Sample records for legume cover crops

  1. Growth of tropical legume cover crops as influenced by nitrogen fertilization and Rhizobia

    USDA-ARS?s Scientific Manuscript database

    Tropical legume cover crops are important components in cropping systems due to their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the...

  2. Cover crops and N credits

    USDA-ARS?s Scientific Manuscript database

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  3. Nutrient Uptake and Use Efficiency by Tropical Legume Cover Crops at varying pH of an Oxisol

    USDA-ARS?s Scientific Manuscript database

    Oxisols comprise large soil group in tropical America. These soils are acidic and having low fertility. Use of tropical legume cover crops in cropping systems is an important strategy to improve fertility of these soils for sustainable crop production. Data are limited on nutrient uptake and use ef...

  4. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    PubMed

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  5. Winter cover crops influence Amaranthus palmeri establishment

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  6. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    PubMed Central

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  7. Cover crops for enriching soil carbon and nitrogen under bioenergy sorghum

    USDA-ARS?s Scientific Manuscript database

    Soil carbon (C) and nitrogen (N) can be enriched with cover crops under agronomic crops, but little is known about their enrichment under bioenergy crops. Legume (hairy vetch [Vicia villosa Roth]), nonlegume (rye [Secaele cereale L.]), a mixture of legume and nonlegume (hairy vetch and rye) and a co...

  8. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

    PubMed

    Adams, Mark A; Buchmann, Nina; Sprent, Janet; Buckley, Thomas N; Turnbull, Tarryn L

    2018-06-01

    Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Legume crops phylogeny and genetic diversity for science and breeding

    USDA-ARS?s Scientific Manuscript database

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  10. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  11. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  12. Orphan legume crops enter the genomics era!

    PubMed

    Varshney, Rajeev K; Close, Timothy J; Singh, Nagendra K; Hoisington, David A; Cook, Douglas R

    2009-04-01

    Many of the world's most important food legumes are grown in arid and semi-arid regions of Africa and Asia, where crop productivity is hampered by biotic and abiotic stresses. Until recently, these crops have also suffered from a dearth of genomic and molecular-genetic resources and thus were 'orphans' of the genome revolution. However, the community of legume researchers has begun a concerted effort to change this situation. The driving force is a series of international collaborations that benefit from recent advances in genome sequencing and genotyping technologies. The focus of these activities is the development of genome-scale data sets that can be used in high-throughput approaches to facilitate genomics-assisted breeding in these legumes.

  13. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    PubMed

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  14. Photosynthesis in tropical cover crop legumes influenced by irradiance, external carbon dioxide concentration and temperature

    USDA-ARS?s Scientific Manuscript database

    In plantation crops perennial tropical legumes are grown as understory plants, receive limited irradiance, and are subjected to elevated levels of CO2 and temperature. Independent short-term effects of photosynthetic photon flux density (PPFD), external carbon dioxide concentration [CO2] and temper...

  15. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.

    PubMed

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  16. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    PubMed Central

    Iannetta, Pietro P. M.; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J.; Monti, Michele; Pappa, Valentini A.; Reckling, Moritz; Topp, Cairistiona F. E.; Walker, Robin L.; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Squire, Geoffrey R.; Begg, Graham S.

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output. PMID:27917178

  17. Hairy vetch seedbank persistence and implications for cover crop management

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a fast growing, winter hardy annual legume that can produce shoot biomass levels upwards of 6500 kg ha-1. This cover crop is well suited for summer annual grain rotations, as it fixes considerable amounts of nitrogen, reduces erosion through rapid ground cover, an...

  18. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  19. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  20. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    PubMed Central

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  1. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of

  2. Establishment of three permanent cover crop seed mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla

    2015-04-01

    In organic vineyard farming sowing high diversity cover crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for cover cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage cover of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first year the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second year in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed cover scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed cover scores. In the third year we still detected lower weed cover scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing cover of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low cover scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high cover scores on most sites even in the second and third year

  3. Legume proportions, poultry litter, and tillage effects on cover crop decomposition

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth.)–cereal rye (Secale cereale L.) cover crop mixtures can provide N scavenging and N provisioning benefits in grain cropping systems. The objectives of this research were to determine, under field conditions, the effects of species proportions, tillage, and pelletized...

  4. Phosphorus acquisition and utilisation in crop legumes under global change.

    PubMed

    Pang, Jiayin; Ryan, Megan H; Lambers, Hans; Siddique, Kadambot Hm

    2018-05-28

    Improving phosphorus (P)-use efficiency in legumes is a worldwide challenge in the face of an increasing world population, dwindling global rock phosphate reserves, the relatively high P demand of legumes and global change. This review focuses on P acquisition of crop legumes in response to climate change. We advocate further studies on: firstly, the response of carboxylate exudation, mycorrhizas and root morphology to climate change and their role in P acquisition as dependent on edaphic factors; secondly, developing intercropping systems with a combination of a legume and another crop species to enhance P acquisition; and thirdly, the impact of the interactions of the major climate change factors on P acquisition in the field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    PubMed

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  6. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  7. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  8. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    USDA-ARS?s Scientific Manuscript database

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  9. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  10. Utilization of sunn hemp for cover crops and weed control in temperate climates

    USDA-ARS?s Scientific Manuscript database

    The need to develop increasingly integrated pest management and sustainable food production systems has encouraged a greater interest to thoroughly evaluate effective utilization of cover crops in agricultural systems. Sunn hemp, a tropical legume that originated most likely from the Indo-Pakistani ...

  11. Organic supplemental nitrogen sources for field corn production after a hairy vetch cover crop

    USDA-ARS?s Scientific Manuscript database

    The combined use of legume cover crops and animal byproduct organic amendments could provide agronomic and environmental benefits to organic farmers by increasing corn grain yield while optimizing N and P inputs. To test this hypothesis we conducted a two-year field study and a laboratory soil incu...

  12. Cowpea: a legume crop for a challenging environment.

    PubMed

    Carvalho, Márcia; Lino-Neto, Teresa; Rosa, Eduardo; Carnide, Valdemar

    2017-10-01

    Cowpea is a grain legume native from Africa and is a primary source of protein for millions of people in sub-Saharan Africa and other parts of the developing world. The main important characteristics of this crop include a good protein quality with a high nutritional value, its nitrogen-fixing ability, and an ability to be more drought- and heat-tolerant than most of its legume relatives. In a research perspective, studies of cowpea are relatively scarce, despite its relevance to agriculture in the developing world and its resilience to stress. The present review provides an overview of different aspects of cowpea, with a special emphasis on the molecular markers for assessing genetic diversity, as well as on biochemical and transcriptomic data with respect to evaluating cowpea drought stress tolerance. The integration of both datasets will be useful for the improvement of cowpea because research on drought stress tolerance is of major interest for this crop in a challenging environment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Control of plant virus diseases in cool-season grain legume crops.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies.

  14. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley

    2006-01-01

    Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.

  15. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    USDA-ARS?s Scientific Manuscript database

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  16. Effects of Carbon and Cover Crop Residues on N2O and N2 Emissions

    NASA Astrophysics Data System (ADS)

    Burger, M.; Cooperman, Y.; Horwath, W. R.

    2016-12-01

    In Mediterranean climate, nitrous oxide emissions occurring with the first rainfall after the dry summer season can contribute up to 50% of agricultural systems' total annual emissions, but the drivers of these emissions have not been clearly identified, and there are only few measurements of atmospheric nitrogen (N2) production (denitrification) during these events. In lab incubations, we investigated N2O and N2 production, gross ammonification and nitrification, and microbial N immobilization with wet-up in soil from a vineyard that was previously fallow or where cover crop residue had been incorporated the previous spring. Before the first rainfall, we measured 120 mg dissolved organic carbon (DOC-C) kg-1 soil in the 0-5 cm layer of this vineyard, and after the rain 10 mg DOC-C kg-1, while nitrate levels before the rain were <5 mg N kg-1 in fallow and <10 mg N kg-1 in previously cover cropped soil. The N2O/N2 production was 2, 7, 9, and 86% in fallow, legume-grass mixture, rye, and legume cover cropped soil. The N2O/N2 ratio tended to increase with lower DOC (post-rain) levels in the soil. The results suggest that accumulated carbon in dry surface soil is the main driving factor of N2O and N2 emissions through denitrification with the first rainfall after prolonged dry periods.

  17. Cover crops for Alabama

    USDA-ARS?s Scientific Manuscript database

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  18. Improving legumes for pasture, cover crops, living mulch, and green manure

    USDA-ARS?s Scientific Manuscript database

    With growing interest in alternative legumes for uses beyond hay, farmers are requesting options to meet their needs. This article explains two efforts in which the U.S. Dairy Forage Research Center is involved. The two efforts include: 1) kura clover seed production so producers have access to kura...

  19. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    PubMed

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than

  1. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  2. The potential of climate change adjustment in crops: A synthesis

    USDA-ARS?s Scientific Manuscript database

    This chapter covers a study on various field crops like cereals, legumes, oil seeds, vegetables, cash crops, underutilized crops, and energy crops and their genetic adjustment to changing climates. More than 30 major field crops have been covered in different chapters of this book, which highlight h...

  3. Climate Impacts of Cover Crops

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  4. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  5. Legume Information System (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    USDA-ARS?s Scientific Manuscript database

    The Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working o...

  6. Using cover crops and cropping systems for nitrogen management

    USDA-ARS?s Scientific Manuscript database

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  7. Adapting legume crops to climate change using genomic approaches.

    PubMed

    Mousavi-Derazmahalleh, Mahsa; Bayer, Philipp E; Hane, James K; Valliyodan, Babu; Nguyen, Henry T; Nelson, Matthew N; Erskine, William; Varshney, Rajeev K; Papa, Roberto; Edwards, David

    2018-03-30

    Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  8. Effect of different cover crops on C and N cycling in sorghum NT systems.

    PubMed

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Soil oribatid mite communities under three species of legumes in an ultisol in Brazil.

    PubMed

    Badejo, M Adetola; Espindola, Jose Antonio Azevedo; Guerra, Jose Guilherme Marinho; De Aquino, Adriana Maria; Correa, Maria Elizabeth Fernandes

    2002-01-01

    Oribatid mite densities in the topsoil and their activity at the soil surface were monitored under three species of perennial legume cover crops namely, Arachis pintoi, Macroptilium atropupureum and Pueraria phaseoloides, grass (Panicum maximum) and bare plots on three occasions in 1998 and 1999 in a derived savanna zone in Brazil. Both densities and activity at the soil surface were higher in the early but cool dry season in April 1998 than in the early wet but warm season in November 1998 and 1999. Three taxonomic groups of macropyline oribatid mites, namely Nothrus, Archegozetes and Masthermannia as well as a brachypyline taxon, Scheloribates were suggested as possible indicators of effect of legumes on soil biota because their populations increased under the legumes and/or the irresidues. Nothrus in particular increased in abundance more than any other taxon in the presence of residues of A. pintoi. Each legume supported a unique oribatid mite community in terms of species composition and relative abundance. The large numbers of Archegozeres trapped from all the legume and grass plots in April and November 1998 were also attributed to highly conducive conditions provided by the vegetation cover and their residues. The results suggest that the oribatid mite community of the study area was numerically stable as the peak populations of different species were not synchronized. Many taxonomic groups of pycnonotic brachypyline mites were absent. Legume cover crops, especially A. pintoi, and their residues have potential in restoring oribatid mite populations to precultivation levels.

  11. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family.

    PubMed

    Dash, Sudhansu; Campbell, Jacqueline D; Cannon, Ethalinda K S; Cleary, Alan M; Huang, Wei; Kalberer, Scott R; Karingula, Vijay; Rice, Alex G; Singh, Jugpreet; Umale, Pooja E; Weeks, Nathan T; Wilkey, Andrew P; Farmer, Andrew D; Cannon, Steven B

    2016-01-04

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the 'Legume Federation' project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    PubMed

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  13. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  14. Managing cover crops: an economic perspective

    USDA-ARS?s Scientific Manuscript database

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  15. Midwest Cover Crops Field Guide

    USDA-ARS?s Scientific Manuscript database

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  16. Unlocking the potential of orphan legumes.

    PubMed

    Cullis, Christopher; Kunert, Karl J

    2017-04-01

    Orphan, or underutilized, legumes are domesticated legumes with useful properties, but with less importance than major world crops due to use and supply constraints. However, they play a significant role in many developing countries, providing food security and nutrition to consumers, as well as income to resource-poor farmers. They have been largely neglected by both researchers and industry due to their limited economic importance in the global market. Orphan legumes are better adapted than the major legume crops to extreme soil and climatic conditions, with high tolerance to abiotic environmental stresses such as drought. As a stress response they can also produce compounds with pharmaceutical value. Orphan legumes are therefore a likely source of important traits for introduction into major crops to aid in combating the stresses associated with global climate change. Modern large-scale genomics techniques are now being applied to many of these previously understudied crops, with the first successes reported in the genomics area. However, greater investment of resources and manpower are necessary if the potential of orphan legumes is to be unlocked and applied in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Timely precipitation drives cover crop outcomes

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  18. Winter cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  19. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  20. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

    USDA-ARS?s Scientific Manuscript database

    Advances in sequencing and genotyping technologies have enabled generation of several thousand markers including SSRs, SNPs, DArTs, hundreds of thousands transcript reads and BAC-end sequences in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive tran...

  1. The potential of cover crops for improving soil function

    NASA Astrophysics Data System (ADS)

    Stoate, Chris; Crotty, Felicity

    2017-04-01

    Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.

  2. A global experimental dataset for assessing grain legume production

    PubMed Central

    Cernay, Charles; Pelzer, Elise; Makowski, David

    2016-01-01

    Grain legume crops are a significant component of the human diet and animal feed and have an important role in the environment, but the global diversity of agricultural legume species is currently underexploited. Experimental assessments of grain legume performances are required, to identify potential species with high yields. Here, we introduce a dataset including results of field experiments published in 173 articles. The selected experiments were carried out over five continents on 39 grain legume species. The dataset includes measurements of grain yield, aerial biomass, crop nitrogen content, residual soil nitrogen content and water use. When available, yields for cereals and oilseeds grown after grain legumes in the crop sequence are also included. The dataset is arranged into a relational database with nine structured tables and 198 standardized attributes. Tillage, fertilization, pest and irrigation management are systematically recorded for each of the 8,581 crop*field site*growing season*treatment combinations. The dataset is freely reusable and easy to update. We anticipate that it will provide valuable information for assessing grain legume production worldwide. PMID:27676125

  3. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    USDA-ARS?s Scientific Manuscript database

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  4. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  5. Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice.

    PubMed

    Rahman, Motior M; Islam, Aminul M; Azirun, Sofian M; Boyce, Amru N

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  6. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  7. Patterns of crop cover under future climates.

    PubMed

    Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong

    2017-04-01

    We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.

  8. Suppression of soilborne diseases of soybean with cover crops

    USDA-ARS?s Scientific Manuscript database

    Cover crops can foster the development of disease suppressive soils, and it has become common to use cover crops to manage soilborne diseases in high value crops. There is increasing interest in incorporating cover crops into agronomic systems in the Midwestern US for improving soil health. However,...

  9. Winter rye cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  10. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    PubMed Central

    Rahman, Motior M.; Islam, Aminul M.; Azirun, Sofian M.; Boyce, Amru N.

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. PMID:24971378

  11. Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...

  12. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species.

    PubMed

    Moolhuijzen, P; Cakir, M; Hunter, A; Schibeci, D; Macgregor, A; Smith, C; Francki, M; Jones, M G K; Appels, R; Bellgard, M

    2006-06-01

    The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume

  13. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  14. Genetic control of inflorescence architecture in legumes

    PubMed Central

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753

  15. Termination of cover crops using rollers/crimpers

    USDA-ARS?s Scientific Manuscript database

    An integral component of conservation agriculture systems is the use of a high-residue winter cover crop; however, terminating cover crops is an addition expense and planting into high-residue can be a challenge. An experiment was conducted using black oat (Avena strigosa Schreb.), rye (Secale cere...

  16. Cover crop options and mixes for the upper midwest

    USDA-ARS?s Scientific Manuscript database

    The implementation of cover crops in Iowa has the potential to decrease soil erosion, weed populations, and the loss of nutrients. Currently, less than 1% of all Iowa farmland is planted to cover crops, most of which is winter rye. This research explores 16 different cover crop treatments planted a...

  17. Rapid crop cover mapping for the conterminous United States

    USGS Publications Warehouse

    Dahal, Devendra; Wylie, Bruce K.; Howard, Daniel

    2018-01-01

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a ‘two model mapping’ approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one ‘crop type model’ to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of ‘other’ crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1st of September.

  18. Rapid Crop Cover Mapping for the Conterminous United States.

    PubMed

    Dahal, Devendra; Wylie, Bruce; Howard, Danny

    2018-06-05

    Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one 'crop type model' to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of 'other' crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1 st of September.

  19. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  20. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  1. Contrasted nitrogen utilization in annual C 3 grass and legume crops: Physiological explorations and ecological considerations

    NASA Astrophysics Data System (ADS)

    Del Pozo, Alejandro; Garnier, Eric; Aronson, James

    2000-01-01

    Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen

  2. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems

    USDA-ARS?s Scientific Manuscript database

    Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...

  3. Legumes or nitrification inhibitors to reduce N2O emissions in subtropical cereal cropping systems? A simulation study

    USDA-ARS?s Scientific Manuscript database

    The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...

  4. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    PubMed Central

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p < 0.05) under P–B rotation by 78%, 85% and 83% in the 2, 4 and 7–year continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p <0.05) tuber yield by 19% and 18%, compared to P–C and P–L rotation respectively. P–L rotation also increased potato tuber yield compared to P–C, but the effect was lesser relative to P–B rotation. These results suggest that adopting potato–legume rotation

  5. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  6. Use of Cover Crops in Hardwood Production

    Treesearch

    Randy Rentz

    2005-01-01

    Cover crops are as essential a practice in hardwood production as in pine production or any other nursery operation. Without proper cover crop rotation in a nursery plan, we open ourselves up to an array of problems: more diseases, wrong pH, more weeds, reduced fertility, and less downward percolation of soil moisture due, in part, to compaction....

  7. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  8. Panel Discussion: Cover Crops Used at Vallonia Nursery, Indiana Division of Forestry

    Treesearch

    Robert Hawkins

    2005-01-01

    The use of cover crops is one essential step in management of nursery soils. Cover crops serve many different purposes within the soil. First, cover crops help in reducing erosion by stabilizing soil. Second, cover crops can be used as a visual guide to nutrient deficiencies in fields prior to sowing seedling crops. Most important, cover crops build organic matter,...

  9. Fertilizer effects on a winter cereal cover crop

    USDA-ARS?s Scientific Manuscript database

    Benefits associated with conservation tillage in the Southeast are improved by using a winter cereal cover crop. In general, cover crop benefits increase as biomass production is increased, but the infertile soils typically require additional N (inorganic or organic). Currently, limited informatio...

  10. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  11. Establishment and function of cover crops interseeded into corn

    USDA-ARS?s Scientific Manuscript database

    Cover crops can provide ecological services and improve the resiliency of annual cropping systems; however, cover crop use is low in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations in the upper Midwest due to challenges with establishment. Our objective was to compare three planting me...

  12. Fluorescence imaging to quantify crop residue cover

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  13. A suggestion for planning cover crop mixtures: zones of occupancy

    USDA-ARS?s Scientific Manuscript database

    Producers may be able to improve the competitiveness of cover crop mixtures by selecting species to occupy zones in the cover crop canopy. This suggestion is based on a study where we compared four cover crop treatments, 1, 3, 6, and 9 species mixtures, for biomass production. Treatments were est...

  14. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USGS Publications Warehouse

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma

    2015-01-01

    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  15. Cover crops to improve soil health and pollinator habitat in nut orchards

    Treesearch

    Jerry Van Sambeek

    2017-01-01

    Recently several national programs have been initiated calling for improving soil health and creating pollinator habitat using cover crops. Opportunities exist for nut growers to do both with the use of cover crops in our nut orchards. Because we can include perennial ground covers as cover crops, we have even more choices than landowners managing cover crops during...

  16. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  17. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G

    2009-05-01

    Cool-season food legumes (faba bean, lentil, chickpea and pea) and cereals (bread and durum wheat and barley) are the most important and widely cultivated crops in West Asia and North Africa (WANA), where they are the main source of carbohydrates and protein for the majority of the population. Persistently transmitted aphid-borne viruses pose a significant limitation to legume and cereal production worldwide. Surveys conducted in many countries in WANA during the last three decades established that the most important of these viruses are: Faba bean necrotic yellows virus (FBNYV: genus Nanovirus; family Nanoviridae), Bean leafroll virus (BLRV: genus Luteovirus; family Luteoviridae), Beet western yellows virus (BWYV: genus Polerovirus; family Luteoviridae), Soybean dwarf virus (SbDV: genus Luteovirus; family Luteoviridae) and Chickpea chlorotic stunt virus (CpCSV: genus Polerovirus; family Luteoviridae) which affect legume crops, and Barley yellow dwarf virus-PAV (BYDV-PAV: genus Luteovirus; family Luteoviridae), Barley yellow dwarf virus-MAV (BYDV-MAV: genus Luteovirus; family Luteoviridae) and Cereal yellow dwarf virus-RPV (CYDV-RPV: genus Polerovirus; family Luteoviridae) which affect cereal crops. Loss in yield caused by these viruses is usually high when infection occurs early in the growing season. Many aphid vector species for the above-mentioned viruses are reported to be prevalent in the WANA region. In addition, in this region many wild species (annual or perennial) were found infected with these viruses and may play an important role in their ecology and spread. Fast spread of these diseases was always associated with high aphid vector populations and activity. Although virus disease management can be achieved by combining several control measures, development of resistant genotypes is undoubtedly one of the most appropriate control methods. Over the last three decades barley and wheat genotypes resistant to BYDV, faba bean genotypes resistant to BLRV, and

  18. Winter cover crops as a best management practice for reducing nitrogen leaching

    NASA Astrophysics Data System (ADS)

    Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.

    1998-10-01

    The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.

  19. Modelling the impact of climatic conditions and plant species on the nitrogen release from mulch of legumes at the soil surface

    NASA Astrophysics Data System (ADS)

    Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia

    2015-04-01

    Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy

  20. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...

  1. Profitability of cover crops for single and twin row cotton

    USDA-ARS?s Scientific Manuscript database

    With the increased interest in cover crops, the impact of adoption on profitability of cash crops is a common question from producers. The objective of this study was to evaluate the profitability of cover crops for single and twin row cotton (Gossypium hirsutum L.) in Alabama. This experiment inclu...

  2. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  3. Cellulosic Biofuel Production with Winter Cover Crops: Yield and Nitrogen Implications

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable energy sources derived from plant biomass is increasing. Growing cover crops after harvest of the primary crop has been proposed as a solution to producing cellulosic biomass on existing crop-producing land without reducing food-harvest potential. Growing cover crops is a recom...

  4. Cover Crop Chart: An Intuitive Educational Resource for Extension Professionals

    ERIC Educational Resources Information Center

    Liebig, Mark A.; Johnson, Holly; Archer, David; Hendrickson, John; Nichols, Kristine; Schmer, Marty; Tanaka, Don

    2013-01-01

    Interest in cover crops by agricultural producers has increased the need for information regarding the suitability of crops for addressing different production and natural resource goals. To help address this need, staff at the USDA-ARS Northern Great Plains Research Laboratory developed a decision aid called the Cover Crop Chart (CCC). Visually…

  5. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    PubMed

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  6. Kenaf and cowpea as sugarcane cover crops

    USDA-ARS?s Scientific Manuscript database

    The use of cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Typically, a Louisiana sugarcane field is replanted every four years due to declining yields, and,...

  7. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    PubMed

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  8. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  9. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  10. Watershed-Scale Cover Crops Reduce Nutrient Export From Agricultural Landscapes.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Trentman, M. T.; Royer, T. V.; Prior, K.

    2016-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter Midwestern agricultural streams, which degrades both local and downstream water quality, resulting in algal blooms and subsequent hypoxic "dead zones" far from the nutrient source. We are quantifying the benefits of watershed-scale conservation practices that may reduce nutrient runoff from adjacent farm fields. Specifically, research is lacking on whether the planting of winter cover crops in watersheds currently dominated by row-crop agriculture can significantly reduce nutrient inputs to adjacent streams. Since 2013, farmers have planted cover crops on 70% of croppable acres in the Shatto Ditch Watershed (IN), and "saturation level" implementation of this conservation practice has been sustained for 3 years. Every 14 days, we have quantified nutrient loss from fields by sampling nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel throughout the watershed. Cover crops improved stream water quality by reducing dissolved inorganic nutrients exported downstream; nitrate-N and DRP concentrations and fluxes were significantly lower in tiles draining fields with cover crops compared to those without. Annual watershed nutrient export also decreased, and reductions in N and P loss ( 30-40%) exceeded what we expected based on only a 6-10% reduction in runoff due to increased watershed water holding capacity. We are also exploring the processes responsible for increased nutrient retention, where they are occurring (terrestrial vs. aquatic) and when (baseflow vs. storms). For example, whole-stream metabolism also responded to cover crop planting, showing reduced variation in primary production and respiration in years after watershed-scale planting of cover crops. In summary, widespread land cover change, through cover crop planting, can

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2013-11-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those

  12. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  13. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  14. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    NASA Astrophysics Data System (ADS)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  15. Black oat cover crop management in watermelon production systems

    USDA-ARS?s Scientific Manuscript database

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  16. Winter rye cover crops as a host for corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...

  17. The potential for cereal rye cover crops to host corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil health and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects by growing two grass species in succession. Here, we show that rye cover crops host pathog...

  18. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  19. Effect of the different cover crops on the soil moisture in a Hungarian vineyard

    NASA Astrophysics Data System (ADS)

    Donkó, Ádám; Miglécz, Tamás; Valkó, Orsolya; Deák, Balázs; Kelemen, András; Török, Péter; Tóthmérész, Béla; Drexler, Dóra

    2017-04-01

    Since many years it is well known that the one-sided mechanical soil cultivation of vineyard inter-rows has many disadvantages. Growers can choose from alternative tillage technologies, such as the usage of green manure, or covering the inter-rows with straw mulch. Another possible technology is tto cover the inter-rows with species-rich seed mixtures. However, selection of the most suitable species is crucial; we have to take into consideration the age of the vines, and the specific characteristics of the vineyards involved. Species rich cover crop technology has many advantages: 1) it helps to prevent erosion and creates easier cultivation circumstances, 2) it has a positive effect on soil structure, soil fertility and ecosystem services, 3) we can create native mixtures from local provenance, adapted to the local climate/vine region/vineyard which enhances the nature conservation value of our site. But, they should not compete significantly with the grapevines, or negatively influence produce quality. In the year of 2012 we created, and started to study three different cover-crop mixtures in Hungarian wine regions under on-farm conditions: Biocont-Ecovin mixture, Mixture of Legumes, Mixture of Grass and Herbs. The results of the botanical surveys, yield and pruning weight were published in many papers and presentations before (e.g. Miglécz et al. 2015, Donkó et al. 2016). Besides the above measures, one key point of the effectiveness and sustainability of the living mulch vegetation is the level of soil moisture. That is why we started to investigate the soil moisture (vol %) of different treatments (Biocont-Ecovin mixture, Mixture of Legumes, Mixture of Grass and Herbs, coverage with Lolium perenne, and Control (spontaneous weed flora)) in at the Feind Winery in Balatonfőkajár (Hungary). The investigated variety is Welschriesling on loamy soil (Tihany Formation), planted in 2010. The seed mixtures were sown in the spring of 2013. We measured soil moisture

  20. Cover crop biomass production and water use in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  1. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  2. [Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field.

    PubMed

    Tang, Hai Ming; Cheng, Kai Kai; Xiao, Xiao Ping; Tang, Wen Guang; Wang, Ke; Li, Chao; Zhang, Fan; Sun, Yu Tao

    2017-02-01

    In a double cropping rice field experiment, effects of five winter cover crops on the total organic carbon (TOC), active organic carbon (AOC), carbon pool management index (CPMI) and organic carbon storage were studied in three soil layers (0-5, 5-10 and 10-20 cm).Winter cover crops of ryegrass (Ry), Chinese milk vetch (Mv), potato (Po), and rape (Ra) between two rice crops were compared with fallow as control (CK). The results showed that the TOC and AOC contents under Ry, Mv, Po and Ra treatments were higher than those of CK in all three la-yers. Meanwhile, the TOC and AOC contents in Po treatment were higher than those of other treatments. Compared with CK, the AOC, activity index (AI), carbon pool index (CPI) and CPMI in the soil were improved through the recycling of winter cover crops straw. The AOC, AI, CPI and CPMI in the studied layers increased in order of Po>Mv>Ry>Ra>CK. The results indicated that the recycling of winter cover crops straw promoted the storage of SOC in the 0-20 cm soil profile as compared with CK. The strongest effect of the winter cover crops on the SOC storage occurred in Mv treatment, followed by Mv and Po treatments, and the SOC storage increased with the increasing soil depth.

  3. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  4. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Disease risks associated with cover crops in corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Cover crops have numerous environmental and soil health benefits and are being more widely used by farmers in Iowa. Still some farmers are reluctant to use cover crops because of increased risks to crop yields in part because of increased disease potential. The goal of our research is to understand ...

  6. Herbicide and cover crop residue integration in conservation tillage tomato

    USDA-ARS?s Scientific Manuscript database

    The increased adoption of conservation tillage in vegetable production requires more information on the role of various cover crops in weed control, tomato quality, and yield. Three conservation-tillage systems utilizing crimson clover, turnip, and cereal rye as winter cover crops were compared to a...

  7. Managing cover crops on strawberry furrow bottoms

    USDA-ARS?s Scientific Manuscript database

    Bare furrows in strawberry fields with plastic mulch covered beds can lead to lots of soil erosion and runoff during winter rainy periods. This article describes how growers can plant and manage cover crops in these furrows to minimize runoff and soil erosion. This is based on on-going research at...

  8. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  9. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  10. Tolerance of interseeded annual ryegrass and red clover cover crops to residual herbicides in Mid-Atlantic corn cropping systems

    USDA-ARS?s Scientific Manuscript database

    In the Mid-Atlantic region, there is increasing interest in the use of relay-cropping strategies to establish cover crops in corn cropping systems. Recent studies have demonstrated the potential to establish annual ryegrass and red clover cover crops at the V5 corn growth stage using a high-clearan...

  11. Assessing cover crop management under actual and climate change conditions.

    PubMed

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. The 4Rs for cover crops and other advances in cover crop management for environmental quality

    USDA-ARS?s Scientific Manuscript database

    Cover crops (CC) are universal tools that can be used to improve management practices to draw multiple benefits with increased sustainability across different continents (Dabney et al. 2001; Reeves 1994; Woodruff and Siddoway 1965; Frye et al. 1985; Holderbaum et al. 1990; Bilbro 1991; Langdale et a...

  13. Tillage and cover cropping effects on soil properties and crop production in Illinois

    USDA-ARS?s Scientific Manuscript database

    Cover crops (CCs) have been heralded for their potential to improve soil properties, retain nutrients in the field, and increase subsequent crop yields yet support for these claims within the state of Illinois remains limited. We assessed the effects of integrating five sets of CCs into a corn-soybe...

  14. Neglecting legumes has compromised human health and sustainable food production.

    PubMed

    Foyer, Christine H; Lam, Hon-Ming; Nguyen, Henry T; Siddique, Kadambot H M; Varshney, Rajeev K; Colmer, Timothy D; Cowling, Wallace; Bramley, Helen; Mori, Trevor A; Hodgson, Jonathan M; Cooper, James W; Miller, Anthony J; Kunert, Karl; Vorster, Juan; Cullis, Christopher; Ozga, Jocelyn A; Wahlqvist, Mark L; Liang, Yan; Shou, Huixia; Shi, Kai; Yu, Jingquan; Fodor, Nandor; Kaiser, Brent N; Wong, Fuk-Ling; Valliyodan, Babu; Considine, Michael J

    2016-08-02

    The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner 'nutritious seeds for a sustainable future'. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.

  15. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    PubMed

    Belfry, Kimberly D; Trueman, Cheryl; Vyn, Richard J; Loewen, Steven A; Van Eerd, Laura L

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins.

  16. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins

    PubMed Central

    Belfry, Kimberly D.; Trueman, Cheryl; Vyn, Richard J.; Loewen, Steven A.; Van Eerd, Laura L.

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins

  17. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    PubMed

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( < 0.001) effect of lower NO-N leaching with cover crops compared with no cover but showed only small and periodically significant ( < 0.05) effects among the cultivars of barley, rye, and wheat covers. Nitrate-N leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Enhancing Legume Ecosystem Services through an Understanding of Plant-Pollinator Interplay.

    PubMed

    Suso, María J; Bebeli, Penelope J; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A A; Torricelli, Renzo; Veloso, Maria M

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the "pest control service" and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System.

  19. Estimating nitrogen mineralization from cover crop mixtures using the Precision Nitrogen Management model

    USDA-ARS?s Scientific Manuscript database

    Cover crops influence soil nitrogen (N) mineralization-immobilization-turnover cycles (MIT), thus influencing N availability to a subsequent crop. Dynamic simulation models of the soil/crop system, if properly calibrated and tested, can simulate carbon (C) and N dynamics of a terminated cover crop a...

  20. Impact of cover crops and tillage on porosity of podzolic soil

    NASA Astrophysics Data System (ADS)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  1. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn

    2017-01-01

    ABSTRACT Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues

  2. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.

    PubMed

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung

    2017-11-15

    Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice ( Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO 3 , NH 4 NO 3 , or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean ( Vigna radiata ) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues

  3. Effects of Cover Crops on Pratylenchus penetrans and the Nematode Community in Carrot Production

    PubMed Central

    Grabau, Zane J.; Zar Maung, Zin Thu; Noyes, D. Corey; Baas, Dean G.; Werling, Benjamin P.; Brainard, Daniel C.; Melakeberhan, Haddish

    2017-01-01

    Cover cropping is a common practice in U.S. Midwest carrot production for soil conservation, and may affect soil ecology and plant-parasitic nematodes—to which carrots are very susceptible. This study assessed the impact of cover crops—oats (Avena sativa), radish (Raphanus sativus) cv. Defender, rape (Brassica napus) cv. Dwarf Essex, and a mixture of oats and radish—on plant-parasitic nematodes and soil ecology based on the nematode community in Michigan carrot production systems. Research was conducted at two field sites where cover crops were grown in Fall 2014 preceding Summer 2015 carrot production. At Site 1, root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus sp.) nematodes were present at low population densities (less than 25 nematodes/100 cm3 soil), but were not significantly affected (P > 0.05) by cover crops. At Site 2, P. penetrans population densities were increased (P ≤ 0.05) by ‘Defender’ radish compared to other cover crops or fallow control during cover crop growth and midseason carrot production. At both sites, there were few short-term impacts of cover cropping on soil ecology based on the nematode community. At Site 1, only at carrot harvest, radish-oats mixture and ‘Dwarf Essex’ rape alone enriched the soil food web based on the enrichment index (P ≤ 0.05) while rape and radish increased structure index values. At Site 2, bacterivore abundance was increased by oats or radish cover crops compared to control, but only during carrot production. In general, cover crops did not affect the nematode community until nearly a year after cover crop growth suggesting that changes in the soil community following cover cropping may be gradual. PMID:28512383

  4. Spatial arrangement, population density and legume species effect of yield of forage sorghum-legume intercropping

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor) is a stress tolerant forage crop grown extensively in the Southern High Plains. However, sorghum forage quality is lower than that of corn. Intercropping sorghum with legumes can improve quality and productivity of forage. However, tall statured sorghum limits the resources...

  5. Agronomic responses to late-seeded cover crops in a semiarid region

    USDA-ARS?s Scientific Manuscript database

    Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...

  6. Impact of cover crops on soil nitrate, crop yield and quality

    USDA-ARS?s Scientific Manuscript database

    There are multiple benefits of incorporating cover crops into current production systems including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A field study was established in the fal...

  7. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    PubMed

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rye cover crop effects on direct and indirect nitrous oxide emissions

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops can have a pronounced effect on N cycling in agricultural ecosystems. By reducing available soil mineral N during active growth and by providing a substrate for denitrifying bacteria after they are killed, cover crops can potentially influence soil N2O emissions. However, there ha...

  9. Cover Crop Chart: An Outreach Tool for Agricultural Producers

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crops by farmers and ranchers throughout the Northern Great Plains has increased the need for information on the suitability of a diverse portfolio of crops for different production and management resource goals. To help address this need, Northern Great Plains Research Laboratory...

  10. Erosion control in orchards and vineyards by a new soil and cover crop management method

    NASA Astrophysics Data System (ADS)

    Hartl, Wilfried; Guettler, Hans; Auer, Karl; Erhart, Eva

    2016-04-01

    Cover crops are the basis for an erosion-free soil management in orchards and vineyards. The soil cover provided by the foliage and the intensive root formation counteract erosion. Cover crops provide the soil microfauna with fresh organic matter which improves soil structure and porosity. The water demand of cover crops, however, may pose problems for the water supply of the trees and vines in dry seasons. Therefore it is necessary to adjust the growth of the cover crops to the actual water conditions. In years with ample precipitation cover crops may be allowed lush vegetative growth till flowering and formation of seeds. In dry years, the growth of the cover crop must be restricted to stop the competition for water, sometimes even by cutting off the cover crop roots. The course of the weather is incalculable and rainfall may be very variable during the year, so it is sometimes necessary to adust the cover crop management several times a year. A new special equipment, which can perform all the tasks necessary for the flexible cover crop management has been developed together with the agricultural machinery manufacturers Bodenwerkstatt Ertl-Auer GmbH and Güttler GmbH. The GreenManager® device consists of three modules, namely a specific type of cultivator, a harrow and a prismatic roller with seeding equipment, which can be used separately or in combination. The GreenManager® can reduce cover crops by flattening the plants in the whole row middle, by bringing down the cover crops with the harrow, or by horizontally cutting the cover crop roots a few centimetres beneath the soil surface in the central part of the row middle or in the whole row middle. These measures reduce the water competition by cover crops without generating further losses of soil moisture through intensive soil cultivation. At the same time the risk of soil erosion is kept to a minimum, because the soil remains covered by dead plant biomass. In one passage the GreenManager® can direct

  11. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...

  12. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay

    PubMed Central

    Suso, María J.; Bebeli, Penelope J.; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A. A.; Torricelli, Renzo; Veloso, Maria M.

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant–pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System. PMID:27047514

  13. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  14. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (amore » combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.« less

  15. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  16. PpTFDB: A pigeonpea transcription factor database for exploring functional genomics in legumes

    PubMed Central

    Singh, Akshay; Sharma, Ajay Kumar; Singh, Nagendra Kumar

    2017-01-01

    Pigeonpea (Cajanus cajan L.), a diploid legume crop, is a member of the tribe Phaseoleae. This tribe is descended from the millettioid (tropical) clade of the subfamily Papilionoideae, which includes many important legume crop species such as soybean (Glycine max), mung bean (Vigna radiata), cowpea (Vigna ungiculata), and common bean (Phaseolus vulgaris). It plays major role in food and nutritional security, being rich source of proteins, minerals and vitamins. We have developed a comprehensive Pigeonpea Transcription Factors Database (PpTFDB) that encompasses information about 1829 putative transcription factors (TFs) and their 55 TF families. PpTFDB provides a comprehensive information about each of the identified TFs that includes chromosomal location, protein physicochemical properties, sequence data, protein functional annotation, simple sequence repeats (SSRs) with primers derived from their motifs, orthology with related legume crops, and gene ontology (GO) assignment to respective TFs. (PpTFDB: http://14.139.229.199/PpTFDB/Home.aspx) is a freely available and user friendly web resource that facilitates users to retrieve the information of individual members of a TF family through a set of query interfaces including TF ID or protein functional annotation. In addition, users can also get the information by browsing interfaces, which include browsing by TF Categories and by, GO Categories. This PpTFDB will serve as a promising central resource for researchers as well as breeders who are working towards crop improvement of legume crops. PMID:28651001

  17. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Hardwood cover crops:can they enhance loblolly pine seedling production

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1995-01-01

    It has been extremely difficult to obtain more than two loblolly pine (Pinus taeda L.) crops following even effective soil fumigation with methyl bromide in southern forest tree nurseries. The traditional agronomic cover crops such as sorghum and sudex, unless followed by fumigation, do not normally produce satisfactory loblolly pine seedling crops. Various species...

  19. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  20. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    PubMed

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  2. Harvesting Legume Genomes: Plant Genetic Resources

    USDA-ARS?s Scientific Manuscript database

    Genomics and high through-put phenotyping are ushering in a new era of accessing genetic diversity held in plant genetic resources, the cornerstone of both traditional and genomics-assisted breeding efforts of food legume crops. Acknowledged or not, yield plateaus must be broken given the daunting ...

  3. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    NASA Astrophysics Data System (ADS)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  4. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    USDA-ARS?s Scientific Manuscript database

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  5. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  6. Effects of cover crops on soil quality: Selected chemical and biological parameters

    USDA-ARS?s Scientific Manuscript database

    Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...

  7. Cover Crop Chart: An intuitive educational resource for extension professionals

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crops by agricultural producers has increased the need for information regarding the suitability of crops for addressing different production and natural resource goals. To help address this need, staff at the USDA Agricultural Research Service Northern Great Plains Research Labor...

  8. Cover crops to improve soil health and pollinator habitat in nut orchards: Part II

    Treesearch

    Jerry Van Sambeek

    2017-01-01

    Integrating cover crops into a nut orchard can have some unique benefits and problems not found when used cover crops during the fallow period between cash crops. Studies show ground covers can reduce hardwood tree growth anywhere from a few percent to more than 70 percent in the case of tall fescue. This means if it takes 3 years to put on one inch of diameter growth...

  9. Organic and conventional farmers differ in their perspective on cover crop use and breeding

    USDA-ARS?s Scientific Manuscript database

    Cover crops play an important role in agricultural sustainability. Unlike commodity cash crops, however, there has been relatively little cover crop germplasm research and development. We conducted an online survey to evaluate a) the perspectives of organic and conventional farmers in the United Sta...

  10. Short-term soil responses to late-seeded cover crops in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  11. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Few studies have examined the factors that affect the impact of cover crops on nitrous oxide emissions. A meta-analysis of the data obtained from twenty-six peer reviewed articles was conducted using the natural log of the nitrous oxide flux with a cover crop divided by the nitrous oxide flux withou...

  12. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  13. No-till snap bean performance and weed response following rye and vetch cover crops

    USDA-ARS?s Scientific Manuscript database

    Fall-planted cover crops offer many benefits including weed suppressive residues in spring sown crops when controlled and left on the soil surface. However, vegetable growers have been slow to adapt direct seeding (no-till) into cover crop residues. Field studies were conducted in 2009 and 2010 near...

  14. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  15. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  16. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  17. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    NASA Astrophysics Data System (ADS)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  18. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    PubMed

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  19. Isolation of Rhizobium Bacteria from Forage Legumes for the Development of Ruminant Feed

    NASA Astrophysics Data System (ADS)

    Fuskhah, E.; Purbajanti, E. D.; Anwar, S.

    2018-02-01

    The aimed of the study was to explore the presence of Rhizobium bacteria along the northern coast of Central Java, to develop a saline-resistant legumes. Rhizobium bacteria is a mutualistic bacterium capable of symbiosis with legumes so that legumes crop yields increase. The research begins with sampling of soil and root nodule of forage legumes along the Northern Coast of Central Java including Tegal, Pekalongan, Semarang, Demak, Pati. Soil samples were analysed for salinity, Total Dissolved Solids, and pH. Rhizobium bacteria were isolated from the acquired root nodule, then identified by biochemical test to ensure that the isolates obtained were Rhizobium bacteria. The results showed that the five districts/municipal sites sampled by the soil have very low salinity to very high levels. The highest level of soil salinity was found in Demak (Sayung) which has an electrical conductivity value (EC) of 17.77 mmhos/cm. The EC values of legumes overgrown soils showed a low salinity level while bare soils have high salinity levels. Feed crops legumes that could be found in the northern coast of Central Java were Centrosema pubescens, Calopogonium mucunoides, Leucaena leucocephala, and Sesbania grandiflora. The study obtained 6 kinds of isolates of rhizobium bacteria isolated from forage legumes, included 1) Centrosema pubescens isolated from Pekalongan, 2) Centrosema pubescens isolated from Tegal, 3) Calopogonium mucunoides isolated from Pekalongan, 4) Leucaenaleucocephala isolated from Tegal, 5) Leucaena leucocephala isolated from Semarang, 6) Sesbania grandiflora isolated from Tegal.

  20. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes.

    PubMed

    Sathya, Arumugam; Vijayabharathi, Rajendran; Gopalakrishnan, Subramaniam

    2017-06-01

    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.

  1. An early-killed rye cover crop has potential for weed management in edamame

    USDA-ARS?s Scientific Manuscript database

    The potential role of fall-seeded cover crops for weed management in edamame is unknown. Field experiments were conducted over three edamame growing seasons to test the following objectives: 1) determine the extent to which cover crop residue management systems influence edamame emergence while sele...

  2. A comparison of drill and broadcast methods for establishing cover crops on beds

    USDA-ARS?s Scientific Manuscript database

    Cover crops stands that are sufficiently dense soon after planting are more likely to suppress weeds, scavenge nutrients, and reduce erosion. Small-scale organic vegetable farmers often use broadcasting methods to establish cover crops but lack information on the most effective tool to incorporate ...

  3. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    PubMed

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  4. Cover crop biomass production and water use in the central great plains under varying water availability

    USDA-ARS?s Scientific Manuscript database

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  5. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover

  6. Effects of the legume Vigna unguiculata crop on carbon and nitrogen cycles

    NASA Astrophysics Data System (ADS)

    Sánchez-Navarro, Virginia; Zornoza, Raúl; Fernández, Juan; Faz Cano, Ángel

    2015-04-01

    In this study, we investigated the effects of a legume crop (Vigna unguiculata) on soil properties related to the carbon (C) and nitrogen (N) cycles, taking into account different management practices (conventional and organic) and two genotypes. The study was randomly designed in blocks with four replications, in plots of 10 m2. The crop cycle spanned from 29 May 2014 to 13 August 2014. We collected soil samples (0-30 cm) from each plot at the beginning and at the end of the cycle to measure soil total N, organic C, recalcitrant C, organic C labile fractions, microbial biomass C (MBC) and the enzyme activities β-glucosidase and β-glucosaminidase. We collected plant samples (seeds, pods, roots and stem/leaves) at two different maturity stages (fresh and dry pods) to assess the influence of management practices and genotype in the accumulation of N, as indicative of the content of proteins in the crop. In the final plant sampling, we also determined crop production. The results showed that no significant differences were observed between management practices and genotypes in any of the soil properties measured. However, total N, recalcitrant C, most labile C fraction, MBC and β-glucosidase increased at the final sampling compared to initial values. We observed that genotype had a significant effect on the concentration of the second fraction of labile C under organic management. N content in the different plant tissues was significantly higher in the intermediate sampling than in the final harvest, without significant differences between management practices and genotypes. We observed a significant positive correlation between N content in roots, seeds and pods. N content was always higher in seeds, indicating the high quantity of proteins in this crop. C content was significantly lower in stem/leaves than in the rest of tissues, without significant differences among them. No effect of management practice, maturity stage or genotype was observed with regard to C

  7. Evaluation of cover crops drill interseeded into corn across the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop adoption remains low in the mid-Atlantic region despite the potential conservation and production benefits. The short growing season window after corn (Zea mays L.), is a primary factor limiting cover crop adoption in these regions. A high-clearance grain drill has been developed to allow...

  8. Insights into the history of the legume-betaproteobacterial symbiosis.

    PubMed

    Angus, Annette A; Hirsch, Ann M

    2010-01-01

    The interaction between legumes and rhizobia has been well studied in the context of a mutualistic, nitrogen-fixing symbiosis. The fitness of legumes, including important agricultural crops, is enhanced by the plants' ability to develop symbiotic associations with certain soil bacteria that fix atmospheric nitrogen into a utilizable form, namely, ammonia, via a chemical reaction that only bacteria and archaea can perform. Of the bacteria, members of the alpha subclass of the protebacteria are the best-known nitrogen-fixing symbionts of legumes. Recently, members of the beta subclass of the proteobacteria that induce nitrogen-fixing nodules on legume roots in a species-specific manner have been identified. In this issue, Bontemps et al. reveal that not only are these newly identified rhizobia novel in shifting the paradigm of our understanding of legume symbiosis, but also, based on symbiotic gene phylogenies, have a history that is both ancient and stable. Expanding our understanding of novel plant growth promoting rhizobia will be a valuable resource for incorporating alternative strategies of nitrogen fixation for enhancing plant growth.

  9. Cover crops effect on farm benefits and nitrate leaching: linking economic and environmental analysis

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Vanclooster, Marnik; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Introducing cover crops interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of the technique is still limited because growing CC could lead to extra costs for the farm in three different forms: direct, indirect, and opportunity costs. Environmental studies are complex, and evaluating the indicators that are representative of the environmental impact of an agricultural system is a complicated task that is conducted by specialized groups and methodologies. Multidisciplinary studies may help to develop reliable approaches that would contribute to choosing the best agricultural strategies based on linking economic and environmental benefits. This study evaluates barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo) as cover crops between maize, leaving the residue in the ground or selling it for animal feeding, and compares the economic and environmental results with respect to a typical maize-fallow rotation. Nitrate leaching for different weather conditions was calculated using the mechanistic-deterministic WAVE model, using the Richards equation parameterised with a conceptual model for the soil hydraulic properties for describing the water flow in the vadose zone, combined with field observed data. The economic impact was evaluated through stochastic (Monte-Carlo) simulation models of farms' profits using probability distribution functions of maize yield and cover crop biomass developed fitted with data collected from various field trials (during more than 5 years) and probability distribution functions of maize and different cover crop forage prices fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective

  10. Effects of cover crop termination and cotton planting methods on cotton production in conservation systems

    USDA-ARS?s Scientific Manuscript database

    In conservation agriculture, cover crops are utilized to improve soil properties and to enhance cash crop growth. One important part of cover crop management is termination. With smaller profit margins and constraints on time and labor, producers are looking for ways to reduce time and labor require...

  11. Modeling cover Crop Effectiveness on Maryland's Eastern Shore

    USDA-ARS?s Scientific Manuscript database

    Cover cropping has become a widely used conservation practice on Maryland’s Eastern shore. It is one of the main practices funded by the Maryland Department of Agriculture’s (MDA) Maryland Agricultural Water Quality Cost Share (MACS) program. The major benefits of this practice include reduction of ...

  12. Effect of date of termination of a winter cereal rye cover crop (Secale cereale) on corn seedling disease

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is an expanding conservation practice that offers substantial benefits to soil protection, soil health, water quality, and potentially crop yields. Presently, winter cereals are the most widely used cover crops in the upper Midwest. However, winter cereal cover crops preceding corn, ...

  13. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop

    USDA-ARS?s Scientific Manuscript database

    Production practices that incorporate fall-planted cover crops into no-till agronomic crop rotations have become increasingly popular across the Northeastern United States for weed suppression and enhancing environmental stewardship. Field experiments were conducted in 2011 and 2012 to investigate e...

  14. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect

  15. Biological nitrogen fixation in non-legume plants.

    PubMed

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  16. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notice of loss for covered tropical crops. 1437.504 Section 1437.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining Coverage in...

  17. Single season effects of mixed-species cover crops on tomato health (cultivar Celebrity) in multi-state field trials

    USDA-ARS?s Scientific Manuscript database

    Cover crop use can help mitigate the deleterious effects of common cropping practices (e.g., tillage) and is, therefore, an important component of soil health maintenance. While known to be beneficial in the long term, the short-term effects of cover crops, specifically mixed-species cover crops in ...

  18. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach.

    PubMed

    Mollot, Gregory; Duyck, Pierre-François; Lefeuvre, Pierre; Lescourret, Françoise; Martin, Jean-François; Piry, Sylvain; Canard, Elsa; Tixier, Philippe

    2014-01-01

    Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey.

  19. Cover Cropping Alters the Diet of Arthropods in a Banana Plantation: A Metabarcoding Approach

    PubMed Central

    Mollot, Gregory; Duyck, Pierre-François; Lefeuvre, Pierre; Lescourret, Françoise; Martin, Jean-François; Piry, Sylvain; Canard, Elsa; Tixier, Philippe

    2014-01-01

    Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey. PMID:24695585

  20. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...

  1. Genetic diversity of root system architecture in response to drought stress in grain legumes.

    PubMed

    Ye, Heng; Roorkiwal, Manish; Valliyodan, Babu; Zhou, Lijuan; Chen, Pengyin; Varshney, Rajeev K; Nguyen, Henry T

    2018-06-06

    Climate change has increased the occurrence of extreme weather patterns globally, causing significant reductions in crop production, and hence threatening food security. In order to meet the food demand of the growing world population, a faster rate of genetic gains leading to productivity enhancement for major crops is required. Grain legumes are an essential commodity in optimal human diets and animal feed because of their unique nutritional composition. Currently, limited water is a major constraint in grain legume production. Root system architecture (RSA) is an important developmental and agronomic trait, which plays vital roles in plant adaptation and productivity under water-limited environments. A deep and proliferative root system helps extract sufficient water and nutrients under these stress conditions. The integrated genetics and genomics approach to dissect molecular processes from genome to phenome is key to achieve increased water capture and use efficiency through developing better root systems. Success in crop improvement under drought depends on discovery and utilization of genetic variations existing in the germplasm. In this review, we summarize current progress in the genetic diversity in major legume crops, quantitative trait loci (QTLs) associated with RSA, and the importance and applications of recent discoveries associated with the beneficial root traits towards better RSA for enhanced drought tolerance and yield.

  2. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    USDA-ARS?s Scientific Manuscript database

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  3. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  4. The impact of fall cover crops on soil nitrate and corn growth

    USDA-ARS?s Scientific Manuscript database

    Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...

  5. Timing of glyphosate applications to wheat cover crops to reduce onion stunting caused by Rhizoctonia solani

    USDA-ARS?s Scientific Manuscript database

    Stunting caused by Rhizoctonia spp. is economically important in irrigated onion bulb crops in the semi-arid Columbia Basin of Oregon and Washington, where cereal winter cover crops commonly are planted the previous fall to prevent wind erosion of soil. The cover crop is killed with herbicide applic...

  6. Combining Landsat-8 and WorldView-3 data to assess crop residue cover

    USDA-ARS?s Scientific Manuscript database

    Crop residues on the soil surface contribute to soil quality and form the first line defense against the erosive forces of water and wind. Quantifying crop residue cover on the soil surface after crops are planted is crucial for monitoring soil tillage intensity and assessing the extent of conserva...

  7. Reconstruction of a composite comparative map composed of ten legume genomes.

    PubMed

    Lee, Chaeyoung; Yu, Dongwoon; Choi, Hong-Kyu; Kim, Ryan W

    2017-01-01

    The Fabaceae (legume family) is the third largest and the second of agricultural importance among flowering plant groups. In this study, we report the reconstruction of a composite comparative map composed of ten legume genomes, including seven species from the galegoid clade ( Medicago truncatula , Medicago sativa , Lens culinaris, Pisum sativum , Lotus japonicus , Cicer arietinum , Vicia faba ) and three species from the phaseoloid clade ( Vigna radiata , Phaseolus vulgaris , Glycine max ). To accomplish this comparison, a total of 209 cross-species gene-derived markers were employed. The comparative analysis resulted in a single extensive genetic/genomic network composed of 93 chromosomes or linkage groups, from which 110 synteny blocks and other evolutionary events (e.g., 13 inversions) were identified. This comparative map also allowed us to deduce several large scale evolutionary events, such as chromosome fusion/fission, with which might explain differences in chromosome numbers among compared species or between the two clades. As a result, useful properties of cross-species genic markers were re-verified as an efficient tool for cross-species translation of genomic information, and similar approaches, combined with a high throughput bioinformatic marker design program, should be effective for applying the knowledge of trait-associated genes to other important crop species for breeding purposes. Here, we provide a basic comparative framework for the ten legume species, and expect to be usefully applied towards the crop improvement in legume breeding.

  8. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    USDA-ARS?s Scientific Manuscript database

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  9. Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment.

    PubMed

    Chibarabada, Tendai Polite; Modi, Albert Thembinkosi; Mabhaudhi, Tafadzwanashe

    2017-10-26

    There is a need to incorporate nutrition into aspects of crop and water productivity to tackle food and nutrition insecurity (FNS). The study determined the nutritional water productivity (NWP) of selected major (groundnut, dry bean) and indigenous (bambara groundnut and cowpea) grain legumes in response to water regimes and environments. Field trials were conducted during 2015/16 and 2016/17 at three sites in KwaZulu-Natal, South Africa (Ukulinga, Fountainhill and Umbumbulu). Yield and evapotranspiration (ET) data were collected. Grain was analysed for protein, fat, Ca, Fe and Zn nutrient content (NC). Yield, ET and NC were then used to compute NWP. Overall, the major legumes performed better than the indigenous grain legumes. Groundnut had the highest NWP fat . Groundnut and dry bean had the highest NWP protein . For NWP Fe, Zn and Ca , dry bean and cowpea were more productive. Yield instability caused fluctuations in NWP. Water treatments were not significant ( p > 0.05). While there is scope to improve NWP under rainfed conditions, a lack of crop improvement currently limits the potential of indigenous grain legumes. This provides an initial insight on the nutrient content and NWP of a limited number of selected grain legumes in response to the production environment. There is a need for follow-up research to include cowpea data. Future studies should provide more experimental data and explore effects of additional factors such as management practices (fertiliser levels and plant density), climate and edaphic factors on nutrient content and NWP of crops.

  10. Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment

    PubMed Central

    Chibarabada, Tendai Polite; Modi, Albert Thembinkosi

    2017-01-01

    There is a need to incorporate nutrition into aspects of crop and water productivity to tackle food and nutrition insecurity (FNS). The study determined the nutritional water productivity (NWP) of selected major (groundnut, dry bean) and indigenous (bambara groundnut and cowpea) grain legumes in response to water regimes and environments. Field trials were conducted during 2015/16 and 2016/17 at three sites in KwaZulu-Natal, South Africa (Ukulinga, Fountainhill and Umbumbulu). Yield and evapotranspiration (ET) data were collected. Grain was analysed for protein, fat, Ca, Fe and Zn nutrient content (NC). Yield, ET and NC were then used to compute NWP. Overall, the major legumes performed better than the indigenous grain legumes. Groundnut had the highest NWPfat. Groundnut and dry bean had the highest NWPprotein. For NWPFe, Zn and Ca, dry bean and cowpea were more productive. Yield instability caused fluctuations in NWP. Water treatments were not significant (p > 0.05). While there is scope to improve NWP under rainfed conditions, a lack of crop improvement currently limits the potential of indigenous grain legumes. This provides an initial insight on the nutrient content and NWP of a limited number of selected grain legumes in response to the production environment. There is a need for follow-up research to include cowpea data. Future studies should provide more experimental data and explore effects of additional factors such as management practices (fertiliser levels and plant density), climate and edaphic factors on nutrient content and NWP of crops. PMID:29072620

  11. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.

    PubMed

    Varshney, Rajeev K; Chen, Wenbin; Li, Yupeng; Bharti, Arvind K; Saxena, Rachit K; Schlueter, Jessica A; Donoghue, Mark T A; Azam, Sarwar; Fan, Guangyi; Whaley, Adam M; Farmer, Andrew D; Sheridan, Jaime; Iwata, Aiko; Tuteja, Reetu; Penmetsa, R Varma; Wu, Wei; Upadhyaya, Hari D; Yang, Shiaw-Pyng; Shah, Trushar; Saxena, K B; Michael, Todd; McCombie, W Richard; Yang, Bicheng; Zhang, Gengyun; Yang, Huanming; Wang, Jun; Spillane, Charles; Cook, Douglas R; May, Gregory D; Xu, Xun; Jackson, Scott A

    2011-11-06

    Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance-related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.

  12. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    USDA-ARS?s Scientific Manuscript database

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  13. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes.

    PubMed

    Bamba, Masaru; Nakata, Sayuri; Aoki, Seishiro; Takayama, Koji; Núñez-Farfán, Juan; Ito, Motomi; Miya, Masaki; Kajita, Tadashi

    2016-12-01

    To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

  14. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    NASA Astrophysics Data System (ADS)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  15. Greenhouse Gas Emissions Increase Following the Termination of a Perennial Legume Phase of an Annual Crop Rotation within the Red River Valley, Manitoba

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Glenn, A. J.; Maas, S.; Gervais, M.

    2013-12-01

    Perennial legume forages may have the potential to increase soil carbon sequestration and decrease nitrous oxide (N2O) emissions to the atmosphere when introduced into annual cropping systems. However, little is known about what short-term effect the return to annual cropping following termination of perennial legume forage would have on carbon dioxide (CO2) and N2O emissions. Furthermore, there are few quantitative measurements about this impact on the Canadian Prairies. A long-term field experiment to continuously measure CO2 and N2O fluxes was established at the Trace Gas Manitoba (TGAS-MAN) Long Term Greenhouse Gas Monitoring Site at Glenlea, Manitoba using the flux gradient micrometeorlogical technique with a tunable diode laser analyzer. The soil is poorly drained clay in the Red River Valley. The field experiment consisted of four 4-hectare plots planted to corn in 2006 and faba bean in 2007. In 2008, grass-alfalfa forage was introduced to two plots (annual - perennial) and grown until 2011 whereas the other two plots (annual) were planted to annual crops: spring wheat, rapeseed, barley and spring wheat in 2008, 2009, 2010 and 2011, respectively. In late September of 2011 the grass-alfalfa forage was killed and in 2012 all four plots were planted with corn. Termination of the grass-alfalfa forage resulted in greater fall CO2 emissions in 2011, greater spring melt CO2 emissions and net annual N2O emissions in 2012 from the annual-perennial plots when compared to the annual plots. Over seven crop years (2006-2012), the annual - perennial system increased carbon uptake by 3.4 Mg C ha-1 and reduced N2O emissions by 3.0 Mg CO2-eq ha-1 compared to the annual system. However after accounting for harvest removals both the annual and annual-perennial systems were net carbon sources of 5.7 and 2.5 Mg C ha-1 and net GHG sources of 38 and 24 Mg CO2-eq ha-1 respectively. We are currently following the long-term impacts of inclusion of perennial forages in an annual

  16. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

    PubMed Central

    Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Vara Prasad, P. V.; Kumar, Shiv; Gaur, Pooran M.; Farooq, Muhammad; Siddique, Kadambot H. M.; Varshney, Rajeev K.; Nayyar, Harsh

    2017-01-01

    Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress. PMID:29123532

  17. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance.

    PubMed

    Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M; Vara Prasad, P V; Kumar, Shiv; Gaur, Pooran M; Farooq, Muhammad; Siddique, Kadambot H M; Varshney, Rajeev K; Nayyar, Harsh

    2017-01-01

    Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.

  18. Effect of roller/crimper designs in terminating rye cover crop in small-scale conservation systems

    USDA-ARS?s Scientific Manuscript database

    In recent years, use of cover crops in no-till organic production systems has steadily increased. When cover crops are terminated at an appropriate growth stage, the unincorporated residue mulch protects the soil from erosion, runoff, soil compaction, and weed pressure, and conserves soil water. In ...

  19. Panel Discussion: Cover Crops Used at Georgia Forestry Commission Flint River and Walker Nurseries

    Treesearch

    Jeff Fields

    2005-01-01

    Flint River Nursery, located near Montezuma, Georgia, has used rye, wheat, brown top millet, and sorghum sudan grass for cover crops. Flint River has just begun to return to a summer cover crop situation. At Walker Nursery, located near Reidsville, Georgia, certified rye has been sown by the State Department of Corrections (DOC) for their harvesting, with a benefit to...

  20. Forage radish winter cover crop suppresses winter annual weeds in fall and before corn planting

    USDA-ARS?s Scientific Manuscript database

    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. The objective of this project was to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop and to quantify the sub...

  1. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in Grassland establishment

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.; Ball, L.O.; Hyberg, S.

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat-fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of

  2. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    USGS Publications Warehouse

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  3. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    PubMed

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  4. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya - Coping with the Impacts of Climate Variability.

    PubMed

    Sennhenn, Anne; Njarui, Donald M G; Maass, Brigitte L; Whitbread, Anthony M

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean ( Phaseolus vulgaris L.), cowpea ( Vigna unguiculata (L.) Walp.] and lablab [ Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha -1 . An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  5. Summer cover crops reduce atrazine leaching to shallow groundwater in southern Florida.

    PubMed

    Potter, Thomas L; Bosch, David D; Joo, Hyun; Schaffer, Bruce; Muñoz-Carpena, Rafael

    2007-01-01

    At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.

  6. 7 CFR 457.101 - Small grains crop insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... into an established grass or legume; or (iii) Planted as a nurse crop, unless planted as a nurse crop... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply...

  7. 7 CFR 457.101 - Small grains crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... into an established grass or legume; or (iii) Planted as a nurse crop, unless planted as a nurse crop... application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure...

  8. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    PubMed

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-06-01

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  9. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi

    PubMed Central

    Semu, Ernest; Mrema, Jerome P.; Nalivata, Patson C.

    2017-01-01

    Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies. PMID:28584528

  10. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi.

    PubMed

    Njira, Keston O W; Semu, Ernest; Mrema, Jerome P; Nalivata, Patson C

    2017-01-01

    Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher ( P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.

  11. The efficacy of winter cover crops to stabilize soil inorganic nitrogen after fall-applied anhydrous ammonia.

    PubMed

    Lacey, Corey; Armstrong, Shalamar

    2015-03-01

    There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    PubMed

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  13. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus

    PubMed Central

    Davis, R. F.; Baird, R. E.; McNeil, R. D.

    2000-01-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P ≤ 0.05) following cotton root destruction. Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P ≤ 0.05) H. columbus population levels at planting in 1996 but not in 1997, but cotton yield was not increased by root destruction in either year. Removing debris following root destruction did not lower H. columbus levels compared to leaving debris on the soil surface. This study suggests that a rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton. PMID:19271009

  14. Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis

    PubMed Central

    Lushchak, Volodymyr I.

    2018-01-01

    Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants. PMID:29662899

  15. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    PubMed Central

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N2-fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated among three tissue types for non-N2-fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N2-fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N2-fixing shrubs, implying that legume shrubs were more P limited than non-N2-fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N2-fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N2-fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care of during management

  16. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    PubMed

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  17. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios.

    PubMed

    Ma, Yuchun; Schwenke, Graeme; Sun, Liying; Liu, De Li; Wang, Bin; Yang, Bo

    2018-07-15

    Limited information exists on potential impacts of climate change on nitrous oxide (N 2 O) emissions by including N 2 -fixing legumes in crop rotations from rain-fed cropping systems. Data from two 3-yr crop rotations in northern NSW, Australia, viz. chickpea-wheat-barley (CpWB) and canola-wheat-barley (CaWB), were used to gain an insight on the role of legumes in mitigation of N 2 O emissions. High-frequency N 2 O fluxes measured with an automated system of static chambers were utilized to test the applicability of Denitrification and Decomposition model. The DNDC model was run using the on-site observed weather, soil and farming management conditions as well as the representative concentration pathways adopted by the Intergovernmental Panel on Climate Change in its Fifth Assessment Report. The DNDC model captured the cumulative N 2 O emissions with variations falling within the deviation ranges of observations (0.88±0.31kgNha -1 rotation -1 for CpWB, 1.44±0.02kgNha -1 rotation -1 for CaWB). The DNDC model can be used to predict between modeled and measured N 2 O flux values for CpWB (n=390, RSR=0.45) and CaWB (n=390, RSR=0.51). Long-term (80-yr) simulations were conducted with RCP 4.5 representing a global greenhouse gas stabilization scenario, as well RCP 8.5 representing a very high greenhouse gas emission scenario based on RCP scenarios. Compared with the baseline scenarios for CpWB and CaWB, the long-term simulation results under RCP scenarios showed that, (1) N 2 O emissions would increase by 35-44% for CpWB and 72-76% for CaWB under two climate scenarios; (2) grain yields would increase by 9% and 18% under RCP 4.5, and 2% and 14% under RCP 8.5 for CpWB and CaWB, respectively; and (3) yield-scaled N 2 O-N emission would increase by 24-42% for CpWB and 46-54% for CaWB under climate scenarios, respectively. Our results suggest that 25% of the yield-scaled N 2 O-N emission would be saved by switching to a legume rotation under climate change conditions. Crown

  18. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review.

    PubMed

    Avilés-Gaxiola, Sara; Chuck-Hernández, Cristina; Serna Saldívar, Sergio O

    2018-01-01

    Seed legumes have played a major role as a crop worldwide, being cultivated on about 12% to 15% of Earth's arable land; nevertheless, their use is limited by, among other things, the presence of several antinutritional factors (ANFs - naturally occurring metabolites that the plant produces to protect itself from pest attacks.) Trypsin inhibitors (TIs) are one of the most relevant ANFs because they reduce digestion and absorption of dietary proteins. Several methods have been developed in order to inactivate TIs, and of these, thermal treatments are the most commonly used. They cause loss of nutrients, affect functional properties, and require high amounts of energy. Given the above, new processes have emerged to improve the nutritional quality of legumes while trying to solve the problems caused by the use of thermal treatments. This review examines and discusses the methods developed by researchers to inactivate TI present in legumes and their effects over nutritional and functional properties. © 2017 Institute of Food Technologists®.

  19. Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop

    USDA-ARS?s Scientific Manuscript database

    Benzoxazinoids (Bx), a commonly investigated allelopathic chemical group, was measured in rye cover crop at the time of application and in soils at time-spaced intervals after treatment. The rye cover crop was applied under field conditions and at recommended doses as surface and incorporated trea...

  20. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

    PubMed Central

    Sennhenn, Anne; Njarui, Donald M. G.; Maass, Brigitte L.; Whitbread, Anthony M.

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  1. Bioinformatics in the orphan crops.

    PubMed

    Armstead, Ian; Huang, Lin; Ravagnani, Adriana; Robson, Paul; Ougham, Helen

    2009-11-01

    Orphan crops are those which are grown as food, animal feed or other crops of some importance in agriculture, but which have not yet received the investment of research effort or funding required to develop significant public bioinformatics resources. Where an orphan crop is related to a well-characterised model plant species, comparative genomics and bioinformatics can often, though not always, be exploited to assist research and crop improvement. This review addresses some challenges and opportunities presented by bioinformatics in the orphan crops, using three examples: forage grasses from the genera Lolium and Festuca, forage legumes and the second generation energy crop Miscanthus.

  2. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    PubMed

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  3. Replacing fallow with cover crops in a semiarid soil: effects on soil properties

    USDA-ARS?s Scientific Manuscript database

    Replacement of fallow in crop-fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)-fallow with winter and spring CCs for five years reduced wind and water erosion, increased soil organic carbon (SOC), a...

  4. Biological nitrogen fixation in non-legume plants

    PubMed Central

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  5. Achievements and challenges in legume breeding for pest and disease resistance

    USDA-ARS?s Scientific Manuscript database

    Yield stability of legume crops is constrained by a number of pest and diseases. Major diseases are rusts, powdery and downy mildews, ascochyta blight, botrytis gray molds, anthracnoses, damping-off, root rots, collar rot, vascular wilts and white mold. Parasitic weeds, viruses, bacteria, nematodes ...

  6. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  7. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density

    PubMed Central

    Wheeler, T. A.; Leser, J. F.; Keeling, J. W.; Mullinix, B.

    2008-01-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty. PMID:19259531

  8. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    PubMed

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  9. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    PubMed Central

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  10. Rolled cover crop mulches for organic corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  11. Diversity and biogeographical patterns of legumes (Leguminosae) indigenous to southern Africa

    PubMed Central

    Trytsman, Marike; Westfall, Robert H.; Breytenbach, Philippus J. J.; Calitz, Frikkie J.; van Wyk, Abraham E.

    2016-01-01

    Abstract The principal aim of this study was to establish biogeographical patterns in the legume flora of southern Africa so as to facilitate the selection of species with agricultural potential. Plant collection data from the National Herbarium, South Africa, were analysed to establish the diversity and areas covered by legumes (Leguminosae/Fabaceae) indigenous to South Africa, Lesotho and Swaziland. A total of 27,322 records from 1,619 quarter degree grid cells, representing 1,580 species, 122 genera and 24 tribes were included in the analyses. Agglomerative hierarchical clustering was applied to the presence or absence of legume species in quarter degree grid cells, the resultant natural biogeographical regions (choria) being referred to as leguminochoria. The description of the 16 uniquely formed leguminochoria focuses on defining the associated bioregions and biomes, as well as on the key climate and soil properties. Legume species with a high occurrence in a leguminochorion are listed as key species. The dominant growth form of key species, species richness and range within each leguminochorion is discussed. Floristic links between the leguminochoria are established, by examining and comparing key species common to clusters, using a vegetation classification program. Soil pH and mean annual minimum temperature were found to be the main drivers for distinguishing among legume assemblages. This is the first time that distribution data for legumes has been used to identify biogeographical areas covered by leguminochoria on the subcontinent. One potential application of the results of this study is to assist in the selection of legumes for pasture breeding and soil conservation programs, especially in arid and semi-arid environments. PMID:27829799

  12. Diversity and biogeographical patterns of legumes (Leguminosae) indigenous to southern Africa.

    PubMed

    Trytsman, Marike; Westfall, Robert H; Breytenbach, Philippus J J; Calitz, Frikkie J; van Wyk, Abraham E

    2016-01-01

    The principal aim of this study was to establish biogeographical patterns in the legume flora of southern Africa so as to facilitate the selection of species with agricultural potential. Plant collection data from the National Herbarium, South Africa, were analysed to establish the diversity and areas covered by legumes (Leguminosae/Fabaceae) indigenous to South Africa, Lesotho and Swaziland. A total of 27,322 records from 1,619 quarter degree grid cells, representing 1,580 species, 122 genera and 24 tribes were included in the analyses. Agglomerative hierarchical clustering was applied to the presence or absence of legume species in quarter degree grid cells, the resultant natural biogeographical regions (choria) being referred to as leguminochoria. The description of the 16 uniquely formed leguminochoria focuses on defining the associated bioregions and biomes, as well as on the key climate and soil properties. Legume species with a high occurrence in a leguminochorion are listed as key species. The dominant growth form of key species, species richness and range within each leguminochorion is discussed. Floristic links between the leguminochoria are established, by examining and comparing key species common to clusters, using a vegetation classification program. Soil pH and mean annual minimum temperature were found to be the main drivers for distinguishing among legume assemblages. This is the first time that distribution data for legumes has been used to identify biogeographical areas covered by leguminochoria on the subcontinent. One potential application of the results of this study is to assist in the selection of legumes for pasture breeding and soil conservation programs, especially in arid and semi-arid environments.

  13. Influence of the nature and age of cover crop residues on the sorption of three pesticides

    NASA Astrophysics Data System (ADS)

    Cassigneul, Ana; Alletto, Lionel; Chuette, Delphine; Le Gac, Anne-Laure; Hatier, Jules; Etievant, Veronique; Bergheaud, Valérie; Baumberger, Stéphanie; Méchin, Valérie; Justes, Eric; Benoit, Pierre

    2013-04-01

    In agricultural fields, soil and water quality preservation is strongly influenced by pesticides use and behavior. To limit the environmental impacts of agricultural activities, best management practices such as the use of cover crops are encouraged. Cover crops during the fallow period were found to be efficient in reducing nitrate leaching, controlling soil erosion, improving soil organic content and enhancing soil biological activity. This technique was also found to modify soil water dynamics in the following crop. According to these effects, modifications on pesticide behavior in soil, such as sorption, degradation and transport, are expected (Alletto et al., 2012 ; 2013). In this study, the impact of the nature and level of decomposition of cover crop was studied on the sorption characteristics of three pesticides. These pesticides differed in their physicochemical characteristics (hydrophobicity, solubility, persistence) and were two herbicides, S-metolachlor and glyphosate, which are largely used in maize production and predominantly found as pollutants in water; and one fungicide, epoxiconazole. Correlations between pesticide sorption and physicochemical characteristics of the cover crop residues were studied. Residues of oat, turnip rape, red clover and phacelia were collected in March 2011 and incubated at 28°C and at the water holding capacity during 0, 6, 28 or 56 days. For each date, adsorption of the three radiolabeled pesticides was measured in batch on the different cover crop residues, and their biochemical composition (Van Soest fractionation), hydrophobicity (contact angle measurement) and C/N ratio were determined. Results showed that the adsorption of the pesticides differed significantly according to (i) the pesticide, (ii) the nature of cover crop, (iii) the decomposition level of the cover crop and the interaction cover crop x decomposition time. Epoxiconazole was the most adsorbed molecule, with Kd values ranging from 161 ± 30 L/Kg (oat

  14. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  15. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    USDA-ARS?s Scientific Manuscript database

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  16. Annual and Perennial Alleyway Cover Crops Vary in Their Effects on Pratylenchus penetrans in Pacific Northwest Red Raspberry (Rubus idaeus)

    PubMed Central

    Rudolph, Rachel E.; Zasada, Inga A.; DeVetter, Lisa W.

    2017-01-01

    Cover crops can provide many benefits to agroecosystems, such as lessening soil erosion and increasing water infiltration. However, cover crop use is not common in established red raspberry (Rubus idaeus) fields in the Pacific Northwest. Raspberry growers are concerned about resource competition between the cover crop and raspberry crop, as well as increasing population densities of the plant-parasitic nematode Pratylenchus penetrans, which has a wide host range and has been shown to reduce raspberry plant vigor and yield. A 2-yr study was conducted in an established ‘Meeker’ raspberry field in northwest Washington to evaluate the effects of nine alleyway cover crops, mowed weed cover, and the industry standard of bare cultivated soil on P. penetrans population dynamics, raspberry yield, and fruit quality. The host status for P. penetrans of cover crops included in the field experiment, as well as Brassica juncea ‘Pacific Gold’ and Sinapis alba ‘Ida Gold’, was also evaluated in greenhouse experiments. In the field experiment, P. penetrans population densities did not increase in alleyway cover crop roots over time or in alleyway soil surrounding cover crop roots (means range from 0 to 116 P. penetrans/100 g of soil) compared with the bare cultivated control (means range from 2 to 55 P. penetrans/100 g of soil). Pratylenchus penetrans populations did not increase over time in raspberry grown adjacent to alleyways with cover crops (means range from 1,081 to 6,120 P. penetrans/g of root) compared with those grown adjacent to bare cultivated soil alleyways (means range from 2,391 to 5,536 P. penetrans/g of root). Raspberry grown adjacent to bare cultivated soil did not have significantly higher yield or fruit quality than raspberry grown adjacent to cover crops in either year of the experiment. In the greenhouse assays, ‘Norwest 553’ wheat and a perennial ryegrass mix were poor hosts for P. penetrans, whereas ‘Nora’ and ‘TAM 606’ oat and

  17. Carbon dioxide and methane fluxes from legumes based rotations under conventional and organic practices

    NASA Astrophysics Data System (ADS)

    Sánchez-Navarro, Virginia; Zornoza, Raúl; Faz, Ángel; Fernández, Juan A.

    2017-04-01

    In this study we assessed the effect of two different rotations based on winter (faba bean) or summer (cowpea) legumes on the direct emissions of CO2 and CH4. Faba bean was rotated with the summer melon crop (Cucumis melo) while cowpea was rotated with the winter broccoli crop (Brassica oleracea). We also assessed if different legume cultivars and management practices (conventional and organic) significantly influenced gas emissions. The study was randomly designed in blocks with four replications, in plots of 10 m2, during two complete cycles. Gas samples were taken in different times (0, 30 and 60 minutes) once a week using the static gas chamber technique for each crop. Results showed that cumulative CO2 emissions in broccoli decreased after the rotation with both cowpea cultivars under conventional management practices. Faba bean cultivars and management practices had no influence on cumulative CO2 emissions in melon crop. Cumulative CH4 emissions in broccoli crop were lowest after the rotation with Grey-eyed pea than Black-eyed pea cultivar, under both management practices. However, faba bean cultivars and management practices had no influence on cumulative CH4 emissions in melon crop. Cumulative CH4 emissions in melon crop were highest than in the rest of crops. Cowpea cultivar and management practice influenced cumulative CH4 and CO2 emissions of broccoli crop, respectively. Faba bean cultivar and management practice had no effect on cumulative CH4 and CO2 emissions of melon crop. Acknowledgements: This research was financed by the FP7 European Project Eurolegume (FP7-KBBE-613781).

  18. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to understand how soil microorganisms interact with cover crop-derived allelochemicals to suppress weed germination and growth following cover crop residue incorporation. We conducted a time series experiment by crossing sterilized and non-sterilized soil with four dif...

  19. A Functional Characterisation of a Wide Range of Cover Crop Species: Growth and Nitrogen Acquisition Rates, Leaf Traits and Ecological Strategies

    PubMed Central

    Tribouillois, Hélène; Fort, Florian; Cruz, Pablo; Charles, Raphaël; Flores, Olivier; Garnier, Eric; Justes, Eric

    2015-01-01

    Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species. PMID:25789485

  20. Effect of cover crops management in aggregate stability of a vineyard in Central Spain.

    NASA Astrophysics Data System (ADS)

    Ruiz-Colmenero, Marta; Bienes, Ramon; Marques, Maria-Jose

    2010-05-01

    Our research focuses in cover crop treatments used to avoid soil degradation in hillsides. The soil-plant interaction can influence the soil structure. In this study we pay special attention to the soil aggregates in a hillside vineyard (average slope of 14%), under Mediterranean semiarid climatic conditions (average annual temperature 14°C, annual rainfall around 400 mm), in the South East of Madrid located at an altitude of 800 masl. The soil classification according to USDA (2006) is Calcic Haploxeralf. Its particle size yields 58% sand, 18% silt and 24% clay, so that according to USDA classification it is a sandy clay loam soil. The bulk density of the first 10 cm of topsoil is 1.2 g cm-3 and its real density is 2.4 g cm-3. It has low organic matter content: 1.3 ± 0.1% (Walkley and Black, 1934). Three treatments were tested: i) traditional tillage ii) soil covered by Brachypodium distachyon allowing self-sowing, and iii) soil covered by Secale cereale, mown in early spring. In each treatment the aggregate stability was measured. These cover crops were established in a 2m wide strip at the center of the rows. We have collected samples of soil for each treatment along 2 years and we analyzed the aggregates, trying to find changes in their stability. Aggregates of 4 to 4.75 mm diameter were selected by dry sieving. The stability was measured with Drop-test: CND and TDI (Imeson and Vis, 1984). An improvement in the stability of aggregates was observed after two years of cover crop treatment. There are significant differences among the treatments analyzed with Kolmogorov-Smirnov test, being Brachypodium distachyon the treatment with more stable aggregates, it is necessary a mean higher than 8 drops to disintegrate every aggregate completely. Organic carbon was also measured by Loss on Ignition method (Schulte and Hopkins, 1996). This method can lead to an overestimation of the organic matter in soil samples but is considered suitable for aggregates. Again, those

  1. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P < 0.05) differences on the number of pods per plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield

  2. Soil Fertility Map for Food Legumes Production Areas in China

    NASA Astrophysics Data System (ADS)

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  3. Soil Fertility Map for Food Legumes Production Areas in China

    PubMed Central

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-01-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser. PMID:27212262

  4. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species

    PubMed Central

    Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan

    2016-01-01

    Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes. PMID:27791139

  5. Accelerating Genetic Gains in Legumes for the Development of Prosperous Smallholder Agriculture: Integrating Genomics, Phenotyping, Systems Modelling and Agronomy.

    PubMed

    Varshney, Rajeev K; Thudi, Mahendar; Pandey, Manish K; Tardieu, Francois; Ojiewo, Chris; Vadez, Vincent; Whitbread, Anthony M; Siddique, Kadambot H M; Nguyen, Henry T; Carberry, Peter S; Bergvinson, David

    2018-03-05

    Grain legumes form an important component of the human diet, feed for livestock and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress that is posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the last half century. For achieving faster genetic gains in legumes in rainfed conditions, this review article proposes the integration of modern genomics approaches, high throughput phenomics and simulation modelling as support for crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experiment plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains including not only productivity but also nutritional and market traits will increase the profitability of farmers and the availability of affordable nutritious food especially in developing countries.

  6. Nutrient cycling potential of camelina (Camelina sativa L. Crantz.) as a cover crop in the US Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Berti, Marisol; Samarappuli, Dulan

    2017-04-01

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize-soybean-wheat cropping systems. The objectives of this study were to determine the agronomic performance and nutrient scavenging potential of winter camelina in comparison with other common cover crops. Experiments were conducted in Fargo, ND in 2015 and 2016, and in Prosper, ND in 2015. The experimental design was a randomized complete block design with a split-plot arrangement with three replicates. The main plot was the sowing date and the subplot were camelina cultivars as well as other common cover crops in the area. Sowing dates were targeted to 15 August and September 1, although the final dates varied slightly each year. Biomass yield, N content of the biomass N uptake and P uptake was evaluated. Winter camelina N and P uptake ranged between 21 and 30.5 kg N ha-1 and 3.4 to 5.3 kg P ha-1. The nutrient scavenging potential of winter camelina was similar to other cover crops although slightly lower than turnip (Brassica rapa L.), radish (Raphanus sativus L.), and rape (Brassica napus L.) cultivars which had significantly higher P uptake than winter camelina and the other cover crops in the study. An evaluation of spring regrowth and cover indicated that only rye, winter camelina, and pennycress (Thlaspi arvense L.) survived the winter, although a few plants of triticale (x Trticosecale Witt.) and rape were found on a few plots. Because of the high variability on the plots there were no significant differences among the surviving cover crops on soil coverage. The soil coverage for rye cultivars was 25 and 35% and for camelina cv. Bison was 27%.In 2016, biomass yield was not significant for sowing date, cultivars, or their interaction. Winter camelina cultivars biomass yield fluctuated between 1.15 and 2.33 Mg dry matter ha-1 on the first sowing

  7. Genome Structure of the Legume, Lotus japonicus

    PubMed Central

    Sato, Shusei; Nakamura, Yasukazu; Kaneko, Takakazu; Asamizu, Erika; Kato, Tomohiko; Nakao, Mitsuteru; Sasamoto, Shigemi; Watanabe, Akiko; Ono, Akiko; Kawashima, Kumiko; Fujishiro, Tsunakazu; Katoh, Midori; Kohara, Mitsuyo; Kishida, Yoshie; Minami, Chiharu; Nakayama, Shinobu; Nakazaki, Naomi; Shimizu, Yoshimi; Shinpo, Sayaka; Takahashi, Chika; Wada, Tsuyuko; Yamada, Manabu; Ohmido, Nobuko; Hayashi, Makoto; Fukui, Kiichi; Baba, Tomoya; Nakamichi, Tomoko; Mori, Hirotada; Tabata, Satoshi

    2008-01-01

    The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes. PMID:18511435

  8. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  9. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  10. Effect of water content and organic carbon on remote sensing of crop residue cover

    NASA Astrophysics Data System (ADS)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  11. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    PubMed

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  12. Quantities and qualities of physical and chemical fractions of soil organic matter under a rye cover crop

    USDA-ARS?s Scientific Manuscript database

    To detect the effects of a rye cover crop on labile soil carbon, the light fraction, large particulate organic matter (POM), small POM, and two NaOH-extractable humic fractions were extracted from three depths of a corn soil in central Iowa having an overwinter rye cover crop treatment and a contro...

  13. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    USDA-ARS?s Scientific Manuscript database

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  14. Measuring natural enemy dispersal from cover crops in a California vineyard

    USDA-ARS?s Scientific Manuscript database

    Dispersal of natural enemies from buckwheat cover crop plots embedded within a southern California vineyard during spring and summer was investigated by using an arthropod mark-capture technique. Specifically, arthropods were marked in flowering buckwheat plots by spraying plants with a “triple mark...

  15. The mechanism for weed suppression by a forage radish cover crop

    USDA-ARS?s Scientific Manuscript database

    In the Mid-Atlantic region, forage radish (Raphanus sativus L. var. longipinnatus) winter cover crops planted prior to 1 September suppress winter annual weeds from fall until early April. Little is known about the mechanism of this weed suppression. Published research reports suggest that allelopat...

  16. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    USDA-ARS?s Scientific Manuscript database

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  17. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    Much of the NO3 in the riverine surface waters of the upper Mississippi River basin originates from artificially drained agricultural land used for corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) production. Cover crops grown between maturity and planting of these crops are one approach to r...

  18. Annual and perennial alleyway cover crops vary in their effects on Pratylenchus penetrans in Pacific Northwest red raspberry (Rubus idaeus)

    USDA-ARS?s Scientific Manuscript database

    Cover crop use is not common in established red raspberry (Rubus idaeus) fields in the Pacific Northwest. Raspberry growers are concerned about resource competition between the cover crop and raspberry crop, as well as increasing population densities of the plant-parasitic nematode Pratylenchus pene...

  19. Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation

    NASA Astrophysics Data System (ADS)

    Sakiah; Sembiring, M.; Hasibuan, J.

    2018-02-01

    Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.

  20. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    USDA-ARS?s Scientific Manuscript database

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  1. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    USDA-ARS?s Scientific Manuscript database

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  2. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    PubMed

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  3. Effects of Cover Crops to Offset Soil Carbon Changes Under No-till on an Ohio farm when Biomass is Harvested

    NASA Astrophysics Data System (ADS)

    Kimble, J. M.; Everett, L. R.; Richards, W.

    2003-12-01

    The results of a long term experiment to look at the use of cover crops and there effect on soil organic carbon. No-till has been shown to increase SOC and improve the overall soil quality under conditions where the biomass has been returned to the field. However, biomass may be removed as silage or for use in biofuels. The removal will reduce the inputs to the field so to overcome the amount of biomass not returned to the soil different cover crops were used. This experiment was done on a working farm where the corn biomass was being removed as silage. Four cover crops were planted in early September of 2002: rye, oats, clover, and canola with two controls, one with no cover crop and one where corn stubble was left on the field. The soils were sampled soon after the crops were planted and again in the spring of 2003 before the cover crops were killed just prior to planting. The first results indicate that the most root biomass was produced by the rye followed by oats then canola and then clover.

  4. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    PubMed

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    PubMed Central

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures. PMID:26080008

  6. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    PubMed

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(-)-N (0 to 30 cm depth) averaged 62 kg ha(-1) for rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  7. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes.

    PubMed

    Sabir, Jamal; Schwarz, Erika; Ellison, Nicholas; Zhang, Jin; Baeshen, Nabih A; Mutwakil, Muhammed; Jansen, Robert; Ruhlman, Tracey

    2014-08-01

    Land plant plastid genomes (plastomes) provide a tractable model for evolutionary study in that they are relatively compact and gene dense. Among the groups that display an appropriate level of variation for structural features, the inverted-repeat-lacking clade (IRLC) of papilionoid legumes presents the potential to advance general understanding of the mechanisms of genomic evolution. Here, are presented six complete plastome sequences from economically important species of the IRLC, a lineage previously represented by only five completed plastomes. A number of characters are compared across the IRLC including gene retention and divergence, synteny, repeat structure and functional gene transfer to the nucleus. The loss of clpP intron 2 was identified in one newly sequenced member of IRLC, Glycyrrhiza glabra. Using deeply sequenced nuclear transcriptomes from two species helped clarify the nature of the functional transfer of accD to the nucleus in Trifolium, which likely occurred in the lineage leading to subgenus Trifolium. Legumes are second only to cereal crops in agricultural importance based on area harvested and total production. Genetic improvement via plastid transformation of IRLC crop species is an appealing proposition. Comparative analyses of intergenic spacer regions emphasize the need for complete genome sequences for developing transformation vectors for plastid genetic engineering of legume crops. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Effects of break crops, and of wheat volunteers growing in break crops or in set-aside or conservation covers, all following crops of winter wheat, on the development of take-all (Gaeumannomyces graminis var. tritici) in succeeding crops of winter wheat

    PubMed Central

    Jenkyn, JF; Gutteridge, RJ; White, RP

    2014-01-01

    Experiments on the Rothamsted and Woburn Experimental Farms studied the effects on take-all of different break crops and of set-aside/conservation covers that interrupted sequences of winter wheat. There was no evidence for different effects on take-all of the break crops per se but the presence of volunteers, in crops of oilseed rape, increased the amounts of take-all in the following wheat. Severity of take-all was closely related to the numbers of volunteers in the preceding break crops and covers, and was affected by the date of their destruction. Early destruction of set-aside/conservation covers was usually effective in preventing damaging take-all in the following wheat except, sometimes, when populations of volunteers were very large. The experiments were not designed to test the effects of sowing dates but different amounts of take-all in the first wheats after breaks or covers apparently affected the severity of take-all in the following (second) wheats only where the latter were relatively late sown. In earlier-sown second wheats, take-all was consistently severe and unrelated to the severity of the disease in the preceding (first) wheats. Results from two very simple experiments suggested that substituting set-aside/conservation covers for winter wheat, for 1 year only, did not seriously interfere with the development of take-all disease or with the development or maintenance of take-all decline (TAD). With further research, it might be possible for growers wishing to exploit TAD to incorporate set-aside/conservation covers into their cropping strategies, and especially to avoid the worst effects of the disease on grain yield during the early stages of epidemics. PMID:25653455

  9. Catch crops as universal and effective method for reducing nitrogen leaching loss in spring cereal production: A meta-analysis.

    NASA Astrophysics Data System (ADS)

    Valkama, Elena; Lemola, Riitta; Känkänen, Hannu; Turtola, Eila

    2016-04-01

    Sustainable farms produce adequate amounts of a high-quality product, protect their resources and are both environmentally friendly and economically profitable. Nitrogen (N) fertilization decisively influences the cereal yields as well as increases soil N balance (N input in fertilizer - N output in harvested yield), thereby leading to N losses to the environment. However, while N input reduction affects soil N balance, such approach would markedly reduce N leaching loss only in case of abnormally high N balances. As an alternative approach, the growing of catch crops aims to prevent nutrient leaching in autumn after harvest and during the following winter, but due to competition, catch crops may also reduce yields of the main crop. Although studies have explored the environmental effects of catch crops in cereal production in the Nordic countries (Denmark, Sweden, Finland and Norway) during the past 40 years, none has yet carried out a meta-analysis. We quantitatively summarized 35 studies on the effect of catch crops (non-legume and legume) undersown in spring cereals on N leaching loss or its risk as estimated by the content of soil nitrate N or its sum with ammonium in late autumn. The meta-analysis also included the grain yield and N content of spring cereals. To identify sources of variation, we studied the effects of soil texture and management (ploughing time, the amount of N applied, fertilizer type), as well as climatic (annual precipitation) and experimental conditions (duration of experiments, lysimeter vs. field experiments). Finally, we examined whether the results differed between the countries or over the decades. Compared to control groups with no catch crops, non-legume catch crops, mainly ryegrass species, reduced N leaching loss by 50% on average, and soil nitrate N or inorganic N by 35% in autumn. Italian ryegrass depleted soil N more effectively (by 60%) than did perennial ryegrass or Westerwolds ryegrass (by 25%). In contrast, legumes (white

  10. Cover crops as a gateway to greater conservation in Iowa?: Integrating crop models, field trials, economics and farmer perspectives regarding soil resilience in light of climate change

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, G. E.; Basche, A.; Tyndall, J.; Arbuckle, J. G.; Miguez, F.; Bowman, T.

    2014-12-01

    Scientists predict a number of climate changes for the US Midwest with expected declines in crop productivity as well as eco-hydrological impacts. More frequent extreme rain events particularly in the spring may well increase saturated soils thus complicating agronomic interests and also exacerbate watershed scale impairments (e.g., sediment, nutrient loss). In order to build more resilient production systems in light of climate change, farmers will increasingly need to implement conservation practices (singularly or more likely in combination) that enable farmers to manage profitable businesses yet mitigate consequential environmental impacts that have both in-field and off-farm implications. Cover crops are empirically known to promote many aspects of soil and water health yet even the most aggressive recent estimates show that only 1-2% of the total acreage in Iowa have been planted to cover crops. In order to better understand why farmers are reluctant to adopt cover crops across Iowa we combined agronomic and financial data from long-term field trials, working farm trials and model simulations so as to present comprehensive data-driven information to farmers in focus group discussions in order to understand existing barriers, perceived benefits and responses to the information presented. Four focus groups (n=29) were conducted across Iowa in four geographic regions. Focus group discussions help explore the nuance of farmers' responses to modeling outputs and their real-life agronomic realities, thus shedding light on the social and psychological barriers with cover crop utilization. Among the key insights gained, comprehensive data-driven research can influence farmer perspectives on potential cover crop impacts to cash crop yields, experienced costs are potentially quite variable, and having field/farm benefits articulated in economic terms are extremely important when farmers weigh the opportunity costs associated with adopting new practices. Our work

  11. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  12. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties

    USDA-ARS?s Scientific Manuscript database

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  13. Steers grazing of a rye cover crop influences growth of rye and no-till cotton

    USDA-ARS?s Scientific Manuscript database

    Small grain cover crops offer opportunities for grazing but effects on following row crops are not well understood. From 1999 through 2008, stocker steers sequence grazed small grains in a 2-paddock rye-cotton-wheat-fallow- rye rotation. Treatments imposed on rye included 1) zero-grazing from 1999; ...

  14. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Treesearch

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  15. Effects of cover crops incorporation and nitrogen fertilization on N2O and CO2 emissions

    NASA Astrophysics Data System (ADS)

    Kandel, T. P.; Gowda, P. H.; Northup, B. K.; DuPont, J.; Somenahally, A. C.; Rocateli, A.

    2017-12-01

    In this study, we measured N2O and CO2 fluxes from plots planted to hairy vetch (winter cover crop) and broadleaf vetch (spring cover crop) as N sources for the following crabgrass (summer forage crop) in El Reno, Oklahoma, USA. Comparisons also included 0 and 60 kg ha-1 mineral N fertilizer supplied as dry urea. No significant N2O fluxes were observed during rapid growing periods of cover crops (March-April, 2017), however, large fluxes were observed after hairy vetch incorporation. Immediately after the hairy vetch biomass incorporation, large rainfall events were recorded. The fluxes subsided gradually with drying soil condition but were enhanced after every consecutive rainfall events. A rainfall induced flux measuring up to 8.2 kg N2O ha-1 day-1 was observed after 26 days of biomass incorporation. In total, 29 kg N2O ha-1 (18 kg N ha-1) was emitted within a month after biomass incorporation from hairy vetch plots. Growth of broadleaf vetch was poor and N2O fluxes were also lower. Similarly, plots fertilized with 60 kg N ha-1 had significant fluxes of N2O but the magnitude was much lower than the hairy vetch plots. Dynamics of N2O and CO fluxes correlated strongly. The results thus indicated that although cover crops may provide many environmental/agronomic benefits such as N fixation, soil carbon built-up, weed suppression and erosion control, high N2O emissions may dwarf these benefits.

  16. Crop cover the principal influence on non-crop ground beetle (Coleoptera, Carabidae) activity and assemblages at the farm scale in a long-term assessment.

    PubMed

    Eyre, M D; Sanderson, R A; McMillan, S D; Critchley, C N R

    2016-04-01

    Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.

  17. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil.

    PubMed

    Reed-Jones, Neiunna L; Marine, Sasha Cahn; Everts, Kathryne L; Micallef, Shirley A

    2016-01-04

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil

    PubMed Central

    Reed-Jones, Neiunna L.; Marine, Sasha Cahn; Everts, Kathryne L.

    2016-01-01

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. PMID:26729724

  20. Nitrogen and Winter Cover Crop Effects on Spring and Summer Nutrient Uptake

    USDA-ARS?s Scientific Manuscript database

    Fertilization of bermudagrass [Cynodon dactylon (L.) Pers.] with swine-lagoon effluent in summer, April to September, does not match the period of productivity of the winter annual cover crops, annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), and berseem clover (Trifolium alexan...

  1. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  2. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts

    PubMed Central

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-01-01

    Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083

  3. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    USDA-ARS?s Scientific Manuscript database

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  4. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (2) Planted into an established grass or legume; (3) Interplanted with another spring planted crop...) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation water supply, if...

  5. Declining ring-necked pheasants in the Klamath Basin, California: II. Survival, productivity, and cover

    USGS Publications Warehouse

    Grove, Robert A.; Buhler, D.R.; Henny, Charles J.; Drew, A.D.

    2001-01-01

    Cover condition and its influence on nesting success, survival, and body condition of ring-necked pheasants (Phasianus colchicus) were evaluated at Tule Lake National Wildlife Refuge (TLNWR) and Lower Klamath National Wildlife Refuge (LKNWR). Inadequate nesting cover was responsible for extremely low nest success early in the nesting season at TLNWR. Later in the season at TLNWR, spring-planted crops provided cover to conceal nesting and renesting hens; however, only 0.07 young were produced (to 1 August) per hen during the study. The extremely low reproductive rates were well below those required to maintain a stable population. At TLNWR, most adult mortality during spring and early summer (before crops provided adequate cover) apparently resulted from predation by golden eagles (Aquila chrysaetos). This mortality occurred weeks before insecticide applications. Hard winters (cold temperatures and heavy snowfall) periodically reduce the pheasant population in the Klamath Basin and again greatly reduced numbers during the last year of this study. Unfortunately, pheasant populations declined under the conditions found during this study and were unable to recover from the hard winter of 1992 to 1993. Mean body mass and tarsal length of adult hen pheasants at TLNWR, which is intensively farmed, were less than those for hens at LKNWR, which is not intensively farmed. Results of our study suggest that TLNWR hens may have been nutritionally stressed, and that the amount and distribution of vegetative cover needs to be improved at TLNWR. Habitat management of edge cover along agricultural crops should feature perennial grasses and legumes with small tracts of land interspersed throughout the agricultural fields to provide alternative cover for wildlife in general including pheasants.

  6. Increasing seed size and quality by manipulating BIG SEEDS 1 in legume species

    USDA-ARS?s Scientific Manuscript database

    Plant organs such as seeds are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a novel and conserved ro...

  7. Does grazing of cover crops impact biologically active soil C and N fractions under inversion and no tillage management

    USDA-ARS?s Scientific Manuscript database

    Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...

  8. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors

  9. Response of Legumes to Prescribed Burns in Loblolly Pine Stands of the South Carolina Piedmont

    Treesearch

    Charles T. Cushwa; Melvin Hopkins; Burd S. McGinnes

    1970-01-01

    The effects of prescribed burns in spring or summer on the leguminous plant cover and on seed production of legumes were studied at nine locations on the Sumter National Forest in the Piedmont of South Carolina. Numbers of legumes did not differ statistically from those on unburned control plots. Seed production on plots burned during the summer was significantly...

  10. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    NASA Astrophysics Data System (ADS)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  11. Macronutrients use efficiency and changes in chemical properties of an oxisol as influenced by phosphorus fertilization and tropical cover crops

    USDA-ARS?s Scientific Manuscript database

    Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical and biological properties. A green house experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient use efficiency of 14 tropical cover crops. The P leve...

  12. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa.

    PubMed

    Hiremath, Pavana J; Farmer, Andrew; Cannon, Steven B; Woodward, Jimmy; Kudapa, Himabindu; Tuteja, Reetu; Kumar, Ashish; Bhanuprakash, Amindala; Mulaosmanovic, Benjamin; Gujaria, Neha; Krishnamurthy, Laxmanan; Gaur, Pooran M; Kavikishor, Polavarapu B; Shah, Trushar; Srinivasan, Ramamurthy; Lohse, Marc; Xiao, Yongli; Town, Christopher D; Cook, Douglas R; May, Gregory D; Varshney, Rajeev K

    2011-10-01

    Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought-responsive genes and gene-based molecular markers. A total of 103,215 tentative unique sequences (TUSs) have been produced from 435,018 Roche/454 reads and 21,491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49,437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20,634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42,141 aligned TUSs with putative gene structures (including 39,281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought-challenged root tissues of two chickpea genotypes against the TUSs identified 44,639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron-spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. No claim to original US government works.

  13. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crop; or (2) Planted into an established grass or legume. 6. Insurable Acreage In addition to section 9... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation water...

  14. 7 CFR 457.165 - Millet crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... crop; or (2) Planted into an established grass or legume. 6. Insurable Acreage In addition to section 9... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation water...

  15. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil

    PubMed Central

    Mitchell, Jeffrey; Scow, Kate

    2018-01-01

    Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how

  16. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement.

    PubMed

    Zhou, Chuanen; Han, Lu; Pislariu, Catalina; Nakashima, Jin; Fu, Chunxiang; Jiang, Qingzhen; Quan, Li; Blancaflor, Elison B; Tang, Yuhong; Bouton, Joseph H; Udvardi, Michael; Xia, Guangmin; Wang, Zeng-Yu

    2011-11-01

    Medicago truncatula has been developed into a model legume. Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume crop in the United States. By screening a large population of M. truncatula mutants tagged with the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified a mutant line (NF2089) that maintained green leaves and showed green anthers, central carpels, mature pods, and seeds during senescence. Genetic and molecular analyses revealed that the mutation was caused by Tnt1 insertion in a STAY-GREEN (MtSGR) gene. Transcript profiling analysis of the mutant showed that loss of the MtSGR function affected the expression of a large number of genes involved in different biological processes. Further analyses revealed that SGR is implicated in nodule development and senescence. MtSGR expression was detected across all nodule developmental zones and was higher in the senescence zone. The number of young nodules on the mutant roots was higher than in the wild type. Expression levels of several nodule senescence markers were reduced in the sgr mutant. Based on the MtSGR sequence, an alfalfa SGR gene (MsSGR) was cloned, and transgenic alfalfa lines were produced by RNA interference. Silencing of MsSGR led to the production of stay-green transgenic alfalfa. This beneficial trait offers the opportunity to produce premium alfalfa hay with a more greenish appearance. In addition, most of the transgenic alfalfa lines retained more than 50% of chlorophylls during senescence and had increased crude protein content. This study illustrates the effective use of knowledge gained from a model system for the genetic improvement of an important commercial crop.

  17. Integrated weed management strategies in cover crop-based, organic rotational no-till corn and soybean in the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roll-crimped cover crop mulch provides within-season weed suppression in no-till co...

  18. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover

  19. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

    USGS Publications Warehouse

    Gumma, Murali Krishna; Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Rao, Mahesh N.; Mohammed, Irshad A.; Whitbread, Anthony M.

    2016-01-01

    The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The

  20. Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana.

    PubMed

    Asubonteng, Kwabena; Pfeffer, Karin; Ros-Tonen, Mirjam; Verbesselt, Jan; Baud, Isa

    2018-05-11

    Tree crops such as cocoa and oil palm are important to smallholders' livelihoods and national economies of tropical producer countries. Governments seek to expand tree-crop acreages and improve yields. Existing literature has analyzed socioeconomic and environmental effects of tree-crop expansion, but its spatial effects on the landscape are yet to be explored. This study aims to assess the effects of tree-crop farming on the composition and the extent of land-cover transitions in a mixed cocoa/oil palm landscape in Ghana. Land-cover maps of 1986 and 2015 produced through ISODATA, and maximum likelihood classification were validated with field reference, Google Earth data, and key respondent interviews. Post-classification change detection was conducted and the transition matrix analyzed using intensity analysis. Cocoa and oil palm areas have increased in extent by 8.9% and 11.2%, respectively, mainly at the expense of food-crop land and forest. The intensity of forest loss to both tree crops is at a lower intensity than the loss of food-crop land. There were transitions between cocoa and oil palm, but the gains in oil palm outweigh those of cocoa. Cocoa and oil palm have increased in area and dominance. The main cover types converted to tree-crop areas are food-crop land and off-reserve forest. This is beginning to have serious implications for food security and livelihood options that depend on ecosystem services provided by the mosaic landscape. Tree-crop policies should take account of the geographical distribution of tree-commodity production at landscape level and its implications for food production and ecosystems services.

  1. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops

    USDA-ARS?s Scientific Manuscript database

    In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...

  2. Rye cover crop effects on nitrous oxide emissions from a corn-soybean system

    USDA-ARS?s Scientific Manuscript database

    Agricultural activities are a major source nitrous oxide emitted to the atmosphere. Development of management practices to reduce these emissions is needed. Non-leguminous cover crops are efficient scavengers of residual soil nitrate, but their effects on nitrous oxide emissions have not been well d...

  3. Cover crop, soil amendments, and variety effects on organic rice production in Texas

    USDA-ARS?s Scientific Manuscript database

    The major challenges in organic rice production include nutrient improvement, weed management, and variety selection. In this study, we tested the effects of two soil amendments on organic production in southcentral USA. The 2011-12 winter cover crops were established successfully with full coverage...

  4. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control

    USDA-ARS?s Scientific Manuscript database

    Omnivores are important consumers of both weed seeds and insect pests, and habitat provisions like cover crops are suggested to promote their ecosystem services in agricultural systems. However, few studies establish direct links between cover, food, and pest suppression because they are entangled a...

  5. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  6. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement.

    PubMed

    Bohra, Abhishek; Singh, Narendra P

    2015-08-01

    Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.

  7. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution.

    PubMed

    Hane, James K; Ming, Yao; Kamphuis, Lars G; Nelson, Matthew N; Garg, Gagan; Atkins, Craig A; Bayer, Philipp E; Bravo, Armando; Bringans, Scott; Cannon, Steven; Edwards, David; Foley, Rhonda; Gao, Ling-Ling; Harrison, Maria J; Huang, Wei; Hurgobin, Bhavna; Li, Sean; Liu, Cheng-Wu; McGrath, Annette; Morahan, Grant; Murray, Jeremy; Weller, James; Jian, Jianbo; Singh, Karam B

    2017-03-01

    Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... another crop; or (2) Planted into an established grass or legume. 6. Insurable Acreage In addition to the... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply...

  9. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-atlantic region

    USDA-ARS?s Scientific Manuscript database

    Organic producers in the mid-Atlantic region are interested in reducing tillage, labor, and time requirements for grain production. Cover crop-based organic rotational no-till grain production is one approach to accomplishing these goals. Advancements in a system for planting crops into a mat of cov...

  10. US-1136, US-1137, and US-1138 cowpea lines for cover crop use

    USDA-ARS?s Scientific Manuscript database

    Following five years of field evaluation, three cowpea populations were selected as best adapted for use as a cover crop. A pure line selection procedure was used to develop genetically uniform lines from the segregating populations. Field evaluations demonstrated that the lines grow rapidly for u...

  11. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups

    PubMed Central

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  12. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes

    PubMed Central

    Sharma, Shivali; Upadhyaya, H. D.; Varshney, R. K.; Gowda, C. L. L.

    2013-01-01

    The narrow genetic base of cultivars coupled with low utilization of genetic resources are the major factors limiting grain legume production and productivity globally. Exploitation of new and diverse sources of variation is needed for the genetic enhancement of grain legumes. Wild relatives with enhanced levels of resistance/tolerance to multiple stresses provide important sources of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by cross-incompatibility barriers and linkage drags. Pre-breeding provides a unique opportunity, through the introgression of desirable genes from wild germplasm into genetic backgrounds readily used by the breeders with minimum linkage drag, to overcome this. Pre-breeding activities using promising landraces, wild relatives, and popular cultivars have been initiated at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools in chickpea, pigeonpea, and groundnut with a high frequency of useful genes, wider adaptability, and a broad genetic base. The availability of molecular markers will greatly assist in reducing linkage drags and increasing the efficiency of introgression in pre-breeding programs. PMID:23970889

  13. A Proteomic View on the Role of Legume Symbiotic Interactions

    PubMed Central

    Larrainzar, Estíbaliz; Wienkoop, Stefanie

    2017-01-01

    Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics. PMID:28769967

  14. Replacing fallow with cover crops in a semiarid soil:Effects on soil properties

    USDA-ARS?s Scientific Manuscript database

    Replacement of fallow in crop–fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)–fallow with winter and spring CCs for 5 years reduced wind and water erosion, increased soil organic carbon (SOC), and ...

  15. Can leguminous cover crops partially replace nitrogen fertilization in Mississippi delta cotton production

    USDA-ARS?s Scientific Manuscript database

    Petroleum prices impacts cotton (Gossypium hirsutum L.) N fertilization cost. A 3-year field study was conducted on a Dundee silt loam to assess the interactions of leguminous cover crops [none, Austrian winter field pea (Pisum sativum L.) or hairy vetch (Vicia villosa Roth] and N fertilization rate...

  16. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    USDA-ARS?s Scientific Manuscript database

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  17. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Interplanted with another crop; (ii) Planted into an established grass or legume; or (iii) Planted prior to... eruption; or (h) Failure of the irrigation water supply, if caused by an insured peril that occurs during...

  19. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Interplanted with another crop; (ii) Planted into an established grass or legume; or (iii) Planted prior to... eruption; or (h) Failure of the irrigation water supply, if caused by an insured peril that occurs during...

  20. Symbiosis limits establishment of legumes outside their native range at a global scale

    PubMed Central

    Simonsen, Anna K.; Dinnage, Russell; Barrett, Luke G.; Prober, Suzanne M.; Thrall, Peter H.

    2017-01-01

    Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions. PMID:28387250

  1. Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs

    USDA-ARS?s Scientific Manuscript database

    Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...

  2. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with another crop; or (2) Planted into an established grass or legume. 7. Insurable Acreage In addition...; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply due...

  3. Cover crop and CO2 emissions

    USDA-ARS?s Scientific Manuscript database

    Agricultural land management practices account for about 50% of soil organic carbon (SOC) loss. Restoring SOC is important to soil productivity and fertility. Management strategies to rebuild SOC include addition of manure or other organic amendments, increasing root biomass from crops, leaving crop...

  4. Genome resources for climate-resilient cowpea, an essential crop for food security

    USDA-ARS?s Scientific Manuscript database

    Cowpea is a legume crop that is resilient in hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind those of most other major crop plants. Here we describe foundational g...

  5. Genetic resources in the USDA, ARS, PGRCU legume crop germplasm collections with phyto-pharmaceutical uses

    USDA-ARS?s Scientific Manuscript database

    Seventeen health functional legumes including butterfly pea (Clitoria ternatea L.), Indigofera cassioides Rottler ex DC., I. linnaei Ali, I. suffruticosa Mill., hyacinth bean [Lablab purpureus (L.) Sweet], velvetbean [Mucuna pruriens (L.) DC], jicama [Pachyrhizus erosus (L.) Urb.], winged bean [Psop...

  6. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  7. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  8. Effects of cover crops with potential for use in anaerobic soil disinfestation (asd) on reproduction of meloidogyne spp.

    USDA-ARS?s Scientific Manuscript database

    Several cover crops were assessed for their susceptibility to invasion and galling by three species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on their potential for use as the organic amendment component in anaerobic soil disinfestation (AS...

  9. Multiple microbial activity-based measures reflect effects of cover cropping and tillage on soils

    USDA-ARS?s Scientific Manuscript database

    Agricultural producers, conservation professionals, and policy makers are eager to learn of soil analytical techniques and data that document improvement in soil health by agricultural practices such as no-till and incorporation of cover crops. However, there is considerable uncertainty within the r...

  10. Harvesting fertilized rye cover crop: simulated revenue, net energy, and drainage Nitrogen loss

    USDA-ARS?s Scientific Manuscript database

    Food and biofuel production along with global N use are expected to increase over the next few decades, which complicates the goal of reducing N loss to the environment. Including winter rye as a cover crop in corn-soybean rotations reduces N loss to drainage. A few studies suggest that harvesting r...

  11. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  12. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    USGS Publications Warehouse

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Greg W.

    2015-01-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  13. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products.

    PubMed

    Foschia, Martina; Horstmann, Stefan W; Arendt, Elke K; Zannini, Emanuele

    2017-02-28

    The increasing demand for gluten-free food products from consumers has triggered food technologists to investigate a wide range of gluten-free ingredients from different sources to reproduce the unique network structure developed by gluten in a wheat-dough system. In recent times, the attention has been focused on novel application of legume flour or ingredients. The interest in this crop category is mainly attributed to their functional properties, such as solubility and water-binding capacity, which play an important role in gluten-free food formulation and processing. Their nutritional profile may also counteract the lack of nutrients commonly highlighted in commercial gluten-free bakery and pasta products, providing valuable sources of protein, dietary fiber, vitamins, minerals, and complex carbohydrates, which in turn have a positive impact on human health. This review reports the main chemical and functional characteristics of legumes and their functional application in gluten-free products.

  14. Sustainable Agriculture: Cover Cropping

    ERIC Educational Resources Information Center

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  15. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... grass or legume; (2) Interplanted with another spring planted crop; (3) Grown on acreage from which a... disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of...

  16. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... grass or legume; (2) Interplanted with another spring planted crop; (3) Grown on acreage from which a... disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of...

  17. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the midwestern United States

    USDA-ARS?s Scientific Manuscript database

    It is critical to evaluate conservation practices that protect soil and water resources from climate change in the Midwestern United States, a region that produces one-quarter of the world’s soybeans and one-third of the world’s maize. An over-winter cover crop in a maize-soybean rotation offers mul...

  18. From Model to Crop: Functional Analysis of a STAY-GREEN Gene in the Model Legume Medicago truncatula and Effective Use of the Gene for Alfalfa Improvement1[W][OA

    PubMed Central

    Zhou, Chuanen; Han, Lu; Pislariu, Catalina; Nakashima, Jin; Fu, Chunxiang; Jiang, Qingzhen; Quan, Li; Blancaflor, Elison B.; Tang, Yuhong; Bouton, Joseph H.; Udvardi, Michael; Xia, Guangmin; Wang, Zeng-Yu

    2011-01-01

    Medicago truncatula has been developed into a model legume. Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume crop in the United States. By screening a large population of M. truncatula mutants tagged with the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified a mutant line (NF2089) that maintained green leaves and showed green anthers, central carpels, mature pods, and seeds during senescence. Genetic and molecular analyses revealed that the mutation was caused by Tnt1 insertion in a STAY-GREEN (MtSGR) gene. Transcript profiling analysis of the mutant showed that loss of the MtSGR function affected the expression of a large number of genes involved in different biological processes. Further analyses revealed that SGR is implicated in nodule development and senescence. MtSGR expression was detected across all nodule developmental zones and was higher in the senescence zone. The number of young nodules on the mutant roots was higher than in the wild type. Expression levels of several nodule senescence markers were reduced in the sgr mutant. Based on the MtSGR sequence, an alfalfa SGR gene (MsSGR) was cloned, and transgenic alfalfa lines were produced by RNA interference. Silencing of MsSGR led to the production of stay-green transgenic alfalfa. This beneficial trait offers the opportunity to produce premium alfalfa hay with a more greenish appearance. In addition, most of the transgenic alfalfa lines retained more than 50% of chlorophylls during senescence and had increased crude protein content. This study illustrates the effective use of knowledge gained from a model system for the genetic improvement of an important commercial crop. PMID:21957014

  19. Bioavailability of minerals in legumes.

    PubMed

    Sandberg, Ann-Sofie

    2002-12-01

    The mineral content of legumes is generally high, but the bioavailability is poor due to the presence of phytate, which is a main inhibitor of Fe and Zn absorption. Some legumes also contain considerable amounts of Fe-binding polyphenols inhibiting Fe absorption. Furthermore, soya protein per se has an inhibiting effect on Fe absorption. Efficient removal of phytate, and probably also polyphenols, can be obtained by enzymatic degradation during food processing, either by increasing the activity of the naturally occurring plant phytases and polyphenol degrading enzymes, or by addition of enzyme preparations. Biological food processing techniques that increase the activity of the native enzymes are soaking, germination, hydrothermal treatment and fermentation. Food processing can be optimized towards highest phytate degradation provided that the optimal conditions for phytase activity in the plant is known. In contrast to cereals, some legumes have highest phytate degradation at neutral or alkaline pH. Addition of microbial enzyme preparations seems to be the most efficient for complete degradation during processing. Fe and Zn absorption have been shown to be low from legume-based diets. It has also been demonstrated that nutritional Fe deficiency reaches its greatest prevalence in populations subsisting on cereal- and legume-based diets. However, in a balanced diet containing animal protein a high intake of legumes is not considered a risk in terms of mineral supply. Furthermore, once phytate, and in certain legumes polyphenols, is degraded, legumes would become good sources of Fe and Zn as the content of these minerals is high.

  20. The Kill Date as a Management Tool for Cover Cropping Success

    PubMed Central

    Alonso-Ayuso, María; Gabriel, José Luis; Quemada, Miguel

    2014-01-01

    Integrating cover crops (CC) in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i) CC growth and N content; (ii) the chemical composition of residues; (iii) soil inorganic N and potentially mineralizable N; and (iv) soil water content. Treatments were fallow and a CC mixture of barley (Hordeum vulgare L.) and vetch (Vicia sativa L.) sown in October and killed on two different dates in spring. Above-ground biomass and chemical composition of CC were determined at harvest, and ground cover was monitored based on digital image analysis. Soil mineral N was determined before sowing and after killing the CC, and potentially mineralizable N was measured by aerobic incubation at the end of the experiment. Soil water content was monitored daily to a depth of 1.1 m using capacitance sensors. Under the present conditions of high N availability, delaying kill date increased barley above-ground biomass and N uptake from deep soil layers; little differences were observed in vetch. Postponing kill date increased the C/N ratio and the fiber content of plant residues. Ground cover reached >80% by the first kill date (∼1250°C days). Kill date was a means to control soil inorganic N by balancing the N retained in the residue and soil, and showed promise for mitigating N losses. The early kill date decreased the risk of water and N pre-emptive competition by reducing soil depletion, preserving rain harvested between kill dates and allowing more time for N release in spring. The soil potentially mineralizable N was enhanced by the CC and kill date delay. Therefore kill date is a crucial management variable for maximizing the CC benefits in agricultural systems. PMID:25296333

  1. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Pyralidae) populations in West Africa

    USDA-ARS?s Scientific Manuscript database

    The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa, and contributes to food shortages and malnutrition in native human populations. The genetic structure of Maruca vitrata was investigated among five sites from Burkin...

  2. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  3. Cover-crops - improvement of soil fertility and provision of biomass

    NASA Astrophysics Data System (ADS)

    Kirchmeyr, Franz; Szerencsits, Manfred

    2017-04-01

    Besides climate change, erosion, inadequate crop rotation and intensive tillage may turn arable land into marginal land. On the other hand, reclamation approaches which include arable farming methods may result only in short-term success if they do not consider their effects on humus content and erosion. Additionally, effective reclamation will also have to address the growing need for food production besides biomass provision. Therefore, we investigated if cover or catch crops (CC) may accomplish both goals: Improve soil quality and humus content even if CC-biomass is used for biogas production. Humus content and soil fertility: In comparison to complete fallow in a crop rotation with silage maize and cereals the humus balance can be improved from -50 to +280 kg humus carbon (C) ha-1 year-1 through additional CC (4.5 t DM ha-1) used for biogas production and an equivalent amount of digestate returned to the field. With a CC-yield of 2.5 t DM ha-1 the humus balance results in 220 kg C ha-1 year-1. It is still slightly higher if the same CC remains on the field as green manure (170 kg C ha-1 year-1). Additionally it is important to consider that 20 - 50 % of the assimilated carbon can be found in the plant roots and that roots and root exudates as well as CC harvest residues provide fresh organic matter for soil life. Furthermore, biomass production of cover crops was considerably higher, if they were used for biogas production because of earlier cultivation and later harvest than mulching. Erosion control: The risk of erosion can be reduced by approx. 50 % in comparison to complete fallow if CC with 2.5 t DM ha-1 remain on the field as green manure. A comparable reduction can be achieved, if CC with 4.5 t DM ha-1 are harvested for biogas production. Because of better weed suppression, tilth and soil structure of CC with higher biomass, it is more likely to apply conservation tillage and avoid ploughing. Without ploughing a CC with 4.5 t DM ha-1 used for biogas the

  4. Spring wheat production and associated pests in conventional and diversified cropping systems in north central Montana

    USDA-ARS?s Scientific Manuscript database

    Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...

  5. Photosynthetic photon flux density, carbon dioxide concentration and temperature influence photosynthesis in crotalaria species

    USDA-ARS?s Scientific Manuscript database

    Crotalarias are tropical legumes grown as cover crops or as green manure to improve soil fertility. As an understory plant in plantation systems, these cover crops receive low levels of irradiance and are subjected to elevated levels of CO2 and temperatures. A greenhouse experiment was conducted to ...

  6. Legumes increase growth and alter foliar nutrient levels of black walnut saplings

    Treesearch

    J.W. Van Sambeek; Felix Jr. Ponder; W.J. Rietveld

    1986-01-01

    Differences in herbaceous competition, growth, soil, and foliar nutrient levels were compared for black walnut (Juglans nigra L.) saplings growing on an upland and a bottomland site in southern Illinois, with covers of five different herbaceous legumes or naturally occurring forbs. Hairy vetch ( Vicia villosa Roth. ) increased...

  7. Organic weed conrol and cover crop residue integration impacts on weed control, quality, and yield and economics in conservation tillage tomato - A case study

    USDA-ARS?s Scientific Manuscript database

    The increased use of conservation tillage in vegetable production requires more information be developed on the role of cover crops in weed control, tomato quality and yield. Three conservation-tillage systems utilizing crimson clover, brassica and cereal rye as winter cover crops were compared to ...

  8. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    PubMed

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  9. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  10. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  11. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Inefficient P use in agriculture results in soil P accumulation and losses to surrounding ecosystems, highlighting the need to reduce external inputs and use them more efficiently. Composts reduce the need for mineral fertilizers by recycling P from wastes at the regional scale, whereas cover crops ...

  12. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  13. Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne

    USDA-ARS?s Scientific Manuscript database

    Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disin...

  14. Managing for Multifunctionality in Perennial Grain Crops

    PubMed Central

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  15. Cereal grains, legumes and diabetes.

    PubMed

    Venn, B J; Mann, J I

    2004-11-01

    This review examines the evidence for the role of whole grain foods and legumes in the aetiology and management of diabetes. MedLine and SilverPlatter ('Nutrition' and 'Food Science FSTA') databases were searched to identify epidemiological and experimental studies relating to the effects of whole grain foods and legumes on indicators of carbohydrate metabolism. Epidemiological studies strongly support the suggestion that high intakes of whole grain foods protect against the development of type II diabetes mellitus (T2DM). People who consume approximately 3 servings per day of whole grain foods are less likely to develop T2DM than low consumers (<3 servings per week) with a risk reduction in the order of 20-30%. The role of legumes in the prevention of diabetes is less clear, possibly because of the relatively low intake of leguminous foods in the populations studied. However, legumes share several qualities with whole grains of potential benefit to glycaemic control including slow release carbohydrate and a high fibre content. A substantial increase in dietary intake of legumes as replacement food for more rapidly digested carbohydrate might therefore be expected to improve glycaemic control and thus reduce incident diabetes. This is consistent with the results of dietary intervention studies that have found improvements in glycaemic control after increasing the dietary intake of whole grain foods, legumes, vegetables and fruit. The benefit has been attributed to an increase in soluble fibre intake. However, prospective studies have found that soluble fibre intake is not associated with a lower incidence of T2DM. On the contrary, it is cereal fibre that is largely insoluble that is associated with a reduced risk of developing T2DM. Despite this, the addition of wheat bran to the diets of diabetic people has not improved indicators of glycaemic control. These apparently contradictory findings might be explained by metabolic studies that have indicated improvement

  16. Multiple rolling/crimping effects on termination of two summer cover crops in a conservation system

    USDA-ARS?s Scientific Manuscript database

    A field experiment was initiated in the 2015 growing season at the USDA-NSDL to determine the effectiveness of a prototype two-stage roller/crimper in mechanical termination of two summer cover crops intended for organic systems. The experiment was a randomized complete block design with four replic...

  17. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted to evaluate the effects of soil solarization or cover cropping on bell pepper (Capsicum annuum) and lima bean (Phaseolus lunatus, L.) rhizosphere microorganisms. In Experiment I, flat surface solarization (FSS), raised bed solarization (RBS), cowpea (Vigna unguiculat...

  18. An expression database for roots of the model legume Medicago truncatula under salt stress

    PubMed Central

    2009-01-01

    Background Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. Description The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. Conclusion MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/. PMID:19906315

  19. An expression database for roots of the model legume Medicago truncatula under salt stress.

    PubMed

    Li, Daofeng; Su, Zhen; Dong, Jiangli; Wang, Tao

    2009-11-11

    Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  20. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    PubMed

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    PubMed

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...): (i) Interplanted with another crop; (ii) Planted into an established grass or legume; (iii) Planted...; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation water supply, if due to a... planting or replant payment will be owed. (h) All notices of damage must be provided to us not later than...

  3. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    USDA-ARS?s Scientific Manuscript database

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  4. Cover crops in the upper midwestern United States: Simulated effect on nitrate leaching with artificial drainage

    USDA-ARS?s Scientific Manuscript database

    Fall-planted winter cover crops are an agricultural management practice with multiple benefits that includes reducing nitrate losses from artificially drained fields. While the practice is commonly used in the southern and eastern U.S., little is known about its efficacy in Midwestern states where a...

  5. Can cover crops pull double duty: Conservation and profitable forage production in the Midwestern U.S.?

    USDA-ARS?s Scientific Manuscript database

    Data from a recent survey suggests that the major reasons Nebraska farmer’s plant cover crops are to: improve soil organic matter, reduce erosion, improve soil water holding capacity, produce forage, and increase soil microbial biomass. Many of these benefits appear to be positively correlated with...

  6. Accounting for green vegetation and soil spectral properties to improve remote sensing of crop residue cover

    USDA-ARS?s Scientific Manuscript database

    Conservation tillage methods are beneficial as they disturb soil less and leaves increased crop residue cover (CRC) after planting on the soil surface. CRC helps reduce soil erosion, evaporation, and the need for tillage operations in fields. Greenhouse gas emissions are reduced to due to less fos...

  7. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: Insights into plant-microbe interactions and legume evolution

    USDA-ARS?s Scientific Manuscript database

    Lupins are important grain legume crops that form a critical part of sustainable farming systems, by reducing the need for fertilizer and providing disease breaks. Narrow-leafed lupin (Lupinus angustifolius L.) is gaining popularity as a human health food, as a non-GM alternative to soybean with the...

  8. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    NASA Astrophysics Data System (ADS)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  9. Cross-reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children.

    PubMed

    Richard, C; Jacquenet, S; Sergeant, P; Moneret-Vautrin, D A

    2015-07-01

    Legume allergy is the fifth food allergy in Europe. The dun pea (Pisum sativum sativum var. arvense), a pea belonging to the same subspecies as green pea, has been recently introduced as an ingredient in the human food industry. The aims of this study were to evaluate the cross-reactivity between dun pea and other legumes and to search for modification of allergenicity induced by food technologies. A series of 36 patients with legume and/or peanut allergy was studied. They underwent skin tests to peanut and a panel of legumes including dun pea. Specific IgE to dun pea and cross-reactivity to peanut allergens, particularly to Ara h 1, were evaluated by ELISA. Proteins and allergens of different pea extracts were studied by SDS-PAGE and immunoblots. In France and Belgium, 7.7% of severe food anaphylaxis cases were due to legumes. Patients with isolated legume allergy had positive prick tests to dun pea, whereas patients with isolated peanut allergy had negative prick tests. Cross-reactivity between sIgE to peanut and dun pea was observed, and more frequently than expected (96%) peanut-allergic patients with legume sensitization or allergy had sIgE to Ara h 1. Analysis of dun pea allergens suggested that protein epitopes were presented differently in dun pea seeds, isolate and flour. This study identifies, for the first time, a risk of dun pea allergy in legume-allergic patients and in a subset of peanut-allergic patients.

  10. Legume carotenoids.

    PubMed

    Sri Kantha, S; Erdman, J W

    1987-01-01

    In recent years, the results of research studies have suggested a positive beneficial relationship between a vegetarian-based diet and low incidence of diseases, including coronary heart disease, cancer, obesity, dental caries, and osteoporosis. beta-Carotene has specifically been suggested as a nutrient with antitumorigenic properties. In this regard there is a need to evaluate the carotenoid content of foods. Legumes are one of the staple components of a vegetarian diet. This review specifically surveys the prevalence of carotenoids in food and forage legumes. In addition, the methods available for carotenoid analysis are discussed; factors affecting the determination of carotenoid content during maturation, germination, processing and storage are identified; research areas which have been inadequately explored are identified; and suggestions are made for future lines of investigation.

  11. Specificity in Legume-Rhizobia Symbioses

    PubMed Central

    Andrews, Mitchell; Andrews, Morag E.

    2017-01-01

    Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils

  12. Specificity in Legume-Rhizobia Symbioses.

    PubMed

    Andrews, Mitchell; Andrews, Morag E

    2017-03-26

    Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N₂) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium / Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae ( Rhizobium ), the genus level for Cytisus ( Bradyrhizobium ), Lupinus ( Bradyrhizobium ) and the New Zealand native Sophora spp. ( Mesorhizobium ) and species level for Cicer arietinum ( Mesorhizobium ), Listia bainesii ( Methylobacterium ) and Listia angolensis ( Microvirga ). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis ( Neorhizobium galegeae sv. officinalis ) , Galega orientalis ( Neorhizobium galegeae sv. orientalis ), Hedysarum coronarium ( Rhizobium sullae ), Medicago laciniata ( Ensifer meliloti sv. medicaginis ), Medicago rigiduloides ( Ensifer meliloti sv. rigiduloide s) and Trifolium ambiguum ( Rhizobium leguminosarum sv. trifolii ). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia

  13. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia

    NASA Astrophysics Data System (ADS)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  14. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia.

    PubMed

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  15. Legume-rhizobia signal exchange: promiscuity and environmental effects.

    PubMed

    Lira, Mario A; Nascimento, Luciana R S; Fracetto, Giselle G M

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.

  16. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT No-till planting cotton into small grain cover crops has many benefits including reducing soil erosion and allelopathic suppression of weeds. It is suggested that the potentials of allelopathy on cotton plants. Nevertheless, little is known about the actual effects of alleloche...

  17. Cover crops and tillage in a mature Merlot vineyard affect yields and cluster weight but not nutrition

    USDA-ARS?s Scientific Manuscript database

    Permanent cover crops are commonly used in vineyard floor management because of their beneficial effects to soil and vine health, but studies evaluating their competitive effects on vines have been conducted primarily in non-irrigated vineyards. Future air quality regulations could mandate the use o...

  18. Effect of biofumigation with brassica pellets combined with Brassicaceae cover crops and plastic cover on the survival and infectivity of inoculum of Phytophthora nicotianae Breda de Haan.

    PubMed

    Rodríguez-Molina, M Carmen; Serrano-Pérez, Paula; Palo, Carolina

    2016-07-01

    Biofumigation with defatted seed meal of Brassicaceae in the form of pellets has several advantages over the incorporation of fresh Brassicaceae crops to control soil-borne diseases. Two field experiments were established to evaluate the effect of biofumigation with brassica pellets on the survival and infectivity of Phytophthora nicotianae Breda de Haan inoculum introduced before treatments. In the spring experiment the incorporation of additional Brassicaceae cover crop (Brassica nigra L. and Sinapis alba L.) was tested, and in the summer experiment two brassica pellet doses were applied. Biofumigation with brassica pellets in spring (3000 kg ha(-1) with and without plastic) or in summer (3000 kg ha(-1) with or without plastic; 6000 kg ha(-1) without plastic) had no significant effect on the survival of P. nicotianae, regardless of the incorporation of additional Brassicaceae cover crop in spring. Reduction in infectivity in spring was related to the application of plastic, especially when combined with brassica pellets and Brassicaceae crop. In summer, soil temperature was the main factor in the inactivation of the inoculum, especially when plastic was applied, and no additional inactivation was achieved with brassica pellets. In spring and summer, biofumigation with brassica pellets had no effect on the survival of P. nicotianae. Application of plastic in spring may reduce infectivity. Soil temperature is the main factor in the inactivation of inoculum in summer, especially when plastic is applied. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop

    USDA-ARS?s Scientific Manuscript database

    Growing enough cover crop biomass to adequately suppress weeds is one of the primary challenges in reduced-tillage systems that rely on mulch-based weed suppression. We investigated two approaches to increasing cereal rye biomass for improved weed suppression: (1) increasing soil fertility and (2) i...

  20. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) silage and soybean [Glycine max (L.) Merr.] rotations in the US Upper Midwest leave minimal amounts of surface residues, which can contribute to soil degradation and a reduction in water quality. Planting cover crops after harvest can reduce these concerns, but their effectiveness...

  1. Assessing crop residue cover as scene moisture conditions change

    USDA-ARS?s Scientific Manuscript database

    Crop residue or plant litter is the portion of a crop left in the field after harvest. Crop residues on the soil surface provide a first line of defense against water and wind erosion and reduce the amounts of soil, nutrients, and pesticides that reach streams and rivers. Thus, quantification of cro...

  2. Data on the abundance of the banana weevil Cosmopolites sordidus and of the earwig Euborellia caraibea in bare soil and cover crop plots.

    PubMed

    Carval, Dominique; Resmond, Rémi; Achard, Raphaël; Tixier, Philippe

    2016-06-01

    The data presented in this article are related to the research article entitled "Cover cropping reduces the abundance of the banana weevil Cosmopolites sordidus but does not reduce its damage to the banana plants" (Carval et al., in press) [1]. This article describes how the abundance of the banana weevil, Cosmopolites sordidus, and the abundance of the earwig Euborellia caraibea were affected by the addition of a cover crop. The field data set is made publicly available to enable critical or extended analyzes.

  3. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    USDA-ARS?s Scientific Manuscript database

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  4. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  5. Data on the abundance of the banana weevil Cosmopolites sordidus and of the earwig Euborellia caraibea in bare soil and cover crop plots

    PubMed Central

    Carval, Dominique; Resmond, Rémi; Achard, Raphaël; Tixier, Philippe

    2016-01-01

    The data presented in this article are related to the research article entitled “Cover cropping reduces the abundance of the banana weevil Cosmopolites sordidus but does not reduce its damage to the banana plants” (Carval et al., in press) [1]. This article describes how the abundance of the banana weevil, Cosmopolites sordidus, and the abundance of the earwig Euborellia caraibea were affected by the addition of a cover crop. The field data set is made publicly available to enable critical or extended analyzes. PMID:27222854

  6. Dealing with drought: Securing nitrogen with cover crops

    USDA-ARS?s Scientific Manuscript database

    This year the drought in the Midwest has significantly reduced the growth and yield of all crops. When the growth of the cash crop has been reduced by drought or any other cause it is important to remember that more nitrogent than normal will remain in the soil after harvest. This nitrogen will be v...

  7. Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations

    USDA-ARS?s Scientific Manuscript database

    Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...

  8. Soils determine early revegetation establishment with and without cover crops in northern mixed grass prairie after energy development

    USDA-ARS?s Scientific Manuscript database

    We measured rangeland health and perennial grass establishment in twelve interim reclamations as part of oil extraction activity. Sites at Ft. Berthold Indian Reservation in North Dakota were planted with two different perennial grass mixes, with and without an oat cover crop in late summer/fall of ...

  9. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the Eastern US

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till soybean production has been gaining traction in the Eastern region of the United States because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic product...

  10. Enhancing management of fall-applied poultry litter with cover crop and subsurface band placement in no-till cotton

    USDA-ARS?s Scientific Manuscript database

    Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...

  11. Hairy vetch biomass across the eastern United States: Effects of latitude, seeding rate and date, and termination timing

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a winter annual legume cover crop that is often grown because it can provide a substantial amount of N to the following cash crop. Nitrogen accumulation is dependent on biomass production, which in turn is affected by climate, seeding rate and date, and timing of ...

  12. Soil quality and the solar corridor crop system

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  13. Soil Quality and the Solar Corridor Crop System

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  14. Draft Genome Sequence, and a Sequence-Defined Genetic Linkage Map of the Legume Crop Species Lupinus angustifolius L

    PubMed Central

    Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W.; Howieson, John G.; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species. PMID:23734219

  15. Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W; Howieson, John G; Li, Chengdao

    2013-01-01

    Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.

  16. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage

    PubMed Central

    Hloucalová, Pavlína; Skládanka, Jiří; Horký, Pavel; Klejdus, Bořivoj; Pelikán, Jan; Knotová, Daniela

    2016-01-01

    Simple Summary Phytoestrogens comprise a group of substances negatively influencing the development and function of animal reproductive organs. Their appearance in forage crops can reduce feeding values, cause dietary disorders, and lead to animal health damage. This study evaluated the occurrence of individual phytoestrogens in various species of annual and perennial legumes and their levels in dry forage. It appeared that feeding large amounts of red clover presents a potential risk, but red clover can be replaced with the annual Persian clover, in which markedly lower phytoestrogen levels were detected. Abstract The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety “Amos”), alfalfa (variety “Holyně”), and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography–mass spectrometry (LC-MS). Higher levels (p < 0.05) of isoflavones biochanin A (3.697 mg·g−1 of dry weight) and formononetin (4.315 mg·g−1 of dry weight) were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter (p < 0.05), representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest. PMID:27429009

  17. Biotechnology: herbicide-resistant crops

    USDA-ARS?s Scientific Manuscript database

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  18. High Residue Winter Cover Crops Deplete Winter Annual Weed Seed Across a Landscape in a Long-Term Tillage Study

    USDA-ARS?s Scientific Manuscript database

    High residue conservation agriculture systems have the potential to maximize environmental benefits achieved when practicing reduced tillage. A greenhouse study was conducted in 2006 through 2008 to determine the effects of cover crop residue on weed seed density within the soil seedbank under varyi...

  19. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    PubMed Central

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  20. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.

    2016-01-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  1. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  2. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    PubMed

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright

  3. Carbon balance of the typical grain crop rotation in Moscow region assessed by eddy covariance method

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan

    2017-04-01

    Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white

  4. Beans and Other Legumes: Types and Cooking Tips

    MedlinePlus

    ... Nutrition and healthy eating Want to add nutritious beans and legumes to your diet but aren't ... Staff Legumes — a class of vegetables that includes beans, peas and lentils — are among the most versatile ...

  5. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    USDA-ARS?s Scientific Manuscript database

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  6. Potential of legume-based grassland–livestock systems in Europe: a review

    PubMed Central

    Lüscher, A; Mueller-Harvey, I; Soussana, J F; Rees, R M; Peyraud, J L

    2014-01-01

    European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future. PMID:26300574

  7. “Kicking the Tires” of the energy balance routine within the CROPGRO crop growth models of DSSAT

    USDA-ARS?s Scientific Manuscript database

    Two decades ago a routine called ETPHOT was written to compute evaporation, transpiration, and photosynthesis in the CROPGRO crop simulation programs for grain legumes such as soybean. These programs are part of the DSSAT (Decision Support System of Agrotechnology Transfer), which has been widely us...

  8. Legume Genome Initiative at the University of Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce A. Roe

    2004-02-27

    Consolidated Appropriations Resolution, 2003 Conference Report for the Department of Energy's Biological and Environmental Research (BER) program provided $481,000 for the Legume Genome Initiative at the University of Oklahoma. These funds were used to support our research that is aimed at determining the entire sequence of the gene rich regions of the genome of the legume, Medicago truncatula, by allowing us to obtain a greater degree of finished BAC sequences from the draft sequences we have already obtained through research funded by the Noble Foundation. During the funding period we increased the number of Medicago truncatula BACs with finished (Bermudamore » standard) sequences from 109 to 359, and the total number of BACs for which we collected sequence data from 584 to 842, 359 of which reached phase 2 (ordered and oriented contigs). We also sequenced a series of pooled BAC clones that cover additional euchromatic (gene rich) genomic regions. This work resulted in 6 refereed publications, see below. Genes whose sequence was determined during this study included multiple members of the plant disease resistance (R-gene) family as well as several genes involved in flavinoid biosynthesis, nitrogen fixation and plant-microbial symbosis. This work also served as a prelude to obtaining NSF funding for the international collaborative effort to complete the entire sequence of the Medicago truncatula genomic euchromatic regions using a BAC based approach.« less

  9. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume

    PubMed Central

    Belamkar, Vikas; Farmer, Andrew D.; Weeks, Nathan T.; Kalberer, Scott R.; Blackmon, William J.; Cannon, Steven B.

    2016-01-01

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome–another phaseoloid legume with the same chromosome number–provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement. PMID:27721469

  10. Frost risk for overwintering crops in a changing climate

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  11. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.

    PubMed

    Hao, X; Taghavi, S; Xie, P; Orbach, M J; Alwathnani, H A; Rensing, C; Wei, G

    2014-01-01

    Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals.

  12. Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts

    PubMed Central

    Marvel, Deborah J.; Torrey, John G.; Ausubel, Frederick M.

    1987-01-01

    Parasponia, a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with Bradyrhizobium or Rhizobium species. The Bradyrhizobium strain Rp501, isolated from Parasponia nodules, also nodulates the legumes siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata). To test whether some of the same genes are involved in the early stages of legume and nonlegume nodulation, we generated transposon Tn5 insertions in the region of three evolutionarily conserved genes (nodA, nodB, and nodC) required for legume nodulation in several Rhizobium and Bradyrhizobium species. Assays of these mutant Rp501 strains on legume hosts and Parasponia seedlings established that nodABC are required for nodulation of legume and nonlegume hosts, indicating that nonlegumes and legumes can respond to the same bacterial signal(s). In addition, a strain carrying a Tn5 insertion adjacent to the nodABC genes vigorously nodulated Rp501 legume hosts but was incapable of nodulating Parasponia, possibly identifying a nonlegume-specific nodulation function. Images PMID:16593814

  13. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change.

    PubMed

    Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson

    2016-01-01

    This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.

  14. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  15. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  16. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    PubMed

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Nitrate losses from agricultural lands in the Midwest flow into the Mississippi River Basin (MRB) and contribute significantly to hypoxia in the Gulf of Mexico. Previous work has shown that cover crops can reduce loadings, but adoption rates are low, and the potential impact is currently unknown. Th...

  18. Linking a Germplasm Collection of the Cover Crop Hairy Vetch (Vicia villosa Roth) to Traits Related to Improved Nitrogen Fixation

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch is used as a leguminous cover crop throughout the United States providing important ecosystem services in agro-ecosystems (Abdul-Baki et al., 2002; Mohler and Teasdale, 1993; Puget and Drinkwater, 2001; Seo et al., 2006; Stute and Posner, 1995). Many traits found in hairy vetch have pro...

  19. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review

    PubMed Central

    Xue, Yanfang; Xia, Haiyong; Christie, Peter; Zhang, Zheng; Li, Long; Tang, Caixian

    2016-01-01

    Background Phosphorus (P), iron (Fe) and zinc (Zn) are essential elements for plant growth and development, but their availability in soil is often limited. Intercropping contributes to increased P, Fe and Zn uptake and thereby increases yield and improves grain nutritional quality and ultimately human health. A better understanding of how intercropping leads to increased plant P, Fe and Zn availability will help to improve P-fertilizer-use efficiency and agronomic Fe and Zn biofortification. Scope This review synthesizes the literature on how intercropping of legumes with cereals increases acquisition of P, Fe and Zn from soil and recapitulates what is known about root-to-shoot nutrient translocation, plant-internal nutrient remobilization and allocation to grains. Conclusions Direct interspecific facilitation in intercropping involves below-ground processes in which cereals increase Fe and Zn bioavailability while companion legumes benefit. This has been demonstrated and verified using isotopic nutrient tracing and molecular analysis. The same methodological approaches and field studies should be used to explore direct interspecific P facilitation. Both niche complementarity and interspecific facilitation contribute to increased P acquisition in intercropping. Niche complementarity may also contribute to increased Fe and Zn acquisition, an aspect poorly understood. Interspecific mobilization and uptake facilitation of sparingly soluble P, Fe and Zn from soil, however, are not the only determinants of the concentrations of P, Fe and Zn in grains. Grain yield and nutrient translocation from roots to shoots further influence the concentrations of these nutrients in grains. PMID:26749590

  20. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    PubMed

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  1. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  2. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  3. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  4. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  5. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California.

    PubMed

    Huynh, Bao-Lam; Ehlers, Jeffrey D; Ndeve, Arsenio; Wanamaker, Steve; Lucas, Mitchell R; Close, Timothy J; Roberts, Philip A

    The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing.

  6. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem

    PubMed Central

    Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi

    2016-01-01

    The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209

  7. Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field.

    PubMed

    Jahangir, M M R; Minet, E P; Johnston, P; Premrov, A; Coxon, C E; Hackett, R; Richards, K G

    2014-05-01

    Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  9. Black plastic mulch combined with summer cover crop increases the yield and water use efficiency of apple tree on the rainfed Loess Plateau

    PubMed Central

    Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan

    2017-01-01

    Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428

  10. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    USDA-ARS?s Scientific Manuscript database

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  11. 78 FR 32246 - Pesticide Products; Registration Applications for New Active Ingredients

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ..., crop subgroup 5A; leafy Brassica, greens, crop sub-group 5B; turnip, greens; edible-podded legume..., except soybean, crop subgroups 6C; foliage of legume vegetables, including soybeans, crop group 7, forage green vines; foliage of legume vegetables, including soybean, crop group 7, hay; soybean, seed; fruiting...

  12. Legumes steam allergy in childhood: Update of the reported cases.

    PubMed

    Vitaliti, G; Pavone, P; Spataro, G; Giunta, L; Guglielmo, F; Falsaperla, R

    2015-01-01

    In the past few decades, the prevalence of allergic diseases has deeply increased, with a key role played by food allergies. Legumes seem to play a major role towards the overall increase in the scenario of food allergy, since they are an appreciated source, consumed worldwide, due to their high protein content, variable amounts of lipids and for the presence of vitamins. In literature there are numerous descriptions of adverse reactions after ingestion of uncooked and cooked legumes. Nevertheless, cases of allergic reactions induced by inhaling vapours from cooking legumes have rarely been described. Herein the authors report an update of the literature data on allergic reactions caused by legume steam inhalation, underlying the possible pathogenic mechanism of these atopic events and the knowledge of literature data in paediatric age. The importance of this review is the focus on the clinical aspects concerning legume vapour allergy, referring to literature data in childhood. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.

  13. Legume abundance along successional and rainfall gradients in Neotropical forests.

    PubMed

    Gei, Maga; Rozendaal, Danaë M A; Poorter, Lourens; Bongers, Frans; Sprent, Janet I; Garner, Mira D; Aide, T Mitchell; Andrade, José Luis; Balvanera, Patricia; Becknell, Justin M; Brancalion, Pedro H S; Cabral, George A L; César, Ricardo Gomes; Chazdon, Robin L; Cole, Rebecca J; Colletta, Gabriel Dalla; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan Manuel; Durán, Sandra M; do Espírito Santo, Mário Marcos; Fernandes, G Wilson; Nunes, Yule Roberta Ferreira; Finegan, Bryan; Moser, Vanessa Granda; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Junqueira, André B; Kennard, Deborah; Lebrija-Trejos, Edwin; Letcher, Susan G; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Meave, Jorge A; Menge, Duncan N L; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Ostertag, Rebecca; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Reich, Peter B; Reyes-García, Casandra; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Sanaphre-Villanueva, Lucía; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; de Almeida, Arlete Silva; Almeida-Cortez, Jarcilene S; Silver, Whendee; de Souza Moreno, Vanessa; Sullivan, Benjamin W; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria das Dores Magalhães; Vester, Hans F M; Vieira, Ima Célia Guimarães; Zimmerman, Jess K; Powers, Jennifer S

    2018-05-28

    The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N 2 , which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.

  14. Effects of integrated polyethylene and cover crop mulch, conservation tillage, and herbicide application on weed control, yield, and economic returns in watermelon

    USDA-ARS?s Scientific Manuscript database

    The lack of conservation adoption in watermelon production reflects the lack of field practice recommendations addressing the challenges associated with producing vegetables in minimally disturbed cover crop residues. A three year watermelon experiment was established in fall 2013 to evaluate integr...

  15. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  16. Sunn Hemp Cover Cropping and Organic Fertilizer Effects on the Nematode Community Under Temperate Growing Conditions

    PubMed Central

    Hinds, Jermaine; Wang, Koon-Hui; Marahatta, Sharadchandra P.; Meyer, Susan L. F.; Hooks, Cerruti R. R.

    2013-01-01

    Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle. PMID:24379485

  17. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    PubMed

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  18. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes

    PubMed Central

    Bertioli, David J; Moretzsohn, Marcio C; Madsen, Lene H; Sandal, Niels; Leal-Bertioli, Soraya CM; Guimarães, Patricia M; Hougaard, Birgit K; Fredslund, Jakob; Schauser, Leif; Nielsen, Anna M; Sato, Shusei; Tabata, Satoshi; Cannon, Steven B; Stougaard, Jens

    2009-01-01

    Background Most agriculturally important legumes fall within two sub-clades of the Papilionoid legumes: the Phaseoloids and Galegoids, which diverged about 50 Mya. The Phaseoloids are mostly tropical and include crops such as common bean and soybean. The Galegoids are mostly temperate and include clover, fava bean and the model legumes Lotus and Medicago (both with substantially sequenced genomes). In contrast, peanut (Arachis hypogaea) falls in the Dalbergioid clade which is more basal in its divergence within the Papilionoids. The aim of this work was to integrate the genetic map of Arachis with Lotus and Medicago and improve our understanding of the Arachis genome and legume genomes in general. To do this we placed on the Arachis map, comparative anchor markers defined using a previously described bioinformatics pipeline. Also we investigated the possible role of transposons in the patterns of synteny that were observed. Results The Arachis genetic map was substantially aligned with Lotus and Medicago with most synteny blocks presenting a single main affinity to each genome. This indicates that the last common whole genome duplication within the Papilionoid legumes predated the divergence of Arachis from the Galegoids and Phaseoloids sufficiently that the common ancestral genome was substantially diploidized. The Arachis and model legume genomes comparison made here, together with a previously published comparison of Lotus and Medicago allowed all possible Arachis-Lotus-Medicago species by species comparisons to be made and genome syntenies observed. Distinct conserved synteny blocks and non-conserved regions were present in all genome comparisons, implying that certain legume genomic regions are consistently more stable during evolution than others. We found that in Medicago and possibly also in Lotus, retrotransposons tend to be more frequent in the variable regions. Furthermore, while these variable regions generally have lower densities of single copy genes

  19. Weed Control for Establishing Intensively Cultured Hybrid Poplar Plantations

    Treesearch

    Edward Hansen; Daniel Netzer; W.J. Rietveld

    1984-01-01

    Compares effeects of various wee-control methods, including hericides, cultivation, and legume cover crop, on tree survival and height growth of 2-year-old hybrid poplars. Cultivation and herbicides singly or in combination gave consistently better results than the other treatment tested.

  20. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique.

    PubMed

    Seresinhe, T; Madushika, S A C; Seresinhe, Y; Lal, P K; Orskov, E R

    2012-10-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  1. Effects of different roller/crimper designs and rolling speed on rye cover crop termination and seedcotton yield in A no-till system

    USDA-ARS?s Scientific Manuscript database

    Rollers/crimpers have been utilized in no-till systems to mechanically terminate cover crops as a substitute for chemical termination; however, excessive vibration generated by the original straight bar roller adopted from Brazil has delayed its adoption in the U.S. To reduce excessive vibration, pr...

  2. Nutritive evaluation of legume seeds for ruminant feeding.

    PubMed

    Ramos-Morales, E; Sanz-Sampelayo, M R; Molina-Alcaide, E

    2010-02-01

    Chemical composition, rumen degradability and the effect of particle losses, and intestinal digestibility of protein by using in situ-in vitro and in vitro techniques were stated for beans (Vicia faba), lupin (Lupinus albus), vetch (Vicia sativa) and bitter vetch (Vicia ervilia) and four diets including those legume seeds. In addition, the apparent digestibility of experimental diets was determined in goats. The legume seeds showed high protein content (206-319 g/kg dry matter). Effective degradability of protein for legumes and diets varied from 0.80 to 0.87 and 0.76 to 0.82, respectively, decreasing to 0.53-0.76 and 0.61-0.67, respectively, when particle loss was taken into account. Different intestinal digestibility values were obtained with both methodologies without significant relationship between them (y = 1.058-0.463x; R(2)=0.068; RSD = 0.140; p = 0.53). There were no differences in the apparent nutrients and energy digestibility among diets (p > 0.05). These legumes can supply rapidly degradable protein for microbial protein synthesis and contribute to the pool of amino acids available for the synthesis of milk protein and for retention in the body.

  3. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.

    PubMed

    Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E

    2014-12-01

    We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Weed science and management, in soil sciences, land cover, and land use

    USDA-ARS?s Scientific Manuscript database

    An integral component of conservation agriculture systems in cotton is the use of a high-residue winter cover crop; however, terminating such cover crops is a cost and planting into high-residue is a challenge. Black oat, rye, and wheat winter cover crops were flattened with a straight-blade mechan...

  5. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  6. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of tillage and crop residue management on nematode densities on corn.

    PubMed

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  8. Extrusion cooking: Legume pulses

    USDA-ARS?s Scientific Manuscript database

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  9. Composition of legume soaking water and emulsifying properties in gluten-free bread.

    PubMed

    Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca

    2018-04-01

    Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.

  10. How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground

    PubMed Central

    Kouchi, Hiroshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto; Hakoyama, Tsuneo; Nakagawa, Tomomi; Umehara, Yosuke; Suganuma, Norio; Kawaguchi, Masayoshi

    2010-01-01

    The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant–microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant–microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes. PMID:20660226

  11. Derived crop management data for the LandCarbon Project

    USGS Publications Warehouse

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  12. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  13. Evaluation of herbicide efficacy, injury and yield in white lupin (Lupinus albus L.)

    USDA-ARS?s Scientific Manuscript database

    White lupin is of increasing interest in the southeastern USA as a winter legume cover crop or as mid-winter forage for ruminants. White lupins are poor weed competitors during early establishment which makes effective weed control necessary, however, only three herbicides are currently registered f...

  14. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops

    PubMed Central

    Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja

    2017-01-01

    One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653

  15. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    PubMed Central

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  16. Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform.

    PubMed

    Wang, Jinpeng; Sun, Pengchuan; Li, Yuxian; Liu, Yinzhe; Yu, Jigao; Ma, Xuelian; Sun, Sangrong; Yang, Nanshan; Xia, Ruiyan; Lei, Tianyu; Liu, Xiaojian; Jiao, Beibei; Xing, Yue; Ge, Weina; Wang, Li; Wang, Zhenyi; Song, Xiaoming; Yuan, Min; Guo, Di; Zhang, Lan; Zhang, Jiaqi; Jin, Dianchuan; Chen, Wei; Pan, Yuxin; Liu, Tao; Jin, Ling; Sun, Jinshuai; Yu, Jiaxiang; Cheng, Rui; Duan, Xueqian; Shen, Shaoqi; Qin, Jun; Zhang, Meng-Chen; Paterson, Andrew H; Wang, Xiyin

    2017-05-01

    Mainly due to their economic importance, genomes of 10 legumes, including soybean ( Glycine max ), wild peanut ( Arachis duranensis and Arachis ipaensis ), and barrel medic ( Medicago truncatula ), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape ( Vitis vinifera ) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org). © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. 77 FR 75560 - Chlorantraniliprole; Pesticide Tolerances, Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... incorrectly established tolerances for ``Vegetable, foliage of legume, group 7, forage'' and ``Vegetable, foliage of legume, group 7, hay''. Under EPA's crop group regulation there are no such crop groups. Rather, there is only a crop group for ``Vegetable, foliage of legume, group 7.'' The petition correctly...

  18. Legume Lectins: Proteins with Diverse Applications

    PubMed Central

    Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz

    2017-01-01

    Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616

  19. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    USGS Publications Warehouse

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  20. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

    PubMed Central

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154

  1. Distinct, crucial roles of flavonoids during legume nodulation.

    PubMed

    Subramanian, Senthil; Stacey, Gary; Yu, Oliver

    2007-07-01

    RNA interference-mediated silencing of the key flavonoid and isoflavone biosynthesis enzyme, respectively, by two different research groups has provided direct genetic evidence for the essential roles that these compounds play in nodulation. Anton Wasson et al. have shown that flavonoids are essential for localized auxin transport inhibition during nodulation in the indeterminate legume Medicago truncatula. By contrast, Senthil Subramanian et al. have shown that isoflavones are essential for endogenous nod gene induction in the determinate legume soybean.

  2. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils.

    PubMed

    Liu, Wendy Y Y; Ridgway, Hayley J; James, Trevor K; James, Euan K; Chen, Wen-Ming; Sprent, Janet I; Young, J Peter W; Andrews, Mitchell

    2014-10-01

    The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.

  3. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China

    PubMed Central

    Zang, Yifei; Wei, Xiaorong; Hao, Mingde

    2015-01-01

    The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil. PMID:26694965

  4. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China.

    PubMed

    Zang, Yifei; Wei, Xiaorong; Hao, Mingde

    2015-01-01

    The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil.

  5. Genetic diversity of resident soil rhizobia isolated from nodules of distinct hairy vetch genotypes

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is widely grown as a legume cover crop throughout the U.S.A., with biological nitrogen fixation (BNF) through symbiosis with Rhizobium leguminosarum biovar viciae (Rlv) being one of the most sought after benefits of its cultivation. This study determined if HV culti...

  6. 77 FR 28276 - Penflufen; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...; alfalfa, hay; vegetable, tuberous and corm, subgroup 1C; vegetable, legume, group 6; vegetable, foliage of legume, group 7; grain, cereal, group 15, grain, cereal, forage, fodder and straw, group 16; oilseed... Uses on Potato (Crop Subgroup 1C), Legume Vegetables (Crop Group 6 and Crop Group 7), Cereal Grains...

  7. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  8. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle?

    PubMed Central

    Coba de la Peña, Teodoro; Fedorova, Elena; Pueyo, José J.; Lucas, M. Mercedes

    2018-01-01

    In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle. PMID:29403508

  9. [Development and technological transfer of functional pastas extended with legumes].

    PubMed

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  10. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.

    PubMed

    Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher

    2015-01-15

    Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014

  11. Alternative cropping systems for sugarcane

    USDA-ARS?s Scientific Manuscript database

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  12. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes

    PubMed Central

    Kaila, Tanvi; Chaduvla, Pavan K.; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J.; Chaudhury, Ashok; Sharma, T. R.; Singh, N. K.; Gaikwad, Kishor

    2016-01-01

    Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes. PMID:28018385

  13. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes.

    PubMed

    Kaila, Tanvi; Chaduvla, Pavan K; Saxena, Swati; Bahadur, Kaushlendra; Gahukar, Santosh J; Chaudhury, Ashok; Sharma, T R; Singh, N K; Gaikwad, Kishor

    2016-01-01

    Pigeonpea ( Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan , with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.

  14. Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots

    PubMed Central

    Robledo, M.; Jiménez-Zurdo, J. I.; Velázquez, E.; Trujillo, M. E.; Zurdo-Piñeiro, J. L.; Ramírez-Bahena, M. H.; Ramos, B.; Díaz-Mínguez, J. M.; Dazzo, F.; Martínez-Molina, E.; Mateos, P. F.

    2008-01-01

    The rhizobia–legume, root-nodule symbiosis provides the most efficient source of biologically fixed ammonia fertilizer for agricultural crops. Its development involves pathways of specificity, infectivity, and effectivity resulting from expressed traits of the bacterium and host plant. A key event of the infection process required for development of this root-nodule symbiosis is a highly localized, complete erosion of the plant cell wall through which the bacterial symbiont penetrates to establish a nitrogen-fixing, intracellular endosymbiotic state within the host. This process of wall degradation must be delicately balanced to avoid lysis and destruction of the host cell. Here, we describe the purification, biochemical characterization, molecular genetic analysis, biological activity, and symbiotic function of a cell-bound bacterial cellulase (CelC2) enzyme from Rhizobium leguminosarum bv. trifolii, the clover-nodulating endosymbiont. The purified enzyme can erode the noncrystalline tip of the white clover host root hair wall, making a localized hole of sufficient size to allow wild-type microsymbiont penetration. This CelC2 enzyme is not active on root hairs of the nonhost legume alfalfa. Microscopy analysis of the symbiotic phenotypes of the ANU843 wild type and CelC2 knockout mutant derivative revealed that this enzyme fulfils an essential role in the primary infection process required for development of the canonical nitrogen-fixing R. leguminosarum bv. trifolii-white clover symbiosis. PMID:18458328

  15. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  16. Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis

    PubMed Central

    2014-01-01

    Background The nematode Pratylenchus neglectus has a wide host range and is able to feed on the root systems of cereals, oilseeds, grain and pasture legumes. Under the Mediterranean low rainfall environments of Australia, annual Medicago pasture legumes are used in rotation with cereals to fix atmospheric nitrogen and improve soil parameters. Considerable efforts are being made in breeding programs to improve resistance and tolerance to Pratylenchus neglectus in the major crops wheat and barley, which makes it vital to develop appropriate selection tools in medics. Results A strong source of tolerance to root damage by the root lesion nematode (RLN) Pratylenchus neglectus had previously been identified in line RH-1 (strand medic, M. littoralis). Using RH-1, we have developed a single seed descent (SSD) population of 138 lines by crossing it to the intolerant cultivar Herald. After inoculation, RLN-associated root damage clearly segregated in the population. Genetic analysis was performed by constructing a genetic map using simple sequence repeat (SSR) and gene-based SNP markers. A highly significant quantitative trait locus (QTL), QPnTolMl.1, was identified explaining 49% of the phenotypic variation in the SSD population. All SSRs and gene-based markers in the QTL region were derived from chromosome 1 of the sequenced genome of the closely related species M. truncatula. Gene-based markers were validated in advanced breeding lines derived from the RH-1 parent and also a second RLN tolerance source, RH-2 (M. truncatula ssp. tricycla). Comparative analysis to sequenced legume genomes showed that the physical QTL interval exists as a synteny block in Lotus japonicus, common bean, soybean and chickpea. Furthermore, using the sequenced genome information of M. truncatula, the QTL interval contains 55 genes out of which five are discussed as potential candidate genes responsible for the mapped tolerance. Conclusion The closely linked set of SNP-based PCR markers is

  17. Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis.

    PubMed

    Oldach, Klaus H; Peck, David M; Nair, Ramakrishnan M; Sokolova, Maria; Harris, John; Bogacki, Paul; Ballard, Ross

    2014-04-17

    The nematode Pratylenchus neglectus has a wide host range and is able to feed on the root systems of cereals, oilseeds, grain and pasture legumes. Under the Mediterranean low rainfall environments of Australia, annual Medicago pasture legumes are used in rotation with cereals to fix atmospheric nitrogen and improve soil parameters. Considerable efforts are being made in breeding programs to improve resistance and tolerance to Pratylenchus neglectus in the major crops wheat and barley, which makes it vital to develop appropriate selection tools in medics. A strong source of tolerance to root damage by the root lesion nematode (RLN) Pratylenchus neglectus had previously been identified in line RH-1 (strand medic, M. littoralis). Using RH-1, we have developed a single seed descent (SSD) population of 138 lines by crossing it to the intolerant cultivar Herald. After inoculation, RLN-associated root damage clearly segregated in the population. Genetic analysis was performed by constructing a genetic map using simple sequence repeat (SSR) and gene-based SNP markers. A highly significant quantitative trait locus (QTL), QPnTolMl.1, was identified explaining 49% of the phenotypic variation in the SSD population. All SSRs and gene-based markers in the QTL region were derived from chromosome 1 of the sequenced genome of the closely related species M. truncatula. Gene-based markers were validated in advanced breeding lines derived from the RH-1 parent and also a second RLN tolerance source, RH-2 (M. truncatula ssp. tricycla). Comparative analysis to sequenced legume genomes showed that the physical QTL interval exists as a synteny block in Lotus japonicus, common bean, soybean and chickpea. Furthermore, using the sequenced genome information of M. truncatula, the QTL interval contains 55 genes out of which five are discussed as potential candidate genes responsible for the mapped tolerance. The closely linked set of SNP-based PCR markers is directly applicable to select for

  18. Repellency of Plant Extracts against the Legume Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae)

    PubMed Central

    Abtew, Andnet; Subramanian, Sevgan; Cheseto, Xavier; Kreiter, Serge; Tropea Garzia, Giovanna; Martin, Thibaud

    2015-01-01

    Megalurothrips sjostedti Trybom is an important pest of cowpea (Vigna unguiculata L.) in Africa. To propose an alternative to chemical control, the repellency of 24 plant extracts was evaluated against adult female thrips of M. sjostedti in the laboratory. Plant extracts in ethanol were separately applied on a filter paper disk in a still air visual cue olfactometer. The results showed highly significant differences in repellency among extract type, concentration and their interactions. We classified the level of repellency into four categories as strong, good, moderate and weak or non- repellent based on hierarchical ascendant classification. We identified Piper nigrum, Cinnamomum zeylanicum, Cinnamomum cassia as strong repellents. Five extracts were classified as good, eight as moderate and the remaining eight extracts were weak or non-repellent. Repellency of the extracts increased with the concentration suggesting that the behavioral response of M. sjostedti was dose-dependent. Mono- and sesquiterpene hydrocarbon compounds from seven highly repellent extracts were identified by gas chromatography-mass spectrometry (GC/MS). The use of repellent extracts could be useful in developing integrated pest management strategies for thrips on legume crops. In this regard, the specific modes of action of the identified compounds need to be investigated to incorporate them into the existing crop protection strategies. PMID:26463406

  19. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed Central

    Hedin, Lars O.; Leake, Jonathan R.

    2017-01-01

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58–42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35–65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation. PMID:28814651

  20. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).