle during weight-bearing activities have been identified as risk factors for non-contact anterior cruciate ligament (ACL) injuries. To prevent such injuries, attention has been focused on the role of hip strength in knee motion control. However, gender differences in the relationship between hip strength and knee kinematics during weight-bearing activities in the frontal plane have not been evaluated. The purpose of this study was to determine the influence of hip strength on knee kinematics in both genders during a single-legged landing task in the frontal plane. The hypotheses were that 1) subjects with a greater hip strength would demonstrate larger knee flexion and smaller knee valgus and internal rotation angles and 2) no gender differences would exist during the single-legged landing task. Forty-three Japanese collegiate basketball players (20 males, 23 females) participated in this study. Three-dimensional motion analysis was used to evaluate knee kinematics during a single-legged medial drop landing (SML). A hand-held dynamometer was used to assess hip extensor (HEXT), abductor (HAB), and external rotator (in two positions: seated position [SHER] and prone [PHER]) isometric strength. Spearman rank correlation coefficients (ρ) were determined for correlations between hip strength and knee kinematics at initial contact (IC) and peak (PK) during SML (p < 0.05). Negative correlations were observed between the knee valgus angle at IC and HEXT (ρ = -0.48, p = 0.02), HAB (ρ = -0.46, p = 0.03) and PHER (ρ = -0.44, p = 0.04) strength in females. In addition, a significant positive correlation was observed between the knee flexion angle at PK and HEXT strength (ρ = 0.61, p = 0.004) in males. Significant correlations between hip strength and knee kinematics during SML were observed in both genders. Hip strength may, therefore, play an important role in knee motion control during sports activities, suggesting that increased hip strength may help to prevent non-contact ACL injuries in athletes of both genders. Moreover, gender-specific programs may be needed to control abnormal knee motion, as the influence of hip strength on knee kinematics may differ based on gender. 3.
Early reduction in toe flexor strength is associated with physical activity in elderly men
Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi
2016-01-01
[Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18–23 years) and elderly (n=60, 65–88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men’s mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men. PMID:27313353
Relationship between physical function and biomechanical gait patterns in boys with haemophilia.
Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I
2016-11-01
The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.
2013-01-01
Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039
Ballistic movements of jumping legs implemented as variable components of cricket behaviour.
Hustert, R; Baldus, M
2010-12-01
Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae muscles when they support the extended hindlegs against gravity forces when the body hangs over. All ballistic movements of cricket knees are elicited by a basic but variable motor pattern: knee flexions by co-contraction of the antagonists prepare catapult extensions with speeds and forces as required in the different behaviours.
Sarraf, Khaled M; Atherton, Duncan D; Jayaweera, Asantha R; Gibbons, Charles E; Jones, Isabel
2013-04-01
We report on a 79-year-old woman who underwent salvage of the knee and lower leg using a Whichita Fusion Nail for knee arthrodesis, combined with a medial gastrocnemius muscle flap for a 3% contact burn that resulted in loss of the extensor mechanism. This provided an alternative to above-knee amputation when extensor mechanism reconstruction was not feasible.
Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija
2015-01-01
Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Watson, J T; Ritzmann, R E
1998-01-01
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.
Friel, Karen; Domholdt, Elizabeth; Smith, Douglas G
2005-01-01
For this study, we compared the physical impairments and functional deficits of individuals with lower-limb amputation (LLA) for those with and without low back pain (LBP). Nineteen participants with LLA were placed into two groups based on visual analog scores of LBP. We assessed functional limitations, iliopsoas length, hamstring length, abdominal strength, back extensor strength, and back extensor endurance. Data analysis included correlations and t-tests. We found significant correlations between pain score and functional limitations, iliopsoas length, and back extensor endurance. We also detected significant differences in functional limitations, iliopsoas length, back extensor strength, and back extensor endurance between those with and without LBP. We saw significant differences in back extensor strength and back extensor endurance between those with transtibial and transfemoral amputations. Differences exist in physical measures of individuals with LLA with and without LBP. Clinicians should consider these impairments in individuals with amputation who experience LBP. Because of the participants' characteristics, these findings may be applicable to veterans with LLA.
Harikesavan, Karvannan; Chakravarty, Raj D; Maiya, Arun G; Hegde, Sanjay P; Y Shivanna, Shivakumar
2017-01-01
Total knee replacement (TKR) is the commonest surgical procedure for patients with severe pain and impaired physical function following end stage knee osteoarthritis. The hip abductors are well renowned in stabilization of the trunk and hip during walking, maintaining the lower limb position, and transferring the forces from the lower limbs to the pelvis. To assess the efficacy of hip abductor strengthening exercise on functional outcome using performance based outcome measures following total knee replacement. An observer blinded randomized pilot trial design was conducted at Manipal hospital, Bangalore, India. Participants designated for elective TKR were randomized to experimental group hip abductor strengthening along with standard rehabilitation (n=10) or control group standard rehabilitation alone (n=10). Participants followed for one year to assess physical function using performance based outcomes, such as timed up and go test, single leg stance test, six minute walk test, knee extensor strength and hip abductor strength. Eighteen participants with a mean age of 63.1 ± 5.5 years (8 Males and 10 Females) completed the study. Improvement in hip abduction strength, single leg stand test was superior in hip abductor strengthening group at 3 months and 1 year when compared to standard rehabilitation alone. Hip abductor strengthening showed superior improvements in single leg stance test and six minute walk test. Hip abductor strengthening exercises has the potential to improve physical function following total knee replacement.
Harikesavan, Karvannan; Chakravarty, Raj D.; Maiya, Arun G; Hegde, Sanjay P.; Y. Shivanna, Shivakumar
2017-01-01
Background: Total knee replacement (TKR) is the commonest surgical procedure for patients with severe pain and impaired physical function following end stage knee osteoarthritis. The hip abductors are well renowned in stabilization of the trunk and hip during walking, maintaining the lower limb position, and transferring the forces from the lower limbs to the pelvis. Objective: To assess the efficacy of hip abductor strengthening exercise on functional outcome using performance based outcome measures following total knee replacement. Methods: An observer blinded randomized pilot trial design was conducted at Manipal hospital, Bangalore, India. Participants designated for elective TKR were randomized to experimental group hip abductor strengthening along with standard rehabilitation (n=10) or control group standard rehabilitation alone (n=10). Participants followed for one year to assess physical function using performance based outcomes, such as timed up and go test, single leg stance test, six minute walk test, knee extensor strength and hip abductor strength. Result: Eighteen participants with a mean age of 63.1 ± 5.5 years (8 Males and 10 Females) completed the study. Improvement in hip abduction strength, single leg stand test was superior in hip abductor strengthening group at 3 months and 1 year when compared to standard rehabilitation alone. Conclusion: Hip abductor strengthening showed superior improvements in single leg stance test and six minute walk test. Hip abductor strengthening exercises has the potential to improve physical function following total knee replacement. PMID:28567148
Strength testing and training of rowers: a review.
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2011-05-01
In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50-70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r = -0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2 ± 0.22 to 1) appeared useful in the pathological assessment of low back pain or rib injury history associated with rowing. While strength partially explained variances in 2000-m ergometer performance, concurrent endurance training may be counterproductive to strength development over the shorter term (i.e. <12 weeks). Therefore, prioritization of strength training within the sequence of training units should be considered, particularly over the non-competition phase (e.g. 2-6 sets × 4-12 repetitions, three sessions a week). Maximal strength was sustained when infrequent (e.g. one or two sessions a week) but intense (e.g. 73-79% of maximum) strength training units were scheduled; however, it was unclear whether training adaptations should emphasize maximal strength, endurance or power in order to enhance performance during the competition phase. Additionally, specific on-water strength training practices such as towing ropes had not been reported. Further research should examine the on-water benefits associated with various strength training protocols, in the context of the training phase, weight division, experience and level of rower, if limitations to the reliability and precision of performance data (e.g. 2000-m time or rank) can be controlled. In conclusion, while positive ergometer time-trial benefits of clinical and practical significance were reported with strength training, a lack of statistical significance was noted, primarily due to an absence of quality long-term controlled experimental research designs.
Core stability training on lower limb balance strength.
Dello Iacono, Antonio; Padulo, Johnny; Ayalon, Moshe
2016-01-01
This study aimed to assess the effects of core stability training on lower limbs' muscular asymmetries and imbalances in team sport. Twenty footballers were divided into two groups, either core stability or control group. Before each daily practice, core stability group (n = 10) performed a core stability training programme, while control group (n = 10) did a standard warm-up. The effects of the core stability training programme were assessed by performing isokinetic tests and single-leg countermovement jumps. Significant improvement was found for knee extensors peak torque at 3.14 rad · s(-1) (14%; P < 0.05), knee flexors peak torque at 1.05 and 3.14 rad · s(-1) (19% and 22% with P < 0.01 and P < 0.01, respectively) and peak torque flexors/extensors ratios at 1.05 and 3.14 rad · s(-1) (7.7% and 8.5% with P < 0.05 and P < 0.05, respectively) only in the core stability group. The jump tests showed a significant reduction in the strength asymmetries in core stability group (-71.4%; P = 0.02) while a concurrent increase was seen in the control group (33.3%; P < 0.05). This study provides practical evidence in combining core exercises for optimal lower limbs strength balance development in young soccer players.
Stock, Matt S; Olinghouse, Kendra D; Mota, Jacob A; Drusch, Alexander S; Thompson, Brennan J
2016-09-01
The time delay between the onset of a muscle's electrical activity and force is believed to have important functional implications, and has been shown to decrease following resistance training in males. The purpose of this investigation was to examine changes in the voluntary electromechanical delay (EMD) for the leg extensors and flexors following a short-term resistance training intervention in females. Pretest/posttest control group experiment. Twenty-two previously untrained females (mean±SD age=21±2 years; mass=65.4±13.3kg) were randomly assigned to training (n=10) and control (n=12) groups. The training group performed barbell back squats and deadlifts twice per week for four weeks. EMD for the vastus lateralis (extensors) and biceps femoris (flexors) was examined during maximal voluntary contractions at pre- and posttesting. Data were examined using analyses of covariance (ANCOVAs) with the pretest and posttest scores serving as the covariate and dependent variable, respectively, and by evaluating the number of participants that exceeded the minimal difference statistic. For the leg extensors, the adjusted EMD posttest mean for the training group was significantly lower than that for the control group (74.3 vs. 91.8ms; p=0.015; ή(2)=0.275), and five training participants displayed decreases that exceeded the minimal difference. The ANCOVA for the leg flexors was not significant (adjusted means=98.0 vs. 90.0ms; p=0.487; ή(2)=.026). Four weeks of multi-joint resistance training resulted in decreased EMD for the leg extensors, but not the flexors. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L
2015-02-15
During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.
Vikmoen, Olav; Raastad, Truls; Seynnes, Olivier; Bergstrøm, Kristoffer; Ellefsen, Stian; Rønnestad, Bent R.
2016-01-01
Purpose The purpose of the current study was to investigate the effects of adding strength training to normal endurance training on running performance and running economy in well-trained female athletes. We hypothesized that the added strength training would improve performance and running economy through altered stiffness of the muscle-tendon complex of leg extensors. Methods Nineteen female endurance athletes [maximal oxygen consumption (VO2max): 53±3 ml∙kg-1∙min-1, 5.8 h weekly endurance training] were randomly assigned to either normal endurance training (E, n = 8) or normal endurance training combined with strength training (E+S, n = 11). The strength training consisted of four leg exercises [3 x 4–10 repetition maximum (RM)], twice a week for 11 weeks. Muscle strength, 40 min all-out running distance, running performance determinants and patellar tendon stiffness were measured before and after the intervention. Results E+S increased 1RM in leg exercises (40 ± 15%) and maximal jumping height in counter movement jump (6 ± 6%) and squat jump (9 ± 7%, p < 0.05). This was accompanied by increased muscle fiber cross sectional area of both fiber type I (13 ± 7%) and fiber type II (31 ± 20%) in m. vastus lateralis (p < 0.05), with no change in capillary density in m. vastus lateralis or the stiffness of the patellar tendon. Neither E+S nor E changed running economy, fractional utilization of VO2max or VO2max. There were also no change in running distance during a 40 min all-out running test in neither of the groups. Conclusion Adding heavy strength training to endurance training did not affect 40 min all-out running performance or running economy compared to endurance training only. PMID:26953893
Isokinetic Leg Strength and Power in Elite Handball Players
González-Ravé, José M.; Juárez, Daniel; Rubio-Arias, Jacobo A.; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier
2014-01-01
Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players. PMID:25114749
Isokinetic leg strength and power in elite handball players.
González-Ravé, José M; Juárez, Daniel; Rubio-Arias, Jacobo A; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier
2014-06-28
Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players.
Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A
2011-12-01
Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.
Eto, Maki; Miyauchi, Shinji
2018-05-09
Falls may cause serious health conditions among older population. Fall-related physical factors are thought to be associated with occlusal conditions. However, few studies examined the relationship between occlusal force and falls. To identify the association between occlusal force and falls among community-dwelling elderly individuals in Japan, public health nurses conducted a cross-sectional descriptive study. We performed extensive physical assessments of five items: maximum occlusal force, handgrip strength, maximal knee extensor strength, one-leg standing time with eyes open and body sway. We also conducted a questionnaire survey concerning the participants' demographic characteristics, health status and fall experience during the past year. Mean scores and standard deviations were calculated for age and the total points of the index of activities of daily living. Associations were examined using Mann-Whitney tests and logistic regression. We examined 159 community-dwelling people aged ≥65 years, who were independent and active, including 38 participants (24.5%) with experience of falls in the past year. Maximum occlusal force had significant correlation with handgrip strength, maximal knee extensor strength, and one-leg standing time and body sway (P < .05, respectively). We found weak associations between participants with and without a history of falls in terms of the five physical measurements. Logistic regression analysis showed that fall experience was significantly associated with maximum occlusal force (P = 0.004). This is the first study, led by public health nursing researchers, to examine the associations between maximum occlusal force and falls among community-dwelling elderly in Japan. The results showed that maximum occlusal force was significantly related to the other four extensive physical assessments, and might also suggest that maximum occlusal force assessment by public health nurses could contribute to more sophisticated and precise prediction of fall risks among the community-dwelling elderly. The latest occlusal force measurement device is non-invasive and easy to use. Public health nurses can introduce it at periodical community health checkup assembly events, which might contribute to raising awareness among community-dwelling elderly individuals and public health nurses about fall prevention and prediction.
Watson, Emma L; Gould, Douglas W; Wilkinson, Thomas J; Xenophontos, Soteris; Clarke, Amy L; Vogt, Barbara Perez; Viana, João L; Smith, Alice C
2018-06-01
There is a growing consensus that patients with chronic kidney disease (CKD) should engage in regular exercise, but there is a lack of formal guidelines. In this report, we determined whether combined aerobic and resistance exercise would elicit superior physiological gains, in particular muscular strength, compared with aerobic training alone in nondialysis CKD. Nondialysis patients with CKD stages 3b-5 were randomly allocated to aerobic exercise {AE, n = 21; 9 men; median age 63 [interquartile range (IQR) 58-71] yr; median estimated glomerular filtration rate (eGFR) 24 (IQR 20-30) ml·min -1 ·1.73 m -2 } or combined exercise [CE, n = 20, 9 men, median age 63 (IQR 51-69) yr, median eGFR 27 (IQR 22-32) ml·min -1 ·1.73 m -2 ], preceded by a 6-wk run-in control period. Patients then underwent 12 wk of supervised AE (treadmill, rowing, or cycling exercise) or CE training (as AE plus leg extension and leg press exercise) performed three times per week. Outcome assessments of knee extensor muscle strength, quadriceps muscle volume, exercise capacity, and central hemodynamics were performed at baseline, following the 6-wk control period, and at the end of the intervention. AE and CE resulted in significant increases in knee extensor strength of 16 ± 19% (mean ± SD; P = 0.001) and 48 ± 37% ( P < 0.001), respectively, which were greater after CE ( P = 0.02). AE and CE resulted in 5 ± 7% ( P = 0.04) and 9 ± 7% ( P < 0.001) increases in quadriceps volume, respectively ( P < 0.001), which were greater after CE ( P = 0.01). Both AE and CE increased distance walked in the incremental shuttle walk test [28 ± 44 m ( P = 0.01) and 32 ± 45 m ( P = 0.01), respectively]. In nondialysis CKD, the addition of resistance exercise to aerobic exercise confers greater increases in muscle mass and strength than aerobic exercise alone.
Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok
2016-01-01
Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404
Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok
2016-01-01
This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.
Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista
2015-01-01
The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.
Vohra, Ravneet S.; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C.; Sweeney, H. Lee; Walter, Glenn A.; Vandenborne, Krista
2015-01-01
Introduction The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Methods Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Results Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Discussion Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD. PMID:26103164
Muscle Power Is an Independent Determinant of Pain and Quality of Life in Knee Osteoarthritis.
Reid, Kieran F; Price, Lori Lyn; Harvey, William F; Driban, Jeffrey B; Hau, Cynthia; Fielding, Roger A; Wang, Chenchen
2015-12-01
This study examined the relationships between leg muscle strength, power, and perceived disease severity in subjects with knee osteoarthritis (OA) in order to determine whether dynamic leg extensor muscle power would be associated with pain and quality of life in knee OA. Baseline data on 190 subjects with knee OA (mean ± SD age 60.2 ± 10.4 years, body mass index 32.7 ± 7.2 kg/m(2) ) were obtained from a randomized controlled trial. Knee pain was measured using the Western Ontario and McMaster Universities Osteoarthritis Index, and health-related quality of life was assessed using the Short Form 36 (SF-36). One-repetition maximum (1RM) strength was assessed using the bilateral leg press, and peak muscle power was measured during 5 maximum voluntary velocity repetitions at 40% and 70% of 1RM. In univariate analysis, greater muscle power was significantly associated with pain (r = -0.17, P < 0.02) and also significantly and positively associated with SF-36 physical component summary (PCS) scores (r = 0.16, P < 0.05). After adjustment for multiple covariates, muscle power was a significant independent predictor of pain (P ≤ 0.05) and PCS scores (P ≤ 0.04). However, muscle strength was not an independent determinant of pain or quality of life (P ≥ 0.06). Muscle power is an independent determinant of pain and quality of life in knee OA. Compared to strength, muscle power may be a more clinically important measure of muscle function within this population. New trials to systematically examine the impact of muscle power training interventions on disease severity in knee OA are particularly warranted. © 2015, American College of Rheumatology.
Scanlan, Aaron T; Fox, Jordan L; Borges, Nattai R; Delextrat, Anne; Spiteri, Tania; Dalbo, Vincent J; Stanton, Robert; Kean, Crystal O
2018-04-01
This study quantified lower-limb strength decrements and assessed the relationships between strength decrements and performance fatigue during simulated basketball. Ten adolescent, male basketball players completed a circuit-based, basketball simulation. Sprint and jump performance were assessed during each circuit, with knee flexion and extension peak concentric torques measured at baseline, half-time, and full-time. Decrement scores were calculated for all measures. Mean knee flexor strength decrement was significantly (P < 0.05) related to sprint fatigue in the first half (R = 0.65), with dominant knee flexor strength (R = 0.67) and dominant flexor:extensor strength ratio (R = 0.77) decrement significantly (P < 0.05) associated with sprint decrement across the entire game. Mean knee extensor strength (R = 0.71), dominant knee flexor strength (R = 0.80), non-dominant knee flexor strength (R = 0.75), mean knee flexor strength (R = 0.81), non-dominant flexor:extensor strength ratio (R = 0.71), and mean flexor:extensor strength ratio (R = 0.70) decrement measures significantly (P < 0.05) influenced jump fatigue during the entire game. Lower-limb strength decrements may exert an important influence on performance fatigue during basketball activity in adolescent, male players. Consequently, training plans should aim to mitigate lower-limb fatigue to optimise sprint and jump performance during game-play.
Young, W B; Newton, R U; Doyle, T L A; Chapman, D; Cormack, S; Stewart, G; Dawson, B
2005-09-01
A purpose of this study was to determine if pre-season anthropometric and physiological measures were significantly different for the players from one Australian Football League (AFL) club selected to play in the first game of the season compared to the players not selected. Another purpose was to compare fitness test results for defenders, forwards and mid-fielders in the same AFL club. Thirty-four players were tested for isolated quadriceps and hamstrings strength, leg extensor muscle strength and power, upper body strength, sprinting speed, vertical jump (VJ), endurance, skinfolds and hamstring flexibility. The starters who were selected to play the first game were a significantly older and more experienced playing group, and were significantly better (p < 0.05) in measures of leg power, sprinting speed and the distance covered in the Yo Yo intermittent recovery test compared to the non-starters. Although there were trends for the superiority of the starters, the differences in lower and upper body strength, VJ and predicted VO2max were non-significant. The forwards generally produced the worst fitness scores of the playing positions with the midfielders having significantly lower skinfolds and the defenders possessing better hamstring strength and VJ compared to the forwards. It was concluded that some fitness qualities can differentiate between starters and non-starters, at least in one AFL club. Comparisons of playing positions and the development of fitness norms for AFL players require further research.
Panza, Gregory A; Taylor, Beth A; Dada, Marcin R; Thompson, Paul D
2015-01-01
There are inconsistent findings regarding muscular weakness in individuals with statin-induced myalgia. We used rigorous muscle testing to compare findings from 3 investigations in 3 different study populations to determine if statin myalgia is associated with measurable weakness. In all 3 studies, we measured maximal isometric handgrip strength, resting respiratory exchange ratio (RER), and knee extensor isometric and isokinetic force. In 2 of the 3 studies, elbow flexor isometric and isokinetic force and knee endurance fatigue index were also assessed. Knee extensor and elbow flexor measurements were obtained using an isokinetic dynamometer. Resting RER was measured using a metabolic breath-by-breath collection method. Measurement outcomes were compared on vs off drug. In study 1, 18 participants fit the criteria for statin myalgia. Participants taking atorvastatin 80 mg daily had significantly lower muscle strength in 5 (P < .05) of 14 measured variables. Participants on placebo (N = 10) with myalgia had significantly lower muscle strength in 4 (P < .05) of 14 measured variables. In study 2, 18 participants tested positive for statin-induced myalgia when receiving simvastatin 20 mg daily and displayed no significant muscle strength changes (all P > .05). In study 3, 11 patients with statin-induced myalgia completed the study and had a significant decrease in 2 (P < .05) of 10 leg muscle strength variables. In all 3 studies, no significant changes were shown for handgrip strength or RER (all P > .05). Our results indicate that after a short-term treatment with statin therapy, a rigorous muscle strength protocol does not show decrements of muscle strength in subjects with statin myalgia. Short-term treatment with statin therapy is not common in clinical practice. Thus, future studies should examine the effects of prolonged statin therapy on muscle strength. Published by Elsevier Inc.
Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W.; Newland, Philip L.
2016-01-01
Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects. PMID:27808167
Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp, K
2003-01-01
Objectives: To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. Methods: The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60°/s (25–90° range of flexion) and 180°/s (full range). These sessions were repeated three times a week for six weeks. Results: Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. Conclusions: The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters. PMID:14665581
Sex Comparison of Knee Extensor Size, Strength and Fatigue Adaptation to Sprint Interval Training.
Bagley, Liam; Al-Shanti, Nasser; Bradburn, Steven; Baig, Osamah; Slevin, Mark; McPhee, Jamie S
2018-03-12
Regular sprint interval training (SIT) improves whole-body aerobic capacity and muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue resistance adaptations, or whether effects are similar for males and females. The purpose of this study was to compare sex-related differences in knee extensor size, torque-velocity relationship and fatigability adaptations to 12 weeks SIT. Sixteen males and fifteen females (mean (SEM) age: 41 (±2.5) yrs) completed measurements of total body composition assessed by DXA, quadriceps muscle cross-sectional area (CSAQ) assessed by MRI, the knee extensor torque-velocity relationship (covering 0 - 240°·sec) and fatigue resistance, which was measured as the decline in torque from the first to the last of 60 repeated concentric knee extensions performed at 180°·sec. SIT consisted of 4 x 20 second sprints on a cycle ergometer set at an initial power output of 175% of power at VO2max, three times per week for 12 weeks. CSAQ increased by 5% (p=0.023) and fatigue resistance improved 4.8% (p=0.048), with no sex differences in these adaptations (sex comparisons: p=0.140 and p=0.282, respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both males and females (p>0.05 for all velocities). 12 weeks SIT, totalling 4 minutes very intense cycling per week, significantly increased fatigue resistance and CSAQ similarly in males and females, but did not significantly increase torque in males or females. These results suggest that SIT is a time-effective training modality for males and females to increase leg muscle size and fatigue resistance.
Elbow flexor and extensor muscle weakness in lateral epicondylalgia.
Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill
2012-05-01
To evaluate whether deficits of elbow flexor and extensor muscle strength exist in lateral epicondylalgia (LE) in comparison with a healthy control population. Cross-sectional study. 150 participants with unilateral LE were compared with 54 healthy control participants. Maximal isometric elbow flexion and extension strength were measured bilaterally using a purpose-built standing frame such that gripping was avoided. The authors found significant side differences in elbow extensor (-6.54 N, 95% CI -11.43 to -1.65, p=0.008, standardised mean difference (SMD) -0.45) and flexor muscle strength (-11.26 N, 95% CI -19.59 to -2.94, p=0.009, SMD -0.46) between LE and control groups. Within the LE group, only elbow extensor muscle strength deficits between sides was significant (affected-unaffected: -2.94 N, 95% CI -5.44 to -0.44). Small significant deficits of elbow extensor and flexor muscle strength exist in the affected arm of unilateral LE in comparison with healthy controls. Notably, comparing elbow strength between the affected and unaffected sides in unilateral epicondylalgia is likely to underestimate these deficits. Trial Registration Australian New Zealand Clinical Trials Register ACTRN12609000051246.
Turkiewicz, Aleksandra; Timpka, Simon; Thorlund, Jonas Bloch; Ageberg, Eva; Englund, Martin
2017-10-01
To assess the extent to which knee extensor strength and weight in adolescence are associated with knee osteoarthritis (OA) by middle age. We studied a cohort of 40 121 men who at age 18 years in 1969/1970 underwent mandatory conscription in Sweden. We retrieved data on isometric knee extensor strength, weight, height, smoking, alcohol consumption, parental education and adult occupation from Swedish registries. We identified participants diagnosed with knee OA or knee injury from 1987 to 2010 through the National Patient Register. We estimated the HR of knee OA using multivariable-adjusted Cox proportional regression model. To assess the influence of adult knee injury and occupation, we performed a formal mediation analysis. The mean (SD) knee extensor strength was 234 (47) Nm, the mean (SD) weight was 66 (9.3) kg. During 24 years (median) of follow-up starting at the age of 35 years, 2049 persons were diagnosed with knee OA. The adjusted HR (95% CI) of incident knee OA was 1.12 (1.06 to 1.18) for each SD of knee extensor strength and 1.18 (1.15 to 1.21) per 5 kg of body weight. Fifteen per cent of the increase in OA risk due to higher knee extensor strength could be attributed to knee injury and adult occupation. Higher knee extensor strength in adolescent men was associated with increased risk of knee OA by middle age, challenging the current tenet of low muscle strength being a risk factor for OA. We confirmed higher weight to be a strong risk factor for knee OA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Gravina, Leyre; Brown, Frankie F; Alexander, Lee; Dick, James; Bell, Gordon; Witard, Oliver C; Galloway, Stuart D R
2017-08-01
Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66-340) m for n-3 FA, and 62 (-94-217) m for placebo, with a moderate effect size (Cohen's d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.
Lower extremity control during turns initiated with and without hip external rotation.
Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L
2017-02-08
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran
2015-09-01
Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin
2017-05-01
To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.
Blood flow restricted resistance training in older adults at risk of mobility limitations.
Cook, Summer B; LaRoche, Dain P; Villa, Michelle R; Barile, Hannah; Manini, Todd M
2017-12-01
High-load resistance training (HL) may be contraindicated in older adults due to pre-existing health conditions (e.g. osteoarthritis). Low-load blood flow restricted (BFR) resistance training offers an alternative to HL with potentially similar strength improvement. To compare muscle strength, cross-sectional area (CSA), physical function, and quality of life (QOL) following 12-weeks of HL or BFR training in older adults at risk of mobility limitations. Thirty-six males and females (mean: 75.6years 95% confidence interval: [73.4-78.5], 1.67m [1.64-1.70], 74.3kg [69.8-78.8]) were randomly assigned to HL (70% of one repetition maximum [1-RM]) or low-load BFR (30% 1-RM coupled with a vascular restriction) exercise for the knee extensors and flexors twice per week for 12weeks. A control (CON) group performed light upper body resistance and flexibility training. Muscle strength, CSA of the quadriceps, 400-m walking speed, Short Physical Performance Battery (SPPB), and QOL were assessed before, midway and after training. Within 6-weeks of HL training, increases in all strength measures and CSA were evident and the gains were significantly greater than the CON group (P<0.05). The BFR group had strength increases in leg extension and leg press 1-RM tests, but were significantly lower in leg extension isometric maximum voluntary contraction (MVC) and leg extension 1-RM than the HL group (P<0.01). At 12-weeks HL and BFR training did not differ in MVC (P=0.14). Walking speed increased 4% among all training groups (P<0.01) and no changes were observed for overall SPPB score and QOL (P>0.05). Both training programs resulted in muscle CSA improvements and HL training had more pronounced strength gains than BFR training after 6-weeks and were more similar to BFR after 12-weeks of training. These changes in both groups did not transfer to improvements in QOL, SPPB, and walking speed. Since both programs result in strength and CSA gains, albeit at different rates, future research should consider using a combination of HL and BFR training in older adults with profound muscle weakness and mobility limitations. Copyright © 2017 Elsevier Inc. All rights reserved.
Isometric elbow extensors strength in supine- and prone-lying positions.
Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M
2013-01-01
The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1 ± 4.2 kg and 13.1 ± 4.6 kg, while those measured from prone-lying position were 9.9 ± 3.6 kg and 12 ± 4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p < 0.05). The results suggest that in manual muscle testing starting position can affect the isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.
Vibration Platform Training in Women at Risk for Symptomatic Knee Osteoarthritis
Segal, Neil A.; Glass, Natalie A.; Shakoor, Najia; Wallace, Robert
2013-01-01
Objective To determine whether a platform exercise program with vibration is more effective than the platform exercise alone for improving lower limb muscle strength and power in women age 45-60 with risk factors for knee osteoarthritis (OA). Design Randomized, controlled study Setting Academic center Participants 48 women age 45-60 years old with risk factors for knee OA (history of knee injury or surgery or BMI≥25kg/m2). Interventions Subjects were randomized to a twice weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises) on either a vertically vibrating (35Hz, 2mm), or a non-vibrating platform. Main Outcome Measurements The main outcome measures included change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. Results 39 out of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly due to lack of time. There were no intergroup differences in age, BMI, or activity level. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0±69.7 W in the vibration group (p<.0001) and 58.2±96.2 W in the control group (p=0.0499), but did not differ between groups (p=0.2262). Stair climb power improved by 53.4±64.7 W in the vibration group (p=0.0004) and 55.7±83.3 W in the control group (p=0.0329), but did not differ between groups (p=0.9272). Conclusions Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than participation in the exercise program without vibration. PMID:22981005
Vibration platform training in women at risk for symptomatic knee osteoarthritis.
Segal, Neil A; Glass, Natalie A; Shakoor, Najia; Wallace, Robert
2013-03-01
To determine whether a platform exercise program with vibration is more effective than platform exercise alone for improving lower limb muscle strength and power in women ages 45 to 60 with risk factors for knee osteoarthritis (OA). Randomized, controlled study. Academic center. A total of 48 women ages 45-60 years with risk factors for knee OA (a history of knee injury or surgery or body mass index ≥25 kg/m(2)). Subjects were randomly assigned to a twice-weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises, step-ups, and lunges) on either a vertically vibrating platform (35 Hz, 2 mm) or a nonvibrating platform. Change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. A total of 39 of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly because of a lack of time. No intergroup differences in age, body mass index, or activity level existed. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0 ± 69.7 W in the vibration group (P < .0001) and 58.2 ± 96.2 W in the control group (P = .0499) but did not differ between groups (P = .2262). Stair climb power improved by 53.4 ± 64.7 W in the vibration group (P = .0004) and 55.7 ± 83.3 W in the control group (P = .0329) but did not differ between groups (P = .9272). Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, the addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than did participation in the exercise program without vibration. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Effects of Lumbar Strengthening Exercise in Lower-Limb Amputees With Chronic Low Back Pain.
Shin, Min Kyung; Yang, Hee Seung; Yang, Hea-Eun; Kim, Dae Hyun; Ahn, Bo Ram; Kwon, Hyup; Lee, Ju Hwan; Jung, Suk; Choi, Hyun Chul; Yun, Sun Keaung; Ahn, Dong Young; Sim, Woo Sob
2018-02-01
To analyze the effect of lumbar strengthening exercise in lower-limb amputees with chronic low back pain. We included in this prospective study 19 lower-limb amputees who had experienced low back pain for longer than 6 months. Participants were treated with 30-minute lumbar strengthening exercises, twice weekly, for 8 weeks. We used the visual analog scale (VAS), and Oswestry low back pain disability questionnaire, and measured parameters such as iliopsoas length, abdominal muscle strength, back extensor strength, and back extensor endurance. In addition, we assessed the isometric peak torque and total work of the trunk flexors and extensors using isokinetic dynamometer. The pre- and post-exercise measurements were compared. Compared with the baseline, abdominal muscle strength (from 4.4±0.7 to 4.8±0.6), back extensor strength (from 2.6±0.6 to 3.5±1.2), and back extensor endurance (from 22.3±10.7 to 46.8±35.1) improved significantly after 8 weeks. The VAS decreased significantly from 4.6±2.2 to 2.6±1.6 after treatment. Furthermore, the peak torque and total work of the trunk flexors and extensors increased significantly (p<0.05). Lumbar strengthening exercise in lower-limb amputees with chronic low back pain resulted in decreased pain and increased lumbar extensor strength. The lumbar strengthening exercise program is very effective for lower-limb amputees with chronic low back pain.
Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L
2013-04-01
Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.
Giles, Lachlan; Webster, Kate E; McClelland, Jodie; Cook, Jill L
2017-12-01
Quadriceps strengthening exercises are part of the treatment of patellofemoral pain (PFP), but the heavy resistance exercises may aggravate knee pain. Blood flow restriction (BFR) training may provide a low-load quadriceps strengthening method to treat PFP. Seventy-nine participants were randomly allocated to a standardised quadriceps strengthening (standard) or low-load BFR. Both groups performed 8 weeks of leg press and leg extension, the standard group at 70% of 1 repetition maximum (1RM) and the BFR group at 30% of 1RM. Interventions were compared using repeated-measures analysis of variance for Kujala Patellofemoral Score, Visual Analogue Scale for 'worst pain' and 'pain with daily activity', isometric knee extensor torque (Newton metre) and quadriceps muscle thickness (cm). Subgroup analyses were performed on those participants with painful resisted knee extension at 60°. Sixty-nine participants (87%) completed the study (standard, n=34; BFR, n=35). The BFR group had a 93% greater reduction in pain with activities of daily living (p=0.02) than the standard group. Participants with painful resisted knee extension (n=39) had greater increases in knee extensor torque with BFR than standard (p<0.01). No between-group differences were found for change in Kujala Patellofemoral Score (p=0.31), worst pain (p=0.24), knee extensor torque (p=0.07) or quadriceps thickness (p=0.2). No difference was found between interventions at 6 months. Compared with standard quadriceps strengthening, low load with BFR produced greater reduction in pain with daily living at 8 weeks in people with PFP. Improvements were similar between groups in worst pain and Kujala score. The subgroup with painful resisted knee extension had larger improvements in quadriceps strength from BFR. 12614001164684. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hip Strength in Patients with Quadriceps Strength Deficits after ACL Reconstruction.
Bell, David R; Trigsted, Stephanie M; Post, Eric G; Walden, Courtney E
2016-10-01
Quadriceps strength deficits persist for years after anterior cruciate ligament (ACL) reconstruction, and patients with these deficits often shift torque demands away from the knee extensors to the hip during functional tasks. However, it is not clear how quadriceps strength deficits may affect hip strength. Therefore, the purpose of this study was to investigate differences in lower extremity strength in individuals with ACL reconstruction with differing levels of quadriceps strength asymmetry. Isometric strength was recorded bilaterally in 135 participants (73 control and 62 with unilateral ACL reconstruction, time from surgery = 30.9 ± 17.6 months) from the knee extensors and flexors, hip extensors and abductors, and hip internal and external rotator muscle groups. Symmetry indices (limb symmetry index (LSI)) were created based on quadriceps strength, and subjects with ACL reconstruction were subdivided (high quadriceps (LSI ≥ 90%), n = 37; low quadriceps (LSI < 85%), n = 18). Individual group (control vs high quadriceps vs low quadriceps) by limb (reconstructed/nondominant vs healthy/dominant) repeated-measures ANOVA was used to compare strength (%BW) for each of the six joint motions of interest (knee extensors/flexors, hip abductors/extensors/external, and internal rotators) while controlling for time from surgery. An interaction was observed for quadriceps strength (P < 0.001), and the reconstructed limb in the low quadriceps group was weaker than all other limbs. A main effect for group was observed with the low quadriceps group having greater hip extension (P = 0.007) strength in both limbs compared with the other groups. Knee flexion strength was weaker in the reconstructed limb of the high quadriceps group (P = 0.047) compared with all other groups and limbs. Individuals with ACL reconstruction and involved limb quadriceps weakness have greater hip extension strength in both limbs compared with patients with bilateral strength symmetry and controls.
Effect of Superimposed Electromyostimulation on Back Extensor Strengthening: A Pilot Study.
Park, Jae Hyeon; Seo, Kwan Sik; Lee, Shi-Uk
2016-09-01
Park, JH, Seo, KS, and Lee, S-U. Effect of superimposed electromyostimulation on back extensor strengthening: a pilot study. J Strength Cond Res 30(9): 2470-2475, 2016-Electromyostimulation (EMS) superimposed on voluntary contraction (VC) can increase muscle strength. However, no study has examined the effect of superimposing EMS on back extensor strengthening. The purpose of this study was to determine the effect of superimposed EMS on back extensor strengthening in healthy adults. Twenty healthy men, 20-29 years of age, without low-back pain were recruited. In the EMS group, electrodes were attached to bilateral L2 and L4 paraspinal muscles. Stimulation intensity was set for maximally tolerable intensity. With VC, EMS was superimposed for 10 seconds followed by a 20-second rest period. The same protocol was used in the sham stimulation (SS) group, except that the stimulation intensity was set at the lowest intensity (5 mA). All subjects performed back extension exercise using a Swiss ball, with 10 repetitions per set, 2 sets each day, 5 times a week for 2 weeks. The primary outcome measure was the change in isokinetic strength of the back extensor using an isokinetic dynamometer. Additionally, endurance was measured using the Sorensen test. After 2 weeks of back extension exercise, the peak torque and endurance increased significantly in both groups (p ≤ 0.05). Effect size between the EMS group and the SS group was medium in strength and endurance. However, there was no statistically significant difference between 2 groups. In conclusion, 2 weeks of back extensor strengthening exercise was effective for strength and endurance. Superimposing EMS on back extensor strengthening exercise could provide an additional effect on increasing strength.
Masaki, Mitsuhiro; Ikezoe, Tome; Kamiya, Midori; Araki, Kojiro; Isono, Ryo; Kato, Takehiro; Kusano, Ken; Tanaka, Masayo; Sato, Syunsuke; Hirono, Tetsuya; Kita, Kiyoshi; Tsuboyama, Tadao; Ichihashi, Noriaki
2018-04-19
This study aimed to examine the association of independence in ADL with the loads during step ascent motion and other motor functions in 32 nursing home-residing elderly individuals. Independence in ADL was assessed by using the functional independence measure (FIM). The loads at the upper (i.e., pulling up) and lower (i.e., pushing up) levels during step ascent task was measured on a step ascent platform. Hip extensor, knee extensor, plantar flexor muscle, and quadriceps setting strengths; lower extremity agility using the stepping test; and hip and knee joint pain severities were measured. One-legged stance and functional reach distance for balance, and maximal walking speed, timed up-and-go (TUG) time, five-chair-stand time, and step ascent time were also measured to assess mobility. Stepwise regression analysis revealed that the load at pushing up during step ascent motion and TUG time were significant and independent determinants of FIM score. FIM score decreased with decreased the load at pushing up and increased TUG time. The study results suggest that depending on task specificity, both one step up task's push up peak load during step ascent motion and TUG, can partially explain ADL's FIM score in the nursing home-residing elderly individuals. Lower extremity muscle strength, agility, pain or balance measures did not add to the prediction.
Fritsch, Carolina Gassen; Dornelles, Maurício Pinto; Severo-Silveira, Lucas; Marques, Vanessa Bernardes; Rosso, Isabele de Albuquerque; Baroni, Bruno Manfredini
2016-12-01
Promising effects of phototherapy on markers of exercise-induced muscle damage has been already demonstrated in constant load or isokinetic protocols. However, its effects on more functional situations, such as plyometric exercises, and when is the best moment to apply this treatment (pre- or post-exercise) remain unclear. Therefore, the purpose of this study was to investigate the effect of low-level laser therapy (LLLT) before or after plyometric exercise on quadriceps muscle damage markers. A randomized, double-blinded, placebo-controlled trial was conducted with 24 healthy men, 12 at pre-exercise treatment group and 12 at post-exercise treatment group. Placebo and LLLT (810 nm, 200 mW per diode, 6 J per diode, 240 J per leg) were randomly applied on right/left knee extensor muscles of each volunteer before/after a plyometric exercise protocol. Muscular echo intensity (ultrasonography images), soreness (visual analogue scale - VAS), and strength impairment (maximal voluntary contraction - MVC) were assessed at baseline, 24, 48, and 72 h post-exercise. Legs treated with LLLT before or after exercise presented significantly smaller increments of echo intensity (values up to 1 %) compared to placebo treatments (increased up to ∼7 %). No significant treatment effect was found for VAS and MVC, although a trend toward better results on LLLT legs have been found for VAS (mean values up to 30 % lesser than placebo leg). In conclusion, LLLT applied before or after plyometric exercise reduces the muscle echo intensity response and possibly attenuates the muscle soreness. However, these positive results were not observed on strength impairment.
Faager, Gun; Söderlund, Karin; Sköld, Carl Magnus; Rundgren, Siw; Tollbäck, Anna; Jakobsson, Per
2006-01-01
Study objectives Patients with chronic obstructive pulmonary disease (COPD) have low exercise capacity and low content of high energetic phosphates in their skeletal muscles. The aim of the present study was to investigate whether creatine supplementation together with exercise training may increase physical performance compared with exercise training in patients with COPD. Design In a randomized, double-blind, placebo-controlled study, 23 patients with COPD (forced expiratory volume in one second [FEV1] < 70% of predicted) were randomized to oral creatine (n = 13) or placebo (n = 10) supplementation during an 8-week rehabilitation programme including exercise training. Physical performance was assessed by Endurance Shuttle Walking Test (ESWT), dyspnea and leg fatigue with Borg CR-10, quality of life with St George’s Respiratory Questionnaire (SGRQ). In addition, lung function test, artery blood gases, grip strength test, muscle strength and fatigue in knee extensors were measured. Results COPD patients receiving creatine supplementation increased their average walking time by 61% (ESWT) (p < 0.05) after the training period compared with 48% (p = 0.07) in the placebo group. Rated dyspnea directly after the ESWT decreased significantly from 7 to 5 (p < 0.05) in the creatine group. However, the difference between the groups was not statistically significant neither in walking time nor in rated dyspnea. Creatine supplementation did not increase the health related quality of life, lung function, artery blood gases, grip strength and knee extensor strength/fatigue. Conclusions Oral creatine supplementation in combination with exercise training showed no significant improvement in physical performance, measured as ESWT, in patients with COPD compared with exercise training alone. PMID:18044100
Schumann, M; Pelttari, P; Doma, K; Karavirta, L; Häkkinen, K
2016-12-01
This study examined neuromuscular adaptations in recreational endurance runners during 24 weeks of same-session combined endurance and strength training (E+S, n=13) vs. endurance training only (E, n=14). Endurance training was similar in the 2 groups (4-6x/week). Additional maximal and explosive strength training was performed in E+S always after incremental endurance running sessions (35-45 min, 65-85% HR max ). Maximal dynamic leg press strength remained statistically unaltered in E+S but decreased in E at week 24 (-5±5%, p=0.014, btw-groups at week 12 and 24, p=0.014 and 0.011). Isometric leg press and unilateral knee extension force, EMG of knee extensors and voluntary activation remained statistically unaltered in E+S and E. The changes in muscle cross-sectional (CSA) differed between the 2 groups after 12 (E+S+6±8%, E -5±6%, p<0.001) and 24 (E+S+7±7%, E -6±5%, p<0.001) weeks. 1 000 m running time determined during an incremental field test decreased in E+S and E after 12 (-7±3%, p<0.001 and -8±5%, p=0.001) and 24 (-9±5%, p=0.001 and -13±5%, p<0.001) weeks. Strength training performed always after an endurance running session did not lead to increased maximal strength, CSA, EMG or voluntary activation. This possibly contributed to the finding of no endurance performance benefits in E+S compared to E. © Georg Thieme Verlag KG Stuttgart · New York.
THE FUNCTIONAL ROLES OF MUSCLES DURING SLOPED WALKING
Pickle, Nathaniel T.; Grabowski, Alena M.; Auyang, Arick G.; Silverman, Anne K.
2016-01-01
Sloped walking is biomechanically different from level-ground walking, as evidenced by changes in joint kinematics and kinetics. However, the changes in muscle functional roles underlying these altered movement patterns have not been established. In this study, we developed a total of 273 muscle-actuated simulations to assess muscle functional roles, quantified by induced body center-of-mass accelerations and trunk and leg power, during walking on slopes of 0°, ±3°, ±6°, and ±9° at 1.25 m/s. The soleus and gastrocnemius both provided greater forward acceleration of the body parallel to the slope at +9° compared to level ground (+126% and +66%, respectively). However, while the power delivered to the trunk by the soleus varied with slope, the magnitude of net power delivered to the trunk and ipsilateral leg by the biarticular gastrocnemius was similar across all slopes. At +9°, the hip extensors absorbed more power from the trunk (230% hamstrings, 140% gluteus maximus) and generated more power to both legs (200% hamstrings, 160% gluteus maximus) compared to level ground. At −9°, the knee extensors (rectus femoris and vasti) accelerated the body upward perpendicular to the slope at least 50% more and backward parallel to the slope twice as much as on level ground. In addition, the knee extensors absorbed greater amounts of power from the ipsilateral leg on greater declines to control descent. Future studies can use these results to develop targeted rehabilitation programs and assistive devices aimed at restoring sloped walking ability in impaired populations. PMID:27553849
Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter
2014-01-01
Objective Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Methods Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Results Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. Conclusions This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a 14-week exercise intervention and, therefore, the physiological benefit of improved muscle function for knee cartilage requires further investigation. PMID:24905024
Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter
2014-01-01
Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a 14-week exercise intervention and, therefore, the physiological benefit of improved muscle function for knee cartilage requires further investigation.
Sex difference in the heat shock response to high external load resistance training in older humans.
Njemini, Rose; Forti, Louis Nuvagah; Mets, Tony; Van Roie, Evelien; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan
2017-07-01
Literature reports on the effects of resistance training on heat shock protein70 (Hsp70) adaptation in older subjects are scarce. Moreover, the optimum training load required to obtain a beneficial adaptation profile is lacking. Therefore, the aim of this study was to determine the effects of resistance training at various external loads on extracellular Hsp70 (eHsp70) resting levels in older humans. Fifty-six community-dwelling older (68±5years) volunteers were randomized to 12weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 males, 10 females, 2×10-15 repetitions at 80% 1RM), low resistance (LOW, 9 Males, 10 Females, 1×80-100 repetitions at 20% 1RM), or mixed low resistance (LOW+, 9 Males, 10 Females, 1×60 repetitions at 20% 1RM followed by 1×10-20 repetitions at 40% 1RM). Serum was available from 48 out of the 56 participants at baseline and after 12weeks for determination of eHsp70. Mid-thigh muscle volume (computed tomography), muscle strength (1RM & Biodex dynamometer) and physical functioning (including 6min walk distance [6MWD]) were assessed. There was a sex-related dichotomy in the heat shock response to high external load training. We observed a significant decrease in eHsp70 concentration in the HIGH group for female, but not male, subjects. At baseline, men had a larger muscle volume, leg press and leg extension 1RM compared to women (all p<0.001). Also, the 6MWD was significantly higher in men compared to women at baseline. However, this difference disappeared when correcting for height. Moreover, the overall functional performance and physical activity scores were similar in men and women. None of the participants' characteristics nor any of the outcome variables differed between groups at baseline. There was a significant increase in the strength and physical performance parameters in both men and women post-exercise (all p<0.05). Females in the HIGH group clearly demonstrated a larger gain in leg press 1RM and the isometric knee extensor strength compared to females in the LOW group (p=0.036 and p=0.044, respectively). More so, we found an inverse association between the change in eHsp70 levels and improvement in isometric knee extensor strength and 6MWD (r=-0.443, p=0.002 and r=-0.428, p=0.002; respectively) post exercise. Our results show that resistance training at high external load decreases the resting levels of eHsp70 in older females. Whether this reflects a better health status requires further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Gaida, J; Cook, J; Bass, S; Austen, S; Kiss, Z
2004-01-01
Background: Overuse injury to the patellar tendon (patellar tendinopathy) is a major reason for interrupted training and competition for elite athletes. In both sexes, the prevalence of unilateral and bilateral tendinopathy has been shown to differ. It has been proposed that bilateral pathology may have a different aetiology from unilateral pathology. Investigation of risk factors that may be unique to unilateral and bilateral patellar tendinopathy in female athletes may reveal insights into the aetiology of this condition. Objectives: To examine whether anthropometry, body composition, or muscle strength distinguished elite female basketball players with unilateral or bilateral patellar tendinopathy. Methods: Body composition, anthropometry, and muscle strength were compared in elite female basketball players with unilateral (n = 8), bilateral (n = 7), or no (n = 24) patellar tendinopathy. Body composition was analysed using a dual energy x ray absorptiometer. Anthropometric measures were assessed using standard techniques. Knee extensor strength was measured at 180°/s using an isokinetic dynamometer. z scores were calculated for the unilateral and bilateral groups (using the no tendinopathy group as controls). z scores were tested against zero. Results: The tibia length to stature ratio was approximately 1.3 (1.3) SDs above zero in both the affected and non-affected legs in the unilateral group (p<0.05). The waist to hip ratio was 0.66 (0.78) SD above zero in the unilateral group (p<0.05). In the unilateral group, leg lean to total lean ratio was 0.42 (0.55) SD above zero (p<0.07), the trunk lean to total lean ratio was 0.63 (0.68) SD below zero (p<0.05), and leg fat relative to total fat was 0.47 (0.65) SD below zero (p<0.09). In the unilateral group, the leg with pathology was 0.78 (1.03) SD weaker during eccentric contractions (p<0.07). Conclusions: Unilateral patellar tendinopathy has identifiable risk factors whereas bilateral patellar tendinopathy may not. This suggests that the aetiology of these conditions may be different. However, interpretation must respect the limitation of small subject numbers. PMID:15388543
Echegoyen, Soledad; Aoyama, Takeshi; Rodríguez, Cristina
2013-06-01
Zapateado is a repetitive percussive footwork in dance. This percussive movement, and the differences in technique, may be risk factors for injury. A survey on zapateado dance students found a rate of 1.5 injuries/1,000 exposures. Knee injuries are more frequent than in Spanish dancers than folkloric dancers. The aim of this research was to study the relationship between technique and ground reaction force between zapateado on Spanish and Mexican folkloric dancers. Ten female dance students (age 22.4 ± 4 yrs), six Spanish dancers and four Mexican folkloric dancers, were considered. Each student performed zapateado with a flat foot, wearing high-heeled shoes during 5 seconds on a force platform. Videotapes were taken on a lateral plane, and knee and hip angles in each movement phase were measured with Dartfish software. Additionally, knee and ankle flexor and extensor strength was measured with a dynamometer. Ground reaction forces were lower for Spanish dancers than Mexican folkloric dancers. Spanish dancers had less knee flexion when the foot contacted to the ground than did Mexican folkloric dancers. On Spanish dancers, the working leg had more motion in relation to hip and knee angles than was seen in folkloric dancers. The ankle extensors were stronger on folkloric dancers, and there were no differences for the other muscle groups. Knee flexion at foot contact and muscle strength imbalance could be risk factors for injuries. It is suggested that the technique in Spanish dance in Mexico be reviewed, although more studies are required to define more risk factors.
Hoyle, G; Field, L H
1983-07-01
Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10(-8) M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.
Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon
2017-11-01
There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.
Side-alternating vibration training for balance and ankle muscle strength in untrained women.
Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia
2013-01-01
Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.
Park, Hee-Won; Baek, Sora; Kim, Hong Young; Park, Jung-Gyoo; Kang, Eun Kyoung
2017-10-01
To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65-0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was -63.1 N and the upper 95% LoA was 61.1 N. This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity.
Stock, Roland; Mork, Paul Jarle
2009-09-01
To investigate the effect of two weeks of intensive exercise on leg function in chronic stroke patients and to evaluate the feasibility of an intensive exercise programme in a group setting. Pilot study with one-group pre-test post-test design with two pre-tests and one-year follow-up. Inpatient rehabilitation hospital. Twelve hemiparetic patients completed the intervention. Ten patients participated at one-year follow-up. Six hours of daily intensive exercise for two weeks with focus on weight-shifting towards the affected side and increased use of the affected extremity during functional activities. An insole with nubs in the shoe of the non-paretic limb was used to reinforce weight-shift toward the affected side. Timed Up and Go, Four Square Step Test, gait velocity, gait symmetry and muscle strength in knee and ankle muscles. Maximal gait velocity (P = 0.002) and performance time (seconds) on Timed Up and Go (mean, SD; 12.2, 3.8 vs. 9.4, 3.2) and Four Square Step Test improved from pre- to post-test (P = 0.005). Improvements remained significant at follow-up. Preferred gait velocity and gait symmetry remained unchanged. Knee extensor (P<50.009) and flexor (P<50.001) strength increased bilaterally from pre- to post-test but only knee flexor strength remained significant at follow-up. Ankle dorsi flexor (P = 0.02) and plantar flexor (P<0.001) strength increased on paretic side only (not tested at follow-up). Intensive exercise for lower extremity is feasible in a group setting and was effective in improving ambulatory function, maximal gait velocity and muscle strength in chronic stroke patients. Most improvements persisted at the one-year follow-up.
Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.
Arora, Shruti; Budden, Shawn; Byrne, Jeannette M; Behm, David G
2015-10-01
Fatigue in one limb can decrease force production in the homologous muscle as well as other muscles of the non-fatigued limb affecting balance. The objective of the study was to examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing balance, muscle force and activation. Sixteen healthy male subjects performed pre-fatigue balance trials, warm-up exercises, maximum voluntary isometric contractions, a knee extensors fatigue protocol, and post-fatigue balance trials. The fatigue protocol consisted of sets of 15 consecutive isometric contractions of 16 s each with 4 s recovery between repetitions, which were performed at 30% peak force for the dominant knee extensor muscles. Additional sets of contractions continued until a 50% decrease in MVIC knee extensor force was observed. Pre- and post-fatigue balance assessment consisted of transition from double to single leg standing and also single leg standing trials, which were performed bilaterally and in randomized order. The peak force and F100 were significantly decreased by 44.8% (ES = 2.54) and 39.9% (ES = 0.59), respectively, for the fatigued limb post-fatigue. There were no significant changes in the non-fatigued limb's muscle force, activation, muscle onset timing or postural stability parameters. While the lack of change in non-fatigued limb force production is in agreement with some of the previous literature in this area, the lack of effect on postural measures directly contradicts earlier work. It is hypothesized that discrepancies in the duration and the intensity of the fatigue protocol may have accounted for this discrepancy.
Handgrip strength deficits best explain limitations in performing bimanual activities after stroke.
Basílio, Marluce Lopes; de Faria-Fortini, Iza; Polese, Janaine Cunha; Scianni, Aline A; Faria, Christina Dcm; Teixeira-Salmela, Luci Fuscaldi
2016-04-01
[Purpose] To evaluate the relationships between residual strength deficits (RSD) of the upper limb muscles and the performance in bimanual activities and to determine which muscular group would best explain the performance in bimanual activities of chronic stroke individuals. [Subjects and Methods] Strength measures of handgrip, wrist extensor, elbow flexor/extensor, and shoulder flexor muscles of 107 subjects were obtained and expressed as RSD. The performance in bimanual activities was assessed by the ABILHAND questionnaire. [Results] The correlations between the RSD of handgrip and wrist extensor muscles with the ABILHAND scores were negative and moderate, whereas those with the elbow flexor/extensor and shoulder flexor muscles were negative and low. Regression analysis showed that the RSD of handgrip and wrist extensor muscles explained 38% of the variance in the ABILHAND scores. Handgrip RSD alone explained 33% of the variance. [Conclusion] The RSD of the upper limb muscles were negatively associated with the performance in bimanual activities and the RSD of handgrip muscles were the most relevant variable. It is possible that stroke subjects would benefit from interventions aiming at improving handgrip strength, when the goal is to increase the performance in bimanual activities.
Isokinetic knee joint evaluation in track and field events.
Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis
2011-09-01
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.
Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.
Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando
2017-12-01
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.
Bartholdy, Cecilie; Juhl, Carsten; Christensen, Robin; Lund, Hans; Zhang, Weiya; Henriksen, Marius
2017-08-01
To analyze if exercise interventions for patients with knee osteoarthritis (OA) following the American College of Sports Medicine (ACSM) definition of muscle strength training differs from other types of exercise, and to analyze associations between changes in muscle strength, pain, and disability. A systematic search in 5 electronic databases was performed to identify randomized controlled trials comparing exercise interventions with no intervention in knee OA, and reporting changes in muscle strength and in pain or disability assessed as standardized mean differences (SMD) with 95% confidence intervals (95% CI). Interventions were categorized as ACSM interventions or not-ACSM interventions and compared using stratified random effects meta-analysis models. Associations between knee extensor strength gain and changes in pain/disability were assessed using meta-regression analyses. The 45 eligible trials with 4699 participants and 56 comparisons (22 ACSM interventions) were included in this analysis. A statistically significant difference favoring the ACSM interventions with respect to knee extensor strength was found [SMD difference: 0.448 (95% CI: 0.091-0.805)]. No differences were observed regarding effects on pain and disability. The meta-regressions indicated that increases in knee extensor strength of 30-40% would be necessary for a likely concomitant beneficial effect on pain and disability, respectively. Exercise interventions following the ACSM criteria for strength training provide superior outcomes in knee extensor strength but not in pain or disability. An increase of less than 30% in knee extensor strength is not likely to be clinically beneficial in terms of changes in pain and disability (PROSPERO: CRD42014015344). Copyright © 2017 Elsevier Inc. All rights reserved.
Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G
2006-11-01
Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.
Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.
Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J
2010-11-01
When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.
Thompson, Brennan J; Ryan, Eric D; Sobolewski, Eric J; Smith, Doug B; Conchola, Eric C; Akehi, Kazuma; Buckminster, Tyler
2013-03-01
The purpose of this study was to determine if maximal and rapid isometric torque characteristics could discriminate starters from nonstarters in elite Division I American collegiate football players. Sixteen starters (mean ± SD: age = 20.81 ± 1.28 years; height = 184.53 ± 6.58 cm; and mass = 108.69 ± 22.16 kg) and 15 nonstarters (20.40 ± 1.68 years; 182.27 ± 10.52 cm; and 104.60 ± 22.44 kg) performed isometric maximal voluntary contractions (MVCs) of the leg flexor and extensor muscle groups. Peak torque (PT), rate of torque development (RTD), the time to peak RTD (TTRTDpeak), contractile impulse (IMPULSE), and absolute torque values (TORQUE) at specific time intervals were calculated from a torque-time curve. The results indicated significant and nonsignificant differences between starters and nonstarters for the early rapid leg flexion torque characteristics that included RTD, IMPULSE, and TORQUE at 30 and 50 milliseconds, and TTRTDpeak. These variables also demonstrated the largest effect sizes of all the variables examined (0.71-0.82). None of the leg extensor variables, leg flexion PT, or later leg flexion rapid torque variables (≥ 100 milliseconds) were significant discriminators of playing level. These findings suggest that the early rapid leg flexion torque variables may provide an effective and sensitive muscle performance measurement in the identification of collegiate football talent. Further, coaches and practitioners may use these findings when designing training programs for collegiate football players with the intent to maximize rapid leg flexion characteristics.
Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss
2014-07-01
goal, we proposed to in‐ duce disuse (using Botox‐induced paralysis of the quadriceps, hamstrings , and soleus) in one hindlimb of a se‐ ries of mice...muscle paralysis of the lower limb via botulinum toxin (Botox; 20 U/kg) injec on into the quadriceps, hamstrings , triceps surae, and leg extensor...kg) injec on into the quadriceps, hamstrings , tri‐ ceps surae, and leg extensor compartment of the right lower limb. The le lower limb was
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
2017-01-01
Objective To investigate the reliability and validity of a new method for isometric back extensor strength measurement using a portable dynamometer. Methods A chair equipped with a small portable dynamometer was designed (Power Track II Commander Muscle Tester). A total of 15 men (mean age, 34.8±7.5 years) and 15 women (mean age, 33.1±5.5 years) with no current back problems or previous history of back surgery were recruited. Subjects were asked to push the back of the chair while seated, and their isometric back extensor strength was measured by the portable dynamometer. Test-retest reliability was assessed with intraclass correlation coefficient (ICC). For the validity assessment, isometric back extensor strength of all subjects was measured by a widely used physical performance evaluation instrument, BTE PrimusRS system. The limit of agreement (LoA) from the Bland-Altman plot was evaluated between two methods. Results The test-retest reliability was excellent (ICC=0.82; 95% confidence interval, 0.65–0.91). The Bland-Altman plots demonstrated acceptable agreement between the two methods: the lower 95% LoA was −63.1 N and the upper 95% LoA was 61.1 N. Conclusion This study shows that isometric back extensor strength measurement using a portable dynamometer has good reliability and validity. PMID:29201818
Ischemic contracture of the foot and ankle: principles of management and prevention.
Botte, M J; Santi, M D; Prestianni, C A; Abrams, R A
1996-03-01
A variety of clinical presentations can be encountered following compartment syndrome of the leg and foot. Deformity and functional impairment in the foot and ankle secondary to ischemia are determined by: 1) which leg compartments have been affected and to what degree extrinsic flexor or extensor "overpull" is exhibited, 2) degree of nerve injury sustained causing weakness or paralysis of extrinsic or intrinsic foot and ankle muscles, 3) which foot compartments have been affected and to what degree intrinsic "overpull" is exhibited, and 4) degree of sensory nerve injury leading to anesthesia, hypoesthesia, or hyperesthesia of the foot. Nonoperative therapy attempts to obtain or preserve joint mobility, increase strength, and provide corrective bracing and accommodative foot wear. Operative management is undertaken for treatment of residual nerve compression or refractory problematic deformities. Established surgical protocols are performed in a stepwise fashion, and include: 1) release of residual or secondary nerve compression; 2) release of fixed contractures, using infarct excision, myotendinous lengthening, muscle recession, or tenotomy; 3) tendon transfers or arthrodesis to increase function; and 4) osteotomy or amputation for severe, non-salvageable deformities.
Taya, Masanobu; Amiya, Eisuke; Hatano, Masaru; Maki, Hisataka; Nitta, Daisuke; Saito, Akihito; Tsuji, Masaki; Hosoya, Yumiko; Minatsuki, Shun; Nakayama, Atsuko; Fujiwara, Takayuki; Konishi, Yuto; Yokota, Kazuhiko; Watanabe, Masafumi; Morita, Hiroyuki; Haga, Nobuhiko; Komuro, Issei
2018-01-15
This study investigated the effectiveness and safety of interval training during in-hospital treatment of patients with advanced heart failure. Twenty-four consecutive patients with advanced symptomatic heart failure who were referred for cardiac transplant evaluation were recruited. After performing aerobic exercise for approximate intensity, high-intensity interval training (HIIT) was performed. The protocol consisted of 3 or 4 sessions of 1-min high-intensity exercise aimed at 80% of peak VO 2 or 80% heart rate reserve, followed by 4-min recovery periods of low intensity. In addition to the necessary laboratory data, hand grip strength and knee extensor strength were evaluated at the start of exercise training and both at the start and the end of HIIT. Knee extensor strength was standardized by body weight. The BNP level at the start of exercise training was 432 (812) pg/mL and it significantly decreased to 254 (400) pg/mL (p < 0.001) at the end of HIIT. Hand grip strength did not change during course. By contrast, knee extensor strength significantly increased during HIIT [4.42 ± 1.43 → 5.28 ± 1.45 N/kg, p < 0.001], whereas the improvement of knee extensor strength was not significant from the start of exercise training to the start of HIIT. In addition, the change in knee extensor strength during HIIT was significantly associated with the hemoglobin A1c level at the start of exercise (R = - 0.55; p = 0.015). HIIT has a positive impact on skeletal muscle strength among in-hospital patients with advanced heart failure.
Recovery Kinetics of Knee Flexor and Extensor Strength after a Football Match
Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Avloniti, Alexandra; Barbero-Álvarez, José C.; Mohr, Magni; Malliou, Paraskevi; Gourgoulis, Vassilios; Deli, Chariklia K.; Douroudos, Ioannis I.; Margonis, Konstantinos; Gioftsidou, Asimenia; Fouris, Andreas D.; Jamurtas, Athanasios Z.; Koutedakis, Yiannis; Fatouros, Ioannis G.
2015-01-01
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level. PMID:26043222
Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y
2013-08-01
The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).
Izawa, Kazuhiro P; Watanabe, Satoshi
2016-12-01
To determine differences in physiological outcome (PO) based on the Geriatric Nutritional Risk Index (GNRI) and cut-off values for PO according to the GNRI in elderly post-cardiac surgery patients complicated by diabetes mellitus (DM). Thirty-five patients (72.9 years) were enrolled and divided by GNRI. Patient characteristics and PO of handgrip strength (HG), knee extensor muscle strength (KEMS), maximum gait speed (GS), and one-leg standing time (OLST) were compared between the groups, and cut-off values for PO were determined. These POs were significantly lower in the low-GNRI group (<92 points) than in the high-GNRI (≥92 points) group. The cut-off values for PO were HG, 22.7 kgf; KEMS, 41.5 %BW; GS, 1.2 m/sec; and OLST, 6.7 s. Nutritional status might influence PO following cardiac surgery. The cut-off values of PO reported here might be indicative of the need to improve patient nutritional status.
Braito, Matthias; Giesinger, Johannes M; Fischler, Stefan; Koller, Arnold; Niederseer, David; Liebensteiner, Michael C
2016-08-01
In light of the existing lack of evidence, it was the aim of this study to compare gait characteristics and knee extensor strength after medial unicondylar knee arthroplasty (MUKA) with those after total knee arthroplasty (TKA), given the same standardized minimally invasive surgery (MIS) approach in both groups. Patients scheduled for MIS-MUKA or MIS-TKA as part of clinical routine were invited to participate. A posterior cruciate ligament-retaining total knee design was used for all MIS-TKA. A 3-dimensional gait analysis was performed preoperatively with a VICON system and at 8 weeks postoperative to determine temporospatial parameters, ground reaction forces, joint angles, and joint moments. At the same 2 times, isokinetic tests were performed to obtain peak values of knee extensor torque. A multivariate analysis of variance was conducted and included the main effects time (before and after surgery) and surgical group and the group-by-time interaction effect. Fifteen MIS-MUKA patients and 17 MIS-TKA patients were eligible for the final analysis. The groups showed no differences regarding age, body mass index, sex, side treated, or stage of osteoarthritis. We determined neither intergroup differences nor time × group interactions for peak knee extensor torque or any gait parameters (temporospatial, ground reaction forces, joint angles, and joint moments). It is concluded that MUKA is not superior to TKA with regard to knee extensor strength or 3-dimensional gait characteristics at 8 weeks after operation. As gait characteristics and knee extensor strength are only 2 of the various potential outcome parameters (knee scores, activity scores…) and quadriceps strength might take a longer time to recover, our findings should be interpreted with caution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.
Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi
2013-11-01
[Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.
Branislav, Rajić; Milivoj, Dopsaj; Abella, Carlos Pablos; Deval, Vicente Caratalla; Siniša, Karišik
2013-01-01
Background: The aim of this study is to verify the effects of the combined and classic training of different isometric rates of force development (RFD) parameters of legs. Materials and Methods: Three groups of female athletes was tested: Experimental group (N = 12), classically trained group (N = 11), and control group (N = 20) of athletes. The isometric “standing leg extension” and “Rise on Toes” tests were conducted to evaluate the maximal force, time necessary time to reach it and the RFD analyzed at 100 ms, 180 ms, 250 ms from the onset, and 50-100% of its maximal result. Results: The maximal RFD of legs and calves are dominant explosive parameters. Special training enhanced the RFD of calves of GROUPSPEC at 100 ms (P = 0.05), at 180 ms (P = 0.039), at 250 ms (P = 0.039), at 50% of the Fmax (P = 0.031) and the Fmax (P = 0.05). Domination of GROUPSPEC toward GROUPCLASS and GROUPCONTROL is in case of legs at 100 ms (P = 0.04); at 180 ms (P = 0.04); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.01) and at the Fmax (P = 0.00); in case of calves at 100 ms (P = 0.07); 180 ms (P = 0.001); at 250 ms (P = 0.00); at 50% of the Fmax (P = 0.00) and at Fmax (P = 0.000). Conclusion: Dominant explosive factors are maximal RFD of leg extensors and calves, and legs at 250ms. Specific training enhanced explosiveness of calves of GROUPSPEC general and partial domination of GROUPSPEC by 87% over GROUPCLASS, and 35% over GROUPCONTROL. PMID:24497853
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2016-01-01
Objective To cross-sectionally determine the quantitative relationship of age-adjusted, sex-specific isometric knee extensor and flexor strength to patient-reported knee pain. Methods Difference of thigh muscle strength by age, and that of age-adjusted strength per unit increase on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee pain scale, was estimated from linear regression analysis of 4553 Osteoarthritis Initiative participants (58% women). Strata encompassing the minimal clinically important difference (MCID) in knee pain were compared to evaluate a potentially non-linear relationship between WOMAC pain levels and muscle strength. Results In Osteoarthritis Initiative participants without pain, the age-related difference in isometric knee extensor strength was −9.0%/−8.2% (women/men) per decade, and that of flexor strength was −11%/−6.9%. Differences in age-adjusted strength values for each unit of WOMAC pain (1/20) amounted to −1.9%/−1.6% for extensor and −2.5%/−1.7% for flexor strength. Differences in torque/weight for each unit of WOMAC pain ranged from −3.3 to − 2.1%. There was no indication of a non-linear relationship between pain and strength across the range of observed WOMAC values, and similar results were observed in women and men. Conclusion Each increase by 1/20 units in WOMAC pain was associated with a ~2% lower age-adjusted isometric extensor and flexor strength in either sex. As a reduction in muscle strength is known to prospectively increase symptoms in knee osteoarthritis and as pain appears to reduce thigh muscle strength, adequate therapy of pain and muscle strength is required in knee osteoarthritis patients to avoid a vicious circle of self-sustaining clinical deterioration. PMID:27836675
Almeida, Gabriel Peixoto Leão; das Neves Rodrigues, Helena Larissa; de Freitas, Bruno Wesley; de Paula Lima, Pedro Olavo
2017-12-01
Study Design Cross-sectional study. Background The Hip Stability Isometric Test (HipSIT) evaluates the strength of the hip posterolateral stabilizers in a position that favors greater activation of the gluteus maximus and gluteus medius and lower activation of the tensor fascia lata. Objectives To check the validity and reliability of the HipSIT and to evaluate the HipSIT in women with patellofemoral pain (PFP). Methods The HipSIT was evaluated with a handheld dynamometer. During testing, the participants were sidelying, with their legs positioned at 45° of hip flexion and 90° of knee flexion. Participants were instructed to raise the knee of the upper leg while keeping the upper and lower heels in contact. To establish reliability and validity, 49 women were tested with the HipSIT by 2 different evaluators on day 1, and then again 7 days later. The strength of the hip extensors, abductors, and external rotators was also evaluated. Twenty women with unilateral PFP were also evaluated. Results The HipSIT has excellent intrarater and interrater reliability. The standard error of measurement was 0.01 kgf/kg, and the minimal detectable change was 0.036 kgf/kg. The HipSIT showed good validity in isolated hip abduction, external rotation, and extension (P<.01). Women with PFP showed a 10% deficit in the HipSIT results for the symptomatic limb (P = .01). Conclusion The HipSIT showed excellent interrater and intrarater reliability, moderate to good validity in women, and was able to identify strength deficits in women with PFP. J Orthop Sports Phys Ther 2017;47(12):906-913. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7274.
Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-11-27
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.
Karamanidis, Kiros; Arampatzis, Adamantios
2007-01-01
The goals of this study were to investigate whether the lower muscle-tendon units (MTUs) capacities in older affect their ability to recover balance with a single-step after a fall, and to examine whether running experience enhances and protects this motor skill in young and old adults. The investigation was conducted on 30 older and 19 younger divided into two subgroups: runners versus non-active. In previous studies we documented that the older had lower leg extensor muscle strength and tendon stiffness while running had no effect on MTUs capacities. The current study examined recovery mechanics of the same individuals after an induced forward fall. Younger were better able to recover balance with a single-step compared to older (P < 0.001); this ability was associated with a more effective body configuration at touchdown (more posterior COM position relative to the recovery foot, P <0.001). MTUs capacities classified 88.6% of the subjects into single- or multiple-steppers. Runners showed a superior ability to recover balance with a single-step (P < 0.001) compared to non-active subjects due to a more effective mechanical response during the stance phase (greater knee joint flexion, P <0.05). We concluded that the age-related degeneration of the MTUs significantly diminished the older adults' ability to restore balance with a single-step. Running seems to enhance and protect this motor skill. We suggested that runners, due to their running experience, could update the internal representation of mechanisms responsible for the control of dynamic stability during a forward fall and, thus, were able to restore balance more often with a single-step compared to the non-active subjects.
Jones, K; Bishop, P; Hunter, G; Fleisig, G
2001-08-01
The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p < 0.05; +22.7 vs. + 16.1 kg). The results of this study support the use of a combination of heavier training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.
Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.
Stock, Matt S; Beck, Travis W; Defreitas, Jason M
2012-01-01
The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.
Luo, Xiaotian; Zhang, Jifeng; Zhang, Chi; He, Chengqi; Wang, Pu
2017-11-01
To review the research literature on the effectiveness of whole-body vibration (WBV) therapy in women with postmenopausal osteoporosis. A systematic review was conducted by two independent reviewers. Mean differences (MDs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed with the I 2 test. The Cochrane risk of bias tool was used to assess the methodological quality of the selected studies. Nine randomized controlled trials involving 625 patients met the inclusion criteria. No significant improvement was found in bone mineral density (BMD) (SMD = -0.06, 95%CI= -0.22-0.11, p = 0.50); bone turnover markers (MD = -0.25, 95%CI= -0.54-0.03, p = 0.08); anthropometric parameters, including muscle mass, fat mass, body mass index (BMI), and weight (SMD = 0.02, 95%CI= -0.16-0.21, p = 0.81); or maximal isotonic knee extensor strength (SMD = 0.16, 95%CI= -0.63-0.95, p = 0.69). However, maximal isometric knee extensor strength improved (SMD = 0.71, 95%CI = 0.34-1.08, p = 0.0002). WBV is beneficial for enhancing maximal isometric knee extensor strength, but it has no overall treatment effect on BMD, bone turnover markers, anthropometric parameters, or maximal isotonic knee extensor strength in women with postmenopausal osteoporosis. Implication of rehabilitation Osteoporosis is the leading underlying cause of fractures in postmenopausal women, whole body vibration (WBV) has received much attention as a potential intervention for the management of osteoporosis in recent years. Whole body vibration is beneficial for enhancing maximal isometric knee extensor strength in women with postmenopausal osteoporosis. Whole body vibration has no overall treatment effect on bone mineral density, bone turnover markers, anthropometric parameters and maximal isotonic knee extensor strength in women with postmenopausal osteoporosis.
Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J
2015-11-01
High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.
Ramirez-Campillo, Rodrigo; Sanchez-Sanchez, Javier; Gonzalo-Skok, Oliver; Rodríguez-Fernandez, Alejandro; Carretero, Manuel; Nakamura, Fabio Y.
2018-01-01
The aim of this study was to compare changes in young soccer player's fitness after traditional bilateral vs. unilateral combined plyometric and strength training. Male athletes were randomly divided in two groups; both received the same training, including strength training for knee extensors and flexors, in addition to horizontal plyometric training drills. The only difference between groups was the mode of drills technique: unilateral (UG; n = 9; age, 17.3 ± 1.1 years) vs. bilateral (TG; n = 9; age, 17.6 ± 0.5 years). One repetition maximum bilateral strength of knee muscle extensors (1RM_KE) and flexors (1RM_KF), change of direction ability (COD), horizontal and vertical jump ability with one (unilateral) and two (bilateral) legs, and limb symmetry index were measured before and after an 8-week in-season intervention period. Some regular soccer drills were replaced by combination of plyometric and strength training drills. Magnitude-based inference statistics were used for between-group and within-group comparisons. Beneficial effects (p < 0.05) in 1RM_KE, COD, and several test of jumping performance were found in both groups in comparison to pre-test values. The limb symmetry index was not affected in either group. The beneficial changes in 1RM_KE (8.1%; p = 0.074) and 1RM_KF (6.7%; p = 0.004), COD (3.1%; p = 0.149), and bilateral jump performance (from 2.7% [p = 0.535] to 10.5% [p = 0.002]) were possible to most likely beneficial in the TG than in the UG. However, unilateral jump performance measures achieved likely to most likely beneficial changes in the UG compared to the TG (from 4.5% [p = 0.090] to 8.6% [p = 0.018]). The improvements in jumping ability were specific to the type of jump performed, with greater improvements in unilateral jump performance in the UG and bilateral jump performance in the TG. Therefore, bilateral strength and plyometric training should be complemented with unilateral drills, in order to maximize adaptations. PMID:29623049
Ramirez-Campillo, Rodrigo; Sanchez-Sanchez, Javier; Gonzalo-Skok, Oliver; Rodríguez-Fernandez, Alejandro; Carretero, Manuel; Nakamura, Fabio Y
2018-01-01
The aim of this study was to compare changes in young soccer player's fitness after traditional bilateral vs. unilateral combined plyometric and strength training. Male athletes were randomly divided in two groups; both received the same training, including strength training for knee extensors and flexors, in addition to horizontal plyometric training drills. The only difference between groups was the mode of drills technique: unilateral (UG; n = 9; age, 17.3 ± 1.1 years) vs. bilateral (TG; n = 9; age, 17.6 ± 0.5 years). One repetition maximum bilateral strength of knee muscle extensors (1RM_KE) and flexors (1RM_KF), change of direction ability (COD), horizontal and vertical jump ability with one (unilateral) and two (bilateral) legs, and limb symmetry index were measured before and after an 8-week in-season intervention period. Some regular soccer drills were replaced by combination of plyometric and strength training drills. Magnitude-based inference statistics were used for between-group and within-group comparisons. Beneficial effects ( p < 0.05) in 1RM_KE, COD, and several test of jumping performance were found in both groups in comparison to pre-test values. The limb symmetry index was not affected in either group. The beneficial changes in 1RM_KE (8.1%; p = 0.074) and 1RM_KF (6.7%; p = 0.004), COD (3.1%; p = 0.149), and bilateral jump performance (from 2.7% [ p = 0.535] to 10.5% [ p = 0.002]) were possible to most likely beneficial in the TG than in the UG. However, unilateral jump performance measures achieved likely to most likely beneficial changes in the UG compared to the TG (from 4.5% [ p = 0.090] to 8.6% [ p = 0.018]). The improvements in jumping ability were specific to the type of jump performed, with greater improvements in unilateral jump performance in the UG and bilateral jump performance in the TG. Therefore, bilateral strength and plyometric training should be complemented with unilateral drills, in order to maximize adaptations.
Dobsak, Petr; Homolka, Pavel; Svojanovsky, Jan; Reichertova, Anna; Soucek, Miroslav; Novakova, Marie; Dusek, Ladislav; Vasku, Jaromir; Eicher, Jean-Christophe; Siegelova, Jarmila
2012-01-01
Hemodialyzed (HD) patients with end-stage renal disease (ESRD) exhibit lower fitness as a consequence of chronic uremic changes that trigger various structural, metabolic, and functional abnormalities in skeletal muscles. The aim of this randomized study was to compare the effect of rehabilitation (RHB) training on a bicycle ergometer and electromyostimulation (EMS) of leg extensors in HD patients with ESRD. Thirty-two HD patients (18 men/14 women; mean age 61.1 ± 8.8 years) were randomized into three groups: (i) exercise training (ET; n = 11) on bicycle ergometer 2 × 20 min; (ii) EMS (n = 11) where stimulation (10 Hz) of leg extensors was applied for 60 min; and (iii) controls (CON; n = 10) without exercise. Exercising was performed between the 2nd and the 3rd hour of HD, three times a week, 20 weeks in total. Ergometric test was performed in order to evaluate peak workload (W(peak)), 6-min corridor walking test (CWT) to evaluate the distance walked, and dynamometry of leg extensors to assess muscle power (F(max)). Urea clearance was monitored and expressed as standard parameters: spKt/V, spKt/V equilibrated (spKt/V-e), and the urea removal ratio (URR). Quality of life (QoL) was assessed by the questionnaire SF-36. A significant increase of F(max) (P = 0.040 in group ET; P = 0.032 in group EMS), of 6-min CWT (P < 0.001 in ET group; P = 0.042 in EMS group), and of W(peak) (P = 0.041 in ET group) was observed. In both exercising groups, significant increase of spKt/V, spKt/V-e, and URR was found as compared with initial values (P < 0.05). In both exercising groups, highly significant changes in summarized mental functions were found (P = 0.001); in summarized physical components, significant improvement was observed in the ET group (P = 0.006). Intradialytic RHB showed comparable positive effects on functional parameters, urea clearance, and QoL. Intradialytic EMS might represent wide therapeutic possibility in the near future. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi
2017-01-01
Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880
Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A
2017-01-01
Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
Xu, D Q; Li, J X; Hong, Y
2006-01-01
To investigate the influence of regular Tai Chi (TC) practice and jogging on muscle strength and endurance in the lower extremities of older people. Twenty one long term older TC practitioners were compared with 18 regular older joggers and 22 sedentary counterparts. Maximum concentric strength of knee flexors and extensors was tested at angular velocities of 30 degrees/s and 120 degrees/s. Ankle dorsiflexors and plantar flexors were tested at 30 degrees/s and the dynamic endurance of the knee flexors and extensors was assessed at a speed of 180 degrees/s. The differences in the muscle strength of the knee joint amongst the three experimental groups were significant at the higher velocity. The strengths of knee extensors and flexors in the control group were significantly lower than those in the jogging group and marginally lower than those in the TC group. For the ankle joint, the subjects in both the TC and jogging groups generated more torque in their ankle dorsiflexors. In addition, the muscle endurance of knee extensors was more pronounced in TC practitioners than in controls. Regular older TC practitioners and joggers showed better scores than the sedentary controls on most muscle strength and endurance measures. However, the magnitude of the exercise effects on muscles might depend on the characteristics of different types of exercise.
Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo
2014-01-01
To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P < 0.05), yet poorly, correlated with handgrip strength (r < 0.30). The majority of analyses did not show any correlation between variables assessed by isokinetic dynamometer and handgrip dynamometer. Caution is required when generalizing handgrip strength as a predictor of global muscle strength in community-dwelling elderly women. © 2013 Japan Geriatrics Society.
Maki, Satoshi; Koda, Masao; Furuya, Takeo; Takahashi, Kazuhisa; Yamazaki, Masashi
2016-03-02
Dropped head syndrome (DHS) is defined as weakness of the neck extensor muscles causing a correctable chin-on-the-chest deformity. Here we report the case of a patient with severe pain from lower leg ischemia showing DHS whose symptoms were attenuated by pain relief after amputation of the severely ischemic lower leg. To our knowledge this is the first report indicating that severe pain can cause DHS. A 64-year-old Asian woman was referred to our department with a 1-month history of DHS. She also suffered from severe right foot pain because of limb ischemia. She began to complain of DHS as her gangrenous foot pain worsened. She had neck pain and difficulty with forward gaze. We found no clinical or laboratory findings of neuromuscular disorder or isolated neck extensor myopathy. We amputated her leg below the knee because of progressive foot gangrene. Her severe foot pain resolved after the surgery and her DHS was attenuated. Severe pain can cause DHS. If a patient with DHS has severe pain in another part of the body, we recommend considering aggressive pain relief as a treatment option.
Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L
2017-02-01
This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2014-01-01
Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012
Kinematic and kinetic analysis of the fouetté turn in classical ballet.
Imura, Akiko; Iino, Yoichi; Kojima, Takeji
2010-11-01
The fouetté turn in classical ballet dancing is a continuous turn with the whipping of the gesture leg and the arms and the bending and stretching of the supporting leg. The knowledge of the movement intensities of both legs for the turn would be favorable for the conditioning of the dancer's body. The purpose of this study was to estimate the intensities. The hypothesis of this study was that the intensities were higher in the supporting leg than in the gesture leg. The joint torques of both legs were determined in the turns performed by seven experienced female classical ballet dancers with inverse dynamics using three high-speed cine cameras and a force platform. The hip abductor torque, knee extensor and plantar flexor torques of the supporting leg were estimated to be exerted up to their maximum levels and the peaks of the torques were larger than the peaks of their matching torques of the gesture leg. Thus, the hypothesis was partly supported. Training of the supporting leg rather than the gesture leg would help ballet dancers perform many revolutions of the fouetté turn continuously.
Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y
2012-02-01
This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.
Muscle function in elite master weightlifters.
Pearson, Stephen J; Young, Archie; Macaluso, Andrea; Devito, Giuseppe; Nimmo, Myra A; Cobbold, Matthew; Harridge, Stephen D R
2002-07-01
To determine whether explosive power and isometric strength of the lower-limb muscles in elite master Olympic weightlifters declines at a similar rate to nontrained healthy controls with increasing age. 54 elite level masters weightlifters (aged 40-87), who were competitors at the World Masters Weightlifting Championships (1999), were compared with a similar number of aged-matched, healthy untrained individuals. Isometric knee extensor strength and lower-limb explosive power were tested. Extent of antagonist co-contraction during isometric knee extension was determined by EMG and power loading characteristics by using a variable inertial system. Muscle volume was estimated using anthropometry. On average, the weightlifters were able to generate 32% more peak power (P < 0.05) in the lower limbs and 32% more isometric knee extensor force (P < 0.05) than the control subjects. No significant differences in lower-leg volume were observed between the two groups. Peak power declined at a similar rate with increasing age in the weightlifters and controls (1.2 and 1.3% of a 45-yr-old's value per year), as did strength, but at a lower rate (0.6 and 0.5% per year). The inertial load at which the weightlifters achieved their maximal peak power output was greater (P < 0.05) than the controls. The torque generated at this optimal inertia was also greater in the weightlifters (P < 0.05), whereas the time taken for the weightlifters to reach their maximal peak power was on average 13% shorter (P < 0.05). No differences in antagonist co-contraction during isometric knee extension were observed between the two groups. Muscle power and isometric strength decline at a similar rate with increasing age in elite master weightlifters and healthy controls. In spite of inertial load optimization, muscle power declined in both groups at approximately twice the rate of isometric strength. Although similar rates of decline were observed, the absolute differences between the weightlifters and controls were such that an 85-yr-old weightlifter was as powerful as a 65-yr-old control subject. This would therefore represent an apparent age advantage of approximately 20 yr for the weightlifters.
Eston, R G; Mickleborough, J; Baltzopoulos, V
1995-01-01
An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767
Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P.; Nicklas, Barbara
2016-01-01
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults. PMID:26447161
Mallinson, Joanne E.; Marimuthu, Kanagaraj; Murton, Andrew; Selby, Anna; Smith, Kenneth; Constantin‐Teodosiu, Dumitru; Rennie, Michael J.
2015-01-01
Key points Statins cause muscle‐specific side effects, most commonly muscle aches/weakness (myalgia), particularly in older people. Furthermore, evidence has linked statin use to increased risk of type 2 diabetes. However, the mechanisms involved are unknown.This is the first study to measure muscle protein turnover rates and insulin sensitivity in statin myalgic volunteers and age‐matched, non‐statin users under controlled fasting and fed conditions using gold standard methods.We demonstrate in older people that chronic statin myalgia is not associated with deficits in muscle strength and lean mass or the dysregulation of muscle protein turnover compared to non‐statin users. Furthermore, there were no between‐group differences in blood or muscle inflammatory markers.Statin users did, however, show blunting of muscle power output at the onset of dynamic exercise, increased abdominal adiposity, whole body and leg insulin resistance, and clear differential expression of muscle genes linked to mitochondrial dysfunction and apoptosis, which warrant further investigation. Abstract Statins are associated with muscle myalgia and myopathy, which probably reduce habitual physical activity. This is particularly relevant to older people who are less active, sarcopaenic and at increased risk of statin myalgia. We hypothesised that statin myalgia would be allied to impaired strength and work capacity in older people, and determined whether differences aligned with divergences in lean mass, protein turnover, insulin sensitivity and the molecular regulation of these processes. Knee extensor strength and work output during 30 maximal isokinetic contractions were assessed in healthy male volunteers, nine with no statin use (control 70.4 ± 0.7 years) and nine with statin myalgia (71.5 ± 0.9 years). Whole body and leg glucose disposal, muscle myofibrillar protein synthesis (MPS) and leg protein breakdown (LPB) were measured during fasting (≈5 mU l−1 insulin) and fed (≈40 mU l−1 insulin + hyperaminoacidaemia) euglyceamic clamps. Muscle biopsies were taken before and after each clamp. Lean mass, MPS, LPB and strength were not different but work output during the initial three isokinetic contractions was 19% lower (P < 0.05) in statin myalgic subjects due to a delay in time to reach peak power output. Statin myalgic subjects had reduced whole body (P = 0.05) and leg (P < 0.01) glucose disposal, greater abdominal adiposity (P < 0.05) and differential expression of 33 muscle mRNAs (5% false discovery rate (FDR)), six of which, linked to mitochondrial dysfunction and apoptosis, increased at 1% FDR. Statin myalgia was associated with impaired muscle function, increased abdominal adiposity, whole body and leg insulin resistance, and evidence of mitochondrial dysfunction and apoptosis. PMID:25620655
Bennett, Hunter J; Brock, Elizabeth; Brosnan, James T; Sorochan, John C; Zhang, Songning
2015-10-01
Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.
Community Weight Loss to Combat Obesity and Disability in At-Risk Older Adults.
Rejeski, W Jack; Ambrosius, Walter T; Burdette, Jonathan H; Walkup, Michael P; Marsh, Anthony P
2017-10-12
Among older, overweight, and obese adults with either cardiovascular disease or the metabolic syndrome, reduced mobility and loss of leg strength are important risk factors for morbidity, disability, and mortality. It is unclear whether community-based approaches to weight loss may be an effective solution to this public health challenge. An 18-month three-site, randomized controlled trial conducted by YMCA staff, with blinded assessors, enrolled 249 older, overweight, and obese adults with either cardiovascular disease or metabolic syndrome with randomization to three interventions: weight loss alone (WL), weight loss + aerobic training (WL + AT), and weight loss + resistance training (WT + RT). The dual primary outcomes were 400-m walk time in seconds and knee extensor strength in Newton meters. All groups lost weight from baseline: average baseline adjusted change of -6.1% (95% confidence interval [CI]: -7.5 to -4.7) for WL only, -8.6% (95% CI: -10.0 to -7.2) for WL + AT, and -9.7% (95% CI: -11.1 to -8.4) for WL + RT. Combined, the two physical activity + WL training groups had greater improvement in walk time than WL alone (mean difference 16.9 seconds [95% CI: 9.7 to 24.0], p < .0001). Baseline adjusted change in knee extensor strength was no greater with WL + RT than WL + AT (mean difference -3.6 Nm [95% CI: -7.5 to 0.3], p = .07). At risk, older, overweight and obese adults can achieve clinically significant reductions in body weight with community-based weight loss programs. The change in percent weight loss and improvements in mobility are significantly enhanced when either RT or AT is combined with dietary WL. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kim, Won Kuel; Seo, Kyung Mook; Kang, Si Hyun
2014-01-01
Objective To determine the reliability and validity of hand-held dynamometer (HHD) depending on its fixation in measuring isometric knee extensor strength by comparing the results with an isokinetic dynamometer. Methods Twenty-seven healthy female volunteers participated in this study. The subjects were tested in seated and supine position using three measurement methods: isometric knee extension by isokinetic dynamometer, non-fixed HHD, and fixed HHD. During the measurement, the knee joints of subjects were fixed at a 35° angle from the extended position. The fixed HHD measurement was conducted with the HHD fixed to distal tibia with a Velcro strap; non-fixed HHD was performed with a hand-held method without Velcro fixation. All the measurements were repeated three times and among them, the maximum values of peak torque were used for the analysis. Results The data from the fixed HHD method showed higher validity than the non-fixed method compared with the results of the isokinetic dynamometer. Pearson correlation coefficients (r) between fixed HHD and isokinetic dynamometer method were statistically significant (supine-right: r=0.806, p<0.05; seating-right: r=0.473, p<0.05; supine-left: r=0.524, p<0.05), whereas Pearson correlation coefficients between non-fixed dynamometer and isokinetic dynamometer methods were not statistically significant, except for the result of the supine position of the left leg (r=0.384, p<0.05). Both fixed and non-fixed HHD methods showed excellent inter-rater reliability. However, the fixed HHD method showed a higher reliability than the non-fixed HHD method by considering the intraclass correlation coefficient (fixed HHD, 0.952-0.984; non-fixed HHD, 0.940-0.963). Conclusion Fixation of HHD during measurement in the supine position increases the reliability and validity in measuring the quadriceps strength. PMID:24639931
Relation between functional mobility and dynapenia in institutionalized frail elderly.
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.
Differences in morphology and force/velocity relationship between Senegalese and Italian sprinters.
Rahmani, Abderrehmane; Locatelli, Elio; Lacour, Jean-Rene
2004-04-01
In order to investigate whether the supremacy of African sprinters is related to the leg extensor force/velocity relationship or to leg morphology, two groups of elite sprinters originating respectively from Senegal (S) and Italy (I) were compared in this respect. The groups included 13 S and 15 I male sprinters. Their mean best performances over 100 m during the preceding track and field season were 10.66 (0.3) and 10.61 (0.3) s (NS), respectively. Age, height and mass were similar in the two groups. The force/velocity relationship of the leg extensors was assessed during maximal half-squats on a guided horizontal barbell with masses of 20-140 kg added on the shoulders. Leg morphology was assessed by relating the sub-ischial length to the standing height (L/H) and by measuring the inertia in the vertical (IZ in kg.cm2), antero-posterior (IY, kg.cm2) and medio-lateral (IX, kg.m2) planes. The two groups developed non-different force and power when lifting the heaviest loads. Inversely, the lighter the load, the lower the force and power developed by S, as compared to I (P<0.001). S demonstrated greater L/H (P<0.001), and 26% lower IZ (P<0.01), 15% lower IY (P=0.09), and 14% lower IX (P=0.10). These results suggest that S and I sprinters were similar as regards the muscle abilities involved in slow maximal contractions. However, S demonstrated lower values in muscle abilities related to high-speed contractions, suggesting that S sprinters had a lower percentage of fast twitch fibres. This is likely to be compensated for by the lower level of internal work due to longer and lighter legs.
The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.
ERIC Educational Resources Information Center
Gettman, Larry R.; Huckel, Jack R.
The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…
Thompson, Brennan J; Cazier, Curtis S; Bressel, Eadric; Dolny, Dennis G
2018-08-01
This study aimed to provide a comprehensive strength-based physiological profile of women's NCAA Division I basketball and gymnastic athletes; and to make sport-specific comparisons for various strength characteristics of the knee flexor and extensor muscles. A focus on antagonist muscle balance (hamstrings-to-quadriceps ratios, H:Q) was used to elucidate vulnerabilities in these at-risk female athletes. Fourteen NCAA Division I women's basketball and 13 gymnastics athletes performed strength testing of the knee extensors and flexors. Outcome measures included absolute and relative (body mass normalised) peak torque (PT), rate of torque development at 50, 100, 200 ms (RTD50 etc.) and H:Q ratios of all variables. The basketball athletes had greater absolute strength for all variables except for isokinetic PT at 240°s -1 and isometric RTD50 for the knee extensors. Gymnasts showed ~20% weaker body mass relative concentric PT for the knee flexors at 60 and 120°·s -1 , and decreased conventional H:Q ratios at 60 and 240°·s -1 (~15%). These findings suggest that collegiate level gymnastics athletes may be prone to increased ACL injury risk due to deficient knee flexor strength and H:Q strength imbalance. Coaches may use these findings when implementing injury prevention screening and/or for individualised strength training programming centered around an athletes strength-related deficits.
Ipsilateral hip abductor weakness after inversion ankle sprain.
Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria
2006-01-01
Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.
ERIC Educational Resources Information Center
Schlenker, Richard M.; And Others
1995-01-01
Describes the use of constructivism in teaching human anatomy. Provides directions for constructing arm-hand and leg-foot models that include extensor and flexor muscles and that are easily and cheaply constructed. Lists resources that provide ideas for using such models depending upon the curriculum implemented in a school or the course that is…
Coombs, Timothy A; Frazer, Ashlyn K; Horvath, Deanna M; Pearce, Alan J; Howatson, Glyn; Kidgell, Dawson J
2016-09-01
Cross-education of strength has been proposed to be greater when completed by the dominant limb in right handed humans. We investigated whether the direction of cross-education of strength and corticospinal plasticity are different following right or left limb strength training in right-handed participants. Changes in strength, muscle thickness and indices of corticospinal plasticity were analyzed in 23 adults who were exposed to 3-weeks of either right-hand strength training (RHT) or left-hand strength training (LHT). Maximum voluntary wrist extensor strength in both the trained and untrained limb increased, irrespective of which limb was trained, with TMS revealing reduced corticospinal inhibition. Cross-education of strength was not limited by which limb was trained and reduced corticospinal inhibition was not just confined to the trained limb. Critically, from a behavioral perspective, the magnitude of cross-education was not limited by which limb was trained.
Vigelsø, A; Gram, M; Dybboe, R; Kuhlman, A B; Prats, C; Greenhaff, P L; Constantin-Teodosiu, D; Birk, J B; Wojtaszewski, J F P; Dela, F; Helge, J W
2016-04-15
This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate-intensity exercise. Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two-legged dynamic knee-extensor moderate-intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise. Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise. Using a combined whole-leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.
2016-01-01
Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl‐CoA carboxylase 2 and AMP‐activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane‐associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole‐leg and molecular differences in fatty acid mobilization could explain the age‐ and immobilization‐induced IMTG accumulation. PMID:26801521
Body composition and cross-sectional areas of limb lean tissues in Olympic weight lifters.
Kanehisa, H; Ikegawa, S; Fukunaga, T
1998-10-01
The cross-sectional area (CSAs) of bone and muscle tissues in the forearm, upper arm, lower leg, and thigh and body composition were determined by B-mode ultrasound and underwater weighing methods, respectively for 56 college Olympic weight lifters and 28 age-matched non-athletes to investigate the magnitude of musculoskeletal development in the strength-trained athletes belonging to the weight-classified sports event. The average value of fat-free mass (FFM) for the weight lifters ranked 12.6 kg above the regression line of FFM on stature for untrained subjects. In the weight lifters, however, the percentage of fat mass to body mass was also highly correlated to body mass index. Bone and muscle CSAs in every site were significantly larger in the weight lifter than in the untrained subjects with relative differences of 22 to 58% and 17 to 56%, respectively. Moreover, as a result of regression analysis for the mixed data from weight lifters and untrained subjects, significant correlation was found between bone and muscle CSAs in every site (r = 0.620 to 0.791, P < 0.05). The differences in lean (bone + muscle) CSA were still significant in all sites except for the lower leg even when the difference in body size was statistically controlled. The comparisons between the weight lifters and untrained subjects on the lean CSA ratios of site to site and muscle CSA ratios of flexors to extensors indicated that the weight lifters had achieved a high relative distribution of lean tissues in the arms and a dominant development in elbow and knee extensors. Thus, the present results suggested that participation in weight lifting exercises for a long period could increase bone CSA as well as muscle CSA, and induce in the participants a noticeable enlargement in given sites and muscle groups responsible for performing the Olympic lifts.
Handsaker, Joseph C; Brown, Steven J; Bowling, Frank L; Cooper, Glen; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D
2014-11-01
Although patients with diabetic peripheral neuropathy (DPN) are more likely to fall than age-matched controls, the underlying causative factors are not yet fully understood. This study examines the effects of diabetes and neuropathy on strength generation and muscle activation patterns during walking up and down stairs, with implications for fall risk. Sixty-three participants (21 patients with DPN, 21 diabetic controls, and 21 healthy controls) were examined while walking up and down a custom-built staircase. The speed of strength generation at the ankle and knee and muscle activation patterns of the ankle and knee extensor muscles were analyzed. Patients with neuropathy displayed significantly slower ankle and knee strength generation than healthy controls during stair ascent and descent (P < 0.05). During ascent, the ankle and knee extensor muscles were activated significantly later by patients with neuropathy and took longer to reach peak activation (P < 0.05). During descent, neuropathic patients activated the ankle extensors significantly earlier, and the ankle and knee extensors took significantly longer to reach peak activation (P < 0.05). Patients with DPN are slower at generating strength at the ankle and knee than control participants during walking up and down stairs. These changes, which are likely caused by altered activations of the extensor muscles, increase the likelihood of instability and may be important contributory factors for the increased risk of falling. Resistance exercise training may be a potential clinical intervention for improving these aspects and thereby potentially reducing fall risk. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Leg blood flow is impaired during small muscle mass exercise in patients with COPD.
Iepsen, U W; Munch, G W; Rugbjerg, M; Ryrsø, C K; Secher, N H; Hellsten, Y; Lange, P; Pedersen, B K; Thaning, P; Mortensen, S P
2017-09-01
Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee-extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex-matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared with the controls (1.82 ± 0.11 vs. 2.36 ± 0.14 l/min, respectively; P < 0.05), which compromised leg oxygen delivery (372 ± 26 vs. 453 ± 32 ml O 2 /min, respectively; P < 0.05). At rest, plasma endothelin-1 (vasoconstrictor) was higher in the patients with COPD ( P < 0.05) and also tended to be higher during exercise ( P = 0.07), whereas the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggest that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1. NEW & NOTEWORTHY This study demonstrates that chronic obstructive pulmonary disease (COPD) is associated with a reduced blood flow to skeletal muscle during small muscle mass exercise. In contrast to healthy individuals, interstitial prostacyclin levels did not increase during exercise and plasma endothelin-1 levels were higher in the patients with COPD. Copyright © 2017 the American Physiological Society.
NOT ALL SINGLE LEG SQUATS ARE EQUAL: A BIOMECHANICAL COMPARISON OF THREE VARIATIONS.
Khuu, Anne; Foch, Eric; Lewis, Cara L
2016-04-01
The single leg squat (SLS) is a functional task used by practitioners to evaluate and treat multiple pathologies of the lower extremity. Variations of the SLS may have different neuromuscular and biomechanical demands. The effect of altering the non-stance leg position during the SLS on trunk, pelvic, and lower extremity mechanics has not been reported. The purpose of this study was to compare trunk, pelvic, hip, knee, and ankle kinematics and hip, knee, and ankle kinetics of three variations of the SLS using different non-stance leg positions: SLS-Front, SLS-Middle, and SLS-Back. Sixteen healthy women performed the three SLS tasks while data were collected using a motion capture system and force plates. Joint mechanics in the sagittal, frontal, and transverse planes were compared for the SLS tasks using a separate repeated-measures analysis of variance (ANOVA) for each variable at two analysis points: peak knee flexion (PKF) and 60 ° of knee flexion (60KF). Different non-stance leg positions during the SLS resulted in distinct movement patterns and moments at the trunk, pelvis, and lower extremity. At PKF, SLS-Back exhibited the greatest kinematic differences (p < 0.05) from SLS-Front and SLS-Middle with greater ipsilateral trunk flexion, pelvic anterior tilt and drop, hip flexion and adduction, and external rotation as well as less knee flexion and abduction. SLS-Back also showed the greatest kinetic differences (p < 0.05) from SLS-Front and SLS-Middle with greater hip external rotator moment and knee extensor moment as well as less hip extensor moment and knee adductor moment at PKF. At 60KF, the findings were similar except at the knee. The mechanics of the trunk, pelvis, and lower extremity during the SLS were affected by the position of the non-stance leg in healthy females. Practitioners can use these findings to distinguish between SLS variations and to select the appropriate SLS for assessment and rehabilitation. 3.
Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei
2016-07-01
Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert
2018-01-10
To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.
Bone mineral density, muscle strength, and recreational exercise in men
NASA Technical Reports Server (NTRS)
Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.
1992-01-01
Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.
1993-01-01
Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.
Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.
2010-01-01
The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811
Maintenance of exercise-induced benefits in physical functioning and bone among elderly women.
Karinkanta, S; Heinonen, A; Sievänen, H; Uusi-Rasi, K; Fogelholm, M; Kannus, P
2009-04-01
This study showed that about a half of the exercise-induced gain in dynamic balance and bone strength was maintained one year after cessation of the supervised high-intensity training of home-dwelling elderly women. However, to maintain exercise-induced gains in lower limb muscle force and physical functioning, continued training seems necessary. Maintenance of exercise-induced benefits in physical functioning and bone structure was assessed one year after cessation of 12-month randomized controlled exercise intervention. Originally 149 healthy women 70-78 years of age participated in the 12-month exercise RCT and 120 (81%) of them completed the follow-up study. Self-rated physical functioning, dynamic balance, leg extensor force, and bone structure were assessed. During the intervention, exercise increased dynamic balance by 7% in the combination resistance and balance-jumping training group (COMB). At the follow-up, a 4% (95% CI: 1-8%) gain compared with the controls was still seen, while the exercise-induced isometric leg extension force and self-rated physical functioning benefits had disappeared. During the intervention, at least twice a week trained COMB subjects obtained a significant 2% benefit in tibial shaft bone strength index compared to the controls. A half of this benefit seemed to be maintained at the follow-up. Exercise-induced benefits in dynamic balance and rigidity in the tibial shaft may partly be maintained one year after cessation of a supervised 12-month multi-component training in initially healthy elderly women. However, to maintain the achieved gains in muscle force and physical functioning, continued training seems necessary.
Takano, Yoshio; Matsuse, Hiroo; Tsukada, Yuuya; Omoto, Masayuki; Hashida, Ryuki; Shiba, Naoto
2016-01-01
The hybrid training system (HTS) resists the motion of a volitionally contracting agonist muscle using force generated by its electrically stimulated antagonist. We have developed a new training method using the principle of HTS. This study was designed to evaluate the effect of HTS with electrical stimulation on muscle strength and physical function by comparing it against training without electrical stimulation in older adults. 16 subjects were randomly divided into two groups: the squat and single leg lift training (control, CTR) group, and the CTR with HTS training group. Some electrical stimulation was applied to the quadriceps and hamstring muscles in the HTS group. The subjects performed training for 25 min per session 3 times a week for 12 weeks. At points before and after the research maximal isokinetic torque, knee-flexors (KFT) and knee-extensors (KET), a one-leg standing test (OLT), a functional reach test (FRT), a 10-meter maximal gait time (10MGT) and Timed up & go test (TUG) were conducted. None of the subjects had any injuries during the study period. TUG significantly improved after the training period in both the HTS group (7.15 sec to 6.01 sec P = 0.01) and in the CTR.
Impulsive ankle push-off powers leg swing in human walking.
Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre
2014-04-15
Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.
Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing
2017-12-01
This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000
Kline, Jessica Beckmann; Krauss, John R; Maher, Sara F; Qu, Xianggui
2013-01-01
Estimates of low back pain prevalence in USA ballet dancers range from 8% to 23%. Lumbar stabilization and extensor muscle training has been shown to act as a hypoalgesic for low back pain. Timing and coordination of multifidi and transverse abdominis muscles are recognized as important factors for spinal stabilization. The purpose of this study was to explore the effects of training methods using home exercises and a dynamic sling system on core strength, disability, and low back pain in pre-professional ballet dancers. Five participants were randomly assigned to start a traditional unsupervised lumbar stabilization home exercise program (HEP) or supervised dynamic sling training to strengthen the core and lower extremities. Measurements were taken at baseline and at weeks 3 and 6 for disability using the patient specific functional scale (PSFS), pain using the Numerical Pain Rating System (NPRS), core strength and endurance using timed plank, side-plank, and bridge positions, and sciatic nerve irritability using the straight leg raise (SLR). Data were analyzed using descriptive statistics. From initial to final measurements, all participants demonstrated an improvement in strength and SLR range, and those with initial pain and disability reported relief of symptoms. These results suggest that dynamic sling training and a HEP may help to increase strength, decrease pain, and improve function in dancers without aggravating sciatic nerve irritation.
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.
Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain
Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria
2006-01-01
Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098
Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke.
Conrad, Megan O; Qiu, Dan; Hoffmann, Gilles; Zhou, Ping; Kamper, Derek G
2017-05-01
Stroke survivors experience greater strength deficits during finger extension than finger flexion. Prior research indicates relatively little observed weakness is directly attributable to muscle atrophy. Changes in other muscle properties, however, may contribute to strength deficits. This study measured muscle fiber conduction velocity (MFCV) in a finger flexor and extensor muscle to infer changes in muscle fiber-type after stroke. Conduction velocity was measured using a linear EMG surface electrode array for both extensor digitorum communis and flexor digitorum superficialis in 12 stroke survivors with chronic hand hemiparesis and five control subjects. Measurements were made in both hands for all subjects. Stroke survivors had either severe (n = 5) or moderate (n = 7) hand impairment. Absolute MFCV was significantly lower in the paretic hand of severely impaired stroke patients compared to moderately impaired patients and healthy control subjects. The relative MFCV between the two hands, however, was quite similar for flexor muscles across all subjects and for extensor muscles for the neurologically intact control subjects. However, MFCV for finger extensors was smaller in the paretic as compared to the nonparetic hand for both groups of stroke survivors. One explanation for reduced MFCV may be a type-II to type-I muscle fiber, especially in extrinsic extensors. Clinically, therapists may use this information to develop therapeutic exercises targeting loss of type-II fiber in extensor muscles.
Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L
2017-12-08
Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.
Physical performance measures that predict faller status in community-dwelling older adults.
Macrae, P G; Lacourse, M; Moldavon, R
1992-01-01
Falls are a leading cause of fatal and nonfatal injuries among the elderly. Accurate determination of risk factors associated with falls in older adults is necessary, not only for individual patient management, but also for the development of fall prevention programs. The purpose of this study was to evaluate the effectiveness of clinical measures, such as the one-legged stance test (OLST), sit-to-stand test (STST), manual muscle tests (MMT), and response speed in predicting faller status in community-dwelling older adults (N = 94, age 60-89 years). The variables assessed were single-leg standing (as measured by OLST), STST, and MMT of 12 different muscle groups (hip flexors, hip abductors, hip adductors, knee flexors, knee extensors, ankle dorsiflexors, ankle plantarflexors, shoulder flexors, shoulder abductors, elbow flexors, elbow extensors, and finger flexors), and speed of response (as measured by a visual hand reaction and movement time task). Of the 94 older adults assessed, 28 (29.7%) reported at least one fall within the previous year. The discriminant analysis revealed that there were six variables that significantly discriminated between fallers and nonfallers. These variables included MMT of the ankle dorsiflexors, knee flexors, hip abductors, and knee extensors, as well as time on the OLST and the STST. The results indicate that simple clinical measures of musculoskeletal function can discriminate fallers from nonfallers in community-dwelling older adults. J Orthop Sports Phys Ther 1992;16(3):123-128.
Wilhelm, Eurico N; González-Alonso, José; Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark
2017-11-01
Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole-body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41 + ) and endothelial microvesicles (EMV-CD62E + ). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] ( P ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg ( P < 0.05). In Study 2, moderate whole-body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV . μ L -1. 10 3 , P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV . μ L -1. 10 3 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole-body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Relation between functional mobility and dynapenia in institutionalized frail elderly
Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes
2017-01-01
ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148
Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors
Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.
2018-01-01
Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; p<0.001). For the non-exercised knee extensors, there is a time ´ sex interaction (p=0.025), showing a decreased isometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584
Greater Neural Adaptations following High- vs. Low-Load Resistance Training
Jenkins, Nathaniel D. M.; Miramonti, Amelia A.; Hill, Ethan C.; Smith, Cory M.; Cochrane-Snyman, Kristen C.; Housh, Terry J.; Cramer, Joel T.
2017-01-01
We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 ± 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13) or low-load (30% 1RM; n = 13) resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC) strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA) and electromyographic (EMG) amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10–100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the disparate increases in muscle strength despite similar hypertrophy following high- and low-load training programs. PMID:28611677
Yoshihara, A; Tobina, T; Yamaga, T; Ayabe, M; Yoshitake, Y; Kimura, Y; Shimada, M; Nishimuta, M; Nakagawa, N; Ohashi, M; Hanada, N; Tanaka, H; Kiyonaga, A; Miyazaki, H
2009-01-01
The turning point in the deterioration of physical function seems to occur between the ages of 70 and 80 years. In particular, muscle strength may decline even more in subjects older than 75. A recent study found that the angiotensin-converting enzyme (ACE) genotype also affects physiological left ventricular hypertrophy. A very limited number of papers have examined genetic differences in resistance and endurance forms of a single sporting discipline. The purpose of this study was to evaluate the relationship between ACE genotype and physical function by controlling the known confounding factors including dental status. We selected 431 subjects who were aged 76 years and did not require special care for their daily activities. We conducted a medical examination, followed by 5 physical function tests, as follows: (1) maximum hand grip strength, (2) maximal isometric knee extensor strength, (3) maximal stepping rate for 10 s, (4) one-leg standing time with eyes open and (5) 10-meter maximum walking speed. Subjects were genotyped for the ACE intron 16 Alu insertion. In addition, serum concentrations of total cholesterol, total protein, IgA and IgG were measured at a commercial laboratory. The Eichner index was used as an indicator of occlusal condition. Multiple linear regression analysis was performed to evaluate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and physical function considering confounding factors. The ACE gene I/D polymorphism was positively associated with hand grip strength and 10-meter maximum walking speed. Betas of hand grip strength were 0.09 for I/D (p = 0.022) and 0.12 for insertion/insertion (I/I; p = 0.004). Betas of 10-meter walking speed were -0.11 for I/D (p = 0.093) and -0.14 for I/I (p = 0.039). Dental status such as Eichner index class C was significantly associated with one-leg standing time with eyes open (beta -0.11; p = 0.028). This study suggests that there is a significant relationship between ACE genotype and physical function. In particular, subjects with the ACE deletion/deletion genotype were associated with upper extremities. Copyright 2009 S. Karger AG, Basel.
Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.
2016-01-01
Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926
Mayer, John M; Childs, John D; Neilson, Brett D; Chen, Henian; Koppenhaver, Shane L; Quillen, William S
2016-11-01
Low back pain is common, costly, and disabling for active duty military personnel and veterans. The evidence is unclear on which management approaches are most effective. The purpose of this study was to assess the effectiveness of lumbar extensor high-intensity progressive resistance exercise (HIPRE) training versus control on improving lumbar extension muscular strength and core muscular endurance in soldiers. A randomized controlled trial was conducted with active duty U.S. Army Soldiers (n = 582) in combat medic training at Fort Sam Houston, Texas. Soldiers were randomized by platoon to receive the experimental intervention (lumbar extensor HIPRE training, n = 298) or control intervention (core stabilization exercise training, n = 284) at one set, one time per week, for 11 weeks. Lumbar extension muscular strength and core muscular endurance were assessed before and after the intervention period. At 11-week follow-up, lumbar extension muscular strength was 9.7% greater (p = 0.001) for HIPRE compared with control. No improvements in core muscular endurance were observed for HIPRE or control. Lumbar extensor HIPRE training is effective to improve isometric lumbar extension muscular strength in U.S. Army Soldiers. Research is needed to explore the clinical relevance of these gains. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Assessing the therapeutic effect of 625-nm light-emitting diodes
NASA Astrophysics Data System (ADS)
Mao, Zongzhen; Xu, Guodong; Yang, Yi
2014-09-01
To evaluate the effects of red Light-Emitting Diodes on elbow extensor and flexor strength and the recovery of exercise induced fatigue, the torque values from the isokinetic dynamometer as well as biochemistry parameters were used as outcome measures. A randomized double-blind placebo-controlled crossover trial was performed with twenty male young tennis athletes. Active LED therapy (LEDT, with wavelength 625nm, 10 minutes total irradiation time, irradiated area amount to 30cm2, and 900J of total energy irradiated) or an identical placebo was delivered under double-blinded conditions to the left elbow just before exercise. The isokinetic muscle strength was measured immediately after irradiation. The blood lactate levels were sampled pre-exercise and post-exercise. The peak torque values of elbow extensor strength were significantly different between two groups. As in elbow flexor strength, the difference of peak torque was not significant. The blood lactate concentration of LEDT group post-exercise was significantly lower than those of placebo group. The results indicate that 625nm LED therapy is effective in preventing muscle fatigue as it can significantly reduce peak torque value of elbow extensors and blood lactate concentration. It has no effect on the strength of left elbow flexor or backhand performance in tennis.
Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training
ERIC Educational Resources Information Center
Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.
2006-01-01
This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…
Vitamin D status and physical function in older Finnish people: A one-year follow-up study.
Salminen, Marika; Saaristo, Pilvi; Salonoja, Maritta; Vaapio, Sari; Vahlberg, Tero; Lamberg-Allardt, Christel; Aarnio, Pertti; Kivelä, Sirkka-Liisa
2015-01-01
The aim was to describe vitamin D status and its association with changes in PF during 12 months in Finnish community-dwelling elderly (≥65 years). Baseline serum 25-hydroxyvitamin D (25OHD) concentration was measured by enzymeimmunoassay, and participants (n=518) were divided according to 25OHD to three groups (I <50 nmol/l, II 50-74.9 nmol/l, and III ≥75 nmol/l). PF (maximal isometric extension strength of right and left knee, and time in five-repetition sit-to-stand test (5STS) and 10-m walking test) was measured at baseline and after 12 months. 25OHD deficiency (<50 nmol/l) was found in 20.5% of the participants. During a 12-month follow-up, differences in changes in knee extensor strength of right (p=0.044) and left (p=0.010) lower extremity and in 10-m walking test (p=.040) between the groups were significant. According to further pairwise comparisons these differences were between groups I and III (right knee, p=0.036; left knee, p=0.009; 10-m walk, p=0.044), with the exception of left knee extensor strength in which there were also significant difference between groups I and II (p=0.039). All significant differences in changes were in favour of group II or III. Significant differences in changes in knee extensor strengths maintained after adjustments for group (intervention/control), parathyroid hormone, and baseline level of knee extensor strength. Prospective analyses showed low 25OHD concentrations (<50 nmol/l) to be associated with deterioration in PF during 12 months compared with high 25OHD concentrations (≥75 nmol/l). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Alvim, Felipe C; Peixoto, Jennifer G; Vicente, Eduardo J D; Chagas, Paula S C; Fonseca, Diogo S
2010-01-01
There is a lack of data in the literature for determining the influences of the extensor portion of the gluteus maximus muscle on pelvic tilting and, thus, on lumbar stability. To assess the influences of the extensor portion of the gluteus maximus muscle on pelvic tilt. Ten healthy young subjects were recruited, with a body mass index (BMI) below 24.9 kg/m(2) and leg length discrepancy below 1 cm. The BMI, pelvic perimeter and lower-limb lengths were assessed and, subsequently, the degrees of hemi-pelvic tilt and asymmetry between them were analyzed using lateral view photographs of the subjects in a standing position, using SAPO (Software for Postural Assessment). Next, fatigue was induced in the extensor portion of the gluteus maximus muscle on the dominant side, and after that the hemi-pelvic tilt and the asymmetry between the hemi-pelvises were reassessed. The Pearson r and Student t tests were conducted at the significance level of alpha=0.05. There were no significant correlations between the confounding variables and asymmetry of the hemi-pelvic angles. There were significant changes in the hemi-pelvic angle of the dominant side (t=3.760; p=0.004). Fatigue in the extensor portion of the gluteus maximus muscle can generate increases in the tilt angle of the ipsilateral pelvis.
The effect of spinal manipulation on imbalances in leg strength.
Chilibeck, Philip D; Cornish, Stephen M; Schulte, Al; Jantz, Nathan; Magnus, Charlene R A; Schwanbeck, Shane; Juurlink, Bernhard H J
2011-09-01
We hypothesized that spinal manipulation (SM) would reduce strength imbalances between legs. Using an un-blinded randomized design, 28 males and 21 females (54 ± 19y) with at least a 15% difference in isometric strength between legs for hip flexion, extension, abduction, or knee flexion were randomized to treatment or placebo (mock spinal manipulation). Strength of the stronger and weaker legs for hip flexion, extension, abduction, and/or knee flexion was assessed before and after the intervention. SM reduced the relative strength difference between legs for knee flexion (mean ± SD 57 ± 53 to 5 ± 14%) and hip flexion (24 ± 12 to 11 ± 15%) compared to placebo (34 ± 29 to 24 ± 36%, and 20 ± 18 to 22 ± 26%, respectively) (p = 0.05). SM also improved strength in the weak leg for hip abduction (104 ± 43 to 116 ± 43 Nm) compared to placebo (84 ± 24 to 85 ± 31 Nm) (p = 0.03). This study suggests that spinal manipulation may reduce imbalances in strength between legs for knee and hip flexion.
Awatani, Takenori; Morikita, Ikuhiro; Mori, Seigo; Shinohara, Junji; Tatsumi, Yasutaka
2018-04-01
[Purpose] The purpose of the present study was to confirm the relationships between shoulder strength (extensor strength and internal rotator strength) of the abducted position and swimming power during arm-only swimming. [Subjects and Methods] Fourteen healthy male collegiate swimmers participated in the study. Main measures were shoulder strength (strength using torque that was calculated from the upper extremity length and the isometric force of the abducted position) and swimming power. [Results] Internal rotation torque of the dominant side in the abducted external rotated position (r=0.85) was significantly correlated with maximum swimming power. The rate of bilateral difference in extension torque in the maximum abducted position (r=-0.728) was significantly correlated with the swimming velocity-to-swimming power ratio. [Conclusion] The results of this study suggest that internal rotator strength measurement in the abducted external rotated position and extensor strength measurement in the maximum abducted position are valid assessment methods for swimmers.
Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.
Vinge, Lotte; Andersen, Henning
2016-10-01
Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.
Profiling Isokinetic Strength by Leg Preference and Position in Rugby Union Athletes.
Brown, Scott R; Brughelli, Matt; Bridgeman, Lee A
2016-05-01
Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry. To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions. Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s. Backs were older (ES = 1.6) but smaller in stature (ES = -0.47) and body mass (ES = -1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = -0.37) and flexion (ES = -0.21) actions and for backs during extension (ES = -0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = -0.50) and flexion (ES = -0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = -0.93 to -0.94) and hip (ES = -0.84 to -1.17) than the forwards. In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.
Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias
2017-10-01
Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.
Relationship between mechanical factors and incidence of low back pain.
Nourbakhsh, Mohammad Reza; Arab, Amir Massoud
2002-09-01
A multifactorial cross-sectional nonexperimental design. To collectively investigate the association among 17 mechanical factors and occurrence of low back pain (LBP). Several physical characteristics, based on assumptions, clinical findings, and scientific experiments, have been associated with the development of LBP Controversy exists regarding the degree of association between some of these physical characteristics and LBP. Information regarding the degree of association of each factor to LBP is needed for effective prevention and appropriate treatment strategies. A total of 600 subjects participated in this study. Subjects were categorized into 4 groups: asymptomatic men (n = 150, age [mean +/- SD] = 43 +/- 15 years), asymptomatic women (n = 150, age [mean +/- SD] = 43 +/- 13 years), men with LBP (n = 150, age [mean +/- SD] = 43 +/- 14 years), and women with LBP (n = 150, age [mean +/- SD] = 43 +/- 13 years). Seventeen physical characteristics were measured in each group and the relative association of each characteristic with LBP was assessed. Among all the factors tested, endurance of the back extensor muscles had the highest association with LBP Other factors such as the length of the back extensor muscles, and the strength of the hip flexor, hip adductor, and abdominal muscles also had a significant association with LBP. It appears that muscle endurance and weakness are associated with LBP and that structural factors such as the size of the lumbar lordosis, pelvic tilt, leg length discrepancy, and the length of abdominal, hamstring, and iliopsoas muscles are not associated with the occurrence of LBP.
Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren
2014-01-01
Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.
Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young
2017-01-01
This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.
Relationship between strength, power and balance performance in seniors.
Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs
2012-01-01
Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.
Caplan, Nicholas; Christian Gibbon, Karl; Howatson, Glyn; Grant Thompson, Kevin
2016-01-01
Abstract This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected. PMID:28149354
Roy, Tracey Ann; Blackman, Marc R; Harman, S Mitchell; Tobin, Jordan D; Schrager, Matthew; Metter, E Jeffery
2002-08-01
Muscle mass and strength losses during aging may be associated with declining levels of serum testosterone (T) in men. Few studies have shown a direct relationship between T and muscle mass and strength. Subjects were 262 men, aged 24-90 yr, from the Baltimore Longitudinal Study of Aging, who had T and sex hormone-binding globulin sex hormone-binding globulin (SHBG) measurements, from which the free T index (FTI) was calculated (T/SHBG) from serum samples collected longitudinally since 1963, total body fat mass and arm and leg fat-free mass (FFM) by dual-energy X-ray absorptiometry and arm and leg strength by dynanomometry. Mixed-effects models estimated T and FTI at the time of mass and strength measurements. Age, total body fat, arm and leg FFM, T, and FTI were significantly associated with concentric and eccentric strength. FTI, not T, was modestly, but directly, related to arm and leg strength after fat, arm and leg FFM, height, and age were accounted for and indirectly through body mass. FTI is a better predictor of arm and leg strength than T in aging men.
Effects of Tai Chi Training on Antioxidant Capacity in Pre- and Postmenopausal Women
Palasuwan, Attakorn; Suksom, Daroonwan; Margaritis, Irène; Soogarun, Suphan; Rousseau, Anne-Sophie
2011-01-01
The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity—an aerobic training-responsive antioxidant enzyme—and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention. PMID:21584229
Effects of tai chi training on antioxidant capacity in pre- and postmenopausal women.
Palasuwan, Attakorn; Suksom, Daroonwan; Margaritis, Irène; Soogarun, Suphan; Rousseau, Anne-Sophie
2011-04-11
The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity-an aerobic training-responsive antioxidant enzyme-and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.
USDA-ARS?s Scientific Manuscript database
This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...
Annino, Giuseppe; Padua, Elvira; Castagna, Carlo; Di Salvo, Valter; Minichella, Stefano; Tsarpela, Olga; Manzi, Vincenzo; D'Ottavio, Stefano
2007-11-01
The aim of this study was to examine the effects of 8 weeks of whole body vibration (WBV) training on vertical jump ability (CMJ) and knee-extensor performance at selected external loads (50, 70, and 100 kg; leg-press exercise) in elite ballerinas. Twenty-two (age, 21.25 +/- 1.5 years) full-time ballerinas were assigned randomly to the experimental (E, n = 11) and control (C, n = 11) groups. The experimental group was submitted to WBV training 3 times per week before ballet practice. During the training period, the E and C groups undertook the same amount of ballet practice. Posttraining CMJ performance significantly increased in E group (6.3 +/- 3.8%, p < 0.001). Furthermore, E group showed significant (p < 0.05-0.001) posttraining average leg-press power and velocity improvements at all the external loads considered. Consequently, the force-velocity and power-velocity relationship shifted to the right after WBV training in the E group. The results of the present study show that WBV training is an effective short-term training methodology for inducing improvements in knee-extensor explosiveness in elite ballerinas.
BIOMECHANICAL DIFFERENCES IN BRAZILIAN JIU-JITSU ATHLETES: THE ROLE OF COMBAT STYLE.
Lima, Pedro Olavo de Paula; Lima, Alane Almeida; Coelho, Anita Camila Sampaio; Lima, Yuri Lopes; Almeida, Gabriel Peixoto Leão; Bezerra, Márcio Almeida; de Oliveira, Rodrigo Ribeiro
2017-02-01
Brazilian Jiu-Jitsu (BJJ) athletes can be divided into two combat styles: pass fighters (PFs) and guard fighters (GFs). Flexibility of the posterior chain muscles is highly necessary in these athletes, especially in GFs. On the other hand, isometric strength of the trunk extensors is required in PFs. Handgrip strength is important in holding the kimono of the opponent, and symmetrical lower-limb strength is important for the prevention of injuries due to the overload caused by training. The aim of this study was to compare the biomechanical profiles of BJJ athletes with different combat styles using the following outcome measures: flexibility, trunk extensor isometric endurance, postural balance, handgrip isometric endurance and lower-limb muscle strength. A cross-sectional study was conducted using 19 GFs and 19 PFs. The sit-and-reach test was used to evaluate the flexibility of the posterior chain muscles. The Biodex Balance System® was used to evaluate balance. A handgrip dynamometer and a dorsal dynamometer were used to evaluate handgrip and trunk extensor endurance, respectively. Quadriceps and hamstring strength were evaluated with an isokinetic dynamometer at 60 °/s. No differences were observed between groups in terms of flexibility, balance, handgrip isometric endurance or quadriceps and hamstring strength; however, PFs (81.33) showed more isometric trunk extension endurance than GFs (68.85) ( p = 0.02). Both groups had low values for hamstring/quadriceps ratio. No significant biomechanical differences were observed between PFs and GFs. 2b.
Mikkola, Jussi; Vesterinen, Ville; Taipale, Ritva; Capostagno, Benoit; Häkkinen, Keijo; Nummela, Ari
2011-10-01
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(₂max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(₂max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.
The exercise and environmental physiology of extravehicular activity
NASA Technical Reports Server (NTRS)
Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.
2002-01-01
Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.
The exercise and environmental physiology of extravehicular activity.
Cowell, Stephenie A; Stocks, Jodie M; Evans, David G; Simonson, Shawn R; Greenleaf, John E
2002-01-01
Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor strength, and a 15-20% decrease in lower-body aerobic exercise capacity. Changes in EVA support systems and training based on a greater understanding of the physiological aspects of exercise in the EVA environment will help to insure the health, safety, and efficiency of working astronauts.
Nakagawa, Kazumasa; Maeda, Misako
2017-03-01
[Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.
Mascarin, Naryana C.; Vargas, Valentine Z.; Vancini, Rodrigo L.; Andrade, Marília S.
2017-01-01
Background Anterior cruciate ligament injury is higher in soccer athletes as compared to athletes of other sports. Risk factors for anterior cruciate ligament injury include low knee hamstring/quadriceps strength ratio and bilateral strength deficits. Purpose To investigate isokinetic thigh muscles strength, hamstring/quadriceps strength ratio, and bilateral strength comparisons in athletes who participate in professional soccer, futsal, and beach soccer. Study Design Cross-sectional study. Methods Brazilian professional soccer (n=70), futsal (n=30), and beach soccer (n=12) players were isokinetically assessed to examine strength of knee extensors and flexors at 60 degrees/second in concentric mode, to measure peak torque of dominant and non-dominant limbs. Results In the dominant limb, for extensors muscles, futsal players presented significantly lower peak torque values (223.9 ± 33.4 Nm) than soccer (250.9 ± 43.0 Nm; p=0.02) and beach soccer players (253.1 ± 32.4 Nm; p=0.03). Peak torque for extensor muscles in the non-dominant limb was significantly lower in futsal (224.0 ± 35.8 Nm) than in beach soccer players (256.8 ± 39.8 Nm; p=0.03). Hamstring/quadriceps strength ratio for dominant limbs for futsal (57.6 ± 10.1%), soccer (53.5 ± 8.8%), and beach soccer (56.3 ± 8.4%) players presented no significant differences between groups; however, the mean values were lower than recommended values found in the literature. There were no strength deficits for any of the evaluated groups when compared bilaterally. Conclusions Futsal athletes presented lower values for quadriceps strength than soccer and beach soccer athletes. Futsal, soccer, and beach soccer players presented no strength asymmetries, but they presented with strength imbalance in hamstring/quadriceps strength ratio. Level of Evidence 3 PMID:29234562
Dowman, Leona; McDonald, Christine F; Hill, Catherine J; Lee, Annemarie; Barker, Kathryn; Boote, Claire; Glaspole, Ian; Goh, Nicole; Southcott, Annemarie; Burge, Angela; Ndongo, Rebecca; Martin, Alicia; Holland, Anne E
2016-09-01
To evaluate the inter-rater and intra-rater reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease (ILD). Test retest reliability of hand-held dynamometry for elbow flexor and knee extensor strength between two independent raters and two testing sessions. Physiotherapy department within a tertiary hospital. Thirty participants with ILD of varying aetiology were included. Twenty participants completed the inter-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean (SD) age 73 (10) years, 11 male) and 21 participants completed the intra-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean age 71 (10) years, 11 male). Mean muscle strength (kg). Agreement between the two raters and testing sessions was analyzed using Bland-Altman plots and reliability was estimated using intraclass correlation coefficients (ICC). For elbow flexor strength there was a mean difference between raters of -0.6kg (limits of agreement (LOA) -5.6 to 4.4kg) and within raters of -0.3kg (LOA -2.8 to 2.3kg). The ICCs were 0.95 and 0.98, respectively. For knee extensor strength there was a mean difference between raters of -1.5kg (LOA -6.9 to 3.9kg) and within raters of -0.7kg (LOA -3.9 to 2.4kg). The ICCs were 0.95 and 0.97, respectively. Hand-held dynamometry is reliable in measuring elbow flexor and knee extensor strength in people with ILD. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Effect of muscle length on strength and dexterity after stroke.
Ada, L; Canning, C; Dwyer, T
2000-02-01
The effect of muscle length on strength and dexterity after stroke was investigated. The aim was to determine if poor function at a particular muscle length could be attributed solely to differential weakness at this joint angle or whether an additional problem of differential dexterity exists. This descriptive research study measured elbow flexor and extensor strength as well as dexterity at three elbow joint angles: 30 degrees , 60 degrees and 90 degrees flexion. Dexterity was measured independently of strength. Fifteen (seven female, eight male) chronic stroke patients (mean age 67 years) who could actively flex and extend their affected elbow participated. Ten neurologically normal control subjects (mean age 67 years) acted as controls. Strength was measured as peak elbow flexor and extensor torque at three angles; and dexterity was measured as coherence for slow and fast tracking also at three angles. Dexterity was not affected by muscle length but strength was and this finding was the same for both stroke and controls. While the magnitude of the torque-angle curves was not significantly different between stroke and controls, the shape of torque-angle curves was altered after stroke so that both the elbow flexors (p < 0.05) and extensors (p < 0.05) tested weaker in the testing position where they were shortest. Since there was no differential loss of dexterity, it appears that differential loss of strength, especially in the shortened range, may explain the clinical observation of poorer function at one muscle length than another after stroke. Specific training to strengthen the muscles in these ranges is therefore of clinical importance for rehabilitation.
Isokinetic Assessment and Musculoskeletal Complaints in Paralympic Athletes: A Longitudinal Study.
Silva, Andressa; Zanca, Gisele; Alves, Eduardo Silva; Lemos, Valdir de Aquino; Gávea, Sebastião Augusto; Winckler, Ciro; Mattiello, Stela Márcia; Peterson, Ronnie; Vital, Roberto; Tufik, Sergio; De Mello, Marco Túlio
2015-10-01
The aim of this study was to assess and monitor the peak torque of the knee extensor and flexor muscles in flexion and extension and the reports of musculoskeletal complaints in members of the main Brazilian Paralympic athletics team through 1 yr. Fourteen healthy athletes from both sexes were assessed three times in 1 yr. The volunteers were assessed for the presence of musculoskeletal complaints and muscle strength at three time points: (1) at the onset of the preparatory phase on December 2009, (2) at a follow-up assessment on June 2010, and (3) before actual competition on December 2010. The athletes' self-reported musculoskeletal complaints were assessed in structured interviews, and the muscle strength was assessed by means of isokinetic dynamometry. The knee flexor and extensor muscle strength exhibited significant increase in both the right and left lower limbs at the second and third assessments compared with the first one (P < 0.05). Muscle imbalance was associated with knee and thigh complaints at all three assessments (P < 0.05). The knee flexor and extensor muscle strength exhibited a gradual increase in both lower limbs during the course of the three assessments. In parallel, muscle imbalance was associated with the occurrence of knee and thigh complaints.
Büschges, A; Djokaj, S; Bässler, D; Bässler, U; Rathmayer, W
2000-01-01
The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed. Copyright 2000 John Wiley & Sons, Inc.
Characterizing rapid-onset vasodilation to single muscle contractions in the human leg
Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume
2014-01-01
Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935
Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali
2017-09-01
The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.
Sood, Suchi; Hanson, Erik D; Delmonico, Matthew J; Kostek, Matthew C; Hand, Brian D; Roth, Stephen M; Hurley, Ben F
2012-02-01
The CA-repeat polymorphism in the insulin-like growth factor 1 (IGF1) gene promoter region has been associated with strength and circulating IGF-I protein levels. The purpose of the study was to determine if the IGF1 CA-repeat polymorphism influences muscle power at baseline and in response to ST in older adults. Knee extensor peak power (PP) was measured at 50, 60, and 70% of 1-RM strength before and after 10 weeks of unilateral knee extensor ST in older adults, aged 50-85 years, to determine the changes in absolute and relative PP with ST. Subjects (N = 114) were genotyped for the IGF1 CA-repeat polymorphism and grouped as homozygous for the 192 allele, heterozygous, or non-carriers of the 192 allele. The 192 homozygotes had significantly lower baseline PP at 50, 60, and 70% of 1-RM strength than the non-carriers when age, sex, and baseline fat-free mass were covaried (all P < 0.05). This same relationship was observed when the highest PP within these ranges was compared (e.g., 317.6 ± 13.5 for 192 homozygotes and 380.2 ± 16.3 for non-carriers of the 192 allele, P < 0.05). Both absolute and relative PP increased significantly with ST in all genotype groups as expected, but there were no significant relationships among IGF1 genotypes and any of the PP changes. Despite a significant relationship between IGF1 genotype and knee extensor peak power at baseline, IGF1 genotype does not appear to influence changes in knee extensor peak power with ST.
Tallis, Jason; Yavuz, Harley C M
2018-03-01
Despite the growing quantity of literature exploring the effect of caffeine on muscular strength, there is a dearth of data that directly explores differences in erogenicity between upper and lower body musculature and the dose-response effect. The present study sought to investigate the effects of low and moderate doses of caffeine on the maximal voluntary strength of the elbow flexors and knee extensors. Ten nonspecifically strength-trained, recreationally active participants (aged 21 ± 0.3 years) completed the study. Using a randomised, counterbalanced, and double-blind approach, isokinetic concentric and eccentric strength was measured at 60 and 180°/s following administration of a placebo, 3 mg·kg -1 body mass caffeine, and 6 mg·kg -1 body mass caffeine. There was no effect of caffeine on the maximal voluntary concentric and eccentric strength of the elbow flexors, or the eccentric strength of the knee extensors. Both 3 and 6 mg·kg -1 body mass caffeine caused a significant increase in peak concentric force of the knee extensors at 180°/s. No difference was apparent between the 2 concentrations. Only 6 mg·kg -1 body mass caused an increase in peak concentric force during repeated contractions. The results infer that the effective caffeine concentration to evoke improved muscle performance may be related to muscle mass and contraction type. The present work indicates that a relatively low dose of caffeine treatment may be effective for improving lower body muscular strength, but may have little benefit for the strength of major muscular groups of the upper body.
Chen, Hung-Ting; Chung, Yu-Chun; Chen, Yu-Jen; Ho, Sung-Yen; Wu, Huey-June
2017-04-01
To investigate the influence of resistance training (RT), aerobic training (AT), or combination training (CT) interventions on the body composition, muscle strength performance, and insulin-like growth factor 1 (IGF-1) of patients with sarcopenic obesity. Randomized controlled trial. Community center and research center. Sixty men and women aged 65-75 with sarcopenic obesity. Participants were randomly assigned to RT, AT, CT, and control (CON) groups. After training twice a week for 8 weeks, the participants in each group ceased training for 4 weeks before being examined for the retention effects of the training interventions. The body composition, grip strength, maximum back extensor strength, maximum knee extensor muscle strength, and blood IGF-1 concentration were measured. The skeletal muscle mass (SMM), body fat mass, appendicular SMM/weight %, and visceral fat area (VFA) of the RT, AT, and CT groups were significantly superior to those of the CON group at both week 8 and week 12. Regarding muscle strength performance, the RT group exhibited greater grip strength at weeks 8 and 12 as well as higher knee extensor performance at week 8 than that of the other groups. At week 8, the serum IGF-1 concentration of the RT group was higher than the CON group, whereas the CT group was superior to the AT and CON groups. Older adults with sarcopenic obesity who engaged in the RT, AT, and CT interventions demonstrated increased muscle mass and reduced total fat mass and VFA compared with those without training. The muscle strength performance and serum IGF-1 level in trained groups, especially in the RT group, were superior to the control group. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Asymmetry of Muscle Strength in Elite Athletes
ERIC Educational Resources Information Center
Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran
2009-01-01
"Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…
Profiles of muscularity in junior Olympic weight lifters.
Kanehisa, H; Funato, K; Abe, T; Fukunaga, T
2005-03-01
This study aimed to investigate the muscularity of strength-trained junior athletes. Muscle thickness (Mt) values at 10 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, abdomen, back, anterior thigh, posterior thigh, anterior lower leg, and posterior lower leg) were determined in junior Olympic weight lifters (OWL, n=7, 15.1+/-0.3 y, mean+/-SD) and non-athletes (CON, n=13, 15.1+/-0.3 y) using a brightness mode ultrasonography. Skeletal age assessed with the Tanner-Whitehouse II method (20 hand-wrist bones) was similar in OWL (16.4+/-0.7 y) and CON (16.3+/-0.6 y). At the 6 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, back and anterior thigh), OWL showed significantly greater Mt values than CON even in terms of Mt relative to body mass(1/3) Mt x BM(-1/3). On the other hand, there were no significant differences between the 2 groups in the Mt ratios of the anterior to posterior site in the upper arm, thigh and lower leg and those of the back to either the chest or abdomen in the trunk. For OWL only, skeletal age was significantly correlated to Mt x BM(-1/3) at the abdomen (r=0.869, p<0.05) and anterior thigh (r=0.883, p<0.05). The findings here indicate that 1) as compared to adolescent non-athletes, junior Olympic weight lifters show a greater muscularity in the upper body and anterior thigh without predominant development in either of anterior and posterior sites within the same body segment, 2) for junior Olympic weight lifters, the muscularity of abdominal and knee extensor muscles is influenced by the biological maturation.
NASA Technical Reports Server (NTRS)
Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.
2011-01-01
High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an ambulatory control period. Average skin temperature of the unloaded calf declined from 27.4 C to 26.8 C (-2.1%), while there was a slight increase (+1.1%) in skin temperature in the loaded calf (27.6 C to 27.9 C). Collectively, these measures indicate strong subject compliance with the ULLS analog. Unloaded limb work performed during leg press (1514 +/- 334 vs. 576 +/- 103) and calf raise (2886 +/- 508 vs. 1233 +/- 153) exercises sessions was greater in HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strength
Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo
2016-10-01
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hamaguchi, Kanako; Kurihara, Toshiyuki; Fujimoto, Masahiro; Iemitsu, Motoyuki; Sato, Koji; Hamaoka, Takafumi; Sanada, Kiyoshi
2017-05-02
Age-related reduction in bone mineral density (BMD) is generally accelerated in women after menopause, and could be even more pronounced in individuals with sarcopenia. Light-load power training with a low number of repetitions would increase BMD, significantly reducing bone loss in individuals at risk of osteoporosis. This study investigated the effects of low-repetition, light-load power training on BMD in Japanese postmenopausal women with sarcopenia. The training group (n = 7) followed a progressive power training protocol that increased the load with a weighted vest, for two sessions per week, over the course of 6 weeks. The training exercise comprised five kinds of exercises (squats, front lunges, side lunges, calf raises, and toe raises), and each exercise contained eight sets of three repetitions with a 15-s rest between each set. The control group (n = 8) did not undergo any training intervention. We measured BMD, muscle strength, and anthropometric data. Within-group changes in pelvis BMD and knee extensor strength were significantly greater in the training group than the control group (p = 0.029 and 0.030 for pelvis BMD and knee extensor strength, respectively). After low-repetition, light-load power training, we noted improvements in pelvis BMD (1.6%) and knee extensor strength (15.5%). No significant within- or between-group differences were observed for anthropometric data or forearm BMD. Six weeks of low-repetition, light-load power training improved pelvis BMD and knee extensor strength in postmenopausal women with sarcopenia. Since this training program does not require high-load exercise and is therefore easily implementable as daily exercise, it could be an effective form of exercise for sedentary adults at risk for osteoporosis who are fearful of heavy loads and/or training that could cause fatigue. This trial was registered with the University Hospital Medical Information Network on 31 October 2016 ( UMIN000024651 ).
Steele, James; Fisher, James; Perrin, Craig; Conway, Rebecca; Bruce-Low, Stewart; Smith, Dave
2018-01-12
Secondary analysis of data from studies utilising isolated lumbar extension exercise interventions for correlations among changes in isolated lumbar extension strength, pain, and disability. Studies reporting isolated lumbar extension strength changes were examined for inclusion criteria including: (1) participants with chronic low back pain, (2) intervention ≥ four weeks including isolated lumbar extension exercise, (3) outcome measures including isolated lumbar extension strength, pain (Visual Analogue Scale), and disability (Oswestry Disability Index). Six studies encompassing 281 participants were included. Correlations among change in isolated lumbar extension strength, pain, and disability. Participants were grouped as "met" or "not met" based on minimal clinically important changes and between groups comparisons conducted. Isolated lumbar extension strength and Visual Analogue Scale pooled analysis showed significant weak to moderate correlations (r = -0.391 to -0.539, all p < 0.001). Isolated lumbar extension strength and Oswestry Disability Index pooled analysis showed significant weak correlations (r = -0.349 to -0.470, all p < 0.001). For pain and disability, isolated lumbar extension strength changes were greater for those "met" compared with those "not met" (p < 0.001-0.008). Improvements in isolated lumbar extension strength may be related to positive and meaningful clinical outcomes. As many other performance outcomes and clinical outcomes are not related, isolated lumbar extension strength change may be a mechanism of action affecting symptom improvement. Implications for Rehabilitation Chronic low back pain is often associated with deconditioning of the lumbar extensor musculature. Isolated lumbar extension exercise has been shown to condition this musculature and also reduce pain and disability. This study shows significant correlations between increases in isolated lumbar extension strength and reductions in pain and disability. Strengthening of the lumbar extensor musculature could be considered an important target for exercise interventions.
Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.
Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K
2013-09-01
Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P < 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.
Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.
Evans, P D; Siegler, M V
1982-03-01
1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.
Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.
Evans, P D; Siegler, M V
1982-01-01
1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122
Stöhr, Eric J; González-Alonso, José; Pearson, James; Low, David A; Ali, Leena; Barker, Horace; Shave, Rob
2011-09-01
The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO₂max): 58 ± 7 ml·kg⁻¹·min⁻¹] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.
The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.
Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo
2017-06-01
Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.
BIOMECHANICAL DIFFERENCES IN BRAZILIAN JIU-JITSU ATHLETES: THE ROLE OF COMBAT STYLE
Lima, Alane Almeida; Coelho, Anita Camila Sampaio; Lima, Yuri Lopes; Almeida, Gabriel Peixoto Leão; Bezerra, Márcio Almeida; de Oliveira, Rodrigo Ribeiro
2017-01-01
Background Brazilian Jiu-Jitsu (BJJ) athletes can be divided into two combat styles: pass fighters (PFs) and guard fighters (GFs). Flexibility of the posterior chain muscles is highly necessary in these athletes, especially in GFs. On the other hand, isometric strength of the trunk extensors is required in PFs. Handgrip strength is important in holding the kimono of the opponent, and symmetrical lower-limb strength is important for the prevention of injuries due to the overload caused by training. Purpose The aim of this study was to compare the biomechanical profiles of BJJ athletes with different combat styles using the following outcome measures: flexibility, trunk extensor isometric endurance, postural balance, handgrip isometric endurance and lower-limb muscle strength. Methods A cross-sectional study was conducted using 19 GFs and 19 PFs. The sit-and-reach test was used to evaluate the flexibility of the posterior chain muscles. The Biodex Balance System® was used to evaluate balance. A handgrip dynamometer and a dorsal dynamometer were used to evaluate handgrip and trunk extensor endurance, respectively. Quadriceps and hamstring strength were evaluated with an isokinetic dynamometer at 60 °/s. Results No differences were observed between groups in terms of flexibility, balance, handgrip isometric endurance or quadriceps and hamstring strength; however, PFs (81.33) showed more isometric trunk extension endurance than GFs (68.85) (p = 0.02). Both groups had low values for hamstring/quadriceps ratio. Conclusion No significant biomechanical differences were observed between PFs and GFs. Level of Evidence 2b PMID:28217417
Runhaar, J; Luijsterburg, P; Dekker, J; Bierma-Zeinstra, S M A
2015-07-01
Although physical exercise is the commonly recommended for osteoarthritis (OA) patients, the working mechanism behind the positive effects of physical exercise on pain and function is a black box phenomenon. In the present study we aimed to identify possible mediators in the relation between physical exercise and improvements of pain and function in OA patients. A systematic search for all studies evaluating the effects of physical exercise in OA patients and select those that additionally reported the change in any physiological factor from pre-to post-exercise. In total, 94 studies evaluating 112 intervention groups were included. Most included studies evaluated subjects with solely knee OA (96 out of 112 groups). Based on the measured physiological factors within the included studies, 12 categories of possible mediators were formed. Muscle strength and ROM/flexibility were the most measured categories of possible mediators with 61 and 21 intervention groups measuring one or more physiological factors within these categories, respectively. 60% (31 out of 52) of the studies showed a significant increase in knee extensor muscle strength and 71% (22 out of 31) in knee flexor muscle strength over the intervention period. All 5 studies evaluating extension impairments and 10 out of 12 studies (83%) measuring proprioception found a significant change from pre-to post-intervention. An increase of upper leg strength, a decrease of extension impairments and improvement in proprioception were identified as possible mediators in the positive association between physical exercise and OA symptoms. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Dias, Caroline Pieta; Toscan, Rafael; de Camargo, Mainara; Pereira, Evelyn Possobom; Griebler, Nathália; Baroni, Bruno Manfredini; Tiggemann, Carlos Leandro
2015-10-01
The aim of the study was to assess the effect of eccentric training using a constant load with longer exposure time at the eccentric phase on knee extensor muscle strength and functional capacity of elderly subjects in comparison with a conventional resistance training program. Twenty-six healthy elderly women (age = 67 ± 6 years) were randomly assigned to an eccentric-focused training group (ETG; n = 13) or a conventional training group (CTG; n = 13). Subjects underwent 12 weeks of resistance training twice a week. For the ETG, concentric and eccentric phases were performed using 1.5 and 4.5 s, respectively, while for CTG, each phase lasted 1.5 s. Maximum dynamic strength was assessed by the one-repetition maximum (1RM) test in the leg press and knee extension exercises, and for functional capacity, subjects performed specific tests (6-m walk test, timed up-and-go test, stair-climbing test, and chair-rising test). Both groups improved knee extension 1RM (24-26 %; p = 0.021), timed up-and-go test (11-16 %; p < 0.001), 6-m walk test (9-12 %; p = 0.004), stair-climbing test (8-13 %; p = 0.007), and chair-rising test (15-16 %; p < 0.001), but there was no significant difference between groups. In conclusion, the strategy of increasing the exposure time at the eccentric phase of movement using the same training volume and intensity does not promote different adaptations in strength or functional capacity compared to conventional resistance training in elderly woman.
H:q ratios and bilateral leg strength in college field and court sports players.
Cheung, Roy T H; Smith, Andrew W; Wong, Del P
2012-06-01
One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.
Large strengthening effect of a hip-flexor training programme: a randomized controlled trial.
Thorborg, Kristian; Bandholm, Thomas; Zebis, Mette; Andersen, Lars Louis; Jensen, Jesper; Hölmich, Per
2016-07-01
To investigate the effect on hip-flexion strength of a 6-week hip-flexor training programme using elastic bands as resistance. We hypothesized that the training group, compared to a control group, would increase their hip-flexion strength more. Thirty-three healthy subjects (45 % females), 24(5) years of age, were included in a randomized controlled trial and allocated to heavy strength training of the hip-flexor muscles or to control (no strength training). Strength training of the hip-flexors (dominant leg) was performed three times 10 min per week for 6 weeks. The strength training group progressed from 15 repetition maximum (RM) (week 1) to 8 RM (week 6). Isometric hip-flexion strength (primary outcome) was measured by a blinded assessor using a reliable test procedure. In the strength training group, the isometric hip-flexion strength of the trained leg increased by 17 %, (p < 0.001). The between-group difference in hip-flexion strength change in the trained leg (dominant leg, training group) versus the non-trained leg (dominant leg, control group) was significantly different from baseline to follow-up, corresponding to a mean change of 0.34 (95 % CI 0.17-0.52) Nm/kg, in favour of the strength training group (p < 0.001). Simple hip-flexor strength training using elastic bands as external loading, for only 6 weeks, substantially improves hip-flexor muscle strength. This simple exercise programme seems promising for future prevention and treatment of acute and longstanding hip-flexor injuries, such as acute rectus femoris injuries and longstanding iliopsoas-related pain and impingement. I.
Smith, C.M.; Housh, T.J.; Hill, E.C.; Cochrane, K.C.; Jenkins, N.D.M.; Schmidt, R.J.; Johnson, G.O.
2016-01-01
Objective: To determine the effects of constant versus alternating applications of torque during fatiguing, intermittent isometric muscle actions of the leg extensors on maximal voluntary isometric contraction (MVIC) torque and neuromuscular responses. Methods: Sixteen subjects performed two protocols, each consisting of 50 intermittent isometric muscle actions of the leg extensors with equal average load at a constant 60% MVIC or alternating 40 then 80% (40/80%) MVIC with a work-to-rest ratio of 6-s on and 2-s off. MVIC torque as well as electromyographic signals from the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) and mechanomyographic signals from the VL were recorded pretest, immediately posttest, and 5-min posttest. Results: The results indicated that there were no time-related differences between the 60% MVIC and 40/80% MVIC protocols. The MVIC torque decreased posttest (22 to 26%) and remained depressed 5-min posttest (9%). There were decreases in electromyographic frequency (14 to 19%) and mechanomyographic frequency (23 to 24%) posttest that returned to pretest levels 5-min posttest. There were no changes in electromyographic amplitude and mechanomyogrpahic amplitude. Conclusions: These findings suggested that these neuromuscular parameters did not track the fatigue-induced changes in MVIC torque after 5-min of recovery. PMID:27973384
Smith, Cory M; Housh, Terry J; Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Hill, Ethan C; Cochrane, Kristen C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O
2015-08-01
The purposes of the present study were to examine the effects of electrode placements over, proximal, and distal to the innervation zone (IZ) on electromyographic (EMG) amplitude (RMS) and frequency (MPF) responses during: (1) a maximal voluntary isometric contraction (MVIC), and; (2) a sustained, submaximal isometric muscle action. A linear array was used to record EMG signals from the vastus lateralis over the IZ, 30mm proximal, and 30mm distal to the IZ during an MVIC and a sustained isometric muscle action of the leg extensors at 50% MVIC. During the MVIC, lower EMG RMS (p>0.05) and greater EMG MPF (p<0.05) values were recorded over the IZ compared to away from the IZ, however, no differences in slope coefficients for the EMG RMS and MPF versus time relationships over, proximal, and distal to the IZ occurred. Thus, the results of the present study indicated that during an MVIC, EMG RMS and MPF values recorded over the IZ are not comparable to those away from the IZ. However, the rates of fatigue-induced changes in EMG RMS and MPF during sustained, submaximal isometric muscle actions of the leg extensors were the same regardless of the electrode placement locations relative to the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of 17-day spaceflight on knee extensor muscle function and size
NASA Technical Reports Server (NTRS)
Tesch, Per A.; Berg, Hans E.; Bring, Daniel; Evans, Harlan J.; LeBlanc, Adrian D.
2005-01-01
It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.
Hip and knee extensor moments predict vertical jump height in adolescent girls.
Ford, Kevin R; Myer, Gregory D; Brent, Jensen L; Hewett, Timothy E
2009-07-01
Biomechanical factors, such as hip and knee extensor moments, related to drop jump (DJ) performance have not been investigated in adolescent girls. The purpose of this study was to determine the key independent biomechanical variables that predict overall vertical jump performance in adolescent girls. Sixteen high school adolescent girls from club-sponsored and high school-sponsored volleyball teams performed DJ at 3 different drop heights (15, 30, and 45 cm). A motion analysis system consisting of 10 digital cameras and a force platform was used to calculate vertical jump height, joint angles, and joint moments during the tasks. A multiple linear regression was used to determine the biomechanical parameters that were best predictive of vertical jump height at each box drop distance. The 2 predictor variables in all 3 models were knee and hip extensor moments. The models predicted 82.9, 81.9, and 88% of the vertical jump height variance in the 15, 30, and 45 cm trials, respectively. The results of the investigation indicate that knee and hip joint moments are the main contributors to vertical jump height during the DJ in adolescent girls. Strength and conditioning specialists attempting to improve vertical jump performance should target power and strength training to the hip and knee extensors in their athletes.
Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Oh, Sechang; Tanaka, Kiyoji
2017-12-31
To date, there have been no reports on whether weight reduction causes decreases in muscle mass, muscle strength, or physical performance that could lead to health problems. Thus, in this pilot study, we investigated the appropriateness of the changes in muscle mass, muscle strength and physical performance after weight reduction. Obese men who completed a weight reduction program to decrease and maintain a body mass index (BMI) of less than 25 kg/m2 for one year were recruited for the study. One year after the completion of a weight reduction program, the participants' muscle mass, muscle strength, and physical performance were compared with those in a reference group composed of individuals whose BMI was less than 25 kg/m2. Whole-body scanning was performed using dual-energy X-ray absorptiometry to analyze muscle mass. Handgrip strength and knee extensor strength were measured to evaluate arm and leg muscle strength, respectively. For physical performance, a jump test was employed. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<0.001). Weight reduction participants showed an average reduction in body weight of -16.47%. Normalized arm muscle mass and handgrip strength were significantly greater in the weight reduction group than in the reference group; however, no significant differences were detected between the two groups with respect to the other variables. After one year, there were no significant differences between the two groups. ©2017 The Korean Society for Exercise Nutrition
Valtonen, Anu; Pöyhönen, Tapani; Sipilä, Sarianna; Heinonen, Ari
2010-06-01
To study the effects of aquatic resistance training on mobility, muscle power, and cross-sectional area. Randomized controlled trial. Research laboratory and hospital rehabilitation pool. Population-based sample (N=50) of eligible women and men 55 to 75 years old 4 to 18 months after unilateral knee replacement with no contraindications who were willing to participate in the trial. Twelve-week progressive aquatic resistance training (n=26) or no intervention (n=24). Mobility limitation assessed by walking speed and stair ascending time, and self-reported physical functional difficulty, pain, and stiffness assessed by Western Ontario and McMaster University Osteoarthritis Index (WOMAC) questionnaire. Knee extensor power and knee flexor power assessed isokinetically, and thigh muscle cross-sectional area (CSA) by computed tomography. Compared with the change in the control group, habitual walking speed increased by 9% (P=.005) and stair ascending time decreased by 15% (P=.006) in the aquatic training group. There was no significant difference between the groups in the WOMAC scores. The training increased knee extensor power by 32% (P<.001) in the operated and 10% (P=.001) in the nonoperated leg, and knee flexor power by 48% (P=.003) in the operated and 8% (P=.002) in the nonoperated leg compared with controls. The mean increase in thigh muscle CSA of the operated leg was 3% (P=.018) and that of the nonoperated leg 2% (P=.019) after training compared with controls. Progressive aquatic resistance training had favorable effects on mobility limitation by increasing walking speed and decreasing stair ascending time. In addition, training increased lower limb muscle power and muscle CSA. Resistance training in water is a feasible mode of rehabilitation that has wide-ranging positive effects on patients after knee replacement surgery. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.
Ridgel, Angela L; Ritzmann, Roy E
2005-06-01
Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.
Bean, Jonathan F; Kiely, Dan K; LaRose, Sharon; Leveille, Suzanne G
2008-12-01
To test which rehabilitative impairments are associated with higher mobility performance among community-dwelling, mobility-limited older adults. Cross-sectional analysis of baseline data from participants within a randomized controlled trial. Outpatient rehabilitation research center. Community-dwelling older adults (N=138; mean age, 75.4 y) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Not applicable. Balance measured via the Berg Balance Scale, leg strength, leg velocity, submaximal aerobic capacity, body mass index (BMI), and mobility performance as measured by the SPPB. Each of the 5 physiologic attributes (unipedal balance, leg strength, leg velocity, submaximal aerobic capacity, BMI) was categorized into tertiles by using lower values as reference for impairment status. Within an adjusted model, measures associated with higher SPPB performance (>9) included a BBS score greater than or equal to 54 (odds ratio [OR]=4.54; 95% confidence interval [CI], 1.11-18.60), leg strength greater than or equal to 21.5 N/kg (OR=30.35; 95% CI, 5.48-168.09), leg velocity .0101 to .0129 m.s(-1).kg(-1) (OR=5.31; 95% CI, 1.25-22.57), and leg velocity greater than or equal to .0130 m.s(-1).kg(-1) (OR=22.86; 95% CI, 3.88-134.75). Our investigation highlights the importance of rehabilitative impairments in leg strength, leg velocity, and balance as being associated with mobility status as measured by the SPPB. In our sample of participants within an exercise trial, submaximal aerobic capacity and BMI status were not associated with mobility performance. These findings suggest that the augmentation of not only leg strength and balance but also leg velocity may be important in the rehabilitative care of mobility-limited older adults.
Measurement of fatigue in knee flexor and extensor muscles.
Kawabata, Y; Senda, M; Oka, T; Yagata, Y; Takahara, Y; Nagashima, H; Inoue, H
2000-04-01
In order to examine fatigue of the knee flexor and extensor muscles and to investigate the characteristics of muscular fatigue in different sports, a Cybex machine was used to measure muscle fatigue and recovery during isokinetic knee flexion and extension. Eighteen baseball players, 12 soccer players and 13 marathon runners were studied. Each subject was tested in the sitting position and made to perform 50 consecutive right knee bends and stretches at maximum strength. This was done 3 times with an interval of 10 min between each series. The peak torque to body weight ratio and the fatigue rate were determined in each case. In all subjects, the peak torque to body weight ratio was higher for extensors than flexors. Over the 3 trials, the fatigue rate of extensors showed little change, while that of flexors had a tendency to increase. In each subject, knee extensors showed a high fatigue rate but a quick recovery, while knee flexors showed a low fatigue rate but a slow recovery. As the marathon runners had the smallest fatigue rates for both flexors and extensors, we concluded that marathon runners had more stamina than baseball players and soccer players.
The influence of caffeine ingestion on strength and power performance in female team-sport players.
Ali, Ajmol; O'Donnell, Jemma; Foskett, Andrew; Rutherfurd-Markwick, Kay
2016-01-01
The aim of this study was to examine the influence of caffeine supplementation on knee flexor and knee extensor strength before, during and after intermittent running exercise in female team-sport players taking oral contraceptive steroids (OCS). Ten healthy females (24 ± 4 years; 59.7 ± 3.5 kg; undertaking 2-6 training sessions per week) taking low-dose monophasic oral contraceptives of the same hormonal composition took part in a randomised, double-blind, placebo-controlled crossover-design trial. Sixty minutes following the ingestion of a capsule containing 6 mg∙kg -1 body mass anhydrous caffeine or artificial sweetener (placebo), participants completed a 90-min intermittent treadmill-running protocol. Isometric strength performance and eccentric and concentric strength and power of the knee flexors and knee extensors (using isokinetic dynamometer), as well as countermovement jump (CMJ), was measured before, during and after the exercise protocol, as well as ~12 h post-exercise. Blood samples were taken before, during and post-exercise to measure glucose, insulin and free fatty acids (FFA). Caffeine supplementation significantly increased eccentric strength of the knee flexors ( P < 0.05) and eccentric power of both the knee flexors ( P < 0.05) and extensors ( P < 0.05). However, there was no effect on isometric or concentric parameters, or CMJ performance. FFA was elevated with caffeine supplementation over time ( P < 0.05) while levels of glucose and insulin were not affected by caffeine intake. Caffeine supplementation increased eccentric strength and power in female team-sport players taking OCS both during an intermittent running protocol and the following morning.
Two pilot studies of the effect of bicycling on balance and leg strength among older adults.
Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna
2013-01-01
Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Study 1: a cross-sectional survey of 43 adults aged 44-79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49-72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Cycling by healthy older adults appears promising for improving risk factors for falls.
Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults
Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna
2013-01-01
Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls. PMID:23690805
De Mars, Gunther; Windelinckx, An; Huygens, Wim; Peeters, Maarten W; Beunen, Gaston P; Aerssens, Jeroen; Vlietinck, Robert; Thomis, Martine A I
2008-09-17
The torque-velocity relationship is known to be affected by ageing, decreasing its protective role in the prevention of falls. Interindividual variability in this torque-velocity relationship is partly determined by genetic factors (h(2): 44-67%). As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to the torque-velocity relationship of the knee flexors and extensors. A selection of 283 informative male siblings (17-36 yr), belonging to 105 families, was used to conduct a genome-wide SNP-based (Illumina Linkage IVb panel) multipoint linkage analysis for the torque-velocity relationship of the knee flexors and extensors. The strongest evidence for linkage was found at 15q23 for the torque-velocity slope of the knee extensors (TVSE). Other interesting linkage regions with LOD scores >2 were found at 7p12.3 [logarithm of the odds ratio (LOD) = 2.03, P = 0.0011] for the torque-velocity ratio of the knee flexors (TVRF), at 2q14.3 (LOD = 2.25, P = 0.0006) for TVSE, and at 4p14 and 18q23 for the torque-velocity ratio of the knee extensors TVRE (LOD = 2.23 and 2.08; P = 0.0007 and 0.001, respectively). We conclude that many small contributing genes are involved in causing variation in the torque-velocity relationship of the knee flexor and extensor muscles. Several earlier reported candidate genes for muscle strength and muscle mass and new candidates are harbored within or in close vicinity of the linkage regions reported in the present study.
Cai, Congcong; Kong, Pui W
2015-06-01
Controlled laboratory study, cross-sectional. To compare lumbar extensor muscle fatigability, lumbar stabilizing muscle activation, and lower-limb strength between male and female runners with chronic low back pain (LBP) and healthy runners. Little is known about muscle performance in runners with chronic LBP. Eighteen recreational runners with chronic LBP (9 men, 9 women; mean age, 27.8 years) and 18 healthy recreational runners (9 men, 9 women; mean age, 24.6 years) were recruited. The median frequency slopes for bilateral iliocostalis and longissimus were calculated from electromyographic signals captured during a 2-minute Sorensen test. The thickness changes of the transversus abdominis and lumbar multifidus between resting and contraction were measured using an ultrasound scanner. Peak concentric torques of the bilateral hip extensors, hip abductors, and knee extensors were measured using an isokinetic dynamometer at 60°/s. The average values for both sides were used for statistical analysis. When averaged across sexes, peak knee extensor torque was 12.2% lower in the LBP group compared to the healthy group (mean difference, 0.29 Nm/kg; 95% confidence interval: 0.06, 0.53; P = .016). Male runners with chronic LBP exhibited smaller lumbar multifidus thickness changes compared to healthy male runners (mean difference, 0.13 cm; 95% confidence interval: 0.01, 0.25; P = .033). No other group differences were observed. Runners with chronic LBP exhibited diminished knee extensor strength compared to healthy runners. Male runners with chronic LBP demonstrated additional deficits in lumbar multifidus activation.
Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil
2014-12-01
Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Patients with type 2 diabetes (T2DM) are subjected to reduction in the quality and oxidative capacity of muscles. The effect of duration of diabetes on the muscle endurance response is not clear and strength as well. Objective The aim of this study was the assessment of strength and endurance of knee extensor and flexor in the patients with T2DM < 10 and T2DM > 10 years in comparison with age, sex, BMI, ABI and PAI-matched health control subjects. Methods Isometric maximal peak torque (MPT) of knee extensor and flexor before and after 40 isokinetic repetitions with velocity of 150 degree/s were recorded in 18 patients with T2DM < 10 Y , 12 patients with T2DM > 10 Y and 20 matched health control (HC) groups. Results Both diabetic patient groups had significant lower isometric and isotonic knee extensor and flexor strength than HC. The endurance indices indicated that whereas the isometric MPT of flexor movement was reduced after isokinetic protocol in the both patient groups in comparison with HC, the less decline was seen in the isotonic torque and work during isokinetic protocol in the T2DM > 10 Y group in comparison with two other groups. The HbA1c and FPG were significantly correlated with strength not with endurance indices. Conclusions It seems the progression of diabetes accompanied with vascular, neural and muscular deficits activate, some adaptive and compensatory processes which can maintain muscle performance. PMID:24476108
Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements
NASA Astrophysics Data System (ADS)
Pontaga, I.
2003-07-01
Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.
Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei
2014-02-01
The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P < 0.05) for arterial stiffness, BP, and strength as brachial-ankle PWV (-1.3 [0.3] m/s, P < 0.01), legPWV (-0.81 [0.22] m/s, P < 0.01), systolic BP (-12 [3] mm Hg, P < 0.01), diastolic BP (-6 [2] mm Hg, P < 0.01), and mean arterial pressure (-9 [3] mm Hg, P < 0.01) decreased and as strength increased (21.0% [2.2%], P < 0.001) after WBV exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P < 0.05) after WBV exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.
Giacomoni, Magali; Edwards, Ben; Bambaeichi, Effat
The circadian rhythm in muscle strength was analysed in 12 males (28 +/- 4 years, 79.6 +/- 12.3 kg, 1.80 +/- 0.05 m) and eight females (28 +/- 4 years, 60.3 +/- 5.5 kg, 1.61 +/- 0.08 m). After two familiarization sessions, participants were tested at six different times of the day (02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 hours), the order of which was randomly assigned over 3-4 days. Rectal temperature (T(rec)) was measured over 30 min before each test. Peak isokinetic torques (PT) of knee extensors and flexors were then measured at 1.05 rad s(-1) and 3.14 rad s(-1) through a 90 degrees range of motion. Maximal isometric voluntary contraction (MVC) of knee extensors and flexors was measured at 60 degrees of knee flexion and the MVC of knee extensors was also assessed with superimposed electrical twitches (50 Hz, 250 V, 200 mus pulse width) in order to control for motivational effects. Three trials were performed in each condition, separated by 3 min recovery, and the highest values were retained for subsequent analyses. A significant circadian rhythm was observed for T(rec) in both males and females (acrophase, Phi, 17:29 and 16:40 hours; mesor, Me, 37.0 and 36.8 degrees C; amplitude, A, 0.28 and 0.33 degrees C for males and females, respectively). The mesor of T(rec) was higher in males than in females (p < 0.05). Significant circadian rhythms were observed for knee extensor PT at 3.14 rad s(-1) in males (Phi, 17:06 hours; Me, 178.2 N m; A, 4.7 N m) and for knee extensor PT at 1.05 rad s(-1) in females (Phi, 15:35 hours; Me, 128.7 N m; A, 3.7 N m). In males, the MVC of knee extensors demonstrated a significant circadian rhythm, but only when electrical twitches were superimposed (Phi, 16:17 h; Me, 302.1 N m; A, 13.6 N m). Acrophases of all indices of muscle strength were not statistically different between the two groups and were located in the afternoon (12:47 < Phi < 17:16 hours). The amplitude (percentage of mesor) of extensors MVC (electrically stimulated) was higher in males (6.4%) than in females (4.2%; p < 0.05). Significant circadian rhythms were not consistently observed for all indices of muscle strength whatever the gender. Our group of female subjects tended to show lower circadian amplitudes than the males. In males, maximal voluntary contraction of electrically stimulated muscles followed a circadian curve, which was not significant without the superimposed twitches. These results suggest that motivation could have a masking effect on the circadian rhythm in muscle performance and strengthen the view that peripheral factors are implicated in this rhythm.
de Aguiar Leonardi, Adriano Barros; Martinelli, Mauro Olivio; Junior, Aires Duarte
2015-01-01
Objective: The objective of this study was to conduct a comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players and correlate the findings with the higher levels of injury risk described in the literature. Methods: We analyzed 16 field soccer players and 15 indoor soccer players. All these professionals were male. Isokinetic muscle strength assessments were made on their knees. Results: The mean weight was 81.81 kg for field soccer and 80.33 kg for indoor soccer. The right and left peak extensor torque left and right for field soccer and indoor soccer were, respectively, 302.50 and 313.31 Nm and 265.20 and 279.80 Nm, and for flexors, 178 and 184.88 Nm and 158.27 and 154 Nm. The peak torque rates according to body weight for the left and right extensors for field soccer and indoor soccer were, respectively, 3.84 and 3.7 Nm/kg and 3.32 and 3.52 Nm/kg, and for flexors, 2.17 and 2.26 Nm/kg and 1.98 and 1.93 Nm/kg. The balance relationships between flexors and extensors on the right and left sides for field soccer and indoor soccer were, respectively, 59.81 and 59.44% and 60.47% and 54.80%. The relationships for extensors between the right and left sides for field soccer and indoor soccer were, respectively, 11.44 and 9.20%, and for the flexors, 7.31 and 8.80%. Conclusions: In accordance with international parameters, comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players before the season showed that there was muscle balance and low probability of injury. There were no statistically significant differences in the parameters analyzed between the players of the two types of soccer. PMID:27042649
Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance
Lepers, Romuald; Marcora, Samuele M.
2016-01-01
We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion. PMID:27706196
de Sousa, Davide G; Harvey, Lisa A; Dorsch, Simone; Leung, Joan; Harris, Whitney
2016-10-01
Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Multi centre, randomised, controlled trial. Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5) out of 20 points. Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were -0.3/21 points (95% CI -3.2 to 2.7) and 7.5 Nm (95% CI -5.1 to 20.2), where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8). Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016) Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised controlled trial.Journal of Physiotherapy62: 203-208]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A
2018-06-01
Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations resulted in reduced sagittal plane knee and subsequent ACL loading. Therefore, adequate hip and knee control is important during unanticipated side-cutting maneuvers.
Muscle strength at the trunk*.
Smidt, G L; Amundsen, L R; Dostal, W F
1980-01-01
The purpose of this study was to determine the strength of trunk flexors and extensors in normal male subjects during isometric, concentric, and eccentric contractions. Subjects were tested in the sidelying position to minimize the effects of gravity. The pelvis and lower extremities were measured on a custom built force table (lowa Force Table). Muscle strength was expressed as a moment of force (external force times the moment arm) in Newton-meter (Nm) units. Greater Nm were registered in the muscle-lengthened position than in the muscle-shortened position for all isometric contractions. The Nm registered for eccentric contractions always exceeded the Nm registered for concentric contractions of the same muscle group. The Nm registered during contractions of trunk extensors always exceeded the values obtained during corresponding modes of contractions (isometric, eccentric, and concentric) of trunk flexors.J Orthop Sports Phys Ther 1980;1(3):165-170.
Hammami, Raouf; Chaouachi, Anis; Makhlouf, Issam; Granacher, Urs; Behm, David G
2016-11-01
Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). There were significant medium-large sized correlations between all balance measures with back extensor strength (r = .486-.791) and large associations with power (r = .511-.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/power variables. The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.
Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan
2003-12-01
The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the soleus muscle (r = -0.38; P > 0.05). Hence, this study shows a loss of muscle function with age and suggests that long-term calorie restriction is an effective intervention against the loss of muscle function with age.
Sattler, Martina; Dannhauer, Torben; Hudelmaier, Martin; Wirth, Wolfgang; Sänger, Alexandra M.; Kwoh, C. Kent; Hunter, David J.; Eckstein, Felix
2012-01-01
Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contralateral knees without pain, and to examine the correlation between MCSAs and strength in painful versus painless knees. Methods 48 subjects (31 women; 17 men; age 45–78 years) were drawn from 4796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contralateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI data base. Results Painful knees showed 5.2% lower extensor MCSAs (p=0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (p=0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (p>0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44
A training programme to improve hip strength in persons with lower limb amputation.
Nolan, Lee
2012-03-01
To investigate the effect of a 10-week training programme on persons with a lower limb amputation and to determine if this training is sufficient to enable running. Seven transtibial, 8 transfemoral and 1 bilateral amputee (all resulting from trauma, tumour or congenital) were randomly assigned to a training (n =8) or control group (n = 8). Isokinetic hip flexor and extensor strength at 60 and 120º/s and oxygen consumption while walking at 1.0 m/s were tested pre- and post- a 10-week period. The training group followed a twice weekly hip strengthening programme, while the control group continued with their usual activities. Running ability was determined pre-testing, and attempted after post-testing for the training group only. The training group increased hip strength and decreased oxygen consumption. Six amputees who were previously unable to run were able to after training. The control group decreased intact limb hip extensor strength. The training programme is sufficient to improve hip strength and enable running in persons with a lower limb amputation. As hip strength was reduced in those not following the training programme, it is recommended that strength training be undertaken regularly in order to avoid losing limb strength following amputation.
Liew, Bernard X W; Morris, Susan; Keogh, Justin W L; Appleby, Brendyn; Netto, Kevin
2016-10-22
In recent years, athletes have ventured into ultra-endurance and adventure racing events, which tests their ability to race, navigate, and survive. These events often require race participants to carry some form of load, to bear equipment for navigation and survival purposes. Previous studies have reported specific alterations in biomechanics when running with load which potentially influence running performance and injury risk. We hypothesize that a biomechanically informed neuromuscular training program would optimize running mechanics during load carriage to a greater extent than a generic strength training program. This will be a two group, parallel randomized controlled trial design, with single assessor blinding. Thirty healthy runners will be recruited to participate in a six weeks neuromuscular training program. Participants will be randomized into either a generic training group, or a biomechanically informed training group. Primary outcomes include self-determined running velocity with a 20 % body weight load, jump power, hopping leg stiffness, knee extensor and triceps-surae strength. Secondary outcomes include running kinetics and kinematics. Assessments will occur at baseline and post-training. To our knowledge, no training programs are available that specifically targets a runner's ability to carry load while running. This will provide sport scientists and coaches with a foundation to base their exercise prescription on. ANZCTR ( ACTRN12616000023459 ) (14 Jan 2016).
Alpha-linolenic acid supplementation and resistance training in older adults.
Cornish, Stephen M; Chilibeck, Philip D
2009-02-01
Increased inflammation with aging has been linked to sarcopenia. The purpose of this study was to evaluate the effects of supplementing older adults with alpha-linolenic acid (ALA) during a resistance training program, based on the hypothesis that ALA decreases the plasma concentration of the inflammatory cytokine tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, which in turn would improve muscle size and strength. Fifty-one older adults (65.4 +/- 0.8 years) were randomized to receive ALA in flax oil (~14 g.day-1) or placebo for 12 weeks while completing a resistance training program (3 days a week). Subjects were evaluated at baseline and after 12 weeks for muscle thickness of knee and elbow flexors and extensors (B-mode ultrasound), muscle strength (1 repetition maximum), body composition (dual energy X-ray absorptiometry), and concentrations of TNF-alpha and IL-6. Males supplementing with ALA decreased IL-6 concentration over the 12 weeks (62 +/- 36% decrease; p = 0.003), with no other changes in inflammatory cytokines. Chest and leg press strength, lean tissue mass, muscle thickness, hip bone mineral content and density, and total bone mineral content significantly increased, and percent fat and total body mass decreased with training (p < 0.05), with the only benefit of ALA being a significantly greater increase in knee flexor muscle thickness in males (p < 0.05). Total-body bone mineral density improved in the placebo group, with no change in the ALA group (p = 0.05). ALA supplementation lowers the IL-6 concentration in older men but not women, but had minimal effect on muscle mass and strength during resistance training.
Thompson, Brennan J; Stock, Matt S; Mota, Jacob A; Drusch, Alexander S; DeFranco, Ryan N; Cook, Tyler R; Hamm, Matthew A
2017-10-01
High-intensity strength and conditioning programs aimed at improving youth performance are becoming increasingly prevalent. The purpose of this study was to investigate the effects of a 16-week after-school strength and conditioning program on performance and body composition in middle-school-aged boys. Subjects in the training group (n = 16, mean age = 11.8 years) performed 90 minutes of supervised plyometric and resistance training twice weekly for 16 weeks. A group of control subjects (n = 9, age = 12.1 years) maintained their current activity levels. Sprint speed, 5-10-5 proagility, jump height, isometric peak torque of the leg extensors and flexors, and dual energy x-ray absorptiometry-derived body composition were examined during pretesting and posttesting. Data were analyzed by performing independent samples t-tests on the absolute change scores between groups. The primary findings were that the training intervention elicited significant improvements in 20-m sprint times (p = 0.03; mean change for training group = -0.17 seconds) and body-fat percentage (p = 0.03; 2.5% absolute improvement), the latter of which was a function of reduced fat mass (p = 0.06; -0.84 kg). Between-group differences were not noted for agility, jump height, lean mass, or strength measures; however, effect sizes generally showed greater improvements for the training group. In contrast to findings in longitudinal studies performed in collegiate athletes, sprint speed may be particularly adaptable during adolescence. In addition to potentially improving sport performance, high-intensity plyometric and resistance training programs offer the added benefit of improved body composition. These programs appear less effective for agility and jump performance and do not elicit substantial improvements in muscle mass above maturation.
Maximum step length: relationships to age and knee and hip extensor capacities.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-07-01
Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.
Body composition explains sex differential in physical performance among older adults.
Tseng, Lisa A; Delmonico, Matthew J; Visser, Marjolein; Boudreau, Robert M; Goodpaster, Bret H; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Harris, Tamara; Newman, Anne B
2014-01-01
Older women have higher percent body fat, poorer physical function, lower strength, and higher rates of nonfatal chronic conditions than men. We sought to determine whether these differences explained physical performance differences between men and women. Physical performance was assessed in the Health, Aging and Body Composition study in 2,863 men and women aged 70-79 with a composite 0-4 point score consisting of chair stands, standing balance including one-leg stand, and 6-m usual and narrow walk tests. Total body composition was measured by dual x-ray absorptiometry, thigh composition by computed tomography, and knee extensor strength by isokinetic dynamometer. Analysis of covariance estimated least square mean performance scores for men and women. Men had higher performance scores than women (least square means: 2.33±0.02 vs 2.03±0.02, p < .0001), adjusted for race, study site, age, and height. Body composition measures (total body fat and thigh muscle area, muscle density, subcutaneous fat, and intermuscular fat) accounted for differences between men and women (least square means: 2.15±0.02 vs 2.17±0.02, p = .53). Higher strength in men partly explained the sex difference (least square means: 2.28±0.02 vs 2.12±0.02, p < .0001). Strength attenuated the association of thigh muscle mass with performance. Chronic health conditions did not explain the sex difference. In a well-functioning cohort, poorer physical function in women compared with men can be explained predominantly by their higher fat mass, but also by other body composition differences. The higher proportion of body fat in women may put them at significant biomechanical disadvantage for greater disability in old age.
Two families with MYH7 distal myopathy associated with cardiomyopathy and core formations.
Naddaf, Elie; Waclawik, Andrew J
2015-03-01
Laing distal myopathy is caused by MYH7 gene mutations. Multiple families have been reported with varying patterns of skeletal and cardiac involvement as well as histopathological findings. We report 2 families with p.Glu1508del mutation with detailed electrophysiological and muscle pathology findings. All patients displayed the classic phenotype with weakness starting in the anterior compartment of the legs with a "hanging great toe." It was followed by finger extensors involvement, relatively sparing the extensor indicis proprius, giving the appearance of a "pointing index" finger. All the affected individuals had a dilated cardiomyopathy and core formations on muscle biopsy. Unexpectedly, neurogenic changes were also observed in some individuals. Both families were initially misdiagnosed with either central core disease or hereditary neuropathy. Recognizing the classic phenotype, screening for cardiac involvement that may be clinically silent, and determining the mode of inheritance help with selecting the appropriate genetic test.
Green, Brady; Bourne, Matthew N; Pizzari, Tania
2018-03-01
To examine the value of isokinetic strength assessment for predicting risk of hamstring strain injury, and to direct future research into hamstring strain injuries. Systematic review. Database searches for Medline, CINAHL, Embase, AMED, AUSPORT, SPORTDiscus, PEDro and Cochrane Library from inception to April 2017. Manual reference checks, ahead-of-press and citation tracking. Prospective studies evaluating isokinetic hamstrings, quadriceps and hip extensor strength testing as a risk factor for occurrence of hamstring muscle strain. Independent search result screening. Risk of bias assessment by independent reviewers using Quality in Prognosis Studies tool. Best evidence synthesis and meta-analyses of standardised mean difference (SMD). Twelve studies were included, capturing 508 hamstring strain injuries in 2912 athletes. Isokinetic knee flexor, knee extensor and hip extensor outputs were examined at angular velocities ranging 30-300°/s, concentric or eccentric, and relative (Nm/kg) or absolute (Nm) measures. Strength ratios ranged between 30°/s and 300°/s. Meta-analyses revealed a small, significant predictive effect for absolute (SMD=-0.16, P=0.04, 95% CI -0.31 to -0.01) and relative (SMD=-0.17, P=0.03, 95% CI -0.33 to -0.014) eccentric knee flexor strength (60°/s). No other testing speed or strength ratio showed statistical association. Best evidence synthesis found over half of all variables had moderate or strong evidence for no association with future hamstring injury. Despite an isolated finding for eccentric knee flexor strength at slow speeds, the role and application of isokinetic assessment for predicting hamstring strain risk should be reconsidered, particularly given costs and specialised training required. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Chen, Trevor Chung-Ching; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kuo-Wei; Nosaka, Kazunori
2017-01-01
It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine. PMID:28443029
Vargas, Valentine Z; Baptista, Abrahão F; Pereira, Guilherme O C; Pochini, Alberto C; Ejnisman, Benno; Santos, Marcelo B; João, Silvia M A; Hazime, Fuad A
2018-05-01
Vargas, VZ, Baptista, AF, Pereira, GOC, Pochini, AC, Ejnisman, B, Santos, MB, João, SMA, and Hazime, FA. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res 32(5): 1336-1341, 2018-The aim of this study was to evaluate the effect of transcranial direct current stimulation (tDCS) on the maximum isometric muscle contraction (MVIC) of the knee extensors in soccer players at the preprofessional level. Twenty female soccer players aged 15-17 years (mean = 16.1; SD = 0.9) with 5.2 ± 2.6 years of training were randomly divided into 2 groups to receive either active or sham tDCS in a single session (2 mA; 0.057 mA·cm). The MVIC of the knee extensors was evaluated in both lower limbs by manual dynamometry in 5 sets of contractions divided into 4 blocks: (a) prestimulation, (b) during tDCS, (c) 30 minutes after tDCS, and (d) 60 minutes after tDCS. After an interval of 7 days, the groups were evaluated again, and the type of initial stimulation was inverted between participants. The MVIC of the knee extensors increased significantly during active tDCS (dominant limb (DL) = 0.4; IC = 0.1-0.8 N·Kg), 30 minutes after active tDCS (DL = 0.9; IC 0.4-1.4 N·Kg), and 60 minutes after active tDCS (DL = 1.0; IC 0.3-1.6 N·Kg) but not for sham tDCS. Our conclusion was that tDCS temporarily increases isometric quadriceps strength in adolescent female soccer players, which may be useful for both strength training and rehabilitation.
Mu, Laiyong; Ritzmann, Roy E
2008-03-01
Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmann in J Comp Physiol A 191:1037-1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. One possible neural mechanism for the transformation from walking to inside leg turning could be that the descending commands alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: first, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern without descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in this paper by experiments on chordotonal organ reflexes. The activity of depressor muscle (Ds) and slow extensor tibia muscle (SETi) was excited and inhibited by stretching and relaxing the femoral chordotonal organ. However, the Ds responses were altered after eliminating the descending activity, while the SETi responses remain similar. The inhibition to Ds activity by stretching the coxal chordotonal organ was also altered after eliminating the descending activity.
Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita
2018-01-01
The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association
Santos, Kelli Maria Souza; de Cerqueira Neto, Manoel Luiz; Carvalho, Vitor Oliveira; de Santana Filho, Valter Joviniano; da Silva Junior, Walderi Monteiro; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira
2014-01-01
Introduction Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Results Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. Conclusion The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline. PMID:25372909
Santos, Kelli Maria Souza; Cerqueira Neto, Manoel Luiz de; Carvalho, Vitor Oliveira; Santana Filho, Valter Joviniano de; Silva Junior, Walderi Monteiro da; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira
2014-01-01
Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline.
Strength training, but not endurance training, reduces motor unit discharge rate variability.
Vila-Chã, Carolina; Falla, Deborah
2016-02-01
This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P<0.001), but did not change in the endurance (P=0.875) or control group (P=0.995). CoV of force was reduced after the strength training intervention only (P<0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest
NASA Technical Reports Server (NTRS)
English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.
2010-01-01
Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest
Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István
2013-01-01
The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 – 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer. PMID:23717351
Fisher, James; Steele, James; Campos, Mario H.; Silva, Marcelo H.; Paoli, Antonio; Giessing, Jurgen; Bottaro, Martim
2018-01-01
Background The objective of the present study was to compare the effects of equal-volume resistance training (RT) performed with different training frequencies on muscle size and strength in trained young men. Methods Sixteen men with at least one year of RT experience were divided into two groups, G1 and G2, that trained each muscle group once and twice a week, respectively, for 10 weeks. Elbow flexor muscle thickness (MT) was measured using a B-Mode ultrasound and concentric peak torque of elbow extensors and flexors were assessed by an isokinetic dynamometer. Results ANOVA did not reveal group by time interactions for any variable, indicating no difference between groups for the changes in MT or PT of elbow flexors and extensors. Notwithstanding, MT of elbow flexors increased significantly (3.1%, P < 0.05) only in G1. PT of elbow flexors and extensors did not increase significantly for any group. Discussion The present study suggest that there were no differences in the results promoted by equal-volume resistance training performed once or twice a week on upper body muscle strength in trained men. Only the group performing one session per week significantly increased the MT of their elbow flexors. However, with either once or twice a week training, adaptations appear largely minimal in previously trained males.
Gentil, Paulo; Fisher, James; Steele, James; Campos, Mario H; Silva, Marcelo H; Paoli, Antonio; Giessing, Jurgen; Bottaro, Martim
2018-01-01
The objective of the present study was to compare the effects of equal-volume resistance training (RT) performed with different training frequencies on muscle size and strength in trained young men. Sixteen men with at least one year of RT experience were divided into two groups, G1 and G2, that trained each muscle group once and twice a week, respectively, for 10 weeks. Elbow flexor muscle thickness (MT) was measured using a B-Mode ultrasound and concentric peak torque of elbow extensors and flexors were assessed by an isokinetic dynamometer. ANOVA did not reveal group by time interactions for any variable, indicating no difference between groups for the changes in MT or PT of elbow flexors and extensors. Notwithstanding, MT of elbow flexors increased significantly (3.1%, P < 0.05) only in G1. PT of elbow flexors and extensors did not increase significantly for any group. The present study suggest that there were no differences in the results promoted by equal-volume resistance training performed once or twice a week on upper body muscle strength in trained men. Only the group performing one session per week significantly increased the MT of their elbow flexors. However, with either once or twice a week training, adaptations appear largely minimal in previously trained males.
Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István
2013-03-01
The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 - 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer.
Strength and muscle mass loss with aging process. Age and strength loss.
Keller, Karsten; Engelhardt, Martin
2013-10-01
aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.
Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie
2008-12-01
To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.
Mayson, Douglas J; Kiely, Dan K; LaRose, Sharon I; Bean, Jonathan F
2008-12-01
To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01-1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance (BERG 14.23 [1.84-109.72], performance-oriented mobility assessment 33.92 [3.69-312.03], and Dynamic Gait Index 35.80 [4.77-268.71]). Strength was only associated with the BERG 1.08 (1.01-1.14). Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity.
Daneshjoo, Abdolhamid; Rahnama, Nader; Mokhtar, Abdul Halim; Yusof, Ashril
2013-01-01
This study investigated bilateral and unilateral asymmetries of strength and flexibility in male young professional soccer players. Thirty-six soccer players (age: 18.9 ± 1.4 years) participated in this study. A Biodex Isokinetic Dynamometer was used to assess the hamstring and quadriceps strength at selected speeds of 60°/s, 180°/s and 300°/s. Hip joint flexibility was measured using a goniometer. No difference was observed in conventional strength ratio, dynamic control ratio and fast/slow speed ratio between the dominant and non-dominant legs (p>0.05). All but one of the players (97.2%) had musculoskeletal abnormality (bilateral imbalance > 10%) in one or more specific muscle groups. The dominant leg had greater hip joint flexibility compared with the non-dominant leg (108.8 ± 10.7° versus 104.6 ± 9.8°, respectively). The findings support the hypothesis that physical performance and movement pattern experienced during soccer playing may negatively change the balance of strength in both legs (bilateral strength balance), but not on the same leg of the young male professional soccer players. The results can be helpful for trainers and coaches to decide whether the players need to improve their balance and strength which in turn may prevent injury. It is suggested that in professional soccer training, quadriceps and hamstrings muscle strength, as well as hip joint flexibility should not be overlooked. PMID:23717354
Lateral epicondylosis and calcific tendonitis in a golfer: a case report and literature review
Yuill, Erik A.; Lum, Grant
2011-01-01
Objective To detail the progress of a young female amateur golfer who developed chronic left arm pain while playing golf 8 months prior to her first treatment visit. Clinical Features Findings included pain slightly distal to the lateral epicondyle of the elbow, decreased grip strength, and positive orthopedic testing. Diagnostic ultrasound showed thickening of the common extensor tendon origin indicating lateral epicondylosis. Radiographs revealed an oval shaped calcified density in the soft tissue adjacent to the lateral humeral epicondyle, indicating calcific tendonitis of the common extensor tendon origin. Intervention and Outcome Conventional care was aimed at decreasing the repetitive load on the common extensor tendon, specifically the extensor carpi radialis brevis. Soft tissue techniques, exercises and stretches, and an elbow brace helped to reduce repetitive strain. Outcome measures included subjective pain ratings, and follow up imaging 10 weeks after treatment began. Conclusion A young female amateur golfer with chronic arm pain diagnosed as lateral epicondylosis and calcific tendonitis was relieved of her pain after 7 treatments over 10 weeks of soft tissue and physical therapy focusing specifically on optimal healing and decreasing the repetitive load on the extensor carpi radialis brevis. PMID:22131570
Nunes, Guilherme S; Barton, Christian John; Serrão, Fábio Viadanna
2018-02-01
To compare rate of force development (RFD) and isometric muscle strength of the hip abductors and extensors; and the thickness and the amount of non-contractile tissue of the gluteus medius and maximus between females with and without patellofemoral pain (PFP). Cross-sectional study. Fifty-four physically active females (27 with PFP and 27 healthy individuals) were studied. Hip muscle isometric strength and RFD was evaluated using isokinetic dynamometry. RFD was measured until 30%, 60%, and 90% of the maximal isometric torque (MIT). Hip muscle morphology was evaluated using ultrasonography. The PFP group possessed slower RFD compared to the control group by 33% for hip abductors until 90%MIT (-0.23%/ms, 95%CI -0.44 to -0.02, ES=0.59); by 51% for hip extensors until 30%MIT (-0.42%/ms, 95%CI -0.66 to -0.18, ES=0.97); and by 55% for hip extensors until 60%MIT (-0.36%/ms, 95%CI -0.60 to -0.12, ES=0.81). The PFP group possessed reduced isometric torque compared to the control group by 10% for hip abduction (-16.0Nm/kg×100, 95% CI -30.2 to -1.9, ES=0.61) and by 15% for hip extension (-30.1Nm/kg×100, 95%CI -51.4 to -8.9, ES=0.76). No significant between group differences for the thickness and the amount of non-contractile tissue of the gluteus medius and maximus were identified. Females with PFP have deficits in isometric strength and RFD in hip abduction and extension. RFD deficits are greater than strength deficits which may highlight their potential importance. Hip muscle strength and RFD deficits do not appear to be explained by muscle thickness or proportion of non-contractile tissue of the gluteal musculature as measured by ultrasound. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Ye, Miao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng
2016-08-01
[Purpose] The aim of this study was to examine the long-term interventions effects of robot-assisted therapy rehabilitation on functional activity levels after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 8 patients (6 males and 2 females) who received anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy lasting for one month. The Timed Up-and-Go test, 10-Meter Walk test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and extensor strength of isokinetic movement of the knee joint were evaluated before and after the intervention. [Results] The average value of the of vastus medialis EMG, Functional Reach Test, and the maximum and average extensor strength of the knee joint isokinetic movement increased significantly, and the time of the 10-Meter Walk test decreased significantly. [Conclusion] These results suggest that walking ability and muscle strength can be improved by robotic walking training as a long-term intervention.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Ye, Miao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng
2016-01-01
[Purpose] The aim of this study was to examine the long-term interventions effects of robot-assisted therapy rehabilitation on functional activity levels after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 8 patients (6 males and 2 females) who received anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy lasting for one month. The Timed Up-and-Go test, 10-Meter Walk test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and extensor strength of isokinetic movement of the knee joint were evaluated before and after the intervention. [Results] The average value of the of vastus medialis EMG, Functional Reach Test, and the maximum and average extensor strength of the knee joint isokinetic movement increased significantly, and the time of the 10-Meter Walk test decreased significantly. [Conclusion] These results suggest that walking ability and muscle strength can be improved by robotic walking training as a long-term intervention. PMID:27630396
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Strength, body composition, and functional outcomes in the squat versus leg press exercises.
Rossi, Fabrício E; Schoenfeld, Brad J; Ocetnik, Skyler; Young, Jonathan; Vigotsky, Andrew; Contreras, Bret; Krieger, James W; Miller, Michael G; Cholewa, Jason
2018-03-01
The purpose of this study was to compare strength, body composition, and functional outcome measures following performance of the back squat, leg press, or a combination of the two exercises. Subjects were pair-matched based on initial strength levels and then randomly assigned to 1 of 3 groups: a squat-only group (SQ) that solely performed squats for the lower body; a leg press-only group (LP) that solely performed leg presses for the lower body, or a combined squat and leg press group (SQ-LP) that performed both squats and leg presses for the lower body. All other RT variables were held constant. The study period lasted 10 weeks with subjects performing 2 lower body workouts per week comprising 6 sets per session at loads corresponding to 8-12 RM with 90- to 120-second rest intervals. Results showed that SQ had greater transfer to maximal squat strength compared to the leg press. Effect sizes favored SQ and SQ-LP versus LP with respect to countermovement jump while greater effect sizes for dynamic balance were noted for SQ-LP and LP compared to SQ, although no statistical differences were noted between conditions. These findings suggest that both free weights and machines can improve functional outcomes, and that the extent of transfer may be specific to the given task.
Leg Strength Comparison between Younger and Middle-age Adults
Kim, Sukwon; Lockhart, Thurmon; Nam, Chang S.
2009-01-01
Although a risk of occupational musculoskeletal diseases has been identified with age-related strength degradation, strength measures from working group are somewhat sparse. This is especially true for the lower extremity strength measures in dynamic conditions (i.e., isokinetic). The objective of this study was to quantify the lower extremity muscle strength characteristics of three age groups (young, middle, and the elderly). Total of 42 subjects participated in the study: 14 subjects for each age group. A commercial dynamometer was used to evaluate isokinetic and isometric strength at ankle and knee joints. 2 × 2 (Age group (younger, middle-age, and older adult groups) × Gender (male and female)) between-subject design and Post-hoc analysis were performed to evaluate strength differences among three age groups. Post-hoc analysis indicated that, overall, middle-age workers’ leg strengths (i.e. ankle and knee muscles) were significantly different from younger adults while middle-age workers’ leg strengths were virtually identical to older adults’ leg strengths. These results suggested that, overall, 14 middle-age workers in the present study could be at a higher risk of musculoskeletal injuries. Future studies looking at the likelihood of musculoskeletal injuries at different work places and from different working postures at various age levels should be required to validate the current findings. The future study would be a valuable asset in finding intervention strategies such that middle-age workers could stay healthier longer. PMID:20436934
Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R
2011-01-01
BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.
Mayson, Douglas J.; Kiely, Dan K.; LaRose, Sharon I.; Bean, Jonathan F.
2009-01-01
Objective To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. Design In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Results Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01–1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance [BERG 14.23 (1.84–109.72), performance-oriented mobility assessment 33.92 (3.69–312.03), and Dynamic Gait Index 35.80 (4.77–268.71))]. Strength was only associated with the BERG 1.08 (1.01–1.14). Conclusions Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity. PMID:19033758
Rossman, Matthew J; Garten, Ryan S; Venturelli, Massimo; Amann, Markus; Richardson, Russell S
2014-06-15
Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.
Exercise Training in Treatment and Rehabilitation of Hip Osteoarthritis: A 12-Week Pilot Trial
Patil, Radhika; Karinkanta, Saija; Tokola, Kari; Kannus, Pekka
2017-01-01
Introduction. Osteoarthritis (OA) of the hip is one of the major causes of pain and disability in the older population. Although exercise is an effective treatment for knee OA, there is lack of evidence regarding hip OA. The aim of this trial was to test the safety and feasibility of a specifically designed exercise program in relieving hip pain and improving function in hip OA participants and to evaluate various methods to measure changes in their physical functioning. Materials and Methods. 13 women aged ≥ 65 years with hip OA were recruited in this 12-week pilot study. Results. Pain declined significantly over 30% from baseline, and joint function and health-related quality of life improved slightly. Objective assessment of physical functioning showed statistically significant improvement in the maximal isometric leg extensor strength by 20% and in the hip extension range of motion by 30%. Conclusions. The exercise program was found to be safe and feasible. The present evidence indicates that the exercise program is effective in the short term. However, adequate powered RCTs are needed to determine effects of long-term exercise therapy on pain and progression of hip OA. PMID:28116214
ERIC Educational Resources Information Center
Williams, Hill, Jr.; Evans, Mel
The purpose of this study was to determine if there was any significant difference in overall leg strength gains in individuals with sickle-cell-trait as compared to non-sickle-cell-trait individuals, as measured by the leg dynamometer. Twenty black male first-year college students were used in this study. The subjects were divided into a control…
Spinal mobility and trunk muscle strength in elite hockey players.
Lindgren, S; Twomey, L
1988-01-01
Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.
Bogdanis, Gregory C; Tsoukos, Athanasios; Kaloheri, Olga; Terzis, Gerasimos; Veligekas, Panagiotis; Brown, Lee E
2017-04-18
This study compared the effects of unilateral and bilateral plyometric training on single and double-leg jumping performance, maximal strength and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n=7) or bilateral group (B, n=8). Both groups performed maximal effort plyometric leg exercises two times per week for 6 weeks. The B group performed all exercises with both legs, while the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJ) and drop jumps (DJ), while maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. CMJ improvement with both legs was not significantly different between U (12.1±7.2%) and B (11.0±5.5%) groups. However, the sum of right and left leg CMJ only improved in the U group (19.0±7.1%, p<0.001) and was unchanged in the B group (3.4±8.4%, p=0.80). Maximal isometric leg press force with both legs was increased similarly between groups (B: 20.1±6.5%, U: 19.9±6.2%). However, the sum of right and left leg maximal force increased more in U compared to B group (23.8±9.1% vs. 11.9±6.2%, p=0.009, respectively). Similarly, the sum of right and left leg RFD0-50 and RFD0-100 were improved only in the U group (34-36%, p<0.01). Unilateral plyometric training was more effective at increasing both single and double-leg jumping performance, isometric leg press maximal force and RFD when compared to bilateral training.
Strength Training for Skeletal Muscle Endurance after Stroke
Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.
2018-01-01
Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696
Aalund, Peter K; Larsen, Kristian; Hansen, Torben B; Bandholm, Thomas
2013-02-01
To investigate which of the 2 muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, was most closely associated with performance-based and self-reported measures of function shortly after total knee arthroplasty (TKA). Cross-sectional, exploratory study. Laboratory at a regional hospital. Individuals (N=39) with an average age ± SD of 65.5±10.3 years, who all had unilateral TKA 28 days prior. None. The patients performed maximal isometric knee extensions and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-meter fast speed walking- and 30-second chair stand tests were used to determine performance-based function, while the Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee Scores were used to determine self-reported function. Normalized leg press power was more closely associated with both performance-based (r=.82, P<.001) and self-reported (r=.48, P=.002) measures of function compared with normalized knee extension strength (r=.51, P=.001 and r=.39, P=.015, respectively). Normalized leg press power was more closely associated with both performance-based and self-reported function early after TKA than normalized knee extension strength. It may be explained by the fact that performance-based measures of function are typically closed kinetic chain tasks, such as walking or rising from a chair, and self-reported measures of function typically include questions that address perceived difficulty with performing these same tasks. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique
2017-01-01
Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.
Roos, Paulien E; Button, Kate; Sparkes, Valerie; van Deursen, Robert W M
2014-02-07
Anterior cruciate ligament (ACL) injury can result in failure to return to pre-injury activity levels and future osteoarthritis predisposition. Single leg hop is used in late rehabilitation to evaluate recovery and inform treatment but biomechanical understanding of this activity is insufficient. This study investigated single leg hop for distance aiming to evaluate if ACL patients had recovered: (1) landing strategies and (2) medio-lateral knee control. We hypothesized that patients with reconstructive surgery (ACLR) would have more similar landing strategies and knee control to healthy controls than patients treated conservatively (ACLD). 16 ACLD and 23 ACLR subjects were compared to 20 healthy controls (CONT). Kinematic and ground reaction force data were collected while subjects hopped their maximum distance. The main output parameters were hop distance, peak knee flexor angles and extensor moments and Fluency (a measure introduced to represent medio-lateral knee control). Statistical differences between ACL and control groups were analyzed using a general linear model univariate analysis, with COM velocity prior to landing as covariate. Hop distance was the smallest for ACLD and largest for CONT (p<0.001; ACLD 57.1±14.1; ACLR 75.1±17.8; CONT 77.7±14.07% height). ACLR used a similar kinematic strategy to CONT, but had a reduced peak knee extensor moment (p<0.001; ACLD 0.32±0.14; ACLR 0.31±0.16; CONT 0.42±0.13 BW.height). Fluency was reduced in both ACLD and ACLR (p=0.006; ACLD 0.13±0.34; ACLR 0.14±0.34; CONT 0.17±0.41s). Clinical practice uses hopping distance to evaluate ACL patients' recovery. This study demonstrated that aspects such as movement strategies and knee control need to be evaluated. © 2013 Published by Elsevier Ltd.
Brorsson, Sofia; Nilsdotter, Anna; Thorstensson, Carina; Bremander, Ann
2014-05-15
Impaired hand function is common in patients with arthritis and it affects performance of daily activities; thus, hand exercises are recommended. There is little information on the extent to which the disease affects activation of the flexor and extensor muscles during these hand-dexterity tasks. The purpose of this study was to compare muscle activation during such tasks in subjects with arthritis and in a healthy reference group. Muscle activation was measured in m. extensor digitorium communis (EDC) and in m. flexor carpi radialis (FCR) with surface electromyography (EMG) in women with rheumatoid arthritis (RA, n = 20), hand osteoarthritis (HOA, n = 16) and in a healthy reference group (n = 20) during the performance of four daily activity tasks and four hand exercises. Maximal voluntary isometric contraction (MVIC) was measured to enable intermuscular comparisons, and muscle activation is presented as %MVIC. The arthritis group used a higher %MVIC than the reference group in both FCR and EDC when cutting with a pair of scissors, pulling up a zipper and-for the EDC-also when writing with a pen and using a key (p < 0.02). The exercise "rolling dough with flat hands" required the lowest %MVIC and may be less effective in improving muscle strength. Women with arthritis tend to use higher levels of muscle activation in daily tasks than healthy women, and wrist extensors and flexors appear to be equally affected. It is important that hand training programs reflect real-life situations and focus also on extensor strength.
Cervical Musculoskeletal Impairments and Temporomandibular Disorders
Magee, David
2012-01-01
ABSTRACT Objectives The study of cervical muscles and their significance in the development and perpetuation of Temporomandibular Disorders has not been elucidated. Thus this project was designed to investigate the association between cervical musculoskeletal impairments and Temporomandibular Disorders. Material and Methods A sample of 154 subjects participated in this study. All subjects underwent a series of physical tests and electromyographic assessment (i.e. head and neck posture, maximal cervical muscle strength, cervical flexor and extensor muscles endurance, and cervical flexor muscle performance) to determine cervical musculoskeletal impairments. Results A strong relationship between neck disability and jaw disability was found (r = 0.82). Craniocervical posture was statistically different between patients with myogenous Temporomandibular Disorders (TMD) and healthy subjects. However, the difference was too small (3.3º) to be considered clinically relevant. Maximal cervical flexor muscle strength was not statistically or clinically different between patients with TMD and healthy subjects. No statistically significant differences were found in electromyographic activity of the sternocleidomastoid or the anterior scalene muscles in patients with TMD when compared to healthy subjects while executing the craniocervical flexion test (P = 0.07). However, clinically important effect sizes (0.42 - 0.82) were found. Subjects with TMD presented with reduced cervical flexor as well as extensor muscle endurance while performing the flexor and extensor muscle endurance tests when compared to healthy individuals. Conclusions Subjects with Temporomandibular Disorders presented with impairments of the cervical flexors and extensors muscles. These results could help guide clinicians in the assessment and prescription of more effective interventions for individuals with Temporomandibular Disorders. PMID:24422022
Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.
Zapparoli, Fabricio Yuri; Riberto, Marcelo
2017-11-01
Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.
Dynamic balance ability in young elite soccer players: implication of isometric strength.
Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim
2018-04-01
Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.
Lower-extremity isokinetic strength profiling in professional rugby league and rugby union.
Brown, Scott R; Brughelli, Matt; Griffiths, Peter C; Cronin, John B
2014-03-01
While several studies have documented isokinetic knee strength in junior and senior rugby league players, investigations of isokinetic knee and hip strength in professional rugby union players are limited. The purpose of this study was to provide lower-extremity strength profiles and compare isokinetic knee and hip strength of professional rugby league and rugby union players. 32 professional rugby league and 25 professional rugby union players. Cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque and strength ratios of the dominant and nondominant legs during seated knee-extension/ flexion and supine hip-extension/flexion actions at 60°/s. Forwards from both codes were taller and heavier and had a higher body-mass index than the backs of each code. Rugby union forwards produced significantly (P < .05) greater peak torque during knee flexion in the dominant and nondominant legs (ES = 1.81 and 2.02) compared with rugby league forwards. Rugby league backs produced significantly greater hip-extension peak torque in the dominant and nondominant legs (ES = 0.83 and 0.77) compared with rugby union backs. There were no significant differences in hamstring-to-quadriceps ratios between code, position, or leg. Rugby union forwards and backs produced significantly greater knee-flexion-to-hip-extension ratios in the dominant and nondominant legs (ES = 1.49-2.26) than rugby union players. It seems that the joint torque profiles of players from rugby league and union codes differ, which may be attributed to the different demands of each code.
Use of muscle synergies and wavelet transforms to identify fatigue during squatting.
Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L
2016-06-01
The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
Newland, P L; Kondoh, Y
1997-06-01
Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.
Macdonald, Ben; O'Neill, John; Pollock, Noel; Van Hooren, Bas
2018-03-06
Poor hamstring strength-endurance is a risk factor for hamstring injuries. This study investigated the effectiveness of the single-leg Roman hold and Nordic hamstring curl in improving hamstring strength-endurance. Twelve Gaelic footballers (mean ± standard deviation age, height and mass were 25.17 ± 3.46 years, 179.25 ± 5.88 cm, 85.75 ± 4.75 kilo) with a history of hamstring injury were randomized into 2 groups that performed 6 weeks of either Nordic hamstring curl, or single-leg Roman chair hold training. The single-leg hamstring bridge (SLHB) was measured pre- and post- intervention. The Roman chair group showed a very likely moderate magnitude improvement on SLHB performance for both legs (23.7% for the previously injured leg [90% confidence interval 9.6% to 39.6%] and 16.9% for the non-injured leg [6.2% to 28.8%]). The Nordic curl group showed a likely trivial change in SLHB performance for the non-injured leg (-2.1% [-6.7% to 2.6%]) and an unclear, but possibly trivial change for the previously injured leg (0.3% [-5.6% to 6.6%]). The Roman chair group improved very likely more with a moderate magnitude in both the non-injured (19.5% [8.0% to 32.2%]) and the previously injured leg (23.3% [8.5% to 40.0%]) compared to the Nordic curl group. This study demonstrated that 6-weeks single-leg Roman chair training substantially improved SLHB performance, suggesting that it may be an efficacious strategy to mitigate hamstring (re-) injury risk. Conversely, 6-weeks Nordic curl training did not substantially improve SLHB performance, suggesting this may not be the intervention of choice for modifying this risk factor.
Myers, C M; Whitington, P M; Ball, E E
1990-01-01
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.
Decreased neck muscle strength in patients with the loss of cervical lordosis.
Alpayci, Mahmut; Şenköy, Emre; Delen, Veysel; Şah, Volkan; Yazmalar, Levent; Erden, Metin; Toprak, Murat; Kaplan, Şeyhmus
2016-03-01
The loss of cervical lordosis is associated with some negative clinical outcomes. No previous study has examined cervical muscle strength, specifically in patients with the loss of cervical lordosis. This study aims to investigate whether there is weakness of the cervical muscles or an imbalance between cervical flexor and extensor muscle strength in patients with the loss of cervical lordosis compared with healthy controls matched by age, gender, body mass index (BMI), and employment status. Thirty-two patients with the loss of cervical lordosis (23 F, 9 M) and 31 healthy volunteers (23 F, 8 M) were included in the study. Maximal isometric neck extension and flexion strength, and the strength ratio between extension and flexion were used as evaluation parameters. All measurements were conducted by a blinded assessor using a digital force gauge. The participants were positioned on a chair in a neutral cervical position and without the trunk inclined during measurements. Maximal isometric neck extension and flexion strength values were significantly lower in the patients versus healthy controls (P<0.001 and P=0.040, respectively). The mean (SD) values of the extension/flexion ratio were 1.21 (0.34) in the patients and 1.46 ± 0.33 in the controls (P=0.004). According to our results, patients with the loss of cervical lordosis have reduced neck muscle strength, especially in the extensors. These findings may be beneficial for optimizing cervical exercise prescriptions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spinks, Christopher D; Murphy, Aron J; Spinks, Warwick L; Lockie, Robert G
2007-02-01
Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.
Small Beneficial Effect of Caffeinated Energy Drink Ingestion on Strength.
Collier, Nora B; Hardy, Michelle A; Millard-Stafford, Mindy L; Warren, Gordon L
2016-07-01
Collier, NB, Hardy, MA, Millard-Stafford, ML, and Warren, GL. Small beneficial effect of caffeinated energy drink ingestion on strength. J Strength Cond Res 30(7): 1862-1870, 2016-Because caffeine ingestion has been found to increase muscle strength, our aim was to determine whether caffeine when combined with other potential ergogenic ingredients, such as those in commercial energy drinks, would have a similar effect. Fifteen young healthy subjects were used in a double-blind, repeated-measures experimental design. Each subject performed 3 trials, ingesting either a caffeinated energy drink, an uncaffeinated version of the drink, or a placebo drink. The interpolated twitch procedure was used to assess maximum voluntary isometric contraction (MVIC) strength, electrically evoked strength, and percent muscle activation during MVIC of the knee extensors both before and after drink ingestion, and after a fatiguing bout of contractions; electromyographic (EMG) amplitude of the knee extensors during MVIC was also assessed. The mean (±SE) change in MVIC strength from before to after drink ingestion was significantly greater for the caffeinated energy drink compared with placebo [+5.0 (±1.7) vs. -0.5 (±1.5)%] and the difference between the drinks remained after fatigue (p = 0.015); the strength changes for the uncaffeinated energy drink were not significantly different from those of the other 2 drinks at any time. There was no significant effect of drink type on the changes in electrically evoked strength, percent muscle activation, and EMG from before to after drink ingestion. This study indicates that a caffeinated energy drink can increase MVIC strength but the effect is modest and the strength increase cannot be attributed to increased muscle activation. Whether the efficacy of energy drinks can be attributed solely to caffeine remains unclear.
Kim, Juseung; Park, Minchul
2016-09-01
[Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles.
Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years.
Mueller, Juliane; Mueller, Steffen; Stoll, Josefine; Baur, Heiner; Mayer, Frank
2014-05-01
Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 ± 1 years; 1.62 ± 0.11 m height; 51 ± 12 kg mass; training: 4.5 ± 2.6 years; training sessions/week: 4.3 ± 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60°·s(-1); 5 repetitions; range of motion: 55°). Maximum strength was characterized by absolute peak torque (Flexabs, Extabs; N·m), peak torque normalized to body weight (Flexnorm, Extnorm; N·m·kg(-1) BW), and Flexabs/Extabs ratio (RKquot). Descriptive data analysis (mean ± SD) was completed, followed by analysis of variance (α = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 ± 34 N·m in Flexabs and 140 ± 50 N·m in Extabs (Flexnorm = 1.9 ± 0.3 N·m·kg(-1) BW, Extnorm = 2.8 ± 0.6 N·m·kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flexabs and Extabs rose with increasing age almost 2-fold for males and females (Flexabs, Extabs: p < 0.001). Flexnorm and Extnorm increased with age for males (p < 0.001), however, not for females (Flexnorm: p = 0.26; Extnorm: p = 0.20). RKquot (mean ± SD: 0.71 ± 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flexabs/Extabs ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes.
Zhou, Shi; Huang, Li-Ping; Liu, Jun; Yu, Jun-Hai; Tian, Qiang; Cao, Long-Jun
2012-01-01
To determine the effect of unilateral manual acupuncture at selected acupoints on ankle dorsiflexion strength of both limbs, and compare the effect with that of electroacupuncture at the same acupoints and sham points. Randomized controlled trial. Rehabilitation laboratory of a university. Young men (N=43) were randomly allocated into 4 groups: control; manual acupuncture and electroacupuncture on 2 acupoints (ST-36 and ST-39); and electroacupuncture on 2 nonacupoints. These points were located on the tibialis anterior muscle. The participants in the experimental groups received 15 to 30 minutes of acupuncture or electroacupuncture on the right leg in each session, 3 sessions per week for 6 weeks. The maximal strength in isometric ankle dorsiflexion of both legs was assessed before and after the experimental period. Repeated-measures analysis of variance identified significant and similar strength gains (range, 35%-64% in the right leg and 32%-49% in the left leg; P<.01) in all acupuncture groups, but not in the control group (-2% to 2%, P>.05). Unilateral manual acupuncture and electroacupuncture at the acupoints can improve muscle strength in both limbs, and electroacupuncture at the nonacupoints as used in this study can also induce similar strength gains. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Taylor, Jeffrey B; Nguyen, Anh-Dung; Paterno, Mark V; Huang, Bin; Ford, Kevin R
2017-02-07
Anterior cruciate ligament (ACL) injuries in female athletes lead to a variety of short- and long-term physical, financial, and psychosocial ramifications. While dedicated injury prevention training programs have shown promise, ACL injury rates remain high as implementation has not become widespread. Conventional prevention programs use a combination of resistance, plyometric, balance and agility training to improve high-risk biomechanics and reduce the risk of injury. While many of these programs focus on reducing knee abduction load and posture during dynamic activity, targeting hip extensor strength and utilization may be more efficacious, as it is theorized to be an underlying mechanism of injury in adolescent female athletes. Biofeedback training may complement traditional preventive training, but has not been widely studied in connection with ACL injuries. We hypothesize that biofeedback may be needed to maximize the effectiveness of neuromuscular prophylactic interventions, and that hip-focused biofeedback will improve lower extremity biomechanics to a larger extent than knee-focused biofeedback during dynamic sport-specific tasks and long-term movement strategies. This is an assessor-blind, randomized control trial of 150 adolescent competitive female (9-19 years) soccer players. Each participant receives 3x/week neuromuscular preventive training and 1x/week biofeedback, the mode depending on their randomization to one of 3 biofeedback groups (hip-focused, knee-focused, sham). The primary aim is to assess the impact of biofeedback training on knee abduction moments (the primary biomechanical predictor of future ACL injury) during double-leg landings, single-leg landings, and unplanned cutting. Testing will occur immediately before the training intervention, immediately after the training intervention, and 6 months after the training intervention to assess the long-term retention of modified biomechanics. Secondary aims will assess performance changes, including hip and core strength, power, and agility, and the extent to which maturation effects biofeedback efficacy. The results of the Real-time Optimized Biofeedback Utilizing Sport Techniques (ROBUST) trial will help complement current preventive training and may lead to clinician-friendly methods of biofeedback to incorporate into widespread training practices. Date of publication in ClinicalTrials.gov: 20/04/2016. ClinicalTrials.gov Identifier: NCT02754700 .
Laitano, Orlando; Kalsi, Kameljit Kaur; Pearson, James; Lotlikar, Makra; Reischak-Oliveira, Alvaro; González-Alonso, José
2012-05-01
Exercise in the heat enhances oxidative stress markers in the human circulation, but the contribution of active skeletal muscle and the influence of hydration status remain unknown. To address this question, we measured leg exchange of glutathione (GSH), glutathione disulfide (GSSG), superoxide dismutase activity (SOD) and isoprostanes in seven males at rest and during submaximal one-legged knee extensor exercise in the following four conditions: (1) control euhydration (0% reduction in body mass), (2) mild-dehydration (2%), (3) moderate-dehydration (3.5%), (4) rehydration (0%). In all resting and control exercise conditions, a net GSH uptake was observed across the leg. In contrast, a significant leg release of GSH into the circulation (-354 ± 221 μmol/min, P < 0.05) was observed during exercise with moderate-dehydration, which was still present following full rehydration (-206 ± 122 μmol/min, P < 0.05). During exercise, mild and moderate-dehydration decreased both femoral venous erythrocyte SOD activity (195 ± 6 vs. 180 ± 5 U/L, P < 0.05) and plasma isoprostanes (30 ± 1.1 vs. 25.9 ± 1.3 pg/L, P < 0.05), but during rehydration these were not different from control. In conclusion, these findings suggest that active skeletal muscles release GSH into the circulation under moderate dehydration and subsequent rehydration, possibly to enhance the antioxidant defense.
Hip joint torques during the golf swing of young and senior healthy males.
Foxworth, Judy L; Millar, Audrey L; Long, Benjamin L; Way, Michael; Vellucci, Matthew W; Vogler, Joshua D
2013-09-01
Descriptive, laboratory study. To compare the 3-D hip torques during a golf swing between young and senior healthy male amateur golfers. The secondary purpose was to compare the 3-D hip joint torques between the trail leg and lead leg. The generation of hip torques from the hip musculature is an important aspect of the golf swing. Golf is a very popular activity, and estimates of hip torques during the golf swing have not been reported. Twenty healthy male golfers were divided into a young group (mean ± SD age, 25.1 ± 3.1 years) and a senior group (age, 56.9 ± 4.7 years). All subjects completed 10 golf swings using their personal driver. A motion capture system and force plates were used to obtain kinematic and kinetic data. Inverse dynamic analyses were used to calculate 3-D hip joint torques of the trail and lead limbs. Two-way analyses of covariance (group by leg), with club-head velocity as a covariate, were used to compare peak hip torques between groups and limbs. Trail-limb hip external rotator torque was significantly greater in the younger group compared to the senior group, and greater in the trail leg versus the lead leg. When adjusting for club-head velocity, young and senior healthy male amateur golfers generated comparable hip torques during a golf swing, with the exception of the trail-limb hip external rotator torque. The largest hip torque found was the trail-limb hip extensor torque.
Steidle, E.; Wirth, W.; Glass, N.; Ruhdorfer, A.; Cotofana, S.; Eckstein, F.; Segal, N. A.
2014-01-01
Objective Knee pain and muscle weakness confer risk for knee osteoarthritis incidence and progression. The purpose of this study was to determine whether unilateral knee pain influences contralateral thigh muscle strength. Design Of 4796 Osteoarthritis Initiative participants, 224 (mean±SD age 63.9±8.9 years) cases could be matched to a control. Cases were defined as having unilateral knee pain (numerical rating scale (NRS)≥4/10; ≥infrequent pain) and one pain-free knee (NRS 0–1; ≤infrequent pain; WOMAC≤1). Controls were defined as having bilaterally pain-free knees (NRS 0–1; ≤infrequent pain; WOMAC≤1). Maximal isometric muscle strength [N] was compared between limbs in participants with unilateral pain (cases), and between pain-free limbs of cases and controls. Results Knee extensor/flexor strength in pain-free limbs of cases was lower than in bilaterally pain-free controls (−5.5%/–8.4%; p=0.043/p=0.022). Within cases, maximum extensor/flexor strength was significantly lower in the painful than in the pain-free limb (−6.4%/4.1%; p<0.0001/p=0.015). Conclusions These results suggest that strength in limbs without knee pain is associated with the pain status of the contralateral knee. The strength difference between unilateral pain-free cases and matched bilateral pain-free controls was similar to that between limbs in persons with unilateral knee pain. Lower strength due to contralateral knee pain might be centrally mediated. PMID:25768069
Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta
The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F
2014-01-01
Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072
The Trainability of Adolescent Soccer Players to Brief Periodized Complex Training.
Chatzinikolaou, Athanasios; Michaloglou, Konstantinos; Avloniti, Alexandra; Leontsini, Diamanda; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Arsenis, Sotirios; Athanailidis, Ioannis; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Williams, Craig A; Fatouros, Ioannis G
2018-05-01
To investigate the effect of a complex, short-term strength/power training protocol on performance and body composition of elite early adolescent soccer players. Twenty-two players (14-15 y) were randomly assigned to (1) an experimental group (N = 12; participated in a 5-wk training protocol with traditional multijoint power resistance exercises, Olympic-style lifts, plyometric drills, and speed work; 4 times per week) or (2) a control group (N = 10). Strength and power performance (jumping, speed, change of direction, repeated sprint ability, endurance, isokinetic strength of knee flexors and extensors, maximal strength in various lifts, and speed-endurance) were evaluated pretraining and posttraining. Cessation of training for 5 weeks in the control group induced a marked performance deterioration (∼5%-20%). Training not only prevented strength performance deterioration but also increased it (∼2%-30%). Endurance and repeated sprint ability declined to a smaller extent in experimental group compared with control group (15% vs 7.5%). Isometric strength and body composition remained unaltered in both groups. Results demonstrate that (1) young players exhibit a high level of trainability of their strength/power performance (but not endurance) in response to a short-term complex training protocol during early adolescence, (2) Olympic-style lifts are characterized by increased safety in this age group and appear to be highly effective, (3) lifts incorporating a hip thrust result in increased strength of both knee extensors and flexors, (4) cessation of training for only 5 weeks results in marked deterioration of strength/power and endurance performance, and (5) improvement of strength/power performance may be related to neural-based adaptation as body composition remained unaffected.
Eriksen, Christian Skou; Garde, Ellen; Reislev, Nina Linde; Wimmelmann, Cathrine Lawaetz; Bieler, Theresa; Ziegler, Andreas Kraag; Gylling, Anne Theil; Dideriksen, Kasper Juel; Siebner, Hartwig Roman; Mortensen, Erik Lykke; Kjaer, Michael
2016-01-01
Introduction Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative. The primary aim of this randomised controlled trial is to compare the efficacy of two different 1 year strength training regimens on immediate and long-lasting improvements in muscle power in retirement-age individuals. Secondary aims are to evaluate the effect on muscle strength, muscle mass, physical and cognitive function, mental well-being, health-related quality of life and brain morphology. Methods and analysis The study includes 450 home-dwelling men and women (62–70 years). Participants are randomly allocated to (1) 1 year of supervised, centre-based heavy resistance training, (2) home-based moderate intensity resistance training or (3) habitual physical activity (control). Changes in primary (leg extensor power) and secondary outcomes are analysed according to the intention to treat principle and per protocol at 1, 2, 4, 7 and 10 years. Ethics and dissemination The study is expected to generate new insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer-reviewed journals, in PhD theses and at public meetings. The study is approved by the Regional Ethical Committee (Capital Region, Copenhagen, Denmark, number H-3-2014-017). Trial registration number NCT02123641. PMID:27913559
Sigward, Susan M.; Chan, Ming-Sheng M.; Lin, Paige E.
2016-01-01
Limitations in the ability to identify knee extensor loading deficits during gait in individuals following anterior cruciate ligament reconstruction (ACLr) may underlie their persistence. A recent study suggested that shank angular velocity, directly output from inertial sensors, differed during gait between individuals post-ACLr and controls. However, it is not clear if this kinematic variable relates to knee moments calculated using joint kinematics and ground reaction forces. Heel rocker mechanics during loading response of gait, characterized by rapid shank rotation, require knee extensor control. Measures of shank angular velocity may be reflective of knee moments. This study investigated the relationship between shank angular velocity and knee extensor moment during gait in individuals (n=19) 96.7±16.8 days post-ACLr. Gait was assessed concurrently using inertial sensors and a marker-based motion system with force platforms. Peak angular velocity and knee extensor moment were strongly correlated (r=0.75, p<0.001) and between limb ratios of angular velocity predicted between limb ratios of extensor moment (r2=0.57 ,p<0.001) in the absence of between limb differences in spatiotemporal gait parameters. The strength of these relationships indicate that shank kinematic data offer meaningful information regarding knee loading and provide a potential alternative to full motion analysis systems for identification of altered knee loading following ACLr PMID:27395452
Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E
2014-05-01
The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Paprottka, Felix Julian; Machens, Hans-Günther; Lohmeyer, Jörn Andreas
2012-08-01
Dysfunction of the lower limb's muscles can cause severe impairment and immobilisation of the patient. As one of the leg's major motor and sensory nerves, the deep peroneal nerve (synonym: deep fibular nerve) plays a very important role in muscle innervation in the lower extremities. We report the case of a 19-year-old female patient, who suffered from a brace-like exostosis 6-cm underneath her left fibular head causing a partially irreversible paresis of her deep peroneal nerve. This nerve damage resulted in complete atrophy of her extensor digitorum longus and extensor hallucis longus muscle, and in painful sensory disturbance at her left shin and first web space. The tibialis anterior muscle stayed intact because its motor branch left the deep peroneal nerve proximal to the nerve lesion. Diagnosis was first verified 6 years after the onset of symptoms by a magnetic resonance imaging (MRI) scan of her complete left lower leg. Subsequently, the patient was operated on in our clinic, where a neurolysis was performed and the 4-cm-long osteocartilaginous exostosis was removed. Paralysis was already irreversible but sensibility returned completely after neurolysis. The presented case shows that an osteocartilaginous exostosis can be the cause for partial deep peroneal nerve paresis. If this disorder is diagnosed at an early stage, nerve damage is reversible. Typical for an exostosis is its first appearance during the juvenile growth phase. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Gautam, V K; Verma, Saurabh; Batra, Sahil; Bhatnagar, Nidhi; Arora, Sumit
2015-04-01
To evaluate the clinical and ultrasonographic changes in the morphology and vascularity of the common extensor tendon after injecting platelet-rich plasma (PRP) or corticosteroid (CS) for recalcitrant lateral epicondylitis (LE). 30 patients aged 18 to 60 years with recalcitrant (>6 months) LE not responsive to oral medication or non-invasive treatment were randomised to receive PRP (n=15) or CS (n=15) injection. Patients were assessed using the visual analogue scale (VAS) for pain, Disabilities of the Arm, Shoulder and Hand Scale (DASH) score, Oxford Elbow Score, modified Mayo Clinic performance index for the elbow (modified Mayo score), and hand grip strength. Ultrasonography was performed by a musculoskeletal ultrasonologist to evaluate for tear at the common extensor origin, oedema at the common extensor origin, cortical erosion, probe-induced tenderness, and thickness of the tendon. The VAS for pain, DASH score, Oxford Elbow Score, modified Mayo score, and hand grip strength all improved significantly from pre-injection to the 6-month follow-up in the PRP and CS groups. However, in the CS group, the scores generally peaked at 3 months and then deteriorated slightly at 6 months indicating recurrence of symptoms, which involved 46.7% of the CS patients. At 6 months, the number of patients positive for various ulrasonographic findings generally decreased. However, in the CS group, the number of patients with reduced thickness of the common extensor tendon increased from 2 to 12, and the number of patients with cortical erosion at the lateral epicondyle increased from 9 to 11. PRP appeared to enable biological healing of the lesion, whereas CS appeared to provide short-term, symptomatic relief but resulted in tendon degeneration.
The effect of Brazilian Propolis on leg health in broilers reared under heat stress
USDA-ARS?s Scientific Manuscript database
Exposing broiler chickens to heat stress increases leg abnormalities and Gait Score, also it reduced the time of Latency to Lie Test. This experiment was conducted to examine the effect of dietary supplemention with green Brazilian propolis on Latency to Lie Test for leg strength and leg abnormaliti...
Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J
2017-01-01
Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.
Evaluating the influence of massage on leg strength, swelling, and pain following a half-marathon.
Dawson, Lance G; Dawson, Kimberley A; Tiidus, Peter M
2004-11-01
Massage therapy is commonly used following endurance running races with the expectation that it will enhance post-run recovery of muscle function and reduce soreness. A limited number of studies have reported little or no influence of massage therapy on post-exercise muscle recovery. However, no studies have been conducted in a field setting to assess the potential for massage to influence muscle recovery following an actual endurance running race. To evaluate the potential for repeated massage therapy interventions to influence recovery of quadriceps and hamstring muscle soreness, recovery of quadriceps and hamstring muscle strength and reduction of upper leg muscle swelling over a two week recovery period following an actual road running race. Twelve adult recreational runners (8 male, 4 female) completed a half marathon (21.1 km) road race. On days 1,4, 8, and 11 post-race, subjects received 30 minutes of standardized massage therapy performed by a registered massage therapist on a randomly assigned massage treatment leg, while the other (control) leg received no massage treatment. Two days prior to the race (baseline) and preceding the treatments on post-race days 1, 4, 8, and 11 the following measures were conducted on each of the massage and control legs: strength of quadriceps and hamstring muscles, leg swelling, and soreness perception. At day 1, post-race quadriceps peak torque was significantly reduced (p < 0.05), and soreness and leg circumference significantly elevated (p < 0.05) relative to pre-race values with no difference between legs. This suggested that exercise-induced muscle disruption did occur. Comparing the rate of return to baseline measures between the massaged and control legs, revealed no significant differences (p > 0.05). All measures had returned to baseline at day 11. Massage did not affect the recovery of muscles in terms of physiological measures of strength, swelling, or soreness. However, questionnaires revealed that 7 of the 12 participants perceived that the massaged leg felt better upon recovery. Key PointsMassage does not appear to affect physiological indices of muscle recovery post exercise.Massage does appear to positively influence perceptions of recovery.More research needs to be completed on the purported benefits of massage.
NASA Technical Reports Server (NTRS)
Dudley, Gary A.; Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul
1989-01-01
The purpose of this study was to examine the effect of 30 d of 6 deg headdown bedrest (BR) on the in vivo strength of skeletal muscle. Peak angle specific (0.78 rad below horizontal) torque of the knee extensor (KE) and flexor (KF) muscle groups of both limbs was assessed during unilateral efforts at four speeds (0.52, 1.74, 2.97 and 4.19 rad/s) during concentric and at three speeds (0.52, 1.74 and 2.97 rad/s) during eccentric actions. The average decrease (P less than 0.05) of peak angle specific torque directly post-BR for the KE across speeds of concentric and eccentric actions was about 19% (n = 7). Recovery for 30 d following BR markedly improved strength to about 92% (P greater than 0.05) of 'normal'. Strength of the KF was not altered (P greater than 0.05) by BR (about a 6% decrease independent of speed and type of muscle action). Changes of strength were not affected by the type or speed of muscle action. The results indicate that strength of ex-tensor more than of flexor muscle groups of the lower limb is decreased by 30 d of bedrest and that this response does not alter the nature of the in vivo torque-velocity relation.
Bean, Jonathan F.; Kiely, Dan K.; LaRose, Sharon; Goldstein, Richard; Frontera, Walter R.; Leveille, Suzanne G.
2010-01-01
Objectives Mobility as measured by the Short Physical Performance Battery (SPPB) or habitual Gait Speed (GS) is predictive of mortality and disability among older adults. Clinically meaningful changes of these measures have been identified. Among physiologic attributes commonly targeted in rehabilitation, we sought to identify those attributes in which changes led to clinically meaningful differences (CMD) in the mobility outcomes. Participants Community-dwelling, mobility-limited older adults (n=116) participating in a 16-week randomized controlled trial (RCT) of two modes of exercise Setting Outpatient rehabilitation centers Design Secondary analysis of data collected for a RCT of exercise using binary outcomes defined by recording a large CMD (SPPB=1 unit; GS=.1m/s). Iterative models were performed to evaluate possible confounding between physiologic variables and relevant covariates. Measures Physiologic measures included leg power, leg strength, balance as measured by the Performance Oriented Mobility Assessment (POMA), rate pressure product (RPP) at the maximal stage of an exercise tolerance test. Outcomes included GS and SPPB. Leg power and leg strength were measured using computerized pneumatic strength training equipment and recorded in Watts and Newtons respectively. Results Participants were 68% female, had a mean age of 75.2 years, with a mean of 5.5 chronic conditions and a baseline mean SPPB score of 8.7. After controlling for age, site, group assignment, and baseline outcome values, leg power was the only attribute in which changes were significantly associated with a large CMD in SPPB (OR 1.48, 95% CI 1.09, 2.02) and GS (OR1.31, 95% CI 1.01, 1.70). Conclusion Improvements in leg power, independent of strength, appear to make an important contribution towards clinically meaningful improvements in both SPPB and GS. PMID:21143443
Bean, Jonathan F; Kiely, Dan K; LaRose, Sharon; Goldstein, Richard; Frontera, Walter R; Leveille, Suzanne G
2010-12-01
From among physiological attributes commonly targeted in rehabilitation, to identify those in which changes led to clinically meaningful differences (CMDs) in mobility outcomes. Secondary analysis of data collected for a randomized controlled trial of exercise using binary outcomes defined by recording a large CMD (Short Physical Performance Battery (SPPB)=1 unit; gait speed (GS)=0.1 m/s). Iterative models were performed to evaluate possible confounding between physiological variables and relevant covariates. Outpatient rehabilitation centers. Community-dwelling mobility-limited older adults (n=116) participating in a 16-week randomized controlled trial of two modes of exercise. Physiological measures included leg power, leg strength, balance as measured according to the Performance-Oriented Mobility Assessment (POMA), and rate pressure product at the maximal stage of an exercise tolerance test. Outcomes included GS and SPPB. Leg power and leg strength were measured using computerized pneumatic strength training equipment and recorded in Watts and Newtons, respectively. Participants were 68% female, had a mean age of 75.2, a mean of 5.5 chronic conditions, and a baseline mean SPPB score of 8.7. After controlling for age, site, group assignment, and baseline outcome values, leg power was the only attribute in which changes were significantly associated with a large CMD in SPPB (odds ratio (OR)=1.48, 95% confidence interval (CI)=1.09-2.02) and GS (OR=1.31, 95% CI=1.01-1.70). Improvements in leg power, independent of strength, appear to make an important contribution to clinically meaningful improvements in SPPB and GS. © 2010, Copyright the Authors. Journal compilation © 2010, The American Geriatrics Society.
Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix
2014-08-01
Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.
Reduction of Risk for Low Back Injury in Theater of Operations
2015-06-01
Assessed for eligibility (n = 698) 14 Figure 4. Predicted (from regression) isometric lumbar extension strength ( torque ) mean values (adjusted by...resistance exercise to the lumbar extensors in the ranges required for strength development, torque production from the gluteals and hamstrings must be...the small lumbar muscles play only a minor role in trunk extension torque production.17 Thus, they are considered to be the weak link in trunk
Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R
2016-05-01
Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.
Rossman, Matthew J.; Trinity, Joel D.; Garten, Ryan S.; Ives, Stephen J.; Conklin, Jamie D.; Barrett-O'Keefe, Zachary; Witman, Melissa A. H.; Bledsoe, Amber D.; Morgan, David E.; Runnels, Sean; Reese, Van R.; Zhao, Jia; Amann, Markus; Wray, D. Walter
2015-01-01
The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P < 0.05, control vs. AOC, respectively), leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. PMID:26188020
Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas
2013-01-01
Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020
The isokinetic strength profile of elite soccer players according to playing position
Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz
2017-01-01
The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010–2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s–1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s–1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance. PMID:28759603
The isokinetic strength profile of elite soccer players according to playing position.
Śliwowski, Robert; Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz
2017-01-01
The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010-2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s-1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s-1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance.
Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J
2015-06-01
Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Delmonico, Matthew J; Kostek, Matthew C; Doldo, Neil A; Hand, Brian D; Walsh, Sean; Conway, Joan M; Carignan, Craig R; Roth, Stephen M; Hurley, Ben F
2007-02-01
The alpha-actinin-3 (ACTN3) R577X polymorphism has been associated with muscle power performance in cross-sectional studies. We examined baseline knee extensor concentric peak power (PP) and PP change with approximately 10 weeks of unilateral knee extensor strength training (ST) using air-powered resistance machines in 71 older men (65 [standard deviation = 8] years) and 86 older women (64 [standard deviation = 9] years). At baseline in women, the XX genotype group had an absolute (same resistance) PP that was higher than the RR (p =.005) and RX genotype groups (p =.02). The women XX group also had a relative (70% of one-repetition maximum [1-RM]) PP that was higher than that in the RR (p =.002) and RX groups (p =.008). No differences in baseline absolute or relative PP were observed between ACTN3 genotype groups in men. In men, absolute PP change with ST in the RR (n = 16) group approached a significantly higher value than in the XX group (n = 9; p =.07). In women, relative PP change with ST in the RR group (n = 16) was higher than in the XX group (n = 17; p =.02). The results indicate that the ACTN3 R577X polymorphism influences the response of quadriceps muscle power to ST in older adults.
Comparison of isokinetic muscle strength and muscle power by types of warm-up.
Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun
2015-05-01
[Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.
Zhang, Li; Weng, Changshui; Liu, Miao; Wang, Qiuhua; Liu, Liming; He, Yao
2014-01-01
To study the effects of whole-body vibration exercises on the mobility function, balance and general health status, and its feasibility as an intervention in frail elderly patients. Pilot randomized controlled trial. Forty-four frail older persons (85.27 ± 3.63 years) meeting the Fried Frailty Criteria. All eligible subjects were randomly assigned to the experimental group, who received a whole-body vibration exercise alone (vibration amplitude: 1-3 mm; frequency: 6-26 Hz; 4-5 bouts × 60 seconds; 3-5 times weekly), or a control group, who received usual care and exercises for eight weeks. The Timed Up and Go Test, 30-second chair stand test, lower extremities muscle strength, balance function, balance confidence and General Health Status were assessed at the beginning of the study, after four weeks and eight weeks of the intervention. Whole-body vibration exercise reduced the time of the Timed Up and Go Test (40.47 ± 15.94 s to 21.34 ± 4.42 s), improved the bilateral knees extensor strength (6.96 ± 1.70 kg to 11.26 ± 2.08 kg), the posture stability (surface area ellipse: 404.58 ± 177.05 to 255.95 ± 107.28) and General Health Status (Short-form Health Survey score: 24.51 ± 10.69 and 49.63 ± 9.85 to 45.03 ± 11.15 and 65.23 ± 9.39, respectively). The repeated-measures ANOVA showed that there were significant differences in the Timed Up and Go Test, 30-second chair stand test, bilateral knees extensor strength, activities-specific balance confidence score and general health status between the two groups (P < 0.05). No side-effects were observed during the training. Whole-body vibration exercise is a safe and effective method that can improve the mobility, knee extensor strength, balance and the general health status in the frail elderly.
Conchola, Eric C; Thiele, Ryan M; Palmer, Ty B; Smith, Doug B; Thompson, Brennan J
2015-05-01
The aim of this study was to examine the effects of a medium-intensity high-volume vs. explosive squat protocol on the postexercise time course responses of maximal and rapid strength of the knee extensors. Seventeen resistance-trained men (mean ± SD: age = 22.0 ± 2.6 years) performed maximal voluntary contractions (MVCs) of the knee extensors before and after performing a squat workout using either a low-intensity fast velocity (LIFV) (5 × 16 at 40% 1 repetition maximum) or a traditional high-intensity slow velocity (TISV) (5 × 8 at 80% 1RM) exercise protocol. For each MVC, peak torque (PT), peak rate of torque development (RTDpeak), absolute (RTDabs), and relative RTD (RTDnorm) at early (0-50 milliseconds) and late (100-200 milliseconds) phases of muscle contraction were examined at pre- (Pre) and post-exercise at 0, 7, 15, and 30 (Post0...30) minutes. There were no intensity × time interactions for any variables (p = 0.098-0.832). Peak torque was greater at Pre than Post0 and Post7 (p = 0.001-0.016) but was not greater than Post15 and Post30 (p = 0.010-0.189). RTDpeak and early absolute RTD (RTD50abs) were greater at Pre than all postexercise time phases (p = 0.001-0.050); however, later absolute RTD (RTD100-200abs) was only greater at Pre than Post0 and Post30 (p = 0.013-0.048). Early relative RTD (RTD50norm) was only higher at Pre compared with Post0 (p = 0.023), whereas no differences were observed for later relative RTD (RTD100-200norm) (p = 0.920-0.990). Low-intensity fast velocity and TISV squat protocols both yielded acute decreases in maximal and rapid strength capacities following free-weight squats, with rapid strength showing slower recovery characteristics than maximal strength.
Injury of leg somatotopy of corticospinal tract at corona radiata by ventriculoperitoneal shunt
Jang, Sung Ho; Kwon, Younghyeon
2018-01-01
Abstract Rationale: A 45-year-old right-handed female patient suffered head trauma after being hit by a truck that ran into a house. Patient concerns: The patient lost consciousness for 1 hour and experienced posttraumatic amnesia for 1 month after the accident. Diagnoses: She underwent conservative management for a subdural hematoma in the left frontotemporal lobes and intracerebral hematoma in the left frontal lobe. Interventions: The patient's Glasgow Coma Scale score was 11. She underwent a VP shunt operation, approached through the right posterior parietal area of the brain, at 4 months after onset. Approximately, 6 months after onset, she was admitted to the rehabilitation department of a university hospital. She presented with moderate weakness of the left leg: Medical Research Council scores: hip flexor; 3, knee extensor; 3+, ankle dorsiflexor; 3–. Brain magnetic resonance imaging revealed a leukomalactic lesion in the right posterior corona radiata along the shunt. Outcomes: On 6-month (2 months after the shunt operation) diffusion tensor tractography, the left CST showed partial injury in the posterior portion compared with the right CST. On 6-month transcranial magnetic stimulation study, the motor-evoked potential obtained at the left tibialis anterior muscle revealed lower amplitude than that on the right side. Lessons: Injury of leg somatotopy of a CST was demonstrated in a patient with leg weakness following a VP shunt operation. PMID:29517704
Jang, Sung Ho; Kwon, Younghyeon
2018-03-01
A 45-year-old right-handed female patient suffered head trauma after being hit by a truck that ran into a house. The patient lost consciousness for 1 hour and experienced posttraumatic amnesia for 1 month after the accident. She underwent conservative management for a subdural hematoma in the left frontotemporal lobes and intracerebral hematoma in the left frontal lobe. The patient's Glasgow Coma Scale score was 11. She underwent a VP shunt operation, approached through the right posterior parietal area of the brain, at 4 months after onset. Approximately, 6 months after onset, she was admitted to the rehabilitation department of a university hospital. She presented with moderate weakness of the left leg: Medical Research Council scores: hip flexor; 3, knee extensor; 3+, ankle dorsiflexor; 3-. Brain magnetic resonance imaging revealed a leukomalactic lesion in the right posterior corona radiata along the shunt. On 6-month (2 months after the shunt operation) diffusion tensor tractography, the left CST showed partial injury in the posterior portion compared with the right CST. On 6-month transcranial magnetic stimulation study, the motor-evoked potential obtained at the left tibialis anterior muscle revealed lower amplitude than that on the right side. Injury of leg somatotopy of a CST was demonstrated in a patient with leg weakness following a VP shunt operation.
Kinetic comparison of older men and women during walk-to-stair descent transition.
Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki Hoon; Kwon, Young-Hoo
2014-09-01
Stair walking is one of the most challenging tasks for older adults, with women reporting higher incidence of falls. The purpose of this study was to investigate the gender differences in kinetics during stair descent transition. Twenty-eight participants (12 male and 16 female; 68.5 and 69.0 years of mean age, respectively) performed stair descent from level walking in a step-over-step manner at a self-selected speed over a custom-made three-step staircase with embedded force plates. Kinematic and force data were combined using inverse dynamics to generate kinetic data for gender comparison. The top and the first step on the staircase were chosen for analysis. Women showed a higher trail leg peak hip abductor moment (-1.0 Nm/kg), lower trail leg peak knee extensor moment and eccentric power (0.74 Nm/kg and 3.15 W/kg), and lower peak concentric power at trail leg ankle joint (1.29 W/kg) as compared to men (p<0.05; -0.82 Nm/kg, 0.89 Nm/kg, 3.83 W/kg, and 1.78 W/kg, respectively). The lead leg knee eccentric power was also lower in women (p<0.05). This decreased ability to exert knee control during stair descent transition may predispose women to a higher risk of fall. Copyright © 2014 Elsevier B.V. All rights reserved.
The potential of toe flexor muscles to enhance performance.
Goldmann, Jan-Peter; Sanno, Maximilian; Willwacher, Steffen; Heinrich, Kai; Brüggemann, Gert-Peter
2013-01-01
The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance. Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance. Left (0.21 to 0.38 Nm · kg(-1); P < 0.001) and right (0.24 to 0.40 Nm · kg(-1); P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg(-1); P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly. TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.
Falls in Korean Polio Survivors: Incidence, Consequences, and Risk Factors
Lee, SeungYeol; Yang, Eun Joo; Kim, Keewon; Jung, Se Hee; Jang, Soong-Nang; Han, Soo Jeong; Kim, Wan-Ho
2016-01-01
Falls and fall-related injuries are important issue among polio survivors. The purpose of this study was to determine the incidence of, and consequences and factors associated with falls among Korean polio survivors. A total of 317 polio survivors participated in this study. All participants completed a questionnaire including fall history, symptoms related to post-polio syndrome and other information through a telephone interview. Among them, 80 participants visited our clinic for additional physical measurements and tests. Of the 317 respondents, 68.5% reported at least one fall in the past year. Of the fallers, 42.5% experienced at least one fall during one month. Most falls occurred during ambulation (76.6%), outside (75.2%) and by slipping down (29.7%). Of fallers, 45% reported any injuries caused by falls, and 23.3% reported fractures specifically. Female sex, old age, low bone mineral density, the presence of symptoms related to post-polio syndrome (PPS), poor balance confidence, short physical performance battery and weak muscle strength of knee extensor were not significantly associated with falls. Only leg-length discrepancy using spine-malleolar distance (SMD) was a significant factor associated with falls among Korean polio survivors. Our findings suggest that malalignment between the paralytic and non-paralytic limb length should be addressed in polio survivors for preventing falls. PMID:26839487
Falls in Korean Polio Survivors: Incidence, Consequences, and Risk Factors.
Nam, Ki Yeun; Lee, SeungYeol; Yang, Eun Joo; Kim, Keewon; Jung, Se Hee; Jang, Soong-Nang; Han, Soo Jeong; Kim, Wan-Ho; Lim, Jae-Young
2016-02-01
Falls and fall-related injuries are important issue among polio survivors. The purpose of this study was to determine the incidence of, and consequences and factors associated with falls among Korean polio survivors. A total of 317 polio survivors participated in this study. All participants completed a questionnaire including fall history, symptoms related to post-polio syndrome and other information through a telephone interview. Among them, 80 participants visited our clinic for additional physical measurements and tests. Of the 317 respondents, 68.5% reported at least one fall in the past year. Of the fallers, 42.5% experienced at least one fall during one month. Most falls occurred during ambulation (76.6%), outside (75.2%) and by slipping down (29.7%). Of fallers, 45% reported any injuries caused by falls, and 23.3% reported fractures specifically. Female sex, old age, low bone mineral density, the presence of symptoms related to post-polio syndrome (PPS), poor balance confidence, short physical performance battery and weak muscle strength of knee extensor were not significantly associated with falls. Only leg-length discrepancy using spine-malleolar distance (SMD) was a significant factor associated with falls among Korean polio survivors. Our findings suggest that malalignment between the paralytic and non-paralytic limb length should be addressed in polio survivors for preventing falls.
Baur, Heiner; Groppa, Alessia Severina; Limacher, Regula; Radlinger, Lorenz
2016-02-02
Maximum strength and rate of force development (RFD) are 2 important strength characteristics for everyday tasks and athletic performance. Measurements of both parameters must be reliable. Expensive isokinetic devices with isometric modes are often used. The possibility of cost-effective measurements in a practical setting would facilitate quality control. The purpose of this study was to assess the reliability of measurements of maximum isometric strength (Fmax) and RFD on a conventional leg press. Sixteen subjects (23 ± 2 y, 1.68 ± 0.05 m, 59 ± 5 kg) were tested twice within 1 session. After warm-up, subjects performed 2 times 5 trials eliciting maximum voluntary isometric contractions on an instrumented leg press (1- and 2-legged randomized). Fmax (N) and RFD (N/s) were extracted from force-time curves. Reliability was determined for Fmax and RFD by calculating the intraclass correlation coefficient (ICC), the test-retest variability (TRV), and the bias and limits of agreement. Reliability measures revealed good to excellent ICCs of .80-.93. TRV showed mean differences between measurement sessions of 0.4-6.9%. The systematic error was low compared with the absolute mean values (Fmax 5-6%, RFD 1-4%). The implementation of a force transducer into a conventional leg press provides a viable procedure to assess Fmax and RFD. Both performance parameters can be assessed with good to excellent reliability allowing quality control of interventions.
Son, Sung Min; Kang, Kyung Woo; Lee, Na Kyung; Nam, Seok Hyun; Kwon, Jung Won; Kim, Kyoung
2013-01-01
[Purpose] The purpose of the current study was to investigate the changes in one-legged standing balance of the ipsilateral lower limb following unilateral isokinetic strength training. [Subjects and Methods] Thirty healthy adult volunteers were randomly assigned to either a training group or a control group, so that each group included 15 subjects. Subjects in the training group performed unilateral ankle isokinetic exercises of the dominant leg using the Biodex 3 PRO System for a period of four weeks. Ipsilateral one-legged standing balance was evaluated before and after the intervention with three stability indexes of balance using the Biodex System: Anterior-Posterior Stability Index (APSI), Medial-Lateral Stability Index (MLSI), and Overall Stability Index (OSI). [Results] Comparison of pre- and post-test data revealed significant improvements in strength values (dorsiflexion, plantarflexion, eversion, and inversion) and stability indexes (APSI, MLSI, OSI). [Conclusion] These results suggest that ankle strengthening exercise can be considered as a form of exercise that may assist individuals with improvement of balance. PMID:24259783
Neil, Sarah E; Myring, Alec; Peeters, Mon Jef; Pirie, Ian; Jacobs, Rachel; Hunt, Michael A; Garland, S Jayne; Campbell, Kristin L
2013-11-01
Muscular strength is a key parameter of rehabilitation programs and a strong predictor of functional capacity. Traditional methods to measure strength, such as manual muscle testing (MMT) and hand-held dynamometry (HHD), are limited by the strength and experience of the tester. The Performance Recorder 1 (PR1) is a strength assessment tool attached to resistance training equipment and may be a time- and cost-effective tool to measure strength in clinical practice that overcomes some limitations of MMT and HHD. However, reliability and validity of the PR1 have not been reported. Test-retest and inter-rater reliability was assessed using the PR1 in healthy adults (n = 15) during isometric knee flexion and extension. Criterion-related validity was assessed through comparison of values obtained from the PR1 and Biodex® isokinetic dynamometer. Test-retest reliability was excellent for peak knee flexion (intra-class correlation coefficient [ICC] of 0.96, 95% CI: 0.85, 0.99) and knee extension (ICC = 0.96, 95% CI: 0.87, 0.99). Inter-rater reliability was also excellent for peak knee flexion (ICC = 0.95, 95% CI: 0.85, 0.99) and peak knee extension (ICC = 0.97, 95% CI: 0.91, 0.99). Validity was moderate for peak knee flexion (ICC = 0.75, 95% CI: 0.38, 0.92) but poor for peak knee extension (ICC = 0.37, 95% CI: 0, 0.73). The PR1 provides a reliable measure of isometric knee flexor and extensor strength in healthy adults that could be used in the clinical setting, but absolute values may not be comparable to strength assessment by gold-standard measures.
Neck Strength Imbalance Correlates With Increased Head Acceleration in Soccer Heading
Dezman, Zachary D.W.; Ledet, Eric H.; Kerr, Hamish A.
2013-01-01
Background: Soccer heading is using the head to directly contact the ball, often to advance the ball down the field or score. It is a skill fundamental to the game, yet it has come under scrutiny. Repeated subclinical effects of heading may compound over time, resulting in neurologic deficits. Greater head accelerations are linked to brain injury. Developing an understanding of how the neck muscles help stabilize and reduce head acceleration during impact may help prevent brain injury. Hypothesis: Neck strength imbalance correlates to increasing head acceleration during impact while heading a soccer ball. Study Design: Observational laboratory investigation. Methods: Sixteen Division I and II collegiate soccer players headed a ball in a controlled indoor laboratory setting while player motions were recorded by a 14-camera Vicon MX motion capture system. Neck flexor and extensor strength of each player was measured using a spring-type clinical dynamometer. Results: Players were served soccer balls by hand at a mean velocity of 4.29 m/s (±0.74 m/s). Players returned the ball to the server using a heading maneuver at a mean velocity of 5.48 m/s (±1.18 m/s). Mean neck strength difference was positively correlated with angular head acceleration (rho = 0.497; P = 0.05), with a trend toward significance for linear head acceleration (rho = 0.485; P = 0.057). Conclusion: This study suggests that symmetrical strength in neck flexors and extensors reduces head acceleration experienced during low-velocity heading in experienced collegiate players. Clinical Relevance: Balanced neck strength may reduce head acceleration cumulative subclinical injury. Since neck strength is a measureable and amenable strength training intervention, this may represent a modifiable intrinsic risk factor for injury. PMID:24459547
Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle
Baumann, Cory W.; Rogers, Russell G.; Gahlot, Nidhi; Ingalls, Christopher P.
2014-01-01
Abstract Strength deficits associated with eccentric contraction‐induced muscle injury stem, in part, from impaired voltage‐gated sarcoplasmic reticulum (SR) Ca2+ release. FKBP12 is a 12‐kD immunophilin known to bind to the SR Ca2+ release channel (ryanodine receptor, RyR1) and plays an important role in excitation‐contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R2= 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction‐induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque. PMID:25347864
van Hall, G; Calbet, J A L; Søndergaard, H; Saltin, B
2001-01-01
One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude ‘lactate paradox’. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood lactate and net lactate release from the active leg to an extent similar to that observed in acute hypoxia, independent of work intensity. Six Danish lowlanders (25–26 years) were studied during graded incremental bicycle exercise under four conditions: at sea level breathing either ambient air (0 m normoxia) or a low-oxygen gas mixture (10 % O2 in N2, 0 m acute hypoxia) and after 9 weeks of acclimatization to 5260 m breathing either ambient air (5260 m chronic hypoxia) or a normoxic gas mixture (47 % O2 in N2, 5260 m acute normoxia). In addition, one-leg knee-extensor exercise was performed during 5260 m chronic hypoxia and 5260 m acute normoxia. During incremental bicycle exercise, the arterial lactate concentrations were similar at sub-maximal work at 0 m acute hypoxia and 5260 m chronic hypoxia but higher compared to both 0 m normoxia and 5260 m acute normoxia. However, peak lactate concentration was similar under all conditions (10.0 ± 1.3, 10.7 ± 2.0, 10.9 ± 2.3 and 11.0 ± 1.0 mmol l−1) at 0 m normoxia, 0 m acute hypoxia, 5260 m chronic hypoxia and 5260 m acute normoxia, respectively. Despite a similar lactate concentration at sub-maximal and maximal workload, the net lactate release from the leg was lower during 0 m acute hypoxia (peak 8.4 ± 1.6 mmol min−1) than at 5260 m chronic hypoxia (peak 12.8 ± 2.2 mmol min−1). The same was observed for 0 m normoxia (peak 8.9 ± 2.0 mmol min−1) compared to 5260 m acute normoxia (peak 12.6 ± 3.6 mmol min−1). Exercise after acclimatization with a small muscle mass (one-leg knee-extensor) elicited similar lactate concentrations (peak 4.4 ± 0.2 vs. 3.9 ± 0.3 mmol l−1) and net lactate release (peak 16.4 ± 1.8 vs. 14.3 mmol l−1) from the active leg at 5260 m chronic hypoxia and 5260 m acute normoxia. In conclusion, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude. PMID:11691888
Mechanical Strength of the Side-to-Side Tendon Attachment for Mismatched Tendon Sizes and Shapes
Fridén, Jan; Tirrell, Timothy F.; Bhola, Siddharth; Lieber, Richard L.
2015-01-01
Summary Certain combinations are advised against in tendon transfers due to size or shape mismatches between donor and recipient tendons. In this study, ultimate load, stiffness and Young’s modulus were measured in two tendon-to-tendon attachments with intentionally mismatched donor and recipient tendons - pronator teres (PT)-to-extensor carpi radialis brevis (ECRB) and flexor carpi ulnaris (FCU)-to-extensor digitorum communis (EDC). FCU-EDC attachments failed at higher loads than PT-to-ECRB attachments but they had similar modulus and stiffness values. Ultimate tensile strength of the tendon attachments exceeded the maximum predicted contraction force of any of the affected muscles, with safety factors of 4x and 2x for the FCU-to-EDC and PT-to-ECRB constructs, respectively. This implies that size and shape mismatch should not be a contraindication to tendon attachment in transfers. Further, these safety factors strongly suggest that no postoperative immobilization of these attachments is necessary. PMID:24413573
Dos Santos, Adriana Neves; Serikawa, Simoni Sayuri; Rocha, Nelci Adriana Cicuto Ferreira
2016-08-01
To verify the effect of Pilates exercises in a child with cerebral palsy (CP) with mild functional impairment. We evaluated average peak torque of ankle and knee extensors/flexors using a Biodex System, using concentric active-assisted test. We also evaluated amplitude of anterior-posterior and of medial-lateral displacement of the CoP and area of oscillation during quite standing with a BERTEC platform. We applied Pilates exercises for eight weeks. Peak torque/body weight of ankle and knee extensors/flexors of both affected and unaffected limbs increased after Pilates. Also, all kinetic variables decreased after Pilates' intervention. After one-month follow-up, isokinetic variable values were higher while kinetic variable values were lower than baseline values. Pilates may be an important rehabilitation technique for children with CP that present mild deficits in motor structures and high functional level, especially when the aims are to improve muscle strength and postural control during quite standing.
The Relationship Between Maximum Unilateral Squat Strength and Balance in Young Adult Men and Women
McCurdy, Kevin; Langford, George
2006-01-01
The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs) and 25 women (mean mass 62.2 ± 14.5 kg and age 21.9 ± 1.3 yrs) completed the study. Weight bearing unilateral strength was measured with a 1RM modified unilateral squat on the dominant and non-dominant leg. The students completed the stork stand and wobble board tests to determine static balance on the dominant and non-dominant leg. Maximum time maintained in the stork stand position, on the ball of the foot with the uninvolved foot against the involved knee with hands on the hips, was recorded. Balance was measured with a 15 second wobble board test. No significant correlations were found between the measurements of unilateral balance and strength (r values ranged between -0.05 to 0.2) for the men and women. Time off balance was not significantly different between the subjects’ dominant (men 1.1 ± 0.4 s; women 0.3 ± 0.1 s) and non-dominant (men 0.9 ± 0.3 s; women 0.3 ± 0.1 s) leg for the wobble board. Similar results were found for the time balanced during the stork stand test on the dominant (men 26.4 ± 6.3 s; women 24.1 ± 5.6 s) and non-dominant (men 26.0 ± 5.7 s; women 21.3 ± 4.1 s) leg. The data indicate that static balance and strength is unrelated in young adult men and women and gains made in one variable after training may not be associated with a change in performance of the other variable. These results also suggest that differences in static balance performance between legs can not be determined by leg dominance. Similar research is needed to compare contralateral leg balance in populations who participate in work or sport activities requiring repetitive asymmetrical use. A better understanding of contralateral balance performance will help practitioners make evaluative decisions during the rehabilitation process. Key Points 1RM unilateral squat strength is unrelated to measures of unilateral static balance in young adult men and women Static balance is similar between the dominant and non-dominant leg in young adult men and women Side-to-side differences in balance warrant assessment and training to correct imbalances prior to participation in activities that present a high risk for injury. PMID:24260001
Wirth, Klaus; Hartmann, Hagen; Sander, Andre; Mickel, Christoph
2016-01-01
Abstract The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance. PMID:28149424
Wirth, Klaus; Keiner, Michael; Hartmann, Hagen; Sander, Andre; Mickel, Christoph
2016-12-01
The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance.
Bowtell, Joanna L; Mohr, Magni; Fulford, Jonathan; Jackman, Sarah R; Ermidis, Georgios; Krustrup, Peter; Mileva, Katya N
2018-01-01
Caffeine has been shown to enhance exercise performance and capacity. The mechanisms remain unclear but are suggested to relate to adenosine receptor antagonism, resulting in increased central motor drive, reduced perception of effort, and altered peripheral processes such as enhanced calcium handling and extracellular potassium regulation. Our aims were to investigate how caffeine (i) affects knee extensor PCr kinetics and pH during repeated sets of single-leg knee extensor exercise to task failure and (ii) modulates the interplay between central and peripheral neural processes. We hypothesized that the caffeine-induced extension of exercise capacity during repeated sets of exercise would occur despite greater disturbance of the muscle milieu due to enhanced peripheral and corticospinal excitatory output, central motor drive, and muscle contractility. Nine healthy active young men performed five sets of intense single-leg knee extensor exercise to task failure on four separate occasions: for two visits (6 mg·kg -1 caffeine vs placebo), quadriceps 31 P-magnetic resonance spectroscopy scans were performed to quantify phosphocreatine kinetics and pH, and for the remaining two visits (6 mg·kg -1 caffeine vs placebo), femoral nerve electrical and transcranial magnetic stimulation of the quadriceps cortical motor area were applied pre- and post exercise. The total exercise time was 17.9 ± 6.0% longer in the caffeine (1,225 ± 86 s) than in the placebo trial (1,049 ± 73 s, p = 0.016), and muscle phosphocreatine concentration and pH ( p < 0.05) were significantly lower in the latter sets of exercise after caffeine ingestion. Voluntary activation (VA) (peripheral, p = 0.007; but not supraspinal, p = 0.074), motor-evoked potential (MEP) amplitude ( p = 0.007), and contractility (contraction time, p = 0.009; and relaxation rate, p = 0.003) were significantly higher after caffeine consumption, but at task failure MEP amplitude and VA were not different from placebo. Caffeine prevented the reduction in M-wave amplitude that occurred at task failure ( p = 0.039). Caffeine supplementation improved high-intensity exercise tolerance despite greater-end exercise knee extensor phosphocreatine depletion and H + accumulation. Caffeine-induced increases in central motor drive and corticospinal excitability were attenuated at task failure. This may have been induced by the afferent feedback of the greater disturbance of the muscle milieu, resulting in a stronger inhibitory input to the spinal and supraspinal motor neurons. However, causality needs to be established through further experiments.
Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise
Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A
1998-01-01
The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403
Hall, Michael P.; Paik, Ronald S.; Ware, Anthony J.; Mohr, Karen J.; Limpisvasti, Orr
2015-01-01
Background: Criteria for return to unrestricted activity after anterior cruciate ligament (ACL) reconstruction varies, with some using time after surgery as the sole criterion—most often at 6 months. Patients may have residual neuromuscular deficits, which may increase the risk of ACL injury. A single-leg squat test (SLST) can dynamically assess for many of these deficits prior to return to unrestricted activity. Hypothesis: A significant number of patients will continue to exhibit neuromuscular deficits with SLST at 6 months after ACL reconstruction. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Patients using a standardized accelerated rehabilitation protocol at their 6-month follow-up after primary ACL reconstruction were enrolled. Evaluation included bilateral SLST, single-leg hop distance, hip abduction strength, and the subjective International Knee Documentation Committee (IKDC) score. Results: Thirty-three patients were enrolled. Poor performance of the operative leg SLST was found in 15 of 33 patients (45%). Of those 15 patients, 7 (45%) had concomitant poor performance of the nonoperative leg compared with 2 of 18 patients (11%) in those who demonstrated good performance in the operative leg. The poor performers were significantly older (33.6 years) than the good performers (24.2 years) (P = .007). Those with poor performance demonstrated decreased hip abduction strength (17.6 kg operative leg vs 20.5 kg nonoperative leg) (P = .024), decreased single-leg hop distance (83.3 cm operative leg vs 112.3 cm nonoperative leg) (P = .036), and lower IKDC scores (67.9 vs 82.3) (P = .001). Conclusion: Nearly half of patients demonstrated persistent neuromuscular deficits on SLST at 6 months, which is when many patients return to unrestricted activity. Those with poor performance were of a significantly older age, decreased hip abduction strength, decreased single-leg hop distance, and lower IKDC subjective scores. Clinical Relevance: The SLST can be used to identify neuromuscular risk factors for ACL rupture. Many patients at 6 months have persistent neuromuscular deficits on SLST. Caution should be used when using time alone to determine when patients can return to unrestricted activity. PMID:26665033
Utilization of stored elastic energy in leg extensor muscles by men and women.
Komi, P V; Bosco, C
1978-01-01
An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.
Effects of Short- and Long-Duration Space Flight on Neuromuscular Function
NASA Technical Reports Server (NTRS)
Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.
2010-01-01
The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.
Podraza, Jeffery T; White, Scott C
2010-08-01
Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p<0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms. Copyright 2010 Elsevier B.V. All rights reserved.
Bley, Andre Serra; Correa, João Carlos Ferrari; Dos Reis, Amir Curcio; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia
2014-01-01
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.
Bley, Andre Serra; Correa, João Carlos Ferrari; Reis, Amir Curcio Dos; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia
2014-01-01
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress. PMID:24830289
Tomas-Carus, Pablo; Ortega-Alonso, Alfredo; Pietilainen, Kirsi H; Santos, Vitoria; Goncalves, Helena; Ramos, Jorge; Raimundo, Armando
2016-05-01
The aim of this paper was to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. A randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (N.=22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (N.=21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. The exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Twelve-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.
Knee strength ratios in competitive female athletes
Murawa, Michal; Mackala, Krzysztof; Dworak, Lechoslaw Bogdan
2018-01-01
Knee strength ratios are related to the movement patterns, sport-specific training and knee injuries in athletes. The purpose of this study was to determine the ratios in the concentric isokinetic strength of the hamstrings and quadriceps and the isometric strength of the knee extensors. In female basketball players (n = 14) and female volleyball players (n = 12) were evaluated: the hamstrings to quadriceps peak torque ratio (H/Q) and side-to-side peak torque ratio (TR) for hamstrings and quadriceps; the ratio of the maximal bilateral strength to the summed maximal unilateral strength (B/U) and side-to-side maximal strength ratio (SR) for knee extensors. For the H/Q values, a 2 × 2 × 3 mixed-factorial analysis of variance and Bonferroni post hoc test were computed. The H/Q values increased from 48.0 (3.9)% at 60°/s to 70.4 (7.9)% at 300°/s. Furthermore, there were significant differences in the H/Q values between 300°/s and 180°/s, 300°/s and 60°/s in basketball and volleyball athletes, and between 180°/s and 60°/s only in basketball athletes (p < .05). Significantly higher H/Q results at 60°/s demonstrated basketball players than volleyball players (p < .05). Differences in the TR and SR mean values ranged from 4.4% to 8.6% and indicated no significant side-to-side strength deficits (p > .05). In both groups, greater isometric strength developed bilaterally was found (B/U > 100%). The findings revealed the magnitude of knee strength ratios in female athletes determined by sport-specific movements in basketball and volleyball. This study highlighted the importance of the bilateral strength deficit and muscular balance between the hamstrings and quadriceps in basketball and volleyball athletes in activities related to their movement patterns and specific training. PMID:29315348
Kea, J; Kramer, J; Forwell, L; Birmingham, T
2001-08-01
Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.
Kalyani, Rita Rastogi; Tra, Yolande; Yeh, Hsin-Chieh; Egan, Josephine M; Ferrucci, Luigi; Brancati, Frederick L
2013-05-01
To examine the independent association between diabetes mellitus (and its duration and severity) and quadriceps strength, quadriceps power, and gait speed in a national population of older adults. Cross-sectional nationally representative survey. United States. Two thousand five hundred seventy-three adults aged 50 and older in the National Health and Nutrition Examination Survey 1999-2002 who had assessment of quadriceps strength. Diabetes mellitus was ascertained according to questionnaire. Measurement of isokinetic knee extensor (quadriceps) strength was performed at 60º/s. Gait speed was assessed using a 20-foot walk test. Multiple linear regression analyses were used to assess the association between diabetes mellitus status and outcomes, adjusting for potential confounders or mediators. Older U.S. adults with diabetes mellitus had significantly slower gait speed (0.96 ± 0.02 m/s) than those without (1.08 ± 0.01 m/s; P < .001). After adjusting for demographic characteristics, weight, and height, diabetes mellitus was also associated with significantly lower quadriceps strength (-4.6 ± 1.9 Nm; P = .02) and power (-4.9 ± 2.0 W; P = .02) and slower gait speed (-0.05 ± 0.02 m/s; P = .002). Associations remained significant after adjusting for physical activity and C-reactive protein. After accounting for comorbidities (cardiovascular disease, peripheral neuropathy, amputation, cancer, arthritis, fracture, chronic obstructive pulmonary disease), diabetes mellitus was independently associated only with gait speed (-0.04 ± 0.02 m/s; P = .02). Diabetes mellitus duration in men and women was negatively associated with age-adjusted quadriceps strength (-5.7 and -3.5 Nm/decade of diabetes mellitus, respectively) and power (-6.1 and -3.8 W/decade of diabetes mellitus, respectively) (all P ≤ .001, no significant interactions according to sex). Glycosylated hemoglobin was not associated with outcomes after accounting for body weight. Older U.S. adults with diabetes mellitus have lower quadriceps strength and quadriceps power that is related to the presence of comorbidities and walk slower than those without diabetes mellitus. Future studies should investigate the relationship between hyperglycemia and subsequent declines in leg muscle function. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
Beer, S; Aschbacher, B; Manoglou, D; Gamper, E; Kool, J; Kesselring, J
2008-03-01
To evaluate feasibility and perform an explanatory analysis of the efficacy of robot-assisted gait training (RAGT) in MS patients with severe walking disabilities (Expanded Disability Status Scale [EDSS] 6.0-7.5) in a pilot trial. Prospective, randomized, controlled clinical trial comparing RAGT with conventional walking training (CWT) in a group of stable MS patients (n = 35) during an inpatient rehabilitation stay, 15 sessions over three weeks. All patients participated additionally in a multimodal rehabilitation program. The primary outcome measure was walking velocity and secondary measures were 6-min-walking distance, stride length and knee-extensor strength. All tests were performed by an external blinded assessor at baseline after three weeks and at follow-up after six months. Additionally, Extended Barthel Index (EBI) at entry and discharge was assessed (not blinded), and acceptance/convenience of RAGT rated by patients (Visual Analogue Scale [VAS]) was recorded. Nineteen patients were randomly allocated to RAGT and 16 patients to CWT. Groups were comparable at baseline. There were 5 drop-outs (2 related directly to treatment) in the RAGT group and 1 in the CWT group, leaving 14 RAGT patients and 15 CWT patients for final analysis. Acceptance and convenience of RAGT as rated by patients were high. Effect sizes were moderate to large, although not significant, for walking velocity (0.700, 95% CI -0.089 to 1.489), walking distance (0.401, 95% CI - 0.370 to 1.172) and knee-extensor strength (right: 1.105, 95% CI 0.278 to 1.932, left 0.650, 95% CI -0.135 to 1.436) favouring RAGT. Prepost within-group analysis revealed an increase of walking velocity, walking distance and knee-extensor strength in the RAGT group, whereas in CWT group only walking velocity was improved. In both groups outcome values returned to baseline at follow-up after six months (n = 23). Robot-assisted gait training is feasible and may be an effective therapeutic option in MS patients with severe walking disabilities. Effect size calculation and prepost analysis suggest a higher benefit on walking velocity and knee-extensor strength by RAGT compared to CWT. Due to several limitations, however, our results should be regarded as preliminary. Post hoc power calculation showed that two groups of 106 patients are needed to demonstrate a significant moderate effect size of 0.4 after three weeks of RAGT. Thus, further studies with a larger number of patients are needed to investigate the impact of this new treatment option in MS patients.
Helge, J W; Bentley, D; Schjerling, P; Willer, M; Gibala, M J; Franch, J; Tapia-Laliena, M A; Daugaard, J R; Andersen, J L
2007-09-01
Fatty acid metabolism is influenced by training and diet with exercise training mediating this through activation of nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in skeletal muscle. This study investigated the effect of training and high fat or normal diet on PPARalpha expression in human skeletal muscle. Thirteen men trained one leg (T) four weeks (31.5 h in total), while the other leg (UT) served as control. During the 4 weeks six subjects consumed high fat (FAT) diet and seven subjects maintained a normal (CHO) diet. Biopsies were obtained from vastus lateralis muscle in both legs before and after training. After the biopsy, one-leg extension exercise was performed in random order with both legs 30 min at 95% of workload max. A training effect was evident as citrate synthase activity increased (P < 0.05) by 15% in the trained, but not the control leg in both groups. During exercise respiratory exchange ratio was lower in FAT (0.86 +/- 0.01, 0.83 +/- 0.01, mean +/- SEM) than CHO (0.96 +/- 0.02, 0.94 +/- 0.03) and in UT than T legs, respectively. The PPARalpha protein (144 +/- 44, 104 +/- 28, 79 +/- 15, 79 +/- 14, % of pre level) and PPARalpha mRNA (69 +/- [2, 2], 78 +/- [7, 6], 92 +/- [22, 18], 106 +/- [21, 18], % of pre level, geometric mean +/- SEM) expression remained unchanged by diet and training in FAT (UT, T) and CHO (UT, T), respectively. After the training and diet CS, HAD, PPARalpha, UCP2, UCP3 and mFABP mRNA content remained unchanged, whereas GLUT4 mRNA was lower in both groups and LDHA mRNA was lower (P < 0.05) only in FAT. 4 weeks one leg knee extensor training did not affect PPARalpha protein or mRNA expression. Furthermore, higher fat oxidation during exercise after fat rich diet was not accompanied by an increased PPARalpha protein or mRNA expression after 4 weeks.
Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn
2017-08-01
From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.
von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A
2012-02-01
We examined whether the effect of multipurpose exercise can be enhanced by whole-body vibration (WBV). One hundred and fifty-one post-menopausal women (68.5 ± 3.1 years) were randomly assigned to three groups: (1) a training group (TG); (2) training including vibration (VTG); and (3) a wellness control group (CG). TG and VTG performed the same training program twice weekly (60 min), consisting of aerobic and strength exercises, with the only difference that leg strength exercises (15 min) were performed with (VTG) or without (TG) vibration. CG performed a low-intensity "wellness" program. At baseline and after 18 months, body composition was determined using dual-X-ray-absorptiometry. Maximum isometric strength was determined for the legs and the trunk region. Leg power was measured by countermovement jumps using a force-measuring plate. In the TG lean body mass, total body fat, and abdominal fat were favorably affected, but no additive effects were generated by the vibration stimulus. However, concerning muscle strength and power, there was a tendency in favor of the VTG. Only vibration training resulted in a significant increase of leg and trunk flexion strength compared with CG. In summary, WBV embedded in a multipurpose exercise program showed minor additive effects on body composition and neuromuscular performance. © 2010 John Wiley & Sons A/S.
Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Jaspers, S. R.
1982-01-01
The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.
Kinali, Gulsah; Üçsular, Ferda Dokuztuğ
2018-01-01
[Purpose] This study aimed to establish a scientific and clinical basis for the development of a method for the early diagnosis of cumulative trauma disorders experienced by mothers of disabled children. [Subjects and Methods] Ten volunteer mothers who came to a rehabilitation centre for the treatment of their children were included in this study. Surface electromyography measurements were taken during maximum isometric contraction through the extensor muscle motor point of the wrist of the mothers, and hand grip strength was measured. [Results] In the electromyography measurements, the mean electromyogram signal value obtained from the wrist extensor muscle motor point of the mothers of the healthy children was 0.3 ± 0.08 mV and the crude handgrip strength was 28.5 ± 2.08 kg. In mothers of rehabilitated children, the crude hand grip strength was 7.0 ± 1.1 kg, and the mean electromyogram signal value from the extender muscle motor point was 0.1 ± 0.02 mV. There was a significant difference between the mothers with healthy and disabled children with respect to handgrip strength and electromyography. [Conclusion] The result obtained may be important in the development of health protection programs. Further research may lead to the development of protective rehabilitation programs and the improvement of social rights for mothers with disabled children. PMID:29545677
Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith
2015-06-01
Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.
Siff, Lauren N; Hill, Audra J; Walters, Samantha J; Walters, Ginny; Walters, Mark D
2018-05-02
The aim oft his study was to compare the effects of 10 common exercises to traditional pelvic floor muscle (PFM) contractions (Kegel) on levator hiatus (LH) area and PFM length and strength. This is a cross-sectional study of 15 healthy postpartum women. Ten exercises were studied. These were common variations of leg, core, and back exercises used in yoga, Pilates, strength training, and physical therapy. Each participant performed all 10 exercises at a single visit in 2 examination settings: transperineal ultrasound and perineometry. Ultrasound measured the LH area and PFM length, and perineometry measured the muscle strength (peak squeeze pressure). Kegel generates an increase in squeeze pressure (24.3 cm H2O), shortens the muscles (-0.46 cm) and narrows the LH (-0.13 cm). The bird-dog and plank exercises were not different from Kegel in any measurement. While the leg-lift ultrasound dimensions are similar to Kegel, leg lifts generated peak squeeze pressures stronger than any other exercise (including Kegel). Whereas ultrasound dimensions were similar to Kegel, tucked and untucked squats and thigh adductions generated weaker contractions than Kegel. While crunch generated a squeeze pressure similar to Kegel, the ultrasound dimensions showed a significantly wider LH and longer muscle than Kegel. Bridge, clam, and plié exercises affected the PFMs differently than Kegel in all measures. Bird-dog, plank, and leg-lift exercises should be evaluated as alternative exercises to Kegel as they affect PFM strength and length and LH area similarly to Kegel, and leg lifts generate a stronger contraction than Kegel.
Anthropometric and physiological profiles of active blind Malaysian males.
Singh, R; Singh, H J
1993-12-01
Cardiopulmonary capacities of twelve adults (aged between 14 to 44 years) with varying degrees of blindness engaged in regular recreational activities were compared with twelve age-matched normal sighted healthy males (control group) who were also involved in regular recreational activities. Maximum oxygen consumption (VO2max) was measured directly during exhaustive exercise test on a cycle ergometer. Forced vital capacity, leg strength and power were determined by spirometry, standing long jump and vertical jump respectively. No significant differences in VO2max, forced vital capacity and leg strength and power were observed between the blind and the control groups. No anthropometric differences were evident between the two groups. The results show therefore that the visually handicapped who are active can have a similar level of physical fitness, lung function and explosive leg strength as those of their active sighted counterparts.
Boccia, G; Dardanello, D; Zoppirolli, C; Bortolan, L; Cescon, C; Schneebeli, A; Vernillo, G; Schena, F; Rainoldi, A; Pellegrini, B
2017-09-01
Although elbow extensors (EE) have a great role in cross-country skiing (XC) propulsion, previous studies on neuromuscular fatigue in long-distance XC have investigated only knee extensor (KE) muscles. In order to investigate the origin and effects of fatigue induced by long-distance XC race, 16 well-trained XC skiers were tested before and after a 56-km classical technique race. Maximal voluntary isometric contraction (MVC) and rate of force development (RFD) were measured for both KE and EE. Furthermore, electrically evoked double twitch during MVC and at rest were measured. MVC decreased more in KE (-13%) than in EE (-6%, P = 0.016), whereas the peak RFD decreased only in EE (-26%, P = 0.02) but not in KE. The two muscles showed similar decrease in voluntary activation (KE -5.0%, EE -4.8%, P = 0.61) and of double twitch amplitude (KE -5%, EE -6%, P = 0.44). A long-distance XC race differently affected the neuromuscular function of lower and upper limbs muscles. Specifically, although the strength loss was greater for lower limbs, the capacity to produce force in short time was more affected in the upper limbs. Nevertheless, both KE and EE showed central and peripheral fatigue, suggesting that the origins of the strength impairments were multifactorial for the two muscles. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki
2017-01-01
Background: Isokinetic strength and hop tests are commonly used to assess athletes’ readiness to return to sport after knee surgery. Purpose/Hypothesis: The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation (r). Results: The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s (P = .03), flexion total work/body weight at 180 deg/s (P = .04), and flexion peak torque/body weight at 300 deg/s (P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s (r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s (r = –0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types. Conclusion: The single-leg hop tests and isokinetic strength measurements were both useful for a bilateral comparison of knee functional performance and strength. Knee flexion strength deficits and flexion-to-extension ratios seemed to be correlated with single-leg hop test performance. There was no difference in postoperative hop test performance or knee strength according to graft type. PMID:29164167
Palmer, Ty B; Thiele, Ryan M; Thompson, Brennan J
2017-02-01
Palmer, TB, Thiele, RM, and Thompson, BJ. Age-related differences in maximal and rapid torque characteristics of the hip extensors and dynamic postural balance in healthy, young and old females. J Strength Cond Res 31(2): 480-488, 2017-The purpose of this study was to examine age-related differences in maximal and rapid torque characteristics of the hip extensor muscles and dynamic postural balance in healthy, young and older females. Eleven younger (age, 26 ± 8 years) and 11 older (age, 67 ± 8 years) females performed 2 isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Absolute and relative peak torque (PT) and rate of torque development (RTD) at early (0-50 ms) and late (0-200 ms) phases of muscle contraction were examined during each MVC. Dynamic postural balance was assessed using a commercially designed balance testing device, which provides a measurement of dynamic stability based on the overall stability index (OSI). Results indicated that absolute PT and early (RTD50) and late (RTD200) RTD variables were lower (p = 0.009-0.050), and postural OSI was higher (p = 0.011) in the old compared with the younger females; however, no differences were observed for relative PT or RTD variables (p = 0.113-0.895). A significant relationship was also observed in the older (r = -0.601; p = 0.050) but not the younger (r = -0.132; p = 0.698) females between RTD50 and OSI. The lower absolute PT and RTD and higher OSI values for the old females may contribute to the increased functional limitations often observed in older adults. The significant relationship observed in the older females between OSI and RTD50 perhaps suggests that these age-related declines in explosive strength may be an important characteristic relevant to dynamic balance scores, especially in older populations.
Pedrero-Chamizo, Raquel; Albers, Ulrike; Tobaruela, José L; Meléndez, Agustín; Castillo, Manuel J; González-Gross, Marcela
2013-10-01
The present cross-sectional study aimed at assessing muscle strength of hands, the dominant arm and legs in Spanish institutionalized elderly people according to sex, age and cognitive status. A total of 153 elderly subjects (102 females, 51 males, mean age 83.6 ± 6.8 years) living in the region of Madrid were measured for handgrip strength (kg) with a Takei TKK 5101 digital dynamometer (range 5-100 kg, precision 0.1 kg), and arm and leg endurance strength (repetitions) according to the Rikli and Jones tests. Cognitive status was determined with the Mini-Mental State Examination (MMSE). The values for men and women were, respectively: 23.5 ± 7.3 kg and 11.6 ± 4.6 kg (right handgrip), 22.0 ± 7.8 kg and 10.7 ± 4.8 kg (left handgrip), 13 ± 5 and 10 ± 5 repetitions (arm strength), 8 ± 5 and 5 ± 4 repetitions (legs strength), and 21 ± 6 and 17 ± 7 (MMSE score). All parameters were significantly higher for men (P ≤ 0.01), but strength decline with age was less pronounced in women. In all MMSE groups, lower strength was associated with lower cognitive status. Strength values were lower in older subjects in both sexes; this difference was higher in men than in women. Higher strength values were associated with better cognitive status, which was the most influencing variable, even more than sex and age. © 2013 Japan Geriatrics Society.
2009-01-01
Background Recent studies have revealed the associations between insulin resistance (IR) and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002). A total of 1168 nondiabetic adults (≥ 50 years) with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS), and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR), whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003) in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation. PMID:19922671
Herod, Tyler W; Chambers, Neil C; Veres, Samuel P
2016-09-15
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effects of stretching and disuse on amino acids in muscles of rat hind limbs
NASA Technical Reports Server (NTRS)
Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.
1989-01-01
The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.
Donti, Οlyvia; Papia, Konstantina; Toubekis, Argyris; Donti, Anastasia; Sands, William A; Bogdanis, Gregory C
2018-07-01
This study compared the acute and long-term effects of intermittent and continuous static stretching training on straight leg raise range of motion (ROM). Seventy-seven preadolescent female gymnasts were divided into a stretching (n = 57), and a control group (n = 20). The stretching group performed static stretching of the hip extensors of both legs, three times per week for 15 weeks. One leg performed intermittent (3 × 30 s with 30 s rest) while the other leg performed continuous stretching (90 s). ROM pre- and post-stretching was measured at baseline, on weeks 3, 6, 9, 12, 15 and after 2 weeks of detraining. ROM was increased during both intermittent and continuous stretching training, but remained unchanged in the control group. Intermittent stretching conferred a larger improvement in ROM compared to both continuous stretching and control from week 3, until the end of training, and following detraining (p = 0.045 to 0.001 and d = 0.80 to 1.41). During detraining, ROM after the intermittent protocol decreased (p = 0.001), while it was maintained after the continuous protocol (p = 0.36). Acute increases in ROM following the intermittent stretching were also larger than in the continuous (p = 0.038). Intermittent stretching was more effective than continuous, for both long-term and acute ROM enhancement in preadolescent female athletes.
Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per
2014-02-01
Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Cross-sectional study; Level of evidence, 3. Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players, while no isometric strength differences were observed between the groups.
Muscle fiber type, Achilles tendon length, potentiation, and running economy.
Hunter, Gary R; McCarthy, John P; Carter, Stephen J; Bamman, Marcas M; Gaddy, Emily S; Fisher, Gordon; Katsoulis, Kostantina; Plaisance, Eric P; Newcomer, Bradley R
2015-05-01
The purpose of this investigation was to develop a potential model for how muscle fiber type, Achilles tendon length, stretch-shortening cycle potentiation (SSCP), and leg strength interact with running economy. Twenty trained male distance runners 24-40 years of age served as subjects. Running economy (net oxygen uptake) was measured while running on a treadmill. Leg press SSCP(force) and SSCP(velocity) were determined by measuring the difference in velocity between a static leg press throw and a countermovement leg press throw. Vertical jump SSCP was determined by measuring the difference in jump height between a static jump and a drop jump from a 20.3-cm bench. Tendon length was measured by magnetic resonance imaging, and muscle fiber type was made from a vastus lateralis muscle biopsy. Type IIx muscle fiber percent (r = 0.70, p < 0.001) and leg strength (r = 0.95, p < 0.001) were positively and independently related to late eccentric force development. Achilles tendon length (r = 0.42, p ≤ 0.05) and late eccentric force during stretch-shortening cycle (r = 0.76, p < 0.001) were independently related to SSCP(force). SSCP(force) was related to SSCP(velocity), which in turn was related to running economy (r = 0.61, p < 0.01). These results suggest that longer Achilles tendon length, type II fiber, and muscular leg strength may enhance the potential for SSCP, running economy, and physiological effort while running.
Thyroid hormone concentrations, disease, physical function, and mortality in elderly men.
van den Beld, Annewieke W; Visser, Theo J; Feelders, Richard A; Grobbee, Diederick E; Lamberts, Steven W J
2005-12-01
Physiological changes in thyroid hormone concentrations might be related to changes in the overall physical function in the elderly. We determined to what extent thyroid hormone concentrations are related to physical function and mortality in elderly men. A longitudinal population study (the Zoetermeer study) was conducted. Mortality was registered in the subsequent 4 yr. Four hundred three independently and ambulatory living men (aged 73-94 yr) participated. The study examined the association between serum thyroid hormones and parameters of physical function as well as the association with mortality. TSH, free T4 (FT4) total T4, T3, rT3, and T4-binding globulin were measured. Physical function was estimated by the number of problems in activities of daily living, a measure of physical performance score (PPS), leg extensor strength and grip strength, bone density, and body composition. Serum rT3 increased significantly with age and the presence of disease. Sixty-three men met the biochemical criteria for the low T3 syndrome (decreased serum T3 and increased serum rT3). This was associated with a lower PPS, independent of disease. Furthermore, higher serum FT4 (within the normal range of healthy adults) and rT3 (above the normal range of healthy adults) were related with a lower grip strength and PPS, independent of age and disease. Isolated low T3 was associated with a better PPS and a higher lean body mass. Low FT4 was related to a decreased risk of 4-yr mortality. In a population of independently living elderly men, higher FT4 and rT3 concentrations are associated with a lower physical function. High serum rT3 may result from a decreased peripheral metabolism of thyroid hormones due to the aging process itself and/or disease and may reflect a catabolic state. Low serum FT4 is associated with a better 4-yr survival; this may reflect an adaptive mechanism to prevent excessive catabolism.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-05-06
despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients
Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano
2009-01-01
Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559
Moore, I S; Jones, A M; Dixon, S J
2016-07-01
This pilot study investigated whether a 10-week running program (10wkRP), which reduced the oxygen cost of running, affected resultant ground reaction force (GRF), leg axis alignment, joint moment characteristics, and gear ratios. Ten novice, female runners completed a 10wkRP. Running kinematics and kinetics, in addition to oxygen consumption ( V ˙ O 2 ) during steady-state running, were recorded pre- and post-10wkRP. V ˙ O 2 decreased (8%) from pre-10wkRP to post-10wkRP. There was a better alignment of the resultant GRF and leg axis at peak propulsion post-10wkRP compared with pre-10wkRP (10.8 ± 4.9 vs 1.6 ± 1.2°), as the resultant GRF vector was applied 7 ± 0.6° (P = 0.008) more horizontally. There were shorter external ankle moment arms (24%) and smaller knee extensor moments (23%) at peak braking post-10wkRP. The change in V ˙ O 2 was associated with the change in alignment of the resultant GRF and leg axis (rs = 0.88, P = 0.003). As runners became more economical, they exhibited a more aligned resultant GRF vector and leg axis at peak propulsion. This appears to be a self-optimization strategy that may improve performance. Additionally, changes to external ankle moment arms indicated beneficial low gear ratios were achieved at the time of peak braking force. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar
2014-08-01
Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.
Damiano, Diane L; Stanley, Christopher J; Ohlrich, Laurie; Alter, Katharine E
2017-08-01
Locomotor training using treadmills or robotic devices is commonly utilized to improve gait in cerebral palsy (CP); however, effects are inconsistent and fail to exceed those of equally intense alternatives. Possible limitations of existing devices include fixed nonvariable rhythm and too much limb or body weight assistance. To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve interlimb reciprocal coordination through intensive speed-focused leg training. A total of 27 children with bilateral CP, 5 to 17 years old, were randomized to 12 weeks of 20 minutes, 5 days per week home-based training (elliptical = 14; cycle = 13) at a minimum of 40 revolutions per minute, with resistance added when speed target was achieved. Primary outcomes were self-selected and fastest voluntary cadence on the devices and gait speed. Secondary outcomes included knee muscle strength, and selective control and functional mobility measures. Cadence on trained but not nontrained devices increased, demonstrating task specificity of training and increased exercise capability. Mean gait speed did not increase in either group, nor did parent-reported functional mobility. Knee extensor strength increased in both. An interaction between group and time was seen in selective control with scores slightly increasing for the elliptical and decreasing for the cycle, possibly related to tighter limb coupling with cycling. Task-specific effects were similarly positive across groups, but no transfer was seen to gait or function. Training dose was low (≤20 hours) compared with intensive upper-limb training recommendations and may be insufficient to produce appreciable clinical change.
Agarwal, Vikas; Dabra, Ajay Kumar; Kaur, Ravinder; Sachdev, Atul; Singh, Ram
2005-09-01
Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) syndrome is characterized by symmetrical synovitis and swelling of both the upper and lower extremities. The anatomical determinant of RS3PE is predominantly extensor tenosynovitis as revealed by magnetic resonance imaging (MRI). Given the cost constraints, time, and expertise required in carrying out MRI and ease in diagnosing tenosynovitis by ultrasound, we utilized high-frequency ultrasonography (USG) for evidence of tenosynovitis of the distal tendons in patients with RS3PE. Diagnosis of tenosynovitis was made on the basis of anechoic or hypoechoic signals around the tendon sheaths in both transverse and longitudinal planes. Flexor and extensor tendons at the wrist and metacarpal heads and extensor digitorum longus (EDL) tendons at the ankle were evaluated with a 7.5-10-MHz linear probe. There were ten patients (seven males) with a mean age of 59.5 years (range: 52-78 years) and mean disease duration of 6.1 months (range: 1.5-12 months). Disease onset was acute in all of the cases. Pitting edema of the hands was present in all except two patients whereas four patients, in addition, had edema of the feet. Edema was symmetrical in seven patients. Inability to make a complete fist was noted in all. Tenosynovitis of extensor and flexor tendons at the wrist and the metacarpal heads was documented in all patients with edema of the hands. In seven cases extensor tendon tenosynovitis was more prominent compared to the flexor tendons. Tenosynovitis of EDL tendons was detected in six cases. Dramatic relief with low-dose prednisolone was noted in all patients within 6 weeks of therapy. At a mean follow-up of 10.1 months all patients had marked relief in edema of extremities and improvement in the grip strength. Our study confirms that tenosynovitis of both flexor and extensor tendons at the wrist and extensor tendons of the feet is the hallmark of RS3PE syndrome. USG is a reliable and cost-effective modality for evaluation of patients with suspected RS3PE.
Muscular activity during dynamic squats in patients with ACL reconstruction.
Ceaglio, Sebastian; Alberto, Federico; Catalfamo, Paola Andrea; Braidot, Ariel Andres
2010-01-01
One of the most frequent injuries in subjects who practice sport is the rupture of the anterior cruciate ligament (ACL). Appropriate reconstruction and rehabilitation are key issues in full recovery of patients and their return to previous activities. This paper presents a new method to estimate muscle strength during a dynamic exercise from kinematic and electromyographic (EMG) data. Recovery of patients with ACL rupture and reconstruction was evaluated 4 and 6 months after surgery by assessing the differences in knee extensor and flexor muscle activity between the unimpaired and injured limbs. The results show that squat EMGs from the extensor muscles of the knee from the injured and unimpaired limb could help assess rehabilitation outputs in patients who had undergone an ACL reconstructive surgery.
Lateral epicondylitis of the elbow.
Tosti, Rick; Jennings, John; Sewards, J Milo
2013-04-01
Lateral epicondylitis, or "tennis elbow," is a common musculotendinous degenerative disorder of the extensor origin at the lateral humeral epicondyle. Repetitive occupational or athletic activities involving wrist extension and supination are thought to be causative. The typical symptoms include lateral elbow pain, pain with wrist extension, and weakened grip strength. The diagnosis is made clinically through history and physical examination; however, a thorough understanding of the differential diagnosis is imperative to prevent unnecessary testing and therapies. Most patients improve with nonoperative measures, such as activity modification, physical therapy, and injections. A small percentage of patients will require surgical release of the extensor carpi radialis brevis tendon. Common methods of release may be performed via percutaneous, arthroscopic, or open approaches. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee
2018-03-12
The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.
Gusi, N; Tomas-Carus, P; Häkkinen, A; Häkkinen, K; Ortega-Alonso, A
2006-02-15
To evaluate the short- and long-term efficacy of exercise therapy in a warm, waist-high pool in women with fibromyalgia. Thirty-four women (mean +/- SD tender points 17 +/- 1) were randomly assigned to either an exercise group (n = 17) to perform 3 weekly sessions of training including aerobic, proprioceptive, and strengthening exercises during 12 weeks, or to a control group (n = 17). Maximal unilateral isokinetic strength was measured in the knee extensors and flexors in concentric and eccentric actions at 60 degrees /second and 210 degrees /second, and in the shoulder abductors and adductors in concentric contractions. Health-related quality of life (HRQOL) was assessed using the EQ-5D questionnaire; pain was assessed on a visual analog scale. All were measured at baseline, posttreatment, and after 6 months. The strength of the knee extensors in concentric actions increased by 20% in both limbs after the training period, and these improvements were maintained after the de-training period in the exercise group. The strength of other muscle actions measured did not change. HRQOL improved by 93% (P = 0.007) and pain was reduced by 29% (P = 0.012) in the exercise group during the training, but pain returned close to the pretraining level during the subsequent de-training. However, there were no changes in the control group during the entire period. The therapy relieved pain and improved HRQOL and muscle strength in the lower limbs at low velocity in patients with initial low muscle strength and high number of tender points. Most of these improvements were maintained long term.
Anderson, Dennis E; Madigan, Michael L
2014-03-21
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-11-01
Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.
Król, P; Sobota, G; Polak, A; Bacik, B; Juras, G
2017-01-01
Whole-body vibration training has become a popular method used in sports and physiotherapy. The study aimed to evaluate the effect of different vibration frequency and peak-to-peak displacement combinations on men knee flexors and extensors strength in isokinetic conditions. The sample consisted of 49 male subjects randomly allocated to seven comparative groups, six of which exercised on a vibration platform with parameters set individually for the groups. The experimental groups were exposed to vibrations 3 times a week for 4 weeks. The pre- and post- isokinetic strength tests, with the angular velocities of 240°/s and 30°/s, were recorded prior to and 2 days after the training. After 4 weeks of whole-body vibration training, a significant increase was noted regarding the mean values of peak torque, average peak torque and total work for knee flexors at high angular velocity in Groups I (60 Hz/4 mm) and V (40 Hz/2 mm) (p<0.05). The mean percentage values of post-training changes to study parameters suggest that the training had the most beneficial effect in Groups I (60 Hz/4 mm) and IV (60 Hz/2 mm) (p<0.05). Whole-body vibrations during static exercise beneficially affected knee flexor strength profile in young men at high angular velocity. The combinations of 60 Hz/4 mm seem to have the most advantageous effects on muscle strength parameters. PMID:28566806
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training
Gentil, Paulo; Pereira, Rinaldo W.; Leite, Tailce K.M.; Bottaro, Martim
2011-01-01
The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key points ACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX). The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. It appears that the R allele carriers respond better to muscle thickness gains in response to training. PMID:24149888
ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training.
Gentil, Paulo; Pereira, Rinaldo W; Leite, Tailce K M; Bottaro, Martim
2011-01-01
The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key pointsACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX).The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training.It appears that the R allele carriers respond better to muscle thickness gains in response to training.
Behennah, Jessica; Conway, Rebecca; Fisher, James; Osborne, Neil; Steele, James
2018-03-01
Chronic low back pain is associated with lumbar extensor deconditioning. This may contribute to decreased neuromuscular control and balance. However, balance is also influenced by the hip musculature. Thus, the purpose of this study was to examine balance in both asymptomatic participants and those with chronic low back pain, and to examine the relationships among balance, lumbar extension strength, trunk extension endurance, and pain. Forty three asymptomatic participants and 21 participants with non-specific chronic low back pain underwent balance testing using the Star Excursion Balance Test, lumbar extension strength, trunk extension endurance, and pain using a visual analogue scale. Significant correlations were found between lumbar extension strength and Star Excursion Balance Test scores in the chronic low back pain group (r = 0.439-0.615) and in the asymptomatic group (r = 0.309-0.411). Correlations in the chronic low back pain group were consistently found in posterior directions. Lumbar extension strength explained ~19.3% to ~37.8% of the variance in Star Excursion Balance Test scores for the chronic low back pain group and ~9.5% to ~16.9% for the asymptomatic group. These results suggest that the lumbar extensors may be an important factor in determining the motor control dysfunctions, such as limited balance, that arise in chronic low back pain. As such, specific strengthening of this musculature may be an approach to aid in reversing these dysfunctions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
Musculoskeletal injuries in the ultramarathon: the 1990 Westfield Sydney to Melbourne run.
Fallon, K E
1996-01-01
OBJECTIVE: To document the injuries sustained by participants in a 1005 km ultramarathon. METHODS: Clinical notes were reviewed on entrants in the 1005 km Sydney to Melbourne ultramarathon. An injury was recorded following self referral by a participant or if the history obtained from the runner or his support crew indicated the likelihood of a significant injury which could have an impact upon performance. RESULTS: 64 injuries were found in 32 runners. The knee (31.3%) and ankle (28.1%) regions were most commonly injured. The most common single diagnosis was retropatellar pain syndrome, and Achilles tendinitis and medial tibial stress syndrome were the next most common injuries. Peritendinitis/tendinitis of the tendons passing under the extensor retinaculum at the ankle, an injury infrequently reported in other sports, was common (19% of all injuries). CONCLUSIONS: The injuries were typically associated with running but 12 (19% of the total) involved the tendons of the muscles of the anterior compartment of the lower leg, and in almost every case the major site of inflammation was at the extensor retinaculum at the anterior aspect of the ankle. This injury appears to be relatively specific to the ultramarathon-"ultramarathoner's ankle". Images p321-a PMID:9015594
Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan
2018-01-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585
Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan
2018-03-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.
ERIC Educational Resources Information Center
Guo, Lan-Yuen; Wang, Yu-Lin; Huang, Yu-Han; Yang, Chich-Haung; Hou, Yi-You; Harn, Hans I-Chen; You, Yu-Lin
2012-01-01
For patients with scoliosis, core stabilization exercises may be beneficial in improving muscle strength and trunk dynamic control. However, few studies have examined whether the erector spinae (ES) activation status during unilateral spinal extensor strengthening meets the guideline for patients with spinal scoliosis. To determine ES activation…
Pua, Yong-Hao; Mentiplay, Benjamin F; Clark, Ross A; Ho, Jia-Ying
2017-11-01
Study Design Prospective cohort. Background Quadriceps strength is associated with hop distance and jump height in persons who have undergone anterior cruciate ligament (ACL) reconstruction. However, it is unknown whether the ability to rapidly generate quadriceps torque in the early phase of recovery is associated with future hopping and jumping performance in this population. Objective To evaluate the prospective associations among quadriceps strength and rate of torque development (RTD) and single-leg hop for distance, vertical jump height, vertical ground reaction force (vGRF), and vertical force loading rate during a landing task in persons who have undergone ACL reconstruction. Methods Seventy patients with unilateral ACL reconstruction participated. At 6 weeks post ACL reconstruction, isometric quadriceps strength and RTD were measured using a dynamometer. At 6 months following ACL reconstruction, patients performed the single-leg hop for distance test. Patients also performed the single-leg vertical jump test on a force plate that measured maximum jump height, vGRF, and average loading rate during landing. Results Both quadriceps strength and RTD at 6 weeks post ACL reconstruction were associated with all hopping and jumping measures at 6 months post ACL reconstruction (P≤.04). Single-leg hop distance was associated more closely with quadriceps strength than with quadriceps RTD (P = .05), and vertical jump height and vGRF measures were associated more closely with quadriceps RTD than with quadriceps strength (P = .05 and P<.01, respectively). Both quadriceps measures were associated with loading rate. Conclusion Quadriceps strength and RTD are complementary but distinct predictors of future hopping and jumping performance in persons who have undergone ACL reconstruction. These findings may contribute to improved rehabilitation of patients who are at risk for poor jumping/hopping performance and abnormal knee loading. J Orthop Sports Phys Ther 2017;47(11):845-852. Epub 13 Oct 2017. doi:10.2519/jospt.2017.7133.
NASA Technical Reports Server (NTRS)
Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.
1998-01-01
Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P < 0.05) in type I (15%) and type II (17%) myofiber cross-sectional areas were found in NoEx but not in REx. Electrophoresis revealed no changes in MHC isoform distribution. The percentage of type IIx myofibers decreased (P < 0.05) in REx from 9 to 2% and did not change in NoEx. 1 RM was reduced (P < 0.05) by 9% in NoEx but was unchanged in REx. MVC fell by 15 and 13% in NoEx and REx, respectively. The agonist-to-antagonist root mean squared electromyogram ratio decreased (P < 0.05) 19% in REx. RTD slowed (P < 0.05) by 54% in NoEx only. Results indicate that REx prevented BRU-induced myofiber atrophy and also maintained training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.
Willoughby, Darryn S.; Taylor, Lemuel
2004-01-01
The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key Points Eccentric muscle actions do not preferentially increase serum myostatin. Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG. Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol. PMID:24624007
Running from Paris to Beijing: biomechanical and physiological consequences.
Millet, Guillaume Y; Morin, Jean-Benoît; Degache, Francis; Edouard, Pascal; Feasson, Léonard; Verney, Julien; Oullion, Roger
2009-12-01
The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.
Heywood, Sophie; McClelland, Jodie; Mentiplay, Benjamin; Geigle, Paula; Rahmann, Ann; Clark, Ross
2017-01-01
To investigate the effectiveness of aquatic exercise in improving lower limb strength in people with musculoskeletal conditions. A systematic search used 5 databases, including MEDLINE, CINAHL, Embase, SPORTDiscus, and The Cochrane Library. Randomized controlled trials evaluating aquatic exercise with a resistance training component for adults with musculoskeletal conditions compared with no intervention or land-based exercise were identified. Fifteen studies from the initial yield of 1214 met these criteria. Data related to participant demographics, study design, and methods, interventions, and outcomes, including numerical means and SDs, were extracted independently by 2 reviewers. Nine of the 15 studies were of high quality, scoring at least 6 on the Physiotherapy Evidence Database Scale. Limited consideration of the prescription of resistance in the aquatic exercise and application of resistance training principles existed. Low- or very low-quality evidence indicates there was no difference in average effect between aquatic exercise and no exercise in improving hip abductor strength (standardized mean difference [SMD], .28; 95% confidence interval [CI], -.04 to .59), knee extensor strength (SMD, .18; 95% CI, -.03 to .40), knee flexor strength (SMD, .13; 95% CI, -.20 to .45), or lower limb endurance (SMD, .35; 95% CI, -.06 to .77). Low-quality evidence indicates no difference in average effect between aquatic and land exercise for knee extensor (SMD, -.24; 95% CI, -.49 to .02) or flexor strength (SMD, -.15; 95% CI, -.53 to .22). It is likely that the inadequate application of resistance in water is a significant contributor to the limited effectiveness of aquatic exercise interventions in improving hip and knee muscle strength in people with musculoskeletal conditions. Future research is needed to quantify resistance with aquatic exercises and to determine if using opportunities for greater resistance in aquatic rehabilitation and appropriate resistance training principles can be more effective in improving muscle strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Miyakoshi, N; Kudo, D; Hongo, M; Kasukawa, Y; Ishikawa, Y; Shimada, Y
2017-11-01
This study compared spinal alignment, muscular strength, and quality of life (QOL) between women with postmenopausal osteoporosis and healthy volunteers. The results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle mass, and generalized muscle weakness. Increased spinal kyphosis is common in patients with osteoporosis and negatively impacts quality of life (QOL). Muscular strength is also important for QOL in patients with osteoporosis. However, spinal kyphosis and muscle weakness also occur in healthy individuals with advancing age. The purposes of this study were thus to compare spinal alignment, muscular strength, and QOL between women with postmenopausal osteoporosis and healthy volunteers. Participants comprised 236 female patients with postmenopausal osteoporosis (mean age, 68.7 years) and 93 healthy volunteer women (mean age, 71.0 years). Body mass index (BMI), angles of spinal kyphosis, back extensor strength, grip strength, and QOL were compared between groups. BMI, back extensor strength, and grip strength were significantly higher in the volunteer group than in the osteoporosis group (p < 0.01). Both thoracic kyphosis and lumbar lordosis were significantly greater in the osteoporosis group than in the volunteer group (p < 0.01). With regard to QOL, the 36-Item Short-Form Health Survey (SF-36) subscale scores of role physical, bodily pain, general health, and role emotional were all significantly lower in the osteoporosis group than in the volunteer group (p < 0.05 each). SF-36 physical component summary (PCS) score was significantly lower in the osteoporosis group than in the volunteer group (p < 0.001). SF-36 PCS score correlated positively with thoracic kyphosis and negatively with BMI only in the osteoporosis group (p < 0.05 each). These results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle mass, and generalized muscle weakness.
Lustosa, Lygia P; Silva, Juscélio P; Coelho, Fernanda M; Pereira, Daniele S; Parentoni, Adriana N; Pereira, Leani S M
2011-01-01
Frailty syndrome in elderly people is characterized by a reduction of energy reserves and also by a decreased of resistance to stressors, resulting in an increase of vulnerability. The aim of this study was to verify the effect of a muscle-strengthening program with load in pre-frail elder women with regards to the functional capacity, knee extensor muscle strength and their correlation. Thrity-two pre-frail community-dwelling women participated in this study. Potential participants with cognitive impairment (MEEM), lower extremities orthopedic surgery, fractures, inability to walk unaided, neurological diseases, acute inflammatory disease, tumor growth, regular physical activity and current use of immunomodulators were excluded. All partcipants were evaluated by a blinded assessor using: Timed up and go (TUG), 10-Meter Walk Test (10MWT) and knee extensor muscle strength (Byodex System 3 Pro® isokinetic dynamometer at angular speeds of 60 and 180(0)/s). The intervention consisted of strengthening exercises of the lower extremities at 70% of 1RM, three times/ week for ten weeks. The statistical analysis was performed using the ANOVA and Spearman tests After the intervention, it was observed statistical significance on the work at 180(0)/s (F=12.71, p=0.02), on the power at 180(0)/s (F=15.40, p=0.02) and on the functional capacity (TUG, F=9.54, p=0.01; TC10, F=3.80, p=0.01). There was a good negative and statistically significant correlation between the TUG and work at 60(0)/s, such as the TUG and work at 180(0)/s (r=-0.65, p=0.01; r=-0.72, p=0.01). The intervention improved the muscular power and the functional capacity. The increase of the power correlated with function, which is an important variable of the quality of life in the pre-frail elders. Article registered in the ISRCT register under number ISRCTN62824599.
Leg size and muscle functions associated with leg compliance
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul
1988-01-01
The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.
The influence of estradiol on muscle damage and leg strength after intense eccentric exercise.
Minahan, Clare; Joyce, Sarah; Bulmer, Andrew C; Cronin, Neil; Sabapathy, Surendran
2015-07-01
To examine the influence of estradiol on muscle damage and leg strength after intense eccentric exercise. Eight men (MEN), eight normally menstruating women (WomenNM), and eight women using oral contraceptives (WomenOC) participated in this study. Subjects performed 240 maximal-effort bilateral eccentric contractions of the quadriceps muscle groups designed to elicit exercise-induced muscle damage (EiMD). Serum creatine kinase (CK), myoglobin (Mb), and fatty acid-binding protein (FABP) concentrations were measured before (pre-) EiMD, as well as 0, 6, 24, and 48 h post-EiMD. Peak isometric quadriceps torque (i.e., leg strength) was measured pre-EiMD, as well as 24 and 48 h post-EiMD. The increases in CK, Mb, and FABP concentrations from pre- to post-EiMD were greater in MEN (10-fold, 15-fold, and fourfold, respectively) and WomenOC (sevenfold, 11-fold, and ninefold) compared with WomenNM (five-, six-, and threefold; p < 0.05). The decline in leg strength was about 10 % pre- to 24 h post-EiMD in all groups and decreased a further 10-15 % by 48 h post-EiMD in the MEN and WomenOC only. Our findings suggest an important role of estradiol in blunting the muscle damage response to intense eccentric exercise and preserving muscle function after EiMD.
Strength tests for elite rowers: low- or high-repetition?
Lawton, Trent W; Cronin, John B; McGuigan, Michael R
2014-01-01
The purpose of this project was to evaluate the utility of low- and high-repetition maximum (RM) strength tests used to assess rowers. Twenty elite heavyweight males (age 23.7 ± 4.0 years) performed four tests (5 RM, 30 RM, 60 RM and 120 RM) using leg press and seated arm pulling exercise on a dynamometer. Each test was repeated on two further occasions; 3 and 7 days from the initial trial. Per cent typical error (within-participant variation) and intraclass correlation coefficients (ICCs) were calculated using log-transformed repeated-measures data. High-repetition tests (30 RM, 60 RM and 120 RM), involving seated arm pulling exercise are not recommended to be included in an assessment battery, as they had unsatisfactory measurement precision (per cent typical error > 5% or ICC < 0.9). Conversely, low-repetition tests (5 RM) involving leg press and seated arm pulling exercises could be used to assess elite rowers (per cent typical error ≤ 5% and ICC ≥ 0.9); however, only 5 RM leg pressing met criteria (per cent typical error = 2.7%, ICC = 0.98) for research involving small samples (n = 20). In summary, low-repetition 5 RM strength testing offers greater utility as assessments of rowers, as they can be used to measure upper- and lower-body strength; however, only the leg press exercise is recommended for research involving small squads of elite rowers.
Angleri, Vitor; Ugrinowitsch, Carlos; Libardi, Cleiton Augusto
2017-02-01
The aim of this study was to compare the effects of crescent pyramid (CP) and drop-set (DS) systems with traditional resistance training (TRAD) with equalized total training volume (TTV) on maximum dynamic strength (1-RM), muscle cross-sectional area (CSA), pennation angle (PA), and fascicle length (FL). Thirty-two volunteers had their legs randomized in a within-subject design in TRAD (3-5 sets of 6-12 repetitions at 75% 1-RM), CP (3-5 sets of 6-15 repetitions at 65-85% 1-RM), and DS (3-5 sets of ~50-75% 1-RM to muscle failure) protocols. Each leg was trained for 12 weeks. Participants had one leg fixed in the TRAD while the contralateral leg performed either CP or DS to allow for TTV equalization. The CSA increased significantly and similarly for all protocols (TRAD: 7.6%; CP: 7.5%; DS: 7.8%). All protocols showed significant and similar increases in leg press (TRAD = 25.9%; CP = 25.9%; DS = 24.9%) and leg extension 1-RM loads (TRAD = 16.6%; CP = 16.4%; DS = 17.1%). All protocols increased PA (TRAD = 10.6%; CP = 11.0%; DS = 10.3%) and FL (TRAD = 8.9%; CP = 8.9%; DS = 9.1%) similarly. CP and DS systems do not promote greater gains in strength, muscle hypertrophy and changes in muscle architecture compared to traditional resistance training.
De la Fuente, Carlos; Peña y Lillo, Roberto; Carreño, Gabriel; Marambio, Hugo
2016-03-01
Rupture of the Achilles tendon is a common injury during working years. Aggressive rehabilitation may provide better outcomes, but also a greater chance of re-rupture. To determine if aggressive rehabilitation has better clinical outcomes for Achilles tendon function, Triceps surae function, one-leg heel rise capacity and lower complication rate during twelve weeks after percutaneous Achilles tendon repair compared to conventional rehabilitation. Randomized controlled trial. Thirty-nine patients were prospectively randomized. The aggressive group (n=20, 41.4 ± 8.3 years) received rehabilitation from the first day after surgery. The conventional group (n=19, 41.7 ± 10.7 years) rested for 28 days, before rehabilitation started. The statistical parameters were the Achilles tendon rupture score (ATRS), verbal pain scale, time to return to work, pain medication consumption, Achilles tendon strength, dorsiflexion range of motion (RoM), injured-leg calf circumference, calf circumference difference, one-leg heel rise repetition and difference, re-rupture rate, strength deficit rate, and other complication rates. Mixed-ANOVA and Bonferroni's post hoc test were performed for multiple comparisons. Student's t-test was performed for parameters measured on the 12th week. The aggressive group with respect to the conventional group had a higher ATRS; lower verbal pain score; lower pain medication consumption; early return to work; higher Achilles tendon strength; higher one-leg heel rise repetitions; and lower one-leg heel rise difference. The re-rupture rate was 5% and 5%, the strength deficit rate was 42% and 5%, and other complications rate was 11% and 15% in the conventional and aggressive group, respectively. Patients with Dresden repair and aggressive rehabilitation have better clinical outcomes, Achilles tendon function and one-leg heel rise capacity without increasing the postoperative complications rate after 12 weeks compared to rehabilitation with immobilization and non-weight-bearing during the first 28 days after surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Helmhout, Pieter H; Witjes, Marloes; Nijhuis-VAN DER Sanden, Ria W; Bron, Carel; van Aalst, Michiel; Staal, J Bart
2017-04-01
It is assumed that low back pain patients who use pain-avoiding immobilizing strategies may benefit from specific back flexion and extension exercises aimed at reducing sagittal lumbar hypomobility. The aim of this study was to test this potential working mechanism in chronic low back pain patients undergoing lumbar extensor strengthening training. A single-group prospective cohort design was used in this study. Patients with persistent low back complaints for at least 2 years were recruited at a specialized physical therapy clinics center. They participated in a progressive 11-week lumbar extensor strength training program, once a week. At baseline, sagittal lumbar mobility in flexion and extension was measured with a computer-assisted inclinometer. Self-rated pain intensity was measured using a visual analogue scale, back-specific functional status was assessed with the Quebec Back Pain Disability Scale and the Patient Specific Complains questionnaire. Statistically significant improvements were found in pain (28% decrease) and functional disability (23% to 36% decrease). Most progress was seen in the first 5 treatment weeks. Lumbar mobility in flexion showed non-significant increases over time (+12%). Pre-post treatment changes in flexion and extension mobility did not contribute significantly to the models. The retained factors together explained 15% to 48% of the variation in outcome. Specific lumbar strengthening showed clinically relevant improvements in pain and disability in patients with persistent chronic low back pain. These improvements did not necessarily relate to improvements in lumbar mobility. Parameters representing other domains of adaptations to exercise may be needed to evaluate the effects of back pain management.
de Vasconcelos, Rodrigo Antunes; Bevilaqua-Grossi, Débora; Shimano, Antonio Carlos; Paccola, Cleber Jansen; Salvini, Tânia Fátima; Prado, Christiane Lanatovits; Junior, Wilson A. Mello
2015-01-01
Objectives: The aim of this study was to evaluate the reliability and validity of a modified isometric dynamometer (MID) in performance deficits of the knee extensor and flexor muscles in normal individuals and in those with ACL reconstructions. Methods: Sixty male subjects were invited to participate of the study, being divided into three groups with 20 subjects each: control group (GC), group of individuals with ACL reconstruction with patellar tendon graft (GTP, and group of individuals with ACL reconstruction with hamstrings graft (GTF). All individuals performed isometric tests in the MID, muscular strength deficits collected were subsequently compared to the tests performed on the Biodex System 3 operating in the isometric and isokinetic mode at speeds of 60°/s and 180o/s. Intraclass ICC correlation calculations were done in order to assess MID reliability, specificity, sensitivity and Kappa's consistency coefficient calculations, respectively, for assessing the MID's validity in detecting muscular deficits and intra- and intergroup comparisons when performing the four strength tests using the ANOVA method. Results: The modified isometric dynamometer (MID) showed excellent reliability and good validity in the assessment of the performance of the knee extensor and flexor muscles groups. In the comparison between groups, the GTP showed significantly greater deficits as compared to the GTF and GC groups. Conclusion: Isometric dynamometers connected to mechanotherapy equipments could be an alternative option to collect data concerning performance deficits of the extensor and flexor muscles groups of the knee in subjects with ACL reconstruction. PMID:27004175
Evidence of compensatory joint kinetics during stair ascent and descent in Parkinson's disease.
Conway, Zachary J; Silburn, Peter A; Blackmore, Tim; Cole, Michael H
2017-02-01
Stair ambulation is a challenging activity of daily life that requires larger joint moments than walking. Stabilisation of the body and prevention of lower limb collapse during this task depends upon adequately-sized hip, knee and ankle extensor moments. However, people with Parkinson's disease (PD) often present with strength deficits that may impair their capacity to control the lower limbs and ultimately increase their falls risk. To investigate hip, knee and ankle joint moments during stair ascent and descent and determine the contribution of these joints to the body's support in people with PD. Twelve PD patients and twelve age-matched controls performed stair ascent and descent trials. Data from an instrumented staircase and a three-dimensional motion analysis system were used to derive sagittal hip, knee and ankle moments. Support moment impulses were calculated by summing all extensor moment impulses and the relative contribution of each joint was calculated. Linear mixed model analyses indicated that PD patients walked slower and had a reduced cadence relative to controls. Although support moment impulses were typically not different between groups during stair ascent or descent, a reduced contribution by the ankle joint required an increased knee joint contribution for the PD patients. Despite having poorer knee extensor strength, people with PD rely more heavily on these muscles during stair walking. This adaptation could possibly be driven by the somewhat restricted mobility of this joint, which may provide these individuals with an increased sense of stability during these tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
Changes in muscle strength in patients with statin myalgia.
Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D
2014-10-15
Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.
Benites, Mariana L.; Alves, Ragami C.; Ferreira, Sandro S.; Follador, Lucio; da Silva, Sergio G.
2016-01-01
[Purpose] The aim of the present study was to verify the rate of perceived exertion and feelings of pleasure/displeasure in elderly women, who did normally perform physical exercises, following eight weeks of strength training in a constant routine. [Subjects and Methods] Eleven sedentary women were subjected to anthropometric assessment. The maximum load (100%) for each used in this study was determined by performing a test to determined the 1RM for each of them according to the protocol of Fatouros et al. and the Feeling Scale and RPE scale were explained to the women. After these initial procedures, the subjects followed a routine for strength training, performing three sets of repetitions at 70% of the one-repetition maximum for each exercise (bench press, leg extension, pulldown, leg curl) without modifying the exercises and their execution order. The frequency of training was three days per week. ANOVA was used to analyze the behavior of the dependent variable, and the post hoc tests were used to identify significant differences. [Results] Strength increased only in the fifth week. The rate of perceived exertion showed a reduction only in the fifth week in the leg extension, pulldown, leg curl. [Conclusion] The percentage of 70% the one-repetition maximum recommended to increase the strength gains and hypertrophy of skeletal muscle does not provide feelings of displeasure when performing proposed exercise. However, it may be possible to modulate this percentage to obtain more pleasant feelings over two months. PMID:27065524
Benites, Mariana L; Alves, Ragami C; Ferreira, Sandro S; Follador, Lucio; da Silva, Sergio G
2016-01-01
[Purpose] The aim of the present study was to verify the rate of perceived exertion and feelings of pleasure/displeasure in elderly women, who did normally perform physical exercises, following eight weeks of strength training in a constant routine. [Subjects and Methods] Eleven sedentary women were subjected to anthropometric assessment. The maximum load (100%) for each used in this study was determined by performing a test to determined the 1RM for each of them according to the protocol of Fatouros et al. and the Feeling Scale and RPE scale were explained to the women. After these initial procedures, the subjects followed a routine for strength training, performing three sets of repetitions at 70% of the one-repetition maximum for each exercise (bench press, leg extension, pulldown, leg curl) without modifying the exercises and their execution order. The frequency of training was three days per week. ANOVA was used to analyze the behavior of the dependent variable, and the post hoc tests were used to identify significant differences. [Results] Strength increased only in the fifth week. The rate of perceived exertion showed a reduction only in the fifth week in the leg extension, pulldown, leg curl. [Conclusion] The percentage of 70% the one-repetition maximum recommended to increase the strength gains and hypertrophy of skeletal muscle does not provide feelings of displeasure when performing proposed exercise. However, it may be possible to modulate this percentage to obtain more pleasant feelings over two months.
Single- vs. Multiple-Set Strength Training in Women.
ERIC Educational Resources Information Center
Schlumberger, Andreas; Stec, Justyna; Schmidtbleicher, Dietmar
2001-01-01
Compared the effects of single- and multiple-set strength training in women with basic experience in resistance training. Both training groups had significant strength improvements in leg extension. In the seated bench press, only the three-set group showed a significant increase in maximal strength. There were higher strength gains overall in the…
Myklebust, G; Bahr, R; Nilstad, A; Steffen, K
2017-05-01
The aim of the study was to describe objective and self-reported knee function for athletes who have returned to elite handball and football play after an ACL injury, comparing these to non-injured players at the same level. A total of 414 handball and 444 football players completed baseline tests from 2007 through 2014, examining lower extremity strength, dynamic balance, knee laxity, and knee function (KOOS questionnaire). Measures were compared between injured and non-injured legs and between injured legs and legs of controls. Eighty (9.3%) of the 858 players reported a previous ACL injury, 1-6 years post-injury (3.5±2.5 years), 49 handball (61.3%) and 31 football players (38.7%). We found no difference in strength or dynamic balance between previously ACL-injured (N=80) and non-injured players legs (N=1556). However, lower quadriceps (6.3%, 95% CI: 3.2-9.2) and hamstrings muscle strength (6.1%, 95% CI: 3.3-8.1) were observed in previously ACL-injured legs compared to the non-injured contralateral side (N=80). ACL-injured knees displayed greater joint laxity than the contralateral knee (N=80, 17%, 95% CI: 8-26) and healthy knees (N=1556, 23%, 95% CI: 14-33). KOOS scores were significantly lower for injured knees compared to knees of non-injured players. ACL-injured players who have successfully returned to elite sport have comparable strength and balance measures as their non-injured teammates. Subjective perception of knee function is strongly affected by injury history, with clinically relevant lower scores for the KOOS subscores Pain, Function, Sport, and Quality Of Life. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.
1989-01-01
The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.
Melvin, Alan J; Litsky, Alan S; Mayerson, Joel L; Stringer, Keith; Juncosa-Melvin, Natalia
2012-07-01
Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to non-living materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contralateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1,400 ± 93 N (vs. 1,179 ± 61 N), linear stiffnesses were 33 ± 3 N/mm (vs. 37 ± 4 N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p=0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p=0.3). We believe this technology will yield improved procedures for clinical challenges in orthopedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. Copyright © 2011 Orthopaedic Research Society.
Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.
Zhang, Songning; Clowers, Kurt G; Powell, Douglas
2006-12-01
Short-leg walking boots offer several advantages over traditional casts. However, their effects on ground reaction forces (GRF) and three-dimensional (3D) biomechanics are not fully understood. The purpose of the study was to examine 3D lower extremity kinematics and joint dynamics during walking in two different short-leg walking boots. Eleven (five females and six males) healthy subjects performed five level walking trials in each of three conditions: two testing boot conditions, Gait Walker (DeRoyal Industries, Inc.) and Equalizer (Royce Medical Co.), and one pair of laboratory shoes (Noveto, Adidas). A force platform and a 6-camera Vicon motion analysis system were used to collect GRFs and 3D kinematic data during the testing session. A one-way repeated measures analysis of variance (ANOVA) was used to evaluate selected kinematic, GRF, and joint kinetic variables (p<0.05). The results revealed that both short-leg walking boots were effective in minimizing ankle eversion and hip adduction. Neither walker increased the bimodal vertical GRF peaks typically observed in normal walking. However, they did impose a small initial peak (<1BW) earlier in the stance phase. The Gait Walker also exhibited a slightly increased vertical GRF during midstance. These characteristics may be related to the sole materials/design, the restriction of ankle movements, and/or the elevated heel heights of the tested walkers. Both walkers appeared to increase the demand on the knee extensors while they decreased the demand of the knee and hip abductors based on the joint kinetic results.
Hirata, Rogério Pessoto; Ervilha, Ulysses Fernandes; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas
2011-08-01
Musculoskeletal pain impairs postural control and stability. Nine subjects stood as quietly as possible on a moveable force platform before, during, and after experimental pain in the right leg muscles. A moveable force platform was used to measure the center of pressure and provided unexpected perturbations. Lower limb muscle activity, joint angles, and foot pressure distributions were measured. Hypertonic saline was used to induce pain in the vastus lateralis, vastus medialis, or biceps femoris muscle of the right leg. Compared to baseline and control sessions, pain in the knee extensor muscles during quiet standing evoked: 1) larger sway area, greater medial-lateral center of pressure displacement and higher speed (P < .05); 2) increased sway displacement in the anterior-posterior direction (P < .05); and 3) increased electromyography (EMG) activity for left tibialis anterior and left erector spinae muscles (P < .05). Pain provoked longer time to return to an equilibrium posture after forward EMG activity for, and pain in vastus medialis muscle decreased the time for the maximum hip flexion during this perturbation (P < .05). These results show that muscle pain impairs postural stability during quiet standing and after unexpected perturbation, which suggest that people suffering from leg muscle pain are more vulnerable to falls. This article presents the acute responses to leg muscle pain on the postural control. This measure could potentially help clinicians who seek to assess how pain responses may contribute to patient's postural control and stability during quiet standing and after recovering from unexpected perturbations. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles
NASA Technical Reports Server (NTRS)
Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.
1987-01-01
The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.
Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per
2014-01-01
Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players, while no isometric strength differences were observed between the groups. PMID:26535298