Science.gov

Sample records for leg muscle usage

  1. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  2. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  3. A Beetle Flight Muscle Displays Leg Muscle Microstructure.

    PubMed

    Shimomura, Toshiki; Iwamoto, Hiroyuki; Vo Doan, Tat Thang; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2016-09-20

    In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Elicitability of muscle cramps in different leg and foot muscles.

    PubMed

    Minetto, Marco Alessandro; Botter, Alberto

    2009-10-01

    To explore the efficacy of muscle motor point stimulation in eliciting muscle cramps, 11 subjects underwent eight sessions of electrical stimulation of the following muscles bilaterally: abductor hallucis flexor hallucis brevis, and both heads of the gastrocnemius muscles. Bursts of 150 square wave stimuli (duration: 152 micros; current intensity: 30% supramaximal) were applied. The stimulation frequency was increased from 4 pulses per second (pps) at increments of 2 pps until a cramp was induced. The number of cramps that could be elicited was smaller in flexor hallucis brevis than in abductor hallucis (16 vs. 22 out of 22 trials each; P < 0.05) and in the lateral gastrocnemius than in the medial gastrocnemius (5 vs. 20 out of 22 trials each; P < 0.0001). We show that leg and foot muscles have different cramp susceptibility, and the intermuscle variability in the elicitability profile for electrically induced cramps supports the use of the proposed method for cramp research.

  5. SERVO ANALYSIS OF THE LEG MUSCLES OF THE RABBIT,

    DTIC Science & Technology

    SERVOMECHANISMS, REFLEXES, MUSCLES, RABBITS, NEUROMUSCULAR TRANSMISSION, TENDONS , NERVOUS SYSTEM, REACTION(PSYCHOLOGY), BIONICS, MUSCULOSKELETAL SYSTEM, LEGS, ANALOG COMPUTERS, ANATOMICAL MODELS, DISPLACEMENT.

  6. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics

    PubMed Central

    Lockie, Robert G.; Jalilvand, Farzad; Callaghan, Samuel J.; Jeffriess, Matthew D.; Murphy, Aron J.

    2015-01-01

    This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time), and leg muscle performance (power, stiffness, strength). Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0–5, 5–10, and 0–10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ), a five-bound test (5BT), and the reactive strength index (RSI) defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson’s correlations and stepwise regression (p ≤ 0.05) determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40–0.54). The 5BT (5–10 and 0–10 m intervals) and RSI (5–10 m interval) also related to velocity (r = 0.37–0.47). Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0–5 m flight times (r = −0.46 to −0.51), and a longer 0–10 m step length (r = 0.38). Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r2 = 0.14–0.29) tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes. PMID:26839607

  7. Respiratory and leg muscles perceived exertion during exercise at altitude.

    PubMed

    Aliverti, A; Kayser, B; Lo Mauro, A; Quaranta, M; Pompilio, P; Dellacà, R L; Ora, J; Biasco, L; Cavalleri, L; Pomidori, L; Cogo, A; Pellegrino, R; Miserocchi, G

    2011-07-31

    We compared the rate of perceived exertion for respiratory (RPE,resp) and leg (RPE,legs) muscles, using a 10-point Borg scale, to their specific power outputs in 10 healthy male subjects during incremental cycle exercise at sea level (SL) and high altitude (HA, 4559 m). Respiratory power output was calculated from breath-by-breath esophageal pressure and chest wall volume changes. At HA ventilation was increased at any leg power output by ∼ 54%. However, for any given ventilation, breathing pattern was unchanged in terms of tidal volume, respiratory rate and operational volumes of the different chest wall compartments. RPE,resp scaled uniquely with total respiratory power output, irrespectively of SL or HA, while RPE,legs for any leg power output was exacerbated at HA. With increasing respective power outputs, the rate of change of RPE,resp exponentially decreased, while that of RPE,legs increased. We conclude that RPE,resp uniquely relates to respiratory power output, while RPE,legs varies depending on muscle metabolic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. FD115 (Flight Day 115) SPRINT leg muscle self scan

    NASA Image and Video Library

    2011-10-03

    ISS029-E-025270 (3 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, performs a SPRINT leg muscle self scan in the Columbus laboratory of the International Space Station. Fossum powered on the Ultrasound 2 (USND-2) unit and Video Power Converter (VPC) hardware, and connected the VPC to Human Research Facility 1 (HRF-1) in order to perform this activity.

  9. FD115 (Flight Day 115) SPRINT leg muscle self scan

    NASA Image and Video Library

    2011-10-03

    ISS029-E-025280 (3 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, performs a SPRINT leg muscle self scan in the Columbus laboratory of the International Space Station. Fossum powered on the Ultrasound 2 (USND-2) unit and Video Power Converter (VPC) hardware, and connected the VPC to Human Research Facility 1 (HRF-1) in order to perform this activity.

  10. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women

    PubMed Central

    Machann, Juergen; Blatzonis, Konstantinos; Rapp, Kilian

    2016-01-01

    The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years) was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628), leg push power (r = 0.550), isometric quadriceps strength (r = 0.442), hand grip strength (r = 0.367), fast gait speed (r = 0.291), habitual gait speed (r = 0.256), body mass index (r = 0.411) and age (r = -0.392). Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power. PMID:27315060

  12. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    PubMed

    Lindemann, Ulrich; Mohr, Christian; Machann, Juergen; Blatzonis, Konstantinos; Rapp, Kilian; Becker, Clemens

    2016-01-01

    The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years) was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628), leg push power (r = 0.550), isometric quadriceps strength (r = 0.442), hand grip strength (r = 0.367), fast gait speed (r = 0.291), habitual gait speed (r = 0.256), body mass index (r = 0.411) and age (r = -0.392). Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  13. Activity patterns of leg muscles in periodic limb movement disorder.

    PubMed

    de Weerd, A W; Rijsman, R M; Brinkley, A

    2004-02-01

    The movements of leg muscles in reference to periodic limb movement disorder (PLMD) have only been described in global terms. The sequences of contracting muscles that cause the PLMs are said to be stereotypical. There is, however, doubt about this fixed sequencing in PLMD. Our goal was to define the sequence of muscle movements in PLMs and then analyse their patterns. We recorded with surface EMG all movements of the muscles said to be involved in PLMs (extensor digitorum brevis, EDB; tibialis anterior, TA; biceps femoris, BF; tensor fasciae latae; TFL) as well as the quadriceps (Q) and soleus (S) muscles in 12 patients with restless legs syndrome combined with PLMD. Accompanying polysomnography provided the sleep parameters. In total, 469 movements were analysed. In only 12% was there the appearance of the classic movement (EDB-TA-BF-TFL) or its direct variants. The most frequent sequences were characterised by contraction of only the TA, TA-EDB only, or TA-EDB followed by all other combinations (32%). The pattern EDB only, EDB-TA, or EDB-TA followed by contraction of one or more other muscles, was seen in 18%. All other combinations appeared in much smaller numbers or only once. Eight patients had specific patterns. Three consistently started with the same muscle. One patient always contracted all six muscles. Six patients never contracted more than three muscles. The number of muscles contracted correlated positively with the appearance of arousal from sleep. The interval between onset of contractions within the PLMs varied randomly in a range of 0-1 s. Within PLMs many variations of muscle movements were documented. Patterns were recognisable, individually determined, and related to arousal from sleep.

  14. EMGs Analysis of Lumbar, Pelvic and Leg Muscles in Leg Length Discrepancy Adolescents

    NASA Astrophysics Data System (ADS)

    Sotelo-Barroso, Fernando; Márquez-Gamiño, Sergio; Caudillo-Cisneros, Cipriana

    2004-09-01

    To evaluate differences in surface electromyography (EMGs) activity of lumbar, pelvic and leg muscles in adolescents with and without LLD. EMGs activity records were taken during rest and maximal isometric voluntary contractions (MIVC). Peak to peak amplitude (PPA), mean rectified voltage (MRV) and root mean square (RMS), were analyzed. Statistical differences between short and large sides of LLD adolescents, were found (p<0.05). Higher values occurred in shorter limb muscles. No significative differences were found between left and right legs of the control subjects. When EMGs values were compared between short and large sides of LLD subjects with ipsilateral sides of controls, selective, statistically different EMGs values were exhibited. It is suggested that adaptative behavior to secondary biomechanical and/or neural changes occurred, even when none clinical symptoms were reported. The observations were remarked by the absence of EMGs differences between right and left sides of control subjects.

  15. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.

    PubMed

    Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias

    2017-06-08

    Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.

  16. Leg Muscle Usage Effects on Tibial Elasticity during Running

    DTIC Science & Technology

    2007-01-01

    appear to show an association between low elasticity and fracture incidence in osteoporotic patients treated with bisphosphonate [3]. In this study...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tibial stress fractures (TSFs...strength but has not been tested in TSF, or even studied in runners. However, clinical studies of osteoporotic patients given bisphosphonates have shown

  17. Leg Muscle Usage on Tibial Elasticity During Running

    DTIC Science & Technology

    2005-01-01

    Tibial stress fractures (TSFs) are a substantial problem for military recruits, elite athletes, and adults transitioning from a sedentary lifestyle to...were being taken by the co-investigators to minimize the Greater than Minimal Risk assigned to the transition from a sedentary lifestyle to moderate-to

  18. Muscle activation sequencing of leg muscles during linear glide shot putting.

    PubMed

    Howard, Róisín M; Conway, Richard; Harrison, Andrew J

    2017-11-01

    In the shot put, the athlete's muscles are responsible for generating the impulses to move the athlete and project the shot into the air. Information on phasic muscle activity is lacking for the glide shot put event and therefore important technical information for coaches is not currently available. This study provides an electromyography (EMG) analysis of the muscle activity of the legs during shot put. Fifteen right-handed Irish national level shot putters performed six maximum effort throws using the glide shot put technique. EMG records of eight bilateral lower limb muscles (rectus femoris, biceps femoris, medial- and lateral-gastrocnemius) were obtained during trials. Analysis using smooth EMG linear envelopes revealed patterns of muscle activity across the phases of the throw and compare men and women performers. The results showed that the preferred leg rectus femoris, the preferred leg biceps femoris and the non-preferred leg biceps femoris play important roles in the glide technique, with the total duration of high volumes of activity between 34 and 53% of the throw cycle. A comprehensive understanding of movement and muscle activation patterns for coaches could be helpful to facilitate optimal technique throughout each of the key phases of the event.

  19. Caffeine Attenuates Decreases in Leg Power Without Increased Muscle Damage.

    PubMed

    Ribeiro, Beatriz G; Morales, Anderson P; Sampaio-Jorge, Felipe; Barth, Thiago; de Oliveira, Marcio B C; Coelho, Gabriela M D O; Leite, Tiago C

    2016-08-01

    Ribeiro, BG, Morales, AP, Sampaio-Jorge, F, Barth, T, de Oliveira, MBC, Coelho, GMdO, and Leite, TC. Caffeine attenuates decreases in leg power without increased muscle damage. J Strength Cond Res 30(8): 2354-2360, 2016-Caffeine ingestion has been shown to be an effective ergogenic aid in several sports. Caffeine administration may increase exercise capacity, which could lead to a greater degree of muscle damage after exercise. This was a randomized, double-blind, placebo-controlled crossover study. Six male handball athletes ingested placebo (PLA) or caffeine (CAF) (6 mg·kg body mass) capsules on 2 different occasions. Sixty minutes after ingestion of the capsules, serum CAF levels were evaluated. Thereafter, all participants performed a protocol of vertical jumps (VJs). The protocol consisted of 4 sets of 30 seconds of continuous VJs with 60 seconds of recovery between sets. Blood lactate (LAC) and creatine kinase (CK) levels were determined before and after the protocol. We found significant differences in serum CAF levels between PLA (0.09 ± 0.18 µg·ml) vs. CAF (6.59 ± 4.44 µg·ml) (p < 0.001). Caffeine elicited a 5.23% (p ≤ 0.05) improvement in the leg power compared with PLA. The CAF trial displayed higher LAC (p ≤ 0.05) compared with PLA (6.26 ± 2.01 vs. 4.39 ± 2.42 mmol·L, respectively) after protocol of VJs, whereas no difference in CK was observed between trials (p > 0.05). These results indicate that immediate ingestion of CAF (6 mg·kg body weight) can reduce the level of muscle fatigue and preserve leg power during the test, possibly resulting in increase in LAC. There was no increase in muscle damage, which indicates that immediate administration of (6 mg·kg body weight) CAF is safe. Thus, nutritional interventions with CAF could help athletes withstand a greater physiological overload during high-intensity training sessions. The results of this study would be applicable to sports and activities that require repetitive leg power.

  20. Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow.

    PubMed

    Groothuis, Jan T; van Dijk, Nynke; Ter Woerds, Walter; Wieling, Wouter; Hopman, Maria T E

    2007-02-01

    In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical counter-manoeuvres are well documented, not much is known about the peripheral haemodynamic events. Therefore the purpose of the present study was to examine the peripheral haemodynamic effects of leg crossing combined with muscle tensing during 70 degrees head-up tilt. Healthy subjects (n=13) were monitored for 10 min in the supine position followed by 10 min in 70 degrees head-up tilt and, finally, for 2 min of leg crossing with muscle tensing in 70 degrees head-up tilt. MAP (mean arterial BP), heart rate, stroke volume, cardiac output and total peripheral resistance were measured continuously by Portapres. Leg blood flow was measured using Doppler ultrasound. Leg vascular conductance was calculated as leg blood flow/MAP. A significant increase in MAP (13 mmHg), stroke volume (27%) and cardiac output (18%), a significant decrease in heart rate (-5 beats/min) and no change in total peripheral resistance during the physical counter-manoeuvre were observed when compared with baseline 70 degrees head-up tilt. A significant increase in leg blood flow (325 ml/min) and leg vascular conductance (2.9 arbitrary units) were seen during the physical counter-manoeuvre when compared with baseline 70 degrees head-up tilt. In conclusion, the present study indicates that the physical counter-manoeuvre of leg crossing combined with muscle tensing clearly enhances leg blood flow and, at the same time, elevates MAP.

  1. Noninvasive stimulation of human corticospinal axons innervating leg muscles.

    PubMed

    Martin, P G; Butler, J E; Gandevia, S C; Taylor, J L

    2008-08-01

    These studies investigated whether a single electrical stimulus over the thoracic spine activates corticospinal axons projecting to human leg muscles. Transcranial magnetic stimulation of the motor cortex and electrical stimulation over the thoracic spine were paired at seven interstimulus intervals, and surface electromyographic responses were recorded from rectus femoris, tibialis anterior, and soleus. The interstimulus intervals (ISIs) were set so that the first descending volley evoked by cortical stimulation had not arrived at (positive ISIs), was at the same level as (0 ISI) or had passed (negative ISIs) the site of activation of descending axons by the thoracic stimulation at the moment of its delivery. Compared with the responses to motor cortical stimulation alone, responses to paired stimuli were larger at negative ISIs but reduced at positive ISIs in all three leg muscles. This depression of responses at positive ISIs is consistent with an occlusive interaction in which an antidromic volley evoked by the thoracic stimulation collides with descending volleys evoked by cortical stimulation. The cortical and spinal stimuli activate some of the same corticospinal axons. Thus it is possible to examine the excitability of lower limb motoneuron pools to corticospinal inputs without the confounding effects of changes occurring within the motor cortex.

  2. Differential Glucose Uptake in Quadriceps and Other Leg Muscles During One-Legged Dynamic Submaximal Knee-Extension Exercise

    PubMed Central

    Kalliokoski, Kari K.; Boushel, Robert; Langberg, Henning; Scheede-Bergdahl, Celena; Ryberg, Ann Kathrine; Døssing, Simon; Kjær, Andreas; Kjær, Michael

    2011-01-01

    One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron emission tomography (PET) determined uptake of [18F]-fluoro-deoxy-glucose (GU) during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest in the vastus intermedius (VI) and lowest in the vastus lateralis (VL; VI vs VL, p < 0.05), whereas the coefficient of variation was highest in VL (VL vs VI, p < 0.05). Coefficient of variation between the mean values of the four quadriceps femoris (QF) muscles in the exercising leg was 35 ± 9%. Compared to mean GU in QF (=100%), GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between individuals vary greatly during DKE, and suggests that muscle activity is not equal between quadriceps muscles in this exercise model. Furthermore, posterior thigh muscles and lower leg muscles are more active than hitherto thought even during this moderate exercise intensity. PMID:22046164

  3. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise.

    PubMed

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning; Scheede-Bergdahl, Celena; Ryberg, Ann Kathrine; Døssing, Simon; Kjær, Andreas; Kjær, Michael

    2011-01-01

    One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron emission tomography (PET) determined uptake of [(18)F]-fluoro-deoxy-glucose (GU) during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest in the vastus intermedius (VI) and lowest in the vastus lateralis (VL; VI vs VL, p < 0.05), whereas the coefficient of variation was highest in VL (VL vs VI, p < 0.05). Coefficient of variation between the mean values of the four quadriceps femoris (QF) muscles in the exercising leg was 35 ± 9%. Compared to mean GU in QF (=100%), GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between individuals vary greatly during DKE, and suggests that muscle activity is not equal between quadriceps muscles in this exercise model. Furthermore, posterior thigh muscles and lower leg muscles are more active than hitherto thought even during this moderate exercise intensity.

  4. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.

    PubMed

    Guschlbauer, Christoph; Scharstein, Hans; Büschges, Ansgar

    2007-03-01

    We investigated the properties of the extensor tibiae muscle of the stick insect (Carausius morosus) middle leg. Muscle geometry of the middle leg was compared to that of the front and hind legs and to the flexor tibiae, respectively. The mean length of the extensor tibiae fibres is 1.41+/-0.23 mm and flexor fibres are 2.11+/-0.30 mm long. The change of fibre length with joint angle was measured and closely follows a cosine function. Its amplitude gives effective moment arm lengths of 0.28+/-0.02 mm for the extensor and 0.56+/-0.04 mm for the flexor. Resting extensor tibiae muscle passive tonic force increased from 2 to 5 mN in the maximum femur-tibia (FT)-joint working range when stretched by ramps. Active muscle properties were measured with simultaneous activation (up to 200 pulses s(-1)) of all three motoneurons innervating the extensor tibiae, because this reflects most closely physiological muscle activation during leg swing. The force-length relationship corresponds closely to the typical characteristic according to the sliding filament hypothesis: it has a plateau at medium fibre lengths, declines nearly linearly in force at both longer and shorter fibre lengths, and the muscle's working range lies in the short to medium fibre length range. Maximum contraction velocity showed a similar relationship. The force-velocity relationship was the traditional Hill curve hyperbola, but deviated from the hyperbolic shape in the region of maximum contraction force close to the isometric contraction. Step-like changes in muscle length induced by loaded release experiments characterised the non-linear series elasticity as a quadratic spring.

  5. Anatomic guide and sonography for surgical repair of leg muscle lacerations.

    PubMed

    Ballard, David H; Campbell, Kevin J; Hedgepeth, Krystle B; Hollister, Anne M; Simoncini, Alberto A; Pahilan, M Elaine; Youssef, Asser M

    2013-09-01

    There were over 110,000 leg laceration cases reported in the United States in 2011. Currently, muscle laceration is repaired by suturing epimysium to epimysium. Tendon-to-tendon repair is stronger, restores the muscle's resting length, and leads to a better functional recovery. Tendons retract into the muscle belly following laceration and surgeons have a difficult time finding them. Many surgeons are unfamiliar with leg muscle anatomy and the fact that the leg muscles have long intramuscular tendons that are not visible in situ. A surgical anatomic guide exists to help surgeons locate forearm tendons; no such guide exists for tendons in the leg. The leg tendon ends of 11 cadavers were dissected, measured, and recorded as percentages of leg length. High-frequency ultrasound was used to locate tendon ends in three additional cadavers. These locations were compared with the actual tendon ends located via dissection. There was little variation in tendon end position within the cadaver group, between men and women or right and left legs. The data are presented as an anatomic guide to inform surgeons of the tendon ends' likely locations in the leg. The location of leg intramuscular tendon ends is predictable and the anatomic guide will help surgeons locate tendon ends and perform tendon-to-tendon repairs. Ultrasound is a potentially effective tool for detection of accurate location of repairable tendon ends in leg muscle lacerations. Copyright © 2013. Published by Elsevier Inc.

  6. Leg length inequality, pelvic tilt and lumbar back muscle activity during standing.

    PubMed

    Vink, P; Kamphuisen, H A

    1989-05-01

    The influence of an artificial leg length discrepancy on lateral pelvic tilt and on activity of the intrinsic lumbar back muscles was investigated. An artificial leg length discrepancy of up to 50 mm was created by putting boards of different height under the right foot. Lateral pelvic tilt increased linearly with increasing artificial leg length discrepancies. The rectified and averaged e.m.g. of the intrinsic lumbar back muscles showed a small increase at the longer leg side. It increased non-linearly with an increment in slope above a certain artificial leg length discrepancy (mean 34 mm).

  7. Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles.

    PubMed

    Mang, C S; Clair, J M; Collins, D F

    2011-03-01

    The afferent volley generated during neuromuscular electrical stimulation (NMES) can increase the excitability of human corticospinal (CS) pathways to muscles of the leg and hand. Over time, such increases can strengthen CS pathways damaged by injury or disease and result in enduring improvements in function. There is some evidence that NMES affects CS excitability differently for muscles of the leg and hand, although a direct comparison has not been conducted. Thus, the present experiments were designed to compare the strength and specificity of NMES-induced changes in CS excitability for muscles of the leg and hand. Two hypotheses were tested: (1) For muscles innervated by the stimulated nerve (target muscles), CS excitability will increase more for the hand than for the leg. (2) For muscles not innervated by the stimulated nerve (non-target muscles), CS excitability will increase for muscles of the leg but not muscles of the hand. NMES was delivered over the common peroneal (CP) nerve in the leg or the median nerve at the wrist using a 1-ms pulse width in a 20 s on, 20 s off cycle for 40 min. The intensity was set to evoke an M-wave that was ~15% of the maximal M-wave in the target muscle: tibialis anterior (TA) in the leg and abductor pollicis brevis (APB) in the hand. Ten motor-evoked potentials (MEPs) were recorded from the target muscles and from 2 non-target muscles of each limb using transcranial magnetic stimulation delivered over the "hotspot" for each muscle before and after the NMES. MEP amplitude increased significantly for TA (by 45 ± 6%) and for APB (56 ± 8%), but the amplitude of these increases was not different. In non-target muscles, MEPs increased significantly for muscles of the leg (42 ± 4%), but not the hand. Although NMES increased CS excitability for target muscles to the same extent in the leg and hand, the differences in the effect on non-target muscles suggest that NMES has a "global" effect on CS excitability for the leg and a

  8. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review.

    PubMed

    Ozaki, Hayao; Loenneke, Jeremy P; Thiebaud, Robert S; Stager, Joel M; Abe, Takashi

    2013-01-01

    It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate) intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.

  9. Stiffness mapping of lower leg muscles during passive dorsiflexion.

    PubMed

    Le Sant, Guillaume; Nordez, Antoine; Andrade, Ricardo; Hug, François; Freitas, Sandro; Gross, Raphaël

    2017-05-01

    It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter-day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo-distal regions for GM, GL and SOL. Inter-day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness. © 2017

  10. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    PubMed Central

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  11. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg.

    PubMed

    Credeur, Daniel P; Holwerda, Seth W; Restaino, Robert M; King, Phillip M; Crutcher, Kiera L; Laughlin, M Harold; Padilla, Jaume; Fadel, Paul J

    2015-02-15

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. Copyright © 2015 the American Physiological Society.

  12. Fingertip contact suppresses the destabilizing influence of leg muscle vibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2000-01-01

    Touch of the hand with a stationary surface at nonmechanically supportive force levels (<1 N) greatly attenuates postural sway during quiet stance. We predicted such haptic contact would also suppress the postural destabilization caused by vibrating the right peroneus brevis and longus muscles of subjects standing heel-to-toe with eyes closed. In experiment 1, ten subjects were tested under four conditions: no-vibration, no-touch; no-vibration, touch; vibration, no-touch; and vibration, touch. A hand-held physiotherapy vibrator (120 Hz) was applied approximately 5 cm above the malleolous to stimulate the peroneus longus and brevis tendons. Touch conditions involved contact of the right index finger with a laterally positioned surface (<1 N of force) at waist height. Vibration in the absence of finger contact greatly increased the mean sway amplitude of the center of pressure and of the head relative to the no-vibration, no-touch control condition (P < 0.001). The touch, no-vibration and touch-vibration conditions were not significantly different (P > 0.05) from each other and both had significantly less mean sway amplitude of head and of center of pressure than the other conditions (P < 0.01). In experiment 2, eight subjects stood heel-to-toe under touch and no-touch conditions involving 40-s duration trials of peroneus tendon vibration at different duty cycles: 1-, 2-, 3-, and 4-s ON and OFF periods. The vibrator was attached to the subject's leg and remotely activated. In the no-touch conditions, subjects showed periodic postural disruptions contingent on the duty cycle and mirror image rebounds with the offset of vibration. In the touch conditions, subjects were much less disrupted and showed compensations occurring within 500 ms of vibration onset and mirror image rebounds with vibration offset. Subjects were able to suppress almost completely the destabilizing influence of the vibration in the 3- and 4-s duty cycle trials. These experiments show that haptic

  13. Fingertip contact suppresses the destabilizing influence of leg muscle vibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2000-01-01

    Touch of the hand with a stationary surface at nonmechanically supportive force levels (<1 N) greatly attenuates postural sway during quiet stance. We predicted such haptic contact would also suppress the postural destabilization caused by vibrating the right peroneus brevis and longus muscles of subjects standing heel-to-toe with eyes closed. In experiment 1, ten subjects were tested under four conditions: no-vibration, no-touch; no-vibration, touch; vibration, no-touch; and vibration, touch. A hand-held physiotherapy vibrator (120 Hz) was applied approximately 5 cm above the malleolous to stimulate the peroneus longus and brevis tendons. Touch conditions involved contact of the right index finger with a laterally positioned surface (<1 N of force) at waist height. Vibration in the absence of finger contact greatly increased the mean sway amplitude of the center of pressure and of the head relative to the no-vibration, no-touch control condition (P < 0.001). The touch, no-vibration and touch-vibration conditions were not significantly different (P > 0.05) from each other and both had significantly less mean sway amplitude of head and of center of pressure than the other conditions (P < 0.01). In experiment 2, eight subjects stood heel-to-toe under touch and no-touch conditions involving 40-s duration trials of peroneus tendon vibration at different duty cycles: 1-, 2-, 3-, and 4-s ON and OFF periods. The vibrator was attached to the subject's leg and remotely activated. In the no-touch conditions, subjects showed periodic postural disruptions contingent on the duty cycle and mirror image rebounds with the offset of vibration. In the touch conditions, subjects were much less disrupted and showed compensations occurring within 500 ms of vibration onset and mirror image rebounds with vibration offset. Subjects were able to suppress almost completely the destabilizing influence of the vibration in the 3- and 4-s duty cycle trials. These experiments show that haptic

  14. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  15. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  16. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    PubMed

    Maqbool, Tariq; Soler, Cedric; Jagla, Teresa; Daczewska, Malgorzata; Lodha, Neha; Palliyil, Sudhir; VijayRaghavan, K; Jagla, Krzysztof

    2006-12-27

    Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The

  17. Determination of muscle mass changes in legs from K-40 measurements

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.

    1979-01-01

    The K-40 content of the upper legs was periodically measured in several subjects whose injured legs had been in a cast for 6 weeks or more. As the subjects began using the leg again, the K-40 content increased as the muscle tissue was replaced. A 25% increase in K-40 content in 6 months is typical for a normal leg use and recovery. This is equivalent to an original muscle mass loss of 20%. By measuring specific body regions, such as arms or legs, with a high-efficiency detector system, muscle mass changes which exceed a few percent can be measured. These methods could be used in space flight and bedrest studies, and in studying nutritional deficiencies due to disease or diet.

  18. Determination of muscle mass changes in legs from K-40 measurements

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.

    1979-01-01

    The K-40 content of the upper legs was periodically measured in several subjects whose injured legs had been in a cast for 6 weeks or more. As the subjects began using the leg again, the K-40 content increased as the muscle tissue was replaced. A 25% increase in K-40 content in 6 months is typical for a normal leg use and recovery. This is equivalent to an original muscle mass loss of 20%. By measuring specific body regions, such as arms or legs, with a high-efficiency detector system, muscle mass changes which exceed a few percent can be measured. These methods could be used in space flight and bedrest studies, and in studying nutritional deficiencies due to disease or diet.

  19. Leg Muscle Mass and Foot Symptoms, Structure, and Function: The Johnston County Osteoarthritis Project

    PubMed Central

    Dufour, Alyssa B.; Hannan, Marian T.; Hillstrom, Howard J.; Katz, Patricia P.; Jordan, Joanne M.

    2016-01-01

    Background. Loss of muscle mass occurs with aging and in lower limbs it may be accelerated by foot problems. In this cross-sectional analysis, we evaluated the relationship of leg muscle mass to foot symptoms (presence or absence of pain, aching, or stiffness), structure while standing (high arch or low arch), and function while walking (pronated or supinated) in a community-based study of Caucasian and African American men and women who were 50–95 years old. Methods. In the Johnston County Osteoarthritis Project, leg muscle mass was measured with whole body dual-energy x-ray absorptiometry, and plantar foot pressure data, using predetermined values, were used to classify foot structure and function. Sex-specific crude and adjusted (age, body mass index, and race) linear regression models examined associations of leg muscle mass index (Leg muscle mass [kg] / Height [m]2) with foot symptoms, structure, and function. Results. Complete data were available for 1,037 participants (mean age 68 years, mean body mass index 31kg/m2, 68% women, 29% African American). In women, pronated foot function was associated with lower leg muscle mass in crude (p = .02), but not adjusted (p = .22), models. A low arch was associated with a higher leg muscle mass in adjusted models for both men and women (p < .01). Conclusions. Leg muscle mass was associated with foot structure in our biracial sample, whereas relations between leg muscle mass and foot function were attenuated by age, body mass index, and race. Future longitudinal analyses are needed to explain the temporal relationship between these conditions and how they relate to other aspects of impairment and physical function. PMID:26297655

  20. Leg Muscle Mass and Foot Symptoms, Structure, and Function: The Johnston County Osteoarthritis Project.

    PubMed

    Golightly, Yvonne M; Dufour, Alyssa B; Hannan, Marian T; Hillstrom, Howard J; Katz, Patricia P; Jordan, Joanne M

    2016-03-01

    Loss of muscle mass occurs with aging and in lower limbs it may be accelerated by foot problems. In this cross-sectional analysis, we evaluated the relationship of leg muscle mass to foot symptoms (presence or absence of pain, aching, or stiffness), structure while standing (high arch or low arch), and function while walking (pronated or supinated) in a community-based study of Caucasian and African American men and women who were 50-95 years old. In the Johnston County Osteoarthritis Project, leg muscle mass was measured with whole body dual-energy x-ray absorptiometry, and plantar foot pressure data, using predetermined values, were used to classify foot structure and function. Sex-specific crude and adjusted (age, body mass index, and race) linear regression models examined associations of leg muscle mass index (Leg muscle mass [kg]/Height [m](2)) with foot symptoms, structure, and function. Complete data were available for 1,037 participants (mean age 68 years, mean body mass index 31 kg/m(2), 68% women, 29% African American). In women, pronated foot function was associated with lower leg muscle mass in crude (p = .02), but not adjusted (p = .22), models. A low arch was associated with a higher leg muscle mass in adjusted models for both men and women (p < .01). Leg muscle mass was associated with foot structure in our biracial sample, whereas relations between leg muscle mass and foot function were attenuated by age, body mass index, and race. Future longitudinal analyses are needed to explain the temporal relationship between these conditions and how they relate to other aspects of impairment and physical function. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Tonic muscle pain does not increase fusimotor drive to human leg muscles: implications for chronic muscle pain.

    PubMed

    Fazalbhoy, Azharuddin; Macefield, Vaughan G; Birznieks, Ingvars

    2013-06-01

    Experimental pain induced in animals has shown that noxious stimulation of group III and IV afferents increases the firing of muscle spindles via a reflex excitation of fusimotor (γ) motoneurones. Chronic muscle pain has been hypothesized to develop as a result of a vicious cycle involving this mechanism. In order to explore the effects of long-lasting muscle pain on the fusimotor system, single unit muscle spindle afferents were recorded from 15 subjects. Afferent activity was recorded from foot and ankle extensor muscles whilst infusing hypertonic saline into the tibialis anterior muscle of the ipsilateral leg, producing moderate-strong pain lasting for ∼60 min. A change in fusimotor drive was inferred by observing changes in the mean discharge rate of spontaneously active muscle spindle afferents. Homonymous and heteronymous muscles remained relaxed and showed no increase in activity, arguing against any fusimotor-driven increase in motor activity, and there was no net change in the firing of muscle spindle afferents. We conclude that long-lasting stimulation of group III and IV afferents fails to excite fusimotor neurones and increase muscle spindle discharge. Accordingly, the vicious cycle theory has no functional basis for the development of myalgia in human subjects.

  2. Reflex influences on muscle spindle activity in relaxed human leg muscles.

    PubMed

    Gandevia, S C; Miller, S; Aniss, A M; Burke, D

    1986-07-01

    The study was designed to determine whether low-threshold cutaneous and muscle afferents from the foot reflexly activate gamma-motoneurons innervating relaxed muscles of the leg. In 15 experiments multiunit recordings were made from 21 nerve fascicles innervating triceps surae or tibialis anterior. In a further nine experiments the activity of 19 identified single muscle spindle afferents was recorded, 13 from triceps surae, 5 from tibialis anterior, and 1 from extensor digitorum longus. Trains of electrical stimuli (5 stimuli, 300 Hz) were delivered to the sural nerve at the ankle (intensity, twice sensory threshold) and the posterior tibial nerve at the ankle (intensity, 1.1 times motor threshold for the small muscles of the foot). In addition, a tap on the appropriate tendon at varying times after the stimuli was used to assess the dynamic responsiveness of the afferents under study. The conditioning electrical stimuli did not change the discharge of single spindle afferents. Recordings of rectified and averaged multiunit activity also revealed no change in the overall level of background neural activity following the electrical stimuli. The afferent responses to tendon taps did not differ significantly whether or not they were preceded by stimulation of the sural or posterior tibial nerves. These results suggest that low-threshold afferents from the foot do not produce significant activation of fusimotor neurons in relaxed leg muscles, at least as judged by their ability to alter the discharge of muscle spindle afferents. As there may be no effective background activity in fusimotor neurons innervating relaxed human muscles, it is possible that these inputs from the foot could influence the fusimotor system during voluntary contractions when the fusimotor neurons have been brought to firing threshold. In one subject trains of stimuli were delivered to the posterior tibial nerve at painful levels (30 times motor threshold). They produced an acceleration of the

  3. Effects of leg pedaling on early latency cutaneous reflexes in upper limb muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Zehr, E Paul; Komiyama, Tomoyoshi

    2010-07-01

    The functional coupling of neural circuits between the upper and lower limbs involving rhythmic movements is of interest to both motor control research and rehabilitation science. This coupling can be detected by examining the effect of remote rhythmic limb movement on the modulation of reflex amplitude in stationary limbs. The present study investigated the extent to which rhythmic leg pedaling modulates the amplitude of an early latency (peak 30-70 ms) cutaneous reflex (ELCR) in the upper limb muscles. Thirteen neurologically intact volunteers performed leg pedaling (60 or 90 rpm) while simultaneously contracting their arm muscles isometrically. Control experiments included isolated isometric contractions and discrete movements of the leg. ELCRs were evoked by stimulation of the superficial radial nerve with a train of rectangular pulses (three pulses at 333 Hz, intensity 2.0- to 2.5-fold perceptual threshold). Reflex amplitudes were significantly increased in the flexor carpi radialis and posterior deltoid and significantly decreased in the biceps brachii muscles during leg pedaling compared with that during stationary isometric contraction of the lower leg muscles. This effect was also sensitive to cadence. No significant modulation was seen during the isometric contractions or discrete movements of the leg. Additionally, there was no phase-dependent modulation of the ELCR. These findings suggest that activation of the rhythm generating system of the legs affects the excitability of the early latency cutaneous reflex pathways in the upper limbs.

  4. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    PubMed Central

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  5. Effect of selective fatiguing of the shank muscles on single-leg-standing sway.

    PubMed

    Suponitsky, Y; Verbitsky, O; Peled, E; Mizrahi, J

    2008-08-01

    Control of standing requires the continuous activity of the leg muscles. In single leg standing the system is less redundant and muscular activity is more intensive. The objective of this study was to examine the effect of force imbalance of the shank muscles, evoked by their selective fatiguing, on postural control in single-leg standing. Five healthy subjects performed two single-leg standing trials, lasting as long as the subject could maintain steady balance, and separated by a 240s quasi-isotonic sustained effort to induce fatigue of the Tibialis Anterior and Peroneus muscles. The following were on-line monitored: sway-related parameters, e.g., ground reaction force and center of pressure in the standing trials; and electromyogram of the Tibialis Anterior, Peroneus and Gastrocnemius muscles in all experiments. Simple and multiple linear regressions served to study the fatigue effects on the relationship between muscle activity and postural sway. The results indicate that the evoked muscle imbalance leads to (a) increased postural sway; (b) increased correlation between muscle activity, and sway-related parameters. Thus, with the reduction of the level of redundancy the system becomes more synchronized. These results have potential relevance for cases of muscle impairment, in which electrical stimulation is required to augment muscle activity.

  6. Improving the clinical assessment of leg muscle in adult clubfoot using magnetic resonance imaging: a case report.

    PubMed

    Chan, Kwai-Tung; Hurley, Robin A; Dural, Ayse; Hayman, L Anne

    2002-09-01

    We report on a 37-year-old woman with a left clubfoot with a progressive decrease in ambulatory distance resulting from fatigue of her left calf muscles. She had multiple surgeries for correction of the clubfoot deformity in early childhood and uses an ankle-foot orthosis (AFO) during gait. Physical examination revealed a decrease in left calf girth. T1-weighted spin echo magnetic resonance imaging (MRI) of her legs distal to the knees showed a marked decrease in leg muscle volume in the clubfoot limb. There was increased subcutaneous fat overlying the leg muscles in the clubfoot limb, and the muscles of the clubfoot limb were infiltrated with fatty tissue. The extent of atrophy of the leg muscles on MRI was significantly greater than expected from the clinical examination. In conclusion, MRI provides a true measure of leg muscle volume in the adult clubfoot and offers an explanation for leg muscle fatigue during ambulation.

  7. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain.

    PubMed

    Kader, D F; Wardlaw, D; Smith, F W

    2000-02-01

    In the assessment of the lumbar spine by magnetic resonance imaging (MRI), changes in the paraspinal muscles are frequently overlooked. In this study, our objective was to investigate the relationships between lumbar multifidus (MF) muscle atrophy and low back pain (LBP), leg pain and intevertebral disc degeneration. A retrospective study of 78 patients (aged 17-72) with LBP presenting with back pain with or without associated leg pain was undertaken. Their MR images were visually analysed for signs of lumbar MF muscle atrophy, disc degeneration and nerve root compression. The clinical history in each case was obtained from their case notes and pain drawing charts. MF muscle atrophy was present in 80% of the patients with LBP. The correlation between MF muscle atrophy and leg pain was found to be significant (P < 0.01). However, the relationships between muscle atrophy and radiculopathy symptoms, nerve root compression, herniated nucleus pulposus and number of degenerated discs were statistically not significant. Examination of the paraspinal muscles looking for atrophy of MF muscle should be considered when assessing MR images of lumbar spine. This may explain the referred leg pain in the absence of other MR abnormalities. Copyright 2000 The Royal College of Radiologists.

  8. Asymmetrical neural adaptation in lower leg muscles as a consequence of stereotypical motor training.

    PubMed

    Ogawa, Tetsuya; Kawashima, Noritaka; Suzuki, Shuji; Nakazawa, Kimitaka

    2012-01-01

    Despite well-authorized facts regarding asymmetrical architectural changes between different limbs after persistent participation in particular motor training, no studies have addressed the neural aspects to the present. The authors undertook the study to elucidate the possibility of neural adaptation on a limb-by-limb basis after repetitive engagement in a particular motor training routine. We investigated lower leg muscles in endurance-trained track runners who have been trained by routinely running on a track in counterclockwise direction on curved paths. Stretch reflex responses in the plantarflexor muscles (soleus [SOL], medial [MG], and lateral head of the gastrocnemius muscle) were evaluated bilaterally with participants sitting at rest. Comparisons were made between homonymous muscles of the right (corresponding to outside leg for track running) and left leg (inside leg, likewise) and with a group of nontrained controls. The result clearly demonstrated that the responses were prominently different between the legs (thus, asymmetrical) in the MG muscles and partially in the SOL muscles in the trained group. In contrast, no such differences were obtained in the nontrained control group. The result demonstrated that neural adaptation took place asymmetrically and that could be attributable to their repetitive engagement in the stereotypical motor task.

  9. Muscle hernias of the leg: A case report and comprehensive review of the literature

    PubMed Central

    Nguyen, Jesse T; Nguyen, Jenny L; Wheatley, Michael J; Nguyen, Tuan A

    2013-01-01

    A case involving a retired, elderly male war veteran with a symptomatic peroneus brevis muscle hernia causing superficial peroneal nerve compression with chosen surgical management is presented. Symptomatic muscle hernias of the extremities occur most commonly in the leg and are a rare cause of chronic leg pain. Historically, treating military surgeons pioneered the early documentation of leg hernias observed in active military recruits. A focal fascial defect can cause a muscle to herniate, forming a variable palpable subcutaneous mass, and causing pain and potentially neuropathic symptoms with nerve involvement. While the true incidence is not known, the etiology has been classified as secondary to a congenital (or constitutional) fascial weakness, or acquired fascial defect, usually secondary to direct or indirect trauma. The highest occurrence is believed to be in young, physically active males. Involvement of the tibialis anterior is most common, although other muscles have been reported. Dynamic ultrasonography or magnetic resonance imaging is often used to confirm diagnosis and guide treatment. Most symptomatic cases respond successfully to conservative treatment, with surgery reserved for refractory cases. A variety of surgical techniques have been described, ranging from fasciotomy to anatomical repair of the fascial defect, with no consensus on optimal treatment. Clinicians must remember to consider muscle hernias in their repertoire of differential diagnoses for chronic leg pain or neuropathy. A comprehensive review of muscle hernias of the leg is presented to highlight their history, occurrence, presentation, diagnosis and treatment. PMID:24497767

  10. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise.

    PubMed

    Motl, Robert W; O'Connor, Patrick J; Dishman, Rod K

    2003-08-01

    This double-blind, within-subjects experiment examined the effect of ingesting a large dose of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. Low-caffeine-consuming college-aged males (n = 16) ingested either caffeine (10 mg x kg(-1) body weight) or placebo and 1 hour later completed 30 minutes of moderate intensity cycling exercise (60% VO(2peak)). The order of drug administration was counter-balanced. Perceptions of leg muscle pain as well as work rate, heart rate, and oxygen uptake (VO(2)) were recorded during exercise. Leg muscle pain ratings were significantly and moderately reduced after a high dose of caffeine. This observation suggests that prior reports showing caffeine improves endurance exercise performance might be partially explained by caffeine's hypoalgesic properties. It also suggests that moderate intensity cycling exercise has promise as a useful experimental model for the study of naturally occurring muscle pain.

  11. Leg muscle involvement in facioscapulohumeral muscular dystrophy assessed by MRI.

    PubMed

    Olsen, David B; Gideon, Peter; Jeppesen, Tina Dysgaard; Vissing, John

    2006-11-01

    Using MRI, we evaluated the degree of involvement of muscles in the lower extremities of 18 unselected patients with facioscapulohumeral muscular dystrophy (FSHD). Findings were correlated with fragment size of the mutated gene, age, disease duration and muscle power. Most affected muscles were the hamstrings followed by the tibialis anterior and the medial gastrocnemius. The vastus-, gluteal- and peroneal muscles were the most unaffected, and the psoas muscle did not show evidence of involvement in any of the investigated subjects. Asymmetric involvement was evident in 15% of the investigated muscles on MRI and 6% on manual muscle strength testing. MRI findings in muscle tended to correlate with disease duration (r = 0.49; p < 0.05), but not with gene fragment size or age. MRI disclosed involvement of muscles performing hip flexion and ankle dorsal flexion that could not be detected by manual muscle strength testing. Otherwise, there was a close correlation (approximately r = 0.75; p < 0.0001) between muscle strength and MRI severity score for other muscle groups. The present study shows that MRI may disclose muscle involvement in FSHD that is not apparent on manual muscle testing, and suggests that MRI of muscle may be an important assessment tool in clinical trials involving patients with FSHD.

  12. Leg Immersion in Warm Water, Stretch-Shortening Exercise, and Exercise-Induced Muscle Damage

    PubMed Central

    Skurvydas, Albertas; Kamandulis, Sigitas; Stanislovaitis, Aleksas; Streckis, Vytautas; Mamkus, Gediminas; Drazdauskas, Adomas

    2008-01-01

    Context: Whether muscle warming protects against exercise-induced muscle damage is unknown. Objective: To determine the effect of leg immersion in warm water before stretch-shortening exercise on the time course of indirect markers of exercise-induced muscle damage. Design: Crossover trial. Setting: Human kinetics laboratory. Patients or Other Participants: Eleven healthy, untrained men (age  =  21.5 ± 1.7 years). Intervention(s): Participants' legs were immersed in a water bath at 44 ± 1°C for 45 minutes. Main Outcome Measure(s): Creatine kinase changes in the blood, muscle soreness, prolonged (within 72 hours) impairment in maximal voluntary contraction force and height of drop jump, and electrically evoked muscle force at low and high stimulation frequencies at short and long muscle lengths. Results: Leg immersion in warm water before stretch-shortening exercise reduced most of the indirect markers of exercise-induced muscle damage, including creatine kinase activity in the blood, muscle soreness, maximal voluntary contraction force, and jump height. The values for maximal voluntary contraction force and jump height, however, were higher during prewarming than for the control condition at 48 hours after stretch-shortening exercise, but this difference was only minor at other time points. Muscle prewarming did not bring about any changes in the dynamics of low-frequency fatigue, registered at either short or long muscle length, within 72 hours of stretch-shortening exercise. Conclusions: Leg immersion in warm water before stretch-shortening exercise reduced most of the indirect markers of exercise-induced muscle damage. However, the clinical application of muscle prewarming may be limited, because decreasing muscle damage did not necessarily lead to improved voluntary performance. PMID:19030137

  13. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    PubMed

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.

  14. Influence of trunk muscle co-contraction on spinal curvature during sitting cross-legged.

    PubMed

    Watanabe, S; Kobara, K; Ishida, H; Eguchi, A

    2010-01-01

    In Asia, many activities of daily living (ADL) are performed while sitting cross-legged on the floor. This sitting posture rotates the pelvis in a more dorsal direction and lumbar lordosis is more flattened than while sitting on a chair. Sitting cross-legged induces a greater load on the intervertebral discs and spine, especially when in a slumped position that is known to increase disc pressure even more and to aggravate chronic low back pain (CLBP). Therefore, it is very important to instruct Asian people about the correct sitting posture. In addition, it is known that co-contraction of the deep spine-stabilizing muscles enhances lumbar segmental stability and the sacroiliac joint. However, little is known about the influence of co-contraction of the trunk deep muscles on spinal curvature while sitting cross-legged on the floor. The purpose of this study was to compare EMG (electromyographic) activity of the trunk muscles while slump cross-legged sitting with that during co-contraction of the trunk muscles and to investigate how this co-contraction influences spinal curvature. Ten healthy male volunteers (21.7 +/- 2.5 years old) without CLBP participated in the study. Bipolar surface electrodes were attached to the rectus abdominis, the obliquus externus abdominis, the obliquus internus abdominis, the lower back extensor muscles (L3) and the multifidus on the right side. EMG signals were continuously recorded while slump sitting cross-legged and during co-contraction of the trunk muscles. They were amplified, band-pass filtered, digitized and stored by a data acquisition system. The average muscle activity values over the five-second sample for each sitting posture were normalized to maximal voluntary contractions (%MVC). While the subjects performed both sitting postures, the curvature of the spine was measured using a skin-surface and hand-held device, the "Spinal Mouse". More significant activities of the trunk muscles, with the exception of the rectus

  15. Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles.

    PubMed

    Vikne, Harald; Gundersen, Kristian; Liestøl, Knut; Maelen, Jan; Vøllestad, Nina

    2012-04-01

    Our aim in this study was to examine whether the muscle fiber type proportions in different muscles from the same individual are interrelated. Samples were excised from five skeletal muscles in each of 12 human autopsy cases, and the fiber type proportions were determined by immunohistochemistry. We further examined the intermuscular relationship in fiber type proportion by reanalyzing three previously published data sets involving other muscles. Subjects demonstrated a predominantly high or low proportion of type 1 fibers in all examined muscles, and the overall difference between individuals was statistically significant (P < 0.001). Accordingly, the type 1 fiber proportions in most muscles were positively correlated (median r = 0.42, range -0.03-0.80). Similar results were also obtained from the three reanalyzed data sets. We suggest the existence of an across-muscle phenotype with respect to fiber type proportions; some individuals display generally faster muscles and some individuals slower muscles when compared with others. Copyright © 2011 Wiley Periodicals, Inc.

  16. Postnatal development of fiber type composition in rabbit jaw and leg muscles.

    PubMed

    Korfage, J A M; Helmers, R; Matignon, M de Goüyon; van Wessel, T; Langenbach, G E J; van Eijden, T M G J

    2009-01-01

    We examined the difference in fiber type composition and cross-sectional areas during postnatal development in male rabbit jaw muscles and compared these with changes in leg muscles. The myosin heavy chain (MyHC) content of the fibers was determined by immunohistochemistry. No fiber type difference was found between the jaw muscles in 20-week-old rabbits. However, the way this adult fiber type composition was reached differed between the muscles. The deep temporalis, medial pterygoid, and superficial masseter displayed an increase in alpha fibers during early and a decrease during late postnatal development. Other jaw muscles displayed an increase in alpha fibers during early development only. In contrast, alpha fibers were not found in the soleus, in which fiber type changes were completed at week 4. The gastrocnemius muscle did not change its fiber type composition. Initially, fibers in jaw-opening muscles had larger cross-sectional areas than in other muscles, but they increased less during development. Although there were no large differences in the fiber type composition of muscles in young adult rabbits, large differences were found in the jaw muscles, but not in the leg muscles, during development. In part, these developmental changes in fiber percentages within the jaw muscles can be explained by functional modifications in this muscle group. In the present study, the deep temporalis, medial pterygoid, and superficial masseter showed the most dramatic percent changes in fibers during postnatal development. (c) 2008 S. Karger AG, Basel.

  17. Calf muscle pump impairment and delayed healing of venous leg ulcers: air plethysmographic findings.

    PubMed

    Simka, Marian

    2007-08-01

    There is a need for a diagnostic tool to predict clinical outcome of venous leg ulcer patients, as the prognosis of healing based on clinical data alone has not appeared to be satisfactory. Air plethysmographic assessment of calf muscle pump was performed in the supine and upright position in 129 patients with active ulcers on their legs. All patients were managed in a specialized leg ulcer clinic. Results of air plethysmography were compared to clinical data and time of healing of ulcers. Muscle pump failure was found in 42.6% of extremities (supine position, 33.3%; upright, 22.5%; both, 12.4%). Patients with insufficient pump were older, and their ulcers were larger. Failure of pump was found more often in patients who began the treatment after long, unsuccessful, non-specialized care. Healing time of ulcers was prolonged in cases with insufficient pump. Regarding the subgroups with good clinical prognosis (patients with small ulcers or with a short history of ulceration), it was found that insufficiency of muscle pump correlated with delayed healing. It could be summarized that venous leg ulcers associated with calf muscle failure were larger, long-standing, and that their healing even after specialized treatment was delayed. Impaired muscle pump function revealed in plethysmographic examination can be a prognostic factor of delayed healing of leg ulcer. Ulcers with poor prognosis according to plethysmographic findings, and no quick recovery after standard management, should be considered for advanced therapies.

  18. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    PubMed

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  19. Aberrant femoral torsion presenting with frog-leg squatting mimicking gluteal muscle contracture.

    PubMed

    Chiang, Chia-Ling; Tsai, Meng-Yuan; Chang, Wei-Ning; Chen, Clement Kuen-Huang

    2012-04-01

    Patients with frog-leg squatting have restricted internal rotation and adduction of the affected hips during sitting or squatting. In the surgical literature, the cause generally has been presumed to arise from and be pathognomonic for gluteal muscle contracture. However, we have encountered patients with frog-leg squatting but without gluteal muscle contracture. We therefore raised the following questions: What are the imaging features of patients with frog-leg squatting? Do conditions other than gluteal muscle contracture manifest frog-leg squatting? We retrospectively reviewed the MR images of 67 patients presenting with frog-leg squatting from April 1998 to July 2010. There were four females and 63 males; their mean age was 22.2 years (range, 4-50 years). During MRI readout, we observed aberrant axes of some femoral necks and obtained additional CT to measure femoral torsion angles in 59 of the 67 patients. MR images of 27 (40%) patients had signs of gluteal muscle contracture. Twenty-two (33%) patients (40 femora) had aberrant femoral torsion, including diminished anteversion (range, 6°-0°; average, 3.9°) in 11 femora of eight patients and femoral retroversion (range, < 0° to -31°, average, -7.5°) in 29 femora of 17 patients. The remaining 18 (27%) patients did not have gluteal muscle contracture or aberrant femoral torsion. The observation of aberrant femoral torsion was not anticipated before imaging studies. In addition to gluteal muscle contracture, aberrant femoral torsion can be a cause of frog-leg squatting. Level II, diagnostic study. See the guidelines for Authors for a complete description of levels of evidence.

  20. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  1. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running.

    PubMed

    Watson, J T; Ritzmann, R E

    1998-01-01

    We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.

  2. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.

    PubMed

    Abbiss, Chris R; Karagounis, Leonidas G; Laursen, Paul B; Peiffer, Jeremiah J; Martin, David T; Hawley, John A; Fatehee, Naeem N; Martin, James C

    2011-05-01

    Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P < 0.05). Skeletal muscle biopsy samples from the vastus lateralis revealed a training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P < 0.05). However, the increase in cytochrome c oxidase subunits II and IV and GLUT-4 protein concentration was greater following single- than double-leg cycling (P < 0.05). Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.

  3. Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans

    PubMed Central

    Marque, Philippe; Nicolas, Guillaume; Marchand-Pauvert, Véronique; Gautier, Julien; Simonetta-Moreau, Marion; Pierrot-Deseilligny, Emmanuel

    2001-01-01

    Group I projections from intrinsic plantar muscles to motoneurones (MNs) of human leg and thigh muscles were investigated. Changes in firing probability of single motor units (MUs) in the tibialis anterior (TA), peroneus brevis (Per brev), soleus (Sol), gastrocnemius medialis (GM), vastus lateralis (VL), semitendinosus (ST) and biceps (Bi) were studied after electrical stimuli applied to: (i) the tibial nerve (TN) at ankle level, (ii) the corresponding homonymous nerve, and (iii) the skin of the heel, to mimic the TN-induced cutaneous sensation.Homonymous facilitation, attributable to monosynaptic Ia excitation, was found in all the sampled units. Early heteronymous excitation elicited by TN stimulation was found in many MUs. Later effects (3–5 ms central delay) were bigger and more frequently observed: excitation in most TA and Per brev MUs, and inhibition in most Sol, GM and Bi MUs and in many ST and VL MUs. The low threshold (∼0.5–0.6 × motor threshold) and the inability of a pure cutaneous stimulation to reproduce these effects (except the late excitation in TA MUs) indicate that they were due to stimulation of group I muscle afferents.The early excitation was accepted to be monosynaptic when its central delay differed from that of the homonymous Ia excitation by less than 0.5 ms. Such a significant TN-induced monosynaptic Ia excitation was found in MUs belonging to all leg and thigh motor nuclei tested. Although its mean strength was relatively weak, it is argued that these monosynaptic connections might affect already depolarized MNs.The late excitation found in TA and Per brev MUs is argued to be mediated through interneurones located rostral to MNs.The late suppression, found in most Sol, GM and Bi MUs, and in many ST and VL MUs, was the dominant effect. It was accompanied by an inhibition of the Sol and quadriceps H reflexes at rest, and therefore reflects an inhibition directed to MNs. Its long latency is argued to reflect transmission by

  4. The Effect of Mechanical Vibration Stimulation of Perception Subthreshold on the Muscle Force and Muscle Reaction Time of Lower Leg

    PubMed Central

    Kim, Huigyun; Kwak, Kiyoung; Kim, Dongwook

    2016-01-01

    The objective of this study is to investigate the effect of mechanical vibration stimulation on the muscle force and muscle reaction time of lower leg according to perception threshold and vibration frequency. A vibration stimulation with perception threshold intensity was applied on the Achilles tendon and tibialis anterior tendon. EMG measurement and analysis system were used to analyze the change of muscle force and muscle reaction time according to perception threshold and vibration frequency. A root-mean-square (RMS) value was extracted using analysis software and Maximum Voluntary Contraction (MVC) and Premotor Time (PMT) were analyzed. The measurement results showed that perception threshold was different from application sites of vibration frequency. Also, the muscle force and muscle reaction time showed difference according to the presence of vibration, frequency, and intensity. This result means that the vibration stimulation causes the change on the muscle force and muscle reaction time and affects the muscles of lower leg by the characteristics of vibration stimulation. PMID:27382244

  5. Muscle hypertrophy of the lower leg caused by L5 radiculopathy.

    PubMed

    Kottlors, Michael; Mueller, Klaus; Kirschner, Janbernd; Glocker, Franz Xaver

    2009-10-01

    We report on a case with hypertrophy of the tibial muscles and to a lesser extent of the calf muscles preceded by a lumbar syndrome and sciatica. Lumbar myelography disclosed a discogenic compression of the L5 nerve root. Muscle biopsy of the peroneal muscles showed a marked type I fibre predominance and hypertrophy but no inflammatory infiltration. We consider the possibility that radiculopathy not only of the S1 nerve root but also of the L5 root can trigger hypertrophy of the musculature and must be taken into account of the differential diagnosis of unilateral focal hypertrophy of the lower leg.

  6. Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    PubMed Central

    Krishnaswamy, Pavitra; Brown, Emery N.; Herr, Hugh M.

    2011-01-01

    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks. PMID:21445231

  7. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    PubMed

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2017-07-15

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Fukunaga, T.; Roy, R. R.; Shellock, F. G.; Hodgson, J. A.; Day, M. K.; Lee, P. L.; Kwong-Fu, H.; Edgerton, V. R.

    1992-01-01

    Magnetic resonance imaging techniques were used to determine the physiological cross-sectional areas (PCSAs) of the major muscles or muscle groups of the lower leg. For 12 healthy subjects, the boundaries of each muscle or muscle group were digitized from images taken at 1-cm intervals along the length of the leg. Muscle volumes were calculated from the summation of each anatomical CSA (ACSA) and the distance between each section. Muscle length was determined as the distance between the most proximal and distal images in which the muscle was visible. The PCSA of each muscle was calculated as muscle volume times the cosine of the angle of fiber pinnation divided by fiber length, where published fiber length:muscle length ratios were used to estimate fiber lengths. The mean volumes of the major plantarflexors were 489, 245, and 140 cm3 for the soleus and medial (MG) and lateral (LG) heads of the gastrocnemius. The mean PCSA of the soleus was 230 cm2, about three and eight times larger than the MG (68 cm2) and LG (28 cm2), respectively. These PCSA values were eight (soleus), four (MG), and three (LG) times larger than their respective maximum ACSA. The major dorsiflexor, the tibialis anterior (TA), had a muscle volume of 143 cm2, a PCSA of 19 cm2, and an ACSA of 9 cm2. With the exception of the soleus, the mean fiber length of all subjects was closely related to muscle volume across muscles. The soleus fibers were unusually short relative to the muscle volume, thus potentiating its force potential.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Fukunaga, T.; Roy, R. R.; Shellock, F. G.; Hodgson, J. A.; Day, M. K.; Lee, P. L.; Kwong-Fu, H.; Edgerton, V. R.

    1992-01-01

    Magnetic resonance imaging techniques were used to determine the physiological cross-sectional areas (PCSAs) of the major muscles or muscle groups of the lower leg. For 12 healthy subjects, the boundaries of each muscle or muscle group were digitized from images taken at 1-cm intervals along the length of the leg. Muscle volumes were calculated from the summation of each anatomical CSA (ACSA) and the distance between each section. Muscle length was determined as the distance between the most proximal and distal images in which the muscle was visible. The PCSA of each muscle was calculated as muscle volume times the cosine of the angle of fiber pinnation divided by fiber length, where published fiber length:muscle length ratios were used to estimate fiber lengths. The mean volumes of the major plantarflexors were 489, 245, and 140 cm3 for the soleus and medial (MG) and lateral (LG) heads of the gastrocnemius. The mean PCSA of the soleus was 230 cm2, about three and eight times larger than the MG (68 cm2) and LG (28 cm2), respectively. These PCSA values were eight (soleus), four (MG), and three (LG) times larger than their respective maximum ACSA. The major dorsiflexor, the tibialis anterior (TA), had a muscle volume of 143 cm2, a PCSA of 19 cm2, and an ACSA of 9 cm2. With the exception of the soleus, the mean fiber length of all subjects was closely related to muscle volume across muscles. The soleus fibers were unusually short relative to the muscle volume, thus potentiating its force potential.(ABSTRACT TRUNCATED AT 250 WORDS).

  10. Effects of Mobile Phone Usage in Supporting Leg Lymphedema Self-care

    PubMed Central

    Okutsu, Ayako; Koiyabashi, Kikuyo

    2014-01-01

    Objective: The aim of this study was to implement self-care support for leg lymphedema patients using mobile phones and to investigate the effects thereof. Patients and Methods: A total of 30 patients with lymphedema following female genital cancer surgery (stages I to II) who were referred from a nearby gynecologist were randomly divided into groups for routine self-care support (control group) and mobile telephone-assisted support (intervention group) and received the self-care support appropriate to their group. The (total) circumference of the leg with edema, FACT-G (cancer patient QOL), MHP (mental health status), and self-care self-assessment were comparatively investigated at three months after the initial interview. Results: No significant reduction in the (total) circumferences of legs with edema was confirmed in either the control or intervention group. The intervention group was significantly better than the control group in terms of the activity circumstances and FACT-G mental status at three months after the initial interview. The intervention group was also significantly better in psychological, social, and physical items in the MHP. The intervention group was significantly better than the control group in terms of circumstances of self-care implementation at three months after the initial interview. Additionally, comparison of the circumstances of implementation for different aspects of self-care content showed that the intervention group was significantly better at selecting shoes, observing edema, moisturizing, self-drainage, wearing compression garments, and implementing bandaging. Conclusion: Compared with routine self-care support, mobile telephone-assisted support is suggested to be effective for leg lymphedema patients’ QOL and mental health status as well as their self-care behaviors. PMID:25648778

  11. Relationship between leg extensor muscle strength and knee joint loading during gait before and after total knee arthroplasty.

    PubMed

    Vahtrik, Doris; Gapeyeva, Helena; Ereline, Jaan; Pääsuke, Mati

    2014-01-01

    The aim of the present study was to evaluate an isometric maximal voluntary contraction (MVC) force of the leg extensor muscles and its relationship with knee joint loading during gait prior and after total knee arthroplasty (TKA). Custom-made dynamometer was used to assess an isometric MVC force of the leg extensor muscles and 3-D motion analysis system was used to evaluate the knee joint loading during gait in 13 female patients (aged 49-68 years) with knee osteoarthritis. Patients were evaluated one day before, and three and six months following TKA in the operated and non-operated leg. Six months after TKA, MVC force of the leg extensor muscles for the operated leg did not differ significantly as compared to the preoperative level, whereas it remained significantly lower for the non-operated leg and controls. The knee flexion moment and the knee joint power during mid stance of gait was improved six months after TKA, remaining significantly lowered compared with controls. Negative moderate correlation between leg extensor muscles strength and knee joint loading for the operated leg during mid stance was noted three months after TKA. The correlation analysis indicates that due to weak leg extensor muscles, an excessive load is applied to knee joint during mid stance of gait in patients, whereas in healthy subjects stronger knee-surrounding muscles provide stronger knee joint loading during gait. III (correlational study). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    PubMed

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2016-06-01

    Previous studies mainly focused on muscles at the operated knee after anterior cruciate ligament reconstruction, less on muscles around other joints of the operated and non-operated leg. The aim of this study was to investigate muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Lower extremity muscle activation onset times of both legs of 20 fully returned to sport anterior cruciate ligament reconstructed subjects and 20 non-injured control subjects were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Analysis of covariance (ANCOVA) was used to evaluate differences between groups and differences between legs within both groups, while controlling for peak center of pressure velocity. Significantly delayed muscle activation onset times were found in the anterior cruciate ligament reconstructed group compared to the control group for gluteus maximus, gluteus medius, vastus medialis obliquus, medial hamstrings, lateral hamstrings and gastrocnemius in both eyes open and eyes closed conditions (P<.05). Within the anterior cruciate ligament reconstructed group, no significant different muscle activation onset times were found between the operated and non-operated leg (P>.05). Despite completion of rehabilitation and full return to sport, the anterior cruciate ligament reconstructed group showed neuromuscular control deficits that were not limited to the operated knee joint. Clinicians should focus on relearning multi-segmental anticipatory neuromuscular control strategies after anterior cruciate ligament reconstruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of caffeine on leg muscle pain during cycling exercise among females.

    PubMed

    Motl, Robert W; O'connor, Patrick J; Tubandt, Leslie; Puetz, Tim; Ely, Matthew R

    2006-03-01

    This double-blind, within-subjects experiment examined the effects of ingesting two doses of caffeine on perceptions of leg muscle pain during moderate-intensity cycling exercise among females. Low-caffeine-consuming college-aged females (N = 11) ingested one of two doses of caffeine (5 or 10 mg x kg(-1) body weight) or a placebo and 1 h later completed 30 min of cycling on an ergometer at approximately 60% VO2peak. The conditions were completed in a counterbalanced order. Perceptions of leg muscle pain as well as power output, heart rate, systolic blood pressure, and oxygen consumption (VO2) were recorded during exercise. Caffeine had a significant effect on leg muscle pain ratings [F (2,20) = 10.63, P = 0.001, n2 = 0.52]. The mean pain intensity scores during exercise after ingesting 10 mg x kg(-1) body weight caffeine, 5 mg x kg(-1) body weight caffeine, and placebo were 1.6 +/- 1.1, 1.3 +/- 0.7, and 2.4 +/- 1.1, respectively. The results support that caffeine ingestion has a large effect on reducing leg muscle pain during exercise among females, but this effect does not appear to be dose-dependent between 5 and 10 mg.kg body weight caffeine.

  14. Effect of armor and carrying load on body balance and leg muscle function.

    PubMed

    Park, Huiju; Branson, Donna; Kim, Seonyoung; Warren, Aric; Jacobson, Bert; Petrova, Adriana; Peksoz, Semra; Kamenidis, Panagiotis

    2014-01-01

    This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts.

  15. The effects of stimulating lower leg muscles on the mechanical work and metabolic response in functional electrically stimulated pedaling.

    PubMed

    Hakansson, Nils A; Hull, M L

    2010-10-01

    Functional electrical stimulation (FES) pedaling with the muscles of the upper leg has been shown to provide benefit to spinal cord injured (SCI) individuals. FES pedaling with electrical stimulation timing patterns that minimize the stress-time integral of activated muscles has been shown to increase the work individuals can perform during the exercise compared to existing FES stimulation timing patterns. Activation of the lower leg muscles could further enhance the benefit of FES pedaling by increasing the metabolic response to the exercise. For SCI individuals, the objectives of this study were to experimentally determine whether FES pedaling with the upper and lower leg muscles would affect the work generated and increase the physiological responses compared to pedaling with the upper leg muscles alone. Work, rate of oxygen consumption ·VO₂, and blood lactate data were measured from nine SCI subjects (injury level T4-T12) as they pedaled using upper leg and upper and lower leg muscle groups on repeated trials. The subjects performed 6% more work with the upper and lower legs than with the upper legs alone, but the difference was not significant (p = 0.2433). The average rate of oxygen consumption associated with the upper leg muscles (441 ±231 mL/min) was not significantly different from the corresponding average for the upper and lower legs (473 ±213 mL/min) (p = 0.1176). The blood lactate concentration associated with the upper leg muscles (5.9 ±2.3 mmoles/L) was significantly lower than the corresponding average for the upper and lower legs (6.8 ±2.3 mmoles/L) (p = 0.0049). The results indicate that electrical stimulation timing patterns that incorporate the lower leg muscles do increase the blood lactate concentrations. However, there was not enough evidence to reject the null hypothesis that stimulating the lower leg muscles affected the work accomplished or increased the rate of oxygen consumption. In conclusion, incorporating the lower leg muscles

  16. Activation Pattern of Lower Leg Muscles in Running on Asphalt, Gravel and Grass.

    PubMed

    Dolenec, Aleš; Štirn, Igor; Strojnik, Vojko

    2015-07-01

    Running is performed on different natural surfaces (outdoor) and artificial surfaces (indoor). Different surface characteristics cause modification of the lower leg muscle activation pattern to adopt ankle stiffness to these characteristics. So the purpose of our investigation was to study changes of lower leg muscles activation pattern in running on different natural running surfaces. Six male and two female runners participated. The participants ran at a freely chosen velocity in trials on asphalt while in trials on gravel, and grass surfaces they were attempting to reach similar velocities as in the trials on asphalt. Muscle activation of the peroneus brevis, tibialis anterior, soleus, and gastrocnemius medialis of the right leg was recorded. Running on asphalt increased average EMG amplitude of the m. tibialis anterior in the pre-activation phase and the m. gastrocnemius medialis in the entire contact phase compared to running on grass from 0.222 ± 0.113 V to 0.276 ± 0.136 V and from 0.214 ± 0.084 V to 0.238 ± 0.088 V, respectively. The average EMG of m. peroneus brevis in pre-activation phase increased from 0.156 ± 0.026 V to 0.184 ± 0.455 V in running on grass in comparison to running on gravel. Running on different surfaces is connected with different activation patterns of lower leg muscles. Running on asphalt requires stiff ankle joints, running on gravel requires greater stability in ankle joints, while running on grass is the least demanding on lower leg muscles.

  17. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking

    PubMed Central

    Markowitz, Jared; Herr, Hugh

    2016-01-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle. PMID:27175486

  18. Distribution of cadmium in leg muscle and liver of game birds from Serbia

    NASA Astrophysics Data System (ADS)

    Nikolić, D.; Đinović-Stojanović, J.; Stefanović, S.; Radičević, T.; Trbović, D.; Spirić, D.; Janković, S.

    2017-09-01

    The aim of this study was to present the distribution of cadmium (Cd) levels in leg muscle and liver of game birds. Samples (n=464) of: pheasants (n=182), mallards (n=25), Eurasian jay (n=7), partridges (n=5), woodcocks (n=8) and common quail (n=5) were collected during regular hunting seasons within the Serbian National Residue Monitoring Program from 2013 to 2016. Analysis of Cd was performed by ICP-MS. In all liver samples, Cd levels were above the limit of detection (LOD=0.001 mg/kg) while in 66.4% of muscle samples, Cd was detected. Statistical analysis showed significant differences between Cd levels in leg muscle and liver of woodcocks and others game birds. The highest mean Cd level was observed in muscle samples of woodcocks (0.042 mg/kg). The lowest mean Cd levels in liver were observed in common quails (0.130 mg/kg) and mallards (0.160 mg/kg) while the highest levels were measured in woodcocks (1.247 mg/kg) and pheasants (0.262 mg/kg). During four years of the Serbian National Residue Monitoring Program, leg muscle samples of woodcocks (n=3), liver samples of pheasants (n=23), woodcocks (n=6) and mallards (n=3) exceeded the maximum residue limit (MRL).

  19. Functional recovery following manipulation of muscles and sense organs in the stick insect leg.

    PubMed

    Bässler, Ulrich; Wolf, Harald; Stein, Wolfgang

    2007-11-01

    We studied functional recovery of leg posture and walking behaviour in the femur-tibia joint control system of stick insects. Leg extensions in resting animals and during walking are produced by different parts of a single extensor muscle. (a) Ablation of the muscle part responsible for fast movements prevented leg extension during the swing phase. Resting posture remained unaffected. Within a few post-operative days, extension movements recovered, provided that sensory feedback was available. Extension movements were now driven by the muscle part which in intact animals controls the resting posture only. (b) Selective ablation of this (slow) muscle part affected the resting posture, while walking was unaffected. The resting posture partly recovered during subsequent days. To test the range of functional recovery and underlying mechanisms, we additionally transected muscle motor innervation, or we inverted or ablated sensory feedback. We found that recovery was based on both muscular and neuronal mechanisms. The latter required appropriate sensory feedback for the process of recovery, but not for the maintenance of the recovered state. Our results thus indicate the existence of a sensory template that guides recovery. Recovery was limited to a behavioural range that occurs naturally in intact animals, though in different behavioural contexts.

  20. Rapid onset vasodilation with single muscle contractions in the leg: influence of age

    PubMed Central

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2015-01-01

    The influence of aging on contraction-induced rapid vasodilation has been well characterized in the forearm. We sought to examine the impact of aging on contraction-induced rapid vasodilation in the leg following single muscle contractions and determine whether potential age-related impairments were similar between limbs (leg vs. arm). Fourteen young (23 ± 1 years) and 16 older (66 ± 1 years) adults performed single leg knee extensions at 20%, 40%, and 60% of work rate maximum. Femoral artery diameter and blood velocity were measured using Doppler ultrasound. Limb vascular conductance (VC) was calculated using blood flow (mL·min−1) and mean arterial pressure (mmHg). Peak and total vasodilator responses in the leg (change [Δ] in VC from baseline) were blunted in older adults by 44–50% across exercise intensities (P < 0.05 for all). When normalized for muscle mass, age-related differences were still evident (P < 0.05). Comparing the rapid vasodilator responses between the arm and the leg of the same individuals at similar relative intensities (20% and 40%) reveals that aging influences peak and total vasodilation equally between the limbs (no significant age × limb interaction at either intensity, P = 0.28–0.80). Our data demonstrate that (1) older adults exhibit an attenuated rapid hyperemic and vasodilator response in the leg; and (2) the age-related reductions in rapid vasodilation are similar between the arm and the leg. The mechanisms contributing to the age-related differences in contraction-induced rapid vasodilation are perhaps similar to those seen with the forearm model, but have not been confirmed. PMID:26320213

  1. Motor-Neuron Pool Excitability of the Lower Leg Muscles After Acute Lateral Ankle Sprain

    PubMed Central

    Klykken, Lindsey W.; Pietrosimone, Brian G.; Kim, Kyung-Min; Ingersoll, Christopher D.; Hertel, Jay

    2011-01-01

    Context: Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. Objective: To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Design: Case-control study. Setting: Laboratory. Patients or Other Participants: Ten individuals with acute ankle sprains (6 females, 4 males; age = 19.2 ± 3.8 years, height = 169.4 ± 8.5 cm, mass = 66.3 ±11.6 kg) and 10 healthy individuals (6 females, 4 males; age = 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass = 66.3 ± 10.2 kg) participated. Intervention(s): The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. Main Outcome Measure(s): The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (Hmax) and maximal muscle response (Mmax) and was then normalized using the Hmax:Mmax ratio. Results: The soleus MNPE in the ankle-sprain group was higher in the injured limb (Hmax:Mmax = 0.63; 95% confidence interval [CI], 0.46, 0.80) than in the uninjured limb (Hmax:Mmax = 0.47; 95% CI, 0.08, 0.93) (t6 = 3.62, P = .01). In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (Hmax:Mmax = 0.06; 95% CI, 0.01, 0.10) than in the uninjured ankle (Hmax:Mmax = 0.22; 95% CI, 0.09, 0.35), but this finding was not different (t9 = −2.01, P = .07). No differences were detected between injured (0.22; 95% CI, 0.14, 0.29) and uninjured (0.25; 95% CI, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t9 = −0.739, P = .48). We found no side-to-side differences in

  2. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  3. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise.

    PubMed

    Gorostiaga, Esteban M; Navarro-Amézqueta, Ion; Calbet, Jose A L; Sánchez-Medina, Luis; Cusso, Roser; Guerrero, Mario; Granados, Cristina; González-Izal, Miriam; Ibáñez, Javier; Izquierdo, Mikel

    2014-10-01

    To examine whether blood lactate and ammonia concentrations can be used to estimate the functional state of the muscle contractile machinery with regard to muscle lactate and adenosine triphosphate (ATP) levels during leg press exercise. Thirteen men (age, 34 ± 5 years; 1 repetition maximum leg press strength 199 ± 33 kg) performed either 5 sets of 10 repetitions to failure (5×10RF), or 10 sets of 5 repetitions not to failure (10×5RNF) with the same initial load (10RM) and interset rests (2 minutes) on 2 separate sessions in random order. Capillary blood samples were obtained before and during exercise and recovery. Six subjects underwent vastus lateralis muscle biopsies at rest, before the first set and after the final exercise set. The 5×10RF resulted in a significant and marked decrease in power output (37%), muscle ATP content (24%), and high levels of muscle lactate (25.0 ± 8.1 mmol·kg wet weight), blood lactate (10.3 ± 2.6 mmol·L), and blood ammonia (91.6 ± 40.5 μmol·L). During 10×5RNF no or minimal changes were observed. Significant correlations were found between: (a) blood ammonia and muscle ATP (r = -0.75), (b) changes in peak power output and blood ammonia (r = -0.87) and blood lactate (r = -0.84), and (c) blood and muscle lactate (r = 0.90). Blood lactate and ammonia concentrations can be used as extracellular markers for muscle lactate and ATP contents, respectively. The decline in mechanical power output can be used to indirectly estimate blood ammonia and lactate during leg press exercise.

  4. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation.

    PubMed

    Dietz, V; Quintern, J; Berger, W; Schenck, E

    1985-01-01

    In order to investigate the neuronal mechanisms underlying the compensatory movements following stance disturbance, leg muscle e.m.g. responses and cerebral potentials evoked by a treadmill acceleration impulse were analysed. It was found that the displacement was followed by a cerebral potential of a latency of 40-45 ms and EMG responses in the calf muscles at a latency of 65-70 ms. The e.m.g. responses represented specific compensatory reactions to the mode of perturbation (with a gastrocnemius activation following positive acceleration but a tibialis ant. activation following negative acceleration). The cerebral potentials, however, showed a common pattern to both conditions. In addition, the leg muscle e.m.g. reactions were not altered by learning effects and by forewarning of displacement onset, while the amplitude of the cerebral potentials was significantly smaller in these conditions compared to those produced in response to randomly induced perturbations. It was therefore concluded that the leg muscle e.m.g. reactions are mediated by a polysynaptic spinal reflex pathway which depends on a supraspinal control. The cerebral potentials seem to represent afferent signals which can be supposed to be subjected to modification and processing by supraspinal motor centres, according to the actual requirements.

  5. Distribution of mercury in leg muscle and liver of game birds from Serbia

    NASA Astrophysics Data System (ADS)

    Janković, S.; Nikolić, D.; Stefanović, S.; Radičević, T.; Đinović-Stojanović, J.; Spirić, D.; Tanković, S.

    2017-09-01

    The purpose of this study was to determine the distribution of Hg levels in leg muscle and liver of game birds collected within the Serbian National residue monitoring program from 2013 to 2016. Hg levels in samples (n=464) of: pheasants (n=182), mallard (n=25), Eurasian jay (n=7), partridges (n=5) and woodcocks (n=8) were determined by ICPMS. The highest mean Hg levels were observed in leg muscle samples of woodcocks (0.071 mg/kg) and mallard (0.059 mg/kg). The lowest mean Hg level in liver was determined in partridges (0.008 mg/kg) while the highest was in pheasants (0.262 mg/kg) and mallard (0.161 mg/kg). Statistical analysis showed significantly differences between Hg levels in liver of woodcocks and mallard, as well as between them and livers of other analysed game birds. During the four years (2013-2016), 87.5% of leg muscle and 50% of woodcock livers had Hg levels that exceeded the MRL, while in mallard muscle and liver those percentages were 36% and 40%, respectively.

  6. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    PubMed Central

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Objective Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Methods Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Results Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. Conclusion This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training

  7. Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae).

    PubMed

    Burrows, Malcolm; Bräunig, Peter

    2010-04-15

    To understand the catapult mechanism that propels jumping in a planthopper insect, the innervation and action of key muscles were analyzed. The large trochanteral depressor muscle, M133b,c, is innervated by two motor neurons and by two dorsal unpaired median (DUM) neurons, all with axons in N3C. A smaller depressor muscle, M133a, is innervated by two neurons, one with a large-diameter cell body, a large, blind-ending dendrite, and a giant ovoid, axon measuring 50 microm by 30 microm in nerve N5A. The trochanteral levator muscles (M132) and (M131) are innervated by N4 and N3B, respectively. The actions of these muscles in a restrained jump were divisible into a three-phase pattern. First, both hind legs were moved into a cocked position by high-frequency bursts of spikes in the levator muscles lasting about 0.5 seconds. Second, and once both legs were cocked, M133b,c received a long continuous sequence of motor spikes, but the two levators spiked only sporadically. The spikes in the two motor neurons to M133b,c on one side were closely coupled to each other and to the spikes on the other side. If one hind leg was cocked then the spikes only occurred in motor neurons to that side. The final phase was the jump movement itself, which occurred when the depressor spikes ceased and which lasted 1 ms. Muscles 133b,c activated synchronously on both sides, are responsible for generating the power, and M133a and its giant neuron may play a role in triggering the release of a jump.

  8. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles

    PubMed Central

    Bradley, Nina S.; Ryu, Young U.; Yeseta, Marie C.

    2014-01-01

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  9. Aging affects spatial distribution of leg muscle oxygen saturation during ramp cycling exercise.

    PubMed

    Takagi, Shun; Kime, Ryotaro; Murase, Norio; Watanabe, Tsubasa; Osada, Takuya; Niwayama, Masatsugu; Katsumura, Toshihito

    2013-01-01

    We compared muscle oxygen saturation (SmO2) responses in several leg muscles and within a single muscle during ramp cycling exercise between elderly men (n = 8; age, 65 ± 3 years; ELD) and young men (n = 10; age, 23 ± 3 years; YNG). SmO2 was monitored at the distal site of the vastus lateralis (VLd), proximal site of the vastus lateralis (VLp), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and tibialis anterior (TA) by near-infrared spatial resolved spectroscopy. During submaximal exercise, significantly lower SmO2 at a given absolute work rate was observed in VLd, RF, BF, GL, and TA but not in VLp, VM, and GM in ELD than in YNG. In contrast, at all measurement sites, SmO2 at peak exercise was not significantly different between groups. These results indicate that the effects of aging on SmO2 responses are heterogeneous between leg muscles and also within a single muscle. The lower SmO2 in older men may have been caused by reduced muscle blood flow or altered blood flow distribution.

  10. Role of Repeat Muscle Compartment Pressure Measurements in Chronic Exertional Compartment Syndrome of the Lower Leg.

    PubMed

    van Zantvoort, Aniek P M; de Bruijn, Johan A; Winkes, Michiel B; Hoogeveen, Adwin R; Teijink, Joep A W; Scheltinga, Marc R

    2017-06-01

    The diagnostic gold standard for diagnosing chronic exertional compartment syndrome (CECS) is a dynamic intracompartmental pressure (ICP) measurement of the muscle. The potential role of a repeat ICP (re-ICP) measurement in patients with persistent lower leg symptoms after surgical decompression or with ongoing symptoms after an earlier normal ICP is unknown. To study whether re-ICP measurements in patients with persistent CECS-like symptoms of the lower leg may contribute to the diagnosis of CECS after both surgical decompression and a previously normal ICP measurement. Case series; Level of evidence, 4. Charts of patients who underwent re-ICP measurement of lower leg compartments (anterior [ant], deep posterior [dp], and/or lateral [lat] compartments) between 2001 and 2013 were retrospectively studied. CECS was diagnosed on the basis of generally accepted cutoff pressures for newly onset CECS (Pedowitz criteria: ICP at rest ≥15 mmHg, ≥30 mmHg after 1 minute, or ≥20 mmHg 5 minutes after a provocative test). Factors predicting recurrent CECS after surgery or after a previously normal ICP measurement were analyzed. A total of 1714 ICP measurements were taken in 1513 patients with suspected CECS over a 13-year observation period. In all, 201 (12%) tests were re-ICP measurements for persistent lower leg symptoms. Based on the proposed ICP cutoff values, CECS recurrence was diagnosed in 16 of 62 previously operated compartments (recurrence rate, 26%; 53 patients [64% female]; median age, 24 years; age range, 15-78 years). Recurrence rates were not different among the 3 lower leg CECS compartments (ant-CECS, 17%; dp-CECS, 33%; lat-CECS, 30%; χ(2) = 1.928, P = .381). Sex (χ(2) = 0.058, P = .810), age (U = 378, z = 1.840, P = .066), bilaterality (χ(2) = 0.019, P = .889), and prefasciotomy ICP did not predict recurrence. Re-ICP measurements evaluating 20 compartments with previously normal ICP measurements (15 patients [53% female]; mean age, 31 ± 10 years

  11. Role of Repeat Muscle Compartment Pressure Measurements in Chronic Exertional Compartment Syndrome of the Lower Leg

    PubMed Central

    van Zantvoort, Aniek P. M.; de Bruijn, Johan A.; Winkes, Michiel B.; Hoogeveen, Adwin R.; Teijink, Joep A. W.; Scheltinga, Marc R.

    2017-01-01

    Background: The diagnostic gold standard for diagnosing chronic exertional compartment syndrome (CECS) is a dynamic intracompartmental pressure (ICP) measurement of the muscle. The potential role of a repeat ICP (re-ICP) measurement in patients with persistent lower leg symptoms after surgical decompression or with ongoing symptoms after an earlier normal ICP is unknown. Purpose: To study whether re-ICP measurements in patients with persistent CECS-like symptoms of the lower leg may contribute to the diagnosis of CECS after both surgical decompression and a previously normal ICP measurement. Study Design: Case series; Level of evidence, 4. Methods: Charts of patients who underwent re-ICP measurement of lower leg compartments (anterior [ant], deep posterior [dp], and/or lateral [lat] compartments) between 2001 and 2013 were retrospectively studied. CECS was diagnosed on the basis of generally accepted cutoff pressures for newly onset CECS (Pedowitz criteria: ICP at rest ≥15 mmHg, ≥30 mmHg after 1 minute, or ≥20 mmHg 5 minutes after a provocative test). Factors predicting recurrent CECS after surgery or after a previously normal ICP measurement were analyzed. Results: A total of 1714 ICP measurements were taken in 1513 patients with suspected CECS over a 13-year observation period. In all, 201 (12%) tests were re-ICP measurements for persistent lower leg symptoms. Based on the proposed ICP cutoff values, CECS recurrence was diagnosed in 16 of 62 previously operated compartments (recurrence rate, 26%; 53 patients [64% female]; median age, 24 years; age range, 15-78 years). Recurrence rates were not different among the 3 lower leg CECS compartments (ant-CECS, 17%; dp-CECS, 33%; lat-CECS, 30%; χ2 = 1.928, P = .381). Sex (χ2 = 0.058, P = .810), age (U = 378, z = 1.840, P = .066), bilaterality (χ2 = 0.019, P = .889), and prefasciotomy ICP did not predict recurrence. Re-ICP measurements evaluating 20 compartments with previously normal ICP measurements (15

  12. Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl

    PubMed Central

    Daley, Monica A.; Biewener, Andrew A.

    2011-01-01

    Here, we used an obstacle treadmill experiment to investigate the neuromuscular control of locomotion in uneven terrain. We measured in vivo function of two distal muscles of the guinea fowl, lateral gastrocnemius (LG) and digital flexor-IV (DF), during level running, and two uneven terrains, with 5 and 7 cm obstacles. Uneven terrain required one step onto an obstacle every four to five strides. We compared both perturbed and unperturbed strides in uneven terrain to level terrain. When the bird stepped onto an obstacle, the leg became crouched, both muscles acted at longer lengths and produced greater work, and body height increased. Muscle activation increased on obstacle strides in the LG, but not the DF, suggesting a greater reflex contribution to LG. In unperturbed strides in uneven terrain, swing pre-activation of DF increased by 5 per cent compared with level terrain, suggesting feed-forward tuning of leg impedance. Across conditions, the neuromechanical factors in work output differed between the two muscles, probably due to differences in muscle–tendon architecture. LG work depended primarily on fascicle length, whereas DF work depended on both length and velocity during loading. These distal muscles appear to play a critical role in stability by rapidly sensing and responding to altered leg–ground interaction. PMID:21502128

  13. Enhanced muscle pump during mild dynamic leg exercise inhibits sympathetic vasomotor outflow

    PubMed Central

    Katayama, Keisho; Ishida, Koji; Saito, Mitsuru; Koike, Teruhiko; Hirasawa, Ai; Ogoh, Shigehiko

    2014-01-01

    Abstract Muscle sympathetic nerve activity (MSNA) is not increased during leg cycling at light and mild intensities, despite activation of central command and the exercise pressor reflex. We determined whether increasing central blood volume and loading the cardiopulmonary baroreceptors modulate sympathetic vasomotor outflow during leg cycling. To this end, we changed the pedaling frequency to enhance skeletal muscle pump. Subjects performed two leg cycle exercises at differential pedal rates of 60 and 80 rpm (60EX and 80EX trials) for two conditions (with and without MSNA measurement). In each trial, subjects completed leg cycling with a differential workload to maintain constant oxygen consumption (VO2). MSNA was recorded via microneurography at the right median nerve of the elbow. Without MSNA measurement, thoracic impedance, stroke volume (SV), and cardiac output (CO) were measured non‐invasively using impedance cardiography. Heart rate and VO2 during exercise did not differ between the 60EX and 80EX trials. Changes in thoracic impedance, SV, and CO during the 80EX trial were greater than during the 60EX trial. MSNA during the 60EX trial was unchanged compared with that at rest (25.8 ± 3.1 [rest] to 28.3 ± 3.4 [exercise] bursts/min), whereas a significant decrease in MSNA was observed during the 80EX trial (25.8 ± 2.8 [rest] to 19.7 ± 2.0 [exercise] bursts/min). These results suggest that a muscle pump‐induced increase in central blood volume, and thereby loading of cardiopulmonary baroreceptors, could inhibit sympathetic vasomotor outflow during mild dynamic leg exercise, despite activation of central command and the exercise pressor reflex. PMID:25347854

  14. Transcriptomic profile of leg muscle during early growth in chicken.

    PubMed

    Xue, Qian; Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu

    2017-01-01

    The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix-receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development.

  15. Transcriptomic profile of leg muscle during early growth in chicken

    PubMed Central

    Zhang, Genxi; Li, Tingting; Ling, Jiaojiao; Zhang, Xiangqian; Wang, Jinyu

    2017-01-01

    The early growth pattern, especially the age of peak growth, of broilers affects the time to market and slaughter weight, which in turn affect the profitability of the poultry industry. However, the underlying mechanisms regulating chicken growth and development have rarely been studied. This study aimed to identify candidate genes involved in chicken growth and investigated the potential regulatory mechanisms of early growth in chicken. RNA sequencing was applied to compare the transcriptomes of chicken muscle tissues at three developmental stages during early growth. In total, 978 differentially expressed genes (DEGs) (fold change ≥ 2; false discovery rate < 0.05) were detected by pairwise comparison. Functional analysis showed that the DEGs are mainly involved in the processes of cell growth, muscle development, and cellular activities (such as junction, migration, assembly, differentiation, and proliferation). Many of the DEGs are well known to be related to chicken growth, such as MYOD1, GH, IGF2BP2, IGFBP3, SMYD1, CEBPB, FGF2, and IGFBP5. KEGG pathway analysis identified that the DEGs were significantly enriched in five pathways (P < 0.1) related to growth and development: extracellular matrix–receptor interaction, focal adhesion, tight junction, insulin signaling pathway, and regulation of the actin cytoskeleton. A total of 42 DEGs assigned to these pathways are potential candidate genes inducing the difference in growth among the three developmental stages, such as MYH10, FGF2, FGF16, FN1, CFL2, MAPK9, IRS1, PHKA1, PHKB, and PHKG1. Thus, our study identified a series of genes and several pathways that may participate in the regulation of early growth in chicken. These results should serve as an important resource revealing the molecular basis of chicken growth and development. PMID:28291821

  16. Capillarity and fibre types in locomotory muscles of wild yellow-legged gulls (Larus cachinnans).

    PubMed

    Torrella, J R; Fouces, V; Palomeque, J; Viscor, G

    1998-01-01

    This study analyzes the capillarity and fibre-type distribution of six locomotory muscles of gulls. The morphological basis and the oxygen supply characteristics of the skeletal muscle of a species with a marked pattern of gliding flight are established, thus contributing to a better understanding of the physiology of a kind of flight with low energetic requirements. The four wing muscles studied (scapulotriceps, pectoralis, scapulohumeralis, and extensor metacarpi) exhibited higher percentages of fast oxidative glycolytic fibres (>70%) and lower percentages of slow oxidative fibres (<16%) than the muscles involved in nonflight locomotion (gastrocnemius and iliotibialis). Capillary densities ranged from 816 to 1,233 capillaries mm(-2), having the highest value in the pectoralis. In this muscle, the fast oxidative glycolytic fibres had moderate staining for succinate dehydrogenase and relatively large fibre sizes, as deduced from the low fibre densities (589-665 fibres mm(-2)). All these findings are seen as an adaptive response for gliding, when the wing is held outstretched by isometric contractions. The leg muscles studied included a considerable population of slow oxidative fibres (>14% in many regions), which suggests that they are adapted to postural activities. Regional variations in the relative distributions of fibre types in muscle gastrocnemius may reflect different functional demands placed on this muscle during terrestrial and aquatic locomotion. The predominance of oxidative fibres and capillary densities under 1,000 capillaries mm(-2) in leg muscles is probably a consequence of an adaptation for slow swimming and maintenance of the posture on land rather than for other locomotory capabilities, such as endurance or sprint activities.

  17. Interactions of age and leg muscle fatigue on unobstructed walking and obstacle crossing.

    PubMed

    Barbieri, Fabio Augusto; dos Santos, Paulo Cezar Rocha; Simieli, Lucas; Orcioli-Silva, Diego; van Dieën, Jaap H; Gobbi, Lilian Teresa Bucken

    2014-03-01

    Older adults commonly report muscle fatigue, which may be associated with reduced walking ability. Elderly may have insufficient awareness of the balance threat caused by muscle fatigue. The aim of this study was to analyze the interaction effects of aging and leg muscle fatigue on gait parameters in walking and obstacle crossing. One hundred and twenty men, who were divided in six groups according to their age (20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, above 70 years), participated in this study. Participants performed three trials of unobstructed level ground walking and obstacle crossing during walking before and after quadriceps muscle fatigue. To induce fatigue, participants performed a repeated sit-to-stand task from a chair with arms across the chest to a pre-determined cadence (30 cycles/min) using a metronome. Spatial-temporal gait parameters (stride length, duration, and speed, step width, and trailing and leading heel-clearance) were analyzed, and compared by two-way ANOVA (group and fatigue). The results confirmed our hypothesis, showing age-related effects of leg muscles fatigue in both gait conditions. From 40 years old, participants modulated spatial-temporal and vertical impulses in both tasks more in response to fatigue than younger participants, apparently to improve balance and safety. Leg muscle fatigue caused age-dependent changes in both unobstructed level ground walking and obstacle crossing during walking, which appeared to reflect an attempt to maintain balance and safety, probably to counteract adverse fatigue effects.

  18. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity.

    PubMed

    Boushel, R; Gnaiger, E; Larsen, F J; Helge, J W; González-Alonso, J; Ara, I; Munch-Andersen, T; van Hall, G; Søndergaard, H; Saltin, B; Calbet, J A L

    2015-12-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min(-1) pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min(-1) pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0.2 L.min(-1) pre vs 3.8 ± 0.4 post), O2 extraction (82 ± 1% pre vs 83 ± 1 post), and muscle capillaries per mm(2) (576 ± 17 pre vs 612 ± 28 post) were also unchanged; however, leg muscle mitochondrial OXPHOS capacity was reduced (90 ± 3 pmol.sec(-1) .mg(-1) pre vs 70 ± 2 post, P < 0.05) as was citrate synthase activity (40 ± 3 μmol.min(-1) .g(-1) pre vs 34 ± 3 vs P < 0.05). These findings indicate that peak muscle VO2 can be sustained with a substantial reduction in mitochondrial OXPHOS capacity. This is achieved at a similar O2 delivery and a higher relative ADP-stimulated mitochondrial respiration at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.

  19. Leg muscle power in 12-year-old black and white Tunisian football players.

    PubMed

    Ben Ayed, Karim; Latiri, Imed; Dore, Eric; Tabka, Zouhair

    2011-04-01

    This study examined leg muscle power of young male Tunisian black and white football players and extended the analysis to determine whether there is a relationship between cycling peak power output (PPO) and some field tests. A total of 113 children (white group (WG) = n = 56; black group (BG) = n = 57) participated in this investigation. Anthropometric data included age, body mass (BM), height, leg length (LL), body mass index (BMI), and leg muscle volume (LMV). Cycling PPO was measured including a force-velocity test. Peak power output (PPO; W and W/kg), Fopt (optimal braking force), and Vopt (optimal velocity) were significantly higher in the WG compared with the BG (p < 0.05). However, jump and sprint performances of the BG were significantly higher than the WG (p < 0.05). Multiple stepwise regression with anthropometric variables and the extrapolated values of the force-velocity test as explanatory factors showed that 33% of the variance of PPO of BG was explained by qualitative factors that may be related to cycling skill, muscle composition, and socioeconomic and training status.

  20. The effect of gender on force, muscle activity, and frontal plane knee alignment during maximum eccentric leg-press exercise.

    PubMed

    Liebensteiner, Michael C; Platzer, Hans-Peter; Burtscher, Martin; Hanser, Friedrich; Raschner, Christian

    2012-03-01

    To investigate for gender differences during eccentric leg-press exercise. Tears of the anterior cruciate ligament (ACL) are considered to be related to eccentric tasks, altered neuromuscular control (e.g., reduced co-contraction of hamstrings), and increased knee abduction (valgus alignment). Based on these observations and the fact that ACL tears are more common in women, it was hypothesized that men and women differ significantly with regard to key parameters of force, knee stabilization, and muscle activity when exposed to maximum eccentric leg extension. Thirteen women and thirteen men were matched for age and physical activity. They performed maximum isokinetic eccentric leg-pressing against footplates of varied stability. The latter was done because earlier studies had shown that perturbational test conditions might be relevant in respect of ACL injuries. Key parameters of force, frontal plane knee stabilization, and muscle recruitment of significant muscles crossing the knee were recorded. The 'force stabilization deficit' (difference between maximum forces under normal and perturbed leg-pressing) did not differ significantly between genders. Likewise, parameters of muscle activity and frontal plane leg stabilization revealed no significant differences between men and women. This study is novel, in that gender differences in parameters of force, muscle activity, and leg kinematic were investigated during functional conditions of eccentric leg-pressing. No gender differences were observed in the measured parameters. However, the conclusion should be viewed with caution because the findings concurred with, but also contrasted, previous research in this field. Diagnostic study, Level III.

  1. Ultrasound characteristics of the deep abdominal muscles during the active straight leg raise test.

    PubMed

    Teyhen, Deydre S; Williamson, Jared N; Carlson, Nathan H; Suttles, Sean T; O'Laughlin, Shaun J; Whittaker, Jackie L; Goffar, Stephen L; Childs, John D

    2009-05-01

    To determine whether changes in the transversus abdominis (TrA) and internal oblique (IO) muscles, as seen on ultrasound imaging, during the active straight leg raise (ASLR) test differ between subjects with and without unilateral lumbopelvic pain. Cross-sectional, case-control study. Clinical laboratory. Subjects (n=15) with unilateral symptoms in the lumbopelvic region and age-matched and sex-matched control subjects (n=15). Bilateral measurements of the deep abdominal muscles (TrA and IO) were obtained simultaneously using ultrasound imaging to compare the percent change in muscle thickness from rest with (1) immediately on raising, (2) after a 10-second hold, and (3) within 5 seconds after returning the lower extremity to the plinth. Percent change in muscle thickness of both muscles from rest to the other 3 time intervals during the ASLR test. The 3-way group x side measured x time and 2-way side measured x time interactions were not significant for either the TrA (P> or =.34) or the IO (P> or =.14) muscles. The 2-way interaction group x time was significant for both the TrA (P=.003) and the IO (P=.02) muscles. On lifting the lower extremity, the control group demonstrated a 23.7% and 11.2% increase in TrA and IO muscle thickness, respectively, while those with lumbopelvic pain demonstrated a 6.4% and 5.7% increase in TrA and IO muscle thickness, respectively. Although subjects with unilateral lumbopelvic pain demonstrated a smaller increase in muscle thickness, during the ASLR test there appears to be a symmetrical response in both of the deep abdominal muscles regardless of which lower extremity is lifted during the ASLR test or the unilateral nature of the symptoms. This study attests to the potential construct validity of using the ASLR test to assess different motor control strategies of the TrA and IO muscles in subjects with unilateral lumbopelvic pain.

  2. The vestibular system does not modulate fusimotor drive to muscle spindles in contracting leg muscles of seated subjects.

    PubMed

    Bent, L R; Sander, M; Bolton, P S; Macefield, V G

    2013-06-01

    We previously showed that sinusoidal galvanic vestibular stimulation (GVS) does not modulate the firing of spontaneously active muscle spindles in relaxed human leg muscles. However, given that there is little, if any, fusimotor drive to relaxed human muscles, we tested the hypothesis that vestibular modulation of muscle spindles becomes apparent during volitional contractions at levels that engage the fusimotor system. Unitary recordings were made from 28 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of seated awake human subjects. Twenty-one of the spindle afferents were spontaneously active at rest and each increased its firing rate during a weak static contraction; seven were silent at rest and were recruited during the contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of "rocking in a boat" or "swinging in a hammock" but no entrainment of EMG. Despite these robust vestibular illusions, none of the fusimotor-driven muscle spindles exhibited phase-locked modulation of firing during sinusoidal GVS. We conclude that this dynamic vestibular input was not sufficient to modulate the firing of fusimotor neurones recruited during a voluntary steady-state contraction, arguing against a significant role of the vestibular system in adjusting the sensitivity of muscle spindles via fusimotor neurones.

  3. Anatomy of the hind legs and actions of their muscles during jumping in leafhopper insects.

    PubMed

    Burrows, Malcolm

    2007-10-01

    The rapid and simultaneous depression of the trochantera about the coxae of both hind legs of leafhoppers are the key joint movements powering a jump. The present study analyses the structure of these joints and the actions of the muscles that move them. The hind coxae are huge and are linked to each other at the midline by a protrusion from one coxa that inserts in a socket of the other and acts like a press-stud (popper) fastener. This asymmetry is not reflected in any left- or right-handed preference either within one species or between species. The movements of the joints in a jump are monitored by a number of possible proprioceptors that should be activated when a hind leg is fully levated in preparation for a jump: a hair row and two hair plates on the coxa, a hair plate on a trochanteral pivot with a coxa, and femoral spines at the femoro-tibial joint. The depressor and levator muscles that move the trochanter are of similar size and together occupy the greater part of the metathorax. Their lever arms are similar when the leg is fully levated, but the lever arm of the depressor increases with initial depression of the coxo-trochanteral joint while that of the levator declines. A jump is preceded by activity in the trochanteral depressor and levator muscles, which results in a forward movement of the coxa and metathorax with the trochanter fully levated. This period of co-contraction could result in storage of energy in skeletal structures in the thorax. Just before the rapid depression of the trochanter in the jump movement the frequency of depressor spikes increases while that in the levator declines, releasing any force stored by the preceding muscle contractions. These bursts of depressor spikes occur at the same time in the left and right muscles but none of the individual motor spikes appeared to be synchronous on the two sides.

  4. Diffusional kurtosis MRI of the lower leg: changes caused by passive muscle elongation and shortening.

    PubMed

    Filli, Lukas; Kenkel, David; Wurnig, Moritz C; Boss, Andreas

    2016-06-01

    Diffusional kurtosis MRI (DKI) quantifies the deviation of water diffusion from a Gaussian distribution. We investigated the influence of passive elongation and shortening of the lower leg muscles on the DKI parameters D (diffusion coefficient) and K (kurtosis). After approval by the local ethics committee, eight healthy volunteers (age, 29.1 ± 2.9 years) underwent MRI of the lower leg at 3 T. Diffusion-weighted images were acquired with 10 different b values at three ankle positions (passive dorsiflexion 10°, neutral position 0°, passive plantar flexion 40°). Parametrical maps of D and K were obtained by voxel-wise fitting of the signal intensities using a non-linear Levenberg-Marquardt algorithm. D and K were measured in the tibialis anterior, medial and lateral gastrocnemius, and soleus muscles. In the neutral position, D and K values were in the range between 1.66-1.79 × 10(-3) mm(2) /s and 0.21-0.39, respectively. D and K increased with passive shortening, and decreased with passive elongation, which could also be illustrated on the parametrical maps. In dorsiflexion, D (p < 0.01) and K (p = 0.036) were higher in the tibialis anterior than in the medial gastrocnemius. In plantar flexion, the opposite was found for K (p = 0.035). DKI parameters in the lower leg muscles are significantly influenced by the ankle joint position, indicating that the diffusion of water molecules in skeletal muscle deviates from a Gaussian distribution depending on muscle tonus. Copyright © 2016 John Wiley & Sons, Ltd.

  5. The effects of passive leg press training on jumping performance, speed, and muscle power.

    PubMed

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p < 0.05). Additionally, their change rate abilities were substantially superior to those of the traditional resistance training (p < 0.05). The low-frequency PLP training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p < 0.05). However, traditional resistance training only increased participants' 30-m sprint performance and peak power (p < 0.05). The findings suggest that jump performance, speed, and muscle power significantly improved after 10 weeks of PLP training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to

  6. Mechanical Impedance of the Non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    PubMed Central

    Ficanha, Evandro Maicon; Ribeiro, Guilherme Aramizo; Rastgaar, Mohammad

    2015-01-01

    This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External–Internal direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc.) capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0–30 Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the stiffness of the lower leg (the impedance magnitude averaged in the range of 0–1 Hz) was determined as 4.9 ± 0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8 ± 0.81 Nm/rad. An analysis of variance shows that the estimated values for the stiffness from the two experiments are not statistically different. PMID:26697424

  7. Multi-atlas-based fully automatic segmentation of individual muscles in rat leg.

    PubMed

    Sdika, Michael; Tonson, Anne; Le Fur, Yann; Cozzone, Patrick J; Bendahan, David

    2016-04-01

    To quantify individual muscle volume in rat leg MR images using a fully automatic multi-atlas-based segmentation method. We optimized a multi-atlas-based segmentation method to take into account the voxel anisotropy of numbers of MRI acquisition protocols. We mainly tested an image upsampling process along Z and a constraint on the nonlinear deformation in the XY plane. We also evaluated a weighted vote procedure and an original implementation of an artificial atlas addition. Using this approach, we measured gastrocnemius and plantaris muscle volumes and compared the results with manual segmentation. The method reliability for volume quantification was evaluated using the relative overlap index. The most accurate segmentation was obtained using a nonlinear registration constrained in the XY plane by zeroing the Z component of the displacement and a weighted vote procedure for both muscles regardless of the number of atlases. The performance of the automatic segmentation and the corresponding volume quantification outperformed the interoperator variability using a minimum of three original atlases. We demonstrated the reliability of a multi-atlas segmentation approach for the automatic segmentation and volume quantification of individual muscles in rat leg and found that constraining the registration in plane significantly improved the results.

  8. Sex difference in strength and size ratios between reciprocal muscle groups in the lower leg.

    PubMed

    Akagi, R; Tohdoh, Y; Takahashi, H

    2013-05-01

    This study compared strength and size of reciprocal muscle groups in the lower leg between sexes. 20 young men and 14 young women volunteered as subjects. Joint torques developed during isometric maximal voluntary plantar flexion (TQPF) and dorsiflexion (TQDF) were measured using a dynamometer. Muscle volumes of plantar flexors (MVPF) and dorsiflexors (MVDF) were determined by magnetic resonance imaging. In each of the muscle groups, joint torque was significantly correlated with muscle volume in young men and women (r=0.610-0.848) and the y-intercept of the regression line between them was not significantly different from zero. Based on these observations, the dependencies of muscle strength ratio on muscle size ratio between the plantar flexors and dorsiflexors were investigated using joint torque and muscle volume. The correlations between the MVPF per MVDF and the TQPF per TQDF were significant both in young men (r=0.608) and women (r=0.773), suggesting that strength ratio is strongly affected by size ratio between the plantar flexors and dorsiflexors in young men and women.

  9. Selective bilateral activation of leg muscles after cutaneous nerve stimulation during backward walking

    PubMed Central

    Massaad, Firas; Jansen, Karen; Bruijn, Sjoerd M.; Duysens, Jacques

    2012-01-01

    During human locomotion, cutaneous reflexes have been suggested to function to preserve balance. Specifically, cutaneous reflexes in the contralateral leg's muscles (with respect to the stimulus) were suggested to play an important role in maintaining stability during locomotor tasks where stability is threatened. We used backward walking (BW) as a paradigm to induce unstable gait and analyzed the cutaneous reflex activity in both ipsilateral and contralateral lower limb muscles after stimulation of the sural nerve at different phases of the gait cycle. In BW, the tibialis anterior (TA) reflex activity in the contralateral leg was markedly higher than TA background EMG activity during its stance phase. In addition, in BW a substantial reflex suppression was observed in the ipsilateral biceps femoris during the stance-swing transition in some participants, while for medial gastrocnemius the reflex activity was equal to background activity in both legs. To test whether the pronounced crossed responses in TA could be related to instability, the responses were correlated with measures of stability (short-term maximum Lyapunov exponents and step width). These measures were higher for BW compared with forward walking, indicating that BW is less stable. However, there was no significant correlation between these measures and the amplitude of the crossed TA responses in BW. It is therefore proposed that these crossed responses are related to an attempt to briefly slow down (TA decelerates the center of mass in the single-stance period) in the light of unexpected perturbations, such as provided by the sural nerve stimulation. PMID:22773779

  10. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches

    PubMed Central

    Welch, Kenneth C.

    2014-01-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25–60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. PMID:24671242

  11. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    PubMed

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  12. Correlation between vestibular sensitization and leg muscle relaxation under weightlessness simulated by water immersion.

    PubMed

    Mitarai, G; Mano, T; Yamazaki, Y

    1981-01-01

    The experiments were designed to determine the contribution of the leg muscle relaxation to the sensitization of the vestibular function under weightlessness, The neuromuscular unit (NMU) discharges were continuously recorded with microelectrodes from the anti-gravitational soleus muscle and its antagonist, the tibialis anterior, of a man standing first upright on the level floor of a dry water tank, and then gradually being immersed in water till it reached his neck; while he was buoyed with an airtube placed under his armpit. In each of the successive states, the caloric nystagmus was evoked, analyzed and compared with the NMU discharge as well as with subjective symptoms associated with the nystagmus. The results indicate that the nystagmogenic activity had a significant correlation with the appearance of the active NMU in the soleus, and they also suggest that the reduction of ascending signals from the antigravity muscles might be one of the causes of atypical vestibular responses occuring in weightlessness.

  13. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.

  14. Effect of caffeine on leg-muscle pain during intense cycling exercise: possible role of anxiety sensitivity.

    PubMed

    Gliottoni, Rachael C; Motl, Robert W

    2008-04-01

    This experiment examined the effect of a moderate dose of caffeine on perceptions of leg-muscle pain during a bout of high-intensity cycling exercise and the role of anxiety sensitivity in the hypoalgesic effect of caffeine on muscle pain during exercise. Sixteen college-age women ingested caffeine (5 mg/kg body weight) or a placebo and 1 hr later completed 30 min of cycling on an ergometer at 80% of peak aerobic capacity. The conditions were completed in a counterbalanced order, and perceptions of leg-muscle pain were recorded during the bouts of exercise. Caffeine resulted in a large reduction in leg-muscle pain-intensity ratings compared with placebo (d = -0.95), and the reduction in leg-muscle pain-intensity ratings was larger in those with lower anxiety-sensitivity scores than those with higher anxiety-sensitivity scores (d = -1.28 based on a difference in difference scores). The results support that caffeine ingestion has a large effect on reducing leg-muscle pain during high-intensity exercise, and the effect is moderated by anxiety sensitivity.

  15. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle

    PubMed Central

    Roseguini, Bruno T.; Mehmet Soylu, S.; Whyte, Jeffrey J.; Yang, H. T.; Newcomer, Sean

    2010-01-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (∼37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (∼30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1α mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min). PMID:20348224

  16. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance

    PubMed Central

    Lepers, Romuald; Marcora, Samuele M.

    2016-01-01

    We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion. PMID:27706196

  17. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance.

    PubMed

    Pageaux, Benjamin; Lepers, Romuald; Marcora, Samuele M

    2016-01-01

    We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.

  18. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans.

    PubMed

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros; Vogiatzis, Ioannis

    2010-08-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to approximately 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow.

  19. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans

    PubMed Central

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros

    2010-01-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965

  20. Range of motion and leg rotation affect EMG activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-06-30

    The leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed eight LE REP at their 8-repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP x ROM interaction was detected (p<0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, 8 (p<0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p<0.001). For vastus lateralis (VL), EMG increased across REP (p<0.001) with NEU and TO EMG increasing linearly throughout ROM, and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  1. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    PubMed

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.

    PubMed

    Clark, Brian C; Manini, Todd M; Ordway, Nathaniel R; Ploutz-Snyder, Lori L

    2004-09-01

    To evaluate the muscle activation patterns at varying levels of weight-bearing forces during assisted walking with an axillary crutch and a recently designed device that allows weight transfer through the pelvic girdle (ED Walker). Descriptive, repeated measures. University-based research laboratory. Twelve healthy volunteers (age, 39.6+/-13.6 y). Not applicable. Electromyographic activity was recorded from the anterior tibialis, soleus, biceps femoris, and vastus lateralis muscles on a test leg during assisted axillary crutch and ED Walker ambulation. Force platform readings measured weight-bearing load (non, light, heavy). These values were normalized to normal walking gait. In the vastus lateralis and soleus muscles, both devices allowed for approximately 50% and 65% reductions in electromyographic activity during the non-weight-bearing condition. During crutch ambulation, electromyographic activity of the soleus was significantly reduced compared with that required for normal walking at all levels of weight-bearing load. In the vastus lateralis for the weight-bearing conditions, the ED Walker required significantly higher electromyographic activity than crutch ambulation (light: 105.0%+/-12.3% vs 72.7%+/-10.1%; heavy: 144.8%+/-23.5% vs 100.0%+/-13.5%). Both devices required similar peak vertical ground reaction forces during the heavy weight-bearing conditions (crutch: 75%+/-1.6%; ED Walker: 73%+/-1.8%), whereas axillary crutch gait produced less force than the ED Walker in the light condition (32%+/-2.0% vs 48%+/-1.6%). During walking with assistive devices, muscle activation patterns varied with weight-bearing load. The leg extensor muscles appeared to incur a greater reduction in muscle activity when compared with their flexor counterparts. Additionally, the ED Walker and axillary crutch differed with respect to their muscle activity levels and weight-bearing characteristics. Clinically, knowledge of these muscle activity and force characteristics may aid in

  3. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players.

    PubMed

    Chelly, Mohamed Souhaiel; Chérif, Najet; Amar, Mohamed Ben; Hermassi, Souhail; Fathloun, Mourad; Bouhlel, Ezdine; Tabka, Zouhair; Shephard, Roy J

    2010-01-01

    Performance over very short distances (1-5 m) is important in soccer. We investigated this in 23 male regional-level soccer players aged 17.2 +/- 0.7 years, filming body markers to determine the average velocity and acceleration over the first step (V(S) and A(S)) and the first 5 m (V(5), A(5)). Data were related to scores on a force-velocity test, squat jump (SJ), countermovement jump (CMJ), and 1 maximal repetition (1 RM) half back squat. Leg and thigh muscle volumes were also assessed anthropometrically. V(5) was positively correlated with leg and thigh muscle volumes (r = 0.61, p < 0.05; r = 0.43, p < 0.05, respectively), SJ power (absolute and relative to body mass, r = 0.45, p < 0.05; r = 0.43, p < 0.05, respectively), absolute force-velocity leg power (r = 0.49, p < 0.05), and 1 RM half back squat (r = 0.66, p < 0.001). The use of dimensional exponents did not change coefficients materially. V(S) was also correlated with leg muscle volume and 1 RM back half squat (r = 0.56, p < 0.01; r = 0.58, p < 0.01, respectively) and more weakly with force-velocity leg power and SJ force (r = 0.49, p < 0.05; r = 0.46, p < 0.5, respectively). However, the CMJ was unrelated to velocity or acceleration. Sprinting ability is correlated with measures of power and force such as the force-velocity test, SJ, and 1 RM half back squat; such measures thus offer useful guidance to soccer coaches who wish to improve the short-distance velocity of their players.

  4. Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Herr, M. D.; Sinoway, L. I.

    2000-01-01

    We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

  5. Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Herr, M. D.; Sinoway, L. I.

    2000-01-01

    We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

  6. The patellar reflex: does activity of quadriceps femoris muscles reflect leg movement?

    PubMed

    Dafkin, Chloe; Green, Andrew; Kerr, Samantha; McKinon, Warrick

    2012-07-01

    The assessment of spinal reflexes has traditionally been performed by clinicians with minimal need for recording equipment, where doctors rely on their training and may use established subjective reflex rating scales. With advances in technology, it is now possible to assess reflexes objectively. This study compared two objective methods of assessing patellar reflex magnitude, duration, and latency, namely electromyography (EMG) of the quadriceps muscles and kinematic assessment of the leg movement around the knee joint. Reflexes of 24 healthy participants were assessed and seven variables were found to describe each reflex. These were the change in knee angle, the velocity of the reflex, the time to maximum knee angle, the biomechanical movement latency, the EMG maximum amplitude, the negative peak duration, and the EMG latency. Spearman's rank correlation tests were run in order to compare all of the variables. The results showed that there were positive correlations between EMG maximum amplitude and the change in knee angle (R(2) = 0.75; P < 0.0001) as well as the EMG maximum amplitude and the velocity of the reflex (R(2) = 0.30; P = 0.0058). There was also a negative correlation between EMG maximum amplitude and the biomechanical movement latency (R(2) = 0.35; P = 0.0024). The results show that there is a relationship between muscle activity and the actual visual movement of the leg assessed using kinematics. This relationship is closest between kinematic measurements and EMG measures of reflex amplitude.

  7. Leg muscle activation during gait in Parkinson's disease: influence of body unloading.

    PubMed

    Dietz, V; Leenders, K L; Colombo, G

    1997-10-01

    The effect of body unloading (75, 50 and 25% of body weight) on upper and lower leg muscle activation during stepping on a treadmill was investigated in groups of patients with Parkinson's disease and age-matched healthy subjects. The aim of the study was to test the hypothesis that impaired extensor load receptor function exists in the patients. A strong load sensitivity was found for the gastrocnemius (GM) electromyographic (EMG) activity (i.e. EMG amplitude decreased with unloading during stepping in both groups of subjects). The change in the EMG amplitude of the rectus femoris was less dependent upon the load but was observed to be more pronounced in the patients. Upper and lower leg flexor muscles were relatively load-insensitive. The absolute GM EMG amplitude during the stance phase of stepping with normal body loading was significantly smaller in the patients than in the healthy subjects. It is suggested that the latter observation is due to a change in the threshold or bias of the extensor load reflex mechanism in the patients. The slope or gain of this reflex appears to be preserved.

  8. Leg Muscle Involvement in Facioscapulohumeral Muscular Dystrophy: Comparison between Facioscapulohumeral Muscular Dystrophy Types 1 and 2.

    PubMed

    Mair, Dorothea; Huegens-Penzel, Monika; Kress, Wolfram; Roth, Christian; Ferbert, Andreas

    2017-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) presents with 2 genetically distinct types. We describe for the first time the MRI patterns of leg muscle involvement in type 2 and compare it with type 1. The intramuscular fat content was assessed on lower extremity axial T1-weighted MRI scans in 6 FSHD1 and 5 FSHD2 patients. Overall, the muscle involvement profile did not differ substantially between FSHD1 and FSHD2. In the thigh, the dorsomedial compartment including the semimembranosus, semitendinosus and adductor magnus was the most affected. The quadriceps was mostly spared, but isolated involvement of the rectus femoris was common. Fat infiltration in the distal soleus and the medial gastrocnemius with sparing of the lateral gastrocnemius was a common finding; involvement of the tibialis anterior was less frequent. A proximal-to-distal increase in fat content was frequently present in some muscles. Muscle involvement appears to be independent of type, confirming a similar pathophysiological pathway in FSHD1 and FSHD2. © 2016 S. Karger AG, Basel.

  9. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces.

    PubMed

    Potthast, Wolfgang; Lersch, Christian; Segesser, Bernhard; Koebke, Jürgen; Brüggemann, Gert-Peter

    2008-06-01

    It is of paramount importance to know the magnitude and the distribution of joint contact stress within the most heavily loaded structures of the human foot. In the talocrural joint role of external loading and loading applied by muscles on joint contact stress is not extensively studied. The purpose was to determine the distribution of joint contact stress of the talocrural joint with varying axial tibia loading and extrinsic tendon loading. Five cadaveric feet were studied in the intact condition and following transsection of ligaments under seventeen different loading conditions. Joint contact stress was determined from capacitive pressure sensors implanted in the talocrural joint when the specimens were loaded in a specially designed loading simulator. Different axial tibia and extrinsic tendon loads were applied. Motions of the bony structures were assessed by an optical motion analysis system. The anterior aspect of the joint is predominantly stressed in all loading conditions. The influence of muscle force on the internal joint contact stress distribution is higher than the axial shank loading. The biggest effect on joint contact stress was initiated by the tibialis posterior muscle. The flexor hallucis homogenizes the pressure distribution in intact joint conditions. Joint angles were not substantially changed by muscle force applications. The functions of the muscles of the lower leg are important for maintaining physiologic joint contact stress. Reducing the force potentials of certain muscle tendon units through surgeries, immobilization, fatigue or inappropriate footwear should change the joint contact stress. Such information is helpful to understand the physiological function of the foot. It might also explain the development and manifestation of certain foot pathologies.

  10. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Ichihashi, Noriaki

    2017-02-16

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0 ± 1.7 years; height, 172.7 ± 4.8 cm; weight, 57.3 ± 3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. This article is protected by copyright. All rights reserved.

  11. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    PubMed

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  12. Task-dependent effects evoked by foot muscle afferents on leg muscle activity in humans.

    PubMed

    Abbruzzese, M; Rubino, V; Schieppati, M

    1996-08-01

    The effect of low intensity electrical stimulation of the posterior tibial nerve (PTN) at the ankle on the active triceps surae (TS) muscles was studied in normal subjects, both in a prone position and while standing. PTN stimulation regularly evoked the H-reflex in the flexor digitorum brevis and, in the prone position, a short-latency facilitatory effect in the soleus muscle. During standing, the facilitatory effect was preceded by a clear-cut reduction in electromyograph (EMG) activity. The inhibition-facilitation sequence was evoked in the gastrocnemii under both conditions, on average, though individual differences were present. An EMG modulation similar to that observed under standing conditions was present also in the prone position when subjects pressed the sole of the foot against the wall. Stimulation of sural or digital nerves did not evoke similar effects. It is concluded that foot muscle afferents establish oligosynaptic connections transmitting mixed effects to the TS motoneuronal pool, and that contact with the sole of the foot plays an enabling role for the inhibitory pathway directed to the soleus muscle.

  13. Mean individual muscle activities and ratios of total muscle activities in a selective muscle strengthening experiment: the effects of lower limb muscle activity based on mediolateral slope angles during a one-leg stance

    PubMed Central

    Lee, Sang-Yeol

    2016-01-01

    [Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data. PMID:27799690

  14. Effect of dry needling of gluteal muscles on straight leg raise: a randomised, placebo controlled, double blind trial

    PubMed Central

    Huguenin, L; Brukner, P; McCrory, P; Smith, P; Wajswelner, H; Bennell, K

    2005-01-01

    Objectives: To use a randomised, double blind, placebo controlled trial to establish the effect on straight leg raise, hip internal rotation, and muscle pain of dry needling treatment to the gluteal muscles in athletes with posterior thigh pain referred from gluteal trigger points. Results: Magnetic resonance imaging scans revealed normal hamstring musculature in most subjects. Straight leg raise and hip internal rotation remained unchanged in both groups at all times. Visual analogue scale assessment of hamstring pain and tightness and gluteal tightness after running showed improvements immediately after the intervention in both groups (p = 0.001), which were maintained at 24 and 72 hours. The magnitude of this improvement was the same for therapeutic and placebo interventions. Resting muscle pain and tightness were unaffected. Conclusions: Neither dry needling nor placebo needling of the gluteal muscles resulted in any change in straight leg raise or hip internal rotation. Both interventions resulted in subjective improvement in activity related muscle pain and tightness. Despite being commonly used clinical tests in this situation, straight leg raise and hip internal rotation are not likely to help the therapist assess response to treatment. Patient reports of response to such treatment are better indicators of its success. The mechanisms by which these responses occur and the reasons for the success of the placebo needling treatment are areas for further investigation. PMID:15665203

  15. Open-book Splitting of a Distally Based Peroneus Brevis Muscle Flap to Cover Large Leg and Ankle Defects

    PubMed Central

    2015-01-01

    Abstract Background: Large soft-tissue defects in the lower leg and ankle are a major problem for plastic surgeons. Many local flaps that are either proximally or distally based have been previously described to cover small defects. Larger defects may require a distant flap that is either pedicled or free. The peroneus brevis muscle flap is a well-known distally based safe flap that is used to cover a small defect. Methods: Ten distally based peroneus brevis muscle flaps were elevated in 10 patients (8 males and 2 females) with major lower third leg and ankle defects that were 6–12 cm in length and 6–10 cm in width, with open-book splitting of the proximal portion of the muscle to cover these large defects. Results: Flap survival was excellent, and partial skin graft loss in two cases healed with dressing. The average flap length was 10 cm, ranging between 6 and 12 cm. The average flap width was 8 cm, ranging between 6 and 10 cm. The donor site also healed uneventful. Conclusions: Open-book splitting of the distally based peroneus brevis muscle flap is ideally suited for moderate to large defects in the distal third of the lower leg and ankle. This modification of the distally based peroneus brevis muscle flap offers a convincing alternative for covering large defects of up to 12 × 10 cm in the distal leg and ankle region. PMID:26893997

  16. Fatigue is Specific to Working Muscles: No Cross-over with Single-leg Cycling in Trained Cyclists

    PubMed Central

    Elmer, Steven J.; Amann, Markus; McDaniel, John; Martin, David T.; Martin, James C.

    2014-01-01

    Fatigue induced via a maximal isometric contraction of a single-limb muscle group can evoke a “cross-over” of fatigue that reduces voluntary muscle activation and maximum isometric force in the rested contralateral homologous muscle group. We asked whether a cross-over of fatigue also occurs when fatigue is induced via high-intensity endurance exercise involving a substantial muscle mass. Specifically, we used high-intensity single-leg cycling to induce fatigue and evaluated associated effects on maximum cycling power (Pmax) in the fatigued ipsilateral leg (FATleg) as well as the rested contralateral leg (RESTleg). On separate days, 12 trained cyclists performed right leg Pmax trials before and again 30s, 3, 5, and 10min after a cycling time trial (TT, 10min) performed either with their right or left leg. Fatigue was estimated by comparing exercise-induced changes in Pmax and maximum handgrip isometric force (Fmax). Mean power produced during the right and left leg TT’s did not differ (203±8 vs. 199±8W). Compared to pre-TT, FATleg Pmax was reduced by 22±3% at 30s post-TT and remained reduced by 9±2% at 5min post-TT (both P<0.05). Despite considerable power loss in the FATleg, post-TT RESTleg Pmax (596–603W) did not differ from pre-TT values (596±35W). There were no alterations in handgrip Fmax (529–547N). Our data suggest that any potential cross-over of fatigue, if present at all, was not sufficient to measurably compromise RESTleg Pmax in trained cyclists. These results along with the lack of changes in handgrip Fmax indicate that impairments in maximal voluntary neuromuscular function were specific to working muscles. PMID:22806085

  17. Influence of shoes and foot orthoses on lower extremity muscle activation onset times in healthy subjects during the transition from double-leg stance to single-leg stance.

    PubMed

    Dingenen, B; Peeraer, L; Deschamps, K; Fieuws, S; Janssens, L; Staes, F

    2015-01-01

    The aim of this study was to evaluate the influence of shoes and foot orthoses on lower extremity muscle activation patterns in healthy subjects during the transition from double-leg stance to single-leg stance. Eight male and seven female young asymptomatic adults who wear foot orthoses were recruited. Muscle activation onset times of 9 lower extremity muscles were recorded using surface electromyography during the transition from double-leg stance to single-leg stance, performed with eyes open and with eyes closed. This was tested in 4 experimental conditions: 1) barefoot (BF); 2) shoes only (SO); 3) shoes with standardized FO (SSFO); and 4) shoes with customized FO (SCFO). Based on a four-way (condition-region-leg-vision) linear model for repeated measures, we found a significant condition effect (P=0.025). Differences between conditions did not depend on the leg and/or the vision condition, but on the region (ankle-knee-hip). Based on a two-way (condition-muscle) linear model within each region, only significant differences between conditions for peroneus longus (P=0.003) were found. The onset times of peroneus longus were significantly earlier in SO (P=0.029) and SCFO (P=0.001) compared to BF. These results indicate that SO and SCFO can accelerate peroneus longus muscle activation onset times during the transition from double-leg stance to single-leg stance. Further research is required to determine how these adaptations may develop over time.

  18. Energy efficient hopping with Hill-type muscle properties on segmented legs.

    PubMed

    Rosendo, Andre; Iida, Fumiya

    2016-04-12

    The intrinsic muscular properties of biological muscles are the main source of stabilization during locomotion, and superior biological performance is obtained with low energy costs. Man-made actuators struggle to reach the same energy efficiency seen in biological muscles. Here, we compare muscle properties within a one-dimensional and a two-segmented hopping leg. Different force-length-velocity relations (constant, linear, and Hill) were adopted for these two proposed models, and the stable maximum hopping heights from both cases were used to estimate the cost of hopping. We then performed a fine-grained analysis during landing and takeoff of the best performing cases, and concluded that the force-velocity Hill-type model is, at maximum hopping height, the most efficient for both linear and segmented models. While hopping at the same height the force-velocity Hill-type relation outperformed the linear relation as well. Finally, knee angles between 60° and 90° presented a lower energy expenditure than other morphologies for both Hill-type and constant relations during maximum hopping height. This work compares different muscular properties in terms of energy efficiency within different geometries, and these results can be applied to decrease energy costs of current actuators and robots during locomotion.

  19. EMG responses in leg muscles to postural perturbations in Huntington's disease.

    PubMed Central

    Huttunen, J; Hömberg, V

    1990-01-01

    This paper compares leg muscle electromyogram (EMG) responses to sudden toe-up tilts of a moveable platform in patients with Huntington's disease (HD), clinically normal offspring at risk of developing HD (HD risks) and healthy controls. The EMG pattern in standing subjects and patients consisted of short- and middle-latency responses (SL and ML) in the stretched triceps surae muscles and long-latency responses (LL) in the shortened tibialis anterior muscles. The SL response could be further divided into two distinct subcomponents termed SL1 and SL2. An ML response was identified in only 50% of normal subjects and patients. HD patients differed from normal subjects by showing delayed onset latencies and prolonged durations for the LL response, and smaller amplitudes for the ML response. The subjects at risk also showed diminished ML amplitudes and prolonged LL durations, but normal LL onset latencies. In the sitting condition, the EMG responses of the HD patients and of the HD risks did not differ from those of controls: in all groups SL1 was reduced and delayed, SL2 slightly enhanced, while ML and LL were absent. Because both afferent and efferent conduction times are normal in HD, the delayed LL onset reflects abnormal supraspinal organisation of postural control in HD, and indicates that basal ganglia may have a modulatory effect on the LL responses. The normal EMG responses in the sitting patients suggest appropriate regulation of these responses according to postural set in HD. PMID:2154557

  20. The effect of cycling on muscle activation in the running leg of an Olympic distance triathlon.

    PubMed

    Heiden, Tamika; Burnett, Angus

    2003-01-01

    The aim of this study was to determine the effect of prior cycling on EMG activity of selected lower leg muscles during running. Ten elite level triathletes underwent two testing sessions at race pace: a 40 km cycle followed by a 2 km run (CR) and a 10 km run followed by a 2 km run (RR). EMG data from selected lower limb muscles were collected at three sections of each run (0 km, 1 km and 2 km) for six strides using a portable data logger. Significant differences (p < 0.05) between condition were found for the level of activation (Lact) for biceps femoris (BF) during stance and vastus lateralis (VL) during flight and stance. Vastus medialis (VM) changed in Lact, during flight, between sections in the 2 km run. Furthermore, significant differences (p < 0.05) between condition were found for BF during stance and for rectus femoris (RF) and VM during flight. There was a significant difference (p < 0.05) in the duration of VL activation (Dact) across sections of the 2 km run. Findings from this investigation highlight changes in muscle function when changing from cycling to running and indicate a need to train specifically for the cycle to run transition. Such training may improve performance and reduce the risk of injury.

  1. Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling

    PubMed Central

    Ichinose, Masashi; Saito, Mitsuru; Fujii, Naoto; Ogawa, Takeshi; Hayashi, Keiji; Kondo, Narihiko; Nishiyasu, Takeshi

    2008-01-01

    We tested the hypotheses that arterial baroreflex (ABR) control over muscle sympathetic nerve activity (MSNA) in humans does not remain constant throughout a bout of leg cycling ranging in intensity from very mild to exhausting. ABR control over MSNA (burst incidence, burst strength and total MSNA) was evaluated by analysing the relationship between beat-to-beat spontaneous variations in diastolic arterial pressure (DAP) and MSNA in 15 healthy subjects at rest and during leg cycling in a seated position at five workloads: very mild (10 W), mild (82 ± 5.0 W), moderate (126 ± 10.2 W), heavy (156 ± 14.3 W), and exhausting (190 ± 21.2 W). The workload was incremented every 6 min. The linear relationships between DAP and MSNA variables were significantly shifted downward during very mild exercise, but then shifted progressively upward as exercise intensity increased. During heavy and exhausting exercise, moreover, the DAP–MSNA relationships were also significantly shifted rightward from the resting relationship. The sensitivity of ABR control over burst incidence and total MSNA was significantly lower during very mild exercise than during rest, and the sensitivity of the burst incidence control remained lower than the resting level at all higher exercise intensities. By contrast, the sensitivity of the total MSNA control recovered to the resting level during mild and moderate exercise, and was significantly increased during heavy and exhausting exercise (versus rest). We conclude that, in humans, ABR control over MSNA is not uniform throughout a leg cycling exercise protocol in which intensity was varied from very mild to exhausting. We suggest that this non-uniformity of ABR function is one of the mechanisms by which sympathetic and cardiovascular responses are matched to the exercise intensity. PMID:18403425

  2. A Neuro-Mechanical Model of a Single Leg Joint Highlighting the Basic Physiological Role of Fast and Slow Muscle Fibres of an Insect Muscle System

    PubMed Central

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles. PMID:24244298

  3. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    PubMed

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  4. Tracking Control of a Leg Rehabilitation Machine Driven by Pneumatic Artificial Muscles Using Composite Fuzzy Theory

    PubMed Central

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties. PMID:24778583

  5. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    PubMed

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  6. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    PubMed Central

    Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.

    2015-01-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID

  7. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes.

    PubMed

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R L; Lundgren, Lina E; Tran, Tai T; Sheppard, Jeremy M

    2015-12-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key pointsGreater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes.Isometric strength underpinned performance in the CMJ and SJ in these athletes.Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit.

  8. Dose-dependent effect of caffeine on reducing leg muscle pain during cycling exercise is unrelated to systolic blood pressure.

    PubMed

    O'Connor, Patrick J; Motl, Robert W; Broglio, Steven P; Ely, Matthew R

    2004-06-01

    This double-blind, within-subjects experiment examined the effects of ingesting two doses of caffeine on perceptions of leg muscle pain and blood pressure during moderate intensity cycling exercise. Low caffeine consuming college-aged males (N=12) ingested one of two doses of caffeine (5 or 10 mg.kg(-1) body weight) or placebo and 1 h later completed 30 min of moderate intensity cycling exercise (60% VO2peak). The order of drug administration was counter-balanced. Resting blood pressure and heart rate were recorded immediately before and 1 h after drug administration. Perceptions of leg muscle pain as well as work rate, blood pressure, heart rate, and oxygen uptake (VO2) were recorded during exercise. Caffeine increased resting systolic pressure in a dose-dependent fashion but these blood pressure effects were not maintained during exercise. Caffeine had a significant linear effect on leg muscle pain ratings [F(2,22)=14.06; P < 0.0001; eta2=0.56 ]. The mean (+/-SD) pain intensity scores during exercise after ingesting 10 mg.kg(-1) body weight caffeine, 5 mg.kg(-1) body weight caffeine, and placebo were 2.1+/-1.4, 2.6+/-1.5, and 3.5+/-1.7, respectively. The results support the conclusion that caffeine ingestion has a dose-response effect on reducing leg muscle pain during exercise and that these effects do not depend on caffeine-induced increases in systolic blood pressure during exercise.

  9. Differences in abdominal muscle activation patterns of younger and older adults performing an asymmetric leg-loading task.

    PubMed

    Hubley-Kozey, Cheryl L; Hanada, Edwin Y; Gordon, Sarah; Kozey, John; McKeon, Melissa

    2009-11-01

    To determine whether differences exist between younger (20-50 years) and older adults (>65 years) in abdominal muscle amplitudes, temporal patterns, and three-dimensional (3D) pelvic motion, while performing an asymmetric leg-loading task. Cross-sectional. Neuromuscular function laboratory. Ten healthy younger (33.3 +/- 7.7 years) and 10 healthy gender- and body mass index-matched older adults (69.0 +/- 6.6 years). Surface electromyograms from 6 abdominal muscle sites bilaterally and pelvic motions were simultaneously recorded. Root mean square (RMS) amplitude during the leg extension phase was calculated for each muscle. Ensemble average waveforms for the total exercise were analyzed using principal component (PC) analysis. Total angular displacement of the pelvis was calculated. Student t tests were performed on demographic and angular displacement data. Three-factor mixed model analysis of variances (group, muscle, side) tested main effects and interactions (P < .05) for the RMS amplitude and PC scores from the temporal waveforms. Bonferroni post-hoc analyses tested pair-wise differences. There were no between-group differences for the pelvic motions. Three PC patterns captured 85% of the variance in the waveforms. The external oblique (EO) RMS amplitudes were significantly (P < .05) higher than those of the other 3 muscle sites, similar for the PC1 scores which captured overall amplitude. The PC2 score for the internal oblique (IO) was significantly higher (P < .05) than that of all other muscles, illustrating a higher initial amplitude compared with later in the movement. There was a significant group by muscle interaction for PC3 scores, demonstrating group differences in temporal patterns. Both groups were able to minimize lumbopelvic motion and recruited their abdominal muscles to similar overall amplitudes, with the IO muscle activated to higher amplitudes early in the movement task. The older adult group demonstrated a distinctive drop in abdominal

  10. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.

    PubMed

    Toebes, Marcel J P; Hoozemans, Marco J M; Dekker, Joost; van Dieën, Jaap H

    2014-01-01

    This study assessed effects of unilateral leg muscle fatigue (ULMF) on balance control in gait during the stance and swing phases of the fatigued leg in healthy elderly, to test the assumption that leg muscle strength limits balance control during the stance-phase. Ten subjects (aged 63.4, SD 5.5 years) walked on a treadmill in 4 conditions: unperturbed unfatigued, unperturbed fatigued, perturbed unfatigued, and perturbed fatigued. The perturbations were lateral trunk pulls just before contralateral heel contact. ULMF was evoked by unilateral squat exercise until task failure. Isometric knee extension strength was measured to verify the presence of muscle fatigue. Between-stride standard deviations and Lyapunov exponents of trunk kinematics were used as indicators of balance control. Required perturbation force and the deviation of trunk kinematics from unperturbed gait were used to assess perturbation responses. Knee extension strength decreased considerably (17.3% SD 8.6%) as a result ULMF. ULMF did not affect steady-state gait balance. Less force was required to perturb subjects when the fatigued leg was in the stance-phase compared to the swing-phase. Subjects showed a faster return to the unperturbed gait pattern in the fatigued than in the unfatigued condition, after perturbations in swing and stance of the fatigued leg. The results of this study are not in line with the hypothesized effects of leg muscle fatigue on balance in gait. The healthy elderly subjects were able to cope with substantial ULMF during steady-state gait and demonstrated faster balance recovery after laterally directed mechanical perturbations in the fatigued than in the unfatigued condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Creatine Loading Does Not Preserve Muscle Mass or Strength During Leg Immobilization in Healthy, Young Males: A Randomized Controlled Trial.

    PubMed

    Backx, Evelien M P; Hangelbroek, Roland; Snijders, Tim; Verscheijden, Marie-Louise; Verdijk, Lex B; de Groot, Lisette C P G M; van Loon, Luc J C

    2017-08-01

    A short period of leg immobilization leads to rapid loss of muscle mass and strength. Creatine supplementation has been shown to increase lean body mass in active individuals and can be used to augment gains in muscle mass and strength during prolonged resistance-type exercise training. Our objective was to investigate whether creatine loading can attenuate the loss of muscle mass and strength during short-term leg immobilization. Healthy young men (n = 30; aged 23 ± 1 years; body mass index [BMI] 23.3 ± 0.5 kg/m(-2)) were randomly assigned to either a creatine or a placebo group. Subjects received placebo or creatine supplements (20 g/d) for 5 days before one leg was immobilized by means of a full-leg cast for 7 days. Muscle biopsies were taken before creatine loading, prior to and immediately after leg immobilization, and after 7 days of subsequent recovery. Quadriceps cross-sectional area (CSA) (computed tomography [CT] scan) and leg muscle strength (one-repetition maximum [1-RM] knee extension) were assessed before and immediately after immobilization and after 1 week of recovery. Data were analyzed using repeated measures analysis of variance (ANOVA). Data are presented consistently as mean ± standard error of the mean (SEM). There was a significant overall increase in muscle total creatine content following the 5-day loading phase (p = 0.049), which appeared driven by an increase in the creatine group (from 90 ± 9 to 107 ± 4 mmol/kg(-1) dry muscle) with no apparent change in the placebo group (from 88 ± 4 to 90 ± 3 mmol/kg(-1); p = 0.066 for time × treatment interaction). Quadriceps muscle CSA had declined by 465 ± 59 and 425 ± 69 mm(2) (p < 0.01) in the creatine and placebo group, respectively, with no differences between groups (p = 0.76). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the creatine and from 59 ± 3 to 53 ± 3 kg in the placebo group, with no differences between groups

  12. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    PubMed

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p < 0.05) when the dominant knee was flexed to 135 ° (23.49% MVIC) versus the traditional 90 ° (75.34% MVIC), while gluteal activation remained similarly high (51.01% and 57.81% MVIC in the traditional position, versus 47.35% and 57.23% MVIC in the modified position for the gluteus maximus and medius, respectively). Modifying the traditional single-leg bridge by flexing the

  13. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  14. Cerebral correlates of muscle tone fluctuations in restless legs syndrome: a pilot study with combined functional magnetic resonance imaging and anterior tibial muscle electromyography.

    PubMed

    Spiegelhalder, Kai; Feige, Bernd; Paul, Dominik; Riemann, Dieter; van Elst, Ludger Tebartz; Seifritz, Erich; Hennig, Jürgen; Hornyak, Magdolna

    2008-01-01

    The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50 min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.

  15. Inter- and intrarater reliability of four single-legged hop tests and isokinetic muscle torque measurements in children.

    PubMed

    Johnsen, Marianne Bakke; Eitzen, Ingrid; Moksnes, Håvard; Risberg, May Arna

    2015-07-01

    Single-legged hop tests and isokinetic muscle torque are common outcome measures in the evaluation of knee function. The reliability of the single-legged hop tests in children has not been documented. The aim was to examine inter- and intrarater reliability of four single-legged hop tests and isokinetic muscle torque measurements in children. Twenty-eight sports-active children (12.4 ± 0.3 years old) were tested three times in two test sessions separated by 1 week. They performed four single-legged hop tests and concentric isokinetic torque measurements during knee extension and flexion. Inter- and intrarater reliability were calculated using the intraclass correlation coefficient (ICC 2,1). Relative terms of the standard error of measurement (SEM %) and smallest real difference(SRD %) were emphasized to allow comparison between the different variables. Twenty-six children were included for statistical analysis. ICCs for inter- and intrarater reliability were moderate to high for the hop tests (0.62-.91) and isokinetic measurements (0.76-0.87). SEMs % were low for the hop tests (3.9-7.4 %) and the isokinetic measurements (5.2-8.9 %). SRDs % were 20.5 % or less for the hop tests, 15.7 % or less for knee extension, and 24.6 % or less for knee flexion. The single-legged hop tests and isokinetic muscle torque measurements demonstrated moderate-to high reliability with low measurement error in sports-active children. A change above 20.5 % for the single-legged hop tests, 15.7 % for knee extension, and 24.6 % for knee flexion is necessary to represent a real change in knee function. Level of evidence III.

  16. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?

    PubMed

    Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J

    2013-11-01

    Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Aerobic and anaerobic work capacities and leg muscle characteristics in elite orienteers.

    PubMed

    Rolf, C; Andersson, G; Westblad, P; Saltin, B

    1997-02-01

    Aerobic and anaerobic work capacities, leg muscle structure and metabolic characteristics of m. vastus lateralis (NT), m. rectus femoris (RG) and mm. gastrocnemii (NT and RG) were analysed in five male and seven female elite orienteers from the Swedish National team (NT) and a reference group (RG) of eight male and 10 female upcoming orienteers, all in optimal shape at the end of a competitive season. Maximal oxygen uptake was 78.4 ml/kg/min for NT men (range 75-81) and 67.8 ml/kg/min for NT women (range 62-71), for both groups significantly higher (P < 0.001) than for RG. Maximal serum lactate was 13.3 mmol/l for NT men (range 10-17) and 11.7 mmol/l for NT women (range 8.4-14), which did not differ from RG. No significant correlation was found between maximal oxygen uptake and maximal serum lactate. For NT females only maximal oxygen uptake was significantly related to running economy (P < 0.01). Muscle biopsies showed a high content of type I fibres in m. vastus lateralis as well as in m. gastrocnemius mediale. M. vastus lateralis (NT) had a higher proportion of type I fibres, capillaries per fibre as well as CS, HAD and LDH 1-2 enzymes compared with m. rectus femoris (RG) (P < 0.001-< 0.001), the latter muscle showing a more anaerobic profile. NT males and females had a higher metabolic potential in m. gastrocnemius mediale than RG (P < 0.001). Our results reflect an obligate high and narrow range of aerobic and anaerobic work capacities for successful performance in international elite orienteering. It remains to be shown how these laboratory data are related to individual performance in authentic orienteering competitions.

  18. Relationship between leg bone mineral values and muscle strength in women with different physical activity.

    PubMed

    Sööt, Terje; Jürimäe, Toivo; Jürimäe, Jaak; Gapeyeva, Helena; Pääsuke, Mati

    2005-01-01

    This study examines whether knee extensor muscle isometric, isokinetic, and isoinertial strength values in women with different physical activity and body composition patterns are related to leg bone mineral density (BMD) and bone mineral content (BMC) values. A total of 129 women aged 17-40 participated in this study. They were divided into four groups: strength-trained (n = 33), endurance-trained (n = 32), normal weight sedentary (n = 41), and overweight sedentary (n = 23) women. In addition, the subjects were grouped as physically active (n = 65) or sedentary (n = 64) women. BMD and BMC for both legs (LBMD and LBMC, respectively) and for the dominant leg alone (DLBMC), body fat percentage and lean body mass (LBM), maximal knee extension isometric (ISOM) and isokinetic (ISOK) strength at the angular velocity of 60 deg.s(-1), and isoinertial leg explosive strengths (countermovement jump CMJ) were measured. In endurance-trained women, LBMD was dependent on body mass index (BMI) (33.7% of the variance, R2 x 100), and in the physically active group and the total group with LBM (14.6% and 15.6%, respectively). In the overweight group, LBMD was dependent on ISOK strength (21.7% of the variance, R2 x 100). In the sedentary and total groups, ISOM strength was more important (10.3% and 5.0%, respectively); in the strength-trained group, body weight influenced LBMC, accounting for 71.6% of the variance (R2 x 100). In the endurance-trained women, height influenced LMBC (37.9%, R2 x 100). In sedentary and overweight women, LBM accounted for 52.1% and 61.4% of the total variance in LBMC. In these groups, ISOM strength accounted for 15.3% and 25.9% of the variance in LBMC. In overweight women, ISOM and ISOK strength together influenced LBMC highly (64.8% of the variance, R2 x 100). In the sedentary group, the influence of LBM on LBMC was higher than in the active group (82.1% and 50.5% of the variance, respectively). In the total group, LBM influenced LBMC, accounting for 54

  19. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    PubMed

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P < 0.01), but it was similar to Vest. Packs and Water blunted the rise of Tmu until minute 16 and for the duration of the CISP (40 min), respectively (P < 0.01). Reductions in PPO occurred from minute 32 onward in Control, and an increase in PPO by approximately 4% due to Packs was observed (main effect; P < 0.05). The method of precooling determined the extent to which heat strain was reduced during intermittent sprint cycling, with leg precooling offering the greater ergogenic effect on PPO than either upper body or whole body cooling.

  20. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.

    PubMed

    Ahn, A N; Meijer, K; Full, R J

    2006-09-01

    The mechanical behavior of muscle during locomotion is often predicted by its anatomy, kinematics, activation pattern and contractile properties. The neuromuscular design of the cockroach leg provides a model system to examine these assumptions, because a single motor neuron innervates two extensor muscles operating at a single joint. Comparisons of the in situ measurements under in vivo running conditions of muscle 178 to a previously examined muscle (179) demonstrate that the same inputs (e.g. neural signal and kinematics) can result in different mechanical outputs. The same neural signal and kinematics, as determined during running, can result in different mechanical functions, even when the two anatomically similar muscles possess the same contraction kinetics, force-velocity properties and tetanic force-length properties. Although active shortening greatly depressed force under in vivo-like strain and stimulation conditions, force depression was similarly proportional to strain, similarly inversely proportional to stimulation level, and similarly independent of initial length and shortening velocity between the two muscles. Lastly, passive pre-stretch enhanced force similarly between the two muscles. The forces generated by the two muscles when stimulated with their in vivo pattern at lengths equal to or shorter than rest length differed, however. Overall, differences between the two muscles in their submaximal force-length relationships can account for up to 75% of the difference between the two muscles in peak force generated at short lengths observed during oscillatory contractions. Despite the fact that these muscles act at the same joint, are stimulated by the same motor neuron with an identical pattern, and possess many of the same in vitro mechanical properties, the mechanical outputs of two leg extensor muscles can be vastly different.

  1. Magnetic resonance imaging evaluation of muscle usage associated with three exercises for rotator cuff rehabilitation.

    PubMed

    Horrigan, J M; Shellock, F G; Mink, J H; Deutsch, A L

    1999-10-01

    Methods of determining muscle usage for exercises involving rotator cuff muscles are limited. Therefore, this investigation used magnetic resonance imaging (MRI) to evaluate the effect of three different exercises used for rehabilitation of the rotator cuff. Five normal volunteer subjects (3 men, 2 women, mean age 31.4 yr) were studied. The exercises were scaption with internal rotation (SIR), military press (MP), and side-lying 45 degrees abduction (SLA). MR imaging was performed immediately before and after exercise using a "fast" spin echo STIR sequence and oblique coronal plane imaging. Changes in signal intensity pre- and post-exercise were measured at comparable section locations for the MR images of the supraspinatus, infraspinatus, teres minor, subscapularis, deltoid, and trapezius. The SLA showed the greatest increase in signal intensity in all the muscles (percent change, P < 0.01) except for the trapezius, which was used more by the MP and SIR. None of the exercises activated the teres minor (percent change, P = not significant). These findings have important implications in efficacy of physical rehabilitation of the rotator cuff and avoidance of subacromial impingement exercise motions.

  2. Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster.

    PubMed

    Schilder, Rudolf J; Raynor, Megan

    2017-10-01

    Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel\\up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses. © 2017. Published by The Company of Biologists Ltd.

  3. Investigating the Effects of Motion Streaks on pQCT-Derived Leg Muscle Density and Its Association With Fractures.

    PubMed

    Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On

    2017-01-03

    Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m(2)), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between

  4. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors.

    PubMed

    Thompson, Brennan J; Conchola, Eric C; Stock, Matt S

    2015-12-01

    Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60% of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.

  5. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults.

    PubMed

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-09-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external oblique (EO), gluteus maximus (GM), and biceps femoris (BF) was measured using surface electromyography. Data analysis was performed using the mean scores of three trials performed under each condition. [Results] There was a significant increase in bilateral EO and contralateral GM with the one-legged bridge compared with the one-legged bridge with sling exercise. Muscle activation of the ipsilateral GM and BF was significantly less during the one-legged bridge exercise compared to the one-legged bridge with sling exercise, and was significantly greater during the one-legged bridge with hip abduction compared to the one-legged bridge exercise. The muscle activation of the contralateral GM and BF was significantly greater with the one-legged bridge with hip abduction compared to the general bridge exercise. [Conclusion] With the one-legged bridge with hip abduction, the ipsilateral EO, GM and BF muscle activities were significantly greater than those of the one-legged bridge exercise. The muscle activation of all trunk and contralateral lower extremity muscles increased with the bridge with sling exercises compared with general bridge exercises.

  6. Accuracy and variability of leg velocities during concentric and eccentric actions of the quadriceps femoris muscles.

    PubMed

    Gajdosik, R L; Faris, D W; Kato, T K; Roosa, P F; Matsumoto, T

    1997-04-01

    This study examined the ability to control leg velocities during concentric and eccentric actions of the right quadriceps muscles. Ten healthy women (M age = 25.9 +/- 3.5 yr.) were tested using the Isotonic Program of the KIN-COM II 500H dynamometer. They attempted to match velocity tracings of 10 degrees, 20 degrees, and 40 degrees/sec. through 70 degrees of knee range of motion at a load equal to 10% of their maximal mean concentric force. The actual mean velocities, mean percent deviation from the target velocities, and the coefficient of variation for both actions were calculated for 15 degrees-75 degrees (full range of motion), 15 degrees-45 degrees (shorter range of motion), and 46 degrees-75 degrees (longer range of motion). Separate one-way analyses of variance with two trial factors (action x velocity) showed faster concentric velocities through the full and longer ranges of motion, and faster eccentric velocities through the shorter range of motion. Mean percent deviations indicated that the eccentric velocities were generally more accurate within all ranges of motion. Larger concentric coefficients of variation were found within the full and longer ranges of motion, and the coefficients of variation for both actions decreased as the velocities increased. An exaggerated 'velocity overshoot' at the onset of both actions probably contributed to differences in the velocities and coefficients of variation. The results indicated differences between the concentric and eccentric actions, explained in part by the testing methodology used and by the known mechanical and physiological characteristics of the two muscle actions.

  7. Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men.

    PubMed

    Tolfrey, Keith; Barker, Alan; Thom, Jeanette M; Morse, Christopher I; Narici, Marco V; Batterham, Alan M

    2006-06-01

    The aim of this study was to critically examine the influence of body size on maximal oxygen uptake (VO2 max) in boys and men using body mass (BM), estimated fat-free mass (FFM), and estimated lower leg muscle volume (Vol) as the separate scaling variables. VO2 max and an in vivo measurement of Vol were assessed in 15 boys and 14 men. The FFM was estimated after percentage body fat had been predicted from population-specific skinfold measurements. By using nonlinear allometric modeling, common body size exponents for BM, FFM, and Vol were calculated. The point estimates for the size exponent (95% confidence interval) from the separate allometric models were: BM 0.79 (0.53-1.06), FFM 1.00 (0.78-1.22), and Vol 0.64 (0.40-0.88). For the boys, substantial residual size correlations were observed for VO2 max/BM0.79 and VO2 max/FFM1.00, indicating that these variables did not correctly partition out the influence of body size. In contrast, scaling by Vol0.64 led to no residual size correlation in boys or men. Scaling by BM is confounded by heterogeneity of body composition and potentially substantial differences in the mass exponent between boys and men. The FFM is precluded as an index of involved musculature because Vol did not represent a constant proportion of FFM [Vol proportional, variantFFM1.45 (95% confidence interval, 1.13-1.77)] in the boys (unlike the men). We conclude that Vol, as an indicator of the involved muscle mass, is the most valid allometric denominator for the scaling of VO2 max in a sample of boys and men heterogeneous for body size and composition.

  8. Placebo effect of an inert gel on experimentally induced leg muscle pain

    PubMed Central

    Hopker, James G; Foad, Abigail J; Beedie, Christopher J; Coleman, Damian A; Leach, Geoffrey

    2010-01-01

    Purpose This study examined the therapeutic effects of an inert placebo gel on experimentally induced muscle pain in a sports therapy setting. It aimed to investigate the degree to which conditioned analgesia, coupled with an expectation of intervention, was a factor in subsequent analgesia. Methods Participants were sixteen male and eight female sports therapy students at a UK University. With institutional ethics board approval and following informed consent procedures, each was exposed to pain stimulus in the lower leg in five conditions, ie, conditioning, prebaseline, experimental (two placebo gel applications), and postbaseline. In conditioning trials, participants identified a level of pain stimulus equivalent to a perceived pain rating of 6/10. An inert placebo gel was then applied to the site with the explicit instruction that it was an analgesic. Participants were re-exposed to the pain stimulus, the level of which, without their knowledge, had been decreased, creating the impression of an analgesic effect resulting from the gel. In experimental conditions, the placebo gel was applied and the level of pain stimulus required to elicit a pain rating of 6/10 recorded. Results Following application of the placebo gel, the level of pain stimulus required to elicit a pain rating of 6/10 increased by 8.2%. Application of the placebo gel significantly decreased participant’s perceptions of muscle pain (P = 0.001). Conclusion Subjects’ experience and expectation of pain reduction may be major factors in the therapeutic process. These factors should be considered in the sports therapeutic environment. PMID:24198560

  9. Unilateral Floor Stiffness Perturbations Systematically Evoke Contralateral Leg Muscle Responses: A New Approach to Robot-Assisted Gait Therapy.

    PubMed

    Skidmore, Jeffrey; Artemiadis, Panagiotis

    2016-04-01

    A variety of robotic rehabilitation devices have been proposed for gait rehabilitation after stoke, but have only produced moderate results when compared to conventional physiotherapy. We suggest a novel approach to robotic interventions which takes advantage of mechanisms of inter-limb coordination. In order to test the viability of this approach, we apply unilateral floor stiffness perturbations via a unique robotic device and observe evoked contralateral leg responses in kinematics, as well as muscle activations, in healthy subjects. The real-time control of floor stiffness is utilized to uniquely differentiate force and kinematic feedback, creating novel sensory perturbations. We present results of repeatable and scalable evoked kinematic and muscular response of the unperturbed leg in healthy subjects. Moreover, we provide insight into the fundamental sensorimotor mechanisms of inter-leg coordination. We also lay the foundation for model-based rehabilitation strategies for impaired walkers by presenting a mathematical model that accurately describes the relationship between the magnitude of the stiffness perturbation and the evoked muscle activity. One of the most significant advantages of this approach over current practices is the safety of the patient, since this does not require any direct manipulation of the impaired leg. The novel methods and results presented in this paper set the foundation for a paradigm shift in robotic interventions for gait rehabilitation.

  10. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  11. Amino acid arterial concentration and muscle exchange during submaximal arm and leg exercise: the effect of dihydroxyacetone and pyruvate.

    PubMed

    Stanko, R T; Diven, W F; Robertson, R J; Spina, R J; Galbreath, R W; Reilly, J J; Goss, F L

    1993-02-01

    The mixture of dihydroxyacetone and pyruvate (DHAP) is an ergogenic aid that enhances muscle glucose extraction during prolonged aerobic exercise. In order to evaluate the effect of DHAP on muscle amino acid extraction during exercise, we measured arterial concentration and muscle exchange of amino acids in 18 untrained healthy male subjects (aged 20-30 years) performing dynamic arm (60% VO2 max, n = 9) or leg (70% VO2 max, n = 9) exercise to exhaustion with and without dietary supplementation of DHAP. The subjects consumed diets (146 kJ kg body weight-1 day-1) containing either 100 g polyglucose, Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a double-blind, random, crossover order for a 7-day period. At least 7 days separated the dietary protocols. Blood samples were drawn through radial artery and axillary or femoral vein catheters at rest, during exercise and at exhaustion. Arterial alanine concentration increased by 30% during arm exercise and by 50-60% during leg exercise. No other arterial amino acid concentration changed during exercise. At exhaustion, arterial alanine concentration decreased to pre-exercise levels with arm exercise but remained elevated after leg exercise. Despite changes in arterial concentrations of alanine with exercise, muscle exchange of alanine was not altered with exercise. Exercise did not alter muscle exchange of any amino acid. Arterial amino acid concentrations and muscle exchange of amino acids with exercise were similar with or without DHAP feeding.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: lowmuscles ballistic contractions with medium load showed similar EMG amplitude as controlled contractions with high load. At flexed knee joint positions with elastic resistance, quadriceps and gluteus EMG amplitude during medium-load ballistic contractions exceeded that recorded during high-load controlled contractions. Quadriceps and gluteus EMG amplitude increased at flexed knee positions. In contrast, hamstrings EMG amplitude remained constant throughout ROM during dumbbell lunge, but increased at more extended knee joint positions during lunges using elastic resistance. Based on these results, it can be concluded that lunges performed using medium-load ballistic muscle contractions may induce similar or even higher leg muscle activity than lunges using high-load slow-speed contractions. Consequently, lunges using elastic resistance appear to be equally effective in inducing high leg muscle activity as traditional lunges using isoinertial resistance.

  13. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of

  14. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements

    PubMed Central

    Vohra, Ravneet S.; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C.; Sweeney, H. Lee; Walter, Glenn A.; Vandenborne, Krista

    2015-01-01

    Introduction The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Methods Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Results Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Discussion Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD. PMID:26103164

  15. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    PubMed

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  16. Effect of whole body vibration on leg muscle strength after healed burns: a randomized controlled trial.

    PubMed

    Ebid, Anwar Abdelgayed; Ahmed, Mohamed Taher; Mahmoud Eid, Marwa; Mohamed, Mohamed Salah Eldien

    2012-11-01

    To investigate the effects of eight weeks whole body vibration training program on leg muscle strength (force-producing capacity) in adults after healed burns. Randomized controlled trial. Faculty of Physical Therapy, Cairo University. Thirty-one burned patients participated in the study and were randomized into whole body vibration group and control group. Non-burned healthy adults were assessed similarly to burned subjects and served as matched healthy controls. The whole body vibration group performed an eight weeks vibration program three times a week on a vibration platform; the control group received home based physical therapy program without vibration training. Assessment of knee extensors and ankle planter flexor strength by isokinetic dynamometer at 150°/s were performed at the beginning of the study and at the end of the training period for both groups. Subjects with burns more than 36% TBSA produced significantly less torque in the quadriceps and calf muscle than non-burned healthy subjects. Patients in whole body vibration group showed a significant improvement in knee extensor and ankle planter flexor strength as compared with those in the control group. Knee extensor strength and percent improvement was 233.40±5.74 (64.93±3.03 change score) and 38.54% for the vibration group and 190.07±3.99 (21.66±4.41 change score) and 12.86% for the control group, ankle plantar flexor strength and percent improvement was 156.27±5.95 (54.53±6.16 change score) and 53.70% for the vibration group and 116.13±3.24 (14.66±2.71 change score) and 14.52% for the control group. Participation in whole body vibration program resulted in a greater improvement in quadriceps and calf muscle strength in adults with healed thermal burn compared to base line values; a WBV program is an effective for strength gain in rehabilitation of burned patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  17. Tissue temperature transients in resting contra-lateral leg muscle tissue during isolated knee extension.

    PubMed

    Kenny, Glen P; Reardon, Frank D; Ducharme, Michel B; Reardon, Mark L; Zaleski, Wytek

    2002-12-01

    This study was designed to evaluate the role of non-active tissue in the retention and dissipation of heat during and following intense isolated muscle activity. Six subjects performed an incremental isotonic test (constant angular velocity, increases in force output) on a KIN-COM isokinetic apparatus to determine their maximal oxygen consumption during single knee extensions (VO2sp). In a subsequent session, a thin wire multi-sensor temperature probe was inserted into the left vastus medialis under ultrasound guidance at a specific internal marker. The deepest temperature sensor (tip, Tmu10) was located approximately 10 mm from the femur and deep femoral artery with 2 additional sensors located at 15 (Tmu25) and 30 (Tmu40) mm from the tip. Implant site was midway between and medial to a line joining the anterior superior iliac spine and base of patella. Esophageal temperature (Tes) temperature was measured as an index of core temperature. Subjects rested in a supine position for 60 min followed by 30 min of seated rest in an ambient condition of 22 degree C. Subjects then performed 15 min of isolated single right knee extensions against a dynamic resistance on a KIN COM corresponding to 60% of VO2sp at 60 degree x sec(-1). Exercise was followed by 60 min of seated rest. Resting Tes was 37 degree C while Tmu10, Tmu25, and Tmu40 were 36.58, 36.55 and 36.45 degree C, respectively. Exercise resulted in a Tes increase of 0.31 C above pre-exercise resting. Tmu of the non-exercising leg increased 0.23, 0.19 and 0.09 degree C for Tmu10, Tmu25, and Tmu40, respectively. While Tes decreased to baseline values within approximately 15 min of end-exercise, Tmu10 reached resting values following approximately 40 min of recovery. These results suggest that during isolated muscle activity, convective heat transfer by the blood to non-active muscle tissue may have a significant role in maintaining resting core temperature.

  18. Design of a knee and leg muscle exerciser for paraplegics using a shape memory alloy rotary joint actuator

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Shahinpoor, Mohsen

    1998-07-01

    This paper presents a design of an active knee and leg muscle exerciser using a shape memory alloy (SMA) rotary joint actuator. This active exerciser is designed for a paraplegic to exercise his or her knee and leg muscles. The exerciser is composed of a lower extremity orthosis or a knee brace, an SMA rotary joint actuator, and an electronic control unit. The lower extremity orthosis and knee brace are commercially available. The analysis model of the SMA rotary joint actuator is introduced and the design formulas are derived. A quasi-static analysis of the SMA rotary joint actuator is assumed in this design. The actuating component of the SMA rotary joint actuator is a bundle of lengthy SMA wires which are wrapped on several wrapping pulleys. A constant force spring is incorporated in this actuator to provide the SMA wires with a bias force to maintain a recoverable initial position of the actuator. A prototype of the active knee and leg muscle exerciser is designed, and an electronic control unit in the prototype provides users with a means of adjusting forward rotation speed and cycle time of the exerciser.

  19. Differential control of leg and trunk muscle activity by vestibulo-spinal and proprioceptive signals during human balance corrections.

    PubMed

    Allum, J H; Honegger, F; Acuña, H

    1995-03-01

    Knowledge about how proprioceptive signals trigger and modulate human balance corrections has important implications for the rehabilitation of postural and gait disorders, and increases our understanding of normal interactions between these sensory systems. We used combinations of support-surface rotation and rearward translation to examine the triggering effects of ankle and knee movements on balance corrections. By comparing the responses in normal subjects to those in persons with a bilateral peripheral vestibular deficit, we determined the modulating influence of vestibular inputs on balance responses. Differences in normal and vestibular-loss responses under the different proprioceptive conditions revealed four general findings. First, ventral leg muscle responses are strongly modulated by vestibulo-spinal inputs and by proprioceptive inputs from the ankle and knee. Second, triceps surae muscle responses are initially dependent on ankle inputs, and after 100 ms are modulated by knee inputs; they are not altered by vestibular loss. Third, paraspinal responses in vestibular-loss subjects are enhanced because of unstable trunk sway induced by the lack of ventral leg-muscle activity. Fourth, the earliest possible triggering signal for establishing the timing of interlink muscle activity appears to be knee flexion and/or trunk rotation on the pelvis. These results indicate that a confluence of knee and trunk proprioceptive and vestibulo-spinal inputs, rather than either input alone, is involved in establishing the muscle synergy underlying normal balance corrections.

  20. Muscle Activation Characteristics of the Front Leg During Baseball Swings with Timing Correction for Sudden Velocity Decrease

    PubMed Central

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2015-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings. PMID:25918848

  1. Growth responses of breast and leg muscles to essential amino acids in broiler chicks.

    PubMed

    Mehri, M; Bagherzadeh-Kasmani, F; Rokouei, M

    2016-03-01

    The first three essential amino acids (EAA) for broilers including methionine (Met), lysine (Lys) and threonine (Thr) may greatly influence the growth of chick muscles at early stages of life. In order to survey the potential effects of those EAA on growth muscles, a rotatable three-variable central composite design (CCD) was conducted to track the interrelationships of dietary digestible Met (dMet), Lys (dLys) and Thr (dThr) for optimization of processing yields in broiler chicks using response surface methodology. A total of 60 floor pens of six birds each were assigned to 15 dietary treatments based on CCD containing five levels of dMet (0.416% to 0.584% of diet), dLys (0.881% to 1.319% of diet) and dThr (0.532% to 0.868% of diet) from 3 to 16 days of age. Experimental treatments significantly affected breast mass (BM) and leg mass (LM) of the birds (P<0.05) in which the main effect of dLys on BM was threefold higher than the main effect of dThr, and interaction effect between dMet and dLys was observed on BM (P<0.05). However, in the case of LM, the main effect of dThr was higher than the main effects of dMet and dLys and highest interaction effect exist between dThr and dMet (P<0.05). The second-order models for BM and LM were fitted by least squares regression. Canonical analysis revealed that the stationary points for carcass components were saddle points, thus ridge analysis was performed for getting optimal values of each EAA. Ridge analyses of BM and LM models showed that the maximum BM point may be obtained with 0.58%, 1.05% and 0.76% of dMet, dLys and dThr, respectively, in diet, and maximum LM point may be achieved with 0.58%, 1.09% and 0.70% of dMet, dLys and dThr, respectively, in diet. The resultant ideal ratios of dMet and dThr to dLys were 55% and 72% for BM; 53% and 64% for LM. Moreover, sensitivity analysis showed that the most important amino acids in BM and LM models were Lys and Thr, respectively. In conclusion, providing these three amino

  2. Consequences of simulated car driving at constant high speed on the sensorimotor control of leg muscles and the braking response.

    PubMed

    Jammes, Yves; Behr, Michel; Weber, Jean P; Berdah, Stephane

    2016-07-06

    Due to the increase in time spent seated in cars, there is a risk of fatigue of the leg muscles which adjust the force exerted on the accelerator pedal. Any change in their sensorimotor control could lengthen the response to emergency braking. Fourteen healthy male subjects (mean age: 42 ± 4 years) were explored. Before and after a 1-h driving trial at 120 km h(-1) , we measured the braking response, the maximal leg extension and foot inversion forces, the tonic vibratory response (TVR) in gastrocnemius medialis (GM) and tibialis anterior (TA) muscles to explore the myotatic reflex, and the Hoffmann reflex (H-reflex). During driving, surface electromyograms (EMGs) of GM and TA were recorded and the ratio between high (H) and low (L) EMG energies allowed to evaluate the recruitment of high- and low-frequency motor unit discharges. During driving, the H/L ratio decreased in TA, whereas modest and often no significant H/L changes occurred in GM muscle. After driving, the maximal foot inversion force decreased (-19%), while the leg extension force did not vary. Reduced TVR amplitude (-29%) was measured in TA, but no H-reflex changes were noted. The braking reaction time was not modified after the driving trial. Driving at constant elevated speed reduced the myotatic reflex and the recruitment of motor units in TA muscle. The corresponding changes were rarely present in the GM muscle that plays a key role in the braking response, and this could explain the absence of a reduced braking reaction time.

  3. Timing of Muscle Response to a Sudden Leg Perturbation: Comparison between Adolescents and Adults with Down Syndrome

    PubMed Central

    Valle, Maria Stella; Cioni, Matteo; Pisasale, Mariangela; Pantò, Maria Rosita; Casabona, Antonino

    2013-01-01

    Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test). In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability. PMID:24278374

  4. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002muscles. Co-activation was elevated in young adults for the trunk (0.001muscle coordination patterns during all stance conditions at the ankle (0.06<ηp(2)<0.28) and the trunk (0.14<ηp(2)<0.23). Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity.

  5. Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans.

    PubMed

    Courtine, Grégoire; Harkema, Susan J; Dy, Christine J; Gerasimenko, Yuri P; Dyhre-Poulsen, Poul

    2007-08-01

    Motor responses evoked by stimulating the spinal cord percutaneously between the T11 and T12 spinous processes were studied in eight human subjects during walking and running. Stimulation elicited responses bilaterally in the biceps femoris, vastus lateralis, rectus femoris, medial gastrocnemius, soleus, tibialis anterior, extensor digitorum brevis and flexor digitorum brevis. The evoked responses were consistent with activation of Ia afferent fibres through monosynaptic neural circuits since they were inhibited when a prior stimulus was given and during tendon vibration. Furthermore, the soleus motor responses were inhibited during the swing phase of walking as observed for the soleus H-reflex elicited by tibial nerve stimulation. Due to the anatomical site and the fibre composition of the peripheral nerves it is difficult to elicit H-reflex in leg muscles other than the soleus, especially during movement. In turn, the multisegmental monosynaptic responses (MMR) technique provides the opportunity to study modulation of monosynaptic reflexes for multiple muscles simultaneously. Phase-dependent modulation of the MMR amplitude throughout the duration of the gait cycle period was observed in all muscles studied. The MMR amplitude was large when the muscle was activated whereas it was generally reduced, or even suppressed, when the muscle was quiescent. However, during running, there was a systematic anticipatory increase in the amplitude of the MMR at the end of swing in all proximal and distal extensor muscles. The present findings therefore suggest that there is a general control scheme by which the transmission in the monosynaptic neural circuits is modulated in all leg muscles during stepping so as to meet the requirement of the motor task.

  6. The influence of different floor stiffness on mechanical efficiency of leg extensor muscle.

    PubMed

    Bosco, C; Saggini, R; Viru, A

    1997-06-01

    The mechanical behaviour of skeletal muscle is influenced by internal factors (e.g. re-use of elastic energy) and/or external conditions (e.g. floor compliance, shoe structure etc.). These factors have an effect on muscular work economy-this was investigated in the present study. Eight subjects were tested during three different series of jumps. Each series consisted of rhythmical vertical jumps performed at desired frequency and height for 1 min. The first (1) series was executed on the laboratory floor without rebound condition (subjects were asked to maintain 1 s period in an isometric condition before concentric work was performed), the second (II) and the third (III) series were performed in rebound conditions respectively on a laboratory floor (hard surface) and on a special panel possessing high compliance (a special foam rubber panel with stiffness of 14.4 kN/m). Expired air was collected during the test and recovery for determination of energy expenditure. Mechanical work was calculated from the vertical displacement of the body during the jumps. The results indicated that the net efficiency in the jumps without prestretch of the leg extensor muscles (series I) was the lowest (19.4%). In contrast, the net efficiency observed in rebound jumps (series II and III) was respectively 30.8% and 33.1%, demonstrating that the reuse of elastic energy (Wel) plays an important role for muscular work efficiency. However, the contribution of Wel to the total work performed was different p < 0.05, Student's t-test) in jumps on the special panel (41%) compared to the normal surface (37%), even if the total amount of stored elastic energy was the same in both conditions. The different efficiency observed between series II and III was attributed to the compliance of the surface on which the tests were executed. It was suggested that man could change his neuromuscular pattern to adapt muscular behaviour for matching the damped properties shown by the high compliance surface

  7. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance.

    PubMed

    McCreesh, Karen; Egan, Sinead

    2011-09-13

    Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  8. Impact of L-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure.

    PubMed

    Figueroa, Arturo; Alvarez-Alvarado, Stacey; Ormsbee, Michael J; Madzima, Takudzwa A; Campbell, Jeremiah C; Wong, Alexei

    2015-03-01

    Aging is associated with increased arterial stiffness (pulse wave velocity, PWV) and muscle strength/mass loss. Exercise training alone is not always effective to improve PWV and lean mass (LM) in older women. To investigate the independent and combined effects of whole-body vibration training (WBVT) and L-citrulline supplementation on PWV and muscle function in women, forty-one postmenopausal women aged 58 ± 3 years and body mass index (34 ± 2 kg/m(2)) were randomly assigned to the following groups: WBVT, L-citrulline, and WBVT + L-citrulline for 8 weeks. WBVT consisted of four leg exercises three times weekly. Aortic (cfPWV) and leg (faPWV) PWV, leg LM index, leg strength, and body fat percentage (BF%) were measured before and after the interventions. WBVT + L-citrulline decreased cfPWV (-0.91 ± 0.21 m/s, P < 0.01) compared to both groups. All interventions decreased faPWV (P < 0.05) similarly. Leg LM index increased (2.7 ± 0.5%, P < 0.001) after WBVT + L-citrulline compared with L-citrulline. Both WBVT interventions increased leg strength (~37%, P < 0.001) compared to L-citrulline while decreased BF% (~2.0%, P < 0.01). Reductions in cfPWV were correlated with increases in leg LM index (r = -0.63, P < 0.05). Our findings suggest that leg muscle strength and arterial stiffness can be improved after WBVT, but its combination with L-citrulline supplementation enhanced benefits on aortic stiffness and leg LM. Therefore, WBVT + L-citrulline could be an intervention for improving arterial stiffness and leg muscle function in obese postmenopausal women with prehypertension or hypertension, thereby reducing their cardiovascular and disability risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect.

    PubMed

    Ahn, A N; Full, R J

    2002-02-01

    The individual muscles of a multiple muscle group at a given joint are often assumed to function synergistically to share the load during locomotion. We examined two leg extensors of a running cockroach to test the hypothesis that leg muscles within an anatomical muscle group necessarily manage (i.e. produce, store, transmit or absorb) energy similarly during running. Using electromyographic and video motion-analysis techniques, we determined that muscles 177c and 179 are both active during the first half of the stance period during muscle shortening. Using the in vivo strain and stimulation patterns determined during running, we measured muscle power output. Although both muscles were stimulated during the first half of shortening, muscle 177c generated mechanical energy (28 W x kg(-1)) like a motor, while muscle 179 absorbed energy (-19 W x kg(-1)) like a brake. Both muscles exhibited nearly identical intrinsic characteristics including similar twitch kinetics and force-velocity relationships. Differences in the extrinsic factors of activation and relative shortening velocity caused the muscles to operate very differently during running. Presumed redundancy in a multiple muscle group may, therefore, represent diversity in muscle function. Discovering how muscles manage energy during behavior requires the measurement of a large number of dynamically interacting variables.

  10. Post-exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation.

    PubMed

    Yamane, Motoi; Teruya, Hiroyasu; Nakano, Masataka; Ogai, Ryuji; Ohnishi, Norikazu; Kosaka, Mitsuo

    2006-03-01

    The influence of regular post-exercise cold application to exercised muscles trained by ergometer cycling (leg muscles) or handgrip exercise using a weight-loaded handgrip ergometer (forearm flexor muscles) was studied in human volunteers. Muscle loads were applied during exercise programs three to four times a week for 4-6 weeks. Besides measuring parameters characterizing muscle performance, femoral and brachial artery diameters were determined ultrasonographically. Training effects were identified by comparing pre- and post-training parameters in matched groups separately for the trained limbs cooled after exercise by cold-water immersion and the corresponding trained limbs kept at room temperature. Significant training effects were three times more frequent in the control than in the cold group, including increases in artery diameters in the control but not in the cold group. It is concluded that training-induced molecular and humoral adjustments, including muscle hyperthermia, are physiological, transient and essential for training effects (myofiber regeneration, muscle hypertrophy and improved blood supply). Cooling generally attenuates these temperature-dependent processes and, in particular, hyperthermia-induced HSP formation. This seems disadvantageous for training, in contrast to the beneficial combination of rest, ice, compression and elevation in the treatment of macroscopic musculo-tendinous damage.

  11. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work.

    PubMed

    MacInnis, Martin J; Zacharewicz, Evelyn; Martin, Brian J; Haikalis, Maria E; Skelly, Lauren E; Tarnopolsky, Mark A; Murphy, Robyn M; Gibala, Martin J

    2017-05-01

    A classic unresolved issue in human integrative physiology involves the role of exercise intensity, duration and volume in regulating skeletal muscle adaptations to training. We employed counterweighted single-leg cycling as a unique within-subject model to investigate the role of exercise intensity in promoting training-induced increases in skeletal muscle mitochondrial content. Six sessions of high-intensity interval training performed over 2 weeks elicited greater increases in citrate synthase maximal activity and mitochondrial respiration compared to moderate-intensity continuous training matched for total work and session duration. These data suggest that exercise intensity, and/or the pattern of contraction, is an important determinant of exercise-induced skeletal muscle remodelling in humans. We employed counterweighted single-leg cycling as a unique model to investigate the role of exercise intensity in human skeletal muscle remodelling. Ten young active men performed unilateral graded-exercise tests to measure single-leg V̇O2, peak and peak power (Wpeak ). Each leg was randomly assigned to complete six sessions of high-intensity interval training (HIIT) [4 × (5 min at 65% Wpeak and 2.5 min at 20% Wpeak )] or moderate-intensity continuous training (MICT) (30 min at 50% Wpeak ), which were performed 10 min apart on each day, in an alternating order. The work performed per session was matched for MICT (143 ± 8.4 kJ) and HIIT (144 ± 8.5 kJ, P > 0.05). Post-training, citrate synthase (CS) maximal activity (10.2 ± 0.8 vs. 8.4 ± 0.9 mmol kg protein(-1)  min(-1) ) and mass-specific [pmol O2 •(s•mg wet weight)(-1) ] oxidative phosphorylation capacities (complex I: 23.4 ± 3.2 vs. 17.1 ± 2.8; complexes I and II: 58.2 ± 7.5 vs. 42.2 ± 5.3) were greater in HIIT relative to MICT (interaction effects, P < 0.05); however, mitochondrial function [i.e. pmol O2 •(s•CS maximal activity)(-1) ] measured under various

  12. Effects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure.

    PubMed

    Borghi-Silva, Audrey; Carrascosa, Cláudia; Oliveira, Cristino Carneiro; Barroco, Adriano C; Berton, Danilo C; Vilaça, Debora; Lira-Filho, Edgar B; Ribeiro, Dirceu; Nery, Luiz Eduardo; Neder, J Alberto

    2008-06-01

    Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate tests (70-80% peak) receiving proportional assisted ventilation (PAV) or sham ventilation. Relative changes (Delta%) in deoxy-hemoglobyn, oxi-Hb ([O2Hb]), tissue oxygenation index, and total Hb ([HbTOT], an index of local blood volume) in the vastus lateralis were measured by near infrared spectroscopy. In addition, QT was monitored by impedance cardiography and arterial O2 saturation by pulse oximetry (SpO2). There were significant improvements in exercise tolerance (Tlim) with PAV. Blood lactate, leg effort/Tlim and dyspnea/Tlim were lower with PAV compared with sham ventilation (P < 0.05). There were no significant effects of RM unloading on systemic O2 delivery as QT and SpO2 at submaximal exercise and at Tlim did not differ between PAV and sham ventilation (P > 0.05). Unloaded breathing, however, was related to enhanced leg muscle oxygenation and local blood volume compared with sham, i.e., higher Delta[O2Hb]% and Delta[HbTOT]%, respectively (P < 0.05). We conclude that RM unloading had beneficial effects on the oxygenation status and blood volume of the exercising muscles at similar systemic O2 delivery in patients with advanced CHF. These data suggest that blood flow was redistributed from respiratory to locomotor muscles during unloaded breathing.

  13. Quantitative, dynamic and noninvasive determination of skeletal muscle perfusion in mouse leg by NMR arterial spin-labeled imaging.

    PubMed

    Bertoldi, Didier; Loureiro de Sousa, Paulo; Fromes, Yves; Wary, Claire; Carlier, Pierre G

    2008-11-01

    Because mouse may relatively easily be genetically tailored to develop equivalent of human muscular diseases or to present controlled alterations of mechanisms involved in vasoregulation, it has become the prevalent species to explore such questions. However, the very small size of the animals represents a serious limitation when evaluating the functional consequences of these genetic manipulations. In this context, the recourse to arterial spin labeling (ASL) nuclear magnetic resonance (NMR) methods in which arterial water spins act as an endogenous and freely diffusible tracer of perfusion is tempting but challenging. This article shows that despite the small size of the animal, mouse muscle perfusion may be measured, at rest and in conditions of reactive hyperemia, using saturation inversion recovery sequence, a pulsed ASL variant, combined with NMR imaging. Baseline perfusion values in the mouse leg were 17+/-11 ml.min(-1).100 g(-1) (n=11) and were comparable to microsphere data from the literature. Under ischemia, leg perfusion was 1.2+/-9.3 ml.min(-1).100 g(-1) (n=11). The difference observed between basal and ischemic measurements was statistically different (P=.0001). The temporal pattern of hyperemia in mouse muscle was coherent with previously published measurements in humans and in rats. The mean peak perfusion was 62+/-24 ml.min(-1).100 g(-1) (n=6) occurring 48+/-27 s after the end of occlusion. In conclusion, this study demonstrated the ability of ASL combined to NMR imaging to quantify skeletal muscle perfusion in mice legs, both at rest and dynamically.

  14. Localization of nerve entry points as targets to block spasticity of the deep posterior compartment muscles of the leg.

    PubMed

    Hu, Shuaiyu; Zhuo, Lifan; Zhang, Xiaoming; Yang, Shengbo

    2017-10-01

    To identify the optimal body surface puncture locations and the depths of nerve entry points (NEPs) in the deep posterior compartment muscles of the leg, 60 lower limbs of thirty adult cadavers were dissected in prone position. A curved line on the skin surface joining the lateral to the medial epicondyles of the femur was taken as a horizontal reference line (H). Another curved line joining the lateral epicondyle of the femur to the lateral malleolus was designated the longitudinal reference line (L). Following dissection, the NEPs were labeled with barium sulfate and then subjected to spiral computed tomography scanning. The projection point of the NEP on the posterior skin surface of the leg was designated P, and the projection in the opposite direction across the transverse plane was designated P'. The intersections of P on H and L were identified as PH and PL , and their positions and the depth of the NEP on PP' were measured using the Syngo system and expressed as percentages of H, L, and PP'. The PH points of the tibial posterior, flexor hallucis longus and flexor digitorum longus muscles were located at 38.10, 46.20, and 55.21% of H, respectively. The PL points were located at 25.35, 41.30, and 45.39% of L, respectively. The depths of the NEPs were 49.11, 54.64, and 55.95% of PP', respectively. The accurate location of these NEPs should improve the efficacy and efficiency of chemical neurolysis for treating spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 30:855-860, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. More gain less pain: balance control learning shifts the activation patterns of leg and neck muscles and increases muscular parsimony.

    PubMed

    Iodice, Pierpaolo; Cesinaro, Stefano; Romani, Gian Luca; Pezzulo, Giovanni

    2015-07-01

    Athletes such as skaters or surfers maintain their balance on very unstable platforms. Remarkably, the most skilled athletes seem to execute these feats almost effortlessly. However, the dynamics that lead to the acquisition of a defined and efficient postural strategy are incompletely known. To understand the posture reorganization process due to learning and expertise, we trained twelve participants in a demanding balance/posture maintenance task for 4 months and measured their muscular activity before and after a (predictable) disturbance cued by an auditory signal. The balance training determined significant delays in the latency of participants' muscular activity: from largely anticipatory muscular activity (prior to training) to a mixed anticipatory-compensatory control strategy (after training). After training, the onset of activation was delayed for all muscles, and the sequence of activation systematically reflected the muscle position in the body from top to bottom: neck/upper body muscles were recruited first and in an anticipatory fashion, whereas leg muscles were recruited after the disturbance onset, producing compensatory adjustments. The resulting control strategy includes a mixture of anticipatory and compensatory postural adjustments, with a systematic sequence of muscular activation reflecting the different demands of neck and leg muscles. Our results suggest that subjects learned the precise timing of the disturbance onset and used this information to deploy postural adjustments just-in-time and to transfer at least part of the control of posture from anticipatory to less-demanding feedback-based strategies. In turn, this strategy shift increases the cost-efficiency of muscular activity, which is a key signature of skilled performance.

  16. Muscle timing in injured and non-injured leg of athletes with chronic ankle instability in response to a visual stimulus during forward jumping.

    PubMed

    Fereydounnia, Sara; Shadmehr, Azadeh; Talebian Moghadam, Saeed; Olyaei, Gholamreza; Jalaie, Shohreh; Tahmasebi, Ali

    2016-01-01

    The aim of this study was to investigate premotor time, motor time and reaction time of the injured and non-injured leg muscles of athletes with chronic ankle instability in response to a visual stimulus during forward jumping. Surface electromyography was performed on injured and non-injured leg of eight athletes with chronic ankle instability during forward jumping. Results showed that premotor time of the peroneus longus was significantly longer in non-injured leg compared with injured leg (489.37 ± 220.22 ms vs. 306.46 ± 142.92 ms, P = 0.031); on the contrary, motor time of the peroneus longus was significantly shorter in non-injured leg compared with injured leg (569.04 ± 318.62 ms vs. 715.12 ± 328.72 ms, P = 0.022). No significant difference was noted in the timing of other calf muscles (P > 0.05). According to the results of this study, rehabilitation protocols, regarding ankle instability, need to put greater emphasis on tasks that require proper timing of muscles and muscle re-education so that protocols could reduce residual symptoms after sprain and prevent recurrent sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Neuro-Mechanical Model Explaining the Physiological Role of Fast and Slow Muscle Fibres at Stop and Start of Stepping of an Insect Leg

    PubMed Central

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too. PMID:24278108

  18. A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg.

    PubMed

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too.

  19. Identification and classification of involuntary leg muscle contractions in electromyographic records from individuals with spinal cord injury.

    PubMed

    Thomas, C K; Dididze, M; Martinez, A; Morris, R W

    2014-10-01

    Involuntary muscle contractions (spasms) are common after human spinal cord injury (SCI). Our aim was to compare how well two raters independently identified and classified different types of spasms in the same electromyographic records (EMG) using predefined rules. Muscle spasms were identified by the presence, timing and pattern of EMG recorded from paralyzed leg muscles of four subjects with chronic cervical SCI. Spasms were classified as one of five types: unit, tonic, clonus, myoclonus, mixed. In 48h of data, both raters marked the same spasms most of the time. More variability in the total spasm count arose from differences between muscles (84%; within subjects) than differences between subjects (6.5%) or raters (2.6%). Agreement on spasm classification was high (89%). Differences in spasm count, and classification largely occurred when EMG was marked as a single spasm by one rater but split into multiple spasms by the other rater. EMG provides objective measurements of spasm number and type in contrast to the self-reported spasm counts that are often used to make clinical decisions about spasm management. Data on inter-rater agreement and discrepancies on muscle spasm analysis can both drive the design and evaluation of software to automate spasm identification and classification.

  20. Fatty acid profile of hind leg muscle in female and male nutria (Myocastor coypus Mol.), fed green forage diet.

    PubMed

    Głogowski, Robert; Czauderna, Marian; Rozbicka, Agnieszka; Krajewska, Katarzyna A; Clauss, Marcus

    2010-07-01

    The study describes the profile of fatty acids in hind leg muscle of 18 female and 12 male nutria reared on an extensive system farm in eastern Poland with a diet based on fresh forage. When compared to results from nutrias from an intensive production system from the literature, the forage-fed animals had lower proportions of saturated fatty acids, and higher proportions of n3-fatty acids in their muscle tissue; in particular, n6:n3-fatty acid ratios were lower (2.6-3.0) in forage-fed animals compared to intensively reared animals (16.8-28.9). These findings underline that using forage-based diets is feasible in nutrias, and an economic way to improve the fatty acid composition of their meat. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    PubMed Central

    2011-01-01

    Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section. PMID:21914209

  2. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    PubMed

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  3. Reflex pathways connect receptors in the human lower leg to the erector spinae muscles of the lower back.

    PubMed

    Clair, J M; Okuma, Y; Misiaszek, J E; Collins, D F

    2009-06-01

    Reflex pathways connect all four limbs in humans. Presently, we tested the hypothesis that reflexes also link sensory receptors in the lower leg with muscles of the lower back (erector spinae; ES). Taps were applied to the right Achilles' tendon and electromyographic activity was recorded from the right soleus and bilaterally from ES. Reflexes were compared between sitting and standing and between standing with the eyes open versus closed. Reflexes were evoked bilaterally in ES and consisted of an early latency excitation, a medium latency inhibition, and a longer latency excitation. During sitting but not standing, the early excitation was larger in the ES muscle ipsilateral to the stimulation (iES) than in the contralateral ES (cES). During standing but not sitting, the longer latency excitation in cES was larger than in iES. This response in cES was also larger during standing compared to sitting. Responses were not significantly different between the eyes open and eyes closed conditions. Taps applied to the lateral calcaneus (heel taps) evoked responses in ES that were not significantly different in amplitude or latency than those evoked by tendon taps, despite a 75-94% reduction in the amplitude of the soleus stretch reflex evoked by the heel taps. Electrical stimulation of the sural nerve, a purely cutaneous nerve at the ankle, evoked ES reflexes that were not significantly different in amplitude but had significantly longer latencies than those evoked by the tendon and heel taps. These results support the hypothesis that reflex pathways connect receptors in the lower leg with muscles of the lower back and show that that the amplitude of these reflexes is modulated by task. Responses evoked by stimulation of the sural nerve establish that reflex pathways connect the ES muscles with cutaneous receptors of the foot. In contrast, the large volley in muscle spindle afferents induced by the tendon taps compared to the heel taps did not alter the ES responses

  4. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players.

    PubMed

    Ruiz, J R; Fernández del Valle, M; Verde, Z; Díez-Vega, I; Santiago, C; Yvert, T; Rodríguez-Romo, G; Gómez-Gallego, F; Molina, J J; Lucia, A

    2011-12-01

    We examined the association of R577X polymorphism (rs1815739) in the α-actinin-3 (ACTN3) gene with "explosive" leg muscle power performance in a group of male and female elite volleyball players (n=66, 31 men, 35 women) and in a group of non-athletic male and female young adults (n=334, 243 men, 91 women). We assessed power performance by means of the vertical squat and counter-movement jump tests. We also determined whether the genotypic frequencies of the ACTN3 R577X genotypes differed between groups. We did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in both groups, regardless of gender (all P>0.05). Genotype frequencies were similar between volleyball and control groups (P=0.095). Moreover, we did not find an association between the ACTN3 R577X polymorphism and the likelihood of being an elite volleyball player using the dominant (RR vs RX+XX) and the recessive model (RR+RX vs XX). In summary, these findings suggest that the ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players.

  5. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.

    PubMed

    Szecsi, J; Straube, A; Fornusek, C

    2014-11-01

    Rehabilitation of persons with pareses commonly uses recumbent pedalling and a rigid pedal boot that fixes the ankle joint from moving. This study was performed to provide general muscle moments (GMM) and joint power data from able-bodied subjects performing recumbent cycling at two workloads. Twenty-six able-bodied subjects pedalled a stationary recumbent tricycle at 60 rpm during passive cycling and at two workloads (low 15 W and high 40 W per leg) while leg kinematics and pedal forces were recorded. GMM and power were calculated using inverse dynamic equations. During the high workload, the hip and knee muscles produced extensor/flexor moments throughout the extensions/flexions phases of the joints. For low workload, a prolonged (crank angle 0-258°) hip extension moment and a shortened range (350-150°) of knee extension moment were observed compared to the corresponding extension phases of each joint. The knee and hip joints generated approximately equal power. At the high workload the hip and knee extensors generated increased power in the propulsion phase. For the first time, this study provides GMM and power patterns for able-bodied subjects performing recumbent cycling with an immobilized ankle. The patterns showed greater similarities to upright cycling with a free ankle, than previously supposed. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. The susceptibility of the knee extensors to eccentric exercise-induced muscle damage is not affected by leg dominance but by exercise order.

    PubMed

    Hody, S; Rogister, B; Leprince, P; Laglaine, T; Croisier, J-L

    2013-09-01

    The aims of this study were first to compare the response of dominant and non-dominant legs to eccentric exercise and second, to examine whether there is an effect of exercise order on the magnitude of symptoms associated with intense eccentric protocols. Eighteen young men performed three sets of 30 maximal eccentric isokinetic (60° s(-1)) contractions of the knee extensors (range of motion, ROM: 0°-100°, 0 = full extension) using either dominant or non-dominant leg. They repeated a similar eccentric bout using the contralateral leg 6 weeks later. The sequence of leg's use was allocated to create equally balanced groups. Four indirect markers of muscle damage including subjective pain intensity, maximal isometric strength, muscle stiffness and plasma creatine kinase (CK) activity were measured before and 24 h after exercise. All markers changed significantly following the eccentric bout performed either by dominant or non-dominant legs, but no significant difference was observed between legs. Interestingly, the comparison between the first and second eccentric bouts revealed that muscle soreness (-42%, P<0.001), CK activity (-62%, P<0.05) and strength loss (-54%, P<0.01) were significantly lower after the second bout. This study suggests that leg dominance does not influence the magnitude of exercise-induced muscle damage and supports for the first time the existence of a contralateral protection against exercise-induced muscle damage in the lower limbs. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Changes in Muscle Oxygen Saturation Have Low Sensitivity in Diagnosing Chronic Anterior Compartment Syndrome of the Leg.

    PubMed

    Rennerfelt, Kajsa; Zhang, Qiuxia; Karlsson, Jón; Styf, Jorma

    2016-01-06

    Near-infrared spectroscopy measures muscle oxygen saturation (StO2) in the skeletal muscle and has been proposed as a noninvasive tool for diagnosing chronic anterior compartment syndrome (CACS). The purpose of this study was to investigate the diagnostic value of changes in StO2 during and after exercise in patients with CACS. The study comprised 159 consecutive patients with exercise-induced leg pain. Near-infrared spectroscopy was used to measure StO2 continuously before, during, and after an exercise test. One minute post-exercise, intramuscular pressure was recorded in the same muscle. The cohort was divided into patients with CACS (n = 87) and patients without CACS (n = 72) according to the CACS diagnostic criteria. Reoxygenation at rest after exercise was calculated as the time period required for the level of muscular StO2 to reach 50% (T50), 90% (T90), and 100% (T100) of the baseline value. The lowest level of StO2 during exercise was 1% (range, 1% to 36%) in the patients with CACS and 3% (range, 1% to 54%) in the patients without CACS. The sensitivity was 34% and the specificity was 43% when an StO2 level of ≤8% at peak exercise was used to indicate CACS. The sensitivity and the specificity were only 1% when an StO2 level of ≤50% at peak exercise was used to indicate CACS. The time period for reoxygenation was seven seconds (range, one to forty-three seconds) at T50, twenty-eight seconds (range, seven to seventy-seven seconds) at T90, and forty-two seconds (range, seven to 200 seconds) at T100 in the patients with CACS and ten seconds (range, one to forty-nine seconds) at T50, thirty-two seconds (range, four to 138 seconds) at T90, and forty-eight seconds (range, four to 180 seconds) at T100 in the patients without CACS. When thirty seconds or more at T90 was set as the cutoff value for a prolonged time for reoxygenation, indicating a diagnosis of CACS, the sensitivity was 38% and the specificity was 50%. Changes in muscle oxygen saturation during and

  8. Bone Mineral Density and Leg Muscle Strength in Young Caucasian, Hispanic and Asian women

    PubMed Central

    Liang, Michael T.C.; Bassin, Stanley; Dutto, Darren; Braun, William; Wong, Nathan; Pontello, Andria M.; Cooper, Dan M.; Arnaud, Sara B.

    2007-01-01

    Differences in bone density (BMD) of ethnically diverse populations are usually attributed to anthropometric characteristics, but may also be due to life style or diet. We studied healthy young sedentary women with Asian (ASN, n=40), Hispanic (HIS, n=39) or Caucasian (CAU, n=36) backgrounds. Body composition and regional BMD, were measured by dual-energy X-ray absorptiometry (DXA, Hologic or PIXI, Lunar GE for the heel and wrist). Leg strength was quantified with a leg press and dietary calcium was estimated with three-day diet records. CAU were taller than HIS and ASN (p<0.01). ASN had lower body weights, fat mass, lean body mass, and leg strength than HIS or CAU (p<0.01). Differences in BMD among groups were not eliminated by adjusting for body weight and height at the arm, trochanter, femoral neck, and total hip where BMD values remained lower in the ASN than in HIS or CAU (p<0.01). Conversely, adjusted BMD at the wrist was 7.3% higher in ASN and 8.3% higher in HIS and at the heel, 7.3% higher in ASN and 7.0% higher in HIS than in CAU p<0.05). Leg strength was a significant predictor of BMD in the hip in CAU (R = 0.53, p = 0.004), in the hip with dietary calcium in ASN (R = 0.65, p = 0.02), and in the heel with height in HIS (R = 0.57, p = 0.03). We conclude that significant factors underlying BMD in ethnically diverse young women vary as a function of ethnicity and include leg strength and dietary calcium as well as anthropometric characteristics. PMID:17485032

  9. The active straight leg raising test (ASLR) in pregnant women: differences in muscle activity and force between patients and healthy subjects.

    PubMed

    de Groot, M; Pool-Goudzwaard, A L; Spoor, C W; Snijders, C J

    2008-02-01

    Pregnancy-related low back and pelvic pain (PLBP) is a frequent complication of pregnancy. Although pathological mechanisms underlying PLBP are obscure, dysfunction of the sacroiliac joints (SI-joints) seems to play an important role. A cross-sectional study was performed on 24 pregnant women with and without PLBP. The objective was to determine muscle activation patterns of trunk and leg muscles during the active straight leg raising test (ASLR) and static hip flexion, and to determine maximal hip flexion force at 0 and 20 cm leg raise height. Moreover, the effort to raise the leg was scored. The measurements resulted in several significant differences between the patients and healthy controls; among others (a) patients scored subjectively more effort during ASLR, (b) at both 0 and 20 cm leg raise height patients had less hip flexion force, and (c) patients developed more muscle activity during ASLR. Since pregnant women with PLBP developed a higher muscle activity during ASLR with a significantly lower output at 0 and 20 cm than healthy pregnant women, it could be proposed that the ASLR demonstrates a disturbed load transfer across the SI-joints in this population.

  10. Night Leg Cramps

    MedlinePlus

    ... feet or thighs might cramp as well. Forcefully stretching the contracted muscle relieves the pain. Most of ... include: Drinking plenty of fluids to avoid dehydration Stretching your leg muscles or riding a stationary bicycle ...

  11. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.

    PubMed

    Notarius, Catherine F; Millar, Philip J; Murai, Hisayoshi; Morris, Beverley L; Marzolini, Susan; Oh, Paul; Floras, John S

    2015-02-01

    People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P < 0.001) in HFrEF. Exercise increased HR (P < 0.001) with no group

  12. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance.

    PubMed

    Adlerton, Anna-Karin; Moritz, Ulrich; Moe-Nilssen, Rolf

    2003-01-01

    The control of balance is vital in many sporting activities as well as in activities of daily life. In order to treat deficiencies properly valid and reliable methods are needed to evaluate different aspects of stability. Muscle fatigue has been proposed to cause a change in postural control strategy, and the use of different tools and variables might therefore elucidate these changes. The aims of the present study were: to investigate if forceplate and accelerometer measurements about postural control during one-legged stance indicate changes in postural control strategy after fatiguing exercise; and to investigate the correlation between forceplate and accelerometer measurements obtained before and after fatiguing exercise. The study used an experimental design. Twenty-three healthy women (mean age 26.8 years; range 20-34 years) were studied. Forceplate and accelerometer data were obtained simultaneously and consisted of measures of centre of pressure movements and horizontal trunk acceleration in medio-lateral and antero-posterior directions. The calf muscles of the right leg were fatigued by repeated heel rises. The average amplitude of centre of pressure movements and trunk acceleration increased, whereas the average velocity of centre of pressure movements decreased during fatigue. These changes indicate a change of movement strategy. Moderate correlation between trunk acceleration and centre of pressure movements was seen, confirming the link between the variables, but indicating that different aspects of the ability to control balance were measured. Calf muscle fatigue has a short-lasting effect on body balance, with measurements indicating a change in postural control strategy. Different tools and variables are needed to identify different balance control strategies. The procedures used in the present study may be modified to identify subjects with inadequate capacity to choose between balance control strategies; they are also applicable in clinical

  13. FATIGUE AND RECOVERY FROM DYNAMIC CONTRACTIONS IN MEN AND WOMEN DIFFER FOR ARM AND LEG MUSCLES

    PubMed Central

    SENEFELD, JONATHON; YOON, TEJIN; BEMENT, MARIE HOEGER; HUNTER, SANDRA K.

    2014-01-01

    Introduction Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Methods Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Results Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P < 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. Conclusions The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. PMID:23494882

  14. Microvascular remodelling after endurance training with Co2+ treatment in the rat diaphragm and hind-leg muscles.

    PubMed

    Suzuki, Junichi

    2002-10-01

    This study was designed to examine the changes in capillary geometry, especially the distribution of arteriolar and venular capillaries, in the skeletal muscles of female Wistar rats after endurance training with and without chronic CoCl(2) administration. Four groups of rats were used: non-treated sedentary, non-treated training, Co(2+)-treated sedentary, and Co(2+)-treated training. Exercise training by running lasted for 5 weeks at 25 m/min on a 20% gradient, 10-60 min/d, 5 d/week. The Co(2+)-treated rats drank water containing 0.01% CoCl(2) for 5 weeks. Morphological findings were obtained from the soleus (SOL), deep (PLd) and superficial (PLs) portions of plantaris, and diaphragm (DIA) muscles. Co(2+) administration significantly increased the blood hemoglobin concentration by approximately 25% with and without training. Only in DIA, the Co(2+) treatment alone significantly increased total capillary density and the capillary-to-fiber ratio (C : F) (p<0.05). Both training groups with and without Co(2+) administration showed a significant increase in the C : F in SOL and PLd (p<0.05). In PLd, the increase was significantly greater in the Co(2+)-treated training group than in the non-Co(2+)-treated training group (p<0.05). Training significantly increased the proportion of arteriolar capillaries while it decreased that of venular capillaries in both SOL and PLd (p<0.05). These changes were also observed in PLd after training with Co(2+). The densities of VEGF-positive and TGF-beta1-positive capillaries remained unchanged in all muscle portions examined after either Co(2+) administration or exercise training. These results suggest that chronic Co(2+) administration causes adaptive changes in the oxygen transport system in respiratory muscle and facilitates exercise-induced angiogenesis in hind-leg muscles.

  15. Single fiber, laser Doppler flowmetry (LDF) for detecting muscle microcirculation in the low leg and its technique improvement

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Oberg, P. Ake; Rohman, Hakan; Larsson, Sven-Erik

    1995-02-01

    Percutaneous, single fiber LDF of 632.8 nm (He-Ne) is used for continuous recording of low leg muscle microcirculation. An optical fiber (0 equals 0.5 mm) was placed inside the tibialis ant. muscle 10 cm below the knee joint via a plastic cannula (0 equals 1.0 mm) and using local anaesthesia of the skin. The LDF is sampled continuously by the on-line PC computer one minute before, three minutes during and for four minutes after tourniquet occlusion. Twelve healthy, non-smoking men were examined. The reactive hyperaemia and the flux reactive time after release of tourniquet was examined successfully. To get better signal-to-noise ration and deeper detected volume in the muscle, the optical characteristics of ordinary fiber tips and modified spherical and `pear'-type ends were studied. Compared with the system of 632.8 nm, a new optical system with a laser diode of 790 nm was developed. A PC computer with DSP card was used for all the signal processing in the new system.

  16. Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function.

    PubMed

    Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K

    2017-01-01

    It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. 35 young (16 males; 21.0±2.6years) and 32 old (18 males; 71.3±6.2years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=-0.34, P=0.048) and balance (r=-0.41, P=0.014) among old adults. An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    PubMed

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  18. Role of glucocorticoids in the response of rat leg muscles to reduced activity

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Tischler, Marc E.

    1986-01-01

    Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced the atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus but cortisol administration increased the myhofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein degradation, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.

  19. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.

    PubMed

    Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L

    2014-09-22

    The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Microvascular circulation at cool, normal and warm temperatures in rat leg muscles examined by histochemistry using Lycopersicon esculentum lectin.

    PubMed

    Maeda, Hisashi; Kurose, Tomoyuki; Nosaka, Shinnosuke; Kawamata, Seiichi

    2014-07-01

    Local cooling and/or warming of the body are widely used for therapy. For safer and more effective therapy, microvascular hemodynamics needs to be clarified. To examine blood circulation in rat leg muscles at 20, 30, 37 and 40°C, fluorescein isothiocyanate (FITC)-labeled Lycopersicon esculentum lectin was injected into the cardiac ventricle. Endothelial cells of open and functioning blood vessels were labeled by this lectin for 3 min and detected by immunostaining for lectin. The percentage of open and functioning capillaries of leg muscles by the avidin-biotin method was 89.8±3.3% at 37°C, while capillaries were unclear or unstained at 20 and 30°C, probably due to a decrease of blood flow. The results using the tyramide-dinitrophenol method were 58.6±15.0% at 20°C, 68.5±12.3% at 30°C, 83.8±5.7% at 37°C and 83.3±7.8% at 40°C. The value at 20°C was significantly different from those at 37 and 40°C. The results by the tyramide-biotin method were 85.5±5.3% at 20°C, 87.3±9.7% at 30°C, 94.7±3.6% at 37°C and 92.5±2.1% at 40°C. Based on these results, it was concluded that the blood flow of each capillary considerably decreased at 20 and 30°C and probably increased at 40°C, whereas the proportion of open and functioning capillaries was essentially unchanged. Copyright © 2014. Published by Elsevier GmbH.

  1. Clarification of functional differences between the hallux and lesser toes during the single leg stance: immediate effects of conditioning contraction of the toe plantar flexion muscles.

    PubMed

    Saeki, Junya; Tojima, Michio; Torii, Suguru

    2015-09-01

    [Purpose] The purpose of this study was to determine the functional differences of the plantar flexion muscles of the hallux and lesser toes during the single leg stance by comparing postural sway in different conditioning contraction interventions. [Subjects] Thirty-four healthy, young males and females participated in this study. [Methods] The front-back and right-left direction components of maximal displacement and postural sway velocity during the single leg stance were measured in various conditioning contraction interventions for the plantar flexion muscles of the hallux or lessor toes. [Results] The main findings of this study were as follows: 1) the front-back direction component of maximal displacement was reduced by conditioning contraction of the plantar flexion muscles of the hallux, and 2) the front-back direction component of the postural sway velocity was reduced by conditioning contraction of the plantar flexion muscles of the lesser toes during the single leg stance. [Conclusion] The plantar flexion muscles of the lesser toes control the postural sway velocity. Furthermore, the plantar flexion muscles of the hallux appear to control the amplitude of postural sway.

  2. The vestibular system does not modulate fusimotor drive to muscle spindles in relaxed leg muscles of subjects in a near-vertical position.

    PubMed

    Knellwolf, T P; Hammam, E; Macefield, V G

    2016-05-01

    It has been shown that sinusoidal galvanic vestibular stimulation (sGVS) has no effect on the firing of spontaneously active muscle spindles in either relaxed or voluntarily contracting human leg muscles. However, all previous studies have been conducted on subjects in a seated position. Given that independent vestibular control of muscle spindle firing would be more valuable during postural threat, we tested the hypothesis that this modulation would become apparent for subjects in a near-vertical position. Unitary recordings were made from 18 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of awake human subjects laying supine on a motorized tilt table. All recorded spindle afferents were spontaneously active at rest, and each increased its firing rate during a weak static contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of "rocking in a boat" or "swinging in a hammock." The subject was then moved into a near-vertical position (75°), and the stimulation repeated. Despite robust vestibular illusions, none of the fusimotor-driven spindles exhibited phase-locked modulation of firing during sinusoidal GVS in either position. We conclude that this dynamic vestibular stimulus was insufficient to modulate the firing of fusimotor neurons in the near-vertical position. However, this does not mean that the vestibular system cannot modulate the sensitivity of muscle spindles via fusimotor neurons in free unsupported standing, when reliance on proprioceptive feedback is higher.

  3. Myosin Heavy Chain Expression Can Vary over the Length of Jaw and Leg Muscles

    PubMed Central

    Korfage, J.A.M.; Kwee, K.E.; Everts, V.; Langenbach, G.E.J.

    2016-01-01

    Muscle fiber type classification can be determined by its myosin heavy chain (MyHC) composition based on a few consecutive sections. It is generally assumed that the MyHC expression of a muscle fiber is the same over its length since neural stimulation and systemic influences are supposed to be the same over its length. We analyzed this in detail in three muscle types: the temporalis (closer) and digastricus (opener; both first brachial arch), and the medial gastrocnemius (somite). Sections of the muscles were incubated with monoclonal antibodies against various MyHC isoforms, and the distribution of these isoforms within individual fibers was followed over a distance of approximately 1 mm. The staining intensity of a fiber was measured and compared with the other fibers in the section. In the temporalis, digastricus, and gastrocnemius, 46, 11, and 15%, respectively, of their MyHC-I fibers showed a variation in the staining intensity over the length of their fibers, as well as 47, 87, and 22%, respectively, of their MyHC-IIA fibers. Most variable fibers were found amongst those with an overall relative intermediate staining intensity, which are presumably hybrid fibers. We conclude that different parts of a muscle fiber can have different fiber type compositions and, thus, contractile properties. Some muscle parts might reach their maximum contraction peak sooner or later than a muscle part a few microns further away. Next to stimulation by the nerve and systemic influences, local influences might also have an impact on the MyHC expression of the fiber. PMID:26950765

  4. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    PubMed

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously.

  5. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats

    PubMed Central

    Roseguini, Bruno T.; Arce-Esquivel, Arturo A.; Newcomer, Sean C.

    2011-01-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  6. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.

    PubMed

    Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K

    2013-09-01

    Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P < 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.

  7. Muscle activity in the leg is tuned in response to impact force characteristics.

    PubMed

    Boyer, Katherine A; Nigg, Benno M

    2004-10-01

    Based on results from quasi-static experiments, it has been suggested that the lower extremity muscle activity is adjusted in reaction to impact forces with the goal of minimizing soft-tissue vibrations. It is not known whether a similar muscle tuning occurs during dynamic activities. Thus, the purpose of this study was to determine the effect of changes in the input signal on (a) vibrations of lower extremity soft-tissue packages and (b) EMG activity of related muscles during heel-toe running. Subjects performed heel-toe running in five different shoe conditions. Ground reaction forces were measured with a KISTLER force platform, soft-tissue vibrations were measured with tri-axial accelerometers and muscle activity was measured using surface EMG from the quadriceps, hamstrings, tibialis anterior and triceps surae groups from 10 subjects. By changing both the speed of running and the shoe midsole material the impact force characteristics were changed. There was no effect of changes in the input signal on the soft-tissue peak acceleration following impact. A significant correlation (R2=0.819) between the EMG pre-activation intensity and the impact loading rate changes was found for the quadriceps. In addition, the input frequency was shown to approach the vibration frequency of the quadriceps. This evidence supports the proposed paradigm that muscle activity is tuned to impact force characteristics to control the soft-tissue vibrations.

  8. Acute iliopsoas and adductor brevis abscesses presenting with proximal leg muscle weakness.

    PubMed

    Devetag Chalaupka, F

    2006-06-01

    Pyomyositis is a bacterial infection of skeletal muscle. We describe the clinical case of a 77-year-old woman affected by gait disturbance, repetitive falls, low back pain and left thigh and groin pain, but without symptoms of systemic infection. Computed tomography and magnetic resonance imaging of the abdomen and pelvis showed abscesses in the left psoas and adductor brevis muscles. Investigations of urogenital tract and gastrointestinal system were normal. Systemic antibiotic treatment alone was not efficient, while surgical drainage improved the clinical picture. The aetiological organism, isolated from the abscess, was Staphylococcus aureus. We suggest that this patient had a primary pyomyositis rather than a secondary form. This is the first report of concomitant abscesses of psoas and adductor brevis muscles with early neurological involvement.

  9. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    PubMed

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Metabolic changes on hypokinetic rats were measured. Two groups of animals were studied: (1) weight bearing control which were tail casted but allowed to walk on all four limbs, and (2) hypokinetic with no load bearing of the hindlimbs. The control and hypokinetic rats gained weight at a steady and similar rate over 6 days. Hypokinesia for 6 days led to significantly lower relative weights of the soleus, gastrocnemius and plantaris muscles. Hypokinesia did not effect the relative mass of the anterior tibialis or extensor digitorum longus (EDL) muscles.

  11. Postmortem degradation of desmin and calpain in breast and leg and thigh muscles from Taiwan black-feathered country chickens.

    PubMed

    Chang, Ya-Shiou; Chou, Rong-Ghi R

    2010-12-01

    Several studies have reported that the postmortem changes are more rapid in breast muscles (BM) than in leg and thigh muscles (LM) of chickens. However, the reasons for the differences in postmortem proteolysis of BM and LM are still uncertain. The purpose of this study was therefore to compare the postmortem degradation of desmin and calpains in BM and LM from Taiwan black-feathered country chickens at 5 °C. The pH was lower (P < 0.05) in BM than in LM. Western blot indicated that postmortem desmin degradation was more rapid in BM than in LM. Casein zymograms showed that at-death µ-calpain activity was higher in BM than in LM. As postmortem time proceeded, µ-calpain was activated and autolyzed more extensively in BM than in LM. However, the µ/m-calpain activity remained stable during postmortem storage in both BM and LM. Our results suggest that the more rapid postmortem proteolysis found in BM than in LM at 5 °C similar with the previous study could be mainly explained by both greater amounts and faster activation and autolysis of µ-calpain in BM. Copyright © 2010 Society of Chemical Industry.

  12. Muscle pump-dependent self-perfusion mechanism in legs in normal subjects and patients with heart failure.

    PubMed

    Shiotani, Issei; Sato, Hideyuki; Sato, Hiroshi; Yokoyama, Hiroshi; Ohnishi, Yozo; Hishida, Eiji; Kinjo, Kunihiro; Nakatani, Daisaku; Kuzuya, Tsunehiko; Hori, Masatsugu

    2002-04-01

    Leg venous pressure markedly falls during upright exercise via a muscle pump effect, creating de novo perfusion pressure. We examined physiological roles of this mechanism in increasing femoral artery blood flow (FABF) and its alterations in chronic heart failure (CHF). In 10 normal subjects and 10 patients with CHF, standard hemodynamic variables, mean ankle vein pressure (MAVP), and FABF with Doppler techniques were obtained during graded upright bicycle exercise. To evaluate a nonspecific blood flow response, normal subjects also performed supine exercise. In normal subjects, MAVP rapidly declined by 45 mmHg and FABF correspondingly increased 5.3-fold without a systemic pressor response during 10 s of light upright exercise at 5 W. Approximately 67% of the blood flow response was attributed to the venous pressure drop-dependent mechanism. In CHF patients, MAVP declined by only 36 mmHg and FABF increased only 1.7-fold during the same upright exercise. The muscle venous pump has an ability to increase FABF at least threefold via the venous pressure drop-dependent mechanism. This mechanism is impaired in CHF patients.

  13. Phase-dependent reflex reversal in human leg muscles during walking.

    PubMed

    Yang, J F; Stein, R B

    1990-05-01

    1. Reflex responses during walking were elicited in humans by stimulation of the tibial nerve at the ankle. The stimulus intensity was controlled by monitoring the M-wave from an intrinsic foot muscle. Responses were observed in the ipsilateral tibialis anterior (TA), soleus (SO), and rectus femoris (RF) muscles. The most reproducible responses were observed at a middle latency between 50 and 90 ms. The responses were most likely of cutaneous origin, because they closely resembled the responses to stimulation of a purely cutaneous nerve, the sural nerve. 2. A reversal in the direction of the middle latency response from excitation to inhibition was observed for the first time within single muscles during walking. Evidence for a reversal was seen in all three muscles examined and in all seven subjects. 3. The reflex reversal could not be elicited in standing. An inhibition whose amplitude varied in a linear fashion with stimulus intensity and background activation level was always observed at middle latency. The responses elicited during standing resembled those during the stance phase of walking. The two tasks shared some common movement goals and appeared to make use of similar reflex pathways.

  14. Leg muscle vibration modulates bodily self-consciousness: integration of proprioceptive, visual, and tactile signals.

    PubMed

    Palluel, Estelle; Aspell, Jane Elizabeth; Blanke, Olaf

    2011-05-01

    Behavioral studies have used visuo-tactile conflicts between a participant's body and a visually presented fake or virtual body to investigate the importance of bodily perception for self-consciousness (bodily self-consciousness). Illusory self-identification with a fake body and changes in tactile processing--modulation of visuo-tactile cross-modal congruency effects (CCEs)--were reported in previous findings. Although proprioceptive signals are deemed important for bodily self-consciousness, their contribution to the representation of the full body has not been studied. Here we investigated whether and how self-identification and tactile processing (CCE magnitude) could be modified by altering proprioceptive signals with 80-Hz vibrations at the legs. Participants made elevation judgments of tactile cues (while ignoring nearby lights) during synchronous and asynchronous stroking of a seen fake body. We found that proprioceptive signals during vibrations altered the magnitude of self-identification and mislocalization of touch (CCE) in a synchrony-dependent fashion: we observed an increase of self-identification and CCE magnitude during asynchronous stroking. In a second control experiment we studied whether proprioceptive signals per se, or those from the lower limbs in particular, were essential for these changes. We applied vibrations at the upper limbs (which provide no information about the position of the participant's body in space) and in this case observed no modulation of bodily self-consciousness or tactile perception. These data link proprioceptive signals from the legs that are conveyed through the dorsal column-medial lemniscal pathway to bodily self-consciousness. We discuss their integration with bodily signals from vision and touch for full-body representations.

  15. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate‐intensity exercise in human skeletal muscle

    PubMed Central

    Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.

    2016-01-01

    Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net

  16. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency

    PubMed Central

    Roseguini, Bruno T.; Arce-Esquivel, Arturo A.; Newcomer, Sean C.; Yang, Hsiao T.; Terjung, Ronald

    2012-01-01

    Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14–16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues. PMID:22362398

  17. Activation timing patterns of the abdominal and leg muscles during the sit-to-stand movement in individuals with chronic hemiparetic stroke.

    PubMed

    Lee, Tae-Heon; Choi, Jong-Duk; Lee, Nam-Gi

    2015-11-01

    [Purpose] The purpose of this study was to determine the activation timing patterns of abdominal and leg muscles during the sit-to-stand movement in individuals with chronic hemiparetic stroke. [Subjects] Twenty adults with chronic hemiparetic stroke participated in this study. [Methods] Subjects performed five sit-to-stand movements at a self-selected velocity without using their hands. Surface electromyography was used to measure the reaction time of the bilateral transverse abdominis/internal oblique, rectus femoris, and tibialis anterior muscles during the sit-to-stand movement. [Results] There were significant differences in the reaction time between the affected and unaffected sides of the abdominal and leg muscles. Muscles on the unaffected side had faster reaction time than those on the affected side. Activation of the transverse abdominis/internal oblique muscles was delayed relative to activation of the tibialis anterior muscle during the sit-to-stand movement. [Conclusion] Our findings provide information that may aid clinicians in the examination and management of paretic muscles for transfers in individuals with chronic hemiparetic stroke.

  18. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  19. Leg and Forearm Muscle Power Changes Associated with Two Types of Underwater Exposure.

    DTIC Science & Technology

    1987-03-01

    before and after each dive.’OAn ischemic handgrip test measured developed force at a contraction rate of I per sec for a period of 60 sec. The Wingate...effort on a bicycle ergometer (6). An Ischemic handgrip test measured forearm muscle force anaerobicallv during temporary Vl ~ V V VV ~ ~ ~ occlusion of...computer. Averages of the handgrip force were made over each 15 sec segment of the test. Each force measurement was further expressed as a percent of

  20. Within-step modulation of leg muscle activity by afferent feedback in human walking

    PubMed Central

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan; Sinkjaer, Thomas; Grey, Michael J

    2008-01-01

    To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae muscle activation was assessed during stance as the platform was set to different inclinations (±3 deg, ±2 deg and 0 deg rotation in a parasagittal plane about the ankle). Normalized triceps surae muscle activity was significantly increased when the platform was inclined (2 deg: 0.153 ± 0.051; 3 deg: 0.156 ± 0.053) and significantly decreased when the platform was declined (−3 deg: 0.133 ± 0.048; −2 deg: 0.132 ± 0.049) compared with level walking (0.141 ± 0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception and touch sensation from the neck down. In contrast with healthy subjects, no muscle activation changes were observed in the deafferented subject. Our results demonstrate that the ability to compensate for small irregularities in the ground surface relies on automatic within-step sensory feedback regulation rather than conscious predictive control. PMID:18669536

  1. Selective activation of lower leg muscles during maximum voluntary isometric contractions.

    PubMed

    Hagen, Marco; Schwiertz, Gerrit; Landorf, Karl B; Menz, Hylton B; Murley, George S

    2016-12-01

    The pronators and supinators play a key role in the medio-lateral stability of the ankle joint complex (i.e. talo-crural and subtalar joints). We hypothesized that each shank muscle has a specific activation pattern determined by its anatomical course around the axes of the subtalar and talo-crural joints. A secondary objective was to examine the effect of foot posture on these activation patterns. Forty-nine young adults (25 normal-arched feet, 24 flat-arched feet) performed maximum voluntary isometric contractions against manual resistance in four movement directions: plantarflexion (PF), dorsiflexion (DF), pronation (PRO) and supination (SUP). Electromyographic activity was recorded from tibialis posterior (TP) and peroneus longus (PL) with intramuscular electrodes, and gastrocnemius medialis (GM) and tibialis anterior (TA) with surface electrodes. When compared to their agonist function, all muscles were co-activated at significantly lower levels in their synergistic function (GM: 23% during SUP, TA: 72% during SUP; TP: 42% during PF, PL: 52% during PF) (p<0.001). A significant interaction between foot posture and contraction type was evident for TA. During isometric contractions, the electromyographic activity of the shank muscles is geared to their biomechanical advantage according to their position relative to the subtalar and talo-crural joint axes.

  2. Corrective reactions to stumbling in man: neuronal co-ordination of bilateral leg muscle activity during gait.

    PubMed

    Berger, W; Dietz, V; Quintern, J

    1984-12-01

    Electromyogram (e.m.g.) responses of lower leg muscles, and corresponding movements were studied following a perturbation of the limb during walking, produced by either (a) a randomly timed, short acceleration or decelerating impulse applied to the treadmill, or (b) a unilateral triceps surae contraction induced by tibial nerve stimulation. Bilateral e.m.g. responses following the perturbation were specific for the mode of perturbation and depended on the phase of the gait cycle in which the perturbation occurred. Treadmill deceleration evoked a bilateral tibialis anterior activation; acceleration evoked an ipsilateral gastrocnemius and contralateral tibialis anterior activation (latency in either condition and on both sides was 65-75 ms, duration about 150 ms). Tibial nerve stimulation at the beginning of a stance phase, was followed by an ipsilateral tibialis anterior activation; during the swing phase it was followed by an ipsilateral tibialis anterior and contralateral gastrocnemius activation (latency about 90 ms, duration about 100 ms). These patterns differed from the response seen after a unilateral displacement during static standing, which evoked a bilateral tibialis anterior activation. These early responses were in most cases followed by late ipsilateral responses, but the e.m.g. pattern of the next step cycle was usually unchanged, or affected only at its onset. The e.m.g. responses were unaltered by ischaemic nerve blockade of group I afferents, by training effects or by pre-warning of the onset of perturbation (randomly or self-induced). Despite the different e.m.g. responses following a perturbation during gait, the same basic functional mechanism was obviously at work: the early ipsilateral response achieved a repositioning of the displaced foot and leg, while the early contralateral and late ipsilateral responses provided compensation for body displacement. It is suggested that the e.m.g. responses may be mediated predominantly by peripheral

  3. Effect of different rest intervals, between sets, on muscle performance during leg press exercise, in trained older women.

    PubMed

    Filho, José C Jambassi; Gobbi, Lilian T B; Gurjão, André L D; Gonçalves, Raquel; Prado, Alexandre K G; Gobbi, Sebastião

    2013-01-01

    The purpose of this study was to assess the effect of different rest intervals (RI) between sets on number of repetitions, sustainability of repetitions, and total volume during a leg press exercise. Seventeen resistance-trained older women (68.0 ± 5.9 years, 71. 2 ± 11.7 kg, 1.58 ± 0.07 m) participated in the study. All participants performed three sets to voluntary exhaustion, with loads that corresponded to 15 maximum repetitions, in two experimental sessions (that ranged from 48 to 72 hours apart). In each session, one of two RI (one-minute: RI-1 and three minute: RI-3) was tested, employing a randomized and counterbalanced design. For both RI, significant reductions (p < 0.05) were observed in the number of repetitions and sustainability of repetitions, from the first to the second and third sets. Differences (p < 0.05) between the RI also were observed in the two final sets. The total volume for the RI-3 session was statistically higher (29.4%, p < 0.05) as compared to the RI-1 session. The length of the RI between sets influenced the number of repetitions, sustainability of repetitions, and total volume. The longer RI should be used, therefore, when the goal of training is to increase the total volume. Key pointsThis study examined the influence of rest intervals, between sets, on muscle performance during leg press exercise, in trained older women.When multiple sets were performed to voluntary exhaustion, neither short and long rest interval (1 and 3 minutes, respectively) promoted the sustainability of repetitions in subsequent sets.A longer rest interval seems to be necessary for a higher number of repetitions in subsequent sets, and with increase in time of tension and total volume.

  4. T2 mapping provides multiple approaches to characterize muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15 year old boys with Duchenne Muscular Dystrophy

    PubMed Central

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2012-01-01

    Purpose Skeletal muscles of children with Duchenne muscular dystrophy (DMD) have enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in magnetic resonance proton transverse relaxation time (T2). Therefore, examining T2 changes in individual muscles may be useful for monitoring disease progression in DMD. In this study we utilized mean T2, percent elevated pixels, and T2 heterogeneity to assess changes in composition of dystrophic muscles. In addition, we used fat saturation (fatsat) to distinguish T2 changes due to edema and inflammation from fat infiltration in muscles. Methods Thirty subjects with DMD and 15 age-matched controls underwent T2-weighted imaging of their lower leg using 3-T MR system. T2 maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). Mean T2 of the traced regions of interest (ROI), width of T2 histograms, and percent-elevated pixels were calculated. Results We found that even in young children with DMD, muscles had elevated mean T2, were more heterogeneous, and had a greater percent-elevated pixels in the lower leg muscles than controls. T2 measures decreased with fat saturation, but were still higher (p<0.05) in dystrophic muscles than controls. Further, T2 measures showed positive correlations with timed functional tests (r=0.23–0.79). Conclusion The elevated T2 measures with and without fat saturation in all ages of DMD examined (5–15 years) compared to unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema, and fat infiltration. This study shows that T2 mapping provides multiple approaches that can be effectively utilized to characterize muscle tissue in children with DMD even in the early stages of the disease. Therefore, T2 mapping may prove clinically useful in monitoring muscle changes due to disease process or therapeutic interventions in DMD. PMID:23044995

  5. Development of nylon-based artificial muscles for the usage in robotic prosthetic limb

    NASA Astrophysics Data System (ADS)

    Atikah, Nurul Anis; Weng, Leong Yeng; Anuar, Adzly; Fat, Chau Chien; Abidin, Izham Zainal; Sahari, Khairul Salleh Mohamed

    2017-09-01

    This paper describes the development of nylon-based artificial muscles that is intended to be used in prosthetic limb for young amputees. Prosthetic limbs are very expensive and this situation is further compounded for young amputees who are very quickly out-grow their prosthesis. The proposed artificial muscles are made of nylon fishing strings from various size such as 0.45mm, 0.55mm, 0.65mm and 1.00mm. These fishing strings were twisted into coils to create Super Coiled Polymers (SCP) and tested using hot air blower. These artificial muscles react counterintuitively, where when it is exposed to heat, contracts, and when cooled, expands. Peltier devices, when switched-on acts as heat pump, where one side is hot and the other is cold. This phenomenon, when affixed in between 2 SCP's, creates tandem motion similar to triceps and biceps. As initial study, the hot side of the Peltier module was tested using these artificial muscles. The string was measured for both its force production, length contraction, the initial results were promising.

  6. The effects of experimental muscle and skin pain on the static stretch sensitivity of human muscle spindles in relaxed leg muscles

    PubMed Central

    Birznieks, Ingvars; Burton, Alexander R; Macefield, Vaughan G

    2008-01-01

    Animal studies have shown that noxious inputs onto γ-motoneurons can cause an increase in the activity of muscle spindles, and it has been proposed that this causes a fusimotor-driven increase in muscle stiffness that is believed to underlie many chronic pain syndromes. To test whether experimental pain also acts on the fusimotor system in humans, unitary recordings were made from 19 spindle afferents (12 Ia, 7 II) located in the ankle and toe extensors or peronei muscles of awake human subjects. Muscle pain was induced by bolus intramuscular injection of 0.5 ml 5% hypertonic saline into tibialis anterior (TA); skin pain was induced by 0.2 ml injection into the overlying skin. Changes in fusimotor drive to the muscle spindles were inferred from changes in the mean discharge frequency and discharge variability of spindle endings in relaxed muscle. During muscle pain no afferents increased their discharge activity: seven afferents (5 Ia, 2 II) showed a decrease and six (4 Ia, 2 II) afferents were not affected. During skin pain of 13 afferents discharge rate increased in one (Ia) and decreased in two (1 Ia, 1 II). On average, the overall discharge rate decreased during muscle pain by 6.1% (P < 0.05; Wilcoxon), but remained essentially the same during skin pain. There was no detectable correlation between subjective pain level and the small change in discharge rate of muscle spindles. Irrespective of the type of pain, discharge variability parameters were not influenced (P > 0.05; Wilcoxon). We conclude that, contrary to the ‘vicious cycle’ hypothesis, acute activation of muscle or skin nociceptors does not cause a reflex increase in fusimotor drive in humans. Rather, our results are more aligned with the pain adaptation model, based on clinical studies predicting pain-induced reductions of agonist muscle activity. PMID:18403422

  7. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy.

    PubMed

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2013-03-01

    Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P < 0.05) in dystrophic muscles than in controls. Further, T₂ measures showed positive correlations with timed functional tests (r = 0.23-0.79). The elevated T₂ measures with and without fat saturation at all ages of DMD examined (5-15 years) compared with unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema and fat infiltration. This study shows that T₂ mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic

  8. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait.

    PubMed

    Petersen, Tue Hvass; Kliim-Due, Mette; Farmer, Simon F; Nielsen, Jens Bo

    2010-11-15

    Corticospinal drive has been shown to contribute significantly to the control of walking in adult human subjects. It is unknown to what extent functional change in this drive is important for maturation of gait in children. In adults, populations of motor units within a muscle show synchronized discharges during walking with pronounced coherence in the 15-50 Hz frequency band. This coherence has been shown to depend on cortical drive. Here, we investigated how this coherence changes with development. Forty-four healthy children aged 4-15 years participated in the study. Electromyographic activity (EMG) was recorded from pairs of electrodes placed over the right tibialis anterior (TA) muscle during static dorsiflexion and during walking on a treadmill (speed from 1.8 to 4.8 km h(-1)). A significant increase of coherence with increasing age was found in the 30-45 Hz frequency band (gamma) during walking and during static ankle dorsiflexion. A significant correlation with age was also found in the 15-25 Hz frequency band (beta) during static foot dorsiflexion. χ(2) analysis of differences of coherence between different age groups of children (4-6, 7-9, 10-12 and 13-15 years of age) revealed a significantly lower coherence in the gamma band for recordings during walking in children aged 4-6 years as compared to older children. Recordings during static dorsiflexion revealed significant differences in both the beta and gamma bands for children in the 4-6 and 7-9 years age groups as compared to the older age groups. A significant age-related decrease in step-to-step variability of toe position during the swing phase of walking was observed. This reduction in the step-to-step variability of gait was correlated with increased gamma band coherence during walking. We argue that this may reflect an increased ability to precisely control the ankle joint position with age, which may be contingent on maturation of corticospinal control of the foot dorsiflexor muscles.

  9. The effects of a weight belt on trunk and leg muscle activity and joint kinematics during the squat exercise.

    PubMed

    Zink, A J; Whiting, W C; Vincent, W J; McLaine, A J

    2001-05-01

    Fourteen healthy men participated in a study designed to examine the effects of weight-belt use on trunk- and leg-muscle myoelectric activity (EMG) and joint kinematics during the squat exercise. Each subject performed the parallel back squat exercise at a self-selected speed according to his own technique with 90% of his IRM both without a weight belt (NWB) and with a weight belt (WB). Myoelectric activity of the right vastus lateralis, biceps femoris, adductor magnus, gluteus maximus, and erector spinae was recorded using surface electrodes. Subjects were videotaped from a sagittal plane view while standing on a force plate. WB trials were completed significantly faster (p < 0.05) than NWB trials over the entire movement and in both the downward phase (DP) and upward phase (UP). No significant differences in EMG were detected between conditions for any of the muscle groups or for any joint angular kinematic variables during either phase of the lift. The total distance traveled by the barbell both anteriorly and vertically was significantly greater (p < 0.01) in the WB condition than the NWB condition. The velocity of the barbell was significantly greater (p < 0.01) both vertically and horizontally during both the DP and UP in the WB condition as compared with the NWB condition. These data suggest that the use of a weight belt during the squat exercise may affect the path of the barbell and speed of the lift without altering myoelectric activity. This suggests that the use of a weight belt may improve a lifter's explosive power by increasing the speed of the movement without compromising the joint range of motion or overall lifting technique.

  10. Leg muscle reflexes mediated by cutaneous A-beta fibres are normal during gait in reflex sympathetic dystrophy.

    PubMed

    van der Laan, L; Boks, L M; van Wezel, B M; Goris, R J; Duysens, J E

    2000-04-01

    Reflex sympathetic dystrophy (RSD) is, from the onset, characterized by various neurological deficits such as an alteration of sensation and a decrease in muscle strength. We investigated if afferent A-beta fibre-mediated reflexes are changed in lower extremities affected by acute RSD. The involvement of these fibres was determined by analyzing reflex responses from the tibialis anterior (TA) and biceps femoris (BF) muscles after electrical stimulation of the sural nerve. The reflexes were studied during walking on a treadmill to investigate whether the abnormalities in gait of the patients were related either to abnormal amplitudes or deficient phase-dependent modulation of reflexes. In 5 patients with acute RSD of the leg and 5 healthy volunteers these reflex responses were determined during the early and late swing phase of the step cycle. No significant difference was found between the RSD and the volunteers. During early swing the mean amplitude of the facilitatory P2 responses in BF and TA increased as a function of stimulus intensity (1.5, 2 and 2.5 times the perception threshold) in both groups. At end swing the same stimuli induced suppressive responses in TA. This phase-dependent reflex reversal from facilitation in early swing to suppression in late swing occurred equally in both groups. In the acute phase of RSD of the lower extremity there is no evidence for abnormal A-beta fibre-mediated reflexes or for defective regulation of such reflexes. This finding has implications for both the theory on RSD pathophysiology and RSD models, which are based on abnormal functioning of A-beta fibres.

  11. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    PubMed

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  12. Ca2+_, Sr2+_force relationships and kinetic properties of fast-twitch rat leg muscle fibre subtypes.

    PubMed

    Galler, S

    1999-10-01

    Force generation of fast-twitch and slow-twitch fibres exhibits large differences in its sensitivity to Ca2+ and Sr2+ (e.g. Fink et al. 1986). Little is known about fast-twitch fibre subtypes. Thus, a variety of mechanical measurements on segments of rehydrated freeze-dried fast-twitch rat leg muscle fibres were executed in this study. Among these, the Ca2+- and Sr2+-force relationship and the unloaded shortening velocity were determined. The fibres were classified into subtypes according to their kinetics of stretch activation (Galler et al. 1994). In all fibres, the maximal force under Sr2+ activation was about 0.9 of that under Ca2+ activation. The Ca2+- and Sr2+-force relationship exhibited a biphasic shape with a steeper part (Hill coefficient, n1) below 50% and a flatter part (Hill coefficient, n2) above 50% of maximal force. The difference between the Ca2+ - and Sr2+ -sensitivity was independent of the fibre subtypes. The Hill coefficients were only partially correlated with kinetic properties. The correlation was more pronounced for the unloaded shortening velocity than for the kinetics of stretch activation. The data are consistent with the idea that the Ca2+ and Sr2+ sensitivities of fast-twitch fibres are mainly determined by a single isoform of troponin C. Among several protein isoforms, the isoforms of the myosin light chains seem to be involved for determining the slope of the Ca2+- and Sr2+-force relationship of fast-twitch muscle fibres.

  13. Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop landing performance.

    PubMed

    Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F

    1998-12-01

    The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.

  14. Accelerometer‐determined physical activity, muscle mass, and leg strength in community‐dwelling older adults

    PubMed Central

    Foong, Yi Chao; Chherawala, Nabil; Aitken, Dawn; Winzenberg, Tania; Jones, Graeme

    2015-01-01

    Abstract Introduction The aim of this study was to describe the relationship between accelerometer‐determined physical activity (PA), muscle mass, and lower‐limb strength in community‐dwelling older adults. Methods Six hundred thirty‐six community‐dwelling older adults (66 ± 7 years) were studied. Muscle mass was measured using dual‐energy x‐ray absorptiometry, whilst lower limb strength was measured via dynamometry. We measured minutes/day spent in sedentary, light, moderate, and vigorous intensity activity using Actigraph GT1M accelerometers. Results Participants spent a median of 583(Interquartile ratio (IQR) 522–646), 225(176–271), 27(12–45) and 0(0–0) min in sedentary, light, moderate, and vigorous activity, respectively. PA intensity was positively associated with both lean mass percentage and lower limb strength in a dose–response fashion. Sedentary activity was negatively associated with lean mass percentage, but not lower‐limb strength. There was a positive association between PA and appendicular lean mass in men only. There was an interaction between age and activity; as age increased, the magnitude of the association of PA with lean mass percentage decreased. Those who adhered to the Australian Department of Health PA guidelines (moderate/vigorous PA >/=150 min/week) had greater lean mass percentage, appendicular lean mass, and lower limb strength. Conclusions Using accelerometer technology, both the amount and intensity of accelerometer‐determined PA had an independent, dose–response relationship with lean mass percentage and lower limb strength, with the largest effect for vigorous activity. Time spent in sedentary activity was negatively associated with lean mass percentage, but was not associated with lower limb strength. The magnitude of the association between PA and lean mass percentage decreased with age, suggesting that PA programmes may need to be modified with increasing age. PMID:27239404

  15. The effect of knee brace on coordination and neuronal leg muscle control: an early postoperative functional study in anterior cruciate ligament reconstructed patients.

    PubMed

    Rebel, M; Paessler, H H

    2001-09-01

    Two studies were carried out after anterior cruciate ligament (ACL) reconstruction to determine the effect of a knee brace on coordination (test 1) and electromyographic muscle activity in drop jumps (test 2). Test 1 studied 25 patients with ACL reconstruction under three test conditions (one-leg static, two-legged static, two-legged dynamic) compared with a control (n=30). The results showed highly significant improvements in all braced conditions. In test 2 ten patients with ACL reconstruction and ten healthy subjects performed a two-legged drop-jump; this was repeated 15 times and again 15 times with a knee brace worn on the reconstructed limb. Changes in electromyographically determined muscle activity (vastus medialis, vastus lateralis, biceps femoris, gastrocnemius) were observed, but they were significant in only few cases because of high variability. Drop-jumps with knee brace improved jumping height, increased the maximum knee angle in the ground contact phase, and reduced the maximum knee angle in the landing phase. Patients thus develop an increased confidence in the stability of their knees. We conclude that the benefits of the knee brace are due to the mechanical action, an enhanced coordination, and a psychological effect.

  16. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    PubMed

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-06

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men.

    PubMed

    Sherk, V D; Thiebaud, R S; Chen, Z; Karabulut, M; Kim, S J; Bemben, D A

    2014-12-01

    Peripheral Quantitative Computed Tomography (pQCT) can be used for muscle and fat area and density assessments. These may independently influence muscle and fat mass measurements from Dual Energy X-ray Absorptiometry (DXA). To determine associations between pQCT-derived soft tissue density and area measures and DXA-derived soft tissue mass. Linear regression models were developed based on BMI and calf fat and muscle cross-sectional area (FCSA and MCSA) and density measured by pQCT in healthy women (n=76) and men (n=82) aged 20-59 years. Independent variables for these models were leg and total bone-free lean mass (BFLM) and fat mass (FM) measured by DXA. Sex differences (p<0.01) were found in both muscle (Mean±SE: Women: 78.6±0.4; Men: 79.9±0.2 mg/cm(3)) and fat (Women: 0.8±0.4 Men: 9.1±0.6 mg/cm(3)) density. BMI, fat density, and age (R(2)=0.86, p<0.01) best accounted for the variability in total FM. FCSA, BMI, and fat density explained the variance in leg FM (R(2)=0.87, p<0.01). MCSA and muscle density explained the variance in total (R(2)=0.65, p<0.01) and leg BFLM (R(2)=0.70, p<0.01). Calf muscle and fat area and density independently predict lean and fat tissue mass.

  18. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men

    PubMed Central

    Sherk, Vanessa D; Thiebaud, Robert S; Chen, Zhaojing; Karabulut, Murat; Kim, So Jung; Bemben, Debra A

    2015-01-01

    Peripheral Quantitative Computed Tomography (pQCT) can be used for muscle and fat area and density assessments. These may independently influence muscle and fat mass measurements from Dual Energy X-ray Absorptiometry (DXA). Objective To determine associations between pQCT-derived soft tissue density and area measures and DXA-derived soft tissue mass. Methods Linear regression models were developed based on BMI and calf fat and muscle cross-sectional area (FCSA and MCSA) and density measured by pQCT in healthy women (n=76) and men (n=82) aged 20–59 years. Independent variables for these models were leg and total bone-free lean mass (BFLM) and fat mass (FM) measured by DXA. Results Sex differences (p<0.01) were found in both muscle (Mean±SE: Women: 78.6±0.4; Men: 79.9 ± 0.2 mg/cm3) and fat (Women: 0.8±0.4 Men: 9.1±0.6 mg/cm3) density. BMI, fat density, and age (R2=0.86, p<0.01) best accounted for the variability in total FM. FCSA, BMI, and fat density explained the variance in leg FM (R2=0.87, p<0.01). MCSA and muscle density explained the variance in total (R2=0.65, p<0.01) and leg BFLM (R2=0.70, p<0.01). Conclusion Calf muscle and fat area and density independently predict lean and fat tissue mass. PMID:25524966

  19. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers

    PubMed Central

    Skorupska, Elżbieta; Keczmer, Przemysław; Łochowski, Rafał M.; Tomal, Paulina; Rychlik, Michał; Samborski, Włodzimierz

    2016-01-01

    Aim Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP) and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects. Method Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images. Results Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (p<0.001), gluteus minimus (p<0.01) and piriformis (p<0.05)). The ICC values indicated that the inter-rater reproducibility was greater than 0.90 for all measurements (LBLP and healthy subjects), except for the measurement of the right gluteus medius muscle in LBLP patients, which was equal to 0.848. Conclusion More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required. PMID:27459688

  20. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle.

    PubMed

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J; Høier, Birgitte; Krustrup, Peter; Bangsbo, Jens

    2008-03-01

    The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P < 0.05) in blood flow without a significant enhancement in oxygen uptake. Muscle interstitial fluid was sampled with microdialysis technique and analyzed for vascular endothelial growth factor (VEGF) protein and for the effect on endothelial cell proliferation. Biopsies obtained from the musculus vastus lateralis were analyzed for mRNA content of VEGF, endothelial nitric oxide synthase (eNOS), and matrix metalloproteinase-2 (MMP-2). The passive leg movement caused an increase (P < 0.05) in interstitial VEGF protein concentration above rest (73 +/- 21 vs. 344 +/- 83 pg/ml). Addition of muscle dialysate to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P < 0.05) than dialysate obtained at rest. Passive movement also enhanced (P < 0.05) the eNOS mRNA level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were unaffected. The results show that a session of passive leg movement, elevating blood flow and causing passive stretch, augments the interstitial concentrations of VEGF, the proliferative effect of interstitial fluid, and eNOS mRNA content in muscle tissue. We propose that enhanced blood flow and passive stretch are positive physiological stimulators of factors associated with capillary growth in human muscle.

  1. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  2. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  3. The effects of shoes with a rounded soft sole in the anterior-posterior direction on leg joint angle and muscle activity.

    PubMed

    Demura, Tomohiro; Demura, Shin-ichi

    2012-09-01

    This study examines the effect of these shoes on the leg joint angle and muscle activity during walking. Ten healthy young male adults (mean age: 24.1±4.3 years) walked on a walkway while wearing one of three kinds of shoes with a rounded soft sole in the anterior-posterior direction (Stretch Walker: SW, mass: 440 g), MBT (Masai Barefoot Technology; similar to the SW in form and material, mass: 600 g), and flat-bottomed shoes (FS, mass: 420 g)). After familiarizing themselves with the shoes, subjects walked twenty laps on the walkway, which was about 40 m long (mean speed: 4.1 km/h). After a sufficient rest, they repeated this with the other shoes. During walking, the volume of muscle discharge was measured once every 2 laps. The mean value of the 10 measurements was used as the evaluation variable for integral values and joint angle, while the right foot touched the ground twice. In conclusion, the range of leg movement during walking was smaller when wearing shoes with a rounded soft sole in the anterior-posterior direction (SW and MBT) than when wearing normal shoes (FS). However, the effects of the SW and MBT on leg muscle activity during walking differ little from wearing the normal shoes during a leisurely 10-min walk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Short-term, light- to moderate-intensity exercise training improves leg muscle strength in the oldest old: a randomized controlled trial.

    PubMed

    Serra-Rexach, José A; Bustamante-Ara, Natalia; Hierro Villarán, Margarita; González Gil, Pedro; Sanz Ibáñez, Maria J; Blanco Sanz, Nekane; Ortega Santamaría, Victor; Gutiérrez Sanz, Natalia; Marín Prada, Ana B; Gallardo, Cristian; Rodríguez Romo, Gabriel; Ruiz, Jonatan R; Lucia, Alejandro

    2011-04-01

    To assess the effects of an 8-week exercise training program with a special focus on light- to moderate-intensity resistance exercises (30-70% of one repetition maximum, 1RM) and a subsequent 4-week training cessation period (detraining) on muscle strength and functional capacity in participants aged 90 and older. Randomized controlled trial performed during March to September 2009. Geriatric nursing home. Forty nonagenarians (90-97) were randomly assigned to an intervention or control group (16 women and 4 men per group). Eight-week muscle strength exercise intervention focused on lower limb strength exercises of light to moderate intensity. 1RM leg press. handgrip strength, 8-m walk test, 4-step stairs test, Timed Up and Go test, and number of falls. A significant group by time interaction effect (P=.02) was observed only for the 1RM leg press. In the intervention group, 1RM leg press increased significantly with training by 10.6 kg [95% confidence interval (CI)=4.1-17.1 kg; P=.01]. Except for the mean group number of falls, which were 1.2 falls fewer per participant in the intervention group (95% CI=0.0-3.0; P=.03), no significant training effect on the secondary outcome measures was found. Exercise training, even of short duration and light to moderate intensity, can increase muscle strength while decreasing fall risk in nonagenarians. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  5. Differential Changes with Age in Multiscale Entropy of Electromyography Signals from Leg Muscles during Treadmill Walking.

    PubMed

    Kang, Hyun Gu; Dingwell, Jonathan B

    2016-01-01

    Age-related gait changes may be due to the loss of complexity in the neuromuscular system. This theory is disputed due to inconsistent results from single-scale analyses. Also, behavioral adaptations may confound these changes. We examined whether EMG dynamics during gait is less complex in older adults over a range of timescales using the multiscale entropy method, and whether slower walking attenuates this effect. Surface EMG was measured from the left vastus lateralis (VL), biceps femoris (BF), gastrocnemius (GA), and tibialis anterior (TA) in 17 young and 18 older adults as they walked on a treadmill for 5 minutes at 0.8x-1.2x of preferred speed. Sample entropy (SE) and the complexity index (CI) of the EMG signals were calculated after successive coarse-graining to extract dynamics at timescales of 27 to 270 Hz, with m = 2 and r = 0.15 SD. SE and CI were lower across the timescales in older adults in VL and BF, but higher in GA (all p<0.001); these results held for VL and GA even after accounting for longer EMG burst durations in older adults. CI was higher during slower walking speed in VL and BF (p<0.001). Results were mostly similar for m = 3 and r = 0.01-0.35. Smaller r was more sensitive to age-related differences. The decrease in complexity with aging in the timescales studied was limited to proximal muscles, particularly VL. The increase in GA may be driven by other factors. Walking slower may reflect a behavioral adaptation that allows the nervous system to function with greater complexity.

  6. Differential Changes with Age in Multiscale Entropy of Electromyography Signals from Leg Muscles during Treadmill Walking

    PubMed Central

    Kang, Hyun Gu; Dingwell, Jonathan B.

    2016-01-01

    Age-related gait changes may be due to the loss of complexity in the neuromuscular system. This theory is disputed due to inconsistent results from single-scale analyses. Also, behavioral adaptations may confound these changes. We examined whether EMG dynamics during gait is less complex in older adults over a range of timescales using the multiscale entropy method, and whether slower walking attenuates this effect. Surface EMG was measured from the left vastus lateralis (VL), biceps femoris (BF), gastrocnemius (GA), and tibialis anterior (TA) in 17 young and 18 older adults as they walked on a treadmill for 5 minutes at 0.8x-1.2x of preferred speed. Sample entropy (SE) and the complexity index (CI) of the EMG signals were calculated after successive coarse-graining to extract dynamics at timescales of 27 to 270 Hz, with m = 2 and r = 0.15 SD. SE and CI were lower across the timescales in older adults in VL and BF, but higher in GA (all p<0.001); these results held for VL and GA even after accounting for longer EMG burst durations in older adults. CI was higher during slower walking speed in VL and BF (p<0.001). Results were mostly similar for m = 3 and r = 0.01–0.35. Smaller r was more sensitive to age-related differences. The decrease in complexity with aging in the timescales studied was limited to proximal muscles, particularly VL. The increase in GA may be driven by other factors. Walking slower may reflect a behavioral adaptation that allows the nervous system to function with greater complexity. PMID:27570974

  7. Association between leg strength and muscle cross-sectional area of the quadriceps femoris with the physical activity level in octogenarians.

    PubMed

    Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe

    2016-06-03

    Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness.  To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly.  Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used.  There were significant differences between sexes in muscle area (p<0.001) in the Chair Stand Test (p=0.028) and the walk index (p=0.029), with higher values in men. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, p<0.005, and r=0.522, p<0.001, respectively) and the total weekly activity index (r=0.430, p<0.005, and r=0.519, p<0.001, respectively). In the multiple linear regression models for the total weekly activity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable.  Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.

  8. Central alterations of neuromuscular function and feedback from group III-IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise.

    PubMed

    Pageaux, Benjamin; Angius, Luca; Hopker, James G; Lepers, Romuald; Marcora, Samuele M

    2015-06-15

    The aims of this investigation were to describe the central alterations of neuromuscular function induced by exhaustive high-intensity one-leg dynamic exercise (OLDE, study 1) and to indirectly quantify feedback from group III-IV muscle afferents via muscle occlusion (MO, study 2) in healthy adult male humans. We hypothesized that these central alterations and their recovery are associated with changes in afferent feedback. Both studies consisted of two time-to-exhaustion tests at 85% peak power output. In study 1, voluntary activation level (VAL), M-wave, cervicomedullary motor evoked potential (CMEP), motor evoked potential (MEP), and MEP cortical silent period (CSP) of the knee extensor muscles were measured. In study 2, mean arterial pressure (MAP) and leg muscle pain were measured during MO. Measurements were performed preexercise, at exhaustion, and after 3 min recovery. Compared with preexercise values, VAL was lower at exhaustion (-13 ± 13%, P < 0.05) and after 3 min of recovery (-6 ± 6%, P = 0.05). CMEP area/M area was lower at exhaustion (-38 ± 13%, P < 0.01) and recovered after 3 min. MEP area/M area was higher at exhaustion (+25 ± 27%, P < 0.01) and after 3 min of recovery (+17 ± 20%, P < 0.01). CSP was higher (+19 ± 9%, P < 0.01) only at exhaustion and recovered after 3 min. Markers of afferent feedback (MAP and leg muscle pain during MO) were significantly higher only at exhaustion. These findings suggest that the alterations in spinal excitability and CSP induced by high-intensity OLDE are associated with an increase in afferent feedback at exhaustion, whereas central fatigue does not fully recover even when significant afferent feedback is no longer present. Copyright © 2015 the American Physiological Society.

  9. Effects of Leg-Press Training With Moderate Vibration on Muscle Strength, Pain, and Function After Total Knee Arthroplasty: A Randomized Controlled Trial.

    PubMed

    Bily, Walter; Franz, Carlo; Trimmel, Lukas; Loefler, Stefan; Cvecka, Jan; Zampieri, Sandra; Kasche, Waltraud; Sarabon, Nejc; Zenz, Peter; Kern, Helmut

    2016-06-01

    To examine the effects of a time-saving leg-press training program with moderate vibration on strength parameters, pain, and functional outcomes of patients after total knee arthroplasty (TKA) in comparison with functional physiotherapy. Randomized controlled trial. Outpatient rehabilitation department at a university teaching hospital. Patients (N=55) with TKA were randomly allocated into 2 rehabilitation groups. Six weeks after TKA, participants either underwent isokinetic leg-press training combined with moderate vibration (n=26) of 15 minutes per session or functional physiotherapy (n=29) of 30 minutes per session. Both groups received therapy twice a week for a period of 6 weeks. Participants were evaluated at baseline (6wk after TKA) and after the 6-week rehabilitation program. The main outcome measure was maximal voluntary contraction (MVC) of the involved leg. Secondary outcome measures were pain assessed with a visual analog scale (VAS), range of motion, stair test, timed Up and Go test, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Both groups showed statistically significant improvements in MVC of knee extensors measured on the knee dynamometer (leg-press group: from 0.8±.06 to 1±.09Nm/kg body weight [BW], physiotherapy group: from 0.7±.06 to 0.9±.06Nm/kg BW; P<.05) and in closed kinetic chain on the leg press (leg-press group: from 8.9±.77 to 10.3±1.06N/kg BW, physiotherapy group: from 6.7±.54 to 9.1±.70N/kg BW; P<.05) and in pain at rest (leg-press group: from 2±.36 to 1.3±.36 on the VAS, physiotherapy group: from 1.2±.28 to 1.1±.31; P<.05), WOMAC scores, and functional measurements after 6 weeks of training. There was no significant difference between the 2 groups concerning strength, pain, and functional outcomes after training (P>.05). Isokinetic leg-press training with moderate vibration and functional physiotherapy are both effective in regaining muscle strength and function after TKA; however, isokinetic

  10. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis.

    PubMed

    Lau, Ricky W K; Liao, Lin-Rong; Yu, Felix; Teo, Tilda; Chung, Raymond C K; Pang, Marco Y C

    2011-11-01

    A systematic review and meta-analysis of randomized controlled trials was undertaken to determine whether whole body vibration improves bone mineral density and leg muscle strength in older adults. Sources included MEDLINE, CINAHL, EMBASE, PEDro, PubMed, Science Citation Index and the reference list of each eligible article. Article search and selection was performed independently by two researchers. The methodological quality of each selected article was rated by the PEDro scale. Thirteen randomized trials (18 articles) totalling 896 subjects fulfilled the selection criteria. Four were considered to have good or excellent methodological quality and the rest were rated as fair. Meta-analyses revealed that whole body vibration has no significant effect on hip or lumbar spine bone mineral density in older women when compared with no intervention or active exercise (P > 0.05). Whole body vibration, however, had a significant treatment effect on knee extension dynamic strength (standardized mean difference = 0.63, P = 0.006), leg extension isometric strength (standardized mean difference = 0.57, P = 0.003), and functional measures of leg muscle strength such as jumping height (standardized mean difference = 0.51, P = 0.010) and performance in sit-to-stand (standardized mean difference = 0.72, P < 0.001) among older adults compared with no intervention. Whole body vibration is beneficial for enhancing leg muscle strength among older adults. However, the review suggests that whole body vibration has no overall treatment effect on bone mineral density in older women. No randomized trial has examined the effects of whole body vibration on bone mineral density in older men.

  11. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    PubMed

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  12. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain.

    PubMed

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-05-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensional motion-analysis system, and the muscle activity of the bilateral internal oblique abdominis (IO), external oblique abdominis (EO), and rectus abdominis (RA) was recorded using surface electromyography (EMG). One-way repeated-measures ANOVA was performed to determine the rotation angles and muscle activity under the three conditions. [Results] The EMG activity of the ipsilateral IO, contralateral EO, and bilateral RA was greater and pelvic rotation was lower with the DPBUs than with no PBU or a single PBU. [Conclusion] The results of this study suggest that applying DPBUs during ASLR is effective in decreasing unwanted pelvic rotation and increasing abdominal muscle activity in women with chronic low back pain.

  13. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E

    2014-09-01

    A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P < 10(-3)) than those obtained without intentional cocontraction (l 0). For each hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be

  14. Contribution of calf muscle-tendon properties to single-leg stance ability in the absence of visual feedback in relation to ageing.

    PubMed

    Onambélé, Gladys L; Narici, Marco V; Rejc, Enrico; Maganaris, Constantinos N

    2007-09-01

    We tested the hypothesis that the importance of calf muscle-tendon properties for maintaining balance during single-leg stance increases in the absence of visual feedback. Trial duration, centre of pressure displacement normalized for trial duration (nD), electromyographic (EMG) activity of the main ankle plantarflexors and dorsiflexors, and ground reaction forces (F(P)), were measured in 20 younger (aged 18+/-1 years; mean+/-S.E.M.) and 28 older (aged 68+/-1 years) healthy participants during single-leg stance in eyes-open (EO) and eyes-closed (EC) conditions. Plantarflexor muscle strength, activation capacity and tendon stiffness were assessed by dynamometry, electrical stimulation and ultrasonography, respectively. Muscle-tendon characteristics in the older participants were up to 55% (P<0.0001) lower compared with their younger counterparts. Trial duration, F(P), nD and EMG changed in EC compared with EO by 21% and up to approximately 4.6 times (P<0.01) in the two population groups. Multiple linear regression with age and the three muscle-tendon properties showed a substantial increment in EC compared to EO for trial duration (R(2)=0.86 versus R(2)=0.72), but a similarity for nD (R(2)=0.36 versus R(2)=0.33). These results suggest that factors other than the ones that we examined become important when steadiness rather than stance duration is the object of single-leg stance in the absence of vision.

  15. [Blood distribution in the human leg arteries during orthostasis: role of the hydrostatic factor and posturotonic straining of the anti-gravity muscles].

    PubMed

    Modin, A Iu

    2004-01-01

    Ultrasonic visualization and dopplerography were used to study volumetric blood flows along the femoral artery, deep artery of the thigh, and the popliteal and sural arteries in normal volunteers. Active standing test resulted in significant blood redistribution among the arteries with prioritized blood supply to predominantly anti-g muscles but not to predominantly locomotor muscles. Elimination of static loading on the anti-g muscles by weight removal (transfer of the body mass on the other leg) was conducive to the opposite effect, i.e. absolute and relative decreases in the intensity of blood flow along the sural artery and a relatively more marked blood redistribution toward the deep artery of the thigh.

  16. Coronet vs. Cargo: A Study into Increasing the Usage of Tanker Assets for Cargo Movement on Coronet Positioning and De-Positioning Legs

    DTIC Science & Technology

    2010-06-01

    in hostile environments, the KC-X will be equipped with some sort of integral ballistic protection for crew and flight critical systems protection...by adding cargo hubs as stops in these “empty legs,” AMC may be able to reduce the number of cargo aircraft required in the mobility system and...may be able to reduce the number of cargo aircraft required in the system as well as the number of underutilized flying hours on the tanker. Even

  17. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated With Skeletal Muscle Strength and Gait Speed in Older People.

    PubMed

    Yamada, Yosuke; Yoshida, Tsukasa; Yokoyama, Keiichi; Watanabe, Yuya; Miyake, Motoko; Yamagata, Emi; Yamada, Minoru; Kimura, Misaka

    2017-03-01

    Skeletal muscles contain a large volume of water that is classified into intracellular (ICW) and extracellular (ECW) water fractions. Nuclear magnetic resonance-based biomarkers suggest that increased water T2 heterogeneities, as well as elevated water T2 relaxation in the quadriceps occurs in the elderly when compared with young adults. However, nuclear magnetic resonance is difficult to apply to a large-scale study or a clinical setting for sarcopenia and frailty screening. Segmental bioelectrical impedance spectroscopy is a unique tool used to assess the segmental ratio of ECW/ICW in the limbs. We evaluated 405 community-living people aged between 65 and 90 years. ECW and ICW in the upper legs were assessed by segmental bioelectrical impedance spectroscopy. Isometric knee extension strength, gait speed, and skeletal muscle mass were measured. Thigh ECW/ICW was negatively correlated with knee extension strength and gait speed (r = -.617 and -.431, respectively, p < .001) and increased with age (p < .001). Thigh ECW/ICW was a significant predictor of knee extension strength and gait speed independent of age, sex, body mass index, and skeletal muscle mass. Relative expansion of ECW against ICW in the thigh muscles is a factor in decreased muscle quality and a biomarker of muscle aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking.

    PubMed

    Hu, Hai; Meijer, Onno G; van Dieën, Jaap H; Hodges, Paul W; Bruijn, Sjoerd M; Strijers, Rob L; Nanayakkara, Prabath W; van Royen, Barend J; Wu, Wenhua; Xia, Chun

    2010-02-10

    Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity during ASLR, and how it changes with a pelvic belt. Healthy nulligravidae (N=17) performed the ASLR, and walked on a treadmill at increasing speeds, without and with a belt. Fine-wire electromyography (EMG) was used to record activity of the mm. psoas, iliacus and transversus abdominis, while other hip and trunk muscles were recorded with surface EMG. In ASLR, all muscles were active. In both tasks, transverse and oblique abdominal muscles were less active with the belt. In ASLR, there was more activity of the contralateral m. biceps femoris, and in treadmill walking of the m. gluteus maximus in conditions with a belt. For our interpretation, we take our starting point in the fact that hip flexors exert a forward rotating torque on the ilium. Apparently, the abdominal wall was active to prevent such forward rotation. If transverse and oblique abdominal muscles press the ilia against the sacrum (Snijders' "force closure"), the pelvis may move as one unit in the sagittal plane, and also contralateral hip extensor activity will stabilize the ipsilateral ilium. The fact that transverse and oblique abdominal muscles were less active in conditions with a pelvic belt suggests that the belt provides such "force closure", thus confirming Snijders' theory.

  19. The relationship of leg volume (muscle plus bone) to maximal aerobic power output on a bicycle ergometer: the effects of anaemia, malnutrition and physical activity.

    PubMed

    Davies, C T

    1974-01-01

    The relationship of maximal power output (VO2 max) to leg muscle plus bone) volume (LV) has been analysed in African children suffering from malnutrition and severe anaemia and in a group of rural adult Africans engaged in prolonged, active daily work. The results are examined in relation to 'normal' healthy active (but not in training) African ? s and ? s aged 7-35 years. The analysis clearly demonstrates that the association between VO2 max and LV is not causal; the effects of increased habitual activity and anaemia show that the two parameters can be varied independently. The effect of habitual activity on the VO2 max : LV relationship is essentially additive, whereas the effect of anaemia is multiplicative. However in malnutrition, the relationship remains unchanged; VO2 max decreases paripassu with the reduced leg (muscle plus bone) volume. Iron therapy produces an increase in VO2 max) towards normal values without a concomitant change in LV. The results give a clearer understanding of the relationship between 'active' muscle mass and aerobic power output on the bicycle ergometer and could be used as a basis for clinical diagnosis in the industrial and medical fields, particularly for cases of debilitating disease which have an effect on physiological performance and effort intolerance. The data at present cannot be applied to men and women over 35 years of age.

  20. Functional identification of an exon 1 substitution in the myostatin gene and its expression in breast and leg muscle of the Bian chicken.

    PubMed

    Zhang, G X; Zhang, T; Wei, Y; Ding, F X; Zhang, L; Wang, J Y

    2015-01-01

    1. The objective of this study was to verify the functional effects of the c.234G>A substitution in the myostatin (MSTN) gene and ascertain the mechanism by which the variant affects growth traits in the Bian chicken. 2. The c.234G>A substitution was detected by PCR-RFLP analysis in the 7th-generation Bian chickens and three genotypes (AA, AG and GG) were identified. Results showed that the substitution was significantly associated with all studied growth traits, except first-d-weight, in female Bian chickens. 3. Based on these results, the substitution was used in gene-assisted selection for growth traits and thus fast-growth (AA genotype) and slow-growth (GG genotype) lines were successfully established. Significant differences in growth traits were detected between the fast-growth and slow-growth lines from 6 to 16 weeks of age. Furthermore, all slaughter traits, except leg muscle rate, were significantly different between the fast-growth and slow-growth lines. 4. Expression analysis showed that the relative expression level of MSTN in chickens with GG and AG genotypes were significantly higher than that in chickens with an AA genotype, both in breast and leg muscle. Chickens in the slow-growth line had significantly higher relative expression level of MSTN compared to chickens in the fast-growth line, both in breast and leg muscle. 5. The results suggest that the c.234G>A substitution in the myostatin (MSTN) gene negatively regulates the expression of MSTN in the Bian chicken and that it may be used in marker-assisted selection to accelerate the chicken breeding process.

  1. The leg depressor and levator muscles in the squat lobster Munida quadrispina (Galatheidae) and the crayfish Procambarus clarkii (Astacidae) have multiple heads with potentially different functions.

    PubMed

    Antonse, B L; Pau, D H

    2000-08-01

    The proximal leg muscles of decapod crustaceans, controlling movements at the first two joints, are anatomically more complex than the better-studied distal leg muscles. Despite extensive research on their involvement in diverse behaviors, no complete descriptions of the anatomy and innervation of these muscles for any species have been published. We describe the anatomy and innervation of the depressor muscle in the second leg of the squat lobster Munida quadrispina and compare its anatomy with that of its homologue in the crayfish Procambarus clarkii and its antagonist, the levator, in both species. Of the six anatomically distinct heads comprising M. quadrispina's depressor muscle, one arises in the coxa (coxal head) and five are bi-articular (cross two joints), arising from widely dispersed sites on the thoracic endophragmal skeleton (dorsal, sternal, caudal, ventral-rostral, ventral-caudal heads). The heads' widely divergent force vectors are accommodated by the depressor apodeme's bifurcation at a thin flexible point. In total, eighteen neurons with central somata were backfilled from nerve branches to the heads. The common inhibitor and at least one neuron of unknown function with rostro-lateral soma and extremely sparse neurites innervate all heads. The sixteen excitatory motoneurons' somata are clustered in two locations, five rostral and eleven caudal to the neuropil. Rostral motoneurons innervate the two ventral heads (rostral and caudal). Their integrating segments lie rostral to those of the caudal group motoneurons and are straight or 'Y'-shaped, the latter longer and larger in diameter. Both morphological types have one prominent medial neurite that crosses the midline and could allow direct interaction between bilateral pairs of rostral motoneurons. The caudal motoneurons provide partially shared innervation to the remaining four heads. Six provide exclusive innervation, one to the caudal head, two to the sternal head, and three to the bi

  2. The effect of lumbar posture on abdominal muscle thickness during an isometric leg task in people with and without non-specific low back pain.

    PubMed

    Pinto, Rafael Zambelli; Ferreira, Paulo Henrique; Franco, Marcia Rodrigues; Ferreira, Mariana Calais; Ferreira, Manuela Loureiro; Teixeira-Salmela, Luci Fuscaldi; Oliveira, Vinicius C; Maher, Christopher

    2011-12-01

    This study investigated the effect of lumbar posture on function of transversus abdominis (TrA) and obliquus internus (OI) in people with and without non-specific low back pain (LBP) during a lower limb task. Rehabilitative ultrasound was used to measure thickness change of TrA and OI during a lower limb task that challenged the stability of the spine. Measures were taken in supine in neutral and flexed lumbar postures in 30 patients and 30 healthy subjects. Data were analysed using a two-way (groups, postures) ANOVA. Our results showed that lumbar posture influenced percent thickness change of the TRA muscle but not for OI. An interaction between group and posture was found for TrA thickness change (F(1,56) = 6.818, p = 0.012). For this muscle, only healthy participants showed greater thickness change with neutral posture compared to flexed (mean difference = 6.2%; 95% CI: 3.1-9.3%; p < 0.001). Comparisons between groups for both muscles were not significant. Neutral lumbar posture can facilitate an increase in thickness of the TrA muscle while performing a leg task, however this effect was not observed for this muscle in patients with LBP. No significant difference in TrA and OI thickness change between people with and without non-specific LBP was found.

  3. Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side.

    PubMed

    Hjorth, M H; Stilling, M; Lorenzen, N D; Jakobsen, S S; Soballe, K; Mechlenburg, I

    2014-06-01

    Metal-on-metal articulations mimic the human hip anatomy, presumably lower dislocation rates and increase the range-of-motion. This study aims to measure the muscle mass and power of both legs in patients with unilateral metal-on-metal total hip arthroplasty, and to investigate their effect on block-step test, spatio-temporal gait parameters and self-reported function. Twenty-eight patients (7 women), mean age 50 (28-68) years, participated in a 5-7 year follow-up. Patients had received one type unilateral large-head metal-on-metal total hip articulation, all of which were well-functioning at follow-up. Mean muscle mass was measured by the total-body Dual energy X-ray Absorption scans, and muscle power was measured in a leg extensor power rig. Block-step test and spatio-temporal gait parameters were measured with an inertial measurement unit. Self-reported function was assessed by the Hip Disability and Osteoarthritis Outcome Score. We found a significant difference between the mean muscle mass of the implant-side leg and the non-implant-side leg in hip, thigh and calf areas (P<0.008) and in mean muscle power (P=0.025). Correlations between mean muscle mass and mean muscle power were significant for both the implant-side leg (r=0.45, P=0.018) and the non-implant-side leg (r=0.51, P=0.007). The difference in mean muscle power between legs correlated with block-step test asymmetry during ascending (r=0.40, P=0.047) and descending (r=0.53, P=0.006). Correlations between self-reported function and power of the implant-side leg were not significant. Young patients have not fully regained muscle mass, muscle power and function 5-7 years after metal-on-metal total hip arthroplasty. Copyright © 2014. Published by Elsevier Ltd.

  4. Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg muscles.

    PubMed

    Guo, Jing; Hirsch, Sebastian; Scheel, Michael; Braun, Jürgen; Sack, Ingolf

    2016-04-01

    To develop and demonstrate MR elastography (MRE) for the measurement of three independent viscoelastic constants of skeletal muscle according to the theory of linear elasticity of incompressible materials with transverse isotropy (TI). Three-dimensional multifrequency MRE was applied to soleus, gastrocnemius, and tibialis anterior muscles in 10 healthy volunteers. The rotational wave fields were solved for complex-valued viscoelastic parameters μ12, μ13, and E3 corresponding to two shear moduli (within the planes of isotropy and symmetry of TI materials) and Young's modulus (along the principal fiber axis). Anisotropy was represented by the inequality μ12  < μ13  < 1/3E3 considering storage and loss properties of the soleus and gastrocnemius muscles, whereas storage shear moduli of tibialis were indistinguishable. Storage moduli were: 1.06 ± 0.12, 1.33 ± 0.10, 6.92 ± 0.95 kPa (soleus); 0.90 ± 0.11, 1.30 ± 0.15, 8.22 ± 1.37 kPa (gastrocnemius); 1.26 ± 0.16, 1.27 ± 0.11, 9.29 ± 1.42 kPa (tibialis), for μ12, μ13, and E3, respectively. The muscles were different in their μ12 and E3 values, whereas μ13 was less sensitive to the muscle type. Leg differences were observed in the soleus and gastrocnemius muscles. Recovery of the full elasticity tensor in incompressible TI materials is feasible by three-dimensional inversion of the time-harmonic shear wave equation. The method is potentially useful for the clinical evaluation of skeletal muscle anisotropy. © 2015 Wiley Periodicals, Inc.

  5. Nocturnal leg cramps.

    PubMed

    Allen, Richard E; Kirby, Karl A

    2012-08-15

    Up to 60 percent of adults report that they have had nocturnal leg cramps. The recurrent, painful tightening usually occurs in the calf muscles and can cause severe insomnia. The exact mechanism is unknown, but the cramps are probably caused by muscle fatigue and nerve dysfunction rather than electrolyte or other abnormalities. Nocturnal leg cramps are associated with vascular disease, lumbar canal stenosis, cirrhosis, hemodialysis, pregnancy, and other medical conditions. Medications that are strongly associated with leg cramps include intravenous iron sucrose, conjugated estrogens, raloxifene, naproxen, and teriparatide. A history and physical examination are usually sufficient to differentiate nocturnal leg cramps from other conditions, such as restless legs syndrome, claudication, myositis, and peripheral neuropathy. Laboratory evaluation and specialized testing usually are unnecessary to confirm the diagnosis. Limited evidence supports treating nocturnal leg cramps with exercise and stretching, or with medications such as magnesium, calcium channel blockers, carisoprodol, or vitamin B(12). Quinine is no longer recommended to treat leg cramps. Copyright © 2012 American Academy of Family Physicians.

  6. Comparison of skin and muscle biopsies before and after pentoxifylline treatment in patients with leg ulcers due to deep venous incompetence.

    PubMed

    Angelides, N S; von der Ahe, C W; Themistocleus, P

    1991-01-01

    The aim of this study was to understand the possible mechanisms by which deep venous insufficiency and venous hypertension are associated with trophic skin changes and ulceration and to explain the therapeutic effect of Pentoxifylline in patients with leg ulcers due to deep venous incompetence. Twenty patients were included in this pilot study. They were graded into two groups: group 1, included 10 patients (5 F and 5 M) with deep venous incompetence and normal arteries; group 2, included 10 patients (1 F and 9 M) with deep venous incompetence and moderate arterial disease. Skin and muscle biopsies were carried out before and after the oral administration of 1,200 mg of Pentoxifylline daily (400 mg t.d.s). The following parameters were investigated by means of light microscopy and immunofluorescence tests: engorgement of venous stroma; decrease of intimal elastica; hyaline degeneration; floccular degeneration; pericapillary fibrin deposits and fibrin degradation products; inflammation and fat necrosis; myofibril degeneration; fibrous scar; regeneration and reconstitution of muscle fibres. The results indicated that local inflammation at the ulcer's area cause accumulation of white blood cells in the capillaries and the interstitial fluid, where there is also accumulation of fibrinogen. These changes may lead to chronic tissue ischaemia and ulceration. The known favourable effect of Pentoxifylline on red cells and leucocyte function as well as its lowering effect on plasma fibrinogen level, may be responsible for the observed therapeutic effect of Pentoxifylline on venous leg ulcers.

  7. Muscle transposition and circumferential vacuum-assisted closure to salvage the knee joint in transtibial amputation of the leg: case report.

    PubMed

    Tuncer, Serdar; Karaca, Sinan

    2011-06-01

    Degloving injury is the avulsion of the skin off the underlying muscle and bone, which may also involve the latter structures in high-energy trauma. This study reports the case of a 33-year-old male patient who sustained a motorcycle accident and presented with hypovolemic shock, multiple fractures, and multiplanar degloving injury of the leg. The foot and distal leg was not salvageable, and a transtibial amputation with anterior transposition of the posterior compartment muscles was performed; however, a circumferential skin necrosis involving the stump and the knee joint occurred. The wound granulated rapidly using circumferential vacuum-assisted closure therapy and subsequently repaired with split thickness skin grafts. The authors found the topical negative pressure using the Vacuum Assisted Closure (VAC) technique Trademark KCI, Texas, USA, method to be helpful in the care of lower extremity degloving injury, enabling less frequent dressing changes and facilitating formation of granulation tissue with rapid preparation of the wound bed for salvage of the knee joint.

  8. Physical traits of male Japanese bush warblers (Cettia diphone) in summer and winter: hyperactive aspects of the vocal system and leg muscles in summer males.

    PubMed

    Chiba, Akira; Uchida, Hiroshi; Imanishi, Sadao

    2014-11-01

    The Japanese bush warbler has a very distinctive song, shows marked sexual size dimorphism, and has a polygynous mating system. However, the physical traits of males and seasonal variation in such traits have remained unknown. Twenty-five anatomical measurements representing physical traits of males in the breeding (summer, n = 5) and non-breeding (winter, n = 5) seasons were examined morphologically and compared statistically. Differences were evident between summer and winter (P < 0.05, t test) in the following seven items: body mass (19.8 ± 0.7 g vs. 15.6 ± 1.2 g [mean ± SD]), mass of male reproductive organs (184.0 ± 25.7 mg vs. 6.0 ± 1.4 mg), hind limb (3789.2 ± 346.2 mg vs. 3003.4 ± 226.8 mg), leg muscles (883.0 ± 63.5 mg vs. 581.4 ± 33.2 mg in either side), skin around the neck/throat (1280 ± 34.9 mg vs. 287.2 ± 84.7 mg), and syrinx (35.8 ± 2.39 mg vs. 25.0 ± 3.24 mg), and circumference of the neck/throat (52.1 ± 2.3 mm vs. 38.3 ± 2.6 mm). In contrast to winter males, summer males had thickened flabby skin prominently in the neck/throat area and an inflatable esophagus, perhaps a morphological basis for the throat sac as a vocal resonator. Also, the remarkable development of the flexor muscles of the legs of summer males suggests that perching and movement using the legs increases during the breeding season. These distinct characteristics of summer males may be related to the polygynous mating system of this species.

  9. Muscle activity in the lower limbs during push-down movement with a new active-exercise apparatus for the leg

    PubMed Central

    Tanaka, Kenta; Kamada, Hiroshi; Shimizu, Yukiyo; Aikawa, Shizu; Irie, Shun; Ochiai, Naoyuki; Sakane, Masataka; Yamazaki, Masashi

    2016-01-01

    [Purpose] Lower-limb deep vein thrombosis is a complication of orthopedic surgery. A leg-exercise apparatus named “LEX” was developed as a novel active-exercise apparatus for deep vein thrombosis prevention. Muscle activity was evaluated to assess the effectiveness of exercise with LEX in the prevention. [Subjects] Eight healthy volunteers participated in this study. [Methods] Muscle activities were determined through electromyography during exercise with LEX [LEX (+)] and during active ankle movements [LEX (−)]. The end points were peak % maximum voluntary contraction and % integrated electromyogram of rectus femoris, vastus lateralis, biceps femoris, tibialis anterior, gastrocnemius, and soleus. [Results] LEX (+) resulted in higher average values in all muscles except the tibialis anterior. Significant differences were noted in the peak of the biceps femoris and gastrocnemius and in the integrated electromyogram of the rectus femoris, vastus lateralis, gastrocnemius, and soleus. The LEX (+)/LEX (−) ratio of the peak was 2.2 for the biceps femoris and 2.0 for the gastrocnemius . The integrated electromyogram was 1.8 for the gastrocnemius, 1.5 for the rectus femoris, 1.4 for the vastus lateralis, and 1.2 for the soleus. [Conclusion] Higher muscle activity was observed with LEX (+). LEX might be a good tool for increasing lower-limb blood flow and deep vein thrombosis prevention. PMID:27134410

  10. Intra-rater reliability of B-mode ultrasound imaging of the abdominal muscles in healthy adolescents during the active straight leg raise test.

    PubMed

    Linek, Pawel; Saulicz, Edward; Wolny, Tomasz; Myśliwiec, Andrzej

    2015-01-01

    To date, the reliability of ultrasound imaging (USI) measures of the abdominal muscles in children and adolescents during the active straight leg raise (ASLR) test has not been confirmed. To assess the intra-rater reliability of USI measures of the thickness and percentage thickness change of the external oblique (EO), internal oblique (IO), and transversus abdominis (TrA) on both sides of the body during the ASLR test in healthy adolescents. Single-group repeated-measures intra-rater reliability study. School. Thirty-nine adolescents between the ages of 13 and 16 years. Three repeated USI measurements were recorded in the supine resting position and during the ASLR test at 2 sessions, 6 to 8 days apart. In the supine position, measurements were collected at the end of normal expiration. In the case of ASLR, measurements were collected when the person undergoing examination touched the transverse delimiter with the distal part of their lower leg, that is, to a 30° flexion of the hip. USI of abdominal muscle thickness. By using the mean of 3 measures in the supine, resting position, intra-examiner reliability point estimates (intraclass correlation coefficient [ICC]3.3) ranged from 0.95 to 0.97 for EO, IO, and TrA. During the ASLR test, the ICC result of thickness measurements of all muscles was also above 0.90. In terms of percentage change of muscle thickness, the highest ICC3.3 result obtained for the TrA was 0.81-0.85; for EO the result ranged from 0.72-0.89, and the result for the IO was between 0.65 and 0.79. USI measurements of the thickness of the EO, IO, and TrA muscles at rest and during the ASLR test in healthy adolescents between 13 and 16 years of age are reliable. Because of an increase in the precision of measurements, we recommend using the mean of 3 consecutive measurements of the EO, IO, and TrA muscles in adolescents to ensure a good reliability level. Based on 3 consecutive measurements, good reliability for the percentage change in the Tr

  11. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control

    PubMed Central

    2013-01-01

    Background Anterior cruciate ligament (ACL) tears are common, functionally disabling, and predispose to subsequent injuries and early onset of osteoarthritis in the knee. Injuries result in muscular atrophy and impaired muscular activation. To optimize surgical methods and rehabilitation strategies, knowledge of the effects of ACL injuries on muscles size and function is needed. Asymmetry due to limb dominance implies that the effect of ACL-injury might be different in right-sided and left-sided injuries which, should be taken in account when evaluating the effect of an injury. Evaluation of the effects of injuries is usually made with the contralateral leg as control. The aim of this study is to describe the effect of ACL-injuries on thigh muscle size and also to analyze feasibility of using contralateral limb as control. Methods Sixty-two patients scheduled to undergo ACL reconstruction were examined with computed tomography (CT). Muscle cross sectional area (CSA) was recorded for quadriceps, hamstrings, gracilis and sartorius 15 cm above the knee joint. Comparisons were made between the injured and non-injured side and between individuals separated by gender and side of injury. Comparisons were also made for patients with or without concomitant meniscal tear, for patients differing in time between injury and examinations and for patients with different level of physical activity after the injury. Results Quadriceps CSA was 5% smaller on the injured side. There was an indication that the muscles of the right thigh were generally bigger than those of the left thigh. The difference between the injured and the non-injured side was larger for right-sided injuries than for left-sided. There was also a greater difference in semimembranosus for women than for men. There were no differences related to meniscal injury, time since injury or physical activity. Conclusion The use of contralateral leg for evaluating the effect of ACL-injury is often the only available

  12. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase.

    PubMed

    Nyberg, Michael; Egelund, Jon; Mandrup, Camilla M; Andersen, Caroline B; Hansen, Karen M B E; Hergel, Ida-Marie F; Valbak-Andersen, Nicholai; Frikke-Schmidt, Ruth; Stallknecht, Bente; Bangsbo, Jens; Hellsten, Ylva

    2017-02-23

    Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1) years of age were included. Before training, leg blood flow, O2 delivery, O2 uptake, and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P < 0.05) leg blood flow, O2 delivery, O2 uptake, lactate release, blood pressure and heart rate during the same absolute workloads in the postmenopausal women. These effects were not detected in the premenopausal women. Quadriceps muscle protein contents of mitochondrial complex II, III, and IV, endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX.1), COX-2, and oestrogen related receptor α (ERRα) were increased (P < 0.05) with training in the postmenopausal women whereas only the levels of mitochondrial complex V, eNOS, and COX-2 were increased (P < 0.05) in the premenopausal women. These findings demonstrate that vascular and skeletal muscle mitochondrial adaptations to aerobic high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase. This article is protected by copyright. All rights reserved.

  13. Postural adjustments in arm and leg muscles associated with isodirectional and antidirectional coupling of upper limb movements in the horizontal plane.

    PubMed

    Baldissera, Fausto; Rota, Viviana; Esposti, Roberto

    2008-09-01

    The hypothesis that anticipatory postural adjustments (APAs) may concur in generating the directional preference experienced during limb coupled movements was tested by measuring the electromyographic and mechanic postural actions elicited when moving: (1) one single arm/hand and, (2) both limbs, iso- or antidirectionally coupled. During fast adduction of the right arm in the horizontal plane (prime mover, pectoralis Major, R: PM) APAs were recorded in the contralateral L: PM as well as in the right ischiocruralis (R: IC) muscle. This last action was associated to a transient increase of Tz (torque around body vertical axis) in the direction opposite to arm rotation. Both the APAs in R: IC and the Tz changes nearly doubled in size when arms were coupled isodirectionally (adduction of one arm and abduction on the other) while they vanished when both arms were simultaneously adducted (antidirectional coupling). Conformably, during rhythmic arm oscillations APAs and Tz were cyclically modulated when movements were isodirectional, the modulation amplitude being strongly enhanced by increasing the movement frequency. When oscillations were antidirectional neither APAs nor Tz changes were observed, even if frequency was incremented. The postural actions linked to unidirectional or cyclic movements of the hand were affected by either coupling or frequency in the same way as arm movements, albeit much smaller in size. In conclusion, during antidirectional movements APAs in prime movers are synergic with voluntary activation and no postural engagement is requested to leg muscles. Conversely, during isodirectional movements, APAs in prime movers conflict with the voluntary commands and a strong, frequency-dependent, postural effort is required to leg muscles. How these factors may co-operate in determining the preference for antidirectional coupling is discussed.

  14. Meat quality and the histological structure of breast and leg muscles in Ayam Cemani chickens, Ayam Cemani × Sussex hybrids and slow-growing Hubbard JA 957 chickens.

    PubMed

    Łukasiewicz, Monika; Niemiec, Jan; Wnuk, Agnieszka; Mroczek-Sosnowska, Natalia

    2015-06-01

    The purpose of this study was to determine the quality of meat and the histological structure of muscles of Ayam Cemani chickens, Ayam Cemani × Sussex hybrids and slow-growing Hubbard JA 957 chickens and to examine whether crossing generally available Sussex chickens with little available Ayam Cemani gives a good quality product of interest to the poultry industry and in food technology. The size of breast and leg muscle fibers varied among genotypes. The breast and leg muscles of slow-growing Hubbard JA 957 chickens had the largest fiber diameter. The histological and biochemical properties of muscles, including the type, number, proportions, diameter and metabolic profile of fibers, had a significant effect on the pH and water-binding capacity of meat, thus affecting its quality. The muscle fibers of Ayam Cemani chickens were approximately half the size of the muscle fibers of Hubbard JA 957 chickens. Ayam Cemani and Ayam Cemani × Sussex gave a product of as good quality as Hubbard JA 957 chickens. Meat from Ayam Cemani chickens is a rich source of protein and could be highly valued by gourmet consumers, connoisseurs and dieticians for its rarity and originality. The results of this study show that genotype (Ayam Cemani, Ayam Cemani × Sussex, Hubbard JA 957) affected the quality and color of meat and the histological profile of chicken breast and leg muscles. © 2014 Society of Chemical Industry.

  15. Effects of a 10-week conventional strength training program on lower leg muscle performance in adolescent boys compared to adults.

    PubMed

    Pesta, D; Thaler, A; Hoppel, F; Macek, C; Schocke, M; Burtscher, M

    2014-04-01

    The use of resistance training by adolescents has been an area of controversy. The aim of the present work was therefore to evaluate the degree of strength trainability in adolescents compared to adults. Thirteen healthy male adolescents (AL) and eight adults (AD) volunteered to participate in a 10-week training program. Subjects performed supervised exercises for the legs, calf raise, leg curl and leg extension three times a week. Maximal strength, explosive power and anaerobic power were assessed prior and after the 10-week training program. Significant interaction effects (time * age group) were found only for explosive strength as improvements of squat jump and counter movement jump performance (P<0.05) in favor of the AL group. No between-group changes were found for maximal strength and anaerobic power. However, significant time effects were observed for these parameters within both groups. Taken together, adolescents show distinct muscular adaptations by a higher gain in explosive power in response to resistance training when compared to adults. This might be related to peak height velocity (PHV) which is a "sensitive" period of trainability and accelerated adaptation to resistance training in adolescents.

  16. The effect of swinging the arms on muscle activation and production of leg force during ski skating at different skiing speeds.

    PubMed

    Göpfert, Caroline; Lindinger, Stefan J; Ohtonen, Olli; Rapp, Walter; Müller, Erich; Linnamo, Vesa

    2016-06-01

    The study investigated the effects of arm swing during leg push-off in V2-alternate/G4 skating on neuromuscular activation and force production by the leg muscles. Nine skilled cross-country skiers performed V2-alternate skating without poles at moderate, high, and maximal speeds, both with free (SWING) and restricted arm swing (NOSWING). Maximal speed was 5% greater in SWING (P<0.01), while neuromuscular activation and produced forces did not differ between techniques. At both moderate and high speed the maximal (2% and 5%, respectively) and average (both 5%) vertical force and associated impulse (10% and 14%) were greater with SWING (all P<0.05). At high speed range of motion and angular velocity of knee flexion were 24% greater with SWING (both P<0.05), while average EMG of m. biceps femoris was 31% lower (all P<0.05) in SWING. In a similar manner, the average EMG of m. vastus medialis and m. biceps femoris were lower (17% and 32%, P<0.05) during the following knee extension. Thus, swinging the arms while performing V2-alternate can enhance both maximal speed and skiing economy at moderate and, in particularly, high speeds.

  17. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    SciTech Connect

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by {sup 14}C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs.

  18. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. The transverse abdominal muscle is excessively active during active straight leg raising in pregnancy-related posterior pelvic girdle pain: an observational study.

    PubMed

    Mens, Jan M A; Pool-Goudzwaard, Annelies

    2017-08-25

    Many studies suggest that impairment of motor control is the mechanical component of the pathogenesis of painful disorders in the lumbo-sacral region; however, this theory is still unproven and the results and recommendations for intervention remain questionable. The need for a force to compress both innominate bones against the sacrum is the basis for treatment of pregnancy-related pelvic girdle pain (PGP). Therefore, it is advised to use a pelvic belt and do exercises to enhance contraction of the muscles which provide this compression. However, our clinical experience is that contraction of those muscles appears to be excessive in PGP. Therefore, in patients with long-lasting pregnancy-related posterior PGP, there is a need to investigate the contraction pattern of an important muscle that provides a compressive force, i.e. the transverse abdominal muscle (TrA), during a load transfer test, such as active straight leg raising (ASLR). TrA thickness was measured by means of ultrasound imaging at rest and during ASLR in 43 non-pregnant women with ongoing posterior PGP that started during a pregnancy or delivery, and in 39 women of the same age group who had delivered at least once and had no current PGP (healthy controls). In participants with PGP, the median TrA thickness increase with respect to rest during ipsilateral and contralateral ASLR was 31% (SD 46%) and 31% (SD 57%), respectively. In healthy controls, these values were 11% (SD 25%) and 13% (SD 22%), respectively. Significant excessive contraction of the TrA is present during ASLR in patients with long-lasting pregnancy-related posterior PGP. The present findings do not support the idea that contraction of the TrA is decreased in long-lasting pregnancy-related PGP. This implies that there is no rationale for the prescription of exercises to enhance contraction of TrA in patients with long-lasting pregnancy-related PGP.

  20. Altered incubation temperatures between embryonic Days 7 and 13 influence the weights and the mitochondrial respiratory and enzyme activities in breast and leg muscles of broiler embryos.

    PubMed

    Krischek, Carsten; Janisch, Sabine; Naraballobh, Watcharapong; Brunner, Ronald; Wimmers, Klaus; Wicke, Michael

    2016-01-01

    Altering incubation temperature during embryogenesis has an impact on chicken embryo growth, but the underlying molecular mechanisms are not understood; the present study was performed to address these changes. Broiler eggs were incubated at low (36.8°C), control (37.8°C), and high (38.8°C) temperatures between Embryonic Day (ED) 7 and 10 or ED 10 and 13, which cover critical periods of embryonic myogenesis. The embryos were then dissected immediately after treatment on ED 10 or 13 to assess body, liver, and heart weights as well as to analyze breast and leg muscle fibers for their mitochondrial respiratory activity (MRA). Breast muscle samples were additionally used to evaluate the activity of enzymes involved in energy metabolism and cell-cycle progression. ED-10 embryos incubated at 38.8°C showed elevated weights (body, liver, and heart), MRA, and activities of lactate dehydrogenase and cytochrome oxidase compared to the ED-10 embryos incubated at 36.8°C. Similarly, the ED-13 embryos incubated at 38.8°C showed elevated body weight, MRA, and activities of glycogen phosphorylase, phosphofructokinase, and cytochrome oxidase compared to their 36.8°C counterparts. Embryos incubated at the normal temperature (37.8°C), however, showed variable differences from those incubated at 38.8°C versus 36.8°C. Cell-cycle enzyme activities were not impacted by the different temperature treatments. Thus, an increase or decrease in the incubation temperature during embryonic broiler myogenesis results in altered embryo activity, muscle energy metabolism, and activity-dependent muscle growth. © 2015 Wiley Periodicals, Inc.

  1. Effect of Exercise-Induced Enhancement of the Leg-Extensor Muscle-Tendon Unit Capacities on Ambulatory Mechanics and Knee Osteoarthritis Markers in the Elderly

    PubMed Central

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Objective Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Methods Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Results Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. Conclusions This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable

  2. Patellar bracing affects sEMG activity of leg and thigh muscles during stance phase in patellofemoral pain syndrome.

    PubMed

    Salarie Sker, Fatemeh; Anbarian, Mehrdad; Yazdani, Amir H; Hesari, Pouria; Babaei-Ghazani, Arash

    2017-06-29

    Decreases in patellofemoral pain symptoms with bracing treatment have been established; but, the mechanisms remain unclear. The purpose of this study was to determine the immediate and long-term effects of the patellar bracing on electromyography (EMG) activity of the Vastus Medialis (VM) and Lateralis (VL), Rectus Femoris, lateral Gastrocnemius, Biceps Femoris and Semitendinosus (ST) muscles during level walking. 12 eligible women aged 20-30 years with diagnosis of patellofemoral pain participated in the before and after study. Intervention consisted of 8 weeks of patellar bracing. First, patients were tested without brace, then with a brace, and finally eight weeks later without a brace. Surface EMG activation of the selected muscles during level walking was recorded. After eight weeks of patellar bracing, EMG activity of VM muscle was significantly higher when compared to first session without brace (p=0.011) at mid-stance sub-phase. Additionally, EMG activity of ST muscle during first session with brace was significantly lower when compared to first session without brace at mid-stance sub-phase (without brace) (p=0.012). EMG activity of VM muscle after eight weeks of patellar bracing was significantly higher than the first session without brace at late stance and preswing sub-phase (p=0.013). Long-term wearing of patellar bracing increases EMG activity of VM during mid-stance and late stance and preswing sub-phases of gait and immediate effect of patellar brace is decrease of EMG activity of ST muscle during mid-stance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Morphology and enzymatic capacity in arm and leg muscles in 78-81 year old men and women.

    PubMed

    Grimby, G; Danneskiold-Samsøe, B; Hvid, K; Saltin, B

    1982-05-01

    Twelve men and twelve women 78-81 years of age were studied with muscle biopsies from the right vastus lateralis and biceps brachii and with measurements of isometric and isokinetic strength for knee-extention and isometric strength for elbow-flexion. Bicycle ergometry with determination of heart rate and oxygen uptake at submaximal (50 W) and "maximal" work loads was also performed. Body cell mass was estimated from measurements of total body potassium. Muscle fibre composition with respect to slow twitch (ST = type I) and fast twitch (FT = type II) fibres did not differ between the sexes and the younger subjects drawn from population studies. The mean fibre areas averaged in vastus lateralis 4.7 and 3.3 micrometers 2 X 10(3) in men and women, respectively. This is less than 10 up to 30% of values found in sedentary younger subjects. The decline dominated in FT fibres, especially FTb fibres. In contrast biceps brachii did not show any matched fibre size reduction. The number of atrophic fibres was high and so was the frequency of "enclosed" fibres and areas with type grouping (ST fibres), indicating denervation--reinnervation. Such abnormalities are rarely seen in younger ages. Correlation analysis showed that only a minor part of the reduction in body cell mass with age could be explained by a reduction in fibre areas and that a reduction with age of the number of muscle fibres of both fibre types must be assumed. Positive correlations were observed between muscle strength and mean fibre and FT fibre areas. Comparing the present findings of skeletal muscle morphology to those in younger age groups, it is apparent that during the 8th decade of life major changes do occur. The measurements of aerobic and anaerobic enzymatic activities and of muscle capillary supply showed that levels comparable to those of younger age groups are maintained. Thus, quantitative rather than qualitative changes may explain the reduction in work performance with age.

  4. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  5. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  6. Relationship of Hip and Trunk Muscle Function with Single Leg Step-Down Performance: Implications for Return to Play Screening and Rehabilitation.

    PubMed

    Burnham, Jeremy M; Yonz, Michael C; Robertson, Kaley E; McKinley, Rachelle; Wilson, Benjamin R; Johnson, Darren L; Ireland, Mary Lloyd; Noehren, Brian

    2016-11-01

    Evaluate the relationship of hip and trunk muscle function with the Single Leg Step-Down test (SLSD). Laboratory study. Biomechanics Laboratory. 71 healthy participants with no history of anterior cruciate ligament (ACL) or lower extremity injury in the last 3 months completed this study (38 males, 33 females; mean 25.49 ± 0.62 years). Hip abduction (HABD), external rotation (HER), and extension (HEXT) peak isometric force were measured. Trunk endurance was measured with plank (PL) and side plank (SPL) tests. SLSD repetitions in 60-s and dynamic knee valgus (VAL) were recorded. PL, SPL, HABD, HER, and HEXT were positively correlated with SLSD repetitions. PL (r = 0.598, p < 0.001) was most correlated with SLSD repetitions, and regression demonstrated that PL (p = 0.001, R(2) = 0.469) was a predictor of SLSD repetitions. VAL trended toward negative correlation with PL and SPL. Sex-specific differences were present, with PL, SPL, HABD, and HER showing stronger relationships with SLSD in females. Hip and trunk muscle function were positively correlated with SLSD performance, and these relationships were strongest in females. PL predicted performance on the SLSD. Further research is needed to investigate the utility of SLSD as a screening or return-to-play test for lower extremity conditions such as ACL injury and patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Usage Bibliometrics

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.; Bollen, Johan

    2010-01-01

    Scholarly usage data provides unique opportunities to address the known shortcomings of citation analysis. However, the collection, processing and analysis of usage data remains an area of active research. This article provides a review of the state-of-the-art in usage-based informetric, i.e. the use of usage data to study the scholarly process.

  8. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure.

    PubMed

    Barroco, A C; Sperandio, P A; Reis, M; Almeida, D R; Neder, J A

    2017-10-02

    Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2) delivery (i.e., muscle blood flow in non-hypoxemic patients) to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb) as measured by near-infrared spectroscopy (NIRS). We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35%) and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise) in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05). The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i) a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05), and ii) late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=-0.73; P=0.01). This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  9. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    PubMed Central

    Barroco, A.C.; Sperandio, P.A.; Reis, M.; Almeida, D.R.; Neder, J.A.

    2017-01-01

    Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2) delivery (i.e., muscle blood flow in non-hypoxemic patients) to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb) as measured by near-infrared spectroscopy (NIRS). We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35%) and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise) in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05). The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i) a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05), and ii) late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01). This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients. PMID:28977120

  10. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision.

    PubMed

    Sozzi, Stefania; Nardone, Antonio; Schieppati, Marco

    2016-01-01

    Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders.

  11. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision

    PubMed Central

    Sozzi, Stefania; Nardone, Antonio; Schieppati, Marco

    2016-01-01

    Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders. PMID:27625599

  12. Increased gain of vestibulospinal potentials evoked in neck and leg muscles when standing under height-induced postural threat.

    PubMed

    Naranjo, E N; Allum, J H J; Inglis, J T; Carpenter, M G

    2015-05-07

    To measure changes in amplitudes of vestibular evoked myogenic potentials (VEMPs) elicited from neck, upper and lower limb muscles during a quiet standing task with increased postural threat achieved by manipulating surface height. Twenty eight subjects were tested while standing on a platform raised to 0.8 m and 3.2 m from the ground. Surface electromyography was recorded from the ipsilateral sternocleidomastoid (SCM), biceps brachii (BB), flexor carpi radialis (FCR), soleus (SOL) and medial gastrocnemius (MG) muscles. Stimulation was with air-conducted short tone bursts (4 ms). After controlling for background muscle activity, VEMP amplitudes were compared between heights and correlated with changes in state anxiety, fear and arousal. VEMP amplitude significantly increased in SCM (9%) and SOL (12.7%) with increased surface height (p<0.05). These modest increases in SCM VEMP amplitude were significantly correlated with anxiety (Rho=0.57, p=0.004) and confidence (Rho=-0.38, p=0.047) and those for SOL were significantly correlated with anxiety (Rho=0.33, p=0.049) and fear (Rho=0.36, p=0.037). Postural threat significantly increased vestibulospinal reflex (VSR) gains. Results demonstrate that VEMPs can be used to test different VSR pathways simultaneously during stance. Since fear and anxiety are prevalent with vestibular disorders, they should be considered as potential contributing factors for clinical vestibular outcome measures. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration: a longitudinal study on young soccer players.

    PubMed

    Nikolaidis, Pantelis T; Ingebrigtsen, Jorgen; Jeffreys, Ian

    2016-10-01

    The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginning and in the end of competitive season, for anthropometric characteristics, countermovement jump and 20-meter acceleration (split 0-10 meters and 10-20 meters, indices of drive and transition, respectively). The soccer players were grouped according to seasonal changes in 20-meter acceleration (Δacc) in responders (Δacc≤-0.10 s), control (-0.05≤Δacc≤0.08 s) and non-responders (Δacc≥0.10 s). Compared with the non-responders at baseline, the responders were younger (-2.0 years [-2.8;-1.1]), shorter (-10.1 cm [-19.4;-0.7]), with higher body fat percentage (7.7% [2.7%;12.6%]) and fat mass (4.1 kg [0.7;7.4]), and lower performance in the countermovement jump (-8.9 cm [-13.9;-4.0]) and 20 m acceleration (0.63 s [0.39;0.87]); during the season they had smaller body mass gain (-2.8 kg [-5.4;-0.1]), decreased Body Mass Index (BMI, -1.0 kg/m2 [-1.9;0]) and greater improvement in the 20-meter acceleration (-0.33 s [-0.38;-0.28]). The effect size for these between-group differences was large (η2≥0.18). The Δacc and Δ10-20 were moderately correlated with body mass difference (r=0.48 and r=0.53, P<0.01, respectively) and ΔBMI (r=0.50 and r=0.51, P<0.01, respectively), whereas the Δ0-10 was correlated with ΔBMI (r=0.34, P<0.05) and ΔCMJ (r=-0.34, P<0.05). The findings indicated that the changes in body mass had the largest effect on changes in accelerative ability and on both two phases (drive and transition). On the contrary, changes in leg muscle power had impact only on the drive phase of the acceleration.

  14. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles

    PubMed Central

    Valaparla, Sunil K.; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2015-01-01

    Abstract. Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy (H1-MRS) acquisition (15×15×15  mm3), diffusion tensor imaging (DTI) with a b-value of 600  s mm−2, and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were 8.66±1.24  mmol kg−1, 6.12±0.77  mmol kg−1, and 2.33±0.19  mmol kg−1 in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA (p<0.05). Strong correlations were observed between total fat fractions from H1-MRS and Dixon MRI for VL (r=0.794), SO (r=0.655), and TA (r=0.897). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): bias=−0.21% (LoA: −1.12% to 0.69%) in VL, bias=0.025% (LoA: −1.28% to 1.33%) in SO, and bias=−0.13% (LoA: −0.74% to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types. PMID:26158115

  15. The acute effects of unilateral ankle plantar flexors static- stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks.

    PubMed

    Lima, Bráulio N; Lucareli, Paulo R G; Gomes, Willy A; Silva, Josinaldo J; Bley, Andre S; Hartigan, Erin H; Marchetti, Paulo H

    2014-09-01

    The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG) and the center of pressure (COP) during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD)]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions) and COP frequency (antero-posterior and medio-lateral directions). Surface EMG (EMG integral [IEMG] and Median frequency[FM]) was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]). COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively). In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect. Key PointsThe postural control can be affected by static- stretching protocol.The lateral gastrocnemius muscle action was increased after the static- stretching protocol.The static- stretching effects remain for less than 10 minutes.

  16. Difference in leg muscle oxygenation during treadmill exercise by a new near-infrared frequency-domain oximeter

    NASA Astrophysics Data System (ADS)

    Quaresima, Valentina; Franceschini, Maria A.; Fantini, Sergio; Gratton, Enrico; Ferrari, Marco

    1997-12-01

    Aim of this study was to investigate the oxygenation and the total hemoglobin concentration pattern in vastus lateralis and medial gastrocnemius muscle groups during a standardized treadmill exercise (n equals 6) by a new near infrared frequency-domain oximeter (ISS Oximeter model 96208). Vastus lateralis saturation and total hemoglobin concentration were 74 +/- 3% and 71 +/- 15 (mu) M at 0 mph and 72 +/- 5% and 79 +/- 16 (mu) M at 6 mph, respectively. Gastrocnemius saturation and total hemoglobin concentration were 74 +/- 2% and 107 +/- 18 (mu) M at 0 mph and 60 +/- 6% and 113 +/- 23 (mu) M at 6 mph, respectively. The saturation recovered gradually up to the baseline value when the speed was decreased.

  17. Difference in leg muscle oxygenation during treadmill exercise by a new near-infrared frequency-domain oximeter

    NASA Astrophysics Data System (ADS)

    Quaresima, Valentina; Franceschini, Maria-Angela; Fantini, Sergio; Gratton, Enrico; Ferrari, Marco

    1998-01-01

    Aim of this study was to investigate the oxygenation and the total hemoglobin concentration pattern in vastus lateralis and medial gastrocnemius muscle groups during a standardized treadmill exercise (n equals 6) by a new near infrared frequency-domain oximeter (ISS Oximeter model 96208). Vastus lateralis saturation and total hemoglobin concentration were 74 +/- 3% and 71 +/- 15 (mu) M at 0 mph and 72 +/- 5% and 79 +/- 16 (mu) M at 6 mph, respectively. Gastrocnemius saturation and total hemoglobin concentration were 74 +/- 2% and 107 +/- 18 (mu) M at 0 mph and 60 +/- 6% and 113 +/- 23 (mu) M at 6 mph, respectively. The saturation recovered gradually up to the baseline value when the speed was decreased.

  18. Athletes' leg pains.

    PubMed Central

    Orava, S.; Puranen, J.

    1979-01-01

    The frequency and nature of exertion pains of the leg in athletes were studied in 2,750 cases of overuse injuries treated at the Sports Clinic of the Deaconess Institute of Oulu, Finland, during the years 1972-1977. 465 cases of exertion pain (18%) were located in the shin. The medial tibial syndrome was the most common overuse injury among these athletes, comprising 9.5% of all exertion injuries and 60% of the leg exertion pains. Together with stress fracture of the tibia, the second most common exertion pain of the leg, it accounted for 75% of the total leg pains. There are certain difficulties in differentiating between the medial tibial syndrome and stress fracture of the tibia. They both occur at the same site with similar symptoms. Radiological examination and isotope scanning are needed. The medial tibial syndrome is an overuse injury at the medial tibial border caused by running exercises. The pain is elicited by exertional ischaemia. The pathogenesis is explained by increased pressure in the fascial compartment of the deep flexor muscles due to prolonged exercise. Similar chronic ischaemic pains from exercise are also found in other fascial compartments of the leg, especially in the anterior compartment. The only treatment needed for stress fractures is rest from training. Fascial compartment pains also usually subside. If chronic fascial syndromes prevent training, fasciotomy is recommended as a reliable method to restore the athlete to normal training without pains. PMID:486888

  19. Broken Leg

    MedlinePlus

    ... through — like when you try to break a green stick of wood. Most broken bones in children ... subside before they are casted. Immobilization Restricting the movement of a broken bone in your leg is ...

  20. Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans.

    PubMed

    Bove, Marco; Nardone, Antonio; Schieppati, Marco

    2003-07-15

    Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ms, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than

  1. Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans

    PubMed Central

    Bove, Marco; Nardone, Antonio; Schieppati, Marco

    2003-01-01

    Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ms, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a ‘busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than

  2. Combined measurement of perfusion, venous oxygen saturation, and skeletal muscle T2* during reactive hyperemia in the leg

    PubMed Central

    2013-01-01

    Background The function of the peripheral microvascular may be interrogated by measuring perfusion, tissue oxygen concentration, or venous oxygen saturation (SvO2) recovery dynamics following induced ischemia. The purpose of this work is to develop and evaluate a magnetic resonance (MR) technique for simultaneous measurement of perfusion, SvO2, and skeletal muscle T2*. Methods Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT) is comprised of interleaved pulsed arterial spin labeling (PASL) and multi-echo gradient-recalled echo (GRE) sequences. During the PASL post-labeling delay, images are acquired with a multi-echo GRE to quantify SvO2 and T2* at a downstream slice location. Thus time-courses of perfusion, SvO2, and T2* are quantified simultaneously within a single scan. The new sequence was compared to separately measured PASL or multi-echo GRE data during reactive hyperemia in five young healthy subjects. To explore the impairment present in peripheral artery disease patients, five patients were evaluated with PIVOT. Results Comparison of PIVOT-derived data to the standard techniques shows that there was no significant bias in any of the time-course-derived metrics. Preliminary data show that PAD patients exhibited alterations in perfusion, SvO2, and T2* time-courses compared to young healthy subjects. Conclusion Simultaneous quantification of perfusion, SvO2, and T2* is possible with PIVOT. Kinetics of perfusion, SvO2, and T2* during reactive hyperemia may help to provide insight into the function of the peripheral microvasculature in patients with PAD. PMID:23958293

  3. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle.

    PubMed

    Vorgerd, M; Zange, J

    2007-07-01

    McArdle's disease is caused by genetic defects of the muscle-specific isozyme of glycogen phosphorylase, which block ATP formation from glycogen in skeletal muscle. Creatine supplementation and ketogenic diet have been tested as potential supplements for muscle energy metabolism which may improve muscle symptomatic. Outcome measures were clinical scores describing muscle symptomatic and parameters derived from 31P-MRS examinations on working muscle. In two placebo controlled cross-over studies low dose creatine showed beneficial effects on muscle symptoms and performance whereas high dose creatine distinctly worsened muscle symptomatic in patients. In both studies, however, the absence of an elevation in phosphocreatine indicated the absence of a creatine uptake by the muscle fibre. The effects of creatine on muscle symptomatic may be independent from energy metabolism in muscle. In a case study, ketogenic diet improved muscle symptomatic and performance. However, these effects again did not result in 31P-MRS visible changes in muscle energy metabolism.

  4. Leg Problems

    MedlinePlus

    ... your lower leg that may have started after physical activity such as running or jumping?YesNoDo you have pain, swelling, redness or warmth in your calf?YesNoDo you have twisted dark blue or purple veins near the surface of the skin of your calf, and do you have pain ...

  5. Leg cramps in relation to metabolic syndrome.

    PubMed

    ManiIa, M N

    2009-01-01

    A leg cramp is a pain that comes from a leg muscle. It is due to a muscle spasm which usually occurs in a calf muscle, below and behind a knee. Leg cramps (often called night cramps) usually occur most commonly at night when in bed. Night leg cramps are involuntary painful contractions of skeletal muscles arose in the calves and soles of the feet. Although in most cases they aren't harmful and resolve easily in some instances they have a long duration and can result in intense pain, disturb normal sleep and make a person feel anxious. Pathophysiology of leg cramps is poorly understood. The aim of our study was to determine the role of metabolic syndrome in relation to night leg cramps. The study included 86 subjects aged 34 to 88 years. Metabolic syndrome group consisted of 40 subjects (10 men (25%) and 30 women (75%)); the control group consisted of 46 persons (9 men (19.5%) and 37 women (80.5%)). According to frequency and intensity of manifestation leg cramps were subdivided into less frequent and frequent leg cramps. Blood samples were analysed for lipids, fasting glucose, red blood cells and electrolytes. Persons were screened for leg vein insufficiency as well. The investigation showed that 77.5% (31/40) of patients with metabolic syndrome had leg cramps, from which 60% (24/40) had frequent leg cramps. In control group 73.9% (34/46) had leg cramps, from which 50% (23/46) had frequent leg cramps. Among known predisposing factors leg cramps most often were associated with deep vein insufficiency and superficial vein varicose. High frequency of night leg cramps in our study is due to female predominance (75% versus 25% women and men, respectively) and age distribution in our study population (from 34 to 88 years old). The investigation showed that people often experience nocturnal leg cramps. Leg cramp is slightly increasing among the patients with metabolic syndrome. Frequent leg cramps were observed in 60% of cases in metabolic syndrome group versus 50% of

  6. Other Causes of Leg Pain

    MedlinePlus

    ... in the same position for a long time Injuries caused by: A torn or overstretched muscle (strain) Hairline crack in the bone (stress fracture) Inflamed tendon (tendinitis) Shin splints—pain in the front of your leg related to overuse or repetitive pounding Deep vein thrombosis (DVT) , which occurs when ...

  7. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    PubMed

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  8. Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.

    PubMed

    Hooper, Scott L; Guschlbauer, Christoph; Blümel, Marcus; Rosenbaum, Philipp; Gruhn, Matthias; Akay, Turgay; Büschges, Ansgar

    2009-04-01

    Stick insect (Carausius morosus) leg muscles contract and relax slowly. Control of stick insect leg posture and movement could therefore differ from that in animals with faster muscles. Consistent with this possibility, stick insect legs maintained constant posture without leg motor nerve activity when the animals were rotated in air. That unloaded leg posture was an intrinsic property of the legs was confirmed by showing that isolated legs had constant, gravity-independent postures. Muscle ablation experiments, experiments showing that leg muscle passive forces were large compared with gravitational forces, and experiments showing that, at the rest postures, agonist and antagonist muscles generated equal forces indicated that these postures depended in part on leg muscles. Leg muscle recordings showed that stick insect swing motor neurons fired throughout the entirety of swing. To test whether these results were specific to stick insect, we repeated some of these experiments in cockroach (Periplaneta americana) and mouse. Isolated cockroach legs also had gravity-independent rest positions and mouse swing motor neurons also fired throughout the entirety of swing. These data differ from those in human and horse but not cat. These size-dependent variations in whether legs have constant, gravity-independent postures, in whether swing motor neurons fire throughout the entirety of swing, and calculations of how quickly passive muscle force would slow limb movement as limb size varies suggest that these differences may be caused by scaling. Limb size may thus be as great a determinant as phylogenetic position of unloaded limb motor control strategy.

  9. Muscle type-specific myosin isoforms in crustacean muscles.

    PubMed

    LaFramboise, W A; Griffis, B; Bonner, P; Warren, W; Scalise, D; Guthrie, R D; Cooper, R L

    2000-01-01

    Differential expression of multiple myosin heavy chain (MyHC) genes largely determines the diversity of critical physiological, histochemical, and enzymatic properties characteristic of skeletal muscle. Hypotheses to explain myofiber diversity range from intrinsic control of expression based on myoblast lineage to extrinsic control by innervation, hormones, and usage. The unique innervation and specialized function of crayfish (Procambarus clarkii) appendicular and abdominal musculature provide a model to test these hypotheses. The leg opener and superficial abdominal extensor muscles are innervated by tonic excitatory motoneurons. High resolution SDS-PAGE revealed that these two muscles express the same MyHC profile. In contrast, the deep abdominal extensor muscles, innervated by phasic motoneurons, express MyHC profiles different from the tonic profiles. The claw closer muscles are dually innervated by tonic and phasic motoneurons and a mixed phenotype was observed, albeit biased toward the phasic profile seen in the closer muscle. These results indicate that multiple MyHC isoforms are present in the crayfish and that differential expression is associated with diversity of muscle type and function.

  10. Leg Injuries and Disorders

    MedlinePlus

    ... legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. These injuries can affect the entire leg, or just the foot, ankle, knee, or hip. Certain diseases also lead to ...

  11. Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2MAX in Young Men.

    PubMed

    Abe, Takashi; Fujita, Satoshi; Nakajima, Toshiaki; Sakamaki, Mikako; Ozaki, Hayao; Ogasawara, Riki; Sugaya, Masato; Kudo, Maiko; Kurano, Miwa; Yasuda, Tomohiro; Sato, Yoshiaki; Ohshima, Hiroshi; Mukai, Chiaki; Ishii, Naokata

    2010-01-01

    Concurrent improvements in aerobic capacity and muscle hypertrophy in response to a single mode of training have not been reported. We examined the effects of low-intensity cycle exercise training with and without blood flow restriction (BFR) on muscle size and maximum oxygen uptake (VO2max). A group of 19 young men (mean age ± SD: 23.0 ± 1.7 years) were allocated randomly into either a BFR-training group (n=9, BFR-training) or a non-BFR control training group (n=10, CON-training), both of which trained 3 days/wk for 8 wk. Training intensity and duration were 40% of VO2max and 15 min for the BFR-training group and 40% of VO2max and 45 min for the CON-training group. MRI-measured thigh and quadriceps muscle cross-sectional area and muscle volume increased by 3.4-5.1% (P < 0.01) and isometric knee extension strength tended to increase by 7.7% (p < 0.10) in the BFR-training group. There was no change in muscle size (~0.6%) and strength (~1.4%) in the CON-training group. Significant improvements in VO2max (6.4%) and exercise time until exhaustion (15.4%) were observed in the BFR-training group (p < 0.05) but not in the CON-training group (-0.1 and 3. 9%, respectively). The results suggest that low-intensity, short-duration cycling exercise combined with BFR improves both muscle hypertrophy and aerobic capacity concurrently in young men. Key pointsConcurrent improvements in aerobic capacity and muscle hypertrophy in response to a single mode of training have not been reported.In the present study, low-intensity (40% of VO2max) cycle training with BFR can elicit concurrent improvement in muscle hypertrophy and aerobic capacity.

  12. Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval and moderate intensity training in subjects with Type 2 Diabetes or Prediabetes.

    PubMed

    Sjöros, Tanja J; Heiskanen, Marja A; Motiani, Kumail K; Löyttyniemi, Eliisa; Eskelinen, Jari-Joonas; Virtanen, Kirsi A; Savisto, Nina J; Solin, Olof; Hannukainen, Jarna C; Kalliokoski, Kari K

    2017-03-13

    We investigated the effects of sprint interval (SIT) and moderate intensity continuous training (MICT) on glucose uptake (GU) during hyperinsulinemic euglycemic clamp and fatty acid uptake (FAU) at fasting state in thigh and arm muscles in subjects with type 2 diabetes (T2D) or prediabetes. Twenty-six patients (age 49, SD 4; 10 women) were randomly assigned into two groups: SIT (n=13), and MICT (n=13). The exercise in the SIT group consisted of 4-6 x 30 s of all-out cycling with 4 min recovery and in the MICT group 40-60 min cycling at 60% of VO2peak . Both groups completed six training sessions within two weeks. GU and FAU were measured before and after the intervention with positron emission tomography in thigh (quadriceps femoris, QF; and hamstrings) and upper arm (biceps and triceps brachii) muscles. Whole-body insulin-stimulated GU increased significantly by 25% in both groups and this was accompanied with significantly increased insulin-stimulated GU in all thigh and upper arm muscles and significantly increased FAU in QF. Within QF, insulin-stimulated GU improved more by SIT than MICT in rectus femoris (p=0.01), but not differently between the training modes in the other QF muscles. In individuals with T2D or prediabetes, both SIT and MICT training rapidly improve insulin-stimulated GU in whole body and in the thigh and arm muscles as well as FAU in the main working muscle QF. These findings highlight the underused potential of exercise in rapidly restoring the impaired skeletal muscle metabolism in subjects with impaired glucose metabolism. This article is protected by copyright. All rights reserved.

  13. The Effects of Hamstring Stretching on Leg Rotation during Knee Extension.

    PubMed

    Kimura, Atsushi

    2013-06-01

    [Purpose] This study investigated the effects of hamstring stretching on leg rotation during active knee extension. [Subjects] Subjects were 100 bilateral legs of 50 healthy women without articular disease. [Methods] Hamstring hardness, leg rotation and muscle activities of the knee extensors during active knee extension were measured before and after hamstring stretching. [Results] Hamstring hardness was significantly decreased after hamstring stretching. The leg rotation angle, variation in leg rotation angle, variation in leg external rotation angle, and muscle activities of the vastus lateralis and rectus femoris were significantly increased after hamstring stretching. A moderate positive correlation was found between variation in leg rotation and variation in muscle hardness in hamstring. [Conclusion] Leg rotation during active knee extension was increased by hamstring stretching. Hamstring stretching would be effective as a pretreatment for restoring proper leg rotation when knee extension is conducted as a therapeutic exercise.

  14. The effects of neurodynamic straight leg raise treatment duration on range of hip flexion and protective muscle activity at P1

    PubMed Central

    Neal Hanney, Ryan; Ridehalgh, Colette; Dawson, Allan; Lewis, Daniel; Kenny, Deirdre

    2016-01-01

    Study design: Randomized, single blind, same subject crossover trial. Objectives: To compare the effects of two neurodynamic treatment doses on range of hip flexion (ROM HF) and electromyographic (EMG) activity of semitendinosus, at first onset of pain (P1). Methods: A total of 26 healthy participants without low back or leg pain received each treatment in a random order with at least 48 hours between sessions. Baseline ROM HF and EMG magnitude of semitendinosus at P1 were collected. Subjects then received either 361 or 362 minutes of oscillating end of range (grade IVz) straight leg raise (SLR) neurodynamic treatment and were re-assessed for baseline measures. Results: There was no significant difference between groups in EMG magnitude (P50.190) and ROM HF (P50.739) at P1. There was also no significant difference within groups in EMG magnitude at P1 (P50.182); however, there was a significant improvement in ROM HF at P1 in both groups compared to baseline readings (P50.000), with increases of 6.7u and 5.1u for the 361- and 362-minute groups, respectively. Conclusion: Findings indicate that 362 minutes of oscillating grade IVz SLR neurodynamic treatment has no additional benefit over 361 minute, on ROM HF or EMG magnitude of semitendinosus at P1. Using an oscillating SLR treatment may, however, help to increase pain-free ROM HF, although further studies are necessary to confirm this. PMID:27252578

  15. Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: a prospective case–control study

    PubMed Central

    Cheung, Ada S.; Gray, Hans; Schache, Anthony G.; Hoermann, Rudolf; Lim Joon, Daryl; Zajac, Jeffrey D.; Pandy, Marcus G.

    2016-01-01

    Abstract Background Although muscle mass declines with testosterone deficiency in men, previous studies of muscle function have not demonstrated consistent deficits, likely due to relatively insensitive methodology. Our objective was to determine the effects of testosterone deprivation on the biomechanical function of individual lower‐limb muscles. Methods We conducted a 12‐month prospective, observational case–control study of 34 men newly commencing androgen deprivation treatment (ADT) for prostate cancer and 29 age‐matched prostate cancer controls. Participants were assessed at 0, 6, and 12 months while walking in a biomechanics laboratory. We combined video‐based motion capture and ground reaction force data with computerized musculoskeletal modelling to assess the following primary outcomes: (i) peak joint torques at the hip, knee and ankle, and corresponding individual muscle forces; (ii) individual muscle contributions to acceleration of the body's centre of mass; and (iii) walking speed, stride length, and step width. A linear mixed model was used to compare mean differences between groups. Results Compared with controls over 12 months, men receiving ADT had a mean reduction in total testosterone level from 14.1 to 0.4 nmol/L, and demonstrated more marked decreases in peak hip flexor torque by 14% [mean difference −0.11 N/kg (−0.19, −0.03), P = 0.01] and peak knee extensor torque by 16% [−0.11 N/kg (−0.20, −0.02), P = 0.02] of the initial mean value. Correspondingly, iliopsoas force decreased by 14% (P = 0.006), and quadriceps force decreased by 11%, although this narrowly missed statistical significance (P = 0.07). Soleus decreased contribution to forward acceleration of the body's centre of mass by 17% [mean difference −0.17 m/s2 (−0.29, −0.05), P < 0.01]. No significant changes between groups were observed in other joint torques or individual muscle contributions to acceleration of the body

  16. Why do flamingos stand on one leg?

    PubMed

    Anderson, Matthew J; Williams, Sarah A

    2010-01-01

    A series of observational studies of captive Caribbean flamingos Phoenicopterus ruber were conducted to determine why flamingos rest on one leg. While frequently asked by the general public, this basic question has remained unanswered by the scientific community. Here we suggest that the latency of flamingos to initiate forward locomotion following resting on one leg is significantly longer than following resting on two, discounting the possibility that unipedal resting reduces muscle fatigue or enhances predatory escape. Additionally, we demonstrate that flamingos do not display lateral preferences at the individual or group levels when resting on one leg, with each bird dividing its resting time across both legs. We show that while flamingos prefer resting on one leg to two regardless of location, the percentage of birds resting on one leg is significantly higher among birds standing in the water than among those on land. Finally, we demonstrate a negative relationship between temperature and the percentage of observed birds resting on one leg, such that resting on one leg decreases as temperature rises. Results strongly suggest that unipedal resting aids flamingos in thermoregulation.

  17. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  18. [Influence of Achilles tendon vibration on the human vertical posture during standing with asymmetrical leg loading].

    PubMed

    Kazennikov, O V; Kireeva, T B; Shlykov, V Iu

    2014-01-01

    The shift of center of pressure (CP) of body and CP of each leg was studied during Achilles tendon vibration of one or both legs while subject was standing with symmetrical load on the legs or with the load transferred on one leg. The CP shift of standing subject during unilateral Achilles tendon vibration depended both on the side of the tendon vibration and on the leg load. When standing with a load transferred on one leg the shift of common CP was larger than when the vibration was applied to the loaded leg. The CP shift of one leg was greater if the vibration, and the load was applied to it. Vibration of unloaded leg caused a CP shift in the contralateral loaded leg. In this case, the vibration of left unloaded leg caused no noticeable CP shift of left leg, while the vibration of the unloaded right leg caused CP shift of right foot. In the same conditions of load and vibration the CP displacement of right leg was larger than the CP shift of left foot. It can be assumed that the change in the load on the leg and unilateral vibration of leg muscles change of the internal representation of the vertical body axis, which affects the CP position of one leg during the muscles vibration.

  19. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    PubMed

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  20. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  1. Wrist and shoulder posture and muscle activity during touch-screen tablet use: effects of usage configuration, tablet type, and interacting hand.

    PubMed

    Young, Justin G; Trudeau, Matthieu B; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T

    2013-01-01

    Due to its rapid growth in popularity, there is an imminent need for ergonomic evaluation of the touch-screen tablet computing form-factor. The aim of this study was to assess postures of the shoulders and wrists and their associated muscle activity during touch-screen tablet use. Fifteen experienced adult tablet users completed a set of simulated software tasks on two media tablets in a total of seven user configurations. Configurations consisted of a combination of a support condition (held with one hand, two hands or in a case), a location (on the lap or table surface), and a software task (web browsing, email, and game). Shoulder postures were measured by using an infra-red LED marker based motion analysis system, wrist postures by electro-goniometry, and shoulder (upper trapezius and anterior deltoid) and forearm (flexor carpi radialis, flexor carp ulnaris, and extensor radialis) muscle activity by surface electromyography. Postures and muscle activity for the wrist significantly varied across configurations and between hands, but not across the two tablets tested. Wrist extension was high for all configurations and particularly for the dominant hand when a tablet was placed on the lap (mean=38°). Software tasks involving the virtual keyboard (e-mailing) corresponded to higher wrist extensor muscle activity (50th percentile=9.5% MVC) and wrist flexion/extension acceleration (mean=322°/s2). High levels of wrist radial deviation were observed for the non-dominant hand when it was used to tilt and hold the tablet (mean=13°). Observed differences in posture and muscle activity of the shoulder were driven by tablet location. Touch-screen tablet users are exposed to extreme wrist postures that are less neutral than other computing technologies and may be at greater risk of developing musculoskeletal symptoms. Tablets should be placed in cases or stands that adjust the tilt of the screen rather than supporting and tilting the tablet with only one hand.

  2. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    PubMed

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (<1month post infarct). However, only limited data have been published regarding the relationship between training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (p<0.05). During the acute phase of stroke recovery, PBWSTT at the fastest speed (2.0mph) promoted practice of a more optimal gait pattern with greater intensity of effort as evidenced by the longer stride length, increased between-limb symmetry, greater muscle activation, and higher RPE compared to training at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  4. Effects of leg muscle botulinum toxin A injections on walking in children with spasticity-related cerebral palsy: a systematic review.

    PubMed

    Ryll, Ulrike; Bastiaenen, Caroline; De Bie, Rob; Staal, Bart

    2011-03-01

    To assess treatment effects of botulinum toxin type A (BoNT-A) on walking of children with leg spasticity due to cerebral palsy (CP) compared with usual care. We systematically searched the databases CINAHL, Cochrane, PEDro, EMBASE, and PubMed from July 1993 until July 2009 and additionally screened reference lists. Randomized controlled trials assessing functional outcomes on walking of children with CP were included. The intervention had to contain BoNT-A into the lower limb and be compared with usual care. The methodological quality and clinical relevance were independently assessed by two of the authors (UCR, CHGB). If statistical pooling was not feasible, we performed a best-evidence synthesis. Eight trials were included. Trials comparing BoNT-A plus usual care or physiotherapy versus usual care or physiotherapy alone showed moderate evidence for functional outcomes at 2 to 6, 12, and 24 weeks follow-up in favour of BoNT-A. Studies comparing BoNT-A versus casting showed strong evidence for no difference in effects between these interventions. A limitation of our review was the exclusion of studies not published in English, Dutch, or German. The heterogeneity of the included studies, especially for outcome measures and follow-up assessments, prompted us to refrain from statistical pooling, which might also be considered a limitation. The use of BoNT-A with usual care or physiotherapy seems to improve walking of children with CP, but results should be appraised carefully owing to the limited quality of included trials. © The Authors. Journal compilation © Mac Keith Press 2011.

  5. Computer-assisted detection of nocturnal leg motor activity in patients with restless legs syndrome and periodic leg movements during sleep.

    PubMed

    Ferri, Raffaele; Zucconi, Marco; Manconi, Mauro; Bruni, Oliviero; Miano, Silvia; Plazzi, Giuseppe; Ferini-Strambi, Luigi

    2005-08-01

    To assess the performance of a new method for automatic detection of periodic leg movements during sleep. Leg movements during sleep were visually detected in the tibialis anterior muscles recordings of 15 patients with restless legs syndrome and 15 normal controls. Leg movements were detected automatically by means of a new computer method with which electromyogram signals are first digitally band-pass filtered and then rectified; subsequently, the detection of leg movements is performed by using 2 thresholds: one for the starting point and another to detect the end point of each leg movement. Sensitivity and false-positive rate were obtained; the American Sleep Disorders Association parameters were also computed, and the results analyzed by means of the Kendall W coefficient, the linear correlation coefficient and the Bland-Altman plots. N/A. Fifteen patients with restless legs syndrome and periodic leg movements and 15 controls. High values of the Kendall W coefficient of concordance between automatic and visual analysis were found with values close to 1 and the linear correlation coefficient for leg movements index and total leg movements index was > 0.950 (p < .000001). The Bland-Altman plots provided the limits of agreement between visual and computer detection, which were -9.01 and +9.89 for the periodic leg movement index. None of the normal controls was found to have periodic leg movement indexes >5 after automatic analysis. Our method can be applied to the clinical evaluation of periodic leg movements during sleep, with some caution in patients with a low periodic leg movement indexes. Large-scale research application is possible and can be considered as reliable.

  6. Muscle "Building."

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; And Others

    1995-01-01

    Describes the use of constructivism in teaching human anatomy. Provides directions for constructing arm-hand and leg-foot models that include extensor and flexor muscles and that are easily and cheaply constructed. Lists resources that provide ideas for using such models depending upon the curriculum implemented in a school or the course that is…

  7. A Comparison of Two Injection Locations in Obese Patients Having Lower Leg/Foot Surgery

    ClinicalTrials.gov

    2015-10-13

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/ or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  8. Management of leg ulcers

    PubMed Central

    Sarkar, P; Ballantyne, S

    2000-01-01

    Leg ulcer is a leading cause of morbidity among older subjects, especially women in the Western world. About 400 years BC, Hippocrates wrote, "In case of an ulcer, it is not expedient to stand, especially if the ulcer be situated on the leg". Hippocrates himself had a leg ulcer. The best treatment of any leg ulcer depends upon the accurate diagnosis and the underlying aetiology. The majority of leg ulcers are due to venous disease and/or arterial disease, but the treatment of the underlying cause is far more important than the choice of dressing. The aetiology, pathogenesis, treatment, and the future trends in the management of the leg ulcers are discussed in this review.
 PMID:11060140

  9. Gimbals in the insect leg.

    PubMed

    Frantsevich, Leonid; Wang, Weiying

    2009-01-01

    damps external forces, the vectors of which lie off the femur-tibia plane, the reductor muscle acting as a spring. Thus the TFJ contributes to dynamic stability of legged locomotion.

  10. Nocturnal leg cramps.

    PubMed

    Monderer, Renee S; Wu, Winfred P; Thorpy, Michael J

    2010-01-01

    Nocturnal leg cramps are a frequent cause of sleep disturbance among the general population, especially among the elderly. These painful episodes can delay sleep onset and awaken the patient from sleep, as well as delay subsequent return to sleep. Different mechanisms have been proposed to explain this phenomenon. Although most cases of leg cramps are idiopathic, multiple secondary causes of sleep-related leg cramps have been identified as well. In this article, we review the epidemiology, pathophysiology, and risk factors and discuss the salient features of the diagnosis and workup. Finally, we review the wide array of behavioral and pharmacologic treatments that have been studied for nocturnal leg cramps.

  11. Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise.

    PubMed

    Tew, Garry A; Ruddock, Alan D; Saxton, John M

    2010-11-01

    The impact of skin blood flow changes on near-infrared spectroscopy (NIRS)-derived measures of muscle oxygen saturation (SmO(2)) and blood volume has not been fully established. We measured SmO(2) and total hemoglobin concentration ([tHb]) responses of the right vastus lateralis during rest and dynamic knee extension exercise in ten young, healthy males. The protocol was repeated four times: twice without thigh heating for reliability, and twice with different grades of thigh heating for assessing the impact of cutaneous vasodilation on SmO(2) and Δ[tHb]. The reliability of our SmO(2) and [tHb] measurements was good. Thigh heating at 37 and 42°C caused marked increases in cutaneous vascular conductance (CVC) during rest and exercise (P < 0.001 between each condition), and small increases in SmO(2) during rest (from 69 ± 8% to 71 ± 7% and 73 ± 6%, respectively; P < 0.05 between each condition), but not during exercise (e.g. 1 min exercise: 51 ± 11% vs. 51 ± 11% and 52 ± 11%, respectively; P > 0.05 at all time points). In contrast, heating-induced increases in %CVC(peak) were accompanied by increases in [tHb] at rest and during exercise and a decrease in Δ[tHb] during exercise (all P < 0.05). Our findings suggest that NIRS-derived measures of SmO(2) and blood volume are differentially affected by skin blood flow at rest and during exercise. The findings from this study should be considered in NIRS experiments where skin blood flow can change markedly (e.g. high-intensity and/or prolonged exercise).

  12. The natural shock absorption of the leg spring.

    PubMed

    Kim, Wangdo; João, Filipa; Tan, John; Mota, Patricia; Vleck, Veronica; Aguiar, Liliana; Veloso, Antonio

    2013-01-04

    When a human being runs, muscles, tendons, and ligaments together behave like a single linear spring. This "leg spring" can be described remarkably well by spring/mass models. Although leg-stiffness during running (and logically, therefore, in hopping) has been shown to be adjusted in line with the individual characteristics of the external contact surface, the relative contribution of each of the sub-components of the leg spring to the mechanics of running is unclear. We proposed the three-degree-of-freedom leg spring chain in a position of stable equilibrium under the action of the leg stiffness. If the leg spring receives a displacement in hopping, the forces will no longer equilibrate, but the system will be exposed to the action of a force on a leg spring chain. We thus have two corresponding sets of modes, one set being the mode about which the chain is displaced, the other set for the forces which are evoked in consequence of the displacement. We found that if the leg has been displaced from a position of equilibrium about one of harmonic modes, then a vibration about this harmonic mode evokes a system of forces in the leg spring which in its turn tends to produce a motion on the original harmonic mode, and thus produce oscillation about the same harmonic mode. Our results suggest that the desired harmonic mode can be explained in terms of the natural shock absorption ability of the leg.

  13. Restless Legs Syndrome

    MedlinePlus

    ... Restless Legs Syndrome Share Print Restless Legs Syndrome Table of Contents1. Overview2. Symptoms3. Diagnosis4. Treatment5. Questions OverviewWhat ... twitch when you try and sleep (also called periodic limb movements of sleep or PLMS). DiagnosisHow does ...

  14. The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance.

    PubMed

    Toney, Megan E; Chang, Young-Hui

    2016-10-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady-state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step to step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production.

  15. [Prevention of leg ulcer].

    PubMed

    Marinović Kulisić, Sandra

    2013-10-01

    Lower leg ulcers is the most common form of ulceration of the lower extremities. The prevalence of leg ulcer varies among studies from 0.1% to 0.6%. In the majority of studies, 1% of the population develop leg ulcer at least once in lifetime. The prevalence is higher in elderly people. There are several hypotheses used to explain the pathophysiological steps leading from the popliteal venous hypertension in value. Currently, the treatment of leg ulcer relies on due knowledge of ulcer pathophysiology and making an accurate diagnosis. Venous disease has a significant impact on quality of life and work productivity. In addition, costs associated with the prevention and treatment of lower leg ulcers are significant.

  16. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    PubMed

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-09-15

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 14 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Restless legs syndrome.

    PubMed

    Bayard, Max; Avonda, Thomas; Wadzinski, James

    2008-07-15

    Restless legs syndrome is a common neurologic movement disorder that affects approximately 10 percent of adults. Of those affected with this condition, approximately one third have symptoms severe enough to require medical therapy. Restless legs syndrome may be a primary condition, or it may be secondary to iron deficiency, renal failure, pregnancy, or the use of certain medications. The diagnosis is clinical, requiring an urge to move the legs usually accompanied by an uncomfortable sensation, occurrence at rest, improvement with activity, and worsening of symptoms in the evening or at night. Restless legs syndrome causes sleep disturbances, is associated with anxiety and depression, and has a negative effect on quality of life. Treatment of secondary causes of restless legs syndrome may result in improvement or resolution of symptoms. Currently, there is little information regarding the effects of lifestyle changes on the symptoms of restless legs syndrome. If medications are needed, dopamine agonists are the primary medications for moderate to severe restless legs syndrome. Other medications that may be effective include gabapentin, carbidopa/levodopa, opioids, and benzodiazepines.

  18. Hemodynamic studies of the legs under weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.

    1974-01-01

    Following exposure to weightlessness, alterations in the return of blood from the legs play a crucial role in orthostatic tolerance and may be an important factor in work tolerance. To investigate some of the hemodynamic mechansism involved, an experiment was performed on the Skylab 3 and Skylab 4 missions to study arterial blood flow, venous compliance, and muscle pumping of blood. Skylab 4 results indicated that the most likely cause of increased blood flow was an increase in cardiac output secondary to increased central venous pressure caused by blood redistribution. Changes in venous compliance are thought to be primarily changes in somatic musculature which is postulated to primarily determine venous compliance of the legs. This was also thought to be demonstrated by the changes in muscle pumping. It is thought that these compliance changes, when taken with the decreased blood volume; provide a basis for the changes seen in orthostatic tolerance, work capacity and lower body negative pressure response.

  19. Passive mechanical properties of legs from running insects.

    PubMed

    Dudek, Daniel M; Full, Robert J

    2006-04-01

    While the dynamics of running arthropods have been modeled as a spring-mass system, no such structures have been discovered that store and return energy during bouncing. The hindleg of the cockroach Blaberus discoidalis is a good candidate for a passive, vertical leg spring because its vertically oriented joint axes of rotation limit the possibility of active movements and contributions of muscle properties. We oscillated passive legs while measuring force to determine the leg's dynamic, mechanical properties. The relative dimensionless stiffness of an individual cockroach leg was equal to that estimated for a single leg of a biped or quadruped. Leg resilience ranged from 60 to 75%, affording the possibility that the leg could function as a spring to store and return the mechanical energy required to lift and accelerate the center of mass. Because hysteresis was independent of oscillation frequency, we rejected the use of a Voigt model - a simple spring in parallel with a viscous damper. A hysteretic damping model fit the cockroach leg force-displacement data over a wide range of frequencies and displacement using just two parameters. Rather than simply acting as a spring to minimize energy, we hypothesize that legs must manage both energy storage and absorption for rapid running to be most effective.

  20. Peripheral artery disease - legs

    MedlinePlus

    ... pale. When PAD becomes severe, you may have: Impotence Pain and cramps at night Pain or tingling ... emboli that block small arteries Coronary artery disease Impotence Open sores (ischemic ulcers on the lower legs) ...

  1. Peripheral artery bypass - leg

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007394.htm Peripheral artery bypass - leg To use the sharing features on this page, please enable JavaScript. Peripheral artery bypass is surgery to reroute the blood supply ...

  2. Restless legs syndrome.

    PubMed

    Venkateshiah, Saiprakash B; Ioachimescu, Octavian C

    2015-07-01

    Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine. Published by Elsevier Inc.

  3. Dynamic Leg Exercise Improves Tolerance to Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Ballard, R. E.; Stout, M. S.; Murthy, G.; Whalen, R. T.; Hargens, A. R.

    1994-01-01

    These results clearly demonstrate that dynamic leg exercise against the footward force produced by LBNP substantially improves tolerance to LBNP, and that even cyclic ankle flexion without load bearing also increases tolerance. This exercise-induced increase of tolerance was actually an underestimate, because subjects who completed the tolerance test while exercising could have continued for longer periods. Exercise probably increases LBNP tolerance by multiple mechanisms. Tolerance was increased in part by skeletal muscle pumping venous blood from the legs. Rosenhamer and Linnarsson and Rosenhamer also deduced this for subjects cycling during centrifugation, although no measurements of leg volume were made in those studies: they found that male subjects cycling at 98 W could endure 3 Gz centrifugation longer than when they remained relaxed during centrifugation. Skeletal muscle pumping helps maintain cardiac filling pressure by opposing gravity-, centrifugation-, or LBNP-induced accumulation of blood and extravascular fluid in the legs.

  4. Protection against high intravascular pressure in giraffe legs.

    PubMed

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  5. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  6. Hypotensive akathisia: autonomic failure associated with leg fidgeting while sitting.

    PubMed

    Cheshire, W P

    2000-12-26

    The author describes a distinct clinical syndrome in six patients with autonomic failure who manifested habitual, voluntary, transiently suppressible, yet irresistible leg movements occurring only in the sitting position. Keeping the legs still brought on vague symptoms of fatigue, lightheadedness, or apprehension. Repetitive leg crossing, muscle tensing, foot twirling or wiggling, or heel or toe floor tapping while sitting may have compensated for orthostatic hypotension and raised systolic blood pressure by a mean of 28 mm Hg and diastolic pressure by a mean of 11 mm Hg.

  7. High resolution unenhanced computed tomography in patients with swollen legs.

    PubMed

    Monnin-Delhom, E D; Gallix, B P; Achard, C; Bruel, J M; Janbon, C

    2002-09-01

    To evaluate the accuracy of computed tomography (CT) scan imaging in distinguishing lymphedema from deep venous thrombosis (DVT) and lipodystrophy (lipedema) in patients with swollen legs. CT scans of the lower limbs were performed in 55 patients with 76 swollen legs (44 lymphedemas, 12 DVT and 20 lipedemas). Thirty-four normal contralateral legs were also similarly evaluated. Primary lymphedema was verified by lymphography or lymphoscintigraphy, whereas secondary lymphedema was documented by a typical clinical history. DVT was established by ultrasound Doppler imaging. The diagnosis of lipedema was made with bilateral swollen legs where lymphoscintigraphy and Doppler examination were both unremarkable. Qualitative CT analysis was based on skin thickening, subcutaneous edema accumulation with a honeycombed pattern, and muscle compartment enlargement. Sensitivity and specificity of CT scan for the diagnosis of lymphedema was 93 and 100%, respectively; for lipedema it was 95 and 100%, respectively; andfor DVT it was 91 and 99%, respectively. Skin thickening was found in 42 lymphedemas (95%), in 9 DVT (75%), and in 2 lipedemas (16%). Subcutaneous edema accumulation was demonstrated in 42 legs (95%) with lymphedema and in 5 (42%) with DVT but in none with lipedema. A honeycombed pattern was present only in lymphedema (18 legs or 41%); muscle enlargement was present in all patients with DVT, in no patient with lipedema, and in 4 (9%) with lymphedema. Edema accumulation is readily demonstrated with plain CT scan and is not present in lipedema. Specific CT features of the subcutaneous fat and muscle compartments allow accurate differentiation between lymphedema and DVT.

  8. Onset Time of Nerve Block: A Comparison of Two Injection Locations in Patients Having Lower Leg/ Foot Surgery

    ClinicalTrials.gov

    2014-03-20

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/or Foot; Disorder of Joint of Ankle and/or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  9. Venous leg ulcers.

    PubMed

    Nelson, E Andrea

    2011-12-21

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide

  10. Venous leg ulcers

    PubMed Central

    2011-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids

  11. [Restless legs syndrome].

    PubMed

    Lai, Szu-Chia; Chen, Rou-Shayn

    2008-03-01

    The restless legs syndrome (RLS) is a common neurological disorder to take possession of increasing attention. RLS is characterized by an urge to move the legs, usually accompanied by uncomfortable or unpleasant sensations, that occurs or worsen at rest and is relieved by activity. The symptoms of RLS have a major impact on nocturnal sleep and daytime functions. The clinical diagnostic criteria were established and published in 2003 by International Restless Legs Syndrome Study Group (IRLSSG). All four essential criteria must be met for a positive diagnosis. However, RLS encompassed an idiopathic form of genetic or unknown origin and secondary forms associated with many causes. Special awareness should be kept for differential diagnosis such as uremia, iron deficiency anemia, polyneuropathy, rheumatoid arthritis, and other neurodegenerative diseases. Polysomnography, actinography, L-dopa loading test, and suggested immobilization test (SIT) are helpful tools to reduce the diagnostic puzzle of false positive and false negative. Pathophysiological concepts of RLS are essentially based on the neuroimaging and neurophysiological data to assume a dysfunction of the dopaminergic system, possibly on the All neuron group localized in the hypothalamus. These neurons modulate spinal excitability and alter the sensory processing predominantly of leg afferents. Treatment may be closely linked to the dopaminergic system and iron metabolism. Dopaminergic stimulation with levodopa or dopamine agonists is the first choice in idiopathic restless legs syndrome, but the long-term adverse effect of augmentation should be carefully monitored.

  12. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  13. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  14. Venous leg ulcers

    PubMed Central

    2008-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide, thromboxane alpha2 antagonists, zinc), peri

  15. Venous leg ulcers.

    PubMed

    Nelson, E Andrea; Jones, June

    2008-09-15

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide, thromboxane alpha(2) antagonists, zinc), peri-ulcer injection of granulocyte-macrophage colony

  16. Hemoglobinopathies and Leg Ulcers.

    PubMed

    Alavi, Afsaneh; Kirsner, Robert S

    2015-09-01

    Major hemoglobinopathies, including sickle cell anemia, are becoming a global health issue. Leg ulcers are the most common cutaneous manifestation of sickle cell disease and an important contributor to morbidity burden in this population. Leg ulcers following sickling disorders are extremely painful, and hard to heal. The clinical evidence for the optimal management of these ulcers is limited. Treating the cause and the strategies to prevent sickling are the mainstay of treatment. The basic principles of wound bed preparation and compression therapy is beneficial in these patients.

  17. 20. DETAIL, TYPICAL LEG CONNECTION, CROSS BRACING AT LEG, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL, TYPICAL LEG CONNECTION, CROSS BRACING AT LEG, WITH CROSSED BRACE BLOCK, GROUND WIRES AND GUIDE WIRE. - Hat Point Fire Lookout Tower, Forest Service Road #4340, 24 miles from Imnaha, Imnaha, Wallowa County, OR

  18. Restless legs syndrome.

    PubMed

    Ekbom, Karl; Ulfberg, J

    2009-11-01

    Restless legs syndrome (RLS) is a common neurological sensory-motor disorder that is characterized by intense restlessness and unpleasant creeping sensations deep inside the lower legs. Symptoms appear when the legs are at rest and are worst in the evening and at night. They force patients to keep moving their legs, and often to get out of bed and wander about. Periodic limb movements (PLMS) are also common during sleep amongst those suffering from RLS, and sleep efficiency is severely reduced. There are idiopathic as well as symptomatic forms of RLS, the latter being associated with e.g. pregnancy, iron deficiency and chronic renal failure. A family history of RLS is very common and pedigrees in these cases suggest an autosomal-dominant transmission with high penetrance. Genetic investigations have been performed in order to identify genes associated with RLS. Several loci have been found (on chromosomes 12q, 14q, 9p, 2q, 20p and 16p). Pathophysiology of RLS remains incompletely understood. However, advanced brain imaging studies and positive results of dopaminergic treatment suggest that RLS may be generated by dopamine dysfunction locally within the central nervous system. At present, there is a wide range of treatment options including levodopa, dopamine agonists, opioids, benzodiazepines, antiepileptic drugs and iron supplements.

  19. Leg lengthening - slideshow

    MedlinePlus

    ... Indications URL of this page: //medlineplus.gov/ency/presentations/100127.htm Leg lengthening - series—Indications To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  20. Foot, leg, and ankle swelling

    MedlinePlus

    ... feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... 51. Trayes KP, Studdiford JS, Pickle S, Tully AS. Edema: Diagnosis and management. Am Fam Phys . 2013;88( ...

  1. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    PubMed Central

    Knutson, Gary A

    2005-01-01

    Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI. PMID:16080787

  2. H:Q Ratios and Bilateral Leg Strength in College Field and Court Sports Players

    PubMed Central

    Cheung, Roy T.H.; Smith, Andrew W.; Wong, Del P.

    2012-01-01

    One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s−1 and fast: 300°·s−1) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg−1). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s−1 (P < 0.001), and their non-dominant leg at 300°·s−1 (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports. PMID:23487043

  3. H:q ratios and bilateral leg strength in college field and court sports players.

    PubMed

    Cheung, Roy T H; Smith, Andrew W; Wong, Del P

    2012-06-01

    One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.

  4. Leg stiffness and stride frequency in human running.

    PubMed

    Farley, C T; González, O

    1996-02-01

    When humans and other mammals run, the body's complex system of muscle, tendon and ligament springs behaves like a single linear spring ('leg spring'). A simple spring-mass model, consisting of a single linear leg spring and a mass equivalent to the animal's mass, has been shown to describe the mechanics of running remarkably well. Force platform measurements from running animals, including humans, have shown that the stiffness of the leg spring remains nearly the same at all speeds and that the spring-mass system is adjusted for higher speeds by increasing the angle swept by the leg spring. The goal of the present study is to determine the relative importance of changes to the leg spring stiffness and the angle swept by the leg spring when humans alter their stride frequency at a given running speed. Human subjects ran on treadmill-mounted force platform at 2.5ms-1 while using a range of stride frequencies from 26% below to 36% above the preferred stride frequency. Force platform measurements revealed that the stiffness of the leg spring increased by 2.3-fold from 7.0 to 16.3 kNm-1 between the lowest and highest stride frequencies. The angle swept by the leg spring decreased at higher stride frequencies, partially offsetting the effect of the increased leg spring stiffness on the mechanical behavior of the spring-mass system. We conclude that the most important adjustment to the body's spring system to accommodate higher stride frequencies is that leg spring becomes stiffer.

  5. Effective leg stiffness in running.

    PubMed

    Blum, Yvonne; Lipfert, Susanne W; Seyfarth, Andre

    2009-10-16

    Leg stiffness is a common parameter used to characterize leg function during bouncing gaits, like running and hopping. In the literature, different methods to approximate leg stiffness based on kinetic and kinematic parameters are described. A challenging point in estimating leg stiffness is the definition of leg compression during contact. In this paper four methods (methods A-D) based on ground reaction forces (GRF) and one method (method E) relying on temporal parameters are described. Leg stiffness calculated by these five methods is compared with running patterns, predicted by the spring mass model. The best and simplest approximation of leg stiffness is method E. It requires only easily accessible parameters (contact time, flight time, resting leg length, body mass and the leg's touch down angle). Method D is of similar quality but additionally requires the time-dependent progression of the GRF. The other three methods show clear differences from the model predictions by over- or underestimating leg stiffness, especially at slow speeds. Leg stiffness is derived from a conceptual model of legged locomotion and does not exist without this model. Therefore, it is important to prove which experimental method is suited best for approximating the stiffness in a specific task. This will help to interpret the predictions of the conceptual model in comparison with experimental data.

  6. [Functional role of dragonfly legs before and after hatching: reorganization of coordinating interactions].

    PubMed

    Sviderskiĭ, V L; Plotnikova, S I; Gorelkin, V S; Severina, I Iu; Isavnina, I L

    2012-11-01

    The characteristics of a structure-functional organization of leg apparatus were examined in the dragonfly Aeshna grandis: larvae of the final stadium, which legs perform a locomotion function and adults (imago) rising on a wing, which legs lose a locomotion function and are used mainly for catching a prey in the air. It has been demonstrated that legs of the imago practically do not differ from those of the larva either in shape or in proportion of segments of the leg and all changes in the functional role of legs of the imago are implemented due to modifications of mechanisms of limb muscle control and an appropriate reorganization or coordinating interactions. As it is proved by the obtained data, this reorganization concerns mechanisms of the generation of motor commands as well as close coordination of the activity of wing and leg apparatus and some others. The abovementioned mechanisms are discussed.

  7. Mechanical evidence that flamingos can support their body on one leg with little active muscular force.

    PubMed

    Chang, Young-Hui; Ting, Lena H

    2017-05-01

    Flamingos (Phoenicopteridae) often stand and sleep on one leg for long periods, but it is unknown how much active muscle contractile force they use for the mechanical demands of standing on one leg: body weight support and maintaining balance. First, we demonstrated that flamingo cadavers could passively support body weight on one leg without any muscle activity while adopting a stable, unchanging, joint posture resembling that seen in live flamingos. By contrast, the cadaveric flamingo could not be stably held in a two-legged pose, suggesting a greater necessity for active muscle force to stabilize two-legged versus one-legged postures. Our results suggest that flamingos engage a passively engaged gravitational stay apparatus (proximally located) for weight support during one-legged standing. Second, we discovered that live flamingos standing on one leg have markedly reduced body sway during quiescent versus alert behaviours, with the point of force application directly under the distal joint, reducing the need for muscular joint torque. Taken together, our results highlight the possibility that flamingos stand for long durations on one leg without exacting high muscular forces and, thus, with little energetic expenditure. © 2017 The Author(s).

  8. Predisposing factors of restless legs syndrome in pregnancy.

    PubMed

    Tunç, Tuğba; Karadağ, Yeşim Sücüllü; Doğulu, Funda; Inan, Levent E

    2007-04-15

    The occurrence of restless legs syndrome in pregnancy is well known. However, the mechanism of this association is unclear. In this study, we aimed to identify the factors that predispose women to have restless legs syndrome during pregnancy. A total of 146 pregnant women were included in the study. Patients were asked questions regarding demographic characteristics, complications of pregnancy, medical therapy (vitamin and iron intake), sleep disorders, muscle cramps, and excessive daytime sleepiness. Electroneurography, routine blood biochemistry tests, complete blood count, and thyroid function tests were performed and vitamin B12, folic acid, serum iron, iron-binding capacity, ferritin, iron saturation, prolactin, estradiol, and progesterone were measured. Of the participants, 38 were diagnosed as having restless legs syndrome. In women with restless legs syndrome, additional medical problems, night cramps, and excessive daytime sleepiness were more frequent. In women without restless legs syndrome, serum hemoglobin levels were significantly higher and the use of supplemental iron or vitamins was greater. Among the women with restless legs syndrome, progesterone levels were slightly higher but this difference was not statistically significant. In summary, in this study, lower hemoglobin levels and supplementation deficits of iron and vitamins were found be the risk factors for restless legs syndrome in pregnancy.

  9. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    PubMed

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  10. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles

    PubMed Central

    Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201

  11. ORTHOPEDIC LEG BRACE

    NASA Technical Reports Server (NTRS)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  12. Restless legs syndrome.

    PubMed

    Klingelhoefer, Lisa; Bhattacharya, Kalyan; Reichmann, Heinz

    2016-08-01

    Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterised by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement. The pathophysiology is only partially known and a genetic component together with dopaminergic and brain iron dysregulation plays an important role. Secondary causes for RLS need to be excluded. Treatment depends on the severity and frequency of RLS symptoms, comprises non-pharmacological (eg lifestyle changes) and pharmacological interventions (eg dopaminergic medication, alpha-2-delta calcium channel ligands, opioids) and relieves symptoms only. Augmentation is the main complication of long-term dopaminergic treatment of RLS. This article will provide a clinically useful overview of RLS with provision of diagnostic criteria, differential diagnoses, possible investigations and different treatment strategies with their associated complications. © 2016 Royal College of Physicians.

  13. Venous Leg Ulcers.

    PubMed

    Vivas, Alejandra; Lev-Tov, Hadar; Kirsner, Robert S

    2016-08-02

    This issue provides a clinical overview of venous leg ulcers, focusing on prevention, diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  14. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    PubMed

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm(3) ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners.

  15. Leg cramps and restless legs syndrome during pregnancy.

    PubMed

    Hensley, Jennifer G

    2009-01-01

    Sleep disturbance during pregnancy can result in excessive daytime sleepiness, diminished daytime performance, inability to concentrate, irritability, and the potential for an increased length of labor and increased risk of operative birth. Sleep disturbance may be the result of a sleep disorder, such as leg cramps, a common yet benign disorder, or restless legs syndrome, a sensorimotor disorder. Both disrupt sleep, are distressing to the pregnant woman, and mimic one another and other serious disorders. During pregnancy, up to 30% of women can be affected by leg cramps, and up to 26% can be affected by restless legs syndrome.

  16. Dynamically Stable Legged Locomotion

    DTIC Science & Technology

    1989-09-01

    Borvansky DISTIBUTIo~ j 3T ENT A Approved for pubtc (eLaz-; Distribution Unkn!r hd MIT Artificial Intelligence Laboratory 90 oU3 2?. 0h22 RLAD INSTRUC.TIONS...DATE Advanced Research P rojects Agency September 1989 1400 Wilson Blvd. 13. NUMfiEROF PAGES Arlington, VA 22209 203 14 MONITORING AGENCY NAME A ...this researchi is to bl)id a founidation of knowledge that can leadl bothi to tile coiistl luctionl of useful legged veldlis and to a better

  17. Is leg compression beneficial for alpine skiers?

    PubMed Central

    2013-01-01

    Background This study examined the effects of different levels of compression (0, 20 and 40 mmHg) produced by leg garments on selected psycho-physiological measures of performance while exposed to passive vibration (60 Hz, amplitude 4-6 mm) and performing 3-min of alpine skiing tuck position. Methods Prior to, during and following the experiment the electromygraphic (EMG) activity of different muscles, cardio-respiratory data, changes in total hemoglobin, tissue oxygenation and oscillatory movement of m. vastus lateralis, blood lactate and perceptual data of 12 highly trained alpine skiers were recorded. Maximal isometric knee extension and flexion strength, balance, and jumping performance were assessed before and after the experiment. Results The knee angle (−10°) and oscillatory movement (−20-25.5%) were lower with compression (P < 0.05 in all cases). The EMG activities of the tibialis anterior (20.2-28.9%), gastrocnemius medialis (4.9-15.1%), rectus femoris (9.6-23.5%), and vastus medialis (13.1-13.7%) muscles were all elevated by compression (P < 0.05 in all cases). Total hemoglobin was maintained during the 3-min period of simulated skiing with 20 or 40 mmHg compression, but the tissue saturation index was lower (P < 0.05) than with no compression. No differences in respiratory parameters, heart rate or blood lactate concentration were observed with or maximal isometric knee extension and flexion strength, balance, and jumping performance following simulated skiing for 3 min in the downhill tuck position were the same as in the absence of compression. Conclusions These findings demonstrate that with leg compression, alpine skiers could maintain a deeper tuck position with less perceived exertion and greater deoxygenation of the vastus lateralis muscle, with no differences in whole-body oxygen consumption or blood lactate concentration. These changes occurred without compromising maximal leg strength, jumping performance or balance

  18. Biomechanics of Counterweighted One-Legged Cycling.

    PubMed

    Elmer, Steven J; McDaniel, John; Martin, James C

    2016-02-01

    One-legged cycling has served as a valuable research tool and as a training and rehabilitation modality. Biomechanics of one-legged cycling are unnatural because the individual must actively lift the leg during flexion, which can be difficult to coordinate and cause premature fatigue. We compared ankle, knee, and hip biomechanics between two-legged, one-legged, and counterweighted (11.64 kg) one-legged cycling. Ten cyclists performed two-legged (240 W), one-legged (120 W), and counterweighted one-legged (120 W) cycling (80 rpm). Pedal forces and limb kinematics were recorded to determine work during extension and flexion. During counterweighted one-legged cycling relative ankle dorsiflexion, knee flexion, and hip flexion work were less than one-legged but greater than two-legged cycling (all P < .05). Relative ankle plantar flexion and hip extension work for counterweighted one-legged cycling were greater than one-legged but less than two-legged cycling (all P < .05). Relative knee extension work did not differ across conditions. Counterweighted one-legged cycling reduced but did not eliminate differences in joint flexion and extension actions between one- and two-legged cycling. Even with these differences, counterweighted one-legged cycling seemed to have advantages over one-legged cycling. These results, along with previous work highlighting physiological characteristics and training adaptations to counterweighted one-legged cycling, demonstrate that this exercise is a viable alternative to one-legged cycling.

  19. Levels of Alpha-Glycerophosphate Dehydrogenase, Triosephosphate Isomerase and Lactic Acid Dehydrogenase in Muscles of the Cockroach, ’Periplaneta americana’ L.,

    DTIC Science & Technology

    The level of alpha-glycerophosphate dehydrogenase is slightly higher in leg muscle than in thoracic muscle of the American cockroach, Periplaneta ... americana . Triosephosphate isomerase in leg muscle is about twice that of thoracic muscle. There is little lactic acid dehydrogenase in both muscles. (Author)

  20. Criteria in diagnosing nocturnal leg cramps: a systematic review.

    PubMed

    Hallegraeff, Joannes; de Greef, Mathieu; Krijnen, Wim; van der Schans, Cees

    2017-02-28

    Up to 33% of the general population over 50 years of age are affected by nocturnal leg cramps. Currently there are no generally accepted clinical characteristics, which identify nocturnal leg cramps. This study aims to identify these clinical characteristics and to differentiate between them and the characteristics of restless leg syndrome and periodic limb disorder. A systematic literature study was executed from December 2015 to May 2016. This study comprised of a systematic literature review of randomized clinical trials, observational studies on nocturnal and rest cramps of legs and other muscles, and other systematic and narrative reviews. Two researchers independently extracted literature data and analyzed this using a standardized reviewing protocol. Modified versions of the Cochrane Collaboration tools assessed the risk of bias. A Delphi study was conducted to assess agreement on the characteristics of nocturnal leg cramps. After systematic and manual searches, eight randomized trials and ten observational studies were included. On the basis of these we identified seven diagnostic characteristics of nocturnal leg cramps: intense pain, period of duration from seconds to maximum 10 minutes, location in calf or foot, location seldom in thigh or hamstrings, persistent subsequent pain, sleep disruption and distress. The seven above characteristics will enhance recognition of the condition, and help clinicians make a clear distinction between NLC and other sleep-related musculoskeletal disorder among older adults.

  1. A PERSPECTIVE ON USAGE.

    ERIC Educational Resources Information Center

    GOVE, PHILIP B.

    APPROPRIATE ENGLISH USAGE SHOULD NOT BE DETERMINED BY RIGID AND ARTIFICAL REGULATIONS SET UP BY SCHOLARS MORE INTERESTED IN DEMONSTRATING THEIR OWN SUPERIORITY THAN IN DESCRIBING THE WAY LANGUAGE IS ACTUALLY USED. INSTEAD, GOOD ENGLISH SHOULD REVEAL ITSELF AS "THE PRODUCT OF CUSTOM" AND SHOULD CHANGE WITH "THE ORGANIC LIFE OF THE LANGUAGE." THUS,…

  2. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  3. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  4. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?

    PubMed

    Bobbert, Maarten F

    2012-06-01

    Force-velocity relationships reported in the literature for functional tasks involving a combination of joint rotations tend to be quasi-linear. The purpose of this study was to explain why they are not hyperbolic, like Hill's relationship. For this purpose, a leg press task was simulated with a musculoskeletal model of the human leg, which had stimulation of knee extensor muscles as only independent input. In the task the ankles moved linearly, away from the hips, against an imposed external force that was reduced over contractions from 95 to 5% of the maximum isometric value. Contractions started at 70% of leg length, and force and velocity values were extracted when 80% of leg length was reached. It was shown that the relationship between leg extension velocity and external force was quasi-linear, while the relationship between leg extension velocity and muscle force was hyperbolic. The discrepancy was explained by the fact that segmental dynamics canceled more and more of the muscle force as the external force was further reduced and velocity became higher. External power output peaked when the imposed external force was ∼50% of maximum, while muscle power output peaked when the imposed force was only ∼15% of maximum; in the latter case ∼70% of muscle power was buffered by the leg segments. According to the results of this study, there is no need to appeal to neural mechanisms to explain why, in leg press tasks, the force-velocity relationship is quasi-linear rather than hyperbolic.

  5. Differentiating nocturnal leg cramps and restless legs syndrome.

    PubMed

    Rana, Abdul Qayyum; Khan, Fatima; Mosabbir, Abdullah; Ondo, William

    2014-07-01

    Leg pain and discomfort are common complaints in any primary physician's clinic. Two common causes of pain or discomfort in legs are nocturnal leg cramps (NLC) and restless leg syndrome (RLS). NLC present as painful and sudden contractions mostly in part of the calf. Diagnosis of NLC is mainly clinical and sometimes involves investigations to rule out other mimics. RLS is a condition characterized by the discomfort or urge to move the lower limbs, which occurs at rest or in the evening/night. The similarity of RLS and leg cramps poses the issue of errors in diagnosing and differentiating the two. In this paper we review the pathopysiology of each entity and their diagnosis as well as treatment. The two conditions are then compared to appreciate the differences and similarities. Finally, suggestions are recommended for complete assessment.

  6. 3D MRI Analysis of the Lower Legs of Treated Idiopathic Congenital Talipes Equinovarus (Clubfoot)

    PubMed Central

    Duce, Suzanne L.; D’Alessandro, Mariella; Du, Yimeng; Jagpal, Baljit; Gilbert, Fiona J.; Crichton, Lena; Barker, Simon; Collinson, J. Martin; Miedzybrodzka, Zosia

    2013-01-01

    Background Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls. Methodology/Principal Findings The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12–28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. Conclusions/Significance Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as

  7. 3D MRI analysis of the lower legs of treated idiopathic congenital talipes equinovarus (clubfoot).

    PubMed

    Duce, Suzanne L; D'Alessandro, Mariella; Du, Yimeng; Jagpal, Baljit; Gilbert, Fiona J; Crichton, Lena; Barker, Simon; Collinson, J Martin; Miedzybrodzka, Zosia

    2013-01-01

    Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls. The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12-28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as treatment research and clinical audit.

  8. Leg exoskeleton reduces the metabolic cost of human hopping.

    PubMed

    Grabowski, Alena M; Herr, Hugh M

    2009-09-01

    During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.

  9. [Restless-legs syndrome].

    PubMed

    Karroum, E; Konofal, E; Arnulf, I

    2008-01-01

    Restless-legs syndrome (RLS) is a sensorimotor disorder, characterized by an irresistible urge to move the legs usually accompanied or caused by uncomfortable and unpleasant sensations. It begins or worsens during periods of rest or inactivity, is partially or totally relieved by movements and is exacerbated or occurs at night and in the evening. RLS sufferers represent 2 to 3% of the general population in Western countries. Supportive criteria include a family history, the presence of periodic-leg movements (PLM) when awake or asleep and a positive response to dopaminergic treatment. The RLS phenotypes include an early onset form, usually idiopathic with a familial history and a late onset form, usually secondary to peripheral neuropathy. Recently, an atypical RLS phenotype without PLM and l-DOPA resistant has been characterized. RLS can occur in childhood and should be distinguished from attention deficit/hyperactivity disorder, growing pains and sleep complaints in childhood. RLS should be included in the diagnosis of all patients consulting for sleep complaints or discomfort in the lower limbs. It should be differentiated from akathisia, that is, an urge to move the whole body without uncomfortable sensations. Polysomnographic studies and the suggested immobilization test can detect PLM. Furthermore, an l-DOPA challenge has recently been validated to support the diagnosis of RLS. RLS may cause severe-sleep disturbances, poor quality of life, depressive and anxious symptoms and may be a risk factor for cardiovascular disease. In most cases, RLS is idiopathic. It may also be secondary to iron deficiency, end-stage renal disease, pregnancy, peripheral neuropathy and drugs, such as antipsychotics and antidepressants. The small-fiber neuropathy can mimic RLS or even trigger it. RLS is associated with many neurological and sleep disorders including Parkinson's disease, but does not predispose to these diseases. The pathophysiology of RLS includes an altered brain

  10. Nutritional supplements usage by Portuguese athletes.

    PubMed

    Sousa, Mónica; Fernandes, Maria João; Moreira, Pedro; Teixeira, Vítor Hugo

    2013-01-01

    In this study, we determined the prevalence of nutritional supplements (NS) usage, the type of supplements used, the reasons for usage, and the source of nutritional advice among Portuguese athletes. Two hundred ninety-two athletes (68 % male, 12 - 37 years old) from 13 national sports federations completed a questionnaire that sought information on socio-demographics, sports data, and NS usage. Most athletes (66 %) consumed NS, with a median consumption of 4 supplements per athlete. The most popular supplements included multivitamins/minerals (67 %), sport drinks (62 %), and magnesium (53 %). Significant differences for the type of NS consumed were found between gender and age groups and the number of weekly training hours. Most athletes used NS to accelerate recovery (63 %), improve sports performance (62 %), and have more energy/reduce fatigue (60 %). Athletes sought advice on supplementation mainly from physicians (56 %) and coaches (46 %). Age and gender were found to influence reasons for use and the source of information. Reasons for NS usage were supported scientifically in some cases (e. g., muscle gain upon protein supplementation), but others did not have a scientific basis (e. g., use of glutamine and magnesium). Given the high percentage of NS users, there is an urgent need to provide athletes with education and access to scientific and unbiased information, so that athletes can make assertive and rational choices about the utilization of these products.

  11. A REVIEW OF THE RELATIONSHIP BETWEEN LEG POWER AND SELECTED CHRONIC DISEASE IN OLDER ADULTS

    PubMed Central

    STROLLO, S.E.; CASEROTTI, P.; WARD, R.E.; GLYNN, N.W.; GOODPASTER, B.H.; STROTMEYER, E.S.

    2016-01-01

    Objective This review investigates the relationship between leg muscle power and the chronic conditions of osteoarthritis, diabetes mellitus, and cardiovascular disease among older adults. Current literature assessing the impact of chronic disease on leg power has not yet been comprehensively characterized. Importantly, individuals with these conditions have shown improved leg power with training. Methods A search was performed using PubMed to identify original studies published in English from January 1998 to August 2013. Leg power studies, among older adults ≥ 50 years of age, which assessed associations with osteoarthritis, diabetes mellitus, and/or cardiovascular disease were selected. Studies concerning post-surgery rehabilitation, case studies, and articles that did not measure primary results were excluded. Results Sixteen studies met inclusion criteria, addressing osteoarthritis (n=5), diabetes mellitus (n=5), and cardiovascular disease (n=6). Studies generally supported associations of lower leg power among older adults with chronic disease, although small sample sizes, cross-sectional data, homogenous populations, varied disease definitions, and inconsistent leg power methods limited conclusions. Conclusions Studies suggest that osteoarthritis, diabetes mellitus, and cardiovascular disease are associated with lower leg power compared to older adults without these conditions. These studies are limited, however, by the heterogeneity in study populations and a lack of standardized measurements of leg power. Future larger studies of more diverse older adults with well-defined chronic disease using standard measures of leg power and interventions to improve leg power in these older adults with chronic disease are needed. PMID:25651453

  12. Development of infant leg coordination: Exploiting passive torques.

    PubMed

    Sargent, Barbara; Scholz, John; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda

    2015-08-01

    Leg joint coordination systematically changes over the first months of life, yet there is minimal data on the underlying change in muscle torques that might account for this change in coordination. The purpose of this study is to investigate the contribution of torque changes to early changes in leg joint coordination. Kicking actions were analyzed of 10 full-term infants between 6 and 15-weeks of age using three-dimensional kinematics and kinetics. We found 11 of 15 joint angle pairs demonstrated a change from more in-phase intralimb coordination at 6-weeks to less in-phase coordination at 15-weeks. Although the magnitude of joint torques normalized to the mass of the leg remained relatively consistent, we noted more complex patterns of torque component contribution across ages. By focusing on the change in torques associated with hip-knee joint coordination, we found that less in-phase hip-knee joint coordination at 15-weeks was associated with decreased influence of knee muscle torque and increased influence of knee gravitational and motion-dependent torques, supporting that infants coordinate hip muscle torque with passive knee gravitational and motion-dependent torques to generate kicks with reduced active knee muscle torque. We propose that between 6 and 15-weeks of age less in-phase hip-knee coordination emerges as infants exploit passive dynamics in the coordination of hip and knee motions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interventions for leg cramps in pregnancy.

    PubMed

    Zhou, Kunyan; West, Helen M; Zhang, Jing; Xu, Liangzhi; Li, Wenjuan

    2015-08-11

    included trial. According to a composite outcome (frequency and intensity), more women receiving vitamin B fully recovered compared with those receiving no treatment (RR 7.50, 95% CI 1.95 to 28.81). Those women receiving no treatment were more likely to experience a partial improvement in the intensity and frequency of leg cramps than those taking vitamin B (RR 0.29, 95% CI 0.11 to 0.73, one trial, 42 women), or to see no change in their condition. However, these results are based on one small study with design limitations.Other secondary outcomes, including side effects, were not reported. Oral calcium versus oral vitamin CThere was no difference in the frequency of leg cramps after treatment with calcium versus vitamin C (RR 1.33, 95% CI 0.53 to 3.38, one study, 60 women, evidence graded very low). Other outcomes, includingside effects, were not reported. It is unclear from the evidence reviewed whether any of the interventions (oral magnesium, oral calcium, oral vitamin B or oral vitamin C) provide an effective treatment for leg cramps. This is primarily due to outcomes being measured and reported in different, incomparable ways, and design limitations compromising the quality of the evidence (the level of evidence was graded low or very low). This was mainly due to poor study design and trials being too small to address the question satisfactorily.Adverse outcomes were not reported, other than side effects for magnesium versus placebo/no treatment. It is therefore not possible to assess the safety of these interventions.The inconsistency in the measurement and reporting of outcomes, meant that data could not be pooled, meta-analyses could not be carried out, and comparisons between studies are difficult.The review only identified trials of oral interventions (magnesium, calcium, vitamin B or vitamin C) to treat leg cramps in pregnancy. None of the trials considered non-drug therapies, for example, muscle stretching, massage, relaxation, heat therapy, and dorsiflexion

  14. Astronaut Richard Linnehan, mission specialist, performs a test on his leg using the Torque Velocity

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Richard Linnehan, mission specialist, performs a test on his leg using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the leg in this particular view. The TVD hardware is also used to measure arm muscle forces and velocity at the bicep and tricep areas. Crew members for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.

  15. Astronaut Richard Linnehan, mission specialist, performs a test on his leg using the Torque Velocity

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Richard Linnehan, mission specialist, performs a test on his leg using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the leg in this particular view. The TVD hardware is also used to measure arm muscle forces and velocity at the bicep and tricep areas. Crew members for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.

  16. Evaluating the Influence of Massage on Leg Strength, Swelling, and Pain Following a Half-Marathon

    PubMed Central

    Dawson, Lance G.; Dawson, Kimberley A.; Tiidus, Peter M.

    2004-01-01

    Massage therapy is commonly used following endurance running races with the expectation that it will enhance post-run recovery of muscle function and reduce soreness. A limited number of studies have reported little or no influence of massage therapy on post-exercise muscle recovery. However, no studies have been conducted in a field setting to assess the potential for massage to influence muscle recovery following an actual endurance running race. To evaluate the potential for repeated massage therapy interventions to influence recovery of quadriceps and hamstring muscle soreness, recovery of quadriceps and hamstring muscle strength and reduction of upper leg muscle swelling over a two week recovery period following an actual road running race. Twelve adult recreational runners (8 male, 4 female) completed a half marathon (21.1 km) road race. On days 1,4, 8, and 11 post-race, subjects received 30 minutes of standardized massage therapy performed by a registered massage therapist on a randomly assigned massage treatment leg, while the other (control) leg received no massage treatment. Two days prior to the race (baseline) and preceding the treatments on post-race days 1, 4, 8, and 11 the following measures were conducted on each of the massage and control legs: strength of quadriceps and hamstring muscles, leg swelling, and soreness perception. At day 1, post-race quadriceps peak torque was significantly reduced (p < 0.05), and soreness and leg circumference significantly elevated (p < 0.05) relative to pre-race values with no difference between legs. This suggested that exercise-induced muscle disruption did occur. Comparing the rate of return to baseline measures between the massaged and control legs, revealed no significant differences (p > 0.05). All measures had returned to baseline at day 11. Massage did not affect the recovery of muscles in terms of physiological measures of strength, swelling, or soreness. However, questionnaires revealed that 7 of the 12

  17. Exercise-related leg pain in female collegiate athletes: the influence of intrinsic and extrinsic factors.

    PubMed

    Reinking, Mark F

    2006-09-01

    Exercise-related leg pain is a common complaint among athletes, but there is little evidence regarding risk factors for this condition in female collegiate athletes. To examine prospectively the effect of selected extrinsic and intrinsic factors on the development of exercise-related leg pain in female collegiate athletes. Cohort study; Level of evidence, 2. Subjects were 76 female collegiate athletes participating in fall season sports, including cross-country running, field hockey, soccer, and volleyball. Athletes were seen for a pre-season examination that included measures of height, weight, foot pronation, and calf muscle length as well as a questionnaire for disordered eating behaviors. Body mass index was calculated from height and weight (kg/m(2)). Those athletes who developed exercise-related leg pain during the season were seen for follow-up. All athletes who developed the condition and a matched group without such leg pain underwent bone mineral density and body composition testing. Statistical analyses of differences and relationships were conducted. Of the 76 athletes, 58 (76%) reported a history of exercise-related leg pain, and 20 (26%) reported occurrence of exercise-related leg pain during the season. A history of this condition was strongly associated with its occurrence during the season (odds ratio, 13.2). Exercise-related leg pain was most common among field hockey and cross-country athletes and least common among soccer players. There were no differences between athletes with and without such leg pain regarding age, muscle length, self-reported eating behaviors, body mass index, menstrual function, or bone mineral density. Athletes with exercise-related leg pain had significantly (P < .05) greater navicular drop compared with those without. Exercise-related leg pain was common among this group of female athletes. The results suggest that there are certain factors, including foot pronation, sport, and a history of this condition, that are

  18. Leg discomfort: beyond the joints.

    PubMed

    Berger, Douglas

    2014-05-01

    Although simple characterization of discomfort as cramps, heaviness, shooting pains, and so forth can be misleading, history and examination are key to accurate diagnosis. Absence of both dorsalis pedis and posterior tibial pulses strongly suggests peripheral arterial disease (PAD), and the presence of either pulse makes PAD less likely. Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) are a common cause of lower extremity myalgias. Restless legs syndrome causes nocturnal discomfort but must be distinguished from confounding“mimics." Neurologic causes of leg symptoms include lumbar spinal stenosis, radiculopathy, distal symmetric polyneuropathy, and entrapment neuropathy. Many common causes of leg discomfort can be managed conservatively.

  19. Getting Your Sea Legs

    PubMed Central

    Stoffregen, Thomas A.; Chen, Fu-Chen; Varlet, Manuel; Alcantara, Cristina; Bardy, Benoît G.

    2013-01-01

    Sea travel mandates changes in the control of the body. The process by which we adapt bodily control to life at sea is known as getting one's sea legs. We conducted the first experimental study of bodily control as maritime novices adapted to motion of a ship at sea. We evaluated postural activity (stance width, stance angle, and the kinematics of body sway) before and during a sea voyage. In addition, we evaluated the role of the visible horizon in the control of body sway. Finally, we related data on postural activity to two subjective experiences that are associated with sea travel; seasickness, and mal de debarquement. Our results revealed rapid changes in postural activity among novices at sea. Before the beginning of the voyage, the temporal dynamics of body sway differed among participants as a function of their (subsequent) severity of seasickness. Body sway measured at sea differed among participants as a function of their (subsequent) experience of mal de debarquement. We discuss implications of these results for general theories of the perception and control of bodily orientation, for the etiology of motion sickness, and for general phenomena of perceptual-motor adaptation and learning. PMID:23840560

  20. Prosthetic leg powered by MR brake and SMA wires

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Munguia, Vicente; Calderon, Jose

    2014-04-01

    Current knee designs for prosthetic legs rely on electric motors for both moving and stationary states. The electric motors draw an especially high level of current to sustain a fixed position. The advantage of using magnetorheological (MR) fluid is that it requires less current and can have a variable braking torque. Besides, the proposed prosthetic leg is actuated by NiTinol wire, a popular shape memory alloy (SMA). The incorporation of NiTinol gives the leg more realistic weight distribution with appropriate arrangement of the batteries and wires. The prosthesis in this research was designed with MR brake as stopping component and SMA wire network as actuating component at the knee. The MR brake was designed with novel non-circular shape for the rotor that improved the braking torque while minimizing the power consumption. The design also helped simplify the control of braking process. The SMA wire network was design so that the knee motion was actively rotated in both directions. The SMA wires were arranged and played very similar role as the leg's muscles. The study started with the overall solid design of the knee including both MR and SMA parts. Theoretical models were derived and programmed in Simulink for both components. The simulation was capable of predicting the power required for moving the leg or hold it in a fixed position for a certain amount of time. Subsequently, the design was prototyped and tested to validate the theoretical prediction. The theoretical models were updated accordingly to correlate with the experimental data.

  1. Leg strength and the VO2 max of older men.

    PubMed

    Lovell, D; Cuneo, R; Delphinus, E; Gass, G

    2011-04-01

    The purpose of the study was to determine if leg strength limits VO2 max and the ability to reach a plateau during VO2 max test in older men during cycle ergometry. Men aged 70-80 years were randomly selected into a strength training (ST, n=12) 3 times weekly for 16 weeks, followed by 4 weeks detraining or a non-training control group (C, n=12). Leg strength and VO2 max were assessed every 4 weeks for 20 weeks; body composition and cardiac function were assessed before and after 16 weeks training and after 4 weeks detraining. Leg strength, upper leg muscle mass (ULMM), arterial-venous O2 difference (a-v O2 difference) and VO2 max increased in the ST group (95±0.6%, 7±0.7%. 6.2±0.5% and 8±0.8%, respectively; P<0.05) after 16 weeks training. After 4 weeks detraining, gains in ULMM (50%) and strength (75%) were retained, but VO2 max and a-v O2 difference returned to pre-training levels. There was no change in the ability of the participants to reach a plateau during VO2 max testing over the 20-week study. These findings indicate that leg strength may not limit either VO2 max or the ability to plateau during VO2 max tests in older men during cycle ergometry.

  2. Human jaw muscle strength and size in relation to limb muscle strength and size.

    PubMed

    Raadsheer, M C; Van Eijden, T M G J; Van Ginkel, F C; Prahl-Andersen, B

    2004-10-01

    The aim of the present study was to investigate to what extent general factors (e.g. genotype, hormones) and factors at the craniofacial level (e.g. craniofacial size, jaw muscle architecture) contribute to the size and strength of the jaw muscles. A strong relationship of jaw muscle size and strength with that of other muscles would argue for general influences, whereas a weak relationship would argue for craniofacial influences. In 121 adult individuals, moments of maximal bite force, arm flexion force and leg extension force were measured. In addition, thicknesses of jaw muscles, arm flexor muscles and leg extensor muscles were measured using ultrasound. Relationships were assessed by using a principal component analysis. In females, one component was found in which all force moments were represented. Bite force moment, however, loaded very low. In males, two components were found. One component loaded for arm flexion and leg extension moments, the other loaded for bite force moments. In both females and males, only one component was found for the muscle thicknesses in which all muscle groups loaded similarly. It was concluded that the size of the jaw muscles was significantly related to the size of the limb muscles, suggesting that they were both subject to the same general influences. Maximal voluntary bite force moments were not significantly related to the moments of the arm flexion and leg extension forces, suggesting that besides the general influence on the muscle size, variation in bite force moment was also influenced by local variables, such as craniofacial morphology.

  3. Whole body and leg acetate kinetics at rest, during exercise and recovery in humans.

    PubMed

    van Hall, G; Sacchetti, M; Rådegran, G

    2002-07-01

    We have used a constant [1,2-(13)C]acetate infusion (0.12 micromol x min(-1) x kg( 1)) for 2 h at rest, followed by 2 h of one-legged knee-extensor exercise at 65% of leg maximal workload, and 3 h of recovery in six post-absorptive volunteers to quantify whole-body and leg acetate kinetics and determine whether the whole-body acetate correction factor can be used to correct leg substrate oxidation. The acetate whole-body rate of appearance (R(a)) was not significantly different at rest, during exercise or during recovery (365-415 micromol x min(-1)). The leg net acetate uptake was similar at rest and during recovery (approximately 10 micromol x min(-1)), but increased approximately 5-fold with exercise. At rest the leg acetate uptake (approximately 15 micromol x min(-1)) and release (approximately 5 micromol x min(-1)) accounted for 4 and 1.5 % of whole-body acetate disposal (R(d)) and R(a), respectively. When the leg acetate kinetics were extrapolated to the total body skeletal muscle mass, then skeletal muscle accounted for approximately 16 and approximately 6% of acetate R(d) and R(a). With exercise, leg acetate uptake increased approximately 6-fold, whereas leg acetate release increased 9-fold compared with rest. Whole-body acetate carbon recovery increased with time of infusion at rest and during recovery from 21% after 1.5 h of infusion to 45% in recovery after 7 h of infusion. Leg and whole-body acetate carbon recovery were similar under resting conditions, both before and after exercise. During exercise whole-body acetate carbon recovery was approximately 75%, however, acetate carbon recovery of the active leg was substantially higher (approximately 100%). It is concluded that inactive skeletal muscle plays a minor role in acetate turnover. However, active skeletal muscle enhances several-fold acetate uptake and subsequent oxidation, as well as release and its contribution to whole-body acetate turnover. Furthermore, under resting conditions the whole

  4. Leg power in young women: relationship to body composition, strength, and function.

    PubMed

    Thomas, M; Fiatarone, M A; Fielding, R A

    1996-10-01

    The ability to generate high forces at high velocity (power) is an important component of physiologic reserve for both athletic performance and functional capacity. A comparison was made between different laboratory methods and field tests designed to evaluate leg power. Nineteen young healthy untrained women participated in this study. Maximum power during the double leg press (KP) occurred between 56-78% of the one repetition maximum (1-RM) and averaged (404 +/- 22 W). Rank-ordered correlation showed an association between KP and another measure of leg power measured on the leg extensor power rig (LR) when expressed per kg LBM (Rho = 0.565, P < 0.016). KP was also related to the 1-RM achieved on the double leg press (R2 = 0.584, P < 0.001). The KP test also correlated with the vertical jump (R2 = 0.538, P < 0.004) and maximal power output during the Wingate anaerobic power test (R2 = 0.299, P < 0.015). However, double leg press power was not related to time to run 40 yards (R2 = 0.020, P < 0.573) or maximal gait velocity (R2 = 0.136, P < 0.121). These results suggest that maximal power during the double leg press occurs at a higher percentage of maximal strength than previously reported. Double leg press power was related to vertical jump performance, validating this field test as a measure of leg muscle power in young women.

  5. The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression.

    PubMed

    Iwamoto, Hiroyuki

    2017-01-01

    The structural and biochemical features of the tymbal (sound-producing) muscle of cicadas were studied by X-ray diffraction and immunochemistry, and compared with those of flight muscles from the same species. The X-ray diffraction pattern of the tymbal muscle was very similar to that of the dorsal longitudinal flight muscle: In both muscles, the 2,0 equatorial reflection is much more intense than the 1,1, indicating that both muscles have a flight muscle-type myofilament lattice. In rigor, the first myosin/actin layer line reflection was finely lattice-sampled, indicating that the contractile proteins are arranged with a crystalline regularity as in asynchronous flight muscles. In contrast, the diffraction pattern from the tensor muscle, which modulates the sound by stressing the tymbal, did not show signs of such high regularity or flight muscle-type filament lattice. Electrophoretic patterns of myofibrillar proteins were also very similar in the tymbal muscle and flight muscles, but distinct from those from the tensor or leg muscles. The antibody raised against the flight muscle-specific troponin-I isoform reacted with an 80-kDa band from both tymbal and flight muscles, but with none of the bands from the tensor or leg muscles. The close similarities of the structural and biochemical profiles between the tymbal and the flight muscles suggest the possibility that a set of flight muscle-specific proteins is diverted to the tymbal muscle to meet its demand for fast, repetitive contractions.

  6. [Restless legs syndrome - a review].

    PubMed

    Sveinsson, Olafur Arni; Sigurdsson, Albert Pall

    2012-01-01

    Restless legs syndrome (RLS) is a common disorder with a prevalence between 10-20% in Iceland. There are two forms of RLS, idiopathic and secondary. Symptom onset of RLS before the age of 45 suggests an idiopathic form with no known underlying cause but inheritance. Symptom onset after age of 45 indicates a secondary form with an underlying cause without inheritance. Causes for secondary forms are for example: iron depletion, uraemia and polyneuropathy. Symptoms of RLS are uncomfortable and unpleasant deep sensations in the legs that are felt at rest, accompanied by an urge to move the legs, typically just before sleep. Accompanying RLS is a sleep disturbance that can lead to daytime somnolence, decreased quality of life, poor concentration, memory problems, depression and decreased energy. Dopamine agonists are currently the first line treatment for RLS. restless legs, periodic limb movements, sleep disturbance, dopamine agonists.

  7. Restless legs syndrome. A review.

    PubMed

    O'Keeffe, S T

    1996-02-12

    Restless legs syndrome is characterized by unpleasant, deep-seated paresthesias in the legs and sometimes the arms. These sensations occur at rest and are relieved by movement. Sleep disturbance is common. Many patients also have periodic movements of sleep. Mild symptoms of restless legs occur in up to 5% of the population. Restless legs syndrome is idiopathic in most patients, but it may be the presenting feature of iron deficiency and is also common in uremia, pregnancy, diabetes mellitus, rheumatoid arthritis, and polyneuropathy. Treatment of the underlying cause, when possible, usually relieves the symptoms. For patients with severe symptoms, levodopa, bromocriptine mesylate, opioids, carbamazepine, clonazepam, and clonidine hydrochloride have proved to be effective.

  8. Biliary stent