Science.gov

Sample records for legumes pistillata proteins

  1. Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata.

    PubMed

    Mass, Tali; Drake, Jeana L; Peters, Esther C; Jiang, Wenge; Falkowski, Paul G

    2014-09-01

    The precipitation and assembly of calcium carbonate skeletons by stony corals is a precisely controlled process regulated by the secretion of an ECM. Recently, it has been reported that the proteome of the skeletal organic matrix (SOM) contains a group of coral acid-rich proteins as well as an assemblage of adhesion and structural proteins, which together, create a framework for the precipitation of aragonite. To date, we are aware of no report that has investigated the localization of individual SOM proteins in the skeleton. In particular, no data are available on the ultrastructural mapping of these proteins in the calcification site or the skeleton. This information is crucial to assessing the role of these proteins in biomineralization. Immunological techniques represent a valuable approach to localize a single component within a calcified skeleton. By using immunogold labeling and immunohistochemical assays, here we show the spatial arrangement of key matrix proteins in tissue and skeleton of the common zooxanthellate coral, Stylophora pistillata. To our knowledge, our results reveal for the first time that, at the nanoscale, skeletal proteins are embedded within the aragonite crystals in a highly ordered arrangement consistent with a diel calcification pattern. In the tissue, these proteins are not restricted to the calcifying epithelium, suggesting that they also play other roles in the coral's metabolic pathways.

  2. Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata

    PubMed Central

    Mass, Tali; Drake, Jeana L.; Peters, Esther C.; Jiang, Wenge; Falkowski, Paul G.

    2014-01-01

    The precipitation and assembly of calcium carbonate skeletons by stony corals is a precisely controlled process regulated by the secretion of an ECM. Recently, it has been reported that the proteome of the skeletal organic matrix (SOM) contains a group of coral acid-rich proteins as well as an assemblage of adhesion and structural proteins, which together, create a framework for the precipitation of aragonite. To date, we are aware of no report that has investigated the localization of individual SOM proteins in the skeleton. In particular, no data are available on the ultrastructural mapping of these proteins in the calcification site or the skeleton. This information is crucial to assessing the role of these proteins in biomineralization. Immunological techniques represent a valuable approach to localize a single component within a calcified skeleton. By using immunogold labeling and immunohistochemical assays, here we show the spatial arrangement of key matrix proteins in tissue and skeleton of the common zooxanthellate coral, Stylophora pistillata. To our knowledge, our results reveal for the first time that, at the nanoscale, skeletal proteins are embedded within the aragonite crystals in a highly ordered arrangement consistent with a diel calcification pattern. In the tissue, these proteins are not restricted to the calcifying epithelium, suggesting that they also play other roles in the coral’s metabolic pathways. PMID:25139990

  3. Characterizing Skeletal Framework Proteins from the Stony Coral, Stylophora pistillata using Proteomics

    NASA Astrophysics Data System (ADS)

    Drake, J.; Mass, T.; Haramaty, L.; Zelzion, U.; Bhattacharya, D.; Falkowski, P. G.

    2012-12-01

    Carbonate formation by biological organisms is catalyzed by a set of proteins. In corals, the proteins form a subset of a poorly characterized skeletal organic matrix (SOM). This matrix is not simply cells occluded in the mineral, but is instead a suite of biomolecules secreted from cells for the purpose of nucleation and/or scaffolding. However, the mechanism(s) for SOM's role in biomineral formation remain to be elucidated, in part because, for many organisms including stony corals, the organic molecules have yet to be characterized much less modeled. In an effort to understand the calcification process, we sequenced the SOM protein complex in the zooxanthellate coral, Stylophora pistillata, by liquid chromatography-tandem mass spectrometry. Our analysis reveals several 'framework' proteins as well as three highly acidic proteins (proteins that contain >30% aspartic and glutamic acids). The SOM framework proteins show sequence homology with other stony corals as well as with calcite biomineralizers. Several of these proteins exhibit calcium-binding domains, while others are likely involved in attachment of the coral calicoblastic layer to the newly formed skeleton substrate. We have begun to express and purify the framework proteins to (1) confirm and visualize their presence in the extracted SOM and in intact skeleton by antibody staining and immunolocalization, and (2) test their interaction with the highly acidic SOM proteins that may direct aragonite nucleation. This work is the first comprehensive proteomic analysis of coral SOM. Together with our genomic work investigating highly acidic SOM candidates (Mass et al. 2012 AGU Fall Meeting abstract), this will allow us to construct a three-dimensional model of the coral calcifying space to better understand the mechanisms of coral biomineralization.

  4. Late Embryogenesis Abundant (LEA) proteins in legumes.

    PubMed

    Battaglia, Marina; Covarrubias, Alejandra A

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  5. Thermal bleaching induced changes in photosystem II function not reflected by changes in photosystem II protein content of Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Jeans, J.; Szabó, M.; Campbell, D. A.; Larkum, A. W. D.; Ralph, P. J.; Hill, R.

    2014-03-01

    Scleractinian corals exist in a symbiosis with marine dinoflagellates of the genus Symbiodinium that is easily disrupted by changes in the external environment. Increasing seawater temperatures cause loss of pigments and expulsion of the symbionts from the host in a process known as coral bleaching; though, the exact mechanism and trigger of this process has yet to be elucidated. We exposed nubbins of the coral Stylophora pistillata to bleaching temperatures over a period of 14 daylight hours. Fifty-nine percent of the symbiont population was expelled over the course of this short-term treatment. Maximum quantum yield ( F V/ F M) of photosystem (PS) II for the in hospite symbiont population did not change significantly over the treatment period, but there was a significant decline in the quantity of PSII core proteins (PsbA and PsbD) at the onset of the experimental increase in temperature. F V/ F M from populations of expelled symbionts dropped sharply over the first 6 h of temperature treatment, and then toward the end of the experiment, it increased to an F V/ F M value similar to that of the in hospite population. This suggests that the symbionts were likely damaged prior to expulsion from the host, and the most damaged symbionts were expelled earlier in the bleaching. The quantity of PSII core proteins, PsbA and PsbD, per cell was significantly higher in the expelled symbionts than in the remaining in hospite population over 6-10 h of temperature treatment. We attribute this to a buildup of inactive PSII reaction centers, likely caused by a breakdown in the PSII repair cycle. Thus, thermal bleaching of the coral S. pistillata induces changes in PSII content that do not follow the pattern that would be expected based on the results of PSII function.

  6. NPR1 Protein Regulates Pathogenic and Symbiotic Interactions between Rhizobium and Legumes and Non-Legumes

    PubMed Central

    Peleg-Grossman, Smadar; Golani, Yael; Kaye, Yuval; Melamed-Book, Naomi; Levine, Alex

    2009-01-01

    Background Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs) produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when inoculated with pathogenic bacteria. One major defense pathway is mediated by salicylic acid (SA). SA is sensed and transduced to downstream defense components by a redox-regulated protein called NPR1. Methodology/Principal Findings We used Arabidopsis mutants in SA defense pathway to test the role of NPR1 in symbiotic interactions. Inoculation of Sinorhizobium meliloti or purified NF on Medicago truncatula or nim1/npr1 A. thaliana mutants induced root hair deformation and transcription of early and late nodulins. Application of S. meliloti or NF on M. truncatula or A. thaliana roots also induced a strong oxidative burst that lasted much longer than in plants inoculated with pathogenic or mutualistic bacteria. Transient overexpression of NPR1 in M. truncatula suppressed root hair curling, while inhibition of NPR1 expression by RNAi accelerated curling. Conclusions/Significance We show that, while NPR1 has a positive effect on pathogen resistance, it has a negative effect on symbiotic interactions, by inhibiting root hair deformation and nodulin expression. Our results also show that basic plant responses to Rhizobium inoculation are conserved in legumes and non-legumes. PMID:20027302

  7. A Profile of an Endosymbiont-enriched Fraction of the Coral Stylophora pistillata Reveals Proteins Relevant to Microbial-Host Interactions*

    PubMed Central

    Weston, Andrew J.; Dunlap, Walter C.; Shick, J. Malcolm; Klueter, Anke; Iglic, Katrina; Vukelic, Ana; Starcevic, Antonio; Ward, Malcolm; Wells, Mark L.; Trick, Charles G.; Long, Paul F.

    2012-01-01

    This study examines the response of Symbiodinium sp. endosymbionts from the coral Stylophora pistillata to moderate levels of thermal “bleaching” stress, with and without trace metal limitation. Using quantitative high throughput proteomics, we identified 8098 MS/MS events relating to individual peptides from the endosymbiont-enriched fraction, including 109 peptides meeting stringent criteria for quantification, of which only 26 showed significant change in our experimental treatments; 12 of 26 increased expression in response to thermal stress with little difference affected by iron limitation. Surprisingly, there were no significant increases in antioxidant or heat stress proteins; those induced to higher expression were generally involved in protein biosynthesis. An outstanding exception was a massive 114-fold increase of a viral replication protein indicating that thermal stress may substantially increase viral load and thereby contribute to the etiology of coral bleaching and disease. In the absence of a sequenced genome for Symbiodinium or other photosymbiotic dinoflagellate, this proteome reveals a plethora of proteins potentially involved in microbial-host interactions. This includes photosystem proteins, DNA repair enzymes, antioxidant enzymes, metabolic redox enzymes, heat shock proteins, globin hemoproteins, proteins of nitrogen metabolism, and a wide range of viral proteins associated with these endosymbiont-enriched samples. Also present were 21 unusual peptide/protein toxins thought to originate from either microbial consorts or from contamination by coral nematocysts. Of particular interest are the proteins of apoptosis, vesicular transport, and endo/exocytosis, which are discussed in context of the cellular processes of coral bleaching. Notably, the protein complement provides evidence that, rather than being expelled by the host, stressed endosymbionts may mediate their own departure. PMID:22351649

  8. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.

    PubMed

    Honma, T; Goto, K

    2000-05-01

    PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)-glucuronidase gene) fusion constructs (PI::GUS) in transgenic Arabidopsis. Promoter deletion analyses suggest that early PISTILLATA expression is mediated by the distal region and that late expression is mediated by the proximal region. Based on the PI::GUS expression patterns in the loss- and gain-of-function alleles of meristem or organ identity genes, we have shown that LEAFY and UNUSUAL FLORAL ORGANS induce PISTILLATA expression in a flower-independent manner via a distal promoter, and that PISTILLATA and APETALA3 maintain PISTILLATA expression (autoregulation) in the later stages of flower development via a proximal promoter. In addition, we have demonstrated that de novo protein synthesis is required for the PISTILLATA autoregulatory circuit. PMID:10769227

  9. Identification of MicroRNAs in the Coral Stylophora pistillata

    PubMed Central

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways. PMID:24658574

  10. Identification of microRNAs in the coral Stylophora pistillata.

    PubMed

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  11. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    SciTech Connect

    Goena, M.; Santidrian, S.; Cuevillas, F.; Larralde, J.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesized protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.

  12. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-10-30

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption.

  13. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption

    PubMed Central

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-01-01

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption. PMID:26529009

  14. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-11-01

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption. PMID:26529009

  15. Structural, Culinary, Nutritional and Anti-Nutritional Properties of High Protein, Gluten Free, 100% Legume Pasta.

    PubMed

    Laleg, Karima; Cassan, Denis; Barron, Cécile; Prabhasankar, Pichan; Micard, Valérie

    2016-01-01

    Wheat pasta has a compact structure built by a gluten network entrapping starch granules resulting in a low glycemic index, but is nevertheless unsuitable for gluten-intolerant people. High protein gluten-free legume flours, rich in fibers, resistant starch and minerals are thus a good alternative for gluten-free pasta production. In this study, gluten-free pasta was produced exclusively from faba, lentil or black-gram flours. The relationship between their structure, their cooking and Rheological properties and their in-vitro starch digestion was analyzed and compared to cereal gluten-free commercial pasta. Trypsin inhibitory activity, phytic acid and α-galactosides were determined in flours and in cooked pasta. All legume pasta were rich in protein, resistant starch and fibers. They had a thick but weak protein network, which is built during the pasta cooking step. This particular structure altered pasta springiness and increased cooking losses. Black-gram pasta, which is especially rich in soluble fibers, differed from faba and lentil pasta, with high springiness (0.85 vs. 0.75) and less loss during cooking. In comparison to a commercial cereal gluten-free pasta, all the legume pasta lost less material during cooking but was less cohesive and springy. Interestingly, due to their particular composition and structure, lentil and faba pasta released their starch more slowly than the commercial gluten-free pasta during the in-vitro digestion process. Anti-nutritional factors in legumes, such as trypsin inhibitory activity and α-galactosides were reduced by up to 82% and 73%, respectively, by pasta processing and cooking. However, these processing steps had a minor effect on phytic acid. This study demonstrates the advantages of using legumes for the production of gluten-free pasta with a low glycemic index and high nutritional quality. PMID:27603917

  16. Structural, Culinary, Nutritional and Anti-Nutritional Properties of High Protein, Gluten Free, 100% Legume Pasta.

    PubMed

    Laleg, Karima; Cassan, Denis; Barron, Cécile; Prabhasankar, Pichan; Micard, Valérie

    2016-01-01

    Wheat pasta has a compact structure built by a gluten network entrapping starch granules resulting in a low glycemic index, but is nevertheless unsuitable for gluten-intolerant people. High protein gluten-free legume flours, rich in fibers, resistant starch and minerals are thus a good alternative for gluten-free pasta production. In this study, gluten-free pasta was produced exclusively from faba, lentil or black-gram flours. The relationship between their structure, their cooking and Rheological properties and their in-vitro starch digestion was analyzed and compared to cereal gluten-free commercial pasta. Trypsin inhibitory activity, phytic acid and α-galactosides were determined in flours and in cooked pasta. All legume pasta were rich in protein, resistant starch and fibers. They had a thick but weak protein network, which is built during the pasta cooking step. This particular structure altered pasta springiness and increased cooking losses. Black-gram pasta, which is especially rich in soluble fibers, differed from faba and lentil pasta, with high springiness (0.85 vs. 0.75) and less loss during cooking. In comparison to a commercial cereal gluten-free pasta, all the legume pasta lost less material during cooking but was less cohesive and springy. Interestingly, due to their particular composition and structure, lentil and faba pasta released their starch more slowly than the commercial gluten-free pasta during the in-vitro digestion process. Anti-nutritional factors in legumes, such as trypsin inhibitory activity and α-galactosides were reduced by up to 82% and 73%, respectively, by pasta processing and cooking. However, these processing steps had a minor effect on phytic acid. This study demonstrates the advantages of using legumes for the production of gluten-free pasta with a low glycemic index and high nutritional quality.

  17. Structural, Culinary, Nutritional and Anti-Nutritional Properties of High Protein, Gluten Free, 100% Legume Pasta

    PubMed Central

    Laleg, Karima; Cassan, Denis; Barron, Cécile; Prabhasankar, Pichan

    2016-01-01

    Wheat pasta has a compact structure built by a gluten network entrapping starch granules resulting in a low glycemic index, but is nevertheless unsuitable for gluten-intolerant people. High protein gluten-free legume flours, rich in fibers, resistant starch and minerals are thus a good alternative for gluten-free pasta production. In this study, gluten-free pasta was produced exclusively from faba, lentil or black-gram flours. The relationship between their structure, their cooking and Rheological properties and their in-vitro starch digestion was analyzed and compared to cereal gluten-free commercial pasta. Trypsin inhibitory activity, phytic acid and α-galactosides were determined in flours and in cooked pasta. All legume pasta were rich in protein, resistant starch and fibers. They had a thick but weak protein network, which is built during the pasta cooking step. This particular structure altered pasta springiness and increased cooking losses. Black-gram pasta, which is especially rich in soluble fibers, differed from faba and lentil pasta, with high springiness (0.85 vs. 0.75) and less loss during cooking. In comparison to a commercial cereal gluten-free pasta, all the legume pasta lost less material during cooking but was less cohesive and springy. Interestingly, due to their particular composition and structure, lentil and faba pasta released their starch more slowly than the commercial gluten-free pasta during the in-vitro digestion process. Anti-nutritional factors in legumes, such as trypsin inhibitory activity and α-galactosides were reduced by up to 82% and 73%, respectively, by pasta processing and cooking. However, these processing steps had a minor effect on phytic acid. This study demonstrates the advantages of using legumes for the production of gluten-free pasta with a low glycemic index and high nutritional quality. PMID:27603917

  18. Effect of thermal processing on protein solubility of green gram (Phaseolus aureus) legume cultivars.

    PubMed

    Sashikala, V B; Sreerama, Y N; Pratape, V M; Narasimha, H V

    2015-03-01

    Green gram legume cultivars were analyzed for their protein solubility profile by fractionation in the raw form and also after heat processing. The results indicated that globulin fractions, which are present in major amounts that ranged from 79.5 to 85.4 % significantly decreased after the heat treatment. This decrease was accompanied by a significant increase in the glutelin-3 fractions. The prolamine contents did not vary considerably after processing. The protein and non-protein nitrogen contents ranged from 22.6 to 26.2 % and 2.3 to 2.7 % in the legume cultivars, respectively. The antinutritional factors like total polyphenol and phytic phosphorous were also determined. The accumulation of polyphenols was in the seed coat portion of the legume where as that of phytic phosphorus was in the cotyledons. SDS - PAGE profiles of all the three green gram cultivars had five major polypeptides (molecular weight 15, 18, 20, 45 and 60 kDa) in the total protein composition. Wide variation in electrophoresis pattern was observed after heat processing. Thermal treatment increased the insoluble protein fractions and eliminated the minor polypeptide bands below 14.3 kDa in the green gram cultivars.

  19. Landmark Research in Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legumes are members of family Fabaceae or Leguminosae and include economically important grain legumes, oilseed crops, forage crops, shrubs and tropical or subtropical trees. Many legumes are rich source of quality protein for humans and animals and enrich the soil by producing their own nitrogen i...

  20. Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: biological properties and comparison of coat protein sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....

  1. Effect of radiation processing on antinutrients, in-vitro protein digestibility and protein efficiency ratio bioassay of legume seeds

    NASA Astrophysics Data System (ADS)

    El-Niely, Hania F. G.

    2007-06-01

    The effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas ( Pisum satinum L), cowpeas ( Vigna unguiculata L.Walp), lentils ( Lens culinaris Med), kidneybeans ( Phaseolus vulgaris L), and chickpeas ( Cicer arietinum L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly ( p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and AL. IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AL, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes.

  2. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume.

    PubMed

    Kelemu, Segenet; Cardona, César; Segura, Gustavo

    2004-12-01

    The tropical forage legume Clitoria ternatea (L.) has important agronomic traits such as adaptation to a wide range of soil conditions and resistance to drought. It is resistant to a number of pathogens and pests. These important traits gave us reasons to look more closely at the plant. A highly basic small protein was purified from seeds of C. ternatea to homogeneity by using ultrafiltration with Centricon-3 membrane tubes and preparative granulated-bed isoelectric focusing (IEF). A single protein band was obtained on both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and IEF gels. The protein, designated 'finotin', has broad and potent inhibitory effect on the growth of various important fungal pathogens of plants, namely Rhizoctonia solani, Fusarium solani, Colletotrichum lindemuthianum, Lasiodiplodia theobromae, Pyricularia grisea, Bipolaris oryzae and Colletotrichum gloeosporioides. It also inhibits the common bean bacterial blight pathogen Xanthomonas axonopodis pv. phaseoli. Moreover, finotin has powerful inhibitory properties against the bean bruchids Zabrotes subfasciatus and Acanthoscelides obtectus.

  3. The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes.

    PubMed

    Torres, Julieta; Rutherfurd, Shane M; Muñoz, Luz S; Peters, Michael; Montoya, Carlos A

    2016-03-01

    The effects of different thermal (raw, autoclaving or boiling for 5 and 20min) and soaking (with or without) treatments on the degree of hydrolysis (DH) of protein were investigated for selected legumes (Canavalia brasiliensis; Lablab purpureus; pink, red and white colour hulls Vigna unguiculata). Each legume preparation underwent in vitro simulated gastrointestinal tract digestion comprising either pepsin (120min) or pepsin/pancreatin (120/240min) digestion. The DH was determined based on the amount of free amino groups released. Autoclaving for 5min increased the pepsin/pancreatin DH for all the unsoaked and soaked legumes (+20% to 46% units) except Canavalia, while boiling for 5min only increased DH for two soaked legumes (+12% to 28% units). Extending boiling from 5 to 20min increased the DH for three soaked legumes (+5% to 29% units). In conclusion, autoclaving, in general, extensively increased the sequential pepsin/pancreatin DH, while boiling only increased it for selected legumes.

  4. The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes.

    PubMed

    Torres, Julieta; Rutherfurd, Shane M; Muñoz, Luz S; Peters, Michael; Montoya, Carlos A

    2016-03-01

    The effects of different thermal (raw, autoclaving or boiling for 5 and 20min) and soaking (with or without) treatments on the degree of hydrolysis (DH) of protein were investigated for selected legumes (Canavalia brasiliensis; Lablab purpureus; pink, red and white colour hulls Vigna unguiculata). Each legume preparation underwent in vitro simulated gastrointestinal tract digestion comprising either pepsin (120min) or pepsin/pancreatin (120/240min) digestion. The DH was determined based on the amount of free amino groups released. Autoclaving for 5min increased the pepsin/pancreatin DH for all the unsoaked and soaked legumes (+20% to 46% units) except Canavalia, while boiling for 5min only increased DH for two soaked legumes (+12% to 28% units). Extending boiling from 5 to 20min increased the DH for three soaked legumes (+5% to 29% units). In conclusion, autoclaving, in general, extensively increased the sequential pepsin/pancreatin DH, while boiling only increased it for selected legumes. PMID:26471569

  5. [Comparative study of the composition and nutritional value of the seeds and protein concentrations in legumes].

    PubMed

    Cantoral, R; Fernández-Quintela, A; Martínez, J A; Macarulla, M T

    1995-09-01

    The nutritional properties of three legumes: pea (Pisum sativum), faba bean (Vicia faba) and soya (Glycine max) have been characterized. From these seeds, protein concentrates were elaborated by wet processing and two different procedures of drying were followed (freeze-drying and alcohol washing). The composition and content of several antinutritional factors (phytates, tannins, trypsin inhibitors and lectins) were assessed in all of them. Also some functional properties regarding their potential use in food technology were evaluated, such as protein solubility at different pH, as well as water and oil absorption capacities. All the obtained concentrates showed high protein contents, nevertheless protein extraction efficiency was smaller in alcohol-washed concentrates than in the lyophilized ones. In the other hand, the concentrates obtained from pea and faba bean showed higher yields than those obtained from soya. The content of antinutritional factors were markedly reduced after the concentration process. Furthermore, the functional properties of pea and faba bean protein concentrates point out their suitability for food preparation as previously reported for soya. PMID:9382685

  6. Expression and Functional Analysis of a Novel Group of Legume-specific WRKY and Exo70 Protein Variants from Soybean

    PubMed Central

    Wang, Ze; Li, Panfeng; Yang, Yan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Legumes fix atmospheric nitrogen through symbiosis with microorganisms and contain special traits in nitrogen assimilation and associated processes. Recently, we have reported a novel WRKY-related protein (GmWRP1) and a new clade of Exo70 proteins (GmExo70J) from soybean with homologs found only in legumes. GmWRP1 and some of the GmExo70J proteins are localized to Golgi apparatus through a novel N-terminal transmembrane domain. Here, we report further analysis of expression and functions of the novel GmWRP1 and GmExo70J genes. Promoter-GUS analysis in Arabidopsis revealed distinct tissue-specific expression patterns of the GmExo70J genes not only in vegetative but also in reproductive organs including mature tissues, where expression of previously characterized Exo70 genes is usually absent. Furthermore, expression of some GmExo70J genes including GmExo70J1, GmExo70J6 and GmExo70J7 increases greatly in floral organ-supporting receptacles during the development and maturation of siliques, indicating a possible role in seed development. More importantly, suppression of GmWRP1, GmExo70J7, GmExo70J8 and GmExo70J9 expression in soybean using virus- or artificial microRNA-mediated gene silencing resulted in accelerated leaf senescence and reduced nodule formation. These results strongly suggest that legume-specific GmWRP1 and GmExo70J proteins play important roles not only in legume symbiosis but also in other processes critical for legume growth and development. PMID:27572297

  7. Expression and Functional Analysis of a Novel Group of Legume-specific WRKY and Exo70 Protein Variants from Soybean.

    PubMed

    Wang, Ze; Li, Panfeng; Yang, Yan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Legumes fix atmospheric nitrogen through symbiosis with microorganisms and contain special traits in nitrogen assimilation and associated processes. Recently, we have reported a novel WRKY-related protein (GmWRP1) and a new clade of Exo70 proteins (GmExo70J) from soybean with homologs found only in legumes. GmWRP1 and some of the GmExo70J proteins are localized to Golgi apparatus through a novel N-terminal transmembrane domain. Here, we report further analysis of expression and functions of the novel GmWRP1 and GmExo70J genes. Promoter-GUS analysis in Arabidopsis revealed distinct tissue-specific expression patterns of the GmExo70J genes not only in vegetative but also in reproductive organs including mature tissues, where expression of previously characterized Exo70 genes is usually absent. Furthermore, expression of some GmExo70J genes including GmExo70J1, GmExo70J6 and GmExo70J7 increases greatly in floral organ-supporting receptacles during the development and maturation of siliques, indicating a possible role in seed development. More importantly, suppression of GmWRP1, GmExo70J7, GmExo70J8 and GmExo70J9 expression in soybean using virus- or artificial microRNA-mediated gene silencing resulted in accelerated leaf senescence and reduced nodule formation. These results strongly suggest that legume-specific GmWRP1 and GmExo70J proteins play important roles not only in legume symbiosis but also in other processes critical for legume growth and development. PMID:27572297

  8. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume.

    PubMed

    Kelemu, Segenet; Cardona, César; Segura, Gustavo

    2004-12-01

    The tropical forage legume Clitoria ternatea (L.) has important agronomic traits such as adaptation to a wide range of soil conditions and resistance to drought. It is resistant to a number of pathogens and pests. These important traits gave us reasons to look more closely at the plant. A highly basic small protein was purified from seeds of C. ternatea to homogeneity by using ultrafiltration with Centricon-3 membrane tubes and preparative granulated-bed isoelectric focusing (IEF). A single protein band was obtained on both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and IEF gels. The protein, designated 'finotin', has broad and potent inhibitory effect on the growth of various important fungal pathogens of plants, namely Rhizoctonia solani, Fusarium solani, Colletotrichum lindemuthianum, Lasiodiplodia theobromae, Pyricularia grisea, Bipolaris oryzae and Colletotrichum gloeosporioides. It also inhibits the common bean bacterial blight pathogen Xanthomonas axonopodis pv. phaseoli. Moreover, finotin has powerful inhibitory properties against the bean bruchids Zabrotes subfasciatus and Acanthoscelides obtectus. PMID:15694280

  9. Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: biological properties and comparison of coat protein nucleotide sequences.

    PubMed

    Coutts, Brenda A; Kehoe, Monica A; Webster, Craig G; Wylie, Stephen J; Jones, Roger A C

    2011-10-01

    Five Australian potyviruses, passion fruit woodiness virus (PWV), passiflora mosaic virus (PaMV), passiflora virus Y, clitoria chlorosis virus (ClCV) and hardenbergia mosaic virus (HarMV), and two introduced potyviruses, bean common mosaic virus (BCMV) and cowpea aphid-borne mosaic virus (CAbMV), were detected in nine wild or cultivated Passiflora and legume species growing in tropical, subtropical or Mediterranean climatic regions of Western Australia. When ClCV (1), PaMV (1), PaVY (8) and PWV (5) isolates were inoculated to 15 plant species, PWV and two PaVY P. foetida isolates infected P. edulis and P. caerulea readily but legumes only occasionally. Another PaVY P. foetida isolate resembled five PaVY legume isolates in infecting legumes readily but not infecting P. edulis. PaMV resembled PaVY legume isolates in legumes but also infected P. edulis. ClCV did not infect P. edulis or P. caerulea and behaved differently from PaVY legume isolates and PaMV when inoculated to two legume species. When complete coat protein (CP) nucleotide (nt) sequences of 33 new isolates were compared with 41 others, PWV (8), HarMV (4), PaMV (1) and ClCV (1) were within a large group of Australian isolates, while PaVY (14), CAbMV (1) and BCMV (3) isolates were in three other groups. Variation among PWV and PaVY isolates was sufficient for division into four clades each (I-IV). A variable block of 56 amino acid residues at the N-terminal region of the CPs of PaMV and ClCV distinguished them from PWV. Comparison of PWV, PaMV and ClCV CP sequences showed that nt identities were both above and below the 76-77% potyvirus species threshold level. This research gives insights into invasion of new hosts by potyviruses at the natural vegetation and cultivated area interface, and illustrates the potential of indigenous viruses to emerge to infect introduced plants. PMID:21744001

  10. Gene expression profiles during short-term heat stress in the red sea coral Stylophora pistillata.

    PubMed

    Maor-Landaw, Keren; Karako-Lampert, Sarit; Waldman Ben-Asher, Hiba; Goffredo, Stefano; Falini, Giuseppe; Dubinsky, Zvy; Levy, Oren

    2014-10-01

    During the past several decades, corals worldwide have been affected by severe bleaching events leading to wide-spread coral mortality triggered by global warming. The symbiotic Red Sea coral Stylophora pistillata from the Gulf of Eilat is considered an opportunistic 'r' strategist. It can thrive in relatively unstable environments and is considered a stress-tolerant species. Here, we used a S. pistillata custom microarray to examine gene expression patterns and cellular pathways during short-term (13-day) heat stress. The results allowed us to identify a two-step reaction to heat stress, which intensified significantly as the temperature was raised to a 32 °C threshold, beyond which, coping strategies failed at 34 °C. We identified potential 'early warning genes' and 'severe heat-related genes'. Our findings suggest that during short-term heat stress, S. pistillata may divert cellular energy into mechanisms such as the ER-unfolded protein response (UPR) and ER-associated degradation (ERAD) at the expense of growth and biomineralization processes in an effort to survive and subsequently recover from the stress. We suggest a mechanistic theory for the heat stress responses that may explain the success of some species which can thrive under a wider range of temperatures relative to others.

  11. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

    PubMed

    Qiu, Liping; Lin, Jie-Shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L; Downie, J Allan; Xie, Fang

    2015-10-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor.

  12. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation

    PubMed Central

    Qiu, Liping; Lin, Jie-shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L.; Downie, J. Allan; Xie, Fang

    2015-01-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  13. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

    PubMed

    Qiu, Liping; Lin, Jie-Shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L; Downie, J Allan; Xie, Fang

    2015-10-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  14. Perspectives into factors limiting in vivo digestion of legume proteins: antinutritional compounds or storage proteins?

    PubMed

    Carbonaro, M; Grant, G; Cappelloni, M; Pusztai, A

    2000-03-01

    The in vivo protein digestibility of raw and cooked common bean (Phaseolus vulgaris L.) and faba bean (Vicia faba L.) and of protein fractions extracted from them was determined with growing rats. Overnight-fasted rats were intubated with a protein suspension or fed the same amount of protein added to a basal diet. The rats were killed 1 h later, the contents of stomach and small intestine were washed out, and their protein contents were measured. The in vivo digestibility of proteins of raw common bean flour was 72.4% and not significantly improved after cooking. In contrast, the digestibility of faba bean proteins was decreased from 86.5 to 60.6% by the thermal treatment. Globulins from either species had similar digestibilities (approximately 70%). Proteins in the soluble fraction of cooked beans were more digestible than those in the insoluble fraction, which contained the bulk of the proteins. Hemagglutination assay and trypsin inhibitor determination indicated that after the thermal treatment only very low, nonharmful, levels of both lectin and inhibitor remained. Faba bean contained more polyphenols than common bean samples, with most of the polyphenols being bound to globulins. However, protein-bound polyphenols were markedly decreased after cooking. SDS-PAGE characterization of the gastrointestinal digesta of globulins and amino acid analysis of undigested proteins of whole cooked common bean and faba bean suggested that it is mainly the structural properties of the storage proteins and not their binding of polyphenols, which determines the extent of protein aggregation on autoclaving and may therefore be responsible for their low digestibility. PMID:10725143

  15. Legumes as a Model Plant Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human population derives the majority of its nutrition either directly or indirectly (via animal protein) from two plant families: the grasses and the legumes. Grain legumes alone supply approximately 33% of human protein nutrition. Thus, it is critical for genetic improvement of legume crop spe...

  16. Sativin: a novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. macrocarpon.

    PubMed

    Ye, X Y; Wang, H X; Ng, T B

    2000-07-01

    An antifungal protein designated sativin was isolated from the legumes of the sugar snap (also known as honey pea) Pisum sativum var. macrocarpon. The procedure entailed extraction, affinity chromatography on Affi-gel blue gel and ion exchange chromatography on CM-Sepharose. The protein exhibited a molecular weight of 38 kDa in SDS-polyacrylamide gel electrophoresis. It possessed an N-terminal amino acid sequence which showed similarity to those of miraculin (a sweet protein) and pisavin (a ribosome-inactivating protein from Pisum sativum var arvense Poir manifesting similarity to miraculin). Unlike pisavin, however, sativin demonstrated negligible ribonuclease activity and inhibited translation in a rabbit reticulocyte lysate system with a very low potency (IC50= 14 microM). Sativin exerted antifungal activity against Fusarium oxysporum, Coprinus comatus and Pleurotus ostreatus but not against Rhizoctonia solani. PMID:10968407

  17. A comprehensive review of legume allergy.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Das, Mukul; Dwivedi, Premendra D

    2013-08-01

    Legumes belonging to Fabaceae family of the order Fabales are a rich and important source of proteins and many essential elements. Due to its nutritious elements, these are preferably included in human diet in most part of the world. But, unfortunately, IgE binding proteins have been identified in majority of legumes, and allergenic response to these legumes may range from mild skin reactions to life-threatening anaphylactic reaction. Overall, allergenicity due to consumption of legumes in decreasing order may be peanut, soybean, lentil, chickpea, pea, mung bean, and red gram. So far, several allergens from different legumes have been identified and characterized. Most of identified allergens belong to storage proteins family, profilins, or the pathogenesis-related proteins. Legumes also have property of immunological cross-reactivity among themselves and from other sources that also increases the severity of allergenic response to a particular legume. This review summarizes the currently available knowledge on legume allergy and describes the allergenic problems associated with different legumes. It also tries to explore about the legume allergens identified so far by different scientific groups. The culmination of knowledge about identification and characterization of allergens from different legumes will be helpful in diagnosis and treatment of allergy, for development of novel therapeutic strategies, for strict avoidance of particular legume in diet by susceptible individual and also to produce hypoallergenic cultivars of leguminous crop through conventional breeding or genetic modification.

  18. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula

    PubMed Central

    Maeda, Junko; Barrett-Wilt, Gregory A.; Sussman, Michael R.

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  19. Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula.

    PubMed

    Van Ness, Lori K; Jayaraman, Dhileepkumar; Maeda, Junko; Barrett-Wilt, Gregory A; Sussman, Michael R; Ané, Jean-Michel

    2016-01-01

    Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn. PMID:27203723

  20. Influence of exogenous iron, calcium, protein and common salt on the bioaccessibility of zinc from cereals and legumes.

    PubMed

    Hemalatha, Sreeramaiah; Gautam, Smita; Platel, Kalpana; Srinivasan, Krishnapura

    2009-01-01

    We have earlier reported the zinc bioaccessibility from cereals and pulses and documented the influence of heat processing, germination and fermentation on the same. In the present study, we have assessed the influence of exogenous iron and calcium equivalent to their supplemental levels on the bioaccessibility of zinc from food grains that generally are the major components of meal in India. Bioaccessibility measurement was made by a procedure involving equilibrium dialysis during simulated gastrointestinal digestion. Exogenous iron equivalent to therapeutic levels (5mg per 10g of cereal-legume combination) significantly reduced the bioaccessibility of zinc from the food grains tested, the percent reduction being 32.4. Exogenous calcium equivalent to therapeutic levels (83mg per 10g of the cereal-legume combination) also significantly reduced (by 27.4%) the bioaccessibility of zinc from the tested food grains. The negative influence of exogenous iron and calcium was similar in both raw and cooked grains. Such negative influences on the bioaccessibility of zinc were however not seen when exogenous iron and calcium were only moderate (up to four times the intrinsic level). A study of the influence of exogenous protein on the bioaccessibility of zinc from food grains revealed that soy protein isolate added at amounts to result in a total protein content of 20% produced contrasting effects on zinc and iron bioaccessibility from cereals - rice and sorghum. While soy protein had a negative effect on iron bioaccessibility from these food grains, the same produced an enhancing effect on zinc bioaccessibility (an increase of 50% and 90% increase) from raw and cooked grain, respectively). Exogenous sodium chloride (at 5% level) potentiated the positive effect of soy protein on zinc bioaccessibility, and effectively countered its negative effect on iron bioaccessibility. The observed negative influence of supplemental iron and calcium on zinc bioaccessibility suggests that

  1. Edible grain legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible grain legumes including dry bean, dry pea, chickpeas, and lentils, have served as important sources of protein for human diets for thousands of years. In the US, these crops are predominately produced for export markets. The objective of this study was to examine yield gains in these crops ov...

  2. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.

    PubMed

    Delahaie, Julien; Hundertmark, Michaela; Bove, Jérôme; Leprince, Olivier; Rogniaux, Hélène; Buitink, Julia

    2013-11-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the abscisic acid insensitive3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4 g H2O g DW(-1). Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds.

  3. The physicochemical properties of legume protein isolates and their ability to stabilize oil-in-water emulsions with and without genipin.

    PubMed

    Johnston, Stuart P; Nickerson, Michael T; Low, Nicholas H

    2015-07-01

    The physicochemical and emulsifying properties of legume protein isolates prepared from chickpea (CPI), faba bean (FPI), lentil (LPI) and soy (SPI) were investigated in the presence and absence of genipin. Solubility was highest for CPI (~94 %), followed by LPI (~90 %), FPI (~85 %) and SPI (~50 %). Surface characteristics revealed similar zeta potentials (~ - 47 mV) for CPI, LPI and FPI, but lower for SPI (~ - 44 mV). Contrastingly, surface hydrophobicity was greatest for CPI (~137 arbitrary units, AU), followed by SPI/LPI (~70 AU) and FPI (~24 AU). A significant (from 16.73 to ~8.42 mN/m) reduction in interfacial tension was observed in canola oil-water mixtures in the presence of non-crosslinked legume protein isolates. The extent of legume protein isolate-genipin crosslinking was found to be similar for all isolates. Overall, creaming stability increased in the presence of genipin, with maximum stability observed for SPI (65 %), followed by FPI (61 %), LPI (56 %) and finally CPI (50 %).

  4. Combined N-glycome and N-glycoproteome analysis of the Lotus japonicus seed globulin fraction shows conservation of protein structure and glycosylation in legumes.

    PubMed

    Dam, Svend; Thaysen-Andersen, Morten; Stenkjær, Eva; Lorentzen, Andrea; Roepstorff, Peter; Packer, Nicolle H; Stougaard, Jens

    2013-07-01

    Legume food allergy, such as allergy toward peanuts and soybeans, is a health issue predicted to worsen as dietary advice recommends higher intake of legume-based foods. Lotus japonicus (Lotus) is an established legume plant model system for studies of symbiotic and pathogenic microbial interactions and, due to its well characterized genotype/phenotype and easily manipulated genome, may also be suitable for studies of legume food allergy. Here we present a comprehensive study of the Lotus N-glycoproteome. The global and site-specific N-glycan structures of Lotus seed globulins were analyzed using mass spectrometry-based glycomics and glycoproteomics techniques. In total, 19 N-glycan structures comprising high mannose (∼20%), pauci-mannosidic (∼40%), and complex forms (∼40%) were determined. The pauci-mannosidic and complex N-glycans contained high amounts of the typical plant determinants β-1,2-xylose and α-1,3-fucose. Two abundant Lotus seed N-glycoproteins were site-specifically profiled; a predicted lectin containing two fully occupied N-glycosylation sites carried predominantly pauci-mannosidic structures in different distributions. In contrast, Lotus convicilin storage protein 2 (LCP2) carried exclusively high mannose N-glycans similar to its homologue, Ara h 1, which is the major allergen in peanut. In silico investigation confirmed that peanut Ara h 1 and Lotus LCP2 are highly similar at the primary and higher protein structure levels. Hence, we suggest that Lotus has the potential to serve as a model system for studying the role of seed proteins and their glycosylation in food allergy.

  5. Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean

    PubMed Central

    Chi, Yingjun; Yang, Yan; Li, Guiping; Wang, Fei; Fan, Baofang; Chen, Zhixiang

    2015-01-01

    Many plant genes belong to families that arise from extensive proliferation and diversification allowing the evolution of functionally new proteins. Here we report the characterization of a group of proteins evolved from WRKY and exocyst complex subunit Exo70 proteins through fusion with a novel transmembrane (TM) domain in soybean (Glycine max). From the soybean genome, we identified a novel WRKY-related protein (GmWRP1) that contains a WRKY domain with no binding activity for W-box sequences. GFP fusion revealed that GmWRP1 was targeted to the Golgi apparatus through its N-terminal TM domain. Similar Golgi-targeting TM domains were also identified in members of a new subfamily of Exo70J proteins involved in vesicle trafficking. The novel TM domains are structurally most similar to the endosomal cytochrome b561 from birds and close homologues of GmWRP1 and GmEx070J proteins with the novel TM domain have only been identified in legumes. Transient expression of some GmExo70J proteins or the Golgi-targeting TM domain in tobacco altered the subcellular structures labelled by a fluorescent Golgi marker. GmWRP1 transcripts were detected at high levels in roots, flowers, pods, and seeds, and the expression levels of GmWRP1 and GmExo70J genes were elevated with increased age in leaves. The legume-specific, Golgi apparatus-localized GmWRP1 and GmExo70J proteins are probably involved in Golgi-mediated vesicle trafficking of biological molecules that are uniquely important to legumes. PMID:25805717

  6. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation.

    PubMed

    Can Karaca, Asli; Low, Nicholas; Nickerson, Michael

    2013-05-29

    Flaxseed oil was microencapsulated employing a wall material matrix of either chickpea (CPI) or lentil protein isolate (LPI) and maltodextrin using a benchtop spray dryer. Effects of emulsion formulation (oil, protein and maltodextrin levels) and protein source (CPI vs LPI) on the physicochemical characteristics, oxidative stability, and release properties of the resulting capsules were investigated. Microcapsule formulations containing higher oil levels (20% oil, 20% protein, 60% maltodextrin) were found to have higher surface oil and lower encapsulation efficiencies. Overall, LPI-maltodextrin capsules gave higher flaxseed oil encapsulation efficiencies (∼88.0%) relative to CPI-maltodextrin matrices (∼86.3%). However, both designs were found to provide encapsulated flaxseed oil protection against oxidation over a 25 d room temperature storage study relative to free oil. Overall, ∼37.6% of encapsulated flaxseed oil was released after 2 h under simulated gastric fluid, followed by the release of an additional ∼46.6% over a 3 h period under simulated intestinal fluid conditions.

  7. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata.

    PubMed

    Drake, Jeana L; Mass, Tali; Haramaty, Liti; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G

    2013-03-01

    It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization "toolkit," an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure.

  8. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata

    PubMed Central

    Drake, Jeana L.; Mass, Tali; Haramaty, Liti; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G.

    2013-01-01

    It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization “toolkit,” an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure. PMID:23431140

  9. Discovery of an unusual biosynthetic origin for circular proteins in legumes.

    PubMed

    Poth, Aaron G; Colgrave, Michelle L; Lyons, Russell E; Daly, Norelle L; Craik, David J

    2011-06-21

    Cyclotides are plant-derived proteins that have a unique cyclic cystine knot topology and are remarkably stable. Their natural function is host defense, but they have a diverse range of pharmaceutically important activities, including uterotonic activity and anti-HIV activity, and have also attracted recent interest as templates in drug design. Here we report an unusual biosynthetic origin of a precursor protein of a cyclotide from the butterfly pea, Clitoria ternatea, a representative member of the Fabaceae plant family. Unlike all previously reported cyclotides, the domain corresponding to the mature cyclotide from this Fabaceae plant is embedded within an albumin precursor protein. We confirmed the expression and correct processing of the cyclotide encoded by the Cter M precursor gene transcript following extraction from C. ternatea leaf and sequencing by tandem mass spectrometry. The sequence was verified by direct chemical synthesis and the peptide was found to adopt a classic knotted cyclotide fold as determined by NMR spectroscopy. Seven additional cyclotide sequences were also identified from C. ternatea leaf and flower, five of which were unique. Cter M displayed insecticidal activity against the cotton budworm Helicoverpa armigera and bound to phospholipid membranes, suggesting its activity is modulated by membrane disruption. The Fabaceae is the third largest family of flowering plants and many Fabaceous plants are of huge significance for human nutrition. Knowledge of Fabaceae cyclotide gene transcripts should enable the production of modified cyclotides in crop plants for a variety of agricultural or pharmaceutical applications, including plant-produced designer peptide drugs. PMID:21593408

  10. Coordinated changes in storage proteins during development and germination of elite seeds of Pongamia pinnata, a versatile biodiesel legume

    PubMed Central

    Kesari, Vigya; Rangan, Latha

    2011-01-01

    Background and aims The oleaginous legume Pongamia pinnata is a rapidly growing and economically important tree. The seeds are used increasingly as feedstock for biodiesel production, with the protein-rich residue providing valuable supplement to farm animal diets. However, little is known about seed development and the characteristics of germination. We therefore studied morphological, protein and ultrastructural changes during seed maturation and germination using seeds from a tree selected for superior morphological and reproductive characters (candidate plus tree). Methodology Phenology, sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), and scanning and transmission electron microscopy were used to investigate seed development from 90 to 350 days after flowering (DAF), and germination and seedling development from 0 to 45 days after the start of imbibition (DAI) (Stages 0–VII). Principal results Seven distinct developmental stages were identified during seed development. Fresh weight, length, breadth and thickness increased from Stage I (90 DAF) to V (270 DAF) and decreased at Stages VI (315 DAF) and VII (350 DAF), when the seeds were fully ripe. Marked changes in total soluble protein content and SDS–PAGE profile were observed in vegetative and reproductive tissues and in the cotyledons of germinating seedlings. Polypeptide fragments of 150–14 kDa were observed during seed maturation and germination. In SDS–PAGE the expression of three main polypeptide bands (50, 18 and 14 kDa) increased from Stage I to Stage V and then almost became the same until Stage VII during seed maturation. During germination the expression of 50 kDa polypeptide decreased and that of 18 and 14 kDa increased from Stage 0 (ungerminated seed) to Stage VI (30 DAI), respectively; however, all three polypeptides (50, 18 and 14 kDa) completely disappeared at Stage VII (45 DAI). Ultrastructural changes during four stages of seed maturation (early immature, 90

  11. Effect of selected dehulled legume incorporation on functional and nutritional properties of protein enriched sorghum and wheat extrudates.

    PubMed

    Balasubramanian, Subramanian; Borah, A; Singh, K K; Patil, R T

    2012-10-01

    The effect of legume incorporation (5%, 10% and 15%) on functional and nutritional properties of sorghum and wheat extrudates was investigated. Sorghum extrudates incorporated with legumes showed lower water absorption index water solubility index and pasting properties viz., peak viscosity, minimum viscosity, breakdown viscosity, final viscosity and total set back and similar degree of gelatinization and nutritional profile. At 15% incorporation level, water absorption index and water solubility index found to be maximum while degree of gelatinization and all the pasting properties showed lowest values for both sorghum and wheat extrudates. Similarly nutritional profile observed to be significantly higher for 15% as compared to 10% and 15% incorporation levels. Incorporation of legumes at 15% could be effective in producing high energy dense food products having better functional and nutritional properties. PMID:24082268

  12. Utilization of net photosynthate for nitrogen fixation and protein production in an annual legume.

    PubMed

    Herridge, D F; Pate, J S

    1977-11-01

    The economy of C and N in nodulated cowpea (Vigna unguiculata [L.] Walp.) was described in terms of fixation of CO(2) and N(2), respiratory losses of C, and the production of dry matter and protein.Net daytime gain of C by the shoot (net photosynthesis) rose to a maximum at flowering and then declined sharply due to abscission of leaves. Maximum N fixation occurred 10 days prior to maximum net photosynthesis. Shedding of nodules reduced fixation to zero by midfruiting. Fifty per cent of the plant's N and 37% of its net photosynthate were assimilated before flowering; 39% of plant N was incorporated into seed dry matter.Respiration of nodules and roots utilized 24% of the C from net photosynthate assimilated over the growth cycle; night respiration of shoots, 20%; dry matter production in seeds, 17%; and dry matter production in other plant parts, 39%. The proportion of net photosynthate translocated to the nodulated root decreased from 41 to 14% during growth. Developing fruits were major competitors for translocate. Nodules consumed 9% of the C from the plant's total net photosynthate, 43% of which was respired, 6% made into dry matter, and 51% returned to the shoot with N fixation products.For every 1 g N fixed, net photosynthate equivalent to 6.8 g carbohydrate was consumed by nodules, 25.7 g carbohydrate by the nodulated root. Translocate was used most efficiently for N fixation in late vegetative growth when nodules were most active and their carbohydrate supply still adequate.During vegetative growth and early flowering (0 to 78 days after sowing) cowpea consumed 17.2 g net photosynthate (as carbohydrate) for every gram of protein synthesized in its shoot. The comparable conversion in seed production was 32.5 g net photosynthate/g seed protein or 6.6 g/g seed dry matter.

  13. Utilization of Net Photosynthate for Nitrogen Fixation and Protein Production in an Annual Legume 1

    PubMed Central

    Herridge, David F.; Pate, John S.

    1977-01-01

    The economy of C and N in nodulated cowpea (Vigna unguiculata [L.] Walp.) was described in terms of fixation of CO2 and N2, respiratory losses of C, and the production of dry matter and protein. Net daytime gain of C by the shoot (net photosynthesis) rose to a maximum at flowering and then declined sharply due to abscission of leaves. Maximum N fixation occurred 10 days prior to maximum net photosynthesis. Shedding of nodules reduced fixation to zero by midfruiting. Fifty per cent of the plant's N and 37% of its net photosynthate were assimilated before flowering; 39% of plant N was incorporated into seed dry matter. Respiration of nodules and roots utilized 24% of the C from net photosynthate assimilated over the growth cycle; night respiration of shoots, 20%; dry matter production in seeds, 17%; and dry matter production in other plant parts, 39%. The proportion of net photosynthate translocated to the nodulated root decreased from 41 to 14% during growth. Developing fruits were major competitors for translocate. Nodules consumed 9% of the C from the plant's total net photosynthate, 43% of which was respired, 6% made into dry matter, and 51% returned to the shoot with N fixation products. For every 1 g N fixed, net photosynthate equivalent to 6.8 g carbohydrate was consumed by nodules, 25.7 g carbohydrate by the nodulated root. Translocate was used most efficiently for N fixation in late vegetative growth when nodules were most active and their carbohydrate supply still adequate. During vegetative growth and early flowering (0 to 78 days after sowing) cowpea consumed 17.2 g net photosynthate (as carbohydrate) for every gram of protein synthesized in its shoot. The comparable conversion in seed production was 32.5 g net photosynthate/g seed protein or 6.6 g/g seed dry matter. PMID:16660179

  14. Legume crops phylogeny and genetic diversity for science and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  15. Legume proteomics: Progress, prospects, and challenges.

    PubMed

    Rathi, Divya; Gayen, Dipak; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Legumes are the major sources of food and fodder with strong commercial relevance, and are essential components of agricultural ecosystems owing to their ability to carry out endosymbiotic nitrogen fixation. In recent years, legumes have become one of the major choices of plant research. The legume proteomics is currently represented by more than 100 reference maps and an equal number of stress-responsive proteomes. Among the 48 legumes in the protein databases, most proteomic studies have been accomplished in two model legumes, soybean, and barrel medic. This review highlights recent contributions in the field of legume proteomics to comprehend the defence and regulatory mechanisms during development and adaptation to climatic changes. Here, we attempted to provide a concise overview of the progress in legume proteomics and discuss future developments in three broad perspectives: (i) proteome of organs/tissues; (ii) subcellular compartments; and (iii) spatiotemporal changes in response to stress. Such data mining may aid in discovering potential biomarkers for plant growth, in general, apart from essential components involved in stress tolerance. The prospect of integrating proteome data with genome information from legumes will provide exciting opportunities for plant biologists to achieve long-term goals of crop improvement and sustainable agriculture.

  16. Impact of thermal processing on legume allergens.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Das, Mukul; Dwivedi, Premendra D

    2012-12-01

    Food induced allergic manifestations are reported from several parts of the world. Food proteins exert their allergenic potential by absorption through the gastrointestinal tract and can even induce life threatening anaphylaxis reactions. Among all food allergens, legume allergens play an important role in induction of allergy because legumes are a major source of protein for vegetarians. Most of the legumes are cooked either by boiling, roasting or frying before consumption, which can be considered a form of thermal treatment. Thermal processing may also include autoclaving, microwave heating, blanching, pasteurization, canning, or steaming. Thermal processing of legumes may reduce, eliminate or enhance the allergenic potential of a respective legume. In most of the cases, minimization of allergenic potential on thermal treatment has generally been reported. Thus, thermal processing can be considered an important tool by indirectly prevent allergenicity in susceptible individuals, thereby reducing treatment costs and reducing industry/office/school absence in case of working population/school going children. The present review attempts to explore various possibilities of reducing or eliminating allergenicity of leguminous food using different methods of thermal processing. Further, this review summarizes different methods of food processing, major legumes and their predominant allergenic proteins, thermal treatment and its relation with antigenicity, effect of thermal processing on legume allergens; also suggests a path that may be taken for future research to reduce the allergenicity using conventional/nonconventional methods.

  17. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages

    PubMed Central

    Lamb, Rebecca S.; Irish, Vivian F.

    2003-01-01

    Changes in homeotic gene expression patterns or in the functions of the encoded proteins are thought to play a prominent role in the evolution of new morphologies. The floral homeotic APETALA3 (AP3) and PISTILLATA (PI) genes encode MADS domain-containing transcription factors required to specify petal and stamen identities in Arabidopsis. We have previously shown that perianth expression of AP3 and PI homologs varies in different groups of angiosperms with diverse floral structures, suggesting that changes in expression may contribute to changing morphology. We have investigated the possibility that changes in the functions of the encoded gene products may also have played a role in the evolution of different floral morphologies. AP3 and PI are members of paralogous gene lineages and share extensive similarity along the length of the protein products. Genes within these lineages encode products with characteristic C-terminal motifs that we show are critical for functional specificity. In particular, the C terminus of AP3 is sufficient to confer AP3 functionality on the heterologous PI protein. Furthermore, we have shown that the evolution of the divergent AP3 C-terminal domain in the core eudicots is correlated with the acquisition of a role in specifying perianth structures. These results suggest that divergence in these sequence motifs has contributed to the evolution of distinct functions for these floral homeotic gene products. PMID:12746493

  18. A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula.

    PubMed

    Lei, Zhentian; Elmer, Aaron M; Watson, Bonnie S; Dixon, Richard A; Mendes, Pedro J; Sumner, Lloyd W

    2005-11-01

    The proteome of a Medicago truncatula cell suspension culture was analyzed using two-dimensional electrophoresis and nanoscale HPLC coupled to a tandem Q-TOF mass spectrometer (QSTAR Pulsar i) to yield an extensive protein reference map. Coomassie Brilliant Blue R-250 was used to visualize more than 1661 proteins, which were excised, subjected to in-gel trypsin digestion, and analyzed using nanoscale HPLC/MS/MS. The resulting spectral data were queried against a custom legume protein database using the MASCOT search engine. A total of 1367 of the 1661 proteins were identified with high rigor, yielding an identification success rate of 83% and 907 unique protein accession numbers. Functional annotation of the M. truncatula suspension cell proteins revealed a complete tricarboxylic acid cycle, a nearly complete glycolytic pathway, a significant portion of the ubiquitin pathway with the associated proteolytic and regulatory complexes, and many enzymes involved in secondary metabolism such as flavonoid/isoflavonoid, chalcone, and lignin biosynthesis. Proteins were also identified from most other functional classes including primary metabolism, energy production, disease/defense, protein destination/storage, protein synthesis, transcription, cell growth/division, and signal transduction. This work represents the most extensive proteomic description of M. truncatula suspension cells to date and provides a reference map for future comparative proteomic and functional genomic studies of the response of these cells to biotic and abiotic stress.

  19. Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata.

    PubMed

    Levy, Oren; Karako-Lampert, Sarit; Waldman Ben-Asher, Hiba; Zoccola, Didier; Pagès, Gilles; Ferrier-Pagès, Christine

    2016-04-27

    Corals acquire nutrients via the transfer of photosynthates by their endosymbionts (autotrophy), or via zooplankton predation by the animal (heterotrophy). During stress events, corals lose their endosymbionts, and undergo starvation, unless they increase their heterotrophic capacities. Molecular mechanisms by which heterotrophy sustains metabolism in stressed corals remain elusive. Here for the first time, to the best of our knowledge, we identified specific genes expressed in heterotrophically fed and unfed colonies of the scleractinian coral Stylophora pistillata, maintained under normal and light-stress conditions. Physiological parameters and gene expression profiling demonstrated that fed corals better resisted stress than unfed ones by exhibiting less oxidative damage and protein degradation. Processes affected in light-stressed unfed corals (HLU), were related to energy and metabolite supply, carbohydrate biosynthesis, ion and nutrient transport, oxidative stress, Ca(2+) homeostasis, metabolism and calcification (carbonic anhydrases, calcium-transporting ATPase, bone morphogenetic proteins). Two genes (cp2u1 and cp1a2), which belong to the cytochrome P450 superfamily, were also upregulated 249 and 10 times, respectively, in HLU corals. In contrast, few of these processes were affected in light-stressed fed corals (HLF) because feeding supplied antioxidants and energetic molecules, which help repair oxidative damage. Altogether, these results show that heterotrophy helps prevent the cascade of metabolic problems downstream of oxidative stress. PMID:27122555

  20. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

    PubMed

    Roque, Edelín; Fares, Mario A; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A

    2016-03-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein-protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene.

  1. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors

    PubMed Central

    Roque, Edelín; Fares, Mario A.; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S.; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A.

    2016-01-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein–protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene. PMID:26773809

  2. Forage legumes - untrapped resource

    SciTech Connect

    Barnes, R.F.

    1985-02-01

    Legumes are important in nutrition, nitrogen fixation and in reducing dependence on nitrogen fertilizers. At a meeting between scientists from Australia, New Zealand and the United States the role of legumes was assessed and coordinated research programs set up to deal with problems such as disease, soil, climate and selective breeding.

  3. Grain and legume allergy.

    PubMed

    Ito, Komei

    2015-01-01

    Among grains and legumes, wheat and soybean are the most frequent and well-characterized allergenic foods. Wheat proteins are divided into water/salt-soluble and water/salt-insoluble (gluten) fractions. The most dominant allergen in the former is α-amylase/trypsin inhibitor, which acts as an inhaled allergen causing baker's asthma. Gluten allergens, including ω-5 gliadin and high- and low-molecular-weight glutenins, contribute to wheat-dependent exercise-induced anaphylaxis in adults and immediate-type wheat allergies, including anaphylaxis, in children. Recently, wheat allergies exclusively caused by hydrolyzed wheat proteins or deamidated glutens have been reported, and the presence of unique IgE-binding epitopes has been suggested. Soybean allergens contributing to immediate-type allergic reactions in children are present in seed storage proteins, namely Gly m 5, Gly m 6 and Gly m 8. However, pollen-related soybean allergy in adults is caused by the Bet v 1 homolog of soybeans, Gly m 4. Taken together, the varying clinical manifestations of wheat and soybean allergies are predominantly caused by their different allergen components.

  4. Too much love, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis.

    PubMed

    Takahara, Masahiro; Magori, Shimpei; Soyano, Takashi; Okamoto, Satoru; Yoshida, Chie; Yano, Koji; Sato, Shusei; Tabata, Satoshi; Yamaguchi, Katsushi; Shigenobu, Shuji; Takeda, Naoya; Suzaki, Takuya; Kawaguchi, Masayoshi

    2013-04-01

    The interaction of legumes with N2-fixing bacteria collectively called rhizobia results in root nodule development. The number of nodules formed is tightly restricted through the systemic negative feedback control by the host called autoregulation of nodulation (AON). Here, we report the characterization and gene identification of TOO MUCH LOVE (TML), a root factor that acts during AON in a model legume Lotus japonicus. In our genetic analyses using another root-regulated hypernodulation mutant, plenty, the tml-1 plenty double mutant showed additive effects on the nodule number, whereas the tml-1 har1-7 double mutant did not, suggesting that TML and PLENTY act in different genetic pathways and that TML and HAR1 act in the same genetic pathway. The systemic suppression of nodule formation by CLE-RS1/RS2 overexpression was not observed in the tml mutant background, indicating that TML acts downstream of CLE-RS1/RS2. The tml-1 Snf2 double mutant developed an excessive number of spontaneous nodules, indicating that TML inhibits nodule organogenesis. Together with the determination of the deleted regions in tml-1/-2/-3, the fine mapping of tml-4 and the next-generation sequencing analysis, we identified a nonsense mutation in the Kelch repeat-containing F-box protein. As the gene knockdown of the candidate drastically increased the number of nodules, we concluded that it should be the causative gene. An expression analysis revealed that TML is a root-specific gene. In addition, the activity of ProTML-GUS was constitutively detected in the root tip and in the nodules/nodule primordia upon rhizobial infection. In conclusion, TML is a root factor acting at the final stage of AON.

  5. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui

    2016-01-01

    Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435

  6. Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae).

    PubMed

    Zhou, Jing; Zhang, Na; Wang, Pan; Zhang, Shichang; Li, Daiqin; Liu, Kaiyu; Wang, Guoxiu; Wang, Xiaoping; Ai, Hui

    2015-01-01

    Chemoreception is a key feature in selection of host plant by phytophagous insects, and odorant-binding proteins (OBPs) are involved in chemical communication of both insects and vertebrates. The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the key pest species of cowpea and widely distributed throughout tropical and subtropical regions, causing up to 80% of yield loss. In this study, we investigated the electrophysiological responses of female M. vitrata to floral volatiles from V. unguiculata. Seventeen electroantennogram-active compounds were identified from floral volatiles of V. unguiculata by coupled gas chromatography-electroantennography (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Then, we cloned two novel full-length GOBP genes (MvitGOBP1 and MvitGOBP2) from the antennae of M. vitrata using reverse transcription PCR. Protein sequence analysis indicated that they shared high sequence similarity with other Pyralididae insect GOBPs and had the typical six-cysteine signature. Real-time PCR analysis indicated that MvitGOBP1-2 mRNA was highly expressed in the antennae of female adult with several thousands-fold difference compare to other tissue. Next, the recombinant MvitGOBP1-2 was expressed in Escherichia coli and purified using Ni ion affinity chromatography. Fluorescence binding assays demonstrated that MvitGOBP1-2 had different binding affinities with 17 volatile odorant molecules including butanoic acid butyl ester, limonene, 4-ethylpropiophenone, 1H-indol-4-ol, butanoic acid octyl ester and 2-methyl-3-phenylpropanal. In the field trapping experiment, these six floral volatiles could effectively attract female moths and showed significant difference compared with the blank lure. These results suggested that MvitGOBPs and the seventeen floral volatiles are likely to function in the olfactory behavior response of female moths, which may have played crucial roles in the selection of oviposition sites. The six

  7. Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae).

    PubMed

    Zhou, Jing; Zhang, Na; Wang, Pan; Zhang, Shichang; Li, Daiqin; Liu, Kaiyu; Wang, Guoxiu; Wang, Xiaoping; Ai, Hui

    2015-01-01

    Chemoreception is a key feature in selection of host plant by phytophagous insects, and odorant-binding proteins (OBPs) are involved in chemical communication of both insects and vertebrates. The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the key pest species of cowpea and widely distributed throughout tropical and subtropical regions, causing up to 80% of yield loss. In this study, we investigated the electrophysiological responses of female M. vitrata to floral volatiles from V. unguiculata. Seventeen electroantennogram-active compounds were identified from floral volatiles of V. unguiculata by coupled gas chromatography-electroantennography (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Then, we cloned two novel full-length GOBP genes (MvitGOBP1 and MvitGOBP2) from the antennae of M. vitrata using reverse transcription PCR. Protein sequence analysis indicated that they shared high sequence similarity with other Pyralididae insect GOBPs and had the typical six-cysteine signature. Real-time PCR analysis indicated that MvitGOBP1-2 mRNA was highly expressed in the antennae of female adult with several thousands-fold difference compare to other tissue. Next, the recombinant MvitGOBP1-2 was expressed in Escherichia coli and purified using Ni ion affinity chromatography. Fluorescence binding assays demonstrated that MvitGOBP1-2 had different binding affinities with 17 volatile odorant molecules including butanoic acid butyl ester, limonene, 4-ethylpropiophenone, 1H-indol-4-ol, butanoic acid octyl ester and 2-methyl-3-phenylpropanal. In the field trapping experiment, these six floral volatiles could effectively attract female moths and showed significant difference compared with the blank lure. These results suggested that MvitGOBPs and the seventeen floral volatiles are likely to function in the olfactory behavior response of female moths, which may have played crucial roles in the selection of oviposition sites. The six

  8. Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Wang, Pan; Zhang, Shichang; Li, Daiqin; Liu, Kaiyu; Wang, Guoxiu; Wang, Xiaoping; Ai, Hui

    2015-01-01

    Chemoreception is a key feature in selection of host plant by phytophagous insects, and odorant-binding proteins (OBPs) are involved in chemical communication of both insects and vertebrates. The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the key pest species of cowpea and widely distributed throughout tropical and subtropical regions, causing up to 80% of yield loss. In this study, we investigated the electrophysiological responses of female M. vitrata to floral volatiles from V. unguiculata. Seventeen electroantennogram-active compounds were identified from floral volatiles of V. unguiculata by coupled gas chromatography-electroantennography (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Then, we cloned two novel full-length GOBP genes (MvitGOBP1 and MvitGOBP2) from the antennae of M. vitrata using reverse transcription PCR. Protein sequence analysis indicated that they shared high sequence similarity with other Pyralididae insect GOBPs and had the typical six-cysteine signature. Real-time PCR analysis indicated that MvitGOBP1-2 mRNA was highly expressed in the antennae of female adult with several thousands-fold difference compare to other tissue. Next, the recombinant MvitGOBP1-2 was expressed in Escherichia coli and purified using Ni ion affinity chromatography. Fluorescence binding assays demonstrated that MvitGOBP1-2 had different binding affinities with 17 volatile odorant molecules including butanoic acid butyl ester, limonene, 4-ethylpropiophenone, 1H-indol-4-ol, butanoic acid octyl ester and 2-methyl-3-phenylpropanal. In the field trapping experiment, these six floral volatiles could effectively attract female moths and showed significant difference compared with the blank lure. These results suggested that MvitGOBPs and the seventeen floral volatiles are likely to function in the olfactory behavior response of female moths, which may have played crucial roles in the selection of oviposition sites. The six

  9. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L.).

    PubMed

    Meena, Mukesh Kumar; Ghawana, Sanjay; Sardar, Atish; Dwivedi, Vikas; Khandal, Hitaishi; Roy, Riti; Chattopadhyay, Debasis

    2015-01-01

    Calcium ion (Ca2+) is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants' response process. Calcineurin B-like proteins (CBLs) are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea) genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS) suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL) were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA) at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics. PMID:25853855

  10. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance.

    PubMed

    Breitenbach, Heiko H; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E; Vlot, A Corina

    2014-04-22

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.

  11. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L.).

    PubMed

    Meena, Mukesh Kumar; Ghawana, Sanjay; Sardar, Atish; Dwivedi, Vikas; Khandal, Hitaishi; Roy, Riti; Chattopadhyay, Debasis

    2015-01-01

    Calcium ion (Ca2+) is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants' response process. Calcineurin B-like proteins (CBLs) are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea) genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS) suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL) were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA) at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.

  12. Cloning and expression analysis of a PISTILLATA homologous gene from pineapple (Ananas comosus L. Merr).

    PubMed

    Lv, Ling-Ling; Duan, Jun; Xie, Jiang-Hui; Liu, Yu-Ge; Wei, Chang-Bin; Liu, Sheng-Hui; Zhang, Jian-Xia; Sun, Guang-Ming

    2012-01-01

    PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcPI is 907 bp in length and contains an open reading frame of 594 bp, which encodes a protein of 197 amino acids. The molecular weight was 2.29 kDa and the isoelectric point was 9.28. The alignment showed that AcPI had a high identity with CsPIC2 (78.6%), AoPI (77.4%), OrcPI (75.7%) and HPI2 (72.4%). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses in different tissues showed that the expression pattern of AcPI was different from the B-class genes in eudicots. AcPI was expressed in all the tissues investigated. The expression level was very low in fruit stems, bracts, leaves and sepals, high in petals and carpels, and moderate in apical meristems, flesh and stamens. The qRT-PCR analyses in different stages indicated that the expression of AcPI reached the highest level at 40 days after flower inducement, when the multiple fruit and floral organs were forming. It proved the important role of AcPI in floral organs and fruit development. The 35S::AcPI transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants.

  13. LegumeIP 2.0--a platform for the study of gene function and genome evolution in legumes.

    PubMed

    Li, Jun; Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick X

    2016-01-01

    The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (soybean), Lotus japonicus, Phaseolus vulgaris (common bean), Cicer arietinum (chickpea) and Cajanus cajan (pigeon pea) and two outgroup reference species: Arabidopsis thaliana and Poplar trichocarpa. Moreover, the LegumeIP 2.0 features the following new data resources and bioinformatics tools: (i) an integrative gene expression atlas for four model legumes that include 550 array hybridizations from M. truncatula, 962 gene expression profiles of G. max, 276 array hybridizations from L. japonicas and 56 RNA-Seq-based gene expression profiles for C. arietinum. These datasets were manually curated and hierarchically organized based on Experimental Ontology and Plant Ontology so that users can browse, search, and retrieve data for their selected experiments. (ii) New functions/analytical tools to query, mine and visualize large-scale gene sequences, annotations and transcriptome profiles. Users may select a subset of expression experiments and visualize and compare expression profiles for multiple genes. The LegumeIP 2.0 database is freely available to the public at http://plantgrn.noble.org/LegumeIP/. PMID:26578557

  14. Cross-allergenicity in the legume botanical family in children with food hypersensitivity. II. Laboratory correlates.

    PubMed

    Bernhisel-Broadbent, J; Taylor, S; Sampson, H A

    1989-11-01

    Only two of 41 legume-allergic patients diagnosed by double-blind, placebo-controlled oral food challenge or "convincing history" of anaphylaxis had an IgE-mediated hypersensitivity reaction to more than one member of the legume family. However, extensive immunologic cross-reactivity was demonstrated among legume antigens on Immunoblot and Immunodot-blot analyses and prick skin tests. The proteins of six legumes (peanut, soybean, lima bean, pea, garbanzo bean, and green beans) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and probed with sera from six legume-allergic patients. Multiple IgE-binding bands were identified in each legume lane by the sera from each of these legume-allergic patients. In vitro cross-reactivity did not correlate with clinical hypersensitivity. All the legumes studied (except green bean) had a prominent band at 20 kd. Numerous proteins and protein subunits can be identified in each of the legumes (16 peanut, 21 soybean, 23 lima bean, 25 pea, 22 garbanzo bean, and 11 green bean protein bands) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it appears that legume-allergic patients' sera may recognize multiple similar fractions from each legume. A second in vitro test was performed in which the six legume extracts were bound directly onto nitrocellulose paper. These "legume" Immunodot blots were probed for specific IgE-binding activity with sera from 62 patients with positive legume prick skin tests. The legume Immunodot blots again demonstrated extensive clinically irrelevant cross-reactivity. However, this test may prove useful as a simple technique for screening food-specific IgE with minimal quantities of sera.

  15. Legume-rhizobia signal exchange: promiscuity and environmental effects

    PubMed Central

    Lira, Mario A.; Nascimento, Luciana R. S.; Fracetto, Giselle G. M.

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge. PMID:26441880

  16. Extrusion cooking: Legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  17. Immunoglobulin E (IgE)-mediated cross-reactivity between mesquite pollen proteins and lima bean, an edible legume.

    PubMed

    Dhyani, A; Arora, N; Jain, V K; Sridhara, S; Singh, B P

    2007-09-01

    Immunoglobulin E (IgE)-mediated food allergy often develops as a consequence of allergic sensitization to pollen proteins. Mesquite (Prosopis juliflora) tree pollen is reported to be cross-reactive with other pollen species, but little has been reported on its cross-reactivity with plant-derived foods belonging to the same/different families. The present study investigates the in vitro cross-reactivity of mesquite pollen and lima bean (Phaseolus lunatus), an edible seed belonging to the Leguminosae family. Of 110 patients (asthma, rhinitis or both) tested intradermally, 20 showed marked positive reactions with Prosopis pollen extract. Of these, 12 patients showed elevated specific IgE to Prosopis pollen extract alone and four to both Phaseolus and pollen extract. In vitro cross-reactivity was investigated using inhibition assays [enzyme-linked immunosorbent assay (ELISA) inhibition, immunoblot inhibition], histamine release and lymphoproliferation. P. lunatus extract could inhibit IgE binding to P. juliflora in a dose-dependent manner, requiring 400 ng of protein for 50% inhibition in ELISA assay. Immunoblot and immunoblot inhibition demonstrated the presence of 20, 26, 35, 66 and 72 kDa as shared IgE binding components between the two extracts. Histamine release, peripheral blood mononuclear cells proliferation and interleukin (IL)-4 levels also suggested allergenic cross-reactivity. In conclusion, there is humoral and cellular cross-reactivity between Prosopis pollen and Phaseolus seed allergens.

  18. Red Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata

    PubMed Central

    Wijgerde, Tim; van Melis, Anne; Silva, Catarina I. F.; Leal, Miguel C.; Vogels, Luc; Mutter, Claudia; Osinga, Ronald

    2014-01-01

    Light spectrum plays a key role in the biology of symbiotic corals, with blue light resulting in higher coral growth, zooxanthellae density, chlorophyll a content and photosynthesis rates as compared to red light. However, it is still unclear whether these physiological processes are blue-enhanced or red-repressed. This study investigated the individual and combined effects of blue and red light on the health, zooxanthellae density, photophysiology and colouration of the scleractinian coral Stylophora pistillata over 6 weeks. Coral fragments were exposed to blue, red, and combined 50/50% blue red light, at two irradiance levels (128 and 256 μmol m−2 s−1). Light spectrum affected the health/survival, zooxanthellae density, and NDVI (a proxy for chlorophyll a content) of S. pistillata. Blue light resulted in highest survival rates, whereas red light resulted in low survival at 256 μmol m−2 s−1. Blue light also resulted in higher zooxanthellae densities compared to red light at 256 μmol m−2 s−1, and a higher NDVI compared to red and combined blue red light. Overall, our results suggest that red light negatively affects the health, survival, symbiont density and NDVI of S. pistillata, with a dominance of red over blue light for NDVI. PMID:24658108

  19. Genetic engineering for high methionine grain legumes.

    PubMed

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering.

  20. pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.

    PubMed

    Yang, Yingzhen; Xiang, Hongjun; Jack, Thomas

    2003-01-01

    The Arabidopsis floral organ identity genes APETALA3 (AP3) and PISTILLATA (PI) encode related DNA-binding proteins of the MADS family. Considerable evidence supports the hypothesis that a heterodimer of AP3 and PI is an essential component of B class activity. All ap3 and pi alleles characterized to date exhibit equivalent phenotypic defects in both whorls 2 and 3. In strong ap3 and pi mutants, petals and stamens are missing and sepals and carpels develop in their place. Weak ap3 and pi mutants exhibit partial conversions of petals to sepals and stamens to carpels. In this report, we describe the isolation and characterization of pi-5, an unusual B class mutant that exhibits defects in whorl 2 where sepals develop in place of petals, but third whorl stamens are most often normal. pi-5 flowers resemble those from 35S::SEP3 antisense plants. pi-5 contains missense mutation in the K domain (PIE125K). PIE125K exhibits defects in heterodimerization with its partner protein AP3. Via a reverse yeast two-hybrid screen, AP3K139E was isolated as a compensatory mutant of PIE125K. The compensatory interaction between PIE125K and AP3K139E is observed both in yeast two-hybrid assays and in planta. On its own, AP3K139E exhibits defects in specifying both petal and stamen identity. In addition, PIE125K is defective in interaction with SEPALLATA proteins in both two- and three-hybrid assays suggesting that PIE125K is defective in forming higher order complexes of MADS proteins. The decreased concentration of PI/AP3/SEP complexes offers an explanation for the petal defects observed in both pi-5 and 35S::SEP3 antisense plants. PMID:12943551

  1. How legumes recognize rhizobia.

    PubMed

    Via, Virginia Dalla; Zanetti, María Eugenia; Blanco, Flavio

    2016-01-01

    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria. PMID:26636731

  2. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  3. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  4. Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Falkowski, Paul G.

    1981-01-01

    All reef-forming, or hermatypic, corals harbour photosynthetic endosymbiotic algae called zooxanthellae1-5, which are assumed to be predominantly a single dinoflagellate species, Gymnodinium microadriaticum Freudenthal6. The zooxan-thellae are essential for the well-being of their hosts7-9 nevertheless, little is known about how light affects the symbiotic association, especially regarding the numbers of zooxanthellae, their photosynthetic responses, and their overall productivity10-14. On the reefs of the Gulf of Eilat, Stylophora pistillata is an abundant hermatypic coral15; it is unique in that region in that it can adapt to a wide range of light intensities. In the high light intensities of lagoons or the upper areas of reefs, the corals are markedly lighter in colour than those living under ledges, in grottos, or near the reef floor (~ 15 m; Fig. 1). We report here on the biochemical and physiological adaptations of S. pistillata to variations in light intensity spanning more than two orders of magnitude.

  5. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities

    PubMed Central

    Keshavmurthy, Shashank; Yang, Sung-Yin; Alamaru, Ada; Chuang, Yao-Yang; Pichon, Michel; Obura, David; Fontana, Silvia; De Palmas, Stephane; Stefani, Fabrizio; Benzoni, Francesca; MacDonald, Angus; Noreen, Annika M. E.; Chen, Chienshun; Wallace, Carden C.; Pillay, Ruby Moothein; Denis, Vianney; Amri, Affendi Yang; Reimer, James D.; Mezaki, Takuma; Sheppard, Charles; Loya, Yossi; Abelson, Avidor; Mohammed, Mohammed Suleiman; Baker, Andrew C.; Mostafavi, Pargol Ghavam; Suharsono, Budiyanto A.; Chen, Chaolun Allen

    2013-01-01

    Stylophora pistillata is a widely used coral “lab-rat” species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16–24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation. PMID:23519209

  6. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata.

    PubMed

    Byler, Kristen A; Carmi-Veal, Maya; Fine, Maoz; Goulet, Tamar L

    2013-01-01

    In obligate symbioses, the host's survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.

  7. DNA barcoding reveals the coral "laboratory-rat", Stylophora pistillata encompasses multiple identities.

    PubMed

    Keshavmurthy, Shashank; Yang, Sung-Yin; Alamaru, Ada; Chuang, Yao-Yang; Pichon, Michel; Obura, David; Fontana, Silvia; De Palmas, Stephane; Stefani, Fabrizio; Benzoni, Francesca; MacDonald, Angus; Noreen, Annika M E; Chen, Chienshun; Wallace, Carden C; Pillay, Ruby Moothein; Denis, Vianney; Amri, Affendi Yang; Reimer, James D; Mezaki, Takuma; Sheppard, Charles; Loya, Yossi; Abelson, Avidor; Mohammed, Mohammed Suleiman; Baker, Andrew C; Mostafavi, Pargol Ghavam; Suharsono, Budiyanto A; Chen, Chaolun Allen

    2013-01-01

    Stylophora pistillata is a widely used coral "lab-rat" species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16-24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation. PMID:23519209

  8. Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan.

    PubMed

    Ilyas, Muhammad; Qazi, Javaria; Mansoor, Shahid; Briddon, Rob W

    2010-08-01

    Grain legumes are an important source of dietary protein across southern Asia, but they suffer extensive losses due to several viruses that are members of the genus Begomovirus (family Geminiviridae), which are collectively known as legume yellow mosaic viruses (LYMVs). Despite their economic importance, little attention has been paid to LYMVs in Pakistan and only partial sequences of virus isolates originating from this country are available in the databases. Here, a survey of LYMVs occurring across Pakistan is described. Complete sequences of 44 components (23 DNA-A, 19 DNA-B and 2 betasatellites) were determined. The results show that only the mungbean yellow mosaic India virus (MYMIV) is of agricultural significance in Pakistan having been isolated from all cultivated grain legumes examined. Mungbean yellow mosaic virus, a significant crop pathogen in India, was only identified in a weed, which together with a novel species of LYMV we reported earlier, represents the first LYMV identified in non-cultivated plants. MYMIV was shown to occur as two types in Pakistan that show phylogeographical segregation. Additionally, two begomovirus species not considered pathogens of legumes and a betasatellite were isolated. This is of grave concern since it suggests that the presumed genetic isolation of the LYMVs in legumes may be being breached. LYMVs show little, if any, evidence of interspecific recombination with non-legume infecting begomoviruses. Thus, either recombination with non-legume viruses or interaction with betasatellites, which are host range and pathogenicity determining satellites of begomoviruses, could lead to the appearance of more aggressive virus variants/strains affecting legumes.

  9. Genome Structure of the Legume, Lotus japonicus

    PubMed Central

    Sato, Shusei; Nakamura, Yasukazu; Kaneko, Takakazu; Asamizu, Erika; Kato, Tomohiko; Nakao, Mitsuteru; Sasamoto, Shigemi; Watanabe, Akiko; Ono, Akiko; Kawashima, Kumiko; Fujishiro, Tsunakazu; Katoh, Midori; Kohara, Mitsuyo; Kishida, Yoshie; Minami, Chiharu; Nakayama, Shinobu; Nakazaki, Naomi; Shimizu, Yoshimi; Shinpo, Sayaka; Takahashi, Chika; Wada, Tsuyuko; Yamada, Manabu; Ohmido, Nobuko; Hayashi, Makoto; Fukui, Kiichi; Baba, Tomoya; Nakamichi, Tomoko; Mori, Hirotada; Tabata, Satoshi

    2008-01-01

    The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes. PMID:18511435

  10. [Development and technological transfer of functional pastas extended with legumes].

    PubMed

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible. PMID:19480347

  11. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions.

    PubMed

    Suter, Matthias; Connolly, John; Finn, John A; Loges, Ralf; Kirwan, Laura; Sebastià, Maria-Teresa; Lüscher, Andreas

    2015-06-01

    Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self-sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental-scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot ) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix ) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 -fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one-third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one-third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix /Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix /Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a

  12. Legume genomics: promise versus reality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume root nodules, the specialized organs in which symbiotic nitrogen fixation (SNF) occurs, are structurally and metabolically complex organs. Their development and function depends upon coordinated gene expression between the host plant and rhizobial partner. Depending upon the symbiosis, nodule...

  13. [LEGUME-RHIZOBIUM SYMBIOSIS PROTEOMICS: ACHIEVEMENTS AND PERSPECTIVES].

    PubMed

    Kondratiuk, Iu Iu; Mamenko, P M; Kots, S Ya

    2015-01-01

    The present review contains results of proteomic researches of legume-rhizobium symbiosis. The technical difficulties associated with the methods of obtaining protein extracts from symbiotic structures and ways of overcoming them were discussed. The changes of protein synthesis under formation and functioning of symbiotic structures were shown. Special attention has been given to the importance of proteomic studies of plant-microbe structures in the formation of adaptation strategies under adverse environmental conditions. The technical and conceptual perspectives of legume-rhizobium symbiosis proteomics were shown.

  14. Chemical composition, digestibility and antinutritional factors content of two wild legumes: Styphonolobium burseroides and Acacia bilimekii.

    PubMed

    Sotelo, A; Migliaro, P; Toledo, A; Contreras, J

    1999-01-01

    The chemical composition, digestibility and toxin contents of two wild legumes: Styphnolobium burseroides and Acacia bilimekii, collected in a semi-arid zone of Mexico, were determined. Both legumes had a high fiber content. The seeds of Styphnolobium burseroides had a low protein content (14%), and the pod a high content of reducing sugars. However the seeds of Acacia bilimekii had a high protein concentration (35%). The seed proteins were low in sulphur amino acids and tryptophan in both legumes but were rich in lysine. Trypsin inhibitors and lectins were present in low concentrations; alkaloids and cyanogenic glucosides were not detected. The in vitro digestibility for monogastric animals was low but the same test with ruminal juice showed a high digestibility for both legumes. Based on their chemical composition and digestibility, these legumes could be a good alternative source in the feeding of ruminants. PMID:10646630

  15. Enzymatic hydrolysis: a method in alleviating legume allergenicity.

    PubMed

    Kasera, Ramkrashan; Singh, A B; Lavasa, S; Prasad, Komarla Nagendra; Arora, Naveen

    2015-02-01

    Legumes are involved in IgE mediated food allergy in many countries. Avoidance of allergenic food is the only way to avoid symptomatic reaction. The present study investigated the effect of enzymatic hydrolysis on the allergenicity of three legumes - kidney bean (Phaseolus vulgaris), black gram (Vigna mungo) and peanut (Arachis hypogaea). Soluble protein extracts of the study legumes were sequentially treated by Alcalase(®) and Flavourzyme(®). Allergenicity of hydrolysates was then determined by ELISA, immunoblot, stripped basophil histamine release and skin prick test (SPT). Hydrolysis resulted in the loss of all IgE binding fractions determined by immunoblot in the three legumes. Specific IgE binding in ELISA was reduced by 62.2 ± 7.7%, 87.1 ± 9.6% and 91.8 ± 7.2% in the hydrolysates of kidney bean, black gram and peanut, respectively (p < 0.01). The release of histamine was decreased significantly when sensitized basophils were challenged with hydrolysates as compared to raw extracts. Significant reduction in the biopotency of hydrolysates was also observed in SPT where only 1/10 kidney bean-sensitive individuals, 2/6 black gram-sensitive individuals and 1/7 peanut-sensitive individuals were found positive to their respective hydrolysates. In conclusion, enzymatic hydrolysis is effective in attenuating allergenicity of legume proteins and may be employed for preparing hypoallergenic food extracts.

  16. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.

    PubMed

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T; Weckwerth, Wolfram; Varshney, Rajeev K

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  17. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  18. Potential of legume-based grassland–livestock systems in Europe: a review

    PubMed Central

    Lüscher, A; Mueller-Harvey, I; Soussana, J F; Rees, R M; Peyraud, J L

    2014-01-01

    European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future. PMID:26300574

  19. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen

    PubMed Central

    Tambutté, Eric; Allemand, Denis; Tambutté, Sylvie

    2014-01-01

    Zooxanthellate corals have long been known to calcify faster in the light than in the dark, however the mechanism underlying this process has been uncertain. Here we tested the effects of oxygen under controlled pCO2 conditions and fixed carbon sources on calcification in zooxanthellate and bleached microcolonies of the branching coral Stylophora pistillata. In zooxanthellate microcolonies, oxygen increased dark calcification rates to levels comparable to those measured in the light. However in bleached microcolonies oxygen alone did not enhance calcification, but when combined with a fixed carbon source (glucose or glycerol), calcification increased. Respiration rates increased in response to oxygen with greater increases when oxygen is combined with fixed carbon. ATP content was largely unaffected by treatments, with the exception of glycerol which decreased ATP levels. PMID:24883242

  20. Genome-wide identification and comparison of legume MLO gene family.

    PubMed

    Rispail, Nicolas; Rubiales, Diego

    2016-01-01

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species. PMID:27596925

  1. Genome-wide identification and comparison of legume MLO gene family

    PubMed Central

    Rispail, Nicolas; Rubiales, Diego

    2016-01-01

    MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species. PMID:27596925

  2. Effects of episodic low aragonite saturation and elevated temperature on the physiology of Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Lürig, M.; Kunzmann, A.

    2015-05-01

    As global climate change is predicted to gradually alter the oceans' carbonate system and water temperature, knowledge about the effects an altered marine environment has on the physiology of reef building (hermatypic) coral species is more widely established. However, although it is recognized that seawater temperature and the carbonate system of a coral reef can change rapidly and with great amplitude, little is known about how the interaction of these natural fluctuations with long term effects of climate change may affect the metabolism and productivity of hermatypic corals. To investigate this, we acclimated the hermatypic coral Stylophora pistillata to a "worst case" scenario for carbon dioxide emissions (aragonite saturation state [ΩARAG] = 1.6), and tested how exposure to short term (24 h) elevated temperature (+ 3 °C) and further lowered ΩARAG (-1 unit) affected its photosynthesis and respiration. While episodic exposure to very low ΩARAG had only little effect on S. pistillata's physiology, short term heat stress caused a shift from net oxygen production to consumption and partial coral bleaching. Higher gross coral respiration, and lowered photosynthetic activity under episodically elevated temperature may have been the result of photoinhibition and partial coral bleaching. These findings suggest that fluctuating environmental conditions in combination with a low ΩARAG background signal may impair basic metabolic processes in calcifying corals. In a future high-CO2 world short term stress could be relevant for reef ecosystem processes, and may affect the resilience of coral reefs to other external influences and effects of climate change.

  3. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Zandbank, Keren; Tchernov, Dan

    2011-01-01

    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  4. Seasonal mesophotic coral bleaching of Stylophora pistillata in the Northern Red Sea.

    PubMed

    Nir, Orit; Gruber, David F; Shemesh, Eli; Glasser, Eliezra; Tchernov, Dan

    2014-01-01

    Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40-63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98-92.19 µmol O2 cm(-2) day(-1). However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between -12.86 - (-10.24) µmol O2 cm(-2) day(-1). But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between -2.83-0.76 µmol O2 cm(-2) day(-1). This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.

  5. Seasonal Mesophotic Coral Bleaching of Stylophora pistillata in the Northern Red Sea

    PubMed Central

    Nir, Orit; Gruber, David F.; Shemesh, Eli; Glasser, Eliezra; Tchernov, Dan

    2014-01-01

    Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40–63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98–92.19 µmol O2 cm−2 day−1. However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between −12.86 - (−10.24) µmol O2 cm−2 day−1. But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between −2.83–0.76 µmol O2 cm−2 day−1. This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall. PMID:24454772

  6. Are vicilins another major class of legume lectins?

    PubMed

    Ribeiro, Ana C; Monteiro, Sara V; Carrapiço, Belmira M; Ferreira, Ricardo B

    2014-01-01

    Legume lectins comprise a structurally related, Ca/Mn-dependent, widespread, abundant and well characterized lectin family when compared to the large number of lectins from other sources described in the literature. Strangely enough, no specific function has been assigned to them aside from a possible role in storage and/or defense. Using a recent and fine-tuned methodology capable of specific lectin identification, β-conglutin, Vicia faba vicilin and β-lathyrin, the vicilin storage globulins from Lupinus albus, V. faba and Lathyrus sativus, respectively, were shown to be capable of affinity binding to thoroughly washed erythrocyte membranes and of specific elution with appropriate sugars. Based on this evidence and on sparse data published in the literature, a second family of legume lectins is proposed: the 7S family of storage proteins from leguminous seeds, or family II of legume lectins. These lectins are also structurally related, widespread and well characterized. In addition, they self-aggregate in a Ca/Mg, electrostatic dependent manner and are even more abundant than the family I of legume lectins. Using the same evidence, reserve and defense roles may be attributed to family II of legume lectins.

  7. Using the Stylophora pistillata genome and cell cultures to understand the mechanism of aragonite precipitation in corals

    NASA Astrophysics Data System (ADS)

    Mass, T.; Drake, J.; Haramaty, L.; Zelzion, U.; Bhattacharya, D.; Rosenthal, Y.; Falkowski, P. G.

    2012-12-01

    Atmospheric CO 2 levels are rising rapidly, resulting in a decrease in both oceanic pH, and the carbonate saturation state (Ω). It has been hypothesized that calcifying marine organisms, including reef-building corals, will be affected by the decline of the carbonate saturation state. However, it is still unclear how corals will respond to these changes, as their skeletal formation is biologically mediated and occurs in isolated space rather than directly from seawater. In corals new skeletal material is precipitated in the subcalicoblastic space between the skeleton and the calicoblastic epithelium which, does not exceed a few nanometers and contains the ''calcifying fluid''. The goal of our project is to understand how these fluids respond to changes in the surrounding seawater and in turn affects the biologically mediated calcification mechanisms at the molecular, cellular and tissue levels. While it is generally thought that an organic matrix, which contain a suite of proteins, lipids and poly-saccharides, take part in calcification process, the specific mechanism by which the mineral is precipitated is unknown. The organic matrix composed of two fractions: the soluble organic matrix (SOM) and the insoluble organic matrix (IOM). It is suggested that the IOM plays a role as structural proteins forming a framework for crystal growth whereas the SOM plays a role in nucleation and crystal growth. To address this question we have investigated both the structural framework proteins (Drake et al abstract submitted to the AGU fall meeting) the role of proteins in nucleation and crystal growth (this work). Here, we established cell cultures and sequenced the 458-megabase genome of the stony coral, Stylophora pistillata, using next-generation sequencing technology. This genome contains 21,678 predicted protein-coding genes. Many of the known protein components of invertebrate skeletal matrices are acidic and/or contain repeated sequences. We searched for genes encoding

  8. Legume genomics: Understanding biology through DNA and RNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. The legume family (Leguminosae) consists of approximately 17,000 species. A few of these species including, but not limited to; Phaseolus vulgaris, Cicer arietinum, and Cajanus cajan, are important dietary components, providing the dietary protein for approximately 300 million people wor...

  9. Cereal grains, legumes and diabetes.

    PubMed

    Venn, B J; Mann, J I

    2004-11-01

    This review examines the evidence for the role of whole grain foods and legumes in the aetiology and management of diabetes. MedLine and SilverPlatter ('Nutrition' and 'Food Science FSTA') databases were searched to identify epidemiological and experimental studies relating to the effects of whole grain foods and legumes on indicators of carbohydrate metabolism. Epidemiological studies strongly support the suggestion that high intakes of whole grain foods protect against the development of type II diabetes mellitus (T2DM). People who consume approximately 3 servings per day of whole grain foods are less likely to develop T2DM than low consumers (<3 servings per week) with a risk reduction in the order of 20-30%. The role of legumes in the prevention of diabetes is less clear, possibly because of the relatively low intake of leguminous foods in the populations studied. However, legumes share several qualities with whole grains of potential benefit to glycaemic control including slow release carbohydrate and a high fibre content. A substantial increase in dietary intake of legumes as replacement food for more rapidly digested carbohydrate might therefore be expected to improve glycaemic control and thus reduce incident diabetes. This is consistent with the results of dietary intervention studies that have found improvements in glycaemic control after increasing the dietary intake of whole grain foods, legumes, vegetables and fruit. The benefit has been attributed to an increase in soluble fibre intake. However, prospective studies have found that soluble fibre intake is not associated with a lower incidence of T2DM. On the contrary, it is cereal fibre that is largely insoluble that is associated with a reduced risk of developing T2DM. Despite this, the addition of wheat bran to the diets of diabetic people has not improved indicators of glycaemic control. These apparently contradictory findings might be explained by metabolic studies that have indicated improvement

  10. Interrelations between herbage yield, α-tocopherol, β-carotene, lutein, protein, and fiber in non-leguminous forbs, forage legumes, and a grass-clover mixture as affected by harvest date.

    PubMed

    Elgersma, Anjo; Søegaard, Karen; Jensen, Søren Krogh

    2015-01-21

    Pastures with diverse botanical composition may enhance animal-derived product quality. A recent study demonstrated high vitamin concentrations and yields in some forb species. The objectives of the present study were to investigate interrelations between herbage yields, vitamin concentrations, protein and fiber contents and analyze the effect of harvest date. We hypothesized that interrelations would be similar across investigated forage species. Four nonleguminous forbs: salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus), and ribwort plantain (Plantago lanceolata), three legumes: yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa), and birdsfoot trefoil (Lotus corniculatus) and a perennial ryegrass (Lolium perenne)-white clover (Trifolium repens) mixture were sown in a field trial with two replicated and randomized blocks. Forage in 1.5 m × 9 m plots was grown in two consecutive years and cut four times per year (May-October). Analyses of variance were performed. In most herbages, α-tocopherol and β-carotene were positively correlated as were β-carotene and lutein; all vitamins were negatively correlated with fiber content and herbage yield. β-Carotene was positively correlated with protein content. α-Tocopherol and β-carotene contents were generally highest in October and lowest in July. Our results showed similar interrelationships in most investigated species, and we suggest that these species may be mixed when designing novel biodiverse mixtures for particular product quality characteristics. PMID:25573460

  11. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses.

    PubMed

    Bhagooli, Ranjeet; Hidaka, Michio

    2004-03-01

    In the present study, we examined the effect of thermal stress on the photoinhibitory light threshold in a bleaching susceptible (Stylophora pistillata) and a bleaching resistant (Platygyra ryukyuensis) coral. Four light (0, 110, 520, 1015 micromol quantam(-2)s(-1)) and three temperature (26, 32 and 34 degrees C) conditions were used over a 3-h period, followed by 24- and 48-h recovery periods at approximately 21 degrees C under dim light. Dynamic photoinhibition could be detected in both P. ryukyuensis and S. pistillata under 520 and 1015 micromol quantam(-2)s(-1) at 26 degrees C and under 110 micromol quantam(-2)s(-1) at 32 degrees C only in S. pistillata. Chronic photoinhibition was recorded under 520 and 1015 micromol quantam(-2)s(-1) at 34 degrees C in P. ryukyuensis, and under 1015 micromol quantam(-2)s(-1) at 32 degrees C and under all light levels at 34 degrees C in S. pistillata. These results show that high temperature reduced the threshold light intensity for photoinhibition differently in two corals with different bleaching susceptibilities under thermal stress. No visual paling and mortality in P. ryukyuensis was observed at any treatment, even in chronically photoinhibited specimens, while paling and high mortality of S. pistillata was noted in all treatments, apart from samples at 26 degrees C. These observations suggest a potential role of the host in differential bleaching and mortality determination.

  12. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    PubMed

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  13. Bioaccumulation of (63)Ni in the scleractinian coral Stylophora pistillata and isolated Symbiodinium using radiotracer techniques.

    PubMed

    Hédouin, Laetitia; Metian, Marc; Teyssié, Jean-Louis; Oberhänsli, François; Ferrier-Pagès, Christine; Warnau, Michel

    2016-08-01

    Development of nickel mining activities along the New Caledonia coasts threatens the biodiversity of coral reefs. Although the validation of tropical marine organisms as bioindicators of metal mining contamination has received much attention in the literature over the last decade, few studies have examined the potential of corals, the fundamental organisms of coral reefs, to monitor nickel (Ni) contamination in tropical marine ecosystems. In an effort to bridge this gap, the present work investigated the bioaccumulation of (63)Ni in the scleractinian coral Stylophora pistillata and in its isolated zooxanthellae Symbiodinium, using radiotracer techniques. Results highlight the high capacities of coral tissues (zooxanthellae and host tissues) to efficiently bioconcentrate (63)Ni compared to skeleton (Concentration Factors CF at 14 days of exposure are 3 orders of magnitude higher in tissues than in skeleton). When non-contaminated conditions were restored, (63)Ni was more efficiently retained in skeleton than in coral tissues, with biological half-lives (Tb½) of 44.3 and 6.5 days, respectively. In addition, our work showed that Symbiodinium bioconcentrated (63)Ni exponentially, with a vol/vol concentration factor at steady state (VCFSS) reaching 14,056. However, compilation of our results highlighted that despite efficient bioconcentration of (63)Ni in Symbiodinium, their contribution to the whole (63)Ni accumulation in coral nubbins represents less than 7%, suggesting that other biologically controlled processes occur in coral host allowing such efficient bioconcentration in coral tissues. PMID:27192479

  14. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Tambutté, E.; Allemand, D.; Zoccola, D.; Meibom, A.; Lotto, S.; Caminiti, N.; Tambutté, S.

    2007-09-01

    Recent micro-analytical studies of coral skeletons have led to the discovery that the effects of biology on the skeletal chemical and isotopic composition are not uniform over the skeleton. The aim of the present work was to provide histological observations of the coral tissue at the interface with the skeleton, using Stylophora pistillata as a model, and to discuss these observations in the context of skeletal ultra-structural organization and composition. Several important observations are reported: (1) At all scales of observation, there was a precise morphological correspondence between the tissues and the skeleton. The morphological features of the calicoblastic ectoderm correspond exactly to the shape of individual crystal fiber bundles in the underlying skeleton, indicating that the calicoblastic cell layer is in direct physical contact with the skeletal surface. This is consistent with the previously observed chemical and isotopic composition of the ultra-structural components in the skeleton. (2) The distribution and density of desmocyte cells, which anchor the calicoblastic ectoderm to the skeletal surface, vary spatially and temporally during skeletal growth. (3) The tissue above the coenosteal spines lack endoderm and consists only of ectodermal cell-layers separated by mesoglea. These findings have important implications for models of vital effects in coral skeletal chemistry and isotope composition.

  15. USE OF CHLOROPHYLL FLUORESCENCE: A TOOL TO DETERMINE DAMAGE IN PHOTOSYSTEMS UNDER WATER-STRESS CONDITIONS IN LEGUME SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of legumes in agriculture is due mainly to their richness in high-quality protein for human food and animal feed. In Mexico, one of the most limiting factors for legume production in rain-fed areas is the random availability of water. The effect of water stress varies greatly not on...

  16. Chemical composition of the underutilized legume Cassia hirsuta L.

    PubMed

    Vadivel, V; Janardhanan, K

    2000-01-01

    Seven accessions of the underutilized legume, Cassia hirsuta L., seeds collected from seven different agroclimatic regions of Tamil Nadu, India, were analyzed for proximate composition, total proteins, protein fractions, mineral profiles and selected antinutritional factors. Crude protein ranged from 15.52 to 20.74%, crude lipid 3.77-7.04%, crude fiber 4.68-6.92%, ash 3.98-6.42% and carbohydrates 62.45-70.16%. Energy values of the seeds were 1549-1634 kJ/100 g (DM), which are comparable to those of other legumes. Data on seed protein fractions revealed that globulins constituted the bulk of the seed protein as in most legumes. Mineral contents of the seeds showed greater variation. Potassium was the most abundant mineral (1029-1786 mg/100 g), whereas manganese was low (2.1-2.2 mg/100 g). Antinutritional factors such as total free phenolics, tannins, L-DOPA and lectins were analyzed. The results of the study demonstrated that the accessions of C. hirsuta seeds collected from Tamil Nadu, India, could be good sources of some important nutrients for humans. PMID:11086879

  17. [How I got to study legumes].

    PubMed

    Jaffé, W G

    1996-12-01

    In this paper the author presents a brief account of his involvement in the study of legume seeds form a nutritional and toxicological perspective. After observing that the Venezuelan peasants ate diets which often included cooked black beans and a form of corn bread called arepas, he performed nutritional trials which led him to recognize that raw beans contained thermolabile antinutritional factors and that their proteins were complementary to those of corn. Among the antinutritional factors, he isolated a hemagglutinating fraction which later was further characterized. Based on their properties he recognized the existence of four different types of Phaseolus vulgaris cultivars. Research on the nutritive value of bean diets also got him involved in the identification of a growth factor later called vitamin B12. PMID:9221715

  18. Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata.

    PubMed

    Downs, Craig A; Kramarsky-Winter, Esti; Woodley, Cheryl M; Downs, Aaron; Winters, Gidon; Loya, Yossi; Ostrander, Gary K

    2009-08-15

    Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of storms, heavy rainy seasons (e.g., monsoons), and coastal runoff. Field and laboratory observations have documented that corals exposed to hypo-saline conditions can undergo extensive bleaching and mortality. There is controversy in the literature as to whether hypo-saline conditions induce a pathological response in corals, and if there is a relationship between decreasing salinity treatment and pathological responses. To test the hypothesis that hypo-salinity exposure does not have a pathological effect on coral, we used histological and cellular diagnostic methods to characterize the pathology in hypo-salinity-exposed corals. Colonies of Stylophora pistillata were exposed to five salinity concentrations [39 parts per thousand (ppt), 32 ppt, 28 ppt, 24 ppt, and 20 ppt] that may realistically occur on a reef. Histological examination indicated an increasing severity of pathomorphologies associated with decreasing salinity, including increased tissue swelling, degradation and loss of zooxanthellae, and tissue necrosis. Pulse-amplitude modulated chlorophyll fluorimetry kinetics demonstrated a decreasing photosynthetic efficiency with decreasing salinity conditions. Cytochrome P450 levels were affected by even slight changes in salinity concentration suggesting that detoxification pathways, as well as several endocrine pathways, may be adversely affected. Finally, these studies demonstrated that hypo-saline conditions can induce an oxidative-stress response in both the host and in its algal symbiont, and in so doing, may synergistically increase oxidative-stress burdens. As with other types of environmental stresses, exposure to hypo-saline conditions may have long-term consequences on coral physiology.

  19. Legume genomics: understanding biology through DNA and RNA sequencing

    PubMed Central

    O'Rourke, Jamie A.; Bolon, Yung-Tsi; Bucciarelli, Bruna; Vance, Carroll P.

    2014-01-01

    Background The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. Scope and Conclusions This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes. PMID:24769535

  20. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review.

    PubMed

    Bouchenak, Malika; Lamri-Senhadji, Myriem

    2013-03-01

    Legumes (including alfalfa, clover, lupins, green beans and peas, peanuts, soybeans, dry beans, broad beans, dry peas, chickpeas, and lentils) represent an important component of the human diet in several areas of the world, especially in the developing countries, where they complement the lack of proteins from cereals, roots, and tubers. In some regions of the world, legume seeds are the only protein supply in the diet. The health benefits of legume consumption have received rising interest from researchers, and their consumption and production extends worldwide. Among European countries, higher legume consumption is observed around the Mediterranean, with per capita daily consumption between 8 and 23 g, while in Northern Europe, the daily consumption is less than 5 g per capita. The physiological effects of different legumes vary significantly. These differences may result from the polysaccharides composition, in particular, the quantity and variety of dietary fibers and starch, protein make-up, and variability in phytochemical content. The majority of legumes contain phytochemicals: bioactive compounds, including enzyme inhibitors, phytohemagglutinins (lectins), phytoestrogens, oligosaccharides, saponins, and phenolic compounds, which play metabolic roles in humans who frequently consume these foods. Dietary intake of phytochemicals may provide health benefits, protecting against numerous diseases or disorders, such as coronary heart disease, diabetes, high blood pressure and inflammation. The synergistic or antagonistic effects of these phytochemical mixtures from food legumes, their interaction with other components of the diet, and the mechanism of their action have remained a challenge with regard to understanding the role of phytochemicals in health and diseases. Their mitigating effects and the mechanism of their action need to be further addressed if we are to understand the role of phytochemicals in health and diseases. This review provides an overview

  1. Legume Information System (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working o...

  2. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity.

    PubMed

    Burks, A W; Shin, D; Cockrell, G; Stanley, J S; Helm, R M; Bannon, G A

    1997-04-15

    Peanut allergy is a significant health problem because of the prevelance and potential severity of the allergic reaction. Serum IgE from patients with documented peanut hypersensitivity reactions and overlapping peptides were used to identify the IgE-binding epitopes on the major peanut allergen, Ara h 1. At least twenty-three different linear IgE-binding epitopes, located throughout the length of the Ara h 1 protein, were identified. All of the epitopes were 6-10 amino acids in length, but there was no obvious sequence motif shared by all peptides. Four of the peptides appeared to be immunodominant IgE-binding epitopes in that they were recognized by serum from more than 80% of the patients tested and bound more IgE than any of the other Ara h 1 epitopes. Mutational analysis of the immunodominant epitopes revealed that single amino acid changes within these peptides had dramatic effects on IgE-binding characteristics. The identification and determination of the IgE-binding capabilities of core amino acids in epitopes on the Ara h 1 protein will make it possible to address the pathophysiologic and immunologic mechanisms regarding peanut hypersensitivity reactions specifically and food hypersensitivity in general.

  3. Influence of Species Specificity and Other Factors on Bacteria Associated with the Coral Stylophora pistillata in Taiwan ▿

    PubMed Central

    Hong, Mei-Jhu; Yu, Yi-Ting; Chen, Chaolun A.; Chiang, Pei-Wen; Tang, Sen-Lin

    2009-01-01

    Species of bacteria associated with Stylophora pistillata were determined by analyses of 16S ribosomal genes. Coral samples were taken from two distinct sites at Kenting, in the far south of Taiwan; three coral colonies at each site were tagged and sampled in the winter and summer of 2007. Six hundred 16S rRNA gene clones were selected and sequenced for diversity analysis and community comparison. LIBSHUFF and nonparametric multiple dimensional scaling analyses showed variations in the composition of the coral-associated bacteria in the different samples, suggesting that seasonal and geographic factors and variations in individual coral colonies were all vital drivers of the structure of the S. pistillata-associated bacterial community. To examine the association between species specificity and environmental impacts on the structure of the coral-associated bacterial community, we conducted an integrated, comparative analysis of 44 coral-associated bacterial data sets, including the present study's data. The clustering analysis suggests that the influence of spatial and temporal factors on the coral-associated bacteria population structure is considerable; nonetheless, the effect of species specificity is still detectable in some coral species, especially those from the Caribbean Sea. PMID:19854921

  4. Utilization of summer legumes as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume—cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield and subsequent energy yield. S...

  5. A sustainable legume biomass energy farming system

    SciTech Connect

    Neathery, J.; Rubel, A.; Stencel, J.; Collins, M.

    1996-12-31

    Before environmentally sensitive areas are converted to biomass energy production, the production, the potential for sustainability of such systems must be assessed. The focus has been on woody or grass crops because of their high potential yields; however, yield sustainability is dependent on the application of fertilizer and lining materials, which in turn contribute to large costs. Growing legumes or mixtures of legumes with grasses could lower or alleviate the need for nitrate fertilizers. The incorporation of legumes into energy cropping systems could: (1) add soil organic matter; (2) introduce biologically fixed N; (3) improve soil structure and texture; (4) reduce soil erosion; (5) reduce production costs; and (6) decrease nitrate run-off in surface waters. Through the {open_quotes}rotation effect{close_quotes}, legumes cause increases in yield of subsequent non-legume crops beyond that accounted for by biologically-fixed N alone. In this paper, we describe a biomass energy system combining legume and grass biomass energy with fertilizer production from these same materials. Preliminary agronomic and engineering assessments for this type of biomass system are presented. The technologies needed to integrate nitrate production with legume energy farming and energy production through legume energy conversion are identified.

  6. Scent glands in legume flowers.

    PubMed

    Marinho, C R; Souza, C D; Barros, T C; Teixeira, S P

    2014-01-01

    Scent glands, or osmophores, are predominantly floral secretory structures that secrete volatile substances during anthesis, and therefore act in interactions with pollinators. The Leguminosae family, despite being the third largest angiosperm family, with a wide geographical distribution and diversity of habits, morphology and pollinators, has been ignored with respect to these glands. Thus, we localised and characterised the sites of fragrance production and release in flowers of legumes, in which scent plays an important role in pollination, and also tested whether there are relationships between the structure of the scent gland and the pollinator habit: diurnal or nocturnal. Flowers in pre-anthesis and anthesis of 12 legume species were collected and analysed using immersion in neutral red, olfactory tests and anatomical studies (light and scanning electron microscopy). The main production site of floral scent is the perianth, especially the petals. The scent glands are distributed in a restricted way in Caesalpinia pulcherrima, Anadenanthera peregrina, Inga edulis and Parkia pendula, constituting mesophilic osmophores, and in a diffuse way in Bauhinia rufa, Hymenaea courbaril, Erythrostemon gilliesii, Poincianella pluviosa, Pterodon pubescens, Platycyamus regnellii, Mucuna urens and Tipuana tipu. The glands are comprised of cells of the epidermis and mesophyll that secrete mainly terpenes, nitrogen compounds and phenols. Relationships between the presence of osmophores and type of anthesis (diurnal and nocturnal) and the pollinator were not found. Our data on scent glands in Leguminosae are original and detail the type of diffuse release, which has been very poorly studied. PMID:23574349

  7. Nutritional significance of lectins and enzyme inhibitors from legumes.

    PubMed

    Lajolo, Franco M; Genovese, Maria Inés

    2002-10-23

    Legumes have natural components, such as lectins, amylase, and trypsin inhibitors, that may adversely affect their nutritional properties. Much information has already been obtained on their antinutritional significance and how to inactivate them by proper processing. Chronic ingestion of residual levels is unlikely to pose risks to human health. On the other hand, the ability of these molecules to inhibit some enzymes such as trypsin, chymotrypsin, disaccharidases, and alpha-amylases, to selectively bind to glycoconjugates, and to enter the circulatory system may be a useful tool in nutrition and pharmacology. Trypsin inhibitors have also been studied as cancer risk reducing factors. These components seem to act as plant defense substances. However, increased contents may represent an impairment of the nutritional quality of legumes because these glycoproteins and the sulfur-rich protease inhibitors have been shown to be poorly digested and to participate in chemical reactions during processing reducing protein digestibility, a still unsolved question. PMID:12381157

  8. Effect of Feeding On The Carbon and Oxygen Isotopic Composition In The Tissues and Skeleton of The Zooxanthellate Coral Stylophora Pistillata

    NASA Astrophysics Data System (ADS)

    Reynaud-Vaganay, S.; Ferrier-Pagès, C.; Sambrotto, R.; Juillet-Leclerc, A.; Jaubert, J.

    and J.-P. Gattuso4 1Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000, Principality of Monaco 2Lamont-Doherty Earth Observatory, 61 Rt. 9W/ P.O. Box 1000, Palisades, NY 10964 U.S.A 3Laboratoire des Sciences du Climat et de l'Environnement, Laboratoire mixte CNRS- CEA, F-91180 Gif-sur-Yvette Cedex, France 4Observatoire Océanologique, Laboratoire d'Océanographie, CNRS-UPMC, BP 28, F- 06234 Villefranche-sur-mer Cedex, France The effect of feeding on the carbon isotopic composition of zooxanthellae, animal tissue and skeleton was investigated in the scleractinian coral Stylophora pistillata. Two sets of corals were grown with filtered seawater under controlled conditions. One group of colonies was fed with Artemia nauplii and compared to a control group that was starved. Fed corals exhibited higher concentrations of chlorophyll protein calcification rates than starved colonies. The net photosynthetic rate was higher in starved than in fed corals, whereas dark respiration was not significantly different. The average ? C value of Artemia nauplii used for feeding was -12. ? C was 13 13 significantly heavier in zooxanthellae than in animal tissues, for both fed (-10.1vs. -11.7) and starved colonies (-10.9vs. -13.2). Isotopic data reflected the incorporation of Artemia carbon into the coral tissue in that the ? C was 13 significantly heavier in fed than in starved colonies (-11.7 to -13.2 respectively), although there was no difference in the ? C of the zooxanthellae fraction. Skeletal 13 ? C was similar in fed and starved colonies (mean = -4.6). Skeletal ? O 13 18 composition was, however, significantly different between the two treatments (-4.24 to -4.05 for fed and starved colonies respectively). These data are used to establish a conceptual model of the carbon flow between the various compartments of a symbiotic coral.

  9. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu

    NASA Astrophysics Data System (ADS)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-09-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  10. Release of hydrogen peroxide and antioxidant by the coral Stylophora pistillata to its external milieu

    NASA Astrophysics Data System (ADS)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-01-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu and can influence the H2O2 dynamics in the reef. Here we present laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed methodology for resolving the actual rates of H2O2 release by the corals. H2O2 and antioxidant activity linearly increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 2-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then slow down and stop by 5-7 h. Stirring was shown to induce the release of both H2O2 and antioxidant activity, possibly due to ventilation of the coral by the flow. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidant did not originate from the symbiotic algae. H2O2, however, was only minimally released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae and possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  11. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes

    PubMed Central

    Nelson, Matthew S.; Sadowsky, Michael J.

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity. PMID:26191069

  12. Tropical food legumes: virus diseases of economic importance and their control.

    PubMed

    Hema, Masarapu; Sreenivasulu, Pothur; Patil, Basavaprabhu L; Kumar, P Lava; Reddy, Dodla V R

    2014-01-01

    Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed. PMID:25410108

  13. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.

    PubMed

    Nelson, Matthew S; Sadowsky, Michael J

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity.

  14. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.

  15. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.

    PubMed

    Nelson, Matthew S; Sadowsky, Michael J

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity. PMID:26191069

  16. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species. PMID:26858743

  17. Small RNA pathways and diversity in model legumes: lessons from genomics

    PubMed Central

    Bustos-Sanmamed, Pilar; Bazin, Jérémie; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-01-01

    Small non-coding RNAs (smRNA) participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA) and short-interfering RNAs (siRNA) are generated from long double stranded RNA (dsRNA) that are cleaved into 20–24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL). One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO) proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in three legumes: Medicago truncatula, soybean (Glycine max) and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179, and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes, like AGO10 or DCL4, could not yet be detected in M. truncatula available genomic and expressed sequence (EST) databases. In contrast to Arabidopsis, an important gene diversification was observed in the three legume models (for DCL2, AGO4, AGO2, and AGO10) or

  18. Small RNA pathways and diversity in model legumes: lessons from genomics.

    PubMed

    Bustos-Sanmamed, Pilar; Bazin, Jérémie; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-01-01

    Small non-coding RNAs (smRNA) participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA) and short-interfering RNAs (siRNA) are generated from long double stranded RNA (dsRNA) that are cleaved into 20-24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL). One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO) proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in three legumes: Medicago truncatula, soybean (Glycine max) and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179, and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes, like AGO10 or DCL4, could not yet be detected in M. truncatula available genomic and expressed sequence (EST) databases. In contrast to Arabidopsis, an important gene diversification was observed in the three legume models (for DCL2, AGO4, AGO2, and AGO10) or

  19. Hypoallergenic legume crops and food allergy: factors affecting feasibility and risk.

    PubMed

    Riascos, John J; Weissinger, Arthur K; Weissinger, Sandra M; Burks, A Wesley

    2010-01-13

    Currently, the sole strategy for managing food hypersensitivity involves strict avoidance of the trigger. Several alternate strategies for the treatment of food allergies are currently under study. Also being explored is the process of eliminating allergenic proteins from crop plants. Legumes are a rich source of protein and are an essential component of the human diet. Unfortunately, legumes, including soybean and peanut, are also common sources of food allergens. Four protein families and superfamilies account for the majority of legume allergens, which include storage proteins of seeds (cupins and prolamins), profilins, and the larger group of pathogenesis-related proteins. Two strategies have been used to produce hypoallergenic legume crops: (1) germplasm lines are screened for the absence or reduced content of specific allergenic proteins and (2) genetic transformation is used to silence native genes encoding allergenic proteins. Both approaches have been successful in producing cultivars of soybeans and peanuts with reduced allergenic proteins. However, it is unknown whether the cultivars are actually hypoallergenic to those with sensitivity. This review describes efforts to produce hypoallergenic cultivars of soybean and peanut and discusses the challenges that need to be overcome before such products could be available in the marketplace.

  20. Hemagglutinating activity of polyphenols extracts from six grain legumes.

    PubMed

    Cortés-Giraldo, Isabel; Girón-Calle, Julio; Alaiz, Manuel; Vioque, Javier; Megías, Cristina

    2012-06-01

    The erythrocyte agglutinating activity of polyphenol extracts from six grain legumes was investigated. Polyphenols are amphipathic molecules that can bind to proteins and lipids through hydrophobic and polar interactions, leading to agglutination of liposomes and bacteria. The extracts from four of the six legumes that were studied caused erythrocyte agglutination at concentrations in the μM range. Soybean extracts had the highest activity, followed by the extracts from lentils, broad bean, and chickpea. As a good representative of these legumes, binding of the polyphenols extracted from lentils to erythrocytes was investigated in more detail, showing that agglutination was mediated by binding of 84% of the polyphenols present in the incubation, which corresponds to 2.42 μg bound polyphenols/mg erythrocytes, and a maximum polyphenol binding of 96% according to Lineweaver-Burk plots. The relatively high concentrations that are required for agglutination justify that polyphenols more probably do not agglutinate erythrocytes in vivo, but the possibility still exists that in vivo binding without agglutination could occur, which could have some effects on the metabolism and health-promoting properties of polyphenols. PMID:22497898

  1. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family

    PubMed Central

    Dash, Sudhansu; Campbell, Jacqueline D.; Cannon, Ethalinda K.S.; Cleary, Alan M.; Huang, Wei; Kalberer, Scott R.; Karingula, Vijay; Rice, Alex G.; Singh, Jugpreet; Umale, Pooja E.; Weeks, Nathan T.; Wilkey, Andrew P.; Farmer, Andrew D.; Cannon, Steven B.

    2016-01-01

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the ‘Legume Federation’ project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs. PMID:26546515

  2. Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family.

    PubMed

    Dash, Sudhansu; Campbell, Jacqueline D; Cannon, Ethalinda K S; Cleary, Alan M; Huang, Wei; Kalberer, Scott R; Karingula, Vijay; Rice, Alex G; Singh, Jugpreet; Umale, Pooja E; Weeks, Nathan T; Wilkey, Andrew P; Farmer, Andrew D; Cannon, Steven B

    2016-01-01

    Legume Information System (LIS), at http://legumeinfo.org, is a genomic data portal (GDP) for the legume family. LIS provides access to genetic and genomic information for major crop and model legumes. With more than two-dozen domesticated legume species, there are numerous specialists working on particular species, and also numerous GDPs for these species. LIS has been redesigned in the last three years both to better integrate data sets across the crop and model legumes, and to better accommodate specialized GDPs that serve particular legume species. To integrate data sets, LIS provides genome and map viewers, holds synteny mappings among all sequenced legume species and provides a set of gene families to allow traversal among orthologous and paralogous sequences across the legumes. To better accommodate other specialized GDPs, LIS uses open-source GMOD components where possible, and advocates use of common data templates, formats, schemas and interfaces so that data collected by one legume research community are accessible across all legume GDPs, through similar interfaces and using common APIs. This federated model for the legumes is managed as part of the 'Legume Federation' project (accessible via http://legumefederation.org), which can be thought of as an umbrella project encompassing LIS and other legume GDPs.

  3. Genetic control of flowering time in legumes

    PubMed Central

    Weller, James L.; Ortega, Raúl

    2015-01-01

    The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum) and the warm-season short-day plant soybean (Glycine max). Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally. PMID:25914700

  4. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  5. Genetic control of inflorescence architecture in legumes

    PubMed Central

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753

  6. Genetic control of inflorescence architecture in legumes.

    PubMed

    Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco

    2015-01-01

    The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops.

  7. Proteome analysis of pod and seed development in the model legume Lotus japonicus.

    PubMed

    Nautrup-Pedersen, Gitte; Dam, Svend; Laursen, Brian S; Siegumfeldt, Astrid L; Nielsen, Kasper; Goffard, Nicolas; Stærfeldt, Hans Henrik; Friis, Carsten; Sato, Shusei; Tabata, Satoshi; Lorentzen, Andrea; Roepstorff, Peter; Stougaard, Jens

    2010-11-01

    Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965 seed proteins, including 263 proteins distinguishing the pod. The complete data set is publicly available at http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi , where spots in a reference map are linked to experimental data, such as matched peptides, quantification values, and gene accessions. Identified pod proteins represented enzymes from 85 different metabolic pathways, including storage globulins and a late embryogenesis abundant protein. In contrast to seed maturation, pod maturation was associated with decreasing total protein content, especially proteins involved in protein biosynthesis and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate metabolism pathway were identified.

  8. Beneficial consequences of a selective glutamine synthetase inhibitor in oats and legumes

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J.; Sengupta-Gopalan, C.

    1988-01-01

    We report on the effects of administering a unique glutamine synthetase inhibitor to cereals and N/sub 2/-fixing legumes. A bacterium (Pseudomonas syringae pv. tabaci) delivers this inhibitor to provide extended treatment periods; we inoculated the root systems of oat and legume plants with pv. tabaci to provide for delivery of this inhibitor to their root or root/nodule systems. Inoculation of legumes is accompanied by increased plant growth, total plant nitrogen, nodulation, and nitrogen fixation activity. Inoculation of the oats is accompanied by either of two results depending upon the genotype of the oat plant. One result is inhibition of plant growth followed by plant death as consequences of the loss of all of the glutamine synthetase activities in the plant and the subsequent accumulation of ammonia and cessation of nitrate uptake. The second and opposite result is observed in a small population of oats screened from a commercial cultivar and includes increased plant growth and leaf protein. The effects of this inhibitor can be beneficial when applied to appropriate plant material. In an attempt to effectively communicate these findings to the reader, we first introduce the inhibitor (a novel amino acid) and its bacterial delivery systems, the target of the inhibitor (glutamine synthetase-catalyzed ammonia assimilation), and the two different nitrogen economics in the legume and cereal plants used experimentally. The physiological, biochemical, and molecular genetic consequences of the inhibitor action in cereals and legumes, as we presently understand them, are then presented. 18 refs., 4 figs., 3 tabs.,

  9. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique.

    PubMed

    Seresinhe, T; Madushika, S A C; Seresinhe, Y; Lal, P K; Orskov, E R

    2012-10-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  10. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique.

    PubMed

    Seresinhe, T; Madushika, S A C; Seresinhe, Y; Lal, P K; Orskov, E R

    2012-10-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  11. Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

    PubMed Central

    Seresinhe, T.; Madushika, S. A. C.; Seresinhe, Y.; Lal, P. K.; Ørskov, E. R.

    2012-01-01

    In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima×Leucaena leucocephala (LL) (Trt 1), C. integerrima×Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana×LL (Trt 3), A. lindeliyana×GS (Trt 4), Ceiba perntandra×LL (Trt 5), C. perntandra×GS (Trt 6), Artocarpus heterophyllus×LL (Trt 7), A. heterophyllus×GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra×G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus×L. leucocephala (Trt 7) and A. heterophyllus×G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus×G. sepium (Trt 8) mixture which may be attributed with it’s highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra×G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental

  12. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the assembly of the 14,146 base pairs (bp) near complete mitochondrial sequencing of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which was used to estimate divergence and relationships within the lepidopteran lineage. Arrangement and orientation of 13 protein c...

  13. Intercropping Tropical Vine Legumes and Maize for Silage in Temperate Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize silage is used extensively in American dairy rations. Increasing protein content would enhance maize silage quality. This study examined nine forage legume species (Austrian winter pea, common bean, cowpea, lablab, scarlet runner bean, sesbania, sunn hemp, tropical kudzu, and velvet bean) gr...

  14. Increasing seed size and quality by manipulating BIG SEEDS 1 in legume species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant organs such as seeds are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a novel and conserved ro...

  15. Common bean-Rhizobium symbiosis: functional genomics of legume response to abiotic stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bean (Phaseolus vulgaris) is the world's most important grain legume for direct human consumption and a main source of proteins in Latin America and Africa. Environmental factors such as nutrient deficiency, soil acidity, and metal toxicity are important constraints for bean symbiotic nitroge...

  16. Evaluation of phenotypic variation in a collection of Apios americana: an edible tuberous legume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apios americana, sometimes called “potato bean,” is native to the central and eastern parts of the United States and southeastern Canada. Apios is a nitrogen-fixing legume with a vining habit that produces protein rich tubers at nodes along below-ground stolons originating from a “mother tuber.” A b...

  17. Isoflavone rumen metabolites: A missing link in the benefits of legumes on grazing animal production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clovers are widely used to add protein to ruminant diets. Clovers and other legumes also produce a class of small molecules called isoflavones. Isoflavones have estrogenic properties, which can interfere with reproduction in grazing ruminants, but they also have benefits. We identified potential b...

  18. Developmental specialisations in the legume family.

    PubMed

    Hofer, Julie M I; Noel Ellis, T H

    2014-02-01

    The legume family is astonishingly diverse; inventiveness in the form of novel organs, modified organs and additional meristems, is rife. Evolutionary changes can be inferred from the phylogenetic pattern of this diversity, but a full understanding of the origin of these 'hopeful monsters' of meristematic potential requires clear phylogenetic reconstructions and extensive, species-rich, sequence data. The task is large, but rapid progress is being made in both these areas. Here we review specialisations that have been characterised in a subset of intensively studied papilionoid legume taxa at the vanguard of developmental genetic studies.

  19. Legume genomics: where we have been, where are we going?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the recognition in 2000 that several multi-institutional projects focusing on legume genomics were becoming a reality, the legume research community advocated for organization of an international meeting to address fundamental and applied aspects of legume genetic research. The purposes delinea...

  20. Iron: an essential micronutrient for the legume-rhizobium symbiosis

    PubMed Central

    Brear, Ella M.; Day, David A.; Smith, Penelope M. C.

    2013-01-01

    Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in

  1. Nutritional quality of microwave-cooked and pressure-cooked legumes.

    PubMed

    Khatoon, Naveeda; Prakash, Jamuna

    2004-09-01

    Eight whole legumes, namely Bengal gram (Cicer arietinum), broad beans (Vicia faba), Cowpea (Vigna catjang), field beans (Dolichos lablab), green gram (Phaseolus aureus Roxb), horse gram (Dolichos biflorus), lentils (Lens esculenta) and French beans (Phaseolus vulgaris), were cooked under pressure or in a microwave oven and were analysed for nutrient composition. Raw legumes served as control. The range of nutrients analysed in 100 g cooked samples were as follows: moisture, 62.8-69.7 g; protein, 14.7-24.3 g; fat, 0.9-5.9 g; ash, 1.7-4.6 g; iron, 3.3-8.6 mg; calcium, 50-209 mg; phosphorus, 249-429 mg; and thiamin, 0.14-0.32 mg. Cooking methods did not affect the nutrient composition of legumes. However, thiamine decreased in cooked samples. Cooking altered the dietary fibre content of some legumes. The mean in vitro protein digestibility of pressure-cooked and microwaved samples was 79.8% and 74.7%, respectively. The in vitro starch and protein digestibility of pressure-cooked samples were higher.

  2. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli

    PubMed Central

    Armoza-Zvuloni, Rachel; Schneider, Avi; Sher, Daniel; Shaked, Yeala

    2016-01-01

    Corals make use of different chemical compounds during interactions with prey, predators and aggressors. Hydrogen Peroxide (H2O2) is produced and released by a wide range of organisms as part of their defense against grazers or pathogens. In coral reefs, the large fluxes and relatively long half-life of H2O2, make it a potentially important info-chemical or defense molecule. Here we describe a previously unstudied phenomenon of rapid H2O2 release from the reef-building coral Stylophora pistillata during feeding on zooplankton and in response to chemical and physical stimuli. Following stimuli, both symbiotic and bleached corals were found to rapidly release H2O2 to the surrounding water for a short period of time (few minutes). The H2O2 release was restricted to the site of stimulus, and an increase in physical stress and chemical stimuli concentration resulted in elevated H2O2 release. Omission of calcium (a key regulator of exocytotic processes) from the experimental medium inhibited H2O2 release. Hence we suggest that H2O2 is actively released in response to stimuli, rather than leaking passively from the coral tissue. We estimate that at the site of stimulus H2O2 can reach concentrations potentially high enough to deter predators or motile, potentially pathogenic, bacteria. PMID:26875833

  3. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes.

    PubMed

    Aoki, Seishiro; Uehara, Koichi; Imafuku, Masao; Hasebe, Mitsuyasu; Ito, Motomi

    2004-06-01

    The B-class MADS-box genes composed of APETALA3 ( AP3) and PISTILLATA ( PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5' region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from approximately 140-210 Ma, depending on the trees used and assumptions made.

  4. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C.

    2014-03-01

    Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m-2 s-1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 --enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral-dinoflagellate symbioses depend critically on environmental conditions.

  5. Grain legume genetic resources for allele mining

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequencing capacities for higher throughput at significantly lower costs have enabled larger scale genotyping of plant genetic resources. One challenge to sequencing the USDA grain legume collections of pea, chickpea and lentil core accessions is the amount of heterogeneity in the landrace accessio...

  6. Genomic Survey, Gene Expression Analysis and Structural Modeling Suggest Diverse Roles of DNA Methyltransferases in Legumes

    PubMed Central

    Garg, Rohini; Kumari, Romika; Tiwari, Sneha; Goyal, Shweta

    2014-01-01

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes. PMID:24586452

  7. [Immunoproteomics of non water-soluble allergens from 4 legumes flours: peanut, soybean, sesame and lentil].

    PubMed

    Bouakkadia, Hayette; Boutebba, Aissa; Haddad, Iman; Vinh, Joëlle; Guilloux, Laurence; Sutra, Jean-Pierre; Sénéchal, Hélène; Poncet, Pascal

    2015-01-01

    Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients.

  8. [Immunoproteomics of non water-soluble allergens from 4 legumes flours: peanut, soybean, sesame and lentil].

    PubMed

    Bouakkadia, Hayette; Boutebba, Aissa; Haddad, Iman; Vinh, Joëlle; Guilloux, Laurence; Sutra, Jean-Pierre; Sénéchal, Hélène; Poncet, Pascal

    2015-01-01

    Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients. PMID:26635049

  9. Nutritive value of three tropical forage legumes and their influence on growth performance, carcass traits and organ weights of pigs.

    PubMed

    Kambashi, Bienvenu; Kalala, Gaetan; Dochain, Denis; Mafwila, Jacques; Rollin, Xavier; Boudry, Christelle; Picron, Pascale; Bindelle, Jérôme

    2016-08-01

    The effects of tropical forage legumes on feed intake, growth performance and carcass traits were investigated in 16 groups of two Large White × Duroc pigs. The diets consisted of a commercial corn-soybean meal diet as the basal diet and three forage-supplemented diets. Four groups of control pigs received daily 4 % of body weight of the basal diet, and 12 groups of experimental pigs were fed the basal diet at 3.2 % of body weight completed with fresh leaves of one of the three forage legumes (Psophocarpus scandens, Stylosanthes guianensis and Vigna unguiculata) ad libitum. The study lasted 90 days. The in vitro digestion and fermentation of the forage legumes were also determined. The in vitro digestible energy content of the legumes was between 0.72 and 0.77 that of the basal diet (14.4 MJ/kg dry matter (DM)). V . unguiculata was the most digestible forage legume expected for crude protein digestibility. Feeding forage legumes lowered the dry matter intake by 4.5 to 9.6 % (P < 0.05), final body weight (P = 0.013), slaughter weight, average daily gain and hot carcass weight (P < 0.05) without affecting the feed conversion ratio (FCR), dressing percentage and back fat thickness. In conclusion, using forage to feed pig could be interesting in pig smallholder production with limited access to concentrate, as FCR was not significantly affected.

  10. Nutritive value of three tropical forage legumes and their influence on growth performance, carcass traits and organ weights of pigs.

    PubMed

    Kambashi, Bienvenu; Kalala, Gaetan; Dochain, Denis; Mafwila, Jacques; Rollin, Xavier; Boudry, Christelle; Picron, Pascale; Bindelle, Jérôme

    2016-08-01

    The effects of tropical forage legumes on feed intake, growth performance and carcass traits were investigated in 16 groups of two Large White × Duroc pigs. The diets consisted of a commercial corn-soybean meal diet as the basal diet and three forage-supplemented diets. Four groups of control pigs received daily 4 % of body weight of the basal diet, and 12 groups of experimental pigs were fed the basal diet at 3.2 % of body weight completed with fresh leaves of one of the three forage legumes (Psophocarpus scandens, Stylosanthes guianensis and Vigna unguiculata) ad libitum. The study lasted 90 days. The in vitro digestion and fermentation of the forage legumes were also determined. The in vitro digestible energy content of the legumes was between 0.72 and 0.77 that of the basal diet (14.4 MJ/kg dry matter (DM)). V . unguiculata was the most digestible forage legume expected for crude protein digestibility. Feeding forage legumes lowered the dry matter intake by 4.5 to 9.6 % (P < 0.05), final body weight (P = 0.013), slaughter weight, average daily gain and hot carcass weight (P < 0.05) without affecting the feed conversion ratio (FCR), dressing percentage and back fat thickness. In conclusion, using forage to feed pig could be interesting in pig smallholder production with limited access to concentrate, as FCR was not significantly affected. PMID:27154216

  11. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents

    PubMed Central

    Clemente, Alfonso; Arques, Maria del Carmen

    2014-01-01

    Aberrant functioning of serine proteases in inflammatory and carcinogenic processes within the gastrointestinal tract (GIT) has prompted scientists to investigate the potential of serine protease inhibitors, both natural and synthetic, as modulators of their proteolytic activities. Protease inhibitors of the Bowman-Birk type, a major protease inhibitor family in legume seeds, which inhibit potently and specifically trypsin- and chymotrypsin-like proteases, are currently being investigated as colorectal chemopreventive agents. Physiologically relevant amounts of Bowman-Birk inhibitors (BBI) can reach the large intestine in active form due to their extraordinary resistance to extreme conditions within the GIT. Studies in animal models have proven that dietary BBI from several legume sources, including soybean, pea, lentil and chickpea, can prevent or suppress carcinogenic and inflammatory processes within the GIT. Although the therapeutic targets and the action mechanism of BBI have not yet been elucidated, the emerging evidence suggests that BBI exert their preventive properties via protease inhibition; in this sense, serine proteases should be considered as primary targets in early stages of carcinogenesis. The validation of candidate serine proteases as therapeutic targets together with the identification, within the wide array of natural BBI variants, of the most potent and specific protease inhibitors, are necessary to better understand the potential of this protein family as colorectal chemopreventive agents. PMID:25132747

  12. Primary Production and Photoadaptation in Light- and Shade-Adapted Colonies of the Symbiotic Coral, Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Porter, J. W.; Muscatine, L.; Dubinsky, Z.; Falkowski, P. G.

    1984-08-01

    Photoadaptation by photosynthetic organisms to lowered light intensities occurs in part through changes in pigment concentrations and in characteristics of the photosynthetic response curve. We have characterized photoadaptive responses of light- and shade-adapted colonies of the reef coral Stylophora pistillata, which possesses symbiotic algae (zooxanthellae) and grows naturally under a variety of light intensities in the highly cavernous reefs of the Red Sea. Shade-adapted corals have significantly more chlorophyll per individual zooxanthella cell than light-adapted corals (2.98 compared to 12.97 pg chlorophyll a per cell), but not a significantly different number of cells per unit area (1.00 × 106 cells per square centimetre), with the result that the mass of chlorophyll per unit area is greater for shade-adapted corals than for light-adapted corals. Tissue nitrogen content per unit area is significantly lower (p < 0.05) in shade-adapted corals, correlating with a decrease in polyp density (0.10 > p > 0.05) in shade forms. These biomass characteristics are concomitant with a variety of functional responses to natural light intensities. Rate of photosynthesis at saturating light intensities is the same per unit area in both forms (20.2 μ g O2 cm-2 h-1 for shade specimens; 18.8 for light specimens); but it is significantly different when measured by amount of chlorophyll (1.6 μ g O2 (chl a)-1 h-1 for shade specimens compared with 5.0 for light specimens). The initial slope of the P:I curve, α , is significantly higher for shade specimens by area (0.21 for shade corals compared with 0.12 for light corals), but significantly lower for shade specimens by amount of chlorophyll a (0.01 for specimens from shade compared to 0.04 for specimens growing in the light). Ik (the point at which maximum production begins) is significantly lower for shade specimens (138 μ mol m-2 s-1 for shade compared to 273 for light), and likewise Ic (the compensation point at which net

  13. The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review.

    PubMed

    Savelkoul, F H; van der Poel, A F; Tamminga, S

    1992-01-01

    During the germination of legume seeds, enzymes become active in order to degrade starch, storage-protein and proteinaceous antinutritional factors. The degradation of storage-protein is necessary to make peptides and amino acids available in order to stimulate seed growth and early plant growth. Proteinaceous antinutritional factors such as amylase inhibitors, lectins and trypsin inhibitors are present in legume seeds and protect them against predators. However, during germination, they degrade to a lower level by the action of several enzymes. The effect of germination on the content and activity of amylase inhibitors, lectins, tannins and trypsin inhibitors is discussed. PMID:1372122

  14. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata.

    PubMed

    Downs, C A; Kramarsky-Winter, Esti; Fauth, John E; Segal, Roee; Bronstein, Omri; Jeger, Rina; Lichtenfeld, Yona; Woodley, Cheryl M; Pennington, Paul; Kushmaro, Ariel; Loya, Yossi

    2014-03-01

    Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected].

  15. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata.

    PubMed

    Downs, C A; Kramarsky-Winter, Esti; Fauth, John E; Segal, Roee; Bronstein, Omri; Jeger, Rina; Lichtenfeld, Yona; Woodley, Cheryl M; Pennington, Paul; Kushmaro, Ariel; Loya, Yossi

    2014-03-01

    Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected]. PMID:24352829

  16. [Glycemic response to consumption of a cereals and legume (Phaseolus vulgaris) bar on healthy individuals].

    PubMed

    Zambrano, Rosaura; Granito, Marisela; Valero, Yolmar

    2013-06-01

    The objective of this work was to formulate a cereals and legume (Phaseolus vulgaris) bar and assess its impact on the glycemic response of healthy individuals, in order to contribute to the healthy food supply beneficial to consumers. A mixture of cereals (corn and oats) and different percentages (20 and 30%) of Phaseolus vulgaris was used to formulate the bar. Additionally, a legume cereal bar without legumes (bar control) was prepared. The bar with 30% of Phaseolus vulgaris was selected through sensory evaluation, being scored with better flavor and texture. This combination of cereals and legumes aminoacid improves complementation and reaches the formulation criteria previously established. Chemical characterization indicated a higher protein content in the bar with 30% of Phaseolus vulgaris (13.55%) relative to the bar control (8.5%). The contents of fat, ash and dietary fiber did not differ between the two bars evaluated. However, the soluble fiber and resistant starch of the selected bar was a 32.05% and 18.67%, respectively, than in the control bar; this may contribute to decreasing the rate of glucose uptake. The selected bar presented a low glycemic index (49) and intermediate glycemic load (12.0) in healthy volunteers, which could lead to a possible reduction in the rate of absorption of glucose into the bloodstream, associated with a carbohydrate content of slow absorption. This bar represents a proposal of a healthy snack for the consumer. PMID:24934069

  17. Legume genomes: more than peas in a pod.

    PubMed

    Young, Nevin Dale; Mudge, Joann; Ellis, T H Noel

    2003-04-01

    A growing array of sequence-based tools is helping to reveal the organization, evolution and syntenic relationships of legume genomes. The results indicate that legumes form a coherent taxonomic group with frequent and widespread macro- and microsynteny. This is good news for two model legume systems, Medicago truncatula and Lotus japonicus. Indeed, both models have recently been used to clone and characterize genes for nodulation-related receptors that were originally described in legumes with more complex genomes. Studies of legume genomes have also provided insight into genome size, gene clustering, genome duplications and repetitive elements. To understand legume genomes better, it will be necessary to develop tools for studying under-represented taxa beyond the relatively small group of economically important species that have been examined so far.

  18. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    NASA Astrophysics Data System (ADS)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  19. Recessive loci Pps-1 and OM differentially regulate PISTILLATA-1 and APETALA3-1 expression for sepal and petal development in Papaver somniferum.

    PubMed

    Singh, Sharad K; Shukla, Ashutosh K; Dhawan, Om P; Shasany, Ajit K

    2014-01-01

    The involvement of PISTILLATA (PI) and APETALA (AP) transcription factors in the development of floral organs has previously been elucidated but little is known about their upstream regulation. In this investigation, two novel mutants generated in Papaver somniferum were analyzed--one with partially petaloid sepals and another having sepaloid petals. Progeny from reciprocal crosses of respective mutant parent genotypes showed a good fit to the monogenic Mendelian inheritance model, indicating that the mutant traits are likely controlled by the single, recessive nuclear genes named "Pps-1" and "OM" in the partially petaloid sepal and sepaloid petal phenotypes, respectively. Both paralogs of PISTILLATA (PapsPI-1 and PapsPI-3) were obtained from the sepals and petals of P. somniferum. Ectopic expression of PapsPI-1 in tobacco resulted in a partially petaloid sepal phenotype at a low frequency. Upregulation of PapsPI-1 and PapsAP3-1 in the petal and the petal part of partially petaloid sepal mutant and down-regulation of the same in sepaloid petal mutant indicates a differential pattern of regulation for flowering-related genes in various whorls. Similarly, it was found that the recessive mutation OM in sepaloid petal mutant downregulates PapsPI-1 and PapsAP3-1 transcripts. The recessive nature of the mutations was confirmed by the segregation ratios obtained in this analysis.

  20. The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea.

    PubMed

    Mass, T; Kline, D I; Roopin, M; Veal, C J; Cohen, S; Iluz, D; Levy, O

    2010-12-01

    Depth zonation on coral reefs is largely driven by the amount of downwelling, photosynthetically active radiation (PAR) that is absorbed by the symbiotic algae (zooxanthellae) of corals. The minimum light requirements of zooxanthellae are related to both the total intensity of downwelling PAR and the spectral quality of the light. Here we used Stylophora pistillata colonies collected from shallow (3 m) and deep (40 m) water; colonies were placed in a respirometer under both ambient PAR irradiance and a filter that only transmits blue light. We found that the colonies exhibited a clear difference in their photosynthetic rates when illuminated under PAR and filtered blue light, with higher photosynthetic performance when deep colonies were exposed to blue light compared with full-spectrum PAR for the same light intensity and duration. By contrast, colonies from shallow water showed the opposite trend, with higher photosynthetic performances under full-spectrum PAR than under filtered blue light. These findings are supported by the absorption spectra of corals, with deeper colonies absorbing higher energy wavelengths than the shallow colonies, with different spectral signatures. Our results indicate that S. pistillata colonies are chromatically adapted to their surrounding light environment, with photoacclimation probably occurring via an increase in photosynthetic pigments rather than algal density. The spectral properties of the downwelling light are clearly a crucial component of photoacclimation that should be considered in future transplantation and photoacclimation studies.

  1. Recessive loci Pps-1 and OM differentially regulate PISTILLATA-1 and APETALA3-1 expression for sepal and petal development in Papaver somniferum.

    PubMed

    Singh, Sharad K; Shukla, Ashutosh K; Dhawan, Om P; Shasany, Ajit K

    2014-01-01

    The involvement of PISTILLATA (PI) and APETALA (AP) transcription factors in the development of floral organs has previously been elucidated but little is known about their upstream regulation. In this investigation, two novel mutants generated in Papaver somniferum were analyzed--one with partially petaloid sepals and another having sepaloid petals. Progeny from reciprocal crosses of respective mutant parent genotypes showed a good fit to the monogenic Mendelian inheritance model, indicating that the mutant traits are likely controlled by the single, recessive nuclear genes named "Pps-1" and "OM" in the partially petaloid sepal and sepaloid petal phenotypes, respectively. Both paralogs of PISTILLATA (PapsPI-1 and PapsPI-3) were obtained from the sepals and petals of P. somniferum. Ectopic expression of PapsPI-1 in tobacco resulted in a partially petaloid sepal phenotype at a low frequency. Upregulation of PapsPI-1 and PapsAP3-1 in the petal and the petal part of partially petaloid sepal mutant and down-regulation of the same in sepaloid petal mutant indicates a differential pattern of regulation for flowering-related genes in various whorls. Similarly, it was found that the recessive mutation OM in sepaloid petal mutant downregulates PapsPI-1 and PapsAP3-1 transcripts. The recessive nature of the mutations was confirmed by the segregation ratios obtained in this analysis. PMID:24979593

  2. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial.

    PubMed

    Hosseinpour-Niazi, Somayeh; Mirmiran, Parvin; Fallah-Ghohroudi, Arefeh; Azizi, Fereidoun

    2015-07-01

    The present randomised cross-over clinical trial investigated the effects of two intervention diets (non-soya legume-based therapeutic lifestyle change (TLC) diet v. isoenergetic legume-free TLC diet) on inflammatory biomarkers among type 2 diabetic patients. A group of thirty-one participants (twenty-four women and seven men; weight 74.5 (SD 7.0) kg; age 58.1 (SD 6.0) years) were randomly assigned to one of the two following intervention diets for 8 weeks: legume-free TLC diet or non-soya legume-based TLC diet. The latter diet was the same as the legume-free TLC diet, except that two servings of red meat were replaced with different types of cooked non-soya legumes such as lentils, chickpeas, peas and beans over a period of 3 d per week. The intervention period was followed by a washout period of 4 weeks, after which the groups followed the alternate treatment for 8 weeks. Concentrations of inflammatory markers were measured at baseline and after the intervention periods. Compared with the legume-free TLC diet, the non-soya legume-based TLC diet significantly decreased high-sensitivity C-reactive protein, IL-6 and TNF-α in overweight diabetic patients. The replacement of two servings of red meat by non-soya legumes in the isoenergetic TLC diet for a period of 3 d per week reduced the plasma concentrations of inflammatory markers among overweight diabetic patients, independent of weight change.

  3. Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis--a review.

    PubMed

    Pugalenthi, M; Vadivel, V; Siddhuraju, P

    2005-12-01

    Mucuna pruriens var. utilis, an underutilized tropical legume has a nutritional quality comparable to soya beans and other conventional legumes as it contains similar proportions of protein, lipid, minerals, and other nutrients. The beans have been traditionally used as a food in a number of countries, viz., India, Philippines, Nigeria, Ghana, Brazil, and Malawi. Recently, the velvet beans are exploited as a protein source in the diets of fish, poultry, pig, and cattle after subjected to appropriate processing methods. Although the velvet beans contain high levels of protein and carbohydrate, their utilization is limited due to the presence of a number of antinutritional/antiphysiological compounds, phenolics, tannins, L-Dopa, lectins, protease inhibitors, etc., which may reduce the nutrient utilization. Unfortunately, even though many researchers all over the world working on Mucuna, only scanty and conflicting information are available regarding its utilization as a food/feed and no scientific gathering to date has focused on the food/feed applications of Mucuna. Hence, the present review has been emphasized on the nutritional potential of this underutilized, nonconventional legume and current state of its utilization as food/feed for both human beings and livestock throughout the world. PMID:16395632

  4. Phytohormone regulation of legume-rhizobia interactions.

    PubMed

    Ferguson, Brett J; Mathesius, Ulrike

    2014-07-01

    The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and

  5. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    PubMed Central

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  6. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  7. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  8. Function of glutathione peroxidases in legume root nodules

    PubMed Central

    Matamoros, Manuel A.; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M.; Barja, Maria V.; Rouhier, Nicolas; Moore, Marten; James, Euan K.; Dietz, Karl-Josef; Becana, Manuel

    2015-01-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  9. Symbiotic performance of herbaceous legumes in tropical cover cropping systems.

    PubMed

    Ibewiro, B; Onuh, M; Sanginga, N; Bernard, V; Merckx, R

    2001-11-10

    Increasing use of herbaceous legumes such as mucuna ( Mucuna pruriens var. utilis [Wright] Bruck) and lablab ( Lablab purpureus [L.] Sweet) in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2). The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM) than live mulch (LM) systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed. PMID:12805778

  10. The proteome of seed development in the model legume Lotus japonicus.

    PubMed

    Dam, Svend; Laursen, Brian S; Ornfelt, Jane H; Jochimsen, Bjarne; Staerfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B; Enghild, Jan J; Stougaard, Jens

    2009-03-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.

  11. Global Synthesis of Drought Effects on Food Legume Production.

    PubMed

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  12. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  13. Tuberous legumes: preliminary evaluation of tropical Australian and introduced species as fuel crops

    SciTech Connect

    Saxon, E.C.

    1981-04-01

    The evaluation of native and introduced legumes with starch-storing roots or tubers was undertaken to test whether plants traditionally collected as food by Australian aborigines might have a role in the development of crops for liquid fuel production (by fermentation of carbohydrates to ethanol). Tuberous-rooted legumes from overseas were planted at the Commonwealth Scientific and Industrial Research Organization, division of Tropical Crops and Pastures, Kimberley Research Station, Western Australia (15/sup 0/39'S, 128/sup 0/42'E) in December 1974, March 1978 and February 1979. Roots from the latter plantings were harvested in June 1979. Native plant material was collected during visits to aboriginal communities in the Kimberleys between April and June 1979. The native and introduced specimens were analyzed for fermentable carbohydrate and protein content. Several native plants appear more promising than introduced species as liquid fuel crops.

  14. Negotiation of mutualism: rhizobia and legumes

    PubMed Central

    Akçay, Erol; Roughgarden, Joan

    2006-01-01

    The evolution and persistence of biological cooperation have been an important puzzle in evolutionary theory. Here, we suggest a new approach based on bargaining theory to tackle the question. We present a mechanistic model for negotiation of benefits between a nitrogen-fixing nodule and a legume plant. To that end, we first derive growth rates for the nodule and plant from metabolic models of each as a function of material fluxes between them. We use these growth rates as pay-off functions in the negotiation process, which is analogous to collective bargaining between a firm and a workers' union. Our model predicts that negotiations lead to the Nash bargaining solution, maximizing the product of players' pay-offs. This work introduces elements of cooperative game theory into the field of mutualistic interactions. In the discussion of the paper, we argue for the benefits of such an approach in studying the question of biological cooperation. PMID:17015340

  15. Biological potential of sixteen legumes in China.

    PubMed

    Yao, Yang; Cheng, Xuzhen; Wang, Lixia; Wang, Suhua; Ren, Guixing

    2011-01-01

    Phenolic acids have been identified in a variety of legumes including lima bean, broad bean, common bean, pea, jack bean, goa bean, adzuki bean, hyacinth bean, chicking vetch, garbanzo bean, dral, cow bean, rice bean, mung bean and soybean. The present study was carried out with the following aims: (1) to identify and quantify the individual phenolic acid and determine the total phenolic content (TPC); (2) to assess their antioxidant activity, inhibition activities of α-glucosidase, tyrosinase, and formation of advanced glycation endproducts; and (3) to investigate correlations among the phytochemicals and biological activity. Common bean possesses the highest antioxidant activity and advanced glycation endproducts formation inhibition activity. Adzuki bean has the highest α-glucosidase inhibition activity, and mung bean has the highest tyrosinase inhibition activity. There are significant differences in phytochemical content and functional activities among the bean species investigated. Selecting beans can help treat diseases such as dermatological hyperpigmentation illness, type 2 diabetes and associated cardiovascular diseases. PMID:22072935

  16. Biological Potential of Sixteen Legumes in China

    PubMed Central

    Yao, Yang; Cheng, Xuzhen; Wang, Lixia; Wang, Suhua; Ren, Guixing

    2011-01-01

    Phenolic acids have been identified in a variety of legumes including lima bean, broad bean, common bean, pea, jack bean, goa bean, adzuki bean, hyacinth bean, chicking vetch, garbanzo bean, dral, cow bean, rice bean, mung bean and soybean. The present study was carried out with the following aims: (1) to identify and quantify the individual phenolic acid and determine the total phenolic content (TPC); (2) to assess their antioxidant activity, inhibition activities of α-glucosidase, tyrosinase, and formation of advanced glycation endproducts; and (3) to investigate correlations among the phytochemicals and biological activity. Common bean possesses the highest antioxidant activity and advanced glycation endproducts formation inhibition activity. Adzuki bean has the highest α-glucosidase inhibition activity, and mung bean has the highest tyrosinase inhibition activity. There are significant differences in phytochemical content and functional activities among the bean species investigated. Selecting beans can help treat diseases such as dermatological hyperpigmentation illness, type 2 diabetes and associated cardiovascular diseases. PMID:22072935

  17. Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera.

    PubMed

    Kim, Wonyong; Peever, Tobin L; Park, Jeong-Jin; Park, Chung-Min; Gang, David R; Xian, Ming; Davidson, Jenny A; Infantino, Alessandro; Kaiser, Walter J; Chen, Weidong

    2016-01-01

    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content. PMID:26847260

  18. Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    PubMed Central

    Kim, Wonyong; Peever, Tobin L.; Park, Jeong-Jin; Park, Chung-Min; Gang, David R.; Xian, Ming; Davidson, Jenny A.; Infantino, Alessandro; Kaiser, Walter J.; Chen, Weidong

    2016-01-01

    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content. PMID:26847260

  19. Thiamine binding and metabolism in germinating seeds of selected cereals and legumes.

    PubMed

    Gołda, Anna; Szyniarowski, Piotr; Ostrowska, Katarzyna; Kozik, Andrzej; Rapała-Kozik, Maria

    2004-03-01

    The basic characteristics of thiamine metabolism in germinating seeds of maize (Zea mays), oat (Avena sativa), faba bean (Vicia faba) and garden pea (Pisum sativum) are presented with a special emphasis of a possible thiamine storage function of seed thiamine-binding proteins (TBPs). Seeds were germinated for 6 d in the dark. Thiamine-binding activity in seeds decreased during germination by 50% in cereals and by 30% in legumes. The degradation of TBPs was also detected by polyacrylamide gel electrophoresis. The total thiamine content decreased rapidly to 20-40% of the initial value in cereal seeds during first 3 d of germination while in legume seeds thiamine content started changing from the fourth day and dropped by 50% at the sixth day. A composite pattern was found for the changes in thiamine pyrophosphate (TPP) contribution to total thiamine during seed germination. A peak of the coenzyme percentage was usually detected at the second day of germination. Another gain of TPP was often seen toward the sixth day of germination. The activity of thiamine pyrophosphokinase (EC 2.7.6.2) was high in resting legume seeds and did not significantly change during germination. In contrast, the low activity of this thiamine-activating enzyme in cereal seeds progressively increased during germination. Thiamine phosphate synthase (EC 2.5.1.3) was also detected in seeds and was shown to contribute significantly to the balance of thiamine compounds during seed germination.

  20. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  1. Legumes, N2 fixation and the H2 cycle

    NASA Astrophysics Data System (ADS)

    Layzell, D. B.

    2004-12-01

    Legume plants such as soybean or pea can form symbiotic, N2 fixing associations with bacteria that exist in root nodules. For every N2 fixed, 1 to 3 H2 are produced as a by-product of the nitrogenase reaction. Therefore, a typical N2 fixing legume crop produces about 200,000 L H2 gas (at STP) per hectare per crop season. This paper will summarize our current understanding of the processes leading to H2 production in legumes, the magnitude of H2 production associated with global cropping systems, and the implications for its production and oxidation on both the legumes and the soils in which they grow. Specific points may include: ˜ In symbioses lacking uptake hydrogenase (HUP) activity (thought to be the majority of crop legumes), the H2 diffuses into the soil where it is oxidized by soil microbes that grow up around the legume nodules. The kinetic properties of these microbes are very different (higher Km and Vmax) from that of microbes in soils exposed to normal air (ca. 0.5 ppm H2); ˜ Laboratory studies indicate that 60% of the reducing power from H2 is coupled to O2 uptake, whereas 40% is coupled to autotrophic CO2 fixation. The latter process should increase soil carbon stocks by about 25 kg C/ha/yr; ˜ At the site of the nitrogenase enzyme, H2 production is autocatalytic such that the higher the H2 concentration, the more H2 is produced and the less N2 fixed. The variable O2 diffusion barrier in legumes can act to restrict H2 diffusion from the nodule, thereby increasing the relative magnitude of H2 production versus N2 fixation; ˜ Studies to understand why legume symbioses make such an energy investment in H2 production have led to the discovery that H2 treated soils have improved fertility, supporting the growth and yield of legume and non-legume crops. This observation may account for the benefits of legumes when used in rotation with cereal crops, a phenomenon that has been used by farmers for over 2000 years, but which has remained unexplained. An

  2. Analysis of interspecies physicochemical variation of grain legume seeds

    NASA Astrophysics Data System (ADS)

    Rybiński, Wojciech; Rusinek, Robert; Szot, Bogusław; Bocianowski, Jan; Starzycki, Michał

    2014-10-01

    The paper presents an attempt to assess the reaction of seeds to mechanical loads taking into account their geometry expressed as seed thickness and 1000 seed weight. The initial material comprised 33 genotypes of grain legume plants and included cultivars registered in the country and breeding lines that are subject to pre-registration trials. The analysis of variance revealed significant diversity of the cultivars and lines of the species studied in terms of each of the analysed trait. The highest weight of 1000 seeds were obtained for white lupine seeds and peas, the lowest for andean lupine seeds. The maximum deformation and energy were obtained for white lupine seeds, the lowest for pea seeds, the maximum force and module the lowest values were determined for narrow-leafed lupine and pea. The highest values of protein were obtained for andean and yellow lupine, a fat content for andean and white lupine. The fatty acid profile as much as 70% or more were linoleic and oleic acids. Against the background of all the species are distinguished by white lupine seeds with a high content of oleic acid and the lowest of linoleic acid, for yellow lupine were obtained the inverse ratio of the two acids.

  3. A global experimental dataset for assessing grain legume production

    PubMed Central

    Cernay, Charles; Pelzer, Elise; Makowski, David

    2016-01-01

    Grain legume crops are a significant component of the human diet and animal feed and have an important role in the environment, but the global diversity of agricultural legume species is currently underexploited. Experimental assessments of grain legume performances are required, to identify potential species with high yields. Here, we introduce a dataset including results of field experiments published in 173 articles. The selected experiments were carried out over five continents on 39 grain legume species. The dataset includes measurements of grain yield, aerial biomass, crop nitrogen content, residual soil nitrogen content and water use. When available, yields for cereals and oilseeds grown after grain legumes in the crop sequence are also included. The dataset is arranged into a relational database with nine structured tables and 198 standardized attributes. Tillage, fertilization, pest and irrigation management are systematically recorded for each of the 8,581 crop*field site*growing season*treatment combinations. The dataset is freely reusable and easy to update. We anticipate that it will provide valuable information for assessing grain legume production worldwide. PMID:27676125

  4. Hormonal Control of Lateral Root and Nodule Development in Legumes

    PubMed Central

    Bensmihen, Sandra

    2015-01-01

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana. PMID:27135340

  5. Legumes Can Increase Cadmium Contamination in Neighboring Crops

    PubMed Central

    Tang, Jianjun; Xu, Ligen; Yang, Xiantian; Yong, Jean W. H.; Chen, Xin

    2012-01-01

    Legumes are widely used in many cropping systems because they share their nitrogen fixation products and phosphorus mobilization activities with their neighbors. In the current study, however, we showed that co-cultivation with legumes increased cadmium (Cd) contamination in the adjacent crops. Both field and mesocosm experiments indicated that legumes increased Cd levels in edible parts and shoots of four neighboring crops and five maize varieties tested, regardless of the Cd levels in the soil. This enhanced Cd accumulation in crops was attributed to root interactions that alter the rhizosphere environment. Co-cultivation with legumes reduced soil pH, which somewhat increased the exchangeable forms of Cd. Our results have demonstrated the inevitable increases in Cd levels of crops as a direct result of co-cultivation with legumes even under situations when these levels are below the permissible threshold. With this new revelation, we need to consider carefully the current cropping systems involving legumes and perhaps to re-design the current and future cropping systems in view of avoiding food contamination by Cd. PMID:22905189

  6. Hormonal Control of Lateral Root and Nodule Development in Legumes.

    PubMed

    Bensmihen, Sandra

    2015-08-07

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.

  7. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  8. Estimating variability in grain legume yields across Europe and the Americas.

    PubMed

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-01-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains. PMID:26054055

  9. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    PubMed Central

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël; Sauer, Jørgen; Sullivan, John T.; Maolanon, Nicolai; Vinther, Maria; Lorentzen, Andrea; Madsen, Esben B.; Jensen, Knud J.; Roepstorff, Peter; Thirup, Søren; Ronson, Clive W.; Thygesen, Mikkel B.; Stougaard, Jens

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes. PMID:22859506

  10. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration.

    PubMed

    Lima, A I G; Mota, J; Monteiro, S A V S; Ferreira, R M S B

    2016-04-15

    MMP-9 activity is strongly related to cancer growth and metastization. This study aimed at assessing the inhibitory potential of the major seed protein fractions from eight selected legume species towards MMP-9 activity in colon carcinoma cells. Albumin and globulin fractions were screened for MMP-9 inhibitors, using a fluorometric assay and gelatin zymography. Their effect on HT29 cell proliferation and cell migration was tested, as well as on the corresponding intrinsic cellular MMP-9 activities. Seed proteins include potent inhibitors of MMP-9, particularly low molecular mass proteins. Their effectiveness differs greatly among species, with a positive correlation detected between their inhibitory activity and the reduction in cell migration. Lupin seeds contain the most efficient MMP-9 inhibitors of all legume seeds analyzed, inhibiting both gelatinases and HT29 migration and growth, while pea seeds showed no effect. Results reveal legume protein MMPIs as novel metalloproteinase inhibitors with possible pharmacological interest. This may be important for selecting leguminous species with potential use in anti-cancer diets.

  11. Antinutrients content of some locally available legumes and cereals in Nigeria.

    PubMed

    Odumodu, C U

    1992-07-01

    Plant protein is the cheapest source of protein available to mankind but unfortunately the protein is accompanied by antinutrients. The quantity of oxalate and tannin in acha, bambara groundnut, guinea corn, millet, sesame seed, soybean and tiger nut were chemically analyzed. The white variety of sesame seed and soybean have the highest oxalate and tannin contents of 8.25 mg/g and 0.15 mg/g respectively. Among the cereals the black and brown varieties of millet have the highest oxalate and tannin contents of 4.65 mg/g and 0.07 mg/g respectively. The presence of these antinutrients makes plant (especially legumes) protein partially available and of poor quality. PMID:1455533

  12. Priority regions for research on dryland cereals and legumes.

    PubMed

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  13. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  14. [Baked product development based fermented legumes and cereals for schoolchildren snack].

    PubMed

    Granito, Marisela; Valero, Yolmar; Zambrano, Rosaura

    2010-03-01

    The objective of this work was to develop three foodstuffs based on mixes of wheat and fermented and non-fermented legumes, for the purpose of contributing with a healthy alternative for school snacks. To this aim, refined wheat flour was partially substituted with whole legume flours for the preparation of cakes, brownies and cookies, foodstuffs traditionally consumed by school age children. Cakes were formulated substituting 20% of wheat flour with Phaseolus vulgaris flour, brownies with 30% of Cajanus cajan flour and cookies with 30% of Vigna sinensis flour, using fermented and non-fermented legumes in the three products. When these products were subjected to sensorial evaluation through a test of degree of acceptability and using a hedonic scale of 7 points, values higher than 5 in the attributes taste, color and overall appraisal were found for all the products. In addition, the preference was measured with a group of 90 school children, corroborating the results obtained at laboratory level. Chemical characterization showed protein contents between 12 and 13% for the cake, 10 and 11% for the brownies and 10% for the cookies and protein digestibilities in vitro of 91%, 87% and 93%, respectively. The calorie supply, calculated per portion was of 199 kcal, 246 kcal and 237 kcal, for cakes, brownies and cookies, respectively. It was concluded that it is technically possible to incorporate fermented and non-fermented Phaseolus vulgaris, Vigna sinensis and Cajanus cajan, to highly consumed products such as cakes, brownies and cookies with a higher nutritional content and well-accepted by school-age children.

  15. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development.

    PubMed

    Tsai, Wen-Chieh; Lee, Pei-Fang; Chen, Hong-Ie; Hsiao, Yu-Yun; Wei, Wan-Ju; Pan, Zhao-Jun; Chuang, Ming-Hsiang; Kuoh, Chang-Sheng; Chen, Wen-Huei; Chen, Hong-Hwa

    2005-07-01

    In this study, we isolated and characterized the function of a GLOBOSA/PISTILLATA-like gene, PeMADS6, from a native Phalaenopsis species, P. equestris. Southern blot analysis showed PeMADS6 as a single copy in the Phalaenopsis genome. Results of the determination of temporal and spatial expression showed that PeMADS6 was expressed and thus participated in the development of the sepals, petals, labellum and column in Phalaenopsis. Further confirmation of the expression pattern of PeMADS6 was carried out with in situ hybridization. Repressed expression of PeMADS6 in the orchid ovary was found to be pollination regulated, which suggests that the gene may have an inhibitory effect on the development of the ovary or ovule. In addition, auxin acted as the candidate signal to regulate the repression of PeMADS6 expression in the ovary. Furthermore, the flowers of transgenic Arabidopsis plants ectopically overexpressing PeMADS6 showed the morphology of petaloid sepals, with a 3- to 4-fold increase in flower longevity. Concomitantly, delayed fruit maturation was also observed in the transgenic Arabidopsis, which is consistent with the inhibitory effect of PeMADS6 on the development of the ovary. Thus, as a B-function gene, PeMADS6, not only specifies floral organ identity but has functions in flower longevity and ovary development in orchids. PMID:15890679

  16. Regulation of legume nodulation by acidic growth conditions.

    PubMed

    Ferguson, Brett J; Lin, Meng-Han; Gresshoff, Peter M

    2013-03-01

    Legumes represent some of the most important crop species worldwide. They are able to form novel root organs known as nodules, within which biological nitrogen fixation is facilitated through a symbiotic interaction with soil-dwelling bacteria called rhizobia. This provides legumes with a distinct advantage over other plant species, as nitrogen is a key factor for growth and development. Nodule formation is tightly regulated by the plant and can be inhibited by a number of external factors, such as soil pH. This is of significant agricultural and economic importance as much of global legume crops are grown on low pH soils. Despite this, the precise mechanism by which low pH conditions inhibits nodule development remains poorly characterized.

  17. Linking Biomarker and Comparative Omics to Pathogens in Legumes.

    PubMed

    Diapari, Marwan

    2016-01-01

    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops. PMID:26364313

  18. Transcriptome sequencing and marker development for four underutilized legumes1

    PubMed Central

    Chapman, Mark A.

    2015-01-01

    • Premise of the study: Combating threats to food and nutrition security in the context of climate change and global population increase is one of the highest priorities of major international organizations. Hundreds of species are grown on a small scale in some of the most drought/flood-prone regions of the world and as such may harbor some of the most environmentally tolerant crops (and alleles). • Methods and Results: In this study, transcriptomes were sequenced, assembled, and annotated for four underutilized legume crops. Microsatellite markers were identified in each species, as well as a conserved orthologous set of markers for cross-family phylogenetics and comparative mapping, which were ground-truthed on a panel of diverse legume germplasm. • Conclusions: An understanding of these underutilized legumes will inform crop selection and breeding by allowing the investigation of genetic variation and the genetic basis of adaptive traits to be established. PMID:25699221

  19. Linking Biomarker and Comparative Omics to Pathogens in Legumes.

    PubMed

    Diapari, Marwan

    2016-01-01

    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops.

  20. Interaction of proteases with legume seed inhibitors. Molecular features.

    PubMed

    de Seidl, D S

    1996-12-01

    After having found that raw black beans (Phaseolus vulgaris) were toxic, while the cooked ones constitute the basic diet of the underdeveloped peoples of the world, in the sixties, our research directed by Dr. Jaffé, concentrated mainly around the detection and identification of the heat labile toxic factors in legume seeds. A micromethod for the detection of protease inhibitors (PI) in individual seeds was developed, for the purpose of establishing that the multiple trypsin inhibitors (TI) found in the Cubagua variety were expressions of single seeds and not a mixture of a non homogenous bean lot. Six isoinhibitors were isolated and purified, all of which were "double-headed" and interacted with trypsin (T) and chymotrypsin (CHT) independently and simultaneously, as shown by electrophoresis of their binary and ternary complexes with each and both enzymes. However, their affinity for the enzymes, including elastases, was rather variable, as well as their amino acid composition which consisted of 51 units for inhibitor V, the smallest, and 83 amino acids for inhibitor I, the largest. A low molecular weight protein fraction that inhibited subtilisin (S), but recognized neither T, CHT nor pancreatic elastase was detected in 63 varieties of Phaseolus vulgaris as well as in broad beans (Vicia faba), chick peas (Cicer arietinum), jack beans (Canavalia ensiformis), kidney beans (Vigna aureus), etc., It was absent though, in soybeans (Glycine max), lentils (Lens culinaris), green peas (Pisum sativum), cowpea (Vigna sinensis) and lupine seeds (Lupinus sp). Subtilisin inhibitors (SI) were isolated from black beans, broad beans, chick peas and jack beans. Their Mr is between 8-9KD and they show a rather high stability in the presence of denaturing agents. They are specific toward microbial proteases, in addition to subtilisins, Carlsberg and BPN', they inhibit the alkaline protease from Tritirachium album (Protease K), from Aspergillus oryzae and one isolated from

  1. Effect of processing methods on compositional evaluation of underutilized legume, Parkia roxburghii G. Don (yongchak) seeds.

    PubMed

    Sathya, Arumugam; Siddhuraju, Perumal

    2015-10-01

    The present study has been undertaken to analyze the effect of various processing methods like (i) soaking followed by autoclaving with (a) ash, (b) sodium bicarbonate, (c) sugar and (d) water; (ii) dry heating and (iii) fermentation on nutritional and antinutritional components of under-utilized tree legume Parkia roxburghii. The applied methods were found to enhance the protein (15-36 %) and lipid content (11-69 %) and to decrease the other proximal components. All the methods significantly reduced the antinutrients viz. condensed tannins, phytate, saponins, trypsin inhibitors, chymotrypsin inhibitors and lectins. Exceptionally, increased content was documented on total phenolics (117-207 %) and tannins (171-257 %). These reduced antinutritional loads have led to an increase in protein (9-20 %) and starch digestibility (75-254 %). Fermented kernels, the best processed form showed characteristic leguminous pattern for content and composition of amino acids, fatty acids and minerals. So knowledge gathering and exploration of nutritionally balanced under-utilized legumes would enhance food and nutritional security. PMID:26396363

  2. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects

    PubMed Central

    Malaguti, Marco; Dinelli, Giovanni; Leoncini, Emanuela; Bregola, Valeria; Bosi, Sara; Cicero, Arrigo F. G.; Hrelia, Silvana

    2014-01-01

    Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation). Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo. PMID:25405741

  3. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold.

    PubMed

    Nagae, Masamichi; Soga, Keisuke; Morita-Matsumoto, Kana; Hanashima, Shinya; Ikeda, Akemi; Yamamoto, Kazuo; Yamaguchi, Yoshiki

    2014-04-01

    Phytohemagglutinin from Phaseolus vulgaris (PHA-E), a legume lectin, has an unusual specificity toward biantennary galactosylated N-glycan with bisecting N-acetylglucosamine (GlcNAc). To investigate the interaction in detail, we have solved the crystal structures of PHA-E without ligand and in complex with biantennary N-glycan derivatives. PHA-E interacts with the trisaccharide unit (Galβ1-4GlcNAcβ1-2Man) in a manner completely different from that of mannose/glucose-specific legume lectins. The inner mannose residue binds to a novel site on the protein, and its rotation is opposite to that occurring in the monosaccharide-binding site of other lectins around the sugar O3 axis. Saturation-transfer difference NMR using biantennary di-galactosylated and bisected glycans reveals that PHA-E interacts with both antennas almost equally. The unique carbohydrate interaction explains the glycan-binding specificity and high affinity.

  4. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family

    PubMed Central

    Martin, Guillaume E.; Rousseau-Gueutin, Mathieu; Cordonnier, Solenn; Lima, Oscar; Michon-Coudouel, Sophie; Naquin, Delphine; de Carvalho, Julie Ferreira; Aïnouche, Malika; Salmon, Armel; Aïnouche, Abdelkader

    2014-01-01

    Background and Aims To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the ‘inverted repeat-lacking clade’, IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. Methods The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. Key Results The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip–flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. Conclusions This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and

  5. Rhizobia are attracted to localized sites on legume roots.

    PubMed

    Gulash, M; Ames, P; Larosiliere, R C; Bergman, K

    1984-07-01

    Clouds of Rhizobium meliloti were attracted to localized sites on the surface of the infectible region of alfalfa roots. This behavior, which required active motility and chemotaxis, was not species specific. Correlation between the behavior of various mutants and their competitiveness for nodulation suggests that cloud formation has a role in the infection of host legume roots by rhizobia.

  6. Virulence of Agrobacterium tumefaciens strain A281 on legumes

    SciTech Connect

    Hood, E.E.; Fraley, R.T.; Chilton, M.D.

    1987-03-01

    This study addresses the basis of host range on legumes of Agrobacterium tumefaciens strain A281, an L,L-succinamopine strain. The authors tested virulence of T-DNA and vir region constructs from this tumor-inducing (Ti) plasmid with complementary Ti plasmid regions from heterologous nopaline and octopine strains.

  7. Uses of tree legumes in semi-arid regions

    SciTech Connect

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  8. Converting perennial legumes to organic cropland without tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers are interested in developing a no-till system for crop production. In this study, we examined management tactics to convert perennial legumes to annual crops without tillage. Our hypothesis was that reducing carbohydrate production in the fall by mowing would favor winterkill. M...

  9. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  10. Genetic considerations in developing germplasm sources of native legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a great need for biological diversity in reseeding efforts on western rangelands. Legumes provide a crucial component of reseedings, by allowing for higher forage quality, soil nitrogen fixation, pollinator sustenance, and wildlife and wild-fowl feed. In efforts to collect and produce see...

  11. Contribution of legumes to the soil N pool.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Malagoli, Philippe; Mahieu, Stéphanie

    2010-05-01

    Grain legumes can be used for nitrogen acquisition in different ways in sustainable agriculture (Fustec et al., 2009). They are seen as a tool to reduce mineral N fertilizers in cropping systems. However, estimates of biological N fixation, N balance and N benefit either for the following crop or in mixed crops, remain unclear. The contribution of legumes to the soil N pool is difficult to measure, especially N rhizodeposition, since it is a critical point for assessing N benefits for other crops and for soil biological activity, and for reducing water pollution (Mayer et al., 2003). We adapted and refined the cotton-wick 15N stem labeling method for measuring the amount of soil N derived from rhizodeposition by field peas (Mahieu et al., 2007, 2009). The method was tested in different conditions in the field and in the greenhouse with various pea varieties and isolines. In addition, we used the cotton-wick method for assessing N transfers from pea to neighbouring durum wheat. In the greenhouse, a positive relationship was found between the amount of N rhizodeposits and the legume N content. N rhizodeposition was about 15% of the plant N and 30% in the field. In field pea / durum wheat intercrops, plant-plant N transfers were quantified and found to be bidirectional. Such results should be taken into account when estimating N benefits from biological N fixation by a grain legume crop and for the prediction of N economies in legume-based cropping systems. More studies dealing with rhizodeposit compounds and soil biological activity would now be necessary. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu et al. 2007. Plant Soil 295, 193-205. Mahieu et al. 2009. Soil Biol. Biochem. 41, 2236-2243. Mayer et al. 2003. Soil Biol. Biochem. 35, 21-28.

  12. Nutritional value and content of antinutritional compounds and toxics in ten wild legumes of Yucatan Peninsula.

    PubMed

    Sotelo, A; Contreras, E; Flores, S

    1995-02-01

    The chemical and toxicological composition of ten wild legumes collected in Yucatan, Mexico was determined. For each species the whole fruit, (seed and pod), were studied as well as the seed and pod separately. A higher protein content was found in the seeds of A. lebbeck and P. saman (37.07 and 37.60% respectively). In the seeds of L. longystilus, C. yucatanensis and P. keyense a high concentration of fat was found, especially in the first with 31.34%. A high quantity of fiber was found in the pods. In general, the samples were rich in lysine (especially seeds) and scant in sulfur amino acids and tryptophan. All the samples showed high concentration of potassium and calcium. Some of them exhibited significant concentrations of iron. The pods of P. saman and P. keyense showed a high content of lectins. In the seeds of C. yucatanensis and in the pod of P. keyense high concentrations of trypsin inhibitors were found 60 and 406.7 TUI/mg sample respectively. The presence of saponins, was detected in seven samples, of which the seed of P. keyense had the highest concentration. Alkaloids were found only in the whole fruit and pod of P. saman and cyanogenic glucosides were present in A. pennatula. In general terms, the whole legume showed better digestibility than the pods alone. PMID:7792259

  13. Legumes and soybeans: overview of their nutritional profiles and health effects.

    PubMed

    Messina, M J

    1999-09-01

    Legumes play an important role in the traditional diets of many regions throughout the world. In contrast in Western countries beans tend to play only a minor dietary role despite the fact that they are low in fat and are excellent sources of protein, dietary fiber, and a variety of micronutrients and phytochemicals. Soybeans are unique among the legumes because they are a concentrated source of isoflavones. Isoflavones have weak estrogenic properties and the isoflavone genistein influences signal transduction. Soyfoods and isoflavones have received considerable attention for their potential role in preventing and treating cancer and osteoporosis. The low breast cancer mortality rates in Asian countries and the putative antiestrogenic effects of isoflavones have fueled speculation that soyfood intake reduces breast cancer risk. The available epidemiologic data are limited and only weakly supportive of this hypothesis, however, particularly for postmenopausal breast cancer. The data suggesting that soy or isoflavones may reduce the risk of prostate cancer are more encouraging. The weak estrogenic effects of isoflavones and the similarity in chemical structure between soybean isoflavones and the synthetic isoflavone ipriflavone, which was shown to increase bone mineral density in postmenopausal women, suggest that soy or isoflavones may reduce the risk of osteoporosis. Rodent studies tend to support this hypothesis, as do the limited preliminary data from humans. Given the nutrient profile and phytochemical contribution of beans, nutritionists should make a concerted effort to encourage the public to consume more beans in general and more soyfoods in particular. PMID:10479216

  14. The genetic and biochemical basis for nodulation of legumes by rhizobia

    SciTech Connect

    Pueppke, S.G.

    1996-05-01

    Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes: they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in the knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants. 419 refs.

  15. Accumulation of ENOD2-Like Transcripts in Non-Nodulating Woody Papilionoid Legumes1

    PubMed Central

    Foster, Carol M.; Horner, Harry T.; Graves, William R.

    2000-01-01

    Japanese pagodatree (Styphnolobium japonicum [L.] Schott) and American yellowwood (Cladrastis kentukea Dum.-Cours.) Rudd are the first woody, non-nodulating papilionoid legumes shown to possess putative early nodulin 2 (ENOD2) genes. ENOD2 cDNAs from Japanese pagodatree (807 bp) and American yellowwood (735 bp) have 75% to 79% sequence identity to ENOD2 sequences and encode deduced proteins that possess conserved ENOD2 pentapeptides (PPHEK and PPEYQ). Lower percentages of glucose and higher percentages of histidine and valine suggest that SjENOD2 and CkENOD2 are different from other ENOD2s. Hybridization analyses indicate the clones represent ENOD2 gene families of two to four genes in Japanese pagodatree and American yellowwood genomes, and ENOD2-like transcripts were detected in stems and flowers, as well as roots. Only roots of control species that nodulate, Maackia amurensis Rupr. & Maxim. and alfalfa (Medicago sativa), produced pseudonodules after treatment with zeatin or 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Accumulation of MaENOD2 transcripts was enhanced during the first 10 d of treatment, but 2,3,5-triiodobenzoic acid and zeatin enhanced transcript accumulation after 30 d in roots of Japanese pagodatree and American yellowwood. Characteristics that distinguish ENOD2 gene families in basal, non-nodulating woody legumes from other ENOD2 genes may provide new information about the function of these genes during symbiotic and non-symbiotic organ development. PMID:11027723

  16. Accumulation of ENOD2-like transcripts in non-nodulating woody papilionoid legumes.

    PubMed

    Foster, C M; Horner, H T; Graves, W R

    2000-10-01

    Japanese pagodatree (Styphnolobium japonicum [L.] Schott) and American yellowwood (Cladrastis kentukea Dum.-Cours.) Rudd are the first woody, non-nodulating papilionoid legumes shown to possess putative early nodulin 2 (ENOD2) genes. ENOD2 cDNAs from Japanese pagodatree (807 bp) and American yellowwood (735 bp) have 75% to 79% sequence identity to ENOD2 sequences and encode deduced proteins that possess conserved ENOD2 pentapeptides (PPHEK and PPEYQ). Lower percentages of glucose and higher percentages of histidine and valine suggest that SjENOD2 and CkENOD2 are different from other ENOD2s. Hybridization analyses indicate the clones represent ENOD2 gene families of two to four genes in Japanese pagodatree and American yellowwood genomes, and ENOD2-like transcripts were detected in stems and flowers, as well as roots. Only roots of control species that nodulate, Maackia amurensis Rupr. & Maxim. and alfalfa (Medicago sativa), produced pseudonodules after treatment with zeatin or 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Accumulation of MaENOD2 transcripts was enhanced during the first 10 d of treatment, but 2,3,5-triiodobenzoic acid and zeatin enhanced transcript accumulation after 30 d in roots of Japanese pagodatree and American yellowwood. Characteristics that distinguish ENOD2 gene families in basal, non-nodulating woody legumes from other ENOD2 genes may provide new information about the function of these genes during symbiotic and non-symbiotic organ development. PMID:11027723

  17. [Elaboration, by linear programming, of new products from cereals and legumes].

    PubMed

    Ballesteros, M N; Yépiz, G M; Grijalva, M I; Ramos, E; Valencia, M E

    1984-03-01

    The differing contents of essential amino acids in cereals and legumes bring about an overall increase in protein quality when these foods are consumed together. This study describes a least cost formulation method for preparing products based on cereals and legumes using linear programming. The mixture was formulated under different constraints; from a nutritional standpoint, a given amino acid pattern, and another one on a technological feasibility constraint, which depends on the type of product to be elaborated. From the formulation based on wheat, chick-pea, sorghum, and soybean flours, three products were developed: bread, tortillas and cookies; from these, bread was selected for further evaluation. The product was chemically evaluated by proximate analysis composition, and amino acids were determined by HPLC. Biological evaluation was performed by the PER and RPV methods, obtaining a PER of 1.69 for the developed bread product, and of 0.68 for the control bread. The RPV for the developed product was 64.31% of lactoalbumin and 23% for the control bread, which represents an increase of 41%. The sensory evaluation results did not indicate significant differences in taste, texture, color or overall acceptability of the developed bread product as compared to the control.

  18. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes

    PubMed Central

    Albert, Nick W.

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis. PMID:26779194

  19. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis?

    PubMed Central

    Tóth, Katalin; Stacey, Gary

    2015-01-01

    Plants are exposed to many different microbes in their habitats. These microbes may be benign or pathogenic, but in some cases they are beneficial for the host. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic) microorganisms, which raises the question as to how roots can distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens). Plants possess an innate immune system that can recognize pathogens, through an arsenal of protein receptors, including receptor-like kinases (RLKs) and receptor-like proteins (RLPs) located at the plasma membrane. In addition, the plant host has intracellular receptors (so called NBS-LRR proteins or R proteins) that directly or indirectly recognize molecules released by microbes into the plant cell. A successful cooperation between legume plants and rhizobia leads to beneficial symbiotic interaction. The key rhizobial, symbiotic signaling molecules [lipo-chitooligosaccharide Nod factors (NF)] are perceived by the host legume plant using lysin motif-domain containing RLKs. Perception of the symbiotic NFs trigger signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immune response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range. PMID:26082790

  20. Nitrogen cycling: water use efficiency interactions in semi-arid ecosystems in relation to management of tree legumes (Prosopis)

    SciTech Connect

    Felker, P.; Clark, P.R.; Osborn, J.; Cannell, G.H.

    1980-04-01

    Plant productivity in semi-arid ecosystems is often limited by soil fertility as much as it is by moisture availability. A quantitative assessment of nitrogen limitations on water use efficiency has been made after careful review of plant water use efficiency data at high and low soil fertilities and after careful review of nitrogen inputs to semi arid ecosystems in the form of: blue-green algae-lichen crusts; non-symbiotic nitrogen fixers; rainfall; and tree legumes. This analysis indicates that plant productivity in semi-arid regions may be 10 fold more limited by nitrogen than moisture availability. Forage yields of non-nitrogen fixing trees and shrubs could be greatly increased by interplanting with drought adapted nitrogen fixers such as Prosopis and Acacia. Calculations based on water use efficiencies of annual legumes and nitrogen fixation values of tree legumes predict that well managed, spaced, and cared for orchards of specially selected Prosopis could produce 4000 Kgha/sup -1/ yr/sup -1/ of 13% protein pods at 500 mm annual rainfall with only light fertilization with phosphate, potassium and sulfur. Field measurements of pod yields for 25 selections of 3 year old Prosopis grown under managed orchard conditions in southern California are presented. Spacing regimes and harvesting techniques for Prosopis are proposed to facilitate pod production.

  1. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  2. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability

    PubMed Central

    Xie, Yuhuai; Li, Jing.; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of ‘b’ fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater ‘a’ fraction, ‘b’ fraction, ‘c’ values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn

  3. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  4. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae).

    PubMed

    Mikić, Aleksandar M

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350-1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl(-1) of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide. PMID:26635833

  5. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae)

    PubMed Central

    Mikić, Aleksandar M.

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350–1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl-1 of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide. PMID:26635833

  6. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    PubMed

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.

  7. Production of resistant starch by enzymatic debranching in legume flours.

    PubMed

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. PMID:24299889

  8. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  9. Production of resistant starch by enzymatic debranching in legume flours.

    PubMed

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose.

  10. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2

    PubMed Central

    Lousuebsakul-Matthews, Vichuda; Thorpe, Donna L; Knutsen, Raymond; Beeson, W Larry; Fraser, Gary E; Knutsen, Synnove F

    2014-01-01

    Objective In contrast to non-vegetarians, vegetarians consume more legumes and meat analogues as sources of protein to substitute for meat intake. The present study aimed to assess the association between foods with high protein content (legumes, meat, meat analogues) by dietary pattern (vegetarians, non-vegetarians) and hip fracture incidence, adjusted for selected lifestyle factors. Design A prospective cohort of Adventist Health Study-2 (AHS-2) enrollees who completed a comprehensive lifestyle and dietary questionnaire between 2002 and 2007. Setting Every two years after enrolment, a short questionnaire on hospitalizations and selected disease outcomes including hip fractures was sent to these members. Subjects Respondents (n 33 208) to a baseline and a follow-up questionnaire. Results In a multivariable model, legumes intake of once daily or more reduced the risk of hip fracture by 64% (hazard ratio=0·36, 95% CI 0·21, 0·61) compared with those with legumes intake of less than once weekly. Similarly, meat intake of four or more times weekly was associated with a 40% reduced risk of hip fracture (hazard ratio=0·60, 95% CI 0·41, 0·87) compared with those whose meat intake was less than once weekly. Furthermore, consumption of meat analogues once daily or more was associated with a 49% reduced risk of hip fracture (hazard ratio=0·51, 95% CI 0·27, 0·98) compared with an intake of less than once weekly. Conclusions Hip fracture incidence was inversely associated with legumes intake and, to a lesser extent, meat intake, after accounting for other food groups and important covariates. Similarly, a high intake of meat analogues was associated with a significantly reduced risk of hip fracture. PMID:24103482

  11. Replacing with whole grains and legumes reduces Lp-PLA2 activities in plasma and PBMCs in patients with prediabetes or T2D1

    PubMed Central

    Kim, Minjoo; Jeung, Se Ri; Jeong, Tae-Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2014-01-01

    To determine dietary effects on circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and enzyme activity in peripheral blood mononuclear cells (PBMCs), 99 patients with impaired fasting glucose, impaired glucose tolerance, or newly-diagnosed T2D were randomly assigned to either a control group (usual diet with refined rice) or the whole grain and legume group. Substitution of whole grains and legumes for refined rice was associated with the replacement of 7% of energy from carbohydrates with energy from protein (about 4%) and fat. After 12 weeks, the whole grain and legume group showed a significant decrease in fasting glucose, insulin, homeostasis model assessment-insulin resistance, hemoglobin A1c, malondialdehyde, plasma Lp-PLA2 activity, and oxidized LDL (ox-LDL), and an increase in LDL particle size. The changes (Δs) in these variables in the whole grain and legume group were significantly different from those in controls after adjustment for the baseline levels. When all subjects were considered, Δ plasma Lp-PLA2 positively correlated with Δ glucose, Δ PBMC Lp-PLA2, Δ ox-LDL, and Δ urinary 8-epi-prostaglandin F2α after being adjusted for confounding factors. The Δ PBMC Lp-PLA2 correlated positively with Δ glucose and Δ ox-LDL, and negatively with Δ LDL particle size and baseline PBMC Lp-PLA2. The substitution of whole grains and legumes for refined rice resulted in a reduction in Lp-PLA2 activities in plasma and PBMCs partly through improved glycemic control, increased consumption of protein relative to carbohydrate, and reduced lipid peroxides. PMID:24904022

  12. The Medicago Genome Initiative: a model legume database

    PubMed Central

    Bell, Callum J.; Dixon, Richard A.; Farmer, Andrew D.; Flores, Raul; Inman, Jeff; Gonzales, Robert A.; Harrison, Maria J.; Paiva, Nancy L.; Scott, Angela D.; Weller, Jennifer W.; May, Gregory D.

    2001-01-01

    The Medicago Genome Initiative (MGI) is a database of EST sequences of the model legume Medicago truncatula. The database is available to the public and has resulted from a collaborative research effort between the Samuel Roberts Noble Foundation and the National Center for Genome Resources to investigate the genome of M.truncatula. MGI is part of the greater integrated Medicago functional genomics program at the Noble Foundation (http://www.noble .org), which is taking a global approach in studying the genetic and biochemical events associated with the growth, development and environmental interactions of this model legume. Our approach will include: large-scale EST sequencing, gene expression profiling, the generation of M.truncatula activation-tagged and promoter trap insertion mutants, high-throughput metabolic profiling, and proteome studies. These multidisciplinary information pools will be interfaced with one another to provide scientists with an integrated, holistic set of tools to address fundamental questions pertaining to legume biology. The public interface to the MGI database can be accessed at http://www.ncgr.org/research/mgi. PMID:11125064

  13. Biological nitrogen fixation in non-legume plants

    PubMed Central

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  14. Carbon metabolism in legume nodules. Progress report, January 1, 1984-March 30, 1985

    SciTech Connect

    LaRue, T.A.

    1985-04-01

    Mitochondria were extracted from nodules and separated from the bacteroids using completely anaerobic procedures. When the mitochondria were incubated aerobically (50 to 240 ..mu..M dissolved O/sub 2/) with malate and ADP there was an immediate uptake of O/sub 2/ (120 to 140 nmol O/sub 2/ min/sup -1/ mg protein/sup -1/). Respiratory control ratios varied between 5 and 8, and ATP/O ratios were between 2.3 and 2.5. When mitochondria were incubated anaerobically (10 to 60 nM dissolved O/sub 2/), oxygen uptake was determined by measuring the deoxygenation of leghemoglobin solutions in sealed optical cuvettes. Oxygen uptake was from 8 to 33% of the aerobic rate. ATP/O ratios declined with decreasing oxygen concentration and ATP production was slight at the low pO/sub 2/ level found in legume nodules. 7 refs., 1 fig.

  15. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground.

    PubMed

    Kouchi, Hiroshi; Imaizumi-Anraku, Haruko; Hayashi, Makoto; Hakoyama, Tsuneo; Nakagawa, Tomomi; Umehara, Yosuke; Suganuma, Norio; Kawaguchi, Masayoshi

    2010-09-01

    The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.

  16. Studies on the underexploited legumes, Indigofera linifolia and Sesbania bispinosa: nutrient composition and antinutritional factors.

    PubMed

    Siddhuraju, P; Vijayakumari, K; Janardhanan, K

    1995-08-01

    The nutrient composition and antinutritional factors of two Indian tribal pulses, Indigofera linifolia (L.f)Retz. and Sesbania bispinosa (Jacq.) W.F. Wight, were determined. The mature seeds contained 296.6-321.2 g kg-1 crude protein, 47.2-64.2 g kg-1 crude lipid, 56.7-72 g kg-1 crude fiber, 27.6-31.9 g kg-1 ash and 531.3-550.6 g kg-1 carbohydrates. The seeds of Indigofera linifolia were rich in K, Ca, Mn and Cu, whereas Sesbania bispinosa were rich in P and Zn. While albumins and globulins constituted the major proportion of seed proteins in Indigofera linifolia, globulins and glutelins formed the major bulk of seed proteins in Sesbania bispinosa. Seed lipids of both legumes contained a large proportion of unsaturated fatty acids with linoleic acid as the predominant one. These two pulses contained adequate levels of all the essential amino acids except sulpho-amino acids in total seed proteins and globulin fraction of Sesbania bispinosa. The in vitro protein digestibility of the raw seeds of Indigofera linifolia and Sesbania bispinosa were found to be 74.15% and 66.71% and cooked seeds 81.4% and 76.8%, respectively. Antinutritional factors such as total free phenolics, tannins, phytic acid, hydrogen cyanide, trypsin inhibitor and phytohaemagglutinating activities were also analysed. PMID:7584157

  17. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs' feeding behavior and physiology.

    PubMed

    Villalba, J J; Spackman, C; Goff, B M; Klotz, J L; Griggs, T; MacAdam, J W

    2016-02-01

    It was hypothesized that a tannin-rich legume such as sainfoin attenuates the negative postingestive effects of ergot alkaloids in tall fescue. Thirty-two 4-mo-old lambs were individually penned and randomly assigned to a 2 × 2 factorial arrangement with 2 legume species, sainfoin (SAN; 2.9% condensed tannins) or cicer milkvetch (CIC; without tannins) and a mixed ration containing tall fescue seed (50:30:20 seed:beet pulp:alfalfa) with 2 levels of endophyte infection (endophyte-infected tall fescue seed [E+; 3,150 ug/L ergovaline] or endophyte-free tall fescue seed [E-]). For a 10-d baseline period, half of the lambs were fed SAN and half were fed CIC and all lambs had ad libitum amounts of E-. In an ensuing 10-d experimental period, the protocol was the same except half of the lambs fed SAN or CIC received E+ instead of E-. Subsequently, all lambs could choose between their respective legume and seed-containing ration and between E+ and E-. Finally, an in vitro radial diffusion assay was conducted to determine whether tannins isolated from SAN would bind to alkaloids isolated from E+. All groups consumed similar amounts of E- during baseline period ( > 0.10), but lambs ate more E- than E+ during the experimental period ( < 0.05) and lambs offered SAN ate more E+ than lambs offered CIC ( < 0.05). Groups fed E- during the baseline and experimental periods had similar rectal temperatures ( > 0.10), but lambs fed E+ had lower rectal temperatures per gram of feed ingested when supplemented with SAN than with CIC ( < 0.05). Lambs fed E+ had greater concentrations of hemoglobin and more red blood cells than lambs fed E- ( < 0.05), but plasmatic concentrations of cortisol and prolactin did not differ among treatments ( > 0.10). All lambs preferred their treatment ration over their treatment legume, but lambs in the SAN and E+ treatment ate more legume + ration than lambs in the CIC and E+ (CIC-E+; < 0.05) treatment. All lambs preferred E- over E+, but lambs in the CIC

  18. Unexpectedly Diverse Mesorhizobium Strains and Rhizobium leguminosarum Nodulate Native Legume Genera of New Zealand, while Introduced Legume Weeds Are Nodulated by Bradyrhizobium Species

    PubMed Central

    Weir, Bevan S.; Turner, Susan J.; Silvester, Warwick B.; Park, Duck-Chul; Young, John M.

    2004-01-01

    The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations. PMID:15466541

  19. Comparative sequence analysis of nitrogen fixation-related genes in six legumes.

    PubMed

    Kim, Dong Hyun; Parupalli, Swathi; Azam, Sarwar; Lee, Suk-Ha; Varshney, Rajeev K

    2013-01-01

    Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e., Medicago truncatula (Mt), Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc), Phaseolus vulgaris (Pv), and Glycine max (Gm). Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks) and non-synonymous substitutions per non-synonymous site (Ka) between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the highest distance between Mt and Pv in six legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reports some interesting observations e.g., no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed. PMID:23986765

  20. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage

    PubMed Central

    Hloucalová, Pavlína; Skládanka, Jiří; Horký, Pavel; Klejdus, Bořivoj; Pelikán, Jan; Knotová, Daniela

    2016-01-01

    Simple Summary Phytoestrogens comprise a group of substances negatively influencing the development and function of animal reproductive organs. Their appearance in forage crops can reduce feeding values, cause dietary disorders, and lead to animal health damage. This study evaluated the occurrence of individual phytoestrogens in various species of annual and perennial legumes and their levels in dry forage. It appeared that feeding large amounts of red clover presents a potential risk, but red clover can be replaced with the annual Persian clover, in which markedly lower phytoestrogen levels were detected. Abstract The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety “Amos”), alfalfa (variety “Holyně”), and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography–mass spectrometry (LC-MS). Higher levels (p < 0.05) of isoflavones biochanin A (3.697 mg·g−1 of dry weight) and formononetin (4.315 mg·g−1 of dry weight) were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter (p < 0.05), representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest. PMID:27429009

  1. The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs

    PubMed Central

    2012-01-01

    Abstract Background The Hawaiian endemic genus Clermontia (Campanulaceae) includes 22 species, 15 of which, the double-corolla species, are characterized by an extra whorl of organs that appear to be true petals occupying what is normally the sepal whorl. Previous research has shown that the presence of homeotic petaloid organs in some other plant groups correlates with ectopic expression of B-function MADS box genes, but similar core eudicot examples of apparent groundplan divergence remain unstudied. B-function genes, which are not normally expressed in the sepal whorl, are required for determination and maintenance of petal identity. Here, we investigate the potential role of altered B-function gene expression contributing to the morphological diversity of this island genus. Results We examined the morphology and developmental genetics of two different species of Clermontia, one of which, C. arborescens, has normal sepals while the other, C. parviflora, has two whorls of petal-like organs. Scanning electron microscopy of cell surface morphologies of first and second whorl organs in the double-corolla species C. parviflora revealed conical epidermal cells on the adaxial surfaces of both first and second whorl petaloid organs, strongly suggesting a homeotic conversion in the former. Phylogenetic analysis of Clermontia species based on 5S ribosomal DNA non-transcribed spacer sequences indicated a probable single and geologically recent origin of the double-corolla trait within the genus, with numerous potential reversals to the standard sepal-petal format. Quantitative polymerase chain reaction analysis of homologs of the B-function genes PISTILLATA (PI), APETALA3 and TOMATO MADS 6 indicated ectopic expression of two PI paralogs in the first whorl of C. parviflora; no such homeotic expression was observed for the other two genes, nor for several other MADS box genes involved in various floral and non-floral functions. In the standard sepal-petal species C

  2. The structure of legume-rhizobium interaction networks and their response to tree invasions.

    PubMed

    Le Roux, Johannes J; Mavengere, Natasha R; Ellis, Allan G

    2016-01-01

    Establishing mutualistic interactions in novel environments is important for the successful establishment of some non-native plant species. These associations may, in turn, impact native species interaction networks as non-natives become dominant in their new environments. Using phylogenetic and ecological interaction network approaches we provide the first report of the structure of belowground legume-rhizobium interaction networks and how they change along a gradient of invasion (uninvaded, semi invaded and heavily invaded sites) by Australian Acacia species in South Africa's Cape Floristic Region. We found that native and invasive legumes interact with distinct rhizobial lineages, most likely due to phylogenetic uniqueness of native and invasive host plants. Moreover, legume-rhizobium interaction networks are not nested, but significantly modular with high levels of specialization possibly as a result of legume-rhizobium co-evolution. Although network topology remained constant across the invasion gradient, composition of bacterial communities associated with native legumes changed dramatically as acacias increasingly dominated the landscape. In stark contrast to aboveground interaction networks (e.g. pollination and seed dispersal) we show that invasive legumes do not infiltrate existing native legume-rhizobium networks but rather form novel modules. This absence of mutualist overlap between native and invasive legumes suggests the importance of co-invading rhizobium-acacia species complexes for Acacia invasion success, and argues against a ubiquitous role for the formation and evolutionary refinement of novel interactions.

  3. The structure of legume-rhizobium interaction networks and their response to tree invasions.

    PubMed

    Le Roux, Johannes J; Mavengere, Natasha R; Ellis, Allan G

    2016-01-01

    Establishing mutualistic interactions in novel environments is important for the successful establishment of some non-native plant species. These associations may, in turn, impact native species interaction networks as non-natives become dominant in their new environments. Using phylogenetic and ecological interaction network approaches we provide the first report of the structure of belowground legume-rhizobium interaction networks and how they change along a gradient of invasion (uninvaded, semi invaded and heavily invaded sites) by Australian Acacia species in South Africa's Cape Floristic Region. We found that native and invasive legumes interact with distinct rhizobial lineages, most likely due to phylogenetic uniqueness of native and invasive host plants. Moreover, legume-rhizobium interaction networks are not nested, but significantly modular with high levels of specialization possibly as a result of legume-rhizobium co-evolution. Although network topology remained constant across the invasion gradient, composition of bacterial communities associated with native legumes changed dramatically as acacias increasingly dominated the landscape. In stark contrast to aboveground interaction networks (e.g. pollination and seed dispersal) we show that invasive legumes do not infiltrate existing native legume-rhizobium networks but rather form novel modules. This absence of mutualist overlap between native and invasive legumes suggests the importance of co-invading rhizobium-acacia species complexes for Acacia invasion success, and argues against a ubiquitous role for the formation and evolutionary refinement of novel interactions. PMID:27255514

  4. Responses of legume and non-legume crop species to heavy metals in soils with multiple metal contamination.

    PubMed

    Wang, Qing-Ren; Liu, Xiu-Mei; Cui, Yan-Shan; Dong, Yi-Ting; Christie, Peter

    2002-01-01

    Field and glasshouse investigations were conducted on the responses of two legumes (field pea and fodder vetch) and three non-leguminous crops (maize, wheat and rapeseed) to the heavy metals Cd, Cr, Zn, Pb, Cu and Mn in soil with multiple metal contamination. In general, the results indicate that the two legumes and wheat were more susceptible to soil metals than were rapeseed and maize. The dry matter yields of field pea, wheat, fodder vetch, rapeseed and maize decreased by up to 169, 123, 113, 93 and 68%, respectively, in metal-contaminated soil. Among the crops, maize had the highest concentrations of Mn, Zn and Cd, rapeseed had the highest concentrations of Cr, the concentration of Cu was highest in fodder vetch, and wheat was the highest accumulator of Pb. The bioconcentration factors (BCF) of the metals decreased as the soil metal loading rates increased except for Cr in fodder vetch and Cd in wheat, whose BCF increased as the metal loading rate increased. Significant linear correlations were found between plant and soil metal concentrations. Patterns of metal distribution in plant parts varied with different crops and metals, with more Cd and Cu accumulating in the grain of wheat than of maize, suggesting that growing wheat would represent a higher risk of food contamination than growing maize in Cd- or Cu-contaminated soil. The results suggest that on sites with multiple metal contamination, growing maize and rapeseed would be safer than growing wheat or legumes. However, maize could perhaps be used for phytoremediation of lightly contaminated soils, providing that the crop residues were safely disposed of.

  5. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal.

    PubMed

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P < 0.01) DM and OM intake and digestibility vs. controls. Other legume haylages increased (P < 0.05) DM and OM intake vs. controls; however, only soybean meal supplementation increased (P = 0.01) DM digestibility. All supplements decreased (P = 0.05) NDF digestibility. Except for pigeonpea haylage, all supplements increased (P < 0.01) N intake, digestibility, and retention, and the responses were greatest (P = 0.04) with soybean meal supplementation. Microbial N synthesis was reduced (P = 0.02) by pigeonpea haylage supplementation, but unaffected (P = 0.05) by other supplements

  6. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-01-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  7. Soil Fertility Map for Food Legumes Production Areas in China

    PubMed Central

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-01-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser. PMID:27212262

  8. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage.

    PubMed

    Hloucalová, Pavlína; Skládanka, Jiří; Horký, Pavel; Klejdus, Bořivoj; Pelikán, Jan; Knotová, Daniela

    2016-01-01

    The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety "Amos"), alfalfa (variety "Holyně"), and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography-mass spectrometry (LC-MS). Higher levels ( p < 0.05) of isoflavones biochanin A (3.697 mg·g (-1) of dry weight) and formononetin (4.315 mg·g (-1) of dry weight) were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter ( p < 0.05), representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest. PMID:27429009

  9. Soil Fertility Map for Food Legumes Production Areas in China.

    PubMed

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-01-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser. PMID:27212262

  10. Diversifying selection by Desmodiinae legume species on Bradyrhizobium symbionts.

    PubMed

    Parker, Matthew A; Jankowiak, Jennifer G; Landrigan, Grace K

    2015-07-01

    Desmodium and Hylodesmum (Papilionoideae Subtribe Desmodiinae) are among the most common herbaceous perennial legumes native to eastern North America. To analyze the population structure of their Bradyrhizobium sp. root-nodule bacteria, 159 isolates were sampled from ten host species across a 1000 km region. Phylogenetic analysis of four housekeeping loci (2164 bp) and two loci in the symbiosis island (SI) chromosomal region (1374 bp) indicated extensive overlap in symbiont utilization, with each common bacterial clade found on 2-7 species of these legume genera. However, host species differed considerably in the relative proportion of symbionts belonging to different Bradyrhizobium clades. High phylogenetic incongruence between trees for housekeeping loci and SI loci suggested that diversification of these Bradyrhizobium lineages involved substantial horizontal gene transfer. Plant inoculation with strains from six Bradyrhizobium clades revealed marked disparity in relative bacterial reproductive success across four Desmodium species. Estimated yield of Bradyrhizobium progeny cells per plant ranged from zero to >10(9), and strains with high fitness on one host sometimes reproduced poorly on other host species. Diversifying selection on bacteria, arising from differential success in habitats with different Desmodium and Hylodesmum taxa, is therefore likely to affect Bradyrhizobium diversity patterns at the landscape level. PMID:26130822

  11. Soil Fertility Map for Food Legumes Production Areas in China.

    PubMed

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-23

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  12. Legume Genome Initiative at the University of Oklahoma

    SciTech Connect

    Bruce A. Roe

    2004-02-27

    Consolidated Appropriations Resolution, 2003 Conference Report for the Department of Energy's Biological and Environmental Research (BER) program provided $481,000 for the Legume Genome Initiative at the University of Oklahoma. These funds were used to support our research that is aimed at determining the entire sequence of the gene rich regions of the genome of the legume, Medicago truncatula, by allowing us to obtain a greater degree of finished BAC sequences from the draft sequences we have already obtained through research funded by the Noble Foundation. During the funding period we increased the number of Medicago truncatula BACs with finished (Bermuda standard) sequences from 109 to 359, and the total number of BACs for which we collected sequence data from 584 to 842, 359 of which reached phase 2 (ordered and oriented contigs). We also sequenced a series of pooled BAC clones that cover additional euchromatic (gene rich) genomic regions. This work resulted in 6 refereed publications, see below. Genes whose sequence was determined during this study included multiple members of the plant disease resistance (R-gene) family as well as several genes involved in flavinoid biosynthesis, nitrogen fixation and plant-microbial symbosis. This work also served as a prelude to obtaining NSF funding for the international collaborative effort to complete the entire sequence of the Medicago truncatula genomic euchromatic regions using a BAC based approach.

  13. The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution

    PubMed Central

    2014-01-01

    Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type. PMID:25034494

  14. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay.

    PubMed

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922

  15. NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes[W][OA

    PubMed Central

    Couzigou, Jean-Malo; Zhukov, Vladimir; Mondy, Samuel; Abu el Heba, Ghada; Cosson, Viviane; Ellis, T.H. Noel; Ambrose, Mike; Wen, Jiangqi; Tadege, Million; Tikhonovich, Igor; Mysore, Kirankumar S.; Putterill, Joanna; Hofer, Julie; Borisov, Alexei Y.; Ratet, Pascal

    2012-01-01

    During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ. PMID:23136374

  16. Leveraging model legume information to find candidate genes for soybean sudden death syndrome using the legume information system.

    PubMed

    Gonzales, Michael D; Gajendran, Kamal; Farmer, Andrew D; Archuleta, Eric; Beavis, William D

    2007-01-01

    Comparative genomics is an emerging and powerful approach to achieve crop improvement. Using comparative genomics, information from model plant species can accelerate the discovery of genes responsible for disease and pest resistance, tolerance to plant stresses such as drought, and enhanced nutritional value including production of anti-oxidants and anti-cancer compounds. We demonstrate here how to use the Legume Information System for a comparative genomics study, leveraging genomic information from Medicago truncatula (barrel medic), the model legume, to find candidate genes involved with sudden death syndrome (SDS) in Glycine max (soybean). Specifically, genetic maps, physical maps, and annotated tentative consensus and expressed sequence tag (EST) sequences from G. max and M. truncatula can be compared. In addition, the recently published M. truncatula genomic sequences can be used to identify M. truncatula candidate genes in a genomic region syntenic to a quantitative trait loci region for SDS in soybean. Genomic sequences of candidate genes from M. truncatula can then be used to identify ESTs with sequence similarities from soybean for primer design and cloning of potential soybean disease causing alleles. PMID:18287696

  17. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    PubMed Central

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as

  18. Potential use of phytocystatins in crop improvement, with a particular focus on legumes.

    PubMed

    Kunert, Karl J; van Wyk, Stefan G; Cullis, Christopher A; Vorster, Barend J; Foyer, Christine H

    2015-06-01

    Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change. PMID:25944929

  19. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation.

    PubMed

    Curiel, José Antonio; Coda, Rossana; Centomani, Isabella; Summo, Carmine; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2015-03-01

    This study aimed at evaluating the composition of nineteen traditional Italian legumes and at investigating the potential of the sourdough fermentation with selected lactic acid bacteria to improve the nutritional and functional features. Traditional Italian legumes, all with product certifications and belonging to Phaseolus vulgaris, Cicer arietinum, Lathyrus sativus, Lens culinaris and Pisum sativum species, were used in this study. Seeds were milled, and flours were analyzed for proximate composition and subjected to sourdough fermentation at 30°C for 24h. Lactobacillus plantarum C48 and Lactobacillus brevis AM7 were used as selected starters. Compared to control doughs, without bacterial inoculum, the concentrations of free amino acids (FAA), soluble fibres, and total phenols increased for all legume sourdoughs. Raffinose decreased of up to ca. 64%. During sourdough fermentation, the level of GABA markedly increased and reached values up to 624mg/kg. Condensed tannins decreased. At the same time, almost all legume sourdoughs showed increases of the antioxidant and phytase activities. As shown by PCA analysis based on data of total FAA, GABA, raffinose, soluble/insoluble dietary fibre, condensed tannins and antioxidant and phytase activities, all legume sourdoughs were clearly differentiated from control doughs. The traditional Italian legumes are bio-diverse, and all showed high levels of nutritional elements and suitability for optimal sourdough fermentation. Legume flours subjected to sourdough fermentation would be suitable to be used alone or better in mixture with cereals, and as gluten-free ingredients for making novel and healthy foods.

  20. Legume promotion in counselling: an e-mail survey of dietitians.

    PubMed

    Desrochers, N; Brauer, P M

    2001-01-01

    Little is known about dietitians current practice in counselling clients about the use of legumes in a low fat, high fibre diet. An exploratory e-mail questionnaire was sent to members of Dietitians of Canada to assess: dietitian use and preferences for legumes, dietitian practice, opinions about clients attitudes and preferences, and resource needs. Counsellors (n=256) had high personal use of legumes (64% > or = 1 serving/week) and frequently recommended legumes in counselling. The legumes most preferred by respondents and their clients were: peanuts, kidney beans, split peas, chickpeas, and lentils. Respondents often recommended canned bean products (76%) and tofu (61%), but other legume grocery products were less often recommended. The most common client issues identified were: flatulence (87% agreed), lack of familiarity (85%), and knowledge of preparation (82%). Dietitians were not satisfied with current resources to support practice, especially those respondents providing primarily clinical counselling services. The most requested resources were: recipes (90%), pamphlets (82%), food demonstrations (75%) and Internet sites (63%). Client level research is now needed to confirm the importance of the issues identified and to develop and test strategies for legume promotion in counselling. PMID:11742561

  1. In vitro antioxidant activity of extracts from common legumes.

    PubMed

    Zhao, Yan; Du, Shuang-kui; Wang, Hanxin; Cai, Meng

    2014-01-01

    The in vitro antioxidant activity of pinto bean, cowpea, baby lima bean, lentil, chickpea, small red bean, red kidney bean, black kidney bean, navy bean, and mung bean extracts were investigated. Significant differences were observed in the phenolic content and the antioxidant activity amongst the legume extracts. Lentils demonstrated the highest phenolic content (47.6 mg/g), total antioxidant activity (720.68 U/g), DPPH• scavenging activity (38.5%), and total reducing power, whereas baby lima beans and navy beans had the lowest. Amongst the extracts, hydroxyl radicals (•OH) scavenging was higher in black kidney bean (85.68%) and baby lima bean (74.97%) extracts. The total antioxidant activity (r=0.84), DPPH• scavenging activity (r=0.83), and total reducing power (r=0.84) were positively correlated with the total phenolic content. However, •OH scavenging and the phenolic content were not correlated. PMID:24444962

  2. Biomass potential of selected grass and legume crops

    SciTech Connect

    Cherney, J.H.; Johnson, K.D.; Volenec, J.J.; Greene, D.K. )

    1991-01-01

    Optimum management strategies for herbaceous biomass crops must be investigated concurrently with the development of cost-effective conversion processes. The objective of this paper is to evaluate the agronomic feasibility of several combinations of species and management systems for producing herbaceous biomass on sites ranging from good to marginal cropland in the Midwest region of the United States. Of the perennial grasses and legumes investigated, switchgrass showed the most potential as a biomass species. It requires minimum fertilizer inputs for high yield, is very persistent, and is effective in reducing soil erosion. Sorghum double-cropped with winter annual rye was very productive but required more inputs than switchgrass. Interseeding sorghum into perennial grasses was not a viable option, due to its great dependence on environmental variables. Plant composition varied greatly across species but was not greatly affected by environment or management treatmenst.

  3. The evolution of specificity in the legume-rhizobium symbiosis.

    PubMed

    Young, J P; Johnston, A W

    1989-11-01

    We know more about the partnership between legumes and their root-nodule bacteria than about any other symbiosis or any other plant-microbe interaction. In the light of recent research we are beginning to see details of an elaborate tapestry. The rhizobia are not a self-contained branch on the bacterial tree; their ancestry is intertwined with that of photosynthetic and pathogenic bacteria. Their host ranges, which vary enormously in breadth, overlap to form a tangled web of interconnections between plants and bacteria, and mechanisms of infection and nodule development are more diverse than we once thought. From genetic analysis of the bacteria we learn that specificity is not the province of special 'host-range determinants', but is affected by a wide range of genes with diverse modes of action. The symbiosis is a rich resource for evolutionary fact and speculation, but its complexity and diversity should warn us not to expect easy answers.

  4. Soil spatial variability and symbiotic nitrogen fixation by legumes

    SciTech Connect

    Reichardt, K. )

    1990-09-01

    The isotope dilution method for the estimation of N{sub 2} fixation by legumes is analyzed, comparing the application of {sup 15}N-enriched fertilizer with {sup 15}N-labeled soil. Soil variability of other dynamic processes in the soil are discussed in light of the distribution of the {sup 15}N label in the system. Field data were collected along six transects, 45 m long, with 30 plots (replicates) each. The legume (Vicia faba L.) was used as a fixing crop, barley (Hordeum vulgare L.) and oil radish (Raphinus sativus L.) as nonfixing standard crops. Isotope methods were also compared with the yield difference method. Results show that isotope methods were very sensitive to the distribution of the label in the soil and that dynamic processes involving N can significantly affect this distribution over a whole field. Best results were obtained with {sup 15}N-labeled soil. The particular site used, having been farmed for more than 20 years with {sup 15}N trials, showed a homogeneous residual {sup 15}N label that made it possible to estimate N{sub 2} fixation without the application of extra label. Estimates of N{sub 2} fixation with the isotope method were well correlated with the yield difference method when fertilizer use efficiency of the fixing and nonfixing crops were similar. Results also indicate that a good reference crop for one method might not be the best for the other method, and one reason for this is the variability of soil parameters and of dynamic processes occurring in the soil.

  5. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

    PubMed

    Adams, Mark Andrew; Turnbull, Tarryn L; Sprent, Janet I; Buchmann, Nina

    2016-04-12

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.

  6. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

    PubMed

    Adams, Mark Andrew; Turnbull, Tarryn L; Sprent, Janet I; Buchmann, Nina

    2016-04-12

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  7. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency

    PubMed Central

    Adams, Mark Andrew; Turnbull, Tarryn L.; Sprent, Janet I.; Buchmann, Nina

    2016-01-01

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43–100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea—in distinct challenge to current theories that place the leaf nitrogen–Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea–gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen—in a variety of forms—enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  8. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases.

    PubMed

    Sugiyama, Akifumi; Linley, Philip J; Sasaki, Kanako; Kumano, Takuto; Yamamoto, Hideaki; Shitan, Nobukazu; Ohara, Kazuaki; Takanashi, Kojiro; Harada, Emiko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kuzuyama, Tomohisa; Yazaki, Kazufumi

    2011-11-01

    Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.

  9. Genome sequence of Ensifer arboris strain LMG 14919(T); a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan.

    PubMed

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Willems, Anne

    2014-06-15

    Ensifer arboris LMG 14919(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919(T) was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919(T) is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919(T) does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919(T), together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  10. Genome sequence of Ensifer arboris strain LMG 14919T; a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan

    PubMed Central

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Willems, Anne

    2013-01-01

    Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919T, together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197433

  11. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s)

    PubMed Central

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V. Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-01-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  12. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae)

    PubMed Central

    Jansen, Robert K.; Wojciechowski, Martin F.; Sanniyasi, Elumalai; Lee, Seung-Bum; Daniell, Henry

    2008-01-01

    Chickpea (Cicer arietinum, Leguminosae), an important grain legume, is widely used for food and fodder throughout the world. We sequenced the complete plastid genome of chickpea, which is 125,319 bp in size, and contains only one copy of the inverted repeat (IR). The genome encodes 108 genes, including 4 rRNAs, 29 tRNAs, and 75 proteins. The genes rps16, infA, and ycf4 are absent in the chickpea plastid genome, and ndhB has an internal stop codon in the 5′exon, similar to other legumes. Two genes have lost their introns, one in the 3′exon of the transpliced gene rps12, and the one between exons 1 and 2 of clpP; this represents the first documented case of the loss of introns from both of these genes in the same plastid genome. An extensive phylogenetic survey of these intron losses was performed on 302 taxa across legumes and the related family Polygalaceae. The clpP intron has been lost exclusively in taxa from the temperate “IR-lacking clade” (IRLC), whereas the rps12 intron has been lost in most members of the IRLC (with the exception of Wisteria, Callerya, Afgekia, and certain species of Millettia, which represent the earliest diverging lineages of this clade), and in the tribe Desmodieae, which is closely related to the tribes Phaseoleae and Psoraleeae. Data provided here suggest that the loss of the rps12 intron occurred after the loss of the IR. The two new genomic changes identified in the present study provide additional support of the monophyly of the IR-loss clade, and resolution of the pattern of the earliest-branching lineages in this clade. The availability of the complete chickpea plastid genome sequence also provides valuable information on intergenic spacer regions among legumes and endogenous regulatory sequences for plastid genetic engineering. PMID:18638561

  13. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  14. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.

  15. Nuts and legume seeds for cardiovascular risk reduction: scientific evidence and mechanisms of action.

    PubMed

    Souza, Rávila G M; Gomes, Aline C; Naves, Maria M V; Mota, João F

    2015-06-01

    Consumption of tree nuts and legume seeds is associated with a reduction in cardiovascular risk. The reduction in blood lipids and in inflammatory and oxidative processes exhibited by bioactive compounds such as monounsaturated and polyunsaturated fatty acids, fibers, phenolic compounds, tocopherols, phospholipids, carotenoids, some minerals, and arginine, has stimulated research on the mechanisms of action of these substances through distinct experimental approaches. It is, therefore, important to know the metabolic effect of each nut and legume seed or the mixture of them to choose the most suitable nutritional interventions in clinical practice. The aim of this narrative bibliographic review was to investigate the effects of tree nuts and legume seeds on biomarkers of cardiovascular risk, as well as their mechanisms of action with regard to lipid profiles, insulin resistance, arterial pressure, oxidative stress, and inflammation. The findings indicate that a mixture of nuts and legume seeds optimizes the protective effect against cardiovascular risk. PMID:26011909

  16. Survival of Rhizobium phaseoli in coal-based legume inoculants applied to seeds

    SciTech Connect

    Crawford, S.L.; Berryhill, D.L.

    1983-02-01

    Eight coals used as carriers in legume inoculants promoted the survival of Rhizobium phaseoli on pinto bean seeds. Although peat was more protective, most coal-based inoculants provided >10/sup 4/ viable rhizobia per seed after 4 weeks.

  17. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes.

    PubMed

    Aguilera, Yolanda; Díaz, María Felicia; Jiménez, Tania; Benítez, Vanesa; Herrera, Teresa; Cuadrado, Carmen; Martín-Pedrosa, Mercedes; Martín-Cabrejas, María A

    2013-08-28

    The present study describes the effects of germination on nonnutritional factors and antioxidant activity in the nonconventional legumes Vigna unguiculata (cowpea), Canavalia ensiformis (jack bean), Lablab purpureus (dolichos), and Stizolobium niveum (mucuna). Protease inhibitors and lectins were detected in raw legumes and were significantly decreased during the germination. Regarding total and individual inositol phosphates (IP5-IP3), important reductions of IP6 and high increases in the rest of inositol phosphates were also detected during this process. In addition, total phenols, catechins, and proanthocyanidins increased, accompanied by an overall rise of antioxidant activity (79.6 μmol of Trolox/g of DW in the case of mucuna). Germination has been shown to be a very effective process to reduce nonnutritional factors and increase bioactive phenolic compounds and antioxidant activities of these nonconventional legumes. For this reason, they could be used as ingredients to obtain high-value legume flours for food formulation. PMID:23909570

  18. Nuts and legume seeds for cardiovascular risk reduction: scientific evidence and mechanisms of action.

    PubMed

    Souza, Rávila G M; Gomes, Aline C; Naves, Maria M V; Mota, João F

    2015-06-01

    Consumption of tree nuts and legume seeds is associated with a reduction in cardiovascular risk. The reduction in blood lipids and in inflammatory and oxidative processes exhibited by bioactive compounds such as monounsaturated and polyunsaturated fatty acids, fibers, phenolic compounds, tocopherols, phospholipids, carotenoids, some minerals, and arginine, has stimulated research on the mechanisms of action of these substances through distinct experimental approaches. It is, therefore, important to know the metabolic effect of each nut and legume seed or the mixture of them to choose the most suitable nutritional interventions in clinical practice. The aim of this narrative bibliographic review was to investigate the effects of tree nuts and legume seeds on biomarkers of cardiovascular risk, as well as their mechanisms of action with regard to lipid profiles, insulin resistance, arterial pressure, oxidative stress, and inflammation. The findings indicate that a mixture of nuts and legume seeds optimizes the protective effect against cardiovascular risk.

  19. Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes

    PubMed Central

    Li, Fengqi; Cao, Depan; Liu, Yang; Yang, Ting; Wang, Guirong

    2015-01-01

    The identification of genes under positive selection is a central goal of evolutionary biology. Many legume species, including Phaseolus vulgaris (common bean) and Phaseolus lunatus (lima bean), have important ecological and economic value. In this study, we sequenced and assembled the transcriptome of one Phaseolus species, lima bean. A comparison with the genomes of six other legume species, including the common bean, Medicago, lotus, soybean, chickpea, and pigeonpea, revealed 15 and 4 orthologous groups with signatures of positive selection among the two Phaseolus species and among the seven legume species, respectively. Characterization of these positively selected genes using Non redundant (nr) annotation, gene ontology (GO) classification, GO term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these genes are mostly involved in thylakoids, photosynthesis and metabolism. This study identified genes that may be related to the divergence of the Phaseolus and legume species. These detected genes are particularly good candidates for subsequent functional studies. PMID:26151849

  20. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils.

    PubMed

    Liu, Wendy Y Y; Ridgway, Hayley J; James, Trevor K; James, Euan K; Chen, Wen-Ming; Sprent, Janet I; Young, J Peter W; Andrews, Mitchell

    2014-10-01

    The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.

  1. Chemical composition, nutritive value, and toxicological evaluation of Bauhinia cheilantha seeds: a legume from semiarid regions widely used in folk medicine.

    PubMed

    Teixeira, Daniel Câmara; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano; Arantes, Mariana Reis; Oliveira, José Tadeu Abreu; Sousa, Daniele Oliveira Bezerra; Pereira, Mirella Leite; Oliveira, Hermogenes David; Andrade-Neto, Manoel; Vasconcelos, Ilka Maria

    2013-01-01

    Among the Bauhinia species, B. cheilantha stands out for its seed protein content. However, there is no record of its nutritional value, being used in a nonsustainable way in the folk medicine and for large-scale extraction of timber. The aim of this study was to investigate the food potential of B. cheilantha seeds with emphasis on its protein quality to provide support for flora conservation and use as raw material or as prototype for the development of bioproducts with high added socioeconomic value. B. cheilantha seeds show high protein content (35.9%), reasonable essential amino acids profile, low levels of antinutritional compounds, and nutritional parameters comparable to those of legumes widely used such as soybean and cowpea. The heat treatment of the seeds as well as the protein extraction process (to obtain the protein concentrate) increased the acceptance of diets by about 100% when compared to that of raw Bc diet. These wild legume seeds can be promising alternative source of food to overcome the malnutrition problem faced by low income people adding socioeconomic value to the species. PMID:23691507

  2. Chemical Composition, Nutritive Value, and Toxicological Evaluation of Bauhinia cheilantha Seeds: A Legume from Semiarid Regions Widely Used in Folk Medicine

    PubMed Central

    Teixeira, Daniel Câmara; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano; Arantes, Mariana Reis; Oliveira, José Tadeu Abreu; Sousa, Daniele Oliveira Bezerra; Pereira, Mirella Leite; Oliveira, Hermogenes David; Andrade-Neto, Manoel; Vasconcelos, Ilka Maria

    2013-01-01

    Among the Bauhinia species, B. cheilantha stands out for its seed protein content. However, there is no record of its nutritional value, being used in a nonsustainable way in the folk medicine and for large-scale extraction of timber. The aim of this study was to investigate the food potential of B. cheilantha seeds with emphasis on its protein quality to provide support for flora conservation and use as raw material or as prototype for the development of bioproducts with high added socioeconomic value. B. cheilantha seeds show high protein content (35.9%), reasonable essential amino acids profile, low levels of antinutritional compounds, and nutritional parameters comparable to those of legumes widely used such as soybean and cowpea. The heat treatment of the seeds as well as the protein extraction process (to obtain the protein concentrate) increased the acceptance of diets by about 100% when compared to that of raw Bc diet. These wild legume seeds can be promising alternative source of food to overcome the malnutrition problem faced by low income people adding socioeconomic value to the species. PMID:23691507

  3. Chemical composition, nutritive value, and toxicological evaluation of Bauhinia cheilantha seeds: a legume from semiarid regions widely used in folk medicine.

    PubMed

    Teixeira, Daniel Câmara; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano; Arantes, Mariana Reis; Oliveira, José Tadeu Abreu; Sousa, Daniele Oliveira Bezerra; Pereira, Mirella Leite; Oliveira, Hermogenes David; Andrade-Neto, Manoel; Vasconcelos, Ilka Maria

    2013-01-01

    Among the Bauhinia species, B. cheilantha stands out for its seed protein content. However, there is no record of its nutritional value, being used in a nonsustainable way in the folk medicine and for large-scale extraction of timber. The aim of this study was to investigate the food potential of B. cheilantha seeds with emphasis on its protein quality to provide support for flora conservation and use as raw material or as prototype for the development of bioproducts with high added socioeconomic value. B. cheilantha seeds show high protein content (35.9%), reasonable essential amino acids profile, low levels of antinutritional compounds, and nutritional parameters comparable to those of legumes widely used such as soybean and cowpea. The heat treatment of the seeds as well as the protein extraction process (to obtain the protein concentrate) increased the acceptance of diets by about 100% when compared to that of raw Bc diet. These wild legume seeds can be promising alternative source of food to overcome the malnutrition problem faced by low income people adding socioeconomic value to the species.

  4. [Production of inhibiting plant growth and development hormones by pathogenic for legumes Pseudomonas genus bacteria].

    PubMed

    Dankevich, L A

    2013-01-01

    It has been studied the ability of pathogenic for legumes pathovars of Pseudomonas genus to produce ethylene and abscisic acid in vitro. A direct correlation between the level of ethylene production by agent of bacterial pea burn--Pseudomonas syringae pv. pisi and level of its aggressiveness for plants has been found. It is shown that the amount of abscisic acid synthesized by pathogenic for legumes Pseudomonas genus bacteria correlates with their aggressiveness for plants.

  5. Identification of conserved microRNAs and their targets in the model legume Lotus japonicus.

    PubMed

    Hu, Jihong; Zhang, Hongyuan; Ding, Yi

    2013-04-15

    MicroRNAs (miRNAs) are a new class of non-protein coding small RNAs that regulate gene expression at the post-transcriptional level in plants and animals. Although thousands of miRNAs were identified in many plant species, only 3 miRNAs have been reported in Lotus Japonicus, a model legume plant. In this study, 80 potential miRNA candidates were identified in 28 ESTs and 52 GSSs of L. japonicus using a homology-based computational analysis. A total of 735 miRNA targets were predicted and some of them encoded transcription factors as well as genes that function in stress response, signal transduction, methylation and others. Quantitative real-time PCR (qRT-PCR) analysis indicated that miR156a, miR160a and miR399a participated in seed germination of L. japonicus. GO and KEGG analysis suggested that the predicted miRNAs might target genes involved in lipid, nitrogen, starch sucrose metabolism and signal transduction.

  6. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume

    PubMed Central

    Belamkar, Vikas; Farmer, Andrew D.; Weeks, Nathan T.; Kalberer, Scott R.; Blackmon, William J.; Cannon, Steven B.

    2016-01-01

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome–another phaseoloid legume with the same chromosome number–provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement. PMID:27721469

  7. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis

    PubMed Central

    Journet, Etienne-Pascal; van Tuinen, Diederik; Gouzy, Jérome; Crespeau, Hervé; Carreau, Véronique; Farmer, Mary-Jo; Niebel, Andreas; Schiex, Thomas; Jaillon, Olivier; Chatagnier, Odile; Godiard, Laurence; Micheli, Fabienne; Kahn, Daniel; Gianinazzi-Pearson, Vivienne; Gamas, Pascal

    2002-01-01

    We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5′- and 3′-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by ‘electronic northern’ representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface. PMID:12490726

  8. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.

    PubMed

    Journet, Etienne-Pascal; van Tuinen, Diederik; Gouzy, Jérome; Crespeau, Hervé; Carreau, Véronique; Farmer, Mary-Jo; Niebel, Andreas; Schiex, Thomas; Jaillon, Olivier; Chatagnier, Odile; Godiard, Laurence; Micheli, Fabienne; Kahn, Daniel; Gianinazzi-Pearson, Vivienne; Gamas, Pascal

    2002-12-15

    We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface. PMID:12490726

  9. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production.

    PubMed

    Gresshoff, Peter M; Hayashi, Satomi; Biswas, Bandana; Mirzaei, Saeid; Indrasumunar, Arief; Reid, Dugald; Samuel, Sharon; Tollenaere, Alina; van Hameren, Bethany; Hastwell, April; Scott, Paul; Ferguson, Brett J

    2015-01-01

    Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation. PMID:25240795

  10. Physical, chemical and nutritional characteristics of premature-processed and matured green legumes.

    PubMed

    Bhattacharya, Sila; Malleshi, N G

    2012-08-01

    Premature green legumes are good sources of nutraceuticals and antioxidants and are consumed as snacks as well as vegetables. They are seasonal and have limited shelf-life. Efforts are provided to prepare shelf-stable green legumes to extend their availability throughout the year. Green legumes from chick pea or Bengal gram (Cicer arietinum) and field bean (Dolichos lablab) have been processed to enhance their shelf-life, and determined their nutritional, physico-chemical and nutraceutical qualities. The shelf stable green legumes (SSGL) show higher water absorption capacity compared to matured dry legumes (MDL). The total colour change in the processed/dried SSGL and MDL samples increased significantly (p ≤ 0.05) compared to the freshly harvested green samples. The carotenoid content of Bengal gram and field bean SSGLs are 8.0 and 3.2 mg/100 g, and chlorophyll contents are 12.5 and 0.5 mg/100 g, respectively, which are in negligible quantities in matured legumes; the corresponding polyphenol contents are 197.8 and 153.1 mg/100 g. These results indicate that SSGLs possess potential antioxidant activity. PMID:23904654

  11. [Genetic diversity of rhizobia isolated from common legumes in the Karst area. Northwest Guangxi].

    PubMed

    Liu, Lu; He, Xun-yang; Xie, Qiang; Wang, Ke-lin

    2015-12-01

    Legumes, with a strong resistance to the adverse environmental conditions, are pioneer plants in degraded habitats, and play an important role in ecosystem restoration. In this study, the nodulation characteristics of 24 legumes were surveyed in the Karst area of Northwest Guangxi. A total of 39 nodule samples were collected from 15 legumes, the DNA was extracted and the 16S rDNA and nifH gene were amplified. A phylogenetic tree was then constructed to analyze the genetic diversity of rhizobia. The results showed that 15 legumes were nodulated, of which 14 belonged to the Papilionoideae, one to the Mimosaceae, and none to the Caesalpinoideae. No nodules were found on some legumes that were reported as nodulated, which might result from soil water stress in Karst. BLAST result and phylogenetic analyse indicated that most of the legumes were associated with rhizobia that belonged to the genus Bradyrhizobium, with the exception of two samples from Callerya nitida that were associated with the genus Mesorhizobium. In the phylogenetic tree, the sequences obtained from the same plot or the sequences from the same host species clustered together in most cases. This finding suggested that host selection and the ecological environment are the major factors that influence the genotype of rhizobia. PMID:27112003

  12. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes?

    SciTech Connect

    Rogers, A.; Ainsworth, E. A.; Leakey, A. D. B.

    2009-11-01

    Growth at elevated [CO{sub 2}] stimulates photosynthesis and increases carbon (C) supply in all C3 species. A sustained and maximal stimulation in productivity at elevated [CO{sub 2}] requires an enhanced nutrient supply to match the increase in C acquisition. The ability of legumes to exchange C for nitrogen (N) with their N{sub 2}-fixing symbionts has led to the hypothesis that legumes will have a competitive advantage over nonleguminous species when grown at elevated [CO{sub 2}]. On balance, evidence suggests that in managed systems, legumes are more responsive to elevated [CO{sub 2}] than other plants (e.g. Ainsworth and Long, 2005); however, in natural ecosystems, nutrient availability can limit the response of legumes to elevated [CO{sub 2}] (Hungate et al., 2004; van Groenigen et al., 2006). Here, we consider these observations, outline the mechanisms that underlie them, and examine recent work that advances our understanding of how legumes respond to growth at elevated [CO{sub 2}]. First we highlight the global importance of legumes and provide a brief overview of the symbiotic relationship.

  13. [Genetic diversity of rhizobia isolated from common legumes in the Karst area. Northwest Guangxi].

    PubMed

    Liu, Lu; He, Xun-yang; Xie, Qiang; Wang, Ke-lin

    2015-12-01

    Legumes, with a strong resistance to the adverse environmental conditions, are pioneer plants in degraded habitats, and play an important role in ecosystem restoration. In this study, the nodulation characteristics of 24 legumes were surveyed in the Karst area of Northwest Guangxi. A total of 39 nodule samples were collected from 15 legumes, the DNA was extracted and the 16S rDNA and nifH gene were amplified. A phylogenetic tree was then constructed to analyze the genetic diversity of rhizobia. The results showed that 15 legumes were nodulated, of which 14 belonged to the Papilionoideae, one to the Mimosaceae, and none to the Caesalpinoideae. No nodules were found on some legumes that were reported as nodulated, which might result from soil water stress in Karst. BLAST result and phylogenetic analyse indicated that most of the legumes were associated with rhizobia that belonged to the genus Bradyrhizobium, with the exception of two samples from Callerya nitida that were associated with the genus Mesorhizobium. In the phylogenetic tree, the sequences obtained from the same plot or the sequences from the same host species clustered together in most cases. This finding suggested that host selection and the ecological environment are the major factors that influence the genotype of rhizobia.

  14. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes.

    PubMed

    Saalbach, I; Pickardt, T; Machemehl, F; Saalbach, G; Schieder, O; Müntz, K

    1994-01-01

    The coding region of the 2S albumin gene of Brazil nut (Bertholletia excelsa H.B.K.) was completely synthesized, placed under control of the cauliflower mosaic virus (CaMV) 35S promoter and inserted into the binary vector plasmid pGSGLUC1, thus giving rise to pGSGLUC1-2S. This was used for transformation of tobacco (Nicotiana tabacum L. cv. Petit Havanna) and of the grain legume Vicia narbonensis L., mediated by the supervirulent Agrobacterium tumefaciens strain EHA 101. Putative transformants were selected by screening for neomycin phosphotransferase (NPT II) and beta-glucuronidase (GUS) activities. Transgenic plants were grown until flowering and fruiting occurred. The presence of the foreign gene was confirmed by Southern analysis. GUS activity was found in all organs of the regenerated transgenic tobacco and legume plants, including the seeds. In the legume, the highest expression levels of the CaMV 35S promoter-controlled 2S albumin gene were observed in leaves and roots. 2S albumin was localized in the vacuoles of leaf mesophyll cells of transgenic tobacco. The Brazil nut protein was present in the 2S fraction after gel filtration chromatography of the legume seed proteins and could be clearly identified by immunoblotting. Analysis of seeds from the R2 progenies of the legume and of transgenic tobacco plants revealed Mendelian inheritance of the foreign gene. Agrobacterium rhizogenes strain RifR 15834 harbouring the binary vector pGSGLUC1-2S was also used to transform Pisum sativum L. and Vicia faba L. Hairy roots expressed the 2S albumin-specific gene. Several shoots were raised but they never completely rooted and no fertile plants were obtained from these transformants.

  15. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs' feeding behavior and physiology.

    PubMed

    Villalba, J J; Spackman, C; Goff, B M; Klotz, J L; Griggs, T; MacAdam, J W

    2016-02-01

    It was hypothesized that a tannin-rich legume such as sainfoin attenuates the negative postingestive effects of ergot alkaloids in tall fescue. Thirty-two 4-mo-old lambs were individually penned and randomly assigned to a 2 × 2 factorial arrangement with 2 legume species, sainfoin (SAN; 2.9% condensed tannins) or cicer milkvetch (CIC; without tannins) and a mixed ration containing tall fescue seed (50:30:20 seed:beet pulp:alfalfa) with 2 levels of endophyte infection (endophyte-infected tall fescue seed [E+; 3,150 ug/L ergovaline] or endophyte-free tall fescue seed [E-]). For a 10-d baseline period, half of the lambs were fed SAN and half were fed CIC and all lambs had ad libitum amounts of E-. In an ensuing 10-d experimental period, the protocol was the same except half of the lambs fed SAN or CIC received E+ instead of E-. Subsequently, all lambs could choose between their respective legume and seed-containing ration and between E+ and E-. Finally, an in vitro radial diffusion assay was conducted to determine whether tannins isolated from SAN would bind to alkaloids isolated from E+. All groups consumed similar amounts of E- during baseline period ( > 0.10), but lambs ate more E- than E+ during the experimental period ( < 0.05) and lambs offered SAN ate more E+ than lambs offered CIC ( < 0.05). Groups fed E- during the baseline and experimental periods had similar rectal temperatures ( > 0.10), but lambs fed E+ had lower rectal temperatures per gram of feed ingested when supplemented with SAN than with CIC ( < 0.05). Lambs fed E+ had greater concentrations of hemoglobin and more red blood cells than lambs fed E- ( < 0.05), but plasmatic concentrations of cortisol and prolactin did not differ among treatments ( > 0.10). All lambs preferred their treatment ration over their treatment legume, but lambs in the SAN and E+ treatment ate more legume + ration than lambs in the CIC and E+ (CIC-E+; < 0.05) treatment. All lambs preferred E- over E+, but lambs in the CIC

  16. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan.

    PubMed

    Srinivasan, R

    2008-01-01

    Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.

  17. Retardation of post-mortem changes of freshwater prawn (Macrobrachium rosenbergii) stored in ice by legume seed extracts.

    PubMed

    Sriket, Chodsana; Benjakul, Soottawat; Visessanguan, Wonnop; Hara, Kenji; Yoshida, Asami

    2012-11-15

    Meat quality of freshwater prawn (Macrobrachium rosenbergii) treated with soybean and bambara groundnut extracts at different concentrations was monitored during 10 days of iced storage. During storage, the control sample (without treatment) had a higher pH, TCA-soluble peptide content, heat soluble collagen content, proteolytic activities and psychrophilic bacterial count than did samples treated with soybean and bambara groundnut extracts. Conversely, shear force value and likeness scores of the control sample decreased (p<0.05), more likely associated with softening of muscle. The decrease in myosin heavy chain in the control sample was found after 6 days of storage. However, no changes in protein patterns of samples treated with soybean extracts at 2.5 mg/mL were found after 10 days of storage. Therefore, the injections of legume seed extracts, especially soybean extract, at a sufficient concentration, could be a means to retard muscle softening and maintain the qualities of freshwater prawn during iced storage.

  18. Legumes increase rhizosphere carbon and nitrogen relative to cereals in California agricultural plots

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Maltais-landry, G.

    2013-12-01

    Nitrogen (N) is an essential nutrient to plant growth, therefore a sufficient supply is needed for high yields. By using N-fixing plants like legumes in crop rotation, we can increase soil N and yields of following crops. Furthermore, legumes also affect soil carbon (C) and C:N ratios, which impacts nutrient cycling in soils. We assessed the effects of two legumes (vetch, fava bean) and a cereal mixture (oats and wheat) on soil N and C by comparing both rhizosphere and bulk soils. We studied the impacts of these plants with different management types (organic, low-input conventional, unfertilized) to see if plant effects on soil C and N changed across management. We used plots from the Long-Term Research on Agricultural Systems (LTRAS) experiment (Davis, CA) to conduct this experiment, where three plots were under each management type. Within each of these plots, we sampled three micro-plots, where we collected rhizosphere soil from fava bean, vetch, and cereals as well as bulk soil, i.e. non-rhizosphere soil. We collected 108 samples, each of which were dried and ball-milled into a fine, uniform powder. Tin capsules with 15-30mg of soil were then analyzed with a Carlo Erba Elemental analyzer to measure how much N and C was present in each of the samples. The different management types didn't affect the relationship among plants, but soil C and N were highest in organic and lowest in unfertilized plots. We found that N was significantly higher in legume rhizosphere than cereal rhizosphere and bulk soils. Soil C was also higher in legumes vs. cereals and bulk soils, but the only significant difference was with the bulk soils. This ultimately resulted in lower C:N ratios in the rhizosphere of legumes, only vetch, however, had significantly lower soil C:N than cereals. Vetch had higher N, and lower C and C:N than fava bean, but the difference between the two legumes was never significant. Similarly, cereals had higher C and N and lower C:N than bulk soils, although

  19. Clitoria ternatea L. as a Potential High Quality Forage Legume.

    PubMed

    Abreu, Matheus Lima Corrêa; Vieira, Ricardo Augusto Mendonça; Rocha, Norberto Silva; Araujo, Raphael Pavesi; Glória, Leonardo Siqueira; Fernandes, Alberto Magno; de Lacerda, Paulo Drude; Júnior, Antonio Gesualdi

    2014-02-01

    Samples of Clitoria ternatea L. (Cunhã) were harvested at 35, 50, 70, and 90 d after a uniformity harvest in a field study designed as a completely randomized design with a total of 18 experimental plots. The dry matter yield of the whole plant was separated quantitatively into leaves, stems, and pods at each harvesting age. Chemical analyses and in vitro gas production kinetics were performed to assess the quality of the plant parts. Yields, chemical composition, and estimates of gas production parameters were analyzed by fitting a mixed statistical model with two types of covariance structures as follows: variance components and an unrestricted structure with heterogeneous variances. Fast and slow gas yielding pools were detected for both leaves and stems, but only a single pool was detected for pods. The homoscedasticity assumption was more likely for all variables, except for some parameters of the gas production kinetics of leaves and stems. There was no presence of typical pods at 35 and 50 d. In the leaves, the fibrous fractions were affected, whereas the non-fibrous fractions were unaffected by the harvesting age. The harvesting age affected the majority of the chemical constituents and gas kinetic parameters related to the stems. The leaves of this legume were the least affected part by the aging process. PMID:25049940

  20. Clitoria ternatea L. as a Potential High Quality Forage Legume

    PubMed Central

    Abreu, Matheus Lima Corrêa; Vieira, Ricardo Augusto Mendonça; Rocha, Norberto Silva; Araujo, Raphael Pavesi; Glória, Leonardo Siqueira; Fernandes, Alberto Magno; de Lacerda, Paulo Drude; Júnior, Antonio Gesualdi

    2014-01-01

    Samples of Clitoria ternatea L. (Cunhã) were harvested at 35, 50, 70, and 90 d after a uniformity harvest in a field study designed as a completely randomized design with a total of 18 experimental plots. The dry matter yield of the whole plant was separated quantitatively into leaves, stems, and pods at each harvesting age. Chemical analyses and in vitro gas production kinetics were performed to assess the quality of the plant parts. Yields, chemical composition, and estimates of gas production parameters were analyzed by fitting a mixed statistical model with two types of covariance structures as follows: variance components and an unrestricted structure with heterogeneous variances. Fast and slow gas yielding pools were detected for both leaves and stems, but only a single pool was detected for pods. The homoscedasticity assumption was more likely for all variables, except for some parameters of the gas production kinetics of leaves and stems. There was no presence of typical pods at 35 and 50 d. In the leaves, the fibrous fractions were affected, whereas the non-fibrous fractions were unaffected by the harvesting age. The harvesting age affected the majority of the chemical constituents and gas kinetic parameters related to the stems. The leaves of this legume were the least affected part by the aging process. PMID:25049940

  1. Determination of saponins in legumes by direct densitometry.

    PubMed

    Gurfinkel, D M; Rao, A V

    2002-01-30

    Research has shown that dietary saponins may have health benefits. A simple, rapid method for the determination of saponins in legumes, using densitometry, is described. Saponin preparations, after pretreatment to remove nonsaponin components, are spotted in rows on a thin-layer chromatography plate, along with soyasaponin standards. The plate, without solvent development, is directly treated with sulfuric acid and heated. Violet spots develop which have a density proportional to the amount of saponin present. The standard curve has a correlation coefficient of 0.99 and is linear over the range of 1.25 to 10 microg of soyasaponins applied. The method has a coefficient of variation of less than 3% and compares favorably with quantitative thin-layer chromatography. Using this method the saponin contents of defatted soy flour (0.58%), dried navy beans (0.32%), and dried kidney beans (0.29%) were determined, and these results were found to be consistent with previous reports in the literature. PMID:11804507

  2. Duck nesting in fields of undisturbed grass-legume cover

    USGS Publications Warehouse

    Duebbert, H.F.; Lokemoen, J.T.

    1976-01-01

    A study of dabbling duck (Anatinae) nesting was conducted during 1971-73 on nine 12- to 54-ha Cropland Adjustment Program fields in the prairie pothole region of north-central South Dakota. The tall, dense vegetation was comprised of introduced cool-season grasses and legumes, primarily smooth bromegrass (Bromus inermis), intermediate wheatgrass (Agropyron intermedium), and alfalfa. Complexes of temporary, seasonal, and semipermanent wetlands surrounded the fields at densities of 1.5-8.1 basins/km2 and areas of 9.4-17.2 ha/km2. Of the 620 nests studied, 38 percent were of blue-winged teal (Anas discors), 24 percent were of mallards (A. platyrhynchos), and 24 percent were of gadwalls (A. strepera). Densities of nests of all species averaged 67, 114, and 47 nests/km2 (3-yr av 77/km2). Calculated hatching rates were 69, 58, and 32 percent (av 56) for the 3 years. Hatchability of eggs in successful nests averaged 97.1 percent. Averages of 4.0, 6.2, and 1.2 ducklings were hatched per hectare in 1971, 1972, and 1973, respectively (3-yr av 3.7/ha).

  3. The phytate and mineral content of some cereals, cereal products, legumes, legume products, snack bars, and nuts available in New Zealand.

    PubMed

    McKenzie-Parnell, J M; Guthrie, B E

    1986-08-01

    Analyses for phytate by an indirect precipitation method and for the minerals calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn) by atomic absorption spectrophotometry were carried out on 100 foods available in New Zealand. Foods with 1% phytate (dry weight basis) included untoasted muesli, rolled oats, wheat germ, wheat bran, soybean, and some soy products. Most breads contained between 0.35 and 0.60% phytate; legumes on average had 0.62% phytate, as did snack bars. There was a wide variation in Ca and Zn contents: There was a tenfold variation in Ca content among the legume products, whereas there was a seventyfold variation in Zn content among the cereals. The phytate: Zn molar ratio, which is presumed to indicate the biovailability of Zn, was above 20∶1 for two-thirds of the cereals and almost all of the snack bars; it was above 15∶1 for one-third of the breads, almost all of the legumes, and half of the legume products. These high phytate: Zn molar ratios, as well as some Ca: phytate molar ratios above 6∶1, indicate that there might be a reduced biovailability of Zn in many of the foods analyzed in this study. PMID:24254357

  4. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae).

    PubMed

    Margam, Venu M; Coates, Brad S; Hellmich, Richard L; Agunbiade, Tolulope; Seufferheld, Manfredo J; Sun, Weilin; Ba, Malick N; Sanon, Antoine; Binso-Dabire, Clementine L; Baoua, Ibrahim; Ishiyaku, Mohammad F; Covas, Fernando G; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L; Pittendrigh, Barry R

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes.

  5. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer Maruca vitrata (Lepidoptera: Crambidae)

    PubMed Central

    Margam, Venu M.; Coates, Brad S.; Hellmich, Richard L.; Agunbiade, Tolulope; Seufferheld, Manfredo J.; Sun, Weilin; Ba, Malick N.; Sanon, Antoine; Binso-Dabire, Clementine L.; Baoua, Ibrahim; Ishiyaku, Mohammad F.; Covas, Fernando G.; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L.; Pittendrigh, Barry R.

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes. PMID:21311752

  6. The potential health benefits of legumes as a good source of dietary fibre.

    PubMed

    Trinidad, Trinidad P; Mallillin, Aida C; Loyola, Anacleta S; Sagum, Rosario S; Encabo, Rosario R

    2010-02-01

    Dietary fibre has been shown to have important health implications in the prevention of risks of chronic diseases. The objective of the present study was to determine the potential health benefits of legumes as a good source of dietary fibre. Six to ten local legumes were studied as follows: cowpeas, mung beans, pole sitao, chickpeas, green peas, groundnuts, pigeon peas, kidney beans, lima beans and soyabeans. The following studies were conducted: (a) mineral availability, in vitro; (b) glycaemic index (GI) in non-diabetic and diabetic human subjects; (c) the cholesterol-lowering effect in human subjects with moderately raised serum cholesterol levels. The highest Fe availability among legumes was for lima beans (9.5 (sem 0.1)) while for Zn and Ca, the highest availability was for kidney beans (49.3 (sem 4.5)) and pigeon peas (75.1 (sem 7.1)), respectively. Groundnuts have the lowest Fe (1.3 (sem 1.1)), Zn (7.9 (sem 1.3)) and Ca (14.6 (sem 2.8)) availability. Legumes are low-GI foods ( < 55), ranging from 6 (chickpeas) to 13 (mung beans). Kidney beans showed significant reductions for both total (6 %) and LDL-cholesterol (9 %), and groundnuts for total cholesterol (7 %; P < 0.05). We conclude that mineral availability from legumes differs and may be attributed to their mineral content, mineral-mineral interaction and from their phytic and tannic acid content; legumes are considered low-GI foods and have shown potential hypocholesterolaemic effects. The above studies can be a scientific basis for considering legumes as functional foods.

  7. Effect of dietary legumes on bone-specific gene expression in ovariectomized rats.

    PubMed

    Park, Yongsoon; Moon, Hyoun-Jung; Paik, Doo-Jin; Kim, Deog-Yoon

    2013-06-01

    In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor κB ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-α and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

  8. The potential health benefits of legumes as a good source of dietary fibre.

    PubMed

    Trinidad, Trinidad P; Mallillin, Aida C; Loyola, Anacleta S; Sagum, Rosario S; Encabo, Rosario R

    2010-02-01

    Dietary fibre has been shown to have important health implications in the prevention of risks of chronic diseases. The objective of the present study was to determine the potential health benefits of legumes as a good source of dietary fibre. Six to ten local legumes were studied as follows: cowpeas, mung beans, pole sitao, chickpeas, green peas, groundnuts, pigeon peas, kidney beans, lima beans and soyabeans. The following studies were conducted: (a) mineral availability, in vitro; (b) glycaemic index (GI) in non-diabetic and diabetic human subjects; (c) the cholesterol-lowering effect in human subjects with moderately raised serum cholesterol levels. The highest Fe availability among legumes was for lima beans (9.5 (sem 0.1)) while for Zn and Ca, the highest availability was for kidney beans (49.3 (sem 4.5)) and pigeon peas (75.1 (sem 7.1)), respectively. Groundnuts have the lowest Fe (1.3 (sem 1.1)), Zn (7.9 (sem 1.3)) and Ca (14.6 (sem 2.8)) availability. Legumes are low-GI foods ( < 55), ranging from 6 (chickpeas) to 13 (mung beans). Kidney beans showed significant reductions for both total (6 %) and LDL-cholesterol (9 %), and groundnuts for total cholesterol (7 %; P < 0.05). We conclude that mineral availability from legumes differs and may be attributed to their mineral content, mineral-mineral interaction and from their phytic and tannic acid content; legumes are considered low-GI foods and have shown potential hypocholesterolaemic effects. The above studies can be a scientific basis for considering legumes as functional foods. PMID:19825218

  9. Hydrogen coupled CO2 fixation in legume cropping systems

    NASA Astrophysics Data System (ADS)

    Philpott, T.; Cen, Y.; Layzell, D. B.; Kyser, K.; Scott, N. A.

    2009-05-01

    Electron flow from oxidation of excess H2 released by root nodules was shown to contribute to microbial CO2 fixation in soybean crops. This discovery has important implications for carbon storage in soils used to grow legumes; however, further research is needed to understand the fate and turnover time of this H2-coupled CO2 fixation. Isotopic labeling of soil through incubation with 13CO2 was used to elucidate movement of sequestered carbon into soil carbon pools. Measurement of isotopic shifts was determined using Isotope Ratio Mass Spectrometry. Preliminary experiments have confirmed CO2 uptake through an isotopic shift (Δ13C -20.4 to -14.5 ‰) in 24 hour incubated soils labeled with 13CO2 (1% v/v, 99.5 Atom%) under elevated H2 concentration (6000 ppm). Other incubation experiments have confirmed the biotic nature of observed CO2 uptake by comparing isotopic shifts in oven dried and autoclaved soils to moist soil. Under an elevated H2 atmosphere, no significant isotopic shift was observed in dry and autoclaved soils whereas moist soil showed an isotopic shift of Δ13C -21.9 to 11.4 ‰ over 48 hours. Future experiments will involve longer incubations (7 days) and will be aimed at determining isotopic shifts within soil carbon pools. Samples will be incubated and fractionated into microbial biomass, light fraction carbon, and acid stable carbon and subsequent isotopic analysis will be carried out. This will help determine the distribution of H2- coupled fixed CO2 within soil carbon pools and the turnover time of sequestered carbon. This and further research may lead to modification of greenhouse gas coefficients for leguminous crops that includes a CO2 fixation component.

  10. Consumption of legumes improves certain bone markers in ovariectomized rats.

    PubMed

    Lee, Sun Hee; Jin, Na; Paik, Doo-Jin; Kim, Deog-Yoon; Chung, Ill-Min; Park, Yongsoon

    2011-05-01

    Soybeans are known to protect against osteoporosis, but other legumes frequently consumed in Asia have not been studied to learn if they have a similar protective effect. This study investigated the hypothesis that consumption of soybean, mung bean, cowpea, and adzuki bean has beneficial effects on bone biomarkers in ovariectomized rats. Female Sprague-Dawley rats were either sham operated (sham; n = 7) or surgically ovariectomized and then fed a regular AIN-93M diet (OVX; n = 7) or AIN-93M containing soybean (n = 7), mung bean (n = 7), cowpea (n = 7), or adzuki beans (n = 7) for 10 weeks. No bean consumption significantly altered the body, subcutaneous fat, or uterus weight; however, consumption significantly increased the serum calcium/phosphorous ratio and decreased urinary calcium excretion compared with those of the OVX group. Serum concentration of 17β-estradiol was significantly lower in the OVX group compared with that of the sham group and was lowest in the group fed OVX diet containing soybean. Serum osteocalcin concentration was significantly higher in all OVX rats given a diet with beans compared with the same diet without, but urinary deoxypyridinoline excretion was lowest in the group fed OVX diet containing cowpea. There were no significant differences in bone mineral density or bone mineral content of the right femur, tibia, or lumbar spine or in the trabecular bone volume of the tibia among the diet groups. In conclusion, the consumption of soybean, mung bean, cowpea, and adzuki bean in OVX rats improved osteocalcin, but only those fed cowpea showed decreased bone resorption biomarker, suggesting that cowpea may have the most protective effect on bone in OVX rats.

  11. Biosynthesis of Ascorbic Acid in Legume Root Nodules1

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Coronado, Maria J.; Ramos, Javier; Sato, Shusei; Testillano, Pilar S.; Tabata, Satoshi; Becana, Manuel

    2006-01-01

    Ascorbic acid (vitamin C) is a major antioxidant and redox buffer, but is also involved in other critical processes of plants. Recently, the hypothesis has been proposed that legume nodules are unable to synthesize ascorbate and have to import it from the shoot or root, thus providing a means by which the plant regulates nodule senescence. The last step of ascorbate biosynthesis in plants is catalyzed by l-galactono-1,4-lactone dehydrogenase (GalLDH). The mRNAs encoding GalLDH and three other enzymes involved in ascorbate biosynthesis are clearly detectable in nodules. Furthermore, an active membrane-bound GalLDH enzyme is present in nodule mitochondria. Biochemical assays on dissected nodules reveal that GalLDH activity and ascorbate are correlated in nodule tissues and predominantly localized in the infected zone, with lower levels of both parameters (relative to the infected tissues) in the apex (87%) and senescent region (43%) of indeterminate nodules and in the peripheral tissues (65%) of determinate nodules. In situ RNA hybridization showed that the GalLDH mRNA is particularly abundant in the infected zone of indeterminate and determinate nodules. Thus, our results refute the hypothesis that ascorbate is not synthesized in nodules and lend support to a previous conclusion that ascorbate in the infected zone is primarily involved in the protection of host cells against peroxide damage. Likewise, the high ascorbate and GalLDH activity levels found in the apex of indeterminate nodules strongly suggest a participation of ascorbate in additional functions during symbiosis, possibly related to cell growth and division and to molecular signaling. PMID:16766673

  12. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects.

    PubMed

    Pandey, Manish K; Roorkiwal, Manish; Singh, Vikas K; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  13. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  14. Weed inhibition by sowing legume species in early succession of abandoned fields on Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hua; Xu, Dang-Hui; Wang, Gang

    2008-01-01

    A major constraint on vegetation succession on abandoned land is dominance by early successional species. Our aim was to inhibit weeds and alter the initial vegetation succession by the introduction of legume species ( Medicago sativa, Melilotus suaveolens, and Astragalus adsurgens) into abandoned fields on the Loess Plateau, China. Results from our study showed that the addition of legume species strongly affected the dominance pattern of the abandoned-field vegetation. The number of naturally colonizing species was inhibited by the introduction of legume species in the first two growing seasons. The strongest effect on weed inhibition appeared by sowing Melilotus suaveolens. Vegetation cover and above-ground biomass increased after introduction of legume species and the number of naturally colonizing plant species showed a positive correlation with above-ground biomass. Later successional species like Stipa breviflora and Astragalus polycladus appeared three years following the introduction of Melilotus suaveolens, indicating that the course of old-field succession may be accelerated by introducing legume species such as Melilotus suaveolens, at least temporarily.

  15. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    PubMed Central

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  16. Cell-specific expression of the promoters of two nonlegume hemoglobin genes in a transgenic legume, Lotus corniculatus.

    PubMed Central

    Andersson, C R; Llewellyn, D J; Peacock, W J; Dennis, E S

    1997-01-01

    The promoters of the hemoglobin genes from the nitrogen-fixing tree Parasponia andersonii and the related nonnitrogen-fixing Trema tomentosa both confer beta-glucuronidase reporter gene expression to the central zone of the nodules of a transgenic legume, Lotus corniculatus. beta-Glucuronidase expression was high in the uninfected interstitial cells and parenchyma of the surrounding boundary layer and was low in the Rhizobium-infected cells. This contrasts with the expression of both the P. andersonii hemoglobin protein in P. andersonii nodules and the endogenous Lotus leghemoglobins that are expressed in the infected cells at very high levels. The expression pattern of the P. andersonii and T. tomentosa hemoglobin promoters in L. corniculatus resembles that of a nonsymbiotic hemoglobin gene from Casuarina glauca, which was introduced into this legume, and suggests that only the nonsymbiotic functions of the P. andersonii promoter are being recognized. Deletion of the distal segments of both the P. andersonii and T. tomentosa promoters identified regions important for the control of their tissue-specific and temporal activity in Lotus. Potential regulatory elements, which enhance nodule expression and suppress nonnodule expression, were also identified and localized to a distal promoter segment. A proximal AAGAG motif is present in the P. andersonii, T. tomentosa, and nonsymbiotic Casuarina hemoglobin genes. Mutation of this motif in the P. andersonii promoter resulted in a significant reduction in both the nodule and root expression levels in L. corniculatus. Some of the regulatory motifs characterized are similar to, but different from, the nodulin motifs of the leghemoglobins. PMID:9008386

  17. In vitro and in vivo effects of phytoestrogens on protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans and other legumes investigated as fishmeal replacements in aquafeeds contain phytoestrogens capable of binding to and activating estrogen receptors. Estradiol has catabolic effects in salmonid white muscle, partially through increases in protein turnover. The current study determines whet...

  18. Molecular evolution of the HD-ZIP I gene family in legume genomes.

    PubMed

    Li, Zhen; Jiang, Haiyang; Zhou, Lingyan; Deng, Lin; Lin, Yongxiang; Peng, Xiaojian; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot-dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement.

  19. Lipopolysaccharide Profiles from Nodules as Markers of Bradyrhizobium Strains Nodulating Wild Legumes

    PubMed Central

    Santamaría, Mónica; Gutiérrez-Navarro, Ángel M.; Corzo, Javier

    1998-01-01

    To develop the use of electrophoretic lipopolysaccharide profiles for Bradyrhizobium strain identification, we studied the feasibility of using electrophoresis of whole legume nodule homogenates to obtain distinctive lipopolysaccharide profiles. The electrophoretic patterns were the same whether we used nodule extracts, bacteroids, or cultured bacteria as samples, and there was no evidence of changes in the ladder-like pattern during the nodulation process. To assess the reliability of using lipopolysaccharide profiling performed with individual nodules for studying the diversity and microdistribution of the rhizobia nodulating wild shrub legumes, we used a population of Adenocarpus foliolosus seedlings. We obtained 75 different profiles from the 147 nodules studied. There was no dominant profile in the sample, and a plant with different nodules generally produced different profiles. Electrophoresis of legume root nodules proved to be a fast and discriminating technique for determining the diversity of a bradyrhizobial population, although it did not allow the genetic relationships among the nodulating strains to be studied. PMID:16349529

  20. Selection for cheating across disparate environments in the legume-rhizobium mutualism.

    PubMed

    Porter, Stephanie S; Simms, Ellen L

    2014-09-01

    The primary dilemma in evolutionarily stable mutualisms is that natural selection for cheating could overwhelm selection for cooperation. Cheating need not entail parasitism; selection favours cheating as a quantitative trait whenever less-cooperative partners are more fit than more-cooperative partners. Mutualisms might be stabilised by mechanisms that direct benefits to more-cooperative individuals, which counter selection for cheating; however, empirical evidence that natural selection favours cheating in mutualisms is sparse. We measured selection on cheating in single-partner pairings of wild legume and rhizobium lineages, which prevented legume choice. Across contrasting environments, selection consistently favoured cheating by rhizobia, but did not favour legumes that provided less benefit to rhizobium partners. This is the first simultaneous measurement of selection on cheating across both host and symbiont lineages from a natural population. We empirically confirm selection for cheating as a source of antagonistic coevolutionary pressure in mutualism and a biological dilemma for models of cooperation.

  1. Influence of frequent and long-term consumption of legume seeds on excretion of intestinal gases.

    PubMed

    O'Donnell, A U; Fleming, S E

    1984-07-01

    The objective of this study was to determine the influence of long-term and frequent consumption of legume seeds on the excretion of fermentation gases. This was done by comparing gas excretion for one group (B) of individuals that habitually consumed legumes to that of another group (NB) of individuals that only infrequently consumed legumes. Gas excretion was measured during one diet period (control) when they consumed their normal diets and during one diet period (bean) when they consumed 100 g (dry weight), daily, of red kidney beans. Twelve men participated in this study on an outpatient basis and received each diet for 23 days. We found that there was neither short-term (no difference throughout the 23 days) nor long-term (NB and B groups were equivalent) adaptation in the quantity of gas that was excreted. However, both groups subjectively expressed greater tolerance and less physical discomfort as the bean-consuming period continued. PMID:6430062

  2. Role of the Testa in Preventing Cellular Rupture During Imbibition of Legume Seeds 1

    PubMed Central

    Duke, Stanley H.; Kakefuda, Genichi

    1981-01-01

    Studies with the seeds of soybean, navy bean, pea, and peanut were made to determine the extent of leakage of intracellular enzymes during imbition. Embryos with intact testae from all four species were found to leak detectable activities of either intracellular enzymes of the cytosol (glucose-6-phosphate dehydrogenase) or enzymes found in both the cytosol and organelles (malate dehydrogenase, glutamate dehydrogenase, glutamate oxaloacetate transaminase, and NADP-isocitrate dehydrogenase) after 6 hours imbition at 25 C. Pea and peanut embryos with testae leaked considerably lower levels of activity for these enzymes than did those of soybean and bean. Leakage of mitochondrial marker enzymes (fumarase, cytochrome c oxidase, and adenylate kinase) was not detected from embryos with testae, suggesting that a differential diffusion of intracellular components out of cells occurred. Soybean and bean embryos without testae leaked high, and proportionally (per cent dry seed basis) similar, levels of all cytosol, cytosol-organelle, and mitochondrial marker enzymes and protein during imbibition, indicating that cell membranes were not differential to leakage and that they had ruptured. Pea and peanut embryos without testae leaked detectable activities of all cytosol and cytosol-organelle enzymes, although fumarase was the only detectable mitochondrial marker enzyme leaked, suggesting that some degree of differential leakage may have occurred in these species. The outermost layers of embryo cells of seeds without testae of all four species absorbed and sequestered the nonpermeating pigment Evan's blue after 5 to 15 minutes imbibition, indicating that membranes had ruptured. This occurred to a much lesser extent in seeds with intact testae. Both soybean and bean embryos without testae were observed to disintegrate during imbibition, whereas those of pea and peanut did not. These data indicate that seeds of certain legumes are susceptible to cellular rupture during imbibition

  3. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    PubMed

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. PMID:27373538

  4. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction.

    PubMed

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  5. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume – Rhizobium Symbiotic Interaction

    PubMed Central

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  6. PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes.

    PubMed

    Bhawna; Bonthala, V S; Gajula, Mnv Prasad

    2016-01-01

    The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely.Database URL: http://www.multiomics.in/PvTFDB/.

  7. A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK.

    PubMed

    Grant, G; More, L J; McKenzie, N H; Stewart, J C; Pusztai, A

    1983-09-01

    Eighty-five samples from fifteen different legume seed lines generally available in the UK were examined by measurements of their net protein utilization by rats and by haemagglutination tests with erythrocytes from a number of different animal species. From these results the seeds were classified into four broad groups. Group a seeds from most varieties of kidney (Phaseolus vulgaris), runner (Phaseolus coccineus) and tepary (Phaseolus acutifolius) beans showed high reactivity with all cell types and were also highly toxic. Group b, which contained seeds from lima or butter beans (Phaseolus lunatus) and winged bean (Psophocarpus tetragonolobus), agglutinated only human and pronase-treated rat erythrocytes. These seeds did not support proper growth of the rats although the animals survived the 10 d experimental period. Group c consisted of seeds from lentils (Lens culinaris), peas (Pisum sativum), chick-peas (Cicer arietinum), blackeyed peas (Vigna sinensis), pigeon peas (Cajanus cajan), mung beans (Phaseolus aureus), field or broad beans (Vicia faba) and aduki beans (Phaseolus angularis). These generally had low reactivity with all cells and were non-toxic. Group d, represented by soya (Glycine max) and pinto (Phaseolus vulgaris) beans, generally had low reactivity with all cells but caused growth depression at certain dietary concentrations. This growth depression was probably mainly due to antinutritional factors other than lectins. Lectins from group a seeds showed many structural and immunological similarities. However the subunit composition of the lectin from the tepary bean samples was different from that of the other bean lectins in this or any other groups. PMID:6615758

  8. PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes

    PubMed Central

    Bhawna; Bonthala, V.S.; Gajula, MNV Prasad

    2016-01-01

    The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely. Database URL: http://www.multiomics.in/PvTFDB/ PMID:27465131

  9. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti.

    PubMed

    Yang, Hung-Chi; Cheng, Jiujun; Finan, Turlough M; Rosen, Barry P; Bhattacharjee, Hiranmoy

    2005-10-01

    We report a novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Although a majority of ars operons consist of three genes, arsR (transcriptional regulator), arsB [As(OH)3/H+ antiporter], and arsC (arsenate reductase), the S. meliloti ars operon includes an aquaglyceroporin (aqpS) in place of arsB. The presence of AqpS in an arsenic resistance operon is interesting, since aquaglyceroporin channels have previously been shown to adventitiously facilitate uptake of arsenite into cells, rendering them sensitive to arsenite. To understand the role of aqpS in arsenic resistance, S. meliloti aqpS and arsC were disrupted individually. Disruption of aqpS resulted in increased tolerance to arsenite but not arsenate, while cells with an arsC disruption showed selective sensitivity to arsenate. The results of transport experiments in intact cells suggest that AqpS is the only protein of the S. meliloti ars operon that facilitates transport of arsenite. Coexpression of S. meliloti aqpS and arsC in a strain of E. coli lacking the ars operon complemented arsenate but not arsenite sensitivity. These results imply that, when S. meliloti is exposed to environmental arsenate, arsenate enters the cell through phosphate transport systems and is reduced to arsenite by ArsC. Internally generated arsenite flows out of the cell by downhill movement through AqpS. Thus, AqpS confers arsenate resistance together with ArsC-catalyzed reduction. This is the first report of an aquaglyceroporin with a physiological function in arsenic resistance.

  10. The Metabolic Role of the Legume Endosperm: A Noninvasive Imaging Study1[W][OA

    PubMed Central

    Melkus, Gerd; Rolletschek, Hardy; Radchuk, Ruslana; Fuchs, Johannes; Rutten, Twan; Wobus, Ulrich; Altmann, Thomas; Jakob, Peter; Borisjuk, Ljudmilla

    2009-01-01

    Although essential for normal seed development in the legumes, the metabolic role of the endosperm remains uncertain. We designed noninvasive nuclear magnetic resonance tools for the in vivo study of key metabolites in the transient liquid endosperm of intact pea (Pisum sativum) seeds. The steady-state levels of sucrose, glutamine, and alanine could be monitored and their distribution within the embryo sac visualized. Seed structure was digitalized as a three-dimensional model, providing volume information for distinct seed organs. The nuclear magnetic resonance method, combined with laser microdissection, isotope labeling, in situ hybridization, and electron microscopy, was used to contrast the wild-type endosperm with that of a mutant in which embryo growth is retarded. Expression of sequences encoding amino acid and sucrose transporters was up-regulated earlier in the endosperm than in the embryo, and this activity led to the accumulation of soluble metabolites in the endosperm vacuole. The endosperm provides a temporary source of nutrition, permits space for embryo growth, and acts as a buffer between the maternal organism and its offspring. The concentration of sucrose in the endosperm vacuole is developmentally controlled, while the total amount accumulated depends on the growth of the embryo. The endosperm concentration of glutamine is a limiting factor for protein storage. The properties of the endosperm ensure that the young embryo develops within a homeostatic environment, necessary to sustain embryogenesis. We argue for a degree of metabolite-mediated control exerted by the endosperm on the growth of, and assimilate storage by, the embryo. PMID:19748915

  11. Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.

    PubMed

    Tovar-Méndez, Alejandro; Matamoros, Manuel A; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel

    2011-07-01

    Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.

  12. PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes.

    PubMed

    Bhawna; Bonthala, V S; Gajula, Mnv Prasad

    2016-01-01

    The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely.Database URL: http://www.multiomics.in/PvTFDB/. PMID:27465131

  13. Piloting a Cooperative Extension Service Nutrition Education Program on First-Grade Children's Willingness to Try Foods Containing Legumes

    ERIC Educational Resources Information Center

    Edwards, Cassandra S.; Hermann, Janice R.

    2011-01-01

    Many nutrition education campaigns targeting children in the United States focus on increasing fruit and vegetable consumption, but most don't specifically promote legumes. The project described here sought to pilot the effect of an Extension nutrition education program on first grade children's willingness to try foods containing legumes. A…

  14. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs’ feeding behavior and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was hypothesized that a tannin-rich legume like sainfoin reduces the negative post-ingestive effects of ergot alkaloids in tall fescue. Thirty-two 4-month-old lambs were individually penned and randomly assigned to a 2X2 factorial arrangement with two legume species (1-sainfoin [SAN; ' 3% condens...

  15. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs’ feeding behavior and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was hypothesized that a tannin-rich legume like sainfoin reduces the negative postingestive effects of ergot alkaloids in tall fescue. Thirty-two 3-month-old lambs were individually penned and randomly assigned to a 2X2 factorial experimental design with two legume species (1-sainfoin [SF; tannin...

  16. Legumes mitigate ecological consequences of a topographic gradient in a northern Mongolian steppe.

    PubMed

    Casper, Brenda B; Goldman, Robert; Lkhagva, Ariuntsetseg; Helliker, Brent R; Plante, Alain F; Spence, Laura A; Liancourt, Pierre; Boldgiv, Bazartseren; Petraitis, Peter S

    2012-05-01

    Topography should create spatial variation in water and nutrients and play an especially important role in the ecology of water-limited systems. We use stable isotopes to discern how plants respond both to ecological gradients associated with elevation and to neighboring legumes on a south-facing slope in the semi-arid, historically grazed steppe of northern Mongolia. Out of three target species, Potentilla acaulis, Potentilla sericea, and Festuca lenensis, when >30 cm from a legume, all showed a decrease in leaf δ(15)N with increasing elevation. This, together with measures of soil δ(15)N, suggests greater N processing at the moister, more productive, lower elevation, and more N fixation at the upper elevation, where cover of legumes and lichens and plant-available nitrate were greater. Total soil N was greater at the lower elevation, but not lichen biomass or root colonization by AMF. Leaf δ(13)C values for P. acaulis and F. lenensis are consistent with increasing water stress with elevation; δ(13)C values indicated the greatest intrinsic water use efficiency for P. sericea, which is more abundant at the upper elevation. Nearby legumes (<10 cm) moderate the effect of elevation on leaf δ(15)N, confirming legumes' meaningful input of N, and affect leaf δ(13)C for two species, suggesting an influence on the efficiency of carbon fixation. Variation in leaf %N and %C as a function of elevation and proximity to a legume differs among species. Apparently, most N input is at upper elevations, pointing to the possible importance of grazers, in addition to hydrological processes, as transporters of N throughout this landscape.

  17. Legumes mitigate ecological consequences of a topographic gradient in a northern Mongolian steppe.

    PubMed

    Casper, Brenda B; Goldman, Robert; Lkhagva, Ariuntsetseg; Helliker, Brent R; Plante, Alain F; Spence, Laura A; Liancourt, Pierre; Boldgiv, Bazartseren; Petraitis, Peter S

    2012-05-01

    Topography should create spatial variation in water and nutrients and play an especially important role in the ecology of water-limited systems. We use stable isotopes to discern how plants respond both to ecological gradients associated with elevation and to neighboring legumes on a south-facing slope in the semi-arid, historically grazed steppe of northern Mongolia. Out of three target species, Potentilla acaulis, Potentilla sericea, and Festuca lenensis, when >30 cm from a legume, all showed a decrease in leaf δ(15)N with increasing elevation. This, together with measures of soil δ(15)N, suggests greater N processing at the moister, more productive, lower elevation, and more N fixation at the upper elevation, where cover of legumes and lichens and plant-available nitrate were greater. Total soil N was greater at the lower elevation, but not lichen biomass or root colonization by AMF. Leaf δ(13)C values for P. acaulis and F. lenensis are consistent with increasing water stress with elevation; δ(13)C values indicated the greatest intrinsic water use efficiency for P. sericea, which is more abundant at the upper elevation. Nearby legumes (<10 cm) moderate the effect of elevation on leaf δ(15)N, confirming legumes' meaningful input of N, and affect leaf δ(13)C for two species, suggesting an influence on the efficiency of carbon fixation. Variation in leaf %N and %C as a function of elevation and proximity to a legume differs among species. Apparently, most N input is at upper elevations, pointing to the possible importance of grazers, in addition to hydrological processes, as transporters of N throughout this landscape. PMID:22108852

  18. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

    PubMed

    Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.

  19. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies

    PubMed Central

    Castro-Guerrero, Norma A.; Isidra-Arellano, Mariel C.; Mendoza-Cozatl, David G.; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals. PMID:27200068

  20. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies.

    PubMed

    Castro-Guerrero, Norma A; Isidra-Arellano, Mariel C; Mendoza-Cozatl, David G; Valdés-López, Oswaldo

    2016-01-01

    Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals. PMID:27200068

  1. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  2. Influence of thermal processing on IgE reactivity to lentil and chickpea proteins.

    PubMed

    Cuadrado, Carmen; Cabanillas, Beatriz; Pedrosa, Mercedes M; Varela, Alejandro; Guillamón, Eva; Muzquiz, Mercedes; Crespo, Jesús F; Rodriguez, Julia; Burbano, Carmen

    2009-11-01

    In the last years, legume proteins are gaining importance as food ingredients because of their nutraceutical properties. However, legumes are also considered relevant in the development of food allergies through ingestion. Peanuts and soybeans are important food allergens in Western countries, while lentil and chickpea allergy are more relevant in the Mediterranean area. Information about the effects of thermal-processing procedures at various temperatures and conditions is scarce; therefore, the effect of these procedures on legume allergenic properties is not defined so far. The SDS-PAGE and IgE-immunoblotting patterns of chickpeas and lentils were analyzed before and after boiling (up to 60 min) and autoclaving (1.2 and 2.6 atm, up to 30 min). The results indicated that some of these treatments reduce IgE binding to lentil and chickpea, the most important being harsh autoclaving. However, several extremely resistant immunoreactive proteins still remained in these legumes even after this extreme treatment.

  3. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  4. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  5. Characterization of the nutritive value of tropical legume grains as alternative ingredients for small-scale pork producers using in vitro enzymatic hydrolysis and fermentation.

    PubMed

    Torres, J; Muñoz, L S; Peters, M; Montoya, C A

    2013-12-01

    In the tropic, the small-scale pork production is negatively influenced by the low availability of high protein ingredients. The study aimed to compare the protein and starch hydrolysis as well as fibre fermentation of five tropical legume grains (Canavalia brasiliensis, CB; Lablab purpureus, LP; Vigna unguiculata, white WVU; pink PVU and red RVU) and a control (extruded full-fat soybean (SB)), using an in vitro model that simulated digestion in the gastrointestinal tract of pigs. A sequential in vitro hydrolysis was carried out with pepsin (120 min) and pancreatin (240 min) to determine the degree of hydrolysis (DH) of protein and starch. The indigestible residue was fermented in vitro with pig faecal inoculum to compare the modelled kinetics of gas production over 72 h and the production of short-chain fatty acids (SCFA). After 360 min of pepsin-pancreatin hydrolysis, SB and WVU had the highest protein hydrolysis (76% and 66%) and PVU and WVU the highest starch hydrolysis (70% and 64%) (p < 0.01). The in vitro fermentation of the indigestible residue of WVU resulted in the highest (482 ml/g DM; p < 0.001) and CB the lowest (335 ml/g DM) gas production. These data were consistent with the SCFA production. Butyrate, propionate and total SCFA were higher (or tended) for RVU and WVU when compared with CB and SB (p = 0.015-0.085). In conclusion, the high DH of protein and starch as well as the high gas and SCFA production obtained with raw WVU makes it an interesting alternative to SB as a feedstuff for swine nutrition in the tropic. Other legume grains (LP and CB) cannot be used by pigs in their raw form. PMID:23121506

  6. Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes.

    PubMed

    Sanchez-Contreras, Maria; Bauer, Wolfgang D; Gao, Mengsheng; Robinson, Jayne B; Allan Downie, J

    2007-07-29

    Legume-nodulating bacteria (rhizobia) usually produce N-acyl homoserine lactones, which regulate the induction of gene expression in a quorum-sensing (or population-density)-dependent manner. There is significant diversity in the types of quorum-sensing regulatory systems that are present in different rhizobia and no two independent isolates worked on in detail have the same complement of quorum-sensing genes. The genes regulated by quorum sensing appear to be rather diverse and many are associated with adaptive aspects of physiology that are probably important in the rhizosphere. It is evident that some aspects of rhizobial physiology related to the interaction between rhizobia and legumes are influenced by quorum sensing. However, it also appears that the legumes play an active role, both in terms of interfering with the rhizobial quorum-sensing systems and responding to the signalling molecules made by the bacteria. In this article, we review the diversity of quorum-sensing regulation in rhizobia and the potential role of legumes in influencing and responding to this signalling system.

  7. Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maruca vitrata Fabricius is a pantropical lepidopteran pest of legumes. Phylogenetic analysis of a mitochondrial cytochrome c oxidase-I gene (coxI) fragment indicates that three Maruca sp. mitochondrial lineages have unique geographic distributions [lineages 1 and 2: Australia, Taiwan, and West Afr...

  8. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of nano-ZnO (nZnO) on Rhizobium-legume symbiosis was studied with garden pea and its compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure of peas to nZnO had no impact on germination, but significantly affected root length. Chronic exposure of plant to nZnO impac...

  9. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium - legume mutualism.

    PubMed

    Van Cauwenberghe, Jannick; Lemaire, Benny; Stefan, Andrei; Efrose, Rodica; Michiels, Jan; Honnay, Olivier

    2016-07-01

    It is known that the genetic diversity of conspecific rhizobia present in root nodules differs greatly among populations of a legume species, which has led to the suggestion that both dispersal limitation and the local environment affect rhizobial genotypic composition. However, it remains unclear whether rhizobial genotypes residing in root nodules are representative of the entire population of compatible symbiotic rhizobia. Since symbiotic preferences differ among legume populations, the genetic composition of rhizobia found within nodules may reflect the preferences of the local hosts, rather than the full diversity of potential nodulating rhizobia present in the soil. Here, we assessed whether Vicia cracca legume hosts of different provenances select different Rhizobium leguminosarum genotypes than sympatric V. cracca hosts, when presented a natural soil rhizobial population. Through combining V. cracca plants and rhizobia from adjacent and more distant populations, we found that V. cracca hosts are relatively randomly associated with rhizobial genotypes. This indicates that pre-infection partner choice is relatively weak in certain legume hosts when faced with a natural population of rhizobia. PMID:27269381

  10. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

  11. Assessment of anthocyanin and agronomic trait variation in some commonly used medicinal legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several legumes including Canavalia ensiformis, Desmodium adscendens, Indigofera suffruticosa, Senna covesii, and S. occidentalis are currently used as medicinal plants. These species contain anthocyanins as well with potential to be used in the pharmaceutical markets. The USDA, ARS, Plant Genetic R...

  12. Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma sp...

  13. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    ERIC Educational Resources Information Center

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  14. Earthworms and legumes control litter decomposition in a plant diversity gradient.

    PubMed

    Milcu, Alexandru; Partsch, Stephan; Scherber, Christoph; Weisser, Wolfgang W; Scheu, Stefan

    2008-07-01

    The role of species and functional group diversity of primary producers for decomposers and decomposition processes is little understood. We made use of the "Jena Biodiversity Experiment" and tested the hypothesis that increasing plant species (1, 4, and 16 species) and functional group diversity (1, 2, 3, and 4 groups) beneficially affects decomposer density and activity and therefore the decomposition of plant litter material. Furthermore, by manipulating the densities of decomposers (earthworms and springtails) within the plant diversity gradient we investigated how the interactions between plant diversity and decomposer densities affect the decomposition of litter belonging to different plant functional groups (grasses, herbs, and legumes). Positive effects of increasing plant species or functional group diversity on earthworms (biomass and density) and microbial biomass were mainly due to the increased incidence of legumes with increasing diversity. Neither plant species diversity nor functional group diversity affected litter decomposition, However, litter decomposition varied with decomposer and plant functional group identity (of both living plants and plant litter). While springtail removal generally had little effect on decomposition, increased earthworm density accelerated the decomposition of nitrogen-rich legume litter, and this was more pronounced at higher plant diversity. The results suggest that earthworms (Lumbricus terrestris L.) and legumes function as keystone organisms for grassland decomposition processes and presumably contribute to the recorded increase in primary productivity with increasing plant diversity. PMID:18705374

  15. Enhancing Legume Ecosystem Services through an Understanding of Plant-Pollinator Interplay.

    PubMed

    Suso, María J; Bebeli, Penelope J; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A A; Torricelli, Renzo; Veloso, Maria M

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the "pest control service" and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System.

  16. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  17. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation

    PubMed Central

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant’s response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  18. Legume Cover Crops are More Beneficial than Natual Fallows in MInimally Tilled Ugandan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is important to establish the various eff ects of legume cover crops on soil physicochemical properties because they have been considered for use as improved fallows (with shorter rest periods) to enhance development and maintenance of soil productivity. Our objectives were to assess: (i) abovegr...

  19. North American Legumes for Rangeland Restoration, Conservation, and Forage Production in the Western U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land managers do not have many alternatives to choose from when seeding North American legume species on rangelands of the western U.S. As part of an initiative to address that need, research was conducted with basalt milkvetch (Astragalus filipes), western prairie clover (Dalea ornata), and Searls...

  20. Grain legume impacts on soil biological processes in Sub-Saharan Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain legumes occupy about 20 million hectares in Africa. The major crops are cowpea (Vigna unguiculata), which is grown on about 11 million hectares mostly in west Africa, and common bean (Phaseolus vulgaris), grown on about 5 million hectares mostly in eastern and southern Africa. These grain le...

  1. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay

    PubMed Central

    Suso, María J.; Bebeli, Penelope J.; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A. A.; Torricelli, Renzo; Veloso, Maria M.

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant–pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System. PMID:27047514

  2. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  3. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  4. Photosynthesis in tropical cover crop legumes influenced by irradiance, external carbon dioxide concentration and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plantation crops perennial tropical legumes are grown as understory plants, receive limited irradiance, and are subjected to elevated levels of CO2 and temperature. Independent short-term effects of photosynthetic photon flux density (PPFD), external carbon dioxide concentration [CO2] and temper...

  5. Crimped Cover Crop Legume Residue Effects on Sweet Corn (Zea mays L.) Yield in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crimped legume residue can control weeds and supply N for sweet corn production if biomass is sufficient. Three sweet corn (Zea mays L.) open pollinated variety “Suresweet 2011” plantings (April, 2013; July 2013; February 2014) were conducted on an Oxisol (very fine, kaolinitic, isohyperthermic and...

  6. Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity

    PubMed Central

    Kumar, J. Komal; Devi Prasad, A. G.; Chaturvedi, Vinita

    2014-01-01

    Background: Tuberculosis is a leading cause of death in the world. A new alternative for the treatment of tuberculosis is urgently required, due to the emergence of multidrug resistant Mycobacterium tuberculosis. Aim: There is currently considerable interest in developing potential drugs from medicinal plants for treating tuberculosis. To evaluate anti-tubercular activity in the leaves of Kingiodendron pinnatum Rox. Hams., Humboldtia brunonis Wall., Indigofera cassioides Rottl.ex DC., Derris scandens Benth. and Ceasalpinia mimosoides Lamk. Materials and Methods: Non-polar and polar solvent extracts of leaves of these medicinal legumes were tested against M. tuberculosis H37RV and minimum inhibitory concentrations (MICs) were determined by the agar based proportion assay. Results: Phytochemical screening for secondary metabolites revealed the presence of saponins, steroids, anthro-quinones, terpinods, flavonoids and phlabotanins. Crude leaf extracts of these plants have shown MIC value of 50 μg/ml as against the standard drug Isoniazid value of 0.025 μg/ml. Conclusion: Results showed that crude extracts of legume leaves screened exhibited potential anti-tubercular activity against M. tuberculosis and further work is required to identify the active molecule of these legumes, to get a novel anti-tubercular drug. This is the maiden finding on anti-tubercular activity of these medicinal legumes. PMID:25364208

  7. Inoculation of Woody Legumes with Selected Arbuscular Mycorrhizal Fungi and Rhizobia To Recover Desertified Mediterranean Ecosystems

    PubMed Central

    Herrera, M. A.; Salamanca, C. P.; Barea, J. M.

    1993-01-01

    Revegetation strategies, either for reclamation or for rehabilitation, are being used to recover desertified ecosystems. Woody legumes are recognized as species that are useful for revegetation of water-deficient, low-nutrient environments because of their ability to form symbiotic associations with rhizobial bacteria and mycorrhizal fungi, which improve nutrient acquisition and help plants to become established and cope with stress situations. A range of woody legumes used in revegetation programs, particularly in Mediterranean regions, were assayed. These legumes included both exotic and native species and were used in a test of a desertified semiarid ecosystem in southeast Spain. Screening for the appropriate plant species-microsymbiont combinations was performed previously, and a simple procedure to produce plantlets with optimized mycorrhizal and nodulated status was developed. The results of a 4-year trial showed that (i) only the native shrub legumes were able to become established under the local environmental conditions (hence, a reclamation strategy is recommended) and (ii) biotechnological manipulation of the seedlings to be used for revegetation (by inoculation with selected rhizobia and mycorrhizal fungi) improved outplanting performance, plant survival, and biomass development. PMID:16348838

  8. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-05-18

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis.

  9. Forage Production on Dry Rangelands of Binary Grass-Legume Mixtures at Four Plant Densities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage production on Western US rangelands can be increased with the right combination of plants. Our objective was to demonstrate the relative forage production advantage of including a legume on dry rangelands. A falcata and rhizomatous alfalfa (medicago sativa L.), alti wildrye [Leymus andustus...

  10. 7 CFR 201.56-6 - Legume or pea family, Fabaceae (Leguminosae).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Legume or pea family, Fabaceae (Leguminosae). 201.56-6 Section 201.56-6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  11. Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking.

    PubMed

    Shalaby, A R

    2000-02-01

    Ungerminated legume seeds (broad bean, chick pea and lupine) were contained all tested biogenic amines. Tryptamine (TRY) was the main biogenic amine detected, and its concentration considerably increased during the germination. beta-Phenylethylamine (PHE) was detected in small amounts and its concentration slowly increased during germination. The concentration of tyramine (TYR) showed a fluctuation pattern of changes during germination in all tested legumes. The concentrations of cadaverine (CAD) and putrescine (PUT) increased during the germination period in all tested grains. However, histamine (HIS) showed a fluctuated pattern of changes in both broad bean and lupine, and a gradual increase in chick pea. Spermidine (SPD) and spermine (SPM) contents of broad bean and chick pea showed a fluctuation pattern of change, while, a decrement trend of change was recorded for lupine along the germination period. By cooking, legume samples became free of biogenic amines which appeared in the boiling water. Heat treatment seems to have little effect on the concentration of biogenic amines in legume sprouts. The amounts of biogenic amines detected in the boiling water are less than the initial amounts of the sprouts (expected amounts).

  12. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  13. Tree legumes as feedstock for sustainable biofuel production: Opportunities and challenges.

    PubMed

    Biswas, Bandana; Scott, Paul T; Gresshoff, Peter M

    2011-11-01

    Concerns about future fossil fuel supplies and the environmental effects of their consumption have prompted the search for alternative sources of liquid fuels, specifically biofuels. However, it is important that the sources of such biofuel have minimal impact on global food supplies, land use, and commodity prices. Many legume trees can be grown on so-called marginal land with beneficial effects to the environment through their symbiotic interaction with "Rhizobia" and the associated process of root nodule development and biological nitrogen fixation. Once established legume trees can live for many years and some produce an annual yield of oil-rich seeds. For example, the tropical and sub-tropical legume tree Pongamia pinnata produces large seeds (∼1.5-2g) that contain about 40% oil, the quality and composition of which is regarded as highly desirable for sustainable biofuel production. Here we consider the benefits of legume trees as future energy crops, particularly in relation to their impact on nitrogen inputs and the net energy balance for biofuel production, and also ways in which these as yet fully domesticated species may be further improved for optimal use as biofuel feedstock. PMID:21715045

  14. Multiple polyploidy events in the early radiation of nodulating and non-nodulating legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD af...

  15. From the lab bench: Mixtures of grasses and legumes; a good or bad thing?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written to discuss the advantages of complex mixtures of grasses and legumes. Historically, Kentucky pastures have been primarily composed of toxic endophyte-infected tall fescue, but Kentucky bluegrass and other grasses are presently encroaching tall fescue pastures. These other gras...

  16. From the lab bench: Mixtures of grasses and legumes for extending the grazing season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written to discuss how clovers and warm-season legumes, such as alfalfa and birdsfoot trefoil, in mixture with grasses can enhance the overall nutritive value of the overall forage, increase dry matter yield, and contribute nitrogen to the soil via the nitrogen fixing Rhizobia bacteria ...

  17. Effects of lasalocid or monensin on legume or grain (feedlot) bloat.

    PubMed

    Bartley, E E; Nagaraja, T G; Pressman, E S; Dayton, A D; Katz, M P; Fina, L R

    1983-06-01

    Doses of .66 to .99 mg monensin/kg body weight reduced legume bloat in cattle about 66% when compared with pretreatment bloat scores. Similar doses of lasalocid reduced legume bloat about 26%. A dose of 44 mg poloxalene/kg body weight (recommended dose for field use) reduced legume bloat 100%. Monensin or lasalocid combined with 25 or 50% of the recommended dose of poloxalene reduced bloat under that of the antibiotics alone, but did not achieve 100% reduction. The antibiotic thiopeptin provided no preventive effect on legume bloat. Lasalocid, monensin or an experimental polyether antibiotic (X-14,547 A) at a dose of 1.32 mg/kg body weight when tested on cattle bloated on high grain diets reduced bloat by 92, 64 and 25%, respectively. Lasalocid at .66 mg/kg effectively prevented bloat from developing when given to animals before the feeding of high grain diets; however, a 1.32-mg dose was required to control bloat in cattle that were already bloating before they were given lasalocid. A dose of 1.32 mg salinomycin was ineffective in controlling grain bloat. PMID:6874619

  18. Temperature and Moisture Dependent Dielectric Properties of Legume Flours Associated with Dielectric Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric property data are important in developing thermal treatments using radio frequency (RF) and microwave (MW) energy and essential to estimate the heating uniformity in electromagnetic fields. Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean)...

  19. Importance of grass-legume choices on cattle grazing behavior, performance, and meat characteristics.

    PubMed

    Maughan, B; Provenza, F D; Tansawat, R; Maughan, C; Martini, S; Ward, R; Clemensen, A; Song, X; Cornforth, D; Villalba, J J

    2014-05-01

    We determined if tall fescue in a mixture with either tannin-containing sainfoin or saponin-containing alfalfa affected cattle foraging behavior, performance, meat quality, and consumer acceptance of meat. Foraging behavior, BW, and pasture biomass before and after grazing were monitored when cattle strip-grazed 3 replications of 2 treatments from May through September 2010 (12 calves/replication) and from June through September 2012 (8 calves/replication). Animals were allowed a choice between tall fescue and sainfoin (SAN) or tall fescue and alfalfa (ALF) growing in strips (fescue, legume, and fescue-legume mixture). Incidence of use (scan samples) of legumes increased from the beginning to the end of the trials (P < 0.05), suggesting that cattle learned to mix legumes with tall fescue. Scan samples and assessments of pasture biomass removal revealed greater use of sainfoin than alfalfa when both legumes were abundant in the spring (P < 0.05); that pattern reversed toward the end of the growing season (P < 0.05) as the abundance of sainfoin declined more than that of alfalfa. Intake of forage per kilogram of gain was greater for SAN than for ALF in 2010 (P = 0.0003) and showed a tendency to be greater for SAN than ALF in 2012 (P = 0.19). There were no differences in ADG between SAN and ALF in either year (1 kg/d; P > 0.05). No incidences of bloat were detected. When cattle (3 calves/treatment in 2010 and 8 calves/treatment in 2012) were slaughtered in September to assess meat quality and consumer acceptance, carcasses were lean (4% to 6% fat content of the longissimus muscle), but compared with ALF, SAN had higher marbling scores, quality grades (Select versus Standard), and back fat thicknesses (P < 0.05) in 2012. Steaks from cattle finished on SAN were redder in color than steaks from cattle finished on ALF (P < 0.05; 2012). Meat samples from SAN and ALF showed some differences in unsaturated fatty acid profiles and volatiles concentrations (P < 0.05), but

  20. Protein and vegetarian diets.

    PubMed

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  1. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes.

    PubMed

    Cannon, Steven B; McKain, Michael R; Harkess, Alex; Nelson, Matthew N; Dash, Sudhansu; Deyholos, Michael K; Peng, Yanhui; Joyce, Blake; Stewart, Charles N; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J; Leebens-Mack, Jim

    2015-01-01

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses. PMID:25349287

  2. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes.

    PubMed

    Cannon, Steven B; McKain, Michael R; Harkess, Alex; Nelson, Matthew N; Dash, Sudhansu; Deyholos, Michael K; Peng, Yanhui; Joyce, Blake; Stewart, Charles N; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J; Leebens-Mack, Jim

    2015-01-01

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses.

  3. Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration1[OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Martínez, Carlos; Correa, Edwin; Aranda, Jorge; Garcia, Milton; Jaramillo, Carlos; Turner, Benjamin L.

    2011-01-01

    We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (WP) to elevated CO2 concentration ([CO2]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO2 partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO2]. The mean ratio of final plant dry mass at elevated to ambient [CO2] (ME/MA) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in ME/MA among legume species (0.92–2.35), whereas nonlegumes varied much less (1.21–1.29). Variation among legume species in ME/MA was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. WP increased markedly in response to elevated [CO2] in all species. The ratio of intercellular to ambient CO2 partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO2], as did carbon isotope discrimination, suggesting that WP should increase proportionally for a given increase in atmospheric [CO2]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO2] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO2]. PMID:21788363

  4. Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes

    PubMed Central

    Cannon, Steven B.; McKain, Michael R.; Harkess, Alex; Nelson, Matthew N.; Dash, Sudhansu; Deyholos, Michael K.; Peng, Yanhui; Joyce, Blake; Stewart, Charles N.; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J.; Leebens-Mack, Jim

    2015-01-01

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae–Cassiinae–Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses. PMID:25349287

  5. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms

    PubMed Central

    Liu, Shujun; Sun, Yonghua; Du, Xiaoqiu; Xu, Qijiang; Wu, Feng; Meng, Zheng

    2013-01-01

    Background and Aims According to the floral ABC model, B-function genes appear to play a key role in the origin and diversification of the perianth during the evolution of angiosperms. The basal angiosperm Hedyosmum orientale (Chloranthaceae) has unisexual inflorescences associated with a seemingly primitive reproductive morphology and a reduced perianth structure in female flowers. The aim of this study was to investigate the nature of the perianth and the evolutionary state of the B-function programme in this species. Methods A series of experiments were conducted to characterize B-gene homologues isolated from H. orientale, including scanning electron microscopy to observe the development of floral organs, phylogenetic analysis to reconstruct gene evolutionary history, reverse transcription–PCR, quantitative real-time PCR and in situ hybridization to identify gene expression patterns, the yeast two-hybrid assay to explore protein dimerization affinities, and transgenic analyses in Arabidopsis thaliana to determine activities of the encoded proteins. Key Results The expression of HoAP3 genes was restricted to stamens, whereas HoPI genes were broadly expressed in all floral organs. HoAP3 was able to partially restore the stamen but not petal identity in Arabidopsis ap3-3 mutants. In contrast, HoPI could rescue aspects of both stamen and petal development in Arabidopsis pi-1 mutants. When the complete C-terminal sequence of HoPI was deleted, however, no or weak transgenic phenotypes were observed and homodimerization capability was completely abolished. Conclusions The results suggest that Hedyosmum AP3-like genes have an ancestral function in specifying male reproductive organs, and that the activity of the encoded PI-like proteins is highly conserved between Hedyosmum and Arabidopsis. Moreover, there is evidence that the C-terminal region is important for the function of HoPI. Our findings indicate that the development of the proposed perianth in Hedyosmum does

  6. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae).

    PubMed

    Bellieny-Rabelo, Daniel; Oliveira, Antônia Elenir Amâncio; Venancio, Thiago Motta

    2013-01-01

    F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).

  7. Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    PubMed Central

    Porter, Stephanie S.; Stanton, Maureen L.; Rice, Kevin J.

    2011-01-01

    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion. PMID:22174755

  8. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence

    PubMed Central

    2011-01-01

    Background SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. Results To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max) genome. Conclusions A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the previously described MtSERK1) in

  9. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains.

    PubMed

    Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K; Verdier, Jerome

    2016-01-01

    Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017

  10. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    PubMed Central

    Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome

    2016-01-01

    Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017

  11. Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.

    PubMed

    Crespo-Rivas, Juan C; Guefrachi, Ibtissem; Mok, Kenny C; Villaécija-Aguilar, José A; Acosta-Jurado, Sebastián; Pierre, Olivier; Ruiz-Sainz, José E; Taga, Michiko E; Mergaert, Peter; Vinardell, José M

    2016-09-01

    In rhizobial species that nodulate inverted repeat-lacking clade (IRLC) legumes, such as the interaction between Sinorhizobium meliloti and Medicago, bacteroid differentiation is driven by an endoreduplication event that is induced by host nodule-specific cysteine rich (NCR) antimicrobial peptides and requires the participation of the bacterial protein BacA. We have studied bacteroid differentiation of Sinorhizobium fredii HH103 in three host plants: Glycine max, Cajanus cajan and the IRLC legume Glycyrrhiza uralensis. Flow cytometry, microscopy analyses and viability studies of bacteroids as well as confocal microscopy studies carried out in nodules showed that S. fredii HH103 bacteroids, regardless of the host plant, had deoxyribonucleic acid (DNA) contents, cellular sizes and survival rates similar to those of free-living bacteria. Contrary to S. meliloti, S. fredii HH103 showed little or no sensitivity to Medicago NCR247 and NCR335 peptides. Inactivation of S. fredii HH103 bacA neither affected symbiosis with Glycyrrhiza nor increased bacterial sensitivity to Medicago NCRs. Finally, HH103 bacteroids isolated from Glycyrrhiza, but not those isolated from Cajanus or Glycine, showed an altered lipopolysaccharide. Our studies indicate that, in contrast to the S. meliloti-Medicago model symbiosis, bacteroids in the S. fredii HH103-Glycyrrhiza symbiosis do not undergo NCR-induced and bacA-dependent terminal differentiation. PMID:26521863

  12. The C-Terminal Sequence and PI motif of the Orchid (Oncidium Gower Ramsey) PISTILLATA (PI) Ortholog Determine its Ability to Bind AP3 Orthologs and Enter the Nucleus to Regulate Downstream Genes Controlling Petal and Stamen Formation.

    PubMed

    Mao, Wan-Ting; Hsu, Hsing-Fun; Hsu, Wei-Han; Li, Jen-Ying; Lee, Yung-I; Yang, Chang-Hsien

    2015-11-01

    This study focused on the investigation of the effects of the PI motif and C-terminus of the Oncidium Gower Ramsey MADS box gene 8 (OMADS8), a PISTILLATA (PI) ortholog, on floral organ formation. 35S::OMADS8 completely rescued and 35S::OMADS8-PI (with the PI motif deleted) partially rescued petal/stamen formation, whereas these deficiencies were not rescued by 35S::OMADS8-C (C-terminal 29 amino acids deleted) in pi-1 mutants. OMADS8 could interact with Arabidopsis APETALA3 (AP3) and enter the nucleus. The nuclear entry efficiency was reduced for OMADS8-PI/AP3 and OMADS8-C/AP3. OMADS8 could also interact with OMADS5/OMADS9 (the Oncidium AP3 ortholog) and enter the nucleus with an efficiency only slightly affected by the deletion of the C-terminal sequence or PI motif. However, the stability of the OMADS8/OMADS5 and OMADS8/OMADS9 complexes was significantly reduced by deletion of the C-terminal sequence or PI motif. Further analysis indicated that the expression of genes downstream of AP3/PI (BNQ1/BNQ2/GNC/At4g30270) was compensated by 35S::OMADS8 and 35S::OMADS8-PI to a level similar to wild-type plants but was not affected by 35S::OMADS8-C in the pi-1 mutants. A similar FRET (fluorescence resonance energy transfer) efficiency was observed for Arabidopsis AGAMOUS (AG) and the Oncidium AG ortholog OMADS4 for OMADS8, OMADS8-PI and OMADS8-C. These results indicated that the OMADS8 PI motif and C-terminus were valuable for the interaction of OMADS8 with the AP3 orthologs to form higher order heterotetrameric complexes that regulated petal/stamen formation in both Oncidium orchids and transgenic Arabidopsis. However, the C-terminal sequence and PI motif were dispensable for the interaction of OMADS8 with the AG orthologs.

  13. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  14. Biosynthesis of hydroxycinnamoyl esters and amides in legume species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In forage crops, protein that is degraded following harvest is poorly utilized by ruminant animals, resulting in both economic and environmental consequences. In red clover, secondary reactions of quinones resulting from polyphenol oxidase (PPO)-mediated oxidation of the caffeic acid derivatives pha...

  15. Whole grains, legumes, and the subsequent meal effect: implications for blood glucose control and the role of fermentation.

    PubMed

    Higgins, Janine A

    2012-01-01

    Whole grains and legumes are known to reduce postprandial glycemia and, in some instances, insulinemia. However, the subsequent meal effect of ingesting whole grains and legumes is less well known. That is, inclusion of whole grains or legumes at breakfast decreases postprandial glycemia at lunch and/or dinner on the same day whereas consumption of a whole grain or lentil dinner reduces glycemia at breakfast the following morning. This effect is lost upon milling, processing, and cooking at high temperatures. The subsequent meal effect has important implications for the control of day-long blood glucose, and may be partly responsible for the reduction in diabetes incidence associated with increased whole grain and legume intake. This paper describes the subsequent meal effect and explores the role of acute glycemia, presence of resistant starch, and fermentation of indigestible carbohydrate as the mechanisms responsible for this effect. PMID:22132324

  16. Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae).

    PubMed

    Margam, Venu M; Coates, Brad S; Bayles, Darrell O; Hellmich, Richard L; Agunbiade, Tolulope; Seufferheld, Manfredo J; Sun, Weilin; Kroemer, Jeremy A; Ba, Malick N; Binso-Dabire, Clementine L; Baoua, Ibrahim; Ishiyaku, Mohammad F; Covas, Fernando G; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L; Pittendrigh, Barry R

    2011-01-01

    The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), is an insect pest species of crops grown by subsistence farmers in tropical regions of Africa. We present the de novo assembly of 3729 contigs from 454- and Sanger-derived sequencing reads for midgut, salivary, and whole adult tissues of this non-model species. Functional annotation predicted that 1320 M. vitrata protein coding genes are present, of which 631 have orthologs within the Bombyx mori gene model. A homology-based analysis assigned M. vitrata genes into a group of paralogs, but these were subsequently partitioned into putative orthologs following phylogenetic analyses. Following sequence quality filtering, a total of 1542 putative single nucleotide polymorphisms (SNPs) were predicted within M. vitrata contig assemblies. Seventy one of 1078 designed molecular genetic markers were used to screen M. vitrata samples from five collection sites in West Africa. Population substructure may be present with significant implications in the insect resistance management recommendations pertaining to the release of biological control agents or transgenic cowpea that express Bacillus thuringiensis crystal toxins. Mutation data derived from transcriptome sequencing is an expeditious and economical source for genetic markers that allow evaluation of ecological differentiation.

  17. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops.

    PubMed

    Couzigou, Jean-Malo; Magne, Kevin; Mondy, Samuel; Cosson, Viviane; Clements, Jonathan; Ratet, Pascal

    2016-01-01

    Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far.

  18. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils

    SciTech Connect

    Wu, L.; Guo, X.; Banuelos, G.S.

    1997-03-01

    Seleno-amino acid accumulation was studied for two legume and two grass species grown in Selenium (Se)-laden soils. An antagonistic relationship was found between the tissue Se-amino acid concentration and the corresponding sulfur-amino acid concentration. This relationship demonstrates a competitive interaction between Se and sulfate at the amino acid synthesis level. The nonsulfur-containing amino acids were not substantially affected by the increase of tissue Se concentration. Sour clover (Melilotus indica L.) was able to accumulate much greater tissue Se concentration than the other three species. Tissue methionine concentration of sour clover, rabbitfoot grass (Polypogon monspeliensis L.), and tall fescue (Festuca arundinacea Schreb.) was not significantly affected by the increase of tissue selenomethionine concentration, but a highly significant negative correlation was found in alfalfa (Medicago sativa L.). This discrepancy suggests that a less antagonistic effect on sulfur-amino acids under the increase of Se-amino acid analogues in the tissue might be able to minimize Se toxicity to the plant. Both Se-methylselenocysteine (nonprotein amino acid) and selenomethionine (protein amino acid) accumulated in the plants when grown in Se-laden soils. Possible effects of these Se-amino acids accumulated by plants on animal health should be tested before the plants are used for forage supplementation.

  19. Transcriptome Sequencing, and Rapid Development and Application of SNP Markers for the Legume Pod Borer Maruca vitrata (Lepidoptera: Crambidae)

    PubMed Central

    Margam, Venu M.; Coates, Brad S.; Bayles, Darrell O.; Hellmich, Richard L.; Agunbiade, Tolulope; Seufferheld, Manfredo J.; Sun, Weilin; Kroemer, Jeremy A.; Ba, Malick N.; Binso-Dabire, Clementine L.; Baoua, Ibrahim; Ishiyaku, Mohammad F.; Covas, Fernando G.; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L.; Pittendrigh, Barry R.

    2011-01-01

    The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), is an insect pest species of crops grown by subsistence farmers in tropical regions of Africa. We present the de novo assembly of 3729 contigs from 454- and Sanger-derived sequencing reads for midgut, salivary, and whole adult tissues of this non-model species. Functional annotation predicted that 1320 M. vitrata protein coding genes are present, of which 631 have orthologs within the Bombyx mori gene model. A homology-based analysis assigned M. vitrata genes into a group of paralogs, but these were subsequently partitioned into putative orthologs following phylogenetic analyses. Following sequence quality filtering, a total of 1542 putative single nucleotide polymorphisms (SNPs) were predicted within M. vitrata contig assemblies. Seventy one of 1078 designed molecular genetic markers were used to screen M. vitrata samples from five collection sites in West Africa. Population substructure may be present with significant implications in the insect resistance management recommendations pertaining to the release of biological control agents or transgenic cowpea that express Bacillus thuringiensis crystal toxins. Mutation data derived from transcriptome sequencing is an expeditious and economical source for genetic markers that allow evaluation of ecological differentiation. PMID:21754987

  20. Non-Traditional Legumes as Potential Soil Amendments for Nematode Control

    PubMed Central

    Morris, J. B.; Walker, J. T.

    2002-01-01

    Dried ground plant tissues from 20 leguminous species were mixed with Meloidogyne incognita-infested soil at 1, 2 or 2.5, and 5% (w/w) and incubated for 1 week at room temperature (21 to 27°C). Tomato ('Rutgers') seedlings were transplanted into infested soil to determine nematode viability. Most tissues reduced gall numbers below the non-amended controls. The tissue amendments that were most effective include: Canavalia ensiformis, Crotalaria retusa, Indigofera hirsuta, I. nummularifolia, I. spicata, I. suffruticosa, I. tinctoria, and Tephrosia adunca. Although certain tissues reduced the tomato dry weights, particularly at the higher amendment rates (5%), some tissues resulted in greater dry weights. These non-traditional legumes, known to contain bioactive phytochemicals, may offer considerable promise as soil amendments for control of plant-parasitic nematodes. Not only do these legumes reduce root-knot nematodes but some of them also enhance plant height and dry weight. PMID:19265956

  1. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes.

    PubMed

    Luciński, Robert; Polcyn, Władysław; Ratajczak, Lech

    2002-01-01

    The inhibitory effect of nitrate on nitrogenase activity in root nodules of legume plants has been known for a long time. The major factor inducing changes in nitrogenase activity is the concentration of free oxygen inside nodules. Oxygen availability in the infected zone of nodule is limited, among others, by the gas diffusion resistance in nodule cortex. The presence of nitrate may cause changes in the resistance to O2 diffusion. The aim of this paper is to review literature data concerning the effect of nitrate on the symbiotic association between rhizobia and legume plants, with special emphasis on nitrogenase activity. Recent advances indicate that symbiotic associations of Rhizobium strains characterized by a high nitrate reductase activity are less susceptible to inhibition by nitrate. A thesis may be put forward that dissimilatory nitrate reduction, catalyzed by bacteroid nitrate reductase, significantly facilitates the symbiotic function of bacteroids.

  2. [The Effect of Cadmium on the Efficiency of Development of Legume-Rhizobium Symbiosis].

    PubMed

    Chuhukova, O V; Postrigan, B N; Baimiev, A Kh; Chemeris, A V

    2015-01-01

    Screening of nodule bacteria (rhizobia) forming symbiotic relationships with legumes has been performed in order to isolate strains resistant to cadmium ions in a wide range of concentrations (6-132 mg/kg). The effect ofcadmium salts (6, 12, 24 mg/kg) on the legume-rhizobium symbiosis ofthe pea Pisum sativum L. with Rhizobium leguminosarum and of the fodder galega Galega orientalis Lam. with Rhizobium galegae has been studied under experimental laboratory conditions. No statistically significant differences have been revealed in the growth and biomass of plants with regard to the control in the range of concentrations given above. However, it was found that cadmium inhibited nodulation in P. sativum and stimulated it in G. orientalis. PMID:26638242

  3. The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes.

    PubMed

    Latif, Sadia; Khan, Samiullah; Naveed, Muhammad; Mustafa, Ghulam; Bashir, Tasmia; Mumtaz, Abdul Samad

    2013-09-01

    The objective of the present study was to isolate and characterize nodulating bacteria associated with wild legumes. For this purpose, we recovered twenty isolates from root nodules of five wild legume species: Melilotus alles, Melilotus officinalis, Trifolium pratense, Trifolium repens and Medicago sp. Most of the isolates were morphologically analogous with only few exceptions in colony shape, appearance and incubation time. All isolates were Gram negative except T.P2-4. Random amplification of polymorphic DNA showed genetic variation among isolates. The 16S rRNA sequence analysis revealed these isolates as Rhizobium, Sinorhizobium and Paenibacillus. Each of these was also screened for nod D and nod F genes with marked variation at these loci; however, the nucleotide sequence analysis confirmed the presence of nod genes. The assignment of strains to their hosts revealed a unique symbiotic association of Paenibacillus sp. nodulating T .pratense which is being reported here for the first time.

  4. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes.

    PubMed Central

    Lavin, Matt; Schrire, Brian P; Lewis, Gwilym; Pennington, R Toby; Delgado-Salinas, Alfonso; Thulin, Mats; Hughes, Colin E; Matos, Angela Beyra; Wojciechowski, Martin F

    2004-01-01

    Penalized likelihood estimated ages of both densely sampled intracontinental and sparsely sampled transcontinental crown clades in the legume family show a mostly Quaternary to Neogene age distribution. The mode ages of the intracontinental crown clades range from 4-6 Myr ago, whereas those of the transcontinental crown clades range from 8-16 Myr ago. Both of these young age estimates are detected despite methodological approaches that bias results toward older ages. Hypotheses that resort to vicariance or continental history to explain continental disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. An alternative explanation centring on dispersal that may well explain the geographical as well as the ecological phylogenetic structure of legume phylogenies is Hubbell's unified neutral theory of biodiversity and biogeography. This is the only dispersalist theory that encompasses evolutionary time and makes predictions about phylogenetic structure. PMID:15519969

  5. [The Effect of Cadmium on the Efficiency of Development of Legume-Rhizobium Symbiosis].

    PubMed

    Chuhukova, O V; Postrigan, B N; Baimiev, A Kh; Chemeris, A V

    2015-01-01

    Screening of nodule bacteria (rhizobia) forming symbiotic relationships with legumes has been performed in order to isolate strains resistant to cadmium ions in a wide range of concentrations (6-132 mg/kg). The effect ofcadmium salts (6, 12, 24 mg/kg) on the legume-rhizobium symbiosis ofthe pea Pisum sativum L. with Rhizobium leguminosarum and of the fodder galega Galega orientalis Lam. with Rhizobium galegae has been studied under experimental laboratory conditions. No statistically significant differences have been revealed in the growth and biomass of plants with regard to the control in the range of concentrations given above. However, it was found that cadmium inhibited nodulation in P. sativum and stimulated it in G. orientalis.

  6. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes.

    PubMed

    Wyrwa, Katarzyna; Książkiewicz, Michał; Szczepaniak, Anna; Susek, Karolina; Podkowiński, Jan; Naganowska, Barbara

    2016-09-01

    Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes. PMID:27168155

  7. Consumption of Whole Grains, Refined Cereals, and Legumes and Its Association With Colorectal Cancer Among Jordanians.

    PubMed

    Tayyem, Reema F; Bawadi, Hiba A; Shehadah, Ihab; Agraib, Lana M; Al-Awwad, Narmeen J; Heath, Dennis D; Bani-Hani, Kamal E

    2016-09-01

    Background The role of whole grains, refined cereals, and legumes in preventing or initiating colorectal cancer (CRC) is still uncertain. The aim of this study is to examine the possible association between the consumption of whole grains, refined cereals, and legumes and the risk of developing CRC among Jordanian population. Methods A validated food frequency questionnaire was used to collect dietary data with regard to intake of whole grains, refined cereals, and legumes. A total of 220 diagnosed CRC participants and 281 CRC-free control participants matched by age, gender, occupation, and marital status were recruited. Logistic regression was used to estimate the odds of developing CRC in relation to the consumption of different types of whole grains, refined cereals, and legumes. Results The odds ratio (OR) for developing CRC among cases consumed refined wheat bread at all meals was 3.1 compared with controls (95% CI: 1.2-7.9, P-Trend = 0.001); whereas the OR associated with whole wheat bread was 0.44 (95% CI: 0.22-0.92, P-Trend = 0.001). The statistical evaluation for daily consumption of rice suggested a direct association with the risk of developing CRC, OR = 3.0 (95% CI: 0.27-33.4, P-Trend = 0.020). Weekly consumption of macaroni was associated with CRC with OR of 2.4 (95% CI: 1.1-5.3, P-Trend = 0.001). The consumption of corn, bulgur, lentils, and peas suggested a protective trend, although the trend was not statistically significant. Conclusion This study provides additional indicators of the protective role of whole grains and suggests a direct association between consumption of refined grains and higher possibility for developing CRC.

  8. Carbon metabolism in legume nodules. Progress report, June 1, 1982-January 30, 1983

    SciTech Connect

    LaRue, T.A.

    1983-02-01

    The oxidation and reduction of flavins and pyridine nucleotides in intact bacteria can be monitored by their changes in fluorescence. This technique permits study in nitrogen fixing bacteria of the effect of inhibitors of electron transport, and of the effect of substrates which may provide reductant for nitrogenase or oxidative phosphorylation. The nitrogen fixing ability of intact legume plants or bacteroids isolated from nodules can be manipulated downward by appropriate brief treatment of supra-optimal oxygen concentrations.

  9. Reconsidering domestication of legumes versus cereals in the ancient near east.

    PubMed

    Abbo, Shahal; Saranga, Yehoshua; Peleg, Zvi; Kerem, Zohar; Lev-Yadun, Simcha; Gopher, Avi

    2009-03-01

    In this paper, we discuss, from both biological and cultural perspectives, the ancient human-plant liaison that gave rise to Near Eastern agriculture. We explain the biological aspects of Near Eastern plant domestication by a comparative analysis of legume vs. cereal crop evolution. This comparison is illustrated by the natural distribution, ecological affinity, physiology, population structure, floral biology, growth habit, plant stature, seed dispersal mode, and seed dormancy of both wild and domesticated plants of these crop groups. We discuss the differences between Near Eastern legumes and cereals with regard to each of the above aspects, and we highlight the relevance of these differences with regard to Neolithic decision-making, adoption for farming, and subsequent evolution under domestication. We reached the following conclusions: (1) Near Eastern legumes underwent different evolutionary trajectories under domestication as compared with their companion cereals, despite apparent similarities between selection under domestication of both crop groups. (2) Careful comparison of pea, lentil, and chickpea shows that each of the Near Eastern legume crops has a unique evolutionary history in its own right, and this also holds true for the cereal crops. (3) The evolutionary history of each of the Near Eastern crops, prior to as well as after domestication, is well-reflected in its adaptation profile in present-day cropping systems, which determines each crop's relative economic importance in different world regions (e.g., chickpea is a major pulse in the Indian subcontinent, and pea is a more important crop in temperate regions, while barley has the widest adaptation, extending from high-latitude temperate regions to semi-arid Mediterranean systems). (4) Ancient choice-making as reflected in the founder crops repertoire, involved nutritional considerations that may have outweighed grain yield per area and/or time unit criteria.

  10. A High Legume Low Glycemic Index Diet Improves Serum Lipid Profiles in Men

    PubMed Central

    Zhang, Zhiying; Lanza, Elaine; Kris-Etherton, Penny M.; Colburn, Nancy H.; Bagshaw, Deborah; Rovine, Michael J.; Ulbrecht, Jan S.; Bobe, Gerd; Chapkin, Robert S.; Hartman, Terryl J.

    2012-01-01

    Clinical studies have shown that fiber consumption facilitates weight loss and improves lipid profiles; however, the beneficial effects of high fermentable fiber low glycemic index (GI) diets under conditions of weight maintenance are unclear. In the Legume Inflammation Feeding Experiment, a randomized controlled cross-over feeding study, 64 middle-aged men who had undergone colonoscopies within the previous 2 years received both a healthy American (HA) diet (no legume consumption, fiber consumption = 9 g/1,000 kcal, and GI = 69) and a legume enriched (1.5 servings/1,000 kcal), high fiber (21 g/1,000 kcal), low GI (GI = 38) diet (LG) in random order. Diets were isocaloric and controlled for macronutrients including saturated fat; they were consumed each for 4 weeks with a 2–4 week break separating dietary treatments. Compared to the HA diet, the LG diet led to greater declines in both fasting serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) (P <0.001 and P <0.01, respectively). Insulin-resistant (IR) subjects had greater reductions in high density lipoprotein cholesterol (HDL-C; P <0.01), and triglycerides (TAG)/HDL-C (P = 0.02) after the LG diet, compared to the HA diet. Insulin-sensitive (IS) subjects had greater reductions in TC (P <0.001), LDL-C (P <0.01), TC/HDL-C (P <0.01), and LDL-C/HDL-C (P = 0.02) after the LG diet, compared to the HA diet. In conclusion, a high legume, high fiber, low GI diet improves serum lipid profiles in men, compared to a healthy American diet. However, IR individuals do not achieve the full benefits of the same diet on cardiovascular disease (CVD) lipid risk factors. PMID:20734238

  11. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook.

    PubMed

    Bohra, Abhishek; Sahrawat, Kanwar L; Kumar, Shiv; Joshi, Rohit; Parihar, Ashok K; Singh, Ummed; Singh, Deepak; Singh, Narendra P

    2015-05-01

    Meeting the food demands and ensuring nutritional security of the ever increasing global population in the face of degrading natural resource base and impending climate change is the biggest challenge of the twenty first century. The consequences of mineral/micronutrient deficiencies or the hidden hunger in the developing world are indeed alarming and need urgent attention. In addressing the problems associated with mineral/micronutrient deficiency, grain legumes as an integral component of the farming systems in the developing world have to play a crucial role. For resource-poor populations, a strategy based on selecting and/or developing grain legume cultivars with grains denser in micronutrients, by biofortification, seems the most appropriate and attractive approach to address the problem. This is evident from the on-going global research efforts on biofortification to provide nutrient-dense grains for use by the poorest of the poor in the developing countries. Towards this end, rapidly growing genomics technologies hold promise to hasten the progress of breeding nutritious legume crops. In conjunction with the myriad of expansions in genomics, advances in other 'omics' technologies particularly plant ionomics or ionome profiling open up novel opportunities to comprehensively examine the elemental composition and mineral networks of an organism in a rapid and cost-effective manner. These emerging technologies would effectively guide the scientific community to enrich the edible parts of grain legumes with bio-available minerals and enhancers/promoters. We believe that the application of these new-generation tools in turn would provide crop-based solutions to hidden hunger worldwide for achieving global nutritional security. PMID:25592547

  12. Consumption of Whole Grains, Refined Cereals, and Legumes and Its Association With Colorectal Cancer Among Jordanians.

    PubMed

    Tayyem, Reema F; Bawadi, Hiba A; Shehadah, Ihab; Agraib, Lana M; Al-Awwad, Narmeen J; Heath, Dennis D; Bani-Hani, Kamal E

    2016-09-01

    Background The role of whole grains, refined cereals, and legumes in preventing or initiating colorectal cancer (CRC) is still uncertain. The aim of this study is to examine the possible association between the consumption of whole grains, refined cereals, and legumes and the risk of developing CRC among Jordanian population. Methods A validated food frequency questionnaire was used to collect dietary data with regard to intake of whole grains, refined cereals, and legumes. A total of 220 diagnosed CRC participants and 281 CRC-free control participants matched by age, gender, occupation, and marital status were recruited. Logistic regression was used to estimate the odds of developing CRC in relation to the consumption of different types of whole grains, refined cereals, and legumes. Results The odds ratio (OR) for developing CRC among cases consumed refined wheat bread at all meals was 3.1 compared with controls (95% CI: 1.2-7.9, P-Trend = 0.001); whereas the OR associated with whole wheat bread was 0.44 (95% CI: 0.22-0.92, P-Trend = 0.001). The statistical evaluation for daily consumption of rice suggested a direct association with the risk of developing CRC, OR = 3.0 (95% CI: 0.27-33.4, P-Trend = 0.020). Weekly consumption of macaroni was associated with CRC with OR of 2.4 (95% CI: 1.1-5.3, P-Trend = 0.001). The consumption of corn, bulgur, lentils, and peas suggested a protective trend, although the trend was not statistically significant. Conclusion This study provides additional indicators of the protective role of whole grains and suggests a direct association between consumption of refined grains and higher possibility for developing CRC. PMID:26631260

  13. Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion.

    PubMed

    Pang, Jiayin; Wang, Yanmei; Lambers, Hans; Tibbett, Mark; Siddique, Kadambot H M; Ryan, Megan H

    2013-09-01

    We investigated commensalism of water use among annual shallow-rooted and perennial deep-rooted pasture legumes by examining the effect of hydraulic lift by Cullen pallidum (N.T.Burb.) J.W.Grimes and Medicago sativa on growth, survival and nutrient uptake of Trifolium subterraneum L. A vertically split-root design allowed separate control of soil water in top and bottom soil. Thirty-five days after watering ceased in the top tube, but soil remained at field capacity in the bottom tube, an increase in shallow soil water content by hydraulic lift was 5.6 and 5.9 g kg(-1) soil overnight for C. pallidum and M. sativa, respectively. Trifolium subterraneum in this treatment maintained higher leaf water potentials (with M. sativa) or exhibited a slower decline (with C. pallidum) than without companion perennial plants; and shoot biomass of T. subterraneum was 56% (with C. pallidum) and 67% (with M. sativa) of that when both top and bottom tubes were at field capacity. Uptake of rubidium (a potassium analog) and phosphorus by T. subterraneum was not facilitated by hydraulic lift. Interestingly, phosphorus content was threefold greater, and shoot biomass 1.5-3.3-fold greater when T. subterraneum was interplanted with C. pallidum compared with M. sativa, although dry weight of C. pallidum was much greater than that of M. sativa. This study showed that interplanting with deep-rooted perennial legumes has benefited the survival of T. subterraneum.

  14. Trypsin inhibitor from 3 legume seeds: fractionation and proteolytic inhibition study.

    PubMed

    Wati, Richa Kusuma; Theppakorn, Theerapong; Benjakul, Soottawat; Rawdkuen, Saroat

    2010-04-01

    The trypsin inhibitor from navy beans (Phaseoulus vulgaris), red kidney beans (Phaseoulus vulgaris L.), and adzuki beans (Vigna angularis) provided by the Royal Project Foundation in Thailand was isolated by heat and ammonium sulfate (AS) precipitation. Incubation at 70 degrees C for 10 min produced the highest trypsin inhibitor recovery for all legumes. The AS precipitation with 60% to 80% saturation (precipitate IV) resulted in 41-, 88-, and 34-fold of the purity and (-)26%, 126%, and (-)47% of percentage of activity increase for navy beans, red kidney beans, and adzuki beans, respectively. The trypsin inhibitors had a molecular weight of 132 kDa for navy beans, 118 kDa for red kidney beans, and 13 kDa for adzuki beans under nonreducing conditions. The obtained precipitate IV fraction from each legume effectively prevented the degradation of the tilapia muscle with concentration dependent. The myosin heavy chain increased as the concentration of the inhibitor fraction increased, especially at the highest level of addition. The result indicated that the precipitate IV from these legumes have potential for use as a protease inhibitor in fishery related products.

  15. Comparative study on the vitamin C contents of the food legume seeds.

    PubMed

    Moriyama, Michie; Oba, Kazuko

    2008-02-01

    We found that dehydrated legume seeds (6 genera, 19 species and cultivated varieties) contained considerable amounts of vitamin C (VC). The average value of total VC content per 100 g of dry weight in dehydrated seeds varied from 0.24 mg (kidney beans) to 4.14 mg (green peas). Yard beans showed highest values among all legumes examined here in the both dehydrated and rehydrated forms (3.19 and 10.8 mg, respectively). By soaking for 16 h in the dark at 20(o)C, total VC contents of black grams and mung beans increased to 3.1- and 4.5-fold, respectively. However, three varieties of green peas (Hakuryu, Kurumeyutaka, and Nankaimidori) significantly lost their VC during the same soaking treatment. Total VC content of a rehydrated and cooked mung beans was higher than that of a dehydrated form. Appreciable amounts of total VC were detected in the immature seeds of six different genera such as yard beans, kidney beans, broad beans, green peas, soybeans and peanuts. Except for mung beans, 70-100% of VC in dehydrated seeds of adzuki beans, broad beans, green peas, black soybeans, and soybeans was lost by boiling. Total VC and L-ascorbic acid in mung beans, green peas, broad beans, black soybeans, and adzuki beans remained even after boiling, suggesting that it is possible to obtain VC from the cooked forms of these legume seeds.

  16. Molecular evolution of the HD-ZIP I gene family in legume genomes.

    PubMed

    Li, Zhen; Jiang, Haiyang; Zhou, Lingyan; Deng, Lin; Lin, Yongxiang; Peng, Xiaojian; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot-dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement. PMID:24095777

  17. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    PubMed

    Spanou, Chrysoula; Veskoukis, Aristidis S; Kerasioti, Thalia; Kontou, Maria; Angelis, Apostolos; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros; Kouretas, Dimitrios

    2012-01-01

    Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO) activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50) values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i) values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  18. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  19. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate

    PubMed Central

    Zahran, Hamdi Hussein

    1999-01-01

    Biological N2 fixation represents the major source of N input in agricultural soils including those in arid regions. The major N2-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N2-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, nutrient deficiency, fertilizers, heavy metals, and pesticides is reviewed. These major stress factors suppress the growth and symbiotic characteristics of most rhizobia; however, several strains, distributed among various species of rhizobia, are tolerant to stress effects. Some strains of rhizobia form effective (N2-fixing) symbioses with their host legumes under salt, heat, and acid stresses, and can sometimes do so under the effect of heavy metals. Reclamation and improvement of the fertility of arid lands by application of organic (manure and sewage sludge) and inorganic (synthetic) fertilizers are expensive and can be a source of pollution. The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research. PMID:10585971

  20. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes

    PubMed Central

    Zhang, Xingzheng; Zhai, Hong; Wang, Yaying; Tian, Xiaojie; Zhang, Yupeng; Wu, Hongyan; Lü, Shixiang; Yang, Guang; Li, Yuqiu; Wang, Lu; Hu, Bo; Bu, Qingyun; Xia, Zhengjun

    2016-01-01

    Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the onset of flowering in soybean. By contrast, the ectopic expression of Medtr2g058520 (MtE1L) from Medicago truncatula did not affect the flowering of soybean. Characterization of the late-flowering mte1l mutant indicated that MtE1L promoted flowering in Medicago truncatula. Moreover, all transgenic E1, PvE1L and MtE1L soybean lines exhibited phenotypic changes in terms of plant height. Transgenic E1 or PvE1L plants were taller than the wild-type, whereas transgenic MtE1L plants produced dwarf phenotype with few nodes and short internode. Thus, functional conservation and diversification of E1 family genes from legumes in the regulation of flowering and plant growth may be associated with lineage specification and genomic duplication. PMID:27405888

  1. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes.

    PubMed

    Zhang, Xingzheng; Zhai, Hong; Wang, Yaying; Tian, Xiaojie; Zhang, Yupeng; Wu, Hongyan; Lü, Shixiang; Yang, Guang; Li, Yuqiu; Wang, Lu; Hu, Bo; Bu, Qingyun; Xia, Zhengjun

    2016-01-01

    Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the onset of flowering in soybean. By contrast, the ectopic expression of Medtr2g058520 (MtE1L) from Medicago truncatula did not affect the flowering of soybean. Characterization of the late-flowering mte1l mutant indicated that MtE1L promoted flowering in Medicago truncatula. Moreover, all transgenic E1, PvE1L and MtE1L soybean lines exhibited phenotypic changes in terms of plant height. Transgenic E1 or PvE1L plants were taller than the wild-type, whereas transgenic MtE1L plants produced dwarf phenotype with few nodes and short internode. Thus, functional conservation and diversification of E1 family genes from legumes in the regulation of flowering and plant growth may be associated with lineage specification and genomic duplication. PMID:27405888

  2. Control of plant virus diseases in cool-season grain legume crops.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies. PMID:25410103

  3. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  4. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  5. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.

    PubMed

    Dodevska, Margarita S; Djordjevic, Brizita I; Sobajic, Sladjana S; Miletic, Ivanka D; Djordjevic, Predrag B; Dimitrijevic-Sreckovic, Vesna S

    2013-12-01

    The typical Serbian diet is characterised by high intake of cereal products and also legumes are often used. The content of total fibre as well as certain fibre fractions was determined in cereals, cereal products, and cooked legumes. The content of total fibre in cooked cereals and cereal products ranged from 2.5 to 20.8 g/100 g, and in cooked legumes from 14.0 to 24.5 g/100 g (on dry matter basis). Distribution of analysed fibre fractions and their quantities differed significantly depending on food groups. Fructans and arabinoxylans were the most significant fibre fractions in rye flakes, and β-glucan in oat flakes, cellulose and resistant starch were present in significant amounts in peas and kidney beans. When the size of regular food portions was taken into consideration, the best sources of total dietary fibre were peas and kidney beans (more than 11 g/serving). The same foods were the best sources of cellulose (4.98 and 3.56 g/serving) and resistant starch (3.90 and 2.83 g/serving). High intake of arabinoxylans and fructans could be accomplished with cooked wheat (3.20 g and 1.60 g/serving, respectively). Oat (1.39 g/serving) and barley flakes (1.30 g/serving) can be recommended as the best sources of β-glucan. PMID:23870869

  6. Trypsin inhibitor from 3 legume seeds: fractionation and proteolytic inhibition study.

    PubMed

    Wati, Richa Kusuma; Theppakorn, Theerapong; Benjakul, Soottawat; Rawdkuen, Saroat

    2010-04-01

    The trypsin inhibitor from navy beans (Phaseoulus vulgaris), red kidney beans (Phaseoulus vulgaris L.), and adzuki beans (Vigna angularis) provided by the Royal Project Foundation in Thailand was isolated by heat and ammonium sulfate (AS) precipitation. Incubation at 70 degrees C for 10 min produced the highest trypsin inhibitor recovery for all legumes. The AS precipitation with 60% to 80% saturation (precipitate IV) resulted in 41-, 88-, and 34-fold of the purity and (-)26%, 126%, and (-)47% of percentage of activity increase for navy beans, red kidney beans, and adzuki beans, respectively. The trypsin inhibitors had a molecular weight of 132 kDa for navy beans, 118 kDa for red kidney beans, and 13 kDa for adzuki beans under nonreducing conditions. The obtained precipitate IV fraction from each legume effectively prevented the degradation of the tilapia muscle with concentration dependent. The myosin heavy chain increased as the concentration of the inhibitor fraction increased, especially at the highest level of addition. The result indicated that the precipitate IV from these legumes have potential for use as a protease inhibitor in fishery related products. PMID:20492270

  7. Comparative study on the vitamin C contents of the food legume seeds.

    PubMed

    Moriyama, Michie; Oba, Kazuko

    2008-02-01

    We found that dehydrated legume seeds (6 genera, 19 species and cultivated varieties) contained considerable amounts of vitamin C (VC). The average value of total VC content per 100 g of dry weight in dehydrated seeds varied from 0.24 mg (kidney beans) to 4.14 mg (green peas). Yard beans showed highest values among all legumes examined here in the both dehydrated and rehydrated forms (3.19 and 10.8 mg, respectively). By soaking for 16 h in the dark at 20(o)C, total VC contents of black grams and mung beans increased to 3.1- and 4.5-fold, respectively. However, three varieties of green peas (Hakuryu, Kurumeyutaka, and Nankaimidori) significantly lost their VC during the same soaking treatment. Total VC content of a rehydrated and cooked mung beans was higher than that of a dehydrated form. Appreciable amounts of total VC were detected in the immature seeds of six different genera such as yard beans, kidney beans, broad beans, green peas, soybeans and peanuts. Except for mung beans, 70-100% of VC in dehydrated seeds of adzuki beans, broad beans, green peas, black soybeans, and soybeans was lost by boiling. Total VC and L-ascorbic acid in mung beans, green peas, broad beans, black soybeans, and adzuki beans remained even after boiling, suggesting that it is possible to obtain VC from the cooked forms of these legume seeds. PMID:18388400

  8. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.

    PubMed

    Dodevska, Margarita S; Djordjevic, Brizita I; Sobajic, Sladjana S; Miletic, Ivanka D; Djordjevic, Predrag B; Dimitrijevic-Sreckovic, Vesna S

    2013-12-01

    The typical Serbian diet is characterised by high intake of cereal products and also legumes are often used. The content of total fibre as well as certain fibre fractions was determined in cereals, cereal products, and cooked legumes. The content of total fibre in cooked cereals and cereal products ranged from 2.5 to 20.8 g/100 g, and in cooked legumes from 14.0 to 24.5 g/100 g (on dry matter basis). Distribution of analysed fibre fractions and their quantities differed significantly depending on food groups. Fructans and arabinoxylans were the most significant fibre fractions in rye flakes, and β-glucan in oat flakes, cellulose and resistant starch were present in significant amounts in peas and kidney beans. When the size of regular food portions was taken into consideration, the best sources of total dietary fibre were peas and kidney beans (more than 11 g/serving). The same foods were the best sources of cellulose (4.98 and 3.56 g/serving) and resistant starch (3.90 and 2.83 g/serving). High intake of arabinoxylans and fructans could be accomplished with cooked wheat (3.20 g and 1.60 g/serving, respectively). Oat (1.39 g/serving) and barley flakes (1.30 g/serving) can be recommended as the best sources of β-glucan.

  9. Naturally occurring diversity helps to reveal genes of adaptive importance in legumes

    PubMed Central

    Gentzbittel, Laurent; Andersen, Stig U.; Ben, Cécile; Rickauer, Martina; Stougaard, Jens; Young, Nevin D.

    2015-01-01

    Environmental changes challenge plants and drive adaptation to new conditions, suggesting that natural biodiversity may be a source of adaptive alleles acting through phenotypic plasticity and/or micro-evolution. Crosses between accessions differing for a given trait have been the most common way to disentangle genetic and environmental components. Interestingly, such man-made crosses may combine alleles that never meet in nature. Another way to discover adaptive alleles, inspired by evolution, is to survey large ecotype collections and to use association genetics to identify loci of interest. Both of these two genetic approaches are based on the use of biodiversity and may eventually help us in identifying the genes that plants use to respond to challenges such as short-term stresses or those due to global climate change. In legumes, two wild species, Medicago truncatula and Lotus japonicus, plus the cultivated soybean (Glycine max) have been adopted as models for genomic studies. In this review, we will discuss the resources, limitations and future plans for a systematic use of biodiversity resources in model legumes to pinpoint genes of adaptive importance in legumes, and their application in breeding. PMID:25954294

  10. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.

    PubMed

    Tominaga, Akiyoshi; Gondo, Takahiro; Akashi, Ryo; Zheng, Shao-Hui; Arima, Susumu; Suzuki, Akihiro

    2012-05-01

    Many legumes form nitrogen-fixing root nodules. An elevation of nitrogen fixation in such legumes would have significant implications for plant growth and biomass production in agriculture. To identify the genetic basis for the regulation of nitrogen fixation, quantitative trait locus (QTL) analysis was conducted with recombinant inbred lines derived from the cross Miyakojima MG-20 × Gifu B-129 in the model legume Lotus japonicus. This population was inoculated with Mesorhizobium loti MAFF303099 and grown for 14 days in pods containing vermiculite. Phenotypic data were collected for acetylene reduction activity (ARA) per plant (ARA/P), ARA per nodule weight (ARA/NW), ARA per nodule number (ARA/NN), NN per plant, NW per plant, stem length (SL), SL without inoculation (SLbac-), shoot dry weight without inoculation (SWbac-), root length without inoculation (RLbac-), and root dry weight (RWbac-), and finally 34 QTLs were identified. ARA/P, ARA/NN, NW, and SL showed strong correlations and QTL co-localization, suggesting that several plant characteristics important for symbiotic nitrogen fixation are controlled by the same locus. QTLs for ARA/P, ARA/NN, NW, and SL, co-localized around marker TM0832 on chromosome 4, were also co-localized with previously reported QTLs for seed mass. This is the first report of QTL analysis for symbiotic nitrogen fixation activity traits.

  11. Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus.

    PubMed

    Klein, Melinda A; Grusak, Michael A

    2009-08-01

    Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Miyakojima MG-20 x Gifu B-129 recombinant inbred population from the model legume Lotus japonicus. This population was grown to seed under greenhouse conditions in 2006 and 2007. Phenotypic data were collected for seed calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn) concentrations and content. Data for physical seed traits (average seed mass and seed-pod allocation values) were also collected. Based on these phenotypic data, QTL analyses identified 103 QTL linked to 55 different molecular markers. Transgressive segregation, identified within this recombinant inbred population for both seed nutrient and physical traits, suggests new allelic combinations are available for agronomic trait improvement. QTL co-localization was also seen, suggesting that common transport processes might contribute to seed nutrient loading. Identification of loci involved in seed mineral density can be an important first step in identifying the genetic factors and, consequently, the physiological processes involved in mineral distribution to developing seeds. Longer term research efforts will focus on facilitating agronomic breeding efforts through ortholog identification in related crop legumes.

  12. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes

    PubMed Central

    Bargaz, Adnane; Zaman-Allah, Mainassara; Farissi, Mohamed; Lazali, Mohamed; Drevon, Jean-Jacques; Maougal, Rim T.; Carlsson, Georg

    2015-01-01

    Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints. PMID:26287163

  13. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    PubMed Central

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  14. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition.

    PubMed

    Caprioli, Giovanni; Giusti, Federica; Ballini, Roberto; Sagratini, Gianni; Vila-Donat, Pilar; Vittori, Sauro; Fiorini, Dennis

    2016-02-01

    This study sought to contribute to the assessment of the nutritional properties of legumes by determining the fatty acid (FA) composition of 29 legume samples after the evaluation of nine extraction methods. The Folch method and liquid-solid extraction with hexane/isopropanol or with hexane/acetone were investigated, as was the effect of previous hydration of samples. Soxhlet extractions were also evaluated with different solvent mixtures. Results on FA composition using the hexane/isopropanol extraction method were the same in terms of FA composition of the Folch method, but the extraction yield was only around 20-40% of that of the Folch method preceded by hydration. Some types of legumes showed particularly interesting values for the ratio of polyunsaturated fatty acids (PUFAs) n-6/n-3, such as lentils, with the value of 4.0, and Azuki beans, at 3.2. In lentils, the PUFAs% ranged from 42.0% to 57.4%, while in Azuki beans it was 57.5%. PMID:26304436

  15. Effects of the legume Vigna unguiculata crop on carbon and nitrogen cycles

    NASA Astrophysics Data System (ADS)

    Sánchez-Navarro, Virginia; Zornoza, Raúl; Fernández, Juan; Faz Cano, Ángel

    2015-04-01

    In this study, we investigated the effects of a legume crop (Vigna unguiculata) on soil properties related to the carbon (C) and nitrogen (N) cycles, taking into account different management practices (conventional and organic) and two genotypes. The study was randomly designed in blocks with four replications, in plots of 10 m2. The crop cycle spanned from 29 May 2014 to 13 August 2014. We collected soil samples (0-30 cm) from each plot at the beginning and at the end of the cycle to measure soil total N, organic C, recalcitrant C, organic C labile fractions, microbial biomass C (MBC) and the enzyme activities β-glucosidase and β-glucosaminidase. We collected plant samples (seeds, pods, roots and stem/leaves) at two different maturity stages (fresh and dry pods) to assess the influence of management practices and genotype in the accumulation of N, as indicative of the content of proteins in the crop. In the final plant sampling, we also determined crop production. The results showed that no significant differences were observed between management practices and genotypes in any of the soil properties measured. However, total N, recalcitrant C, most labile C fraction, MBC and β-glucosidase increased at the final sampling compared to initial values. We observed that genotype had a significant effect on the concentration of the second fraction of labile C under organic management. N content in the different plant tissues was significantly higher in the intermediate sampling than in the final harvest, without significant differences between management practices and genotypes. We observed a significant positive correlation between N content in roots, seeds and pods. N content was always higher in seeds, indicating the high quantity of proteins in this crop. C content was significantly lower in stem/leaves than in the rest of tissues, without significant differences among them. No effect of management practice, maturity stage or genotype was observed with regard to C

  16. CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti.

    PubMed

    Gibson, Katherine E; Campbell, Gordon R; Lloret, Javier; Walker, Graham C

    2006-06-01

    Sinorhizobium meliloti produces an exopolysaccharide called succinoglycan that plays a critical role in promoting symbiosis with its host legume, alfalfa (Medicago sativa). We performed a transposon mutagenesis and screened for mutants with altered succinoglycan production and a defect in symbiosis. In this way, we identified a putative two-component histidine kinase associated with a PAS sensory domain, now designated CbrA (calcofluor-bright regulator A). The cbrA::Tn5 mutation causes overproduction of succinoglycan and results in increased accumulation of low-molecular-weight forms of this exopolysaccharide. Our results suggest the cbrA::Tn5 allele leads to this succinoglycan phenotype through increased expression of exo genes required for succinoglycan biosynthesis and modification. Interestingly, CbrA-dependent regulation of exo and exs genes is observed almost exclusively during stationary-phase growth. The cbrA::Tn5 mutant also has an apparent cell envelope defect, based on increased sensitivity to a number of toxic compounds, including the bile salt deoxycholate and the hydrophobic dye crystal violet. Growth of the cbrA mutant is also slowed under oxidative-stress conditions. The CbrA-regulated genes exsA and exsE encode putative inner membrane ABC transporters with a high degree of similarity to lipid exporters. ExsA is homologous to the Escherichia coli MsbA protein, which is required for lipopolysaccharide transport, while ExsE is a member of the eukaryotic family of ABCD/hALD peroxisomal membrane proteins involved in transport of very long-chain fatty acids, which are a unique component of the lipopolysaccharides of alphaproteobacteria. Thus, CbrA could play a role in regulating the lipopolysaccharide or lipoprotein components of the cell envelope. PMID:16740957

  17. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  18. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils.

    PubMed

    Yan, Hui; Ji, Zhao Jun; Jiao, Yin Shan; Wang, En Tao; Chen, Wen Feng; Guo, Bao Lin; Chen, Wen Xin

    2016-03-01

    With the increasing cultivation of medicinal legumes in agricultural fields, the rhizobia associated with these plants are facing new stresses, mainly from fertilization and irrigation. In this study, investigations on the nodulation of three cultivated medicinal legumes, Astragalus mongholicus, Astragalus membranaceus and Hedysarum polybotrys were performed. Bacterial isolates from root nodules of these legumes were subjected to genetic diversity and multilocus sequence analyses. In addition, the distribution of nodule bacteria related to soil factors and host plants was studied. A total 367 bacterial isolates were obtained and 13 genospecies were identified. The predominant microsymbionts were identified as Mesorhizobium septentrionale, Mesorhizobium temperatum, Mesorhizobium tianshanense, Mesorhizobium ciceri and Mesorhizobium muleiense. M. septentrionale was found in most root nodules especially from legumes grown in the barren soils (with low available nitrogen and low organic carbon contents), while M. temperatum was predominant in nodules where the plants were grown in the nitrogen-rich fields. A. mongholicus tended to be associated with M. septentrionale, M. temperatum and M. ciceri in different soils, while A. membranaceus and H. polybotrys tended to be associated with M. tianshanense and M. septentrionale, respectively. This study showed that soil fertility may be the main determinant for the distribution of rhizobia associated with these cultured legume plants. PMID:26915496

  19. Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest.

    PubMed

    Lammel, Daniel R; Cruz, Leonardo M; Carrer, Helaine; Cardoso, Elke J B N

    2013-12-01

    While the occurrence of Betaproteobacteria occupying the nodules of tropical legumes has been shown, little is known about subtropical areas. Araucaria Forest is a subtropical endangered ecosystem, and a better understanding of the legume-rhizobial symbionts may allow their use in land reclamation. The 16S rRNA gene of bacteria isolated from nine leguminous species was sequenced and their nodulation tested in Mimosa scabrella and Phaseolus vulgaris. 196 isolates were identified as eight genotypes: Pantoea, Pseudomonas, Bradyrhizobium sp1-2, Rhizobium, and Burkholderia sp1-3. The majority of the isolates from native plants (87 %) were taxonomically related to β-rhizobia, namely Burkholderia, however the legumes Galactia crassifolia and Collea speciosa were nodulated by both α and β-rhizobia, and Acacia dealbata, an exotic plant, only by α-rhizobia. The nifH genes of some isolates were sequenced and N-fixing potential shown by the acetylene reduction test. Most of the isolates nodulated the test plants, some were effective in M. scabrella, but all presented low efficiency in the exotic promiscuous legume P. vulgaris. Pantoea and Pseudomonas did not nodulate and probably are endophytic bacteria. The presented data shows diversity of α, β and γ-Proteobacteria in nodules of subtropical legumes, and suggests host specificity with β-rhizobia. Potential isolates were found for M. scabrella, indicating that a high N-fixing strain may be further inoculated in plants for use in reforestation. PMID:23861038

  20. Terminal Bacteroid Differentiation Is Associated With Variable Morphological Changes in Legume Species Belonging to the Inverted Repeat-Lacking Clade.

    PubMed

    Montiel, Jesús; Szűcs, Attila; Boboescu, Iulian Z; Gherman, Vasile D; Kondorosi, Éva; Kereszt, Attila

    2016-03-01

    Medicago and closely related legume species from the inverted repeat-lacking clade (IRLC) impose terminal differentiation onto their bacterial endosymbionts, manifested in genome endoreduplication, cell enlargement, and loss of cell-division capacity. Nodule-specific cysteine-rich (NCR) secreted host peptides are plant effectors of this process. As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids in species from these genera as well as in four other species representing distinct genera of the phylogenetic tree for this clade. Bacteroids in all tested legumes proved to be larger in size and DNA content than cultured cells; however, the degree of cell elongation was rather variable in the different species. In addition, the reproductive ability of the bacteroids isolated from these legumes was remarkably reduced. In all IRLC species with available sequence data, the existence of NCR genes was found. These results indicate that IRLC legumes provoke terminal differentiation of their endosymbionts with different morphotypes, probably with the help of NCR peptides.

  1. Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies

    PubMed Central

    Zhu, Beibei; Sun, Yu; Qi, Lu; Zhong, Rong; Miao, Xiaoping

    2015-01-01

    Previous epidemiological studies on the relation between dietary legume consumption and risk of colorectal cancer (CRC) remain controversial. We conducted a meta-analysis based on prospective cohort studies to investigate the association between dietary legume consumption and risk of CRC. Fourteen cohort studies were finally included, containing a total of 1903459 participants and 12261 cases who contributed 11628960 person-years. We found that higher legume consumption was associated with a decreased risk of CRC (RR, relative risk = 0.91; 95% CI, confidence interval = 0.84–0.98). Subgroup analyses suggested that higher legume consumption was inversely associated with CRC risk in Asian (RR = 0.82; 95% CI = 0.74–0.91) and soybean intake was associated with a decreased risk of CRC (RR = 0.85; 95% CI = 0.73–0.99). Findings from our meta-analysis supported an association between higher intake of legume and a reduced risk of CRC. Further studies controlled for appropriate confounders are warranted to validate the associations. PMID:25739376

  2. Preparative Procedures Markedly Influence the Appearance and Structural Integrity of Protein Storage Vacuoles in Soybean Seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In legumes, vacuoles serve as the final depository for storage proteins. The protein storage vacuoles (PSVs) of soybean contain electron-transparent globoid regions in which phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) is sequestered. Here, I report the effect of preparative procedures o...

  3. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  4. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia.

    PubMed

    Wolde-Meskel, Endalkachew; Terefework, Zewdu; Frostegård, Asa; Lindström, Kristina

    2005-07-01

    The genetic diversity within 195 rhizobial strains isolated from root nodules of 18 agroforestry species (15 woody and three herbaceous legumes) growing in diverse ecoclimatic zones in southern Ethiopia was investigated by using PCR-RFLP of the ribosomal operon [16S rRNA gene, 23S rRNA gene and the internal transcribed spacer (ITS) region between the 16S rRNA and 23S rRNA genes] and 16S rRNA gene partial sequence (800 and 1350 bp) analyses. All of the isolates and the 28 reference strains could be differentiated by using these methods. The size of the ITS varied among test strains (500-1300 bp), and 58 strains contained double copies. UPGMA dendrograms generated from cluster analyses of the 16S and 23S rRNA gene PCR-RFLP data were in good agreement, and the combined distance matrices delineated 87 genotypes, indicating considerable genetic diversity among the isolates. Furthermore, partial sequence analysis of 67 representative strains revealed 46 16S rRNA gene sequence types, among which 12 were 100% similar to those of previously described species and 34 were novel sequences with 94-99% similarity to those of recognized species. The phylogenetic analyses suggested that strains indigenous to Ethiopia belonged to the genera Agrobacterium, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium and Sinorhizobium. Many of the rhizobia isolated from previously uninvestigated indigenous woody legumes had novel 16S rRNA gene sequences and were phylogenetically diverse. This study clearly shows that the characterization of symbionts of unexplored legumes growing in previously unexplored biogeographical areas will reveal additional diversity.

  5. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey.

    PubMed

    Irigoyen, J J; Goicoechea, N; Antolín, M C; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Morales, F

    2014-09-01

    Continued emissions of CO2, derived from human activities, increase atmospheric CO2 concentration. The CO2 rise stimulates plant growth and affects yield quality. Effects of elevated CO2 on legume quality depend on interactions with N2-fixing bacteria and mycorrhizal fungi. Growth at elevated CO2 increases photosynthesis under short-term exposures in C3 species. Under long-term exposures, however, plants generally acclimate to elevated CO2 decreasing their photosynthetic capacity. An updated survey of the literature indicates that a key factor, perhaps the most important, that characteristically influences this phenomenon, its occurrence and extent, is the plant source-sink balance. In legumes, the ability of exchanging C for N at nodule level with the N2-fixing symbionts creates an extra C sink that avoids the occurrence of photosynthetic acclimation. Arbuscular mycorrhizal fungi colonizing roots may also result in increased C sink, preventing photosynthetic acclimation. Defoliation (Anthyllis vulneraria, simulated grazing) or shoot cutting (alfalfa, usual management as forage) largely increases root/shoot ratio. During re-growth at elevated CO2, new shoots growth and nodule respiration function as strong C sinks that counteracts photosynthetic acclimation. In the presence of some limiting factor, the legumes response to elevated CO2 is weakened showing photosynthetic acclimation. This survey has identified limiting factors that include an insufficient N supply from bacterial strains, nutrient-poor soils, low P supply, excess temperature affecting photosynthesis and/or nodule activity, a genetically determined low nodulation capacity, an inability of species or varieties to increase growth (and therefore C sink) at elevated CO2 and a plant phenological state or season when plant growth is stopped. PMID:25113447

  6. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    PubMed

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.

  7. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.

    PubMed

    Lucas, Mitchell R; Huynh, Bao-Lam; da Silva Vinholes, Patricia; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J

    2013-01-01

    Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  8. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.

    PubMed

    Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi

    2014-01-01

    The stabilization of host-symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost-benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume-rhizobia symbioses, which is extendable to other single-host, multiple

  9. Rhizobial Diversity and Nodulation Characteristics of the Extremely Promiscuous Legume Sophora flavescens.

    PubMed

    Jiao, Yin Shan; Liu, Yuan Hui; Yan, Hui; Wang, En Tao; Tian, Chang Fu; Chen, Wen Xin; Guo, Bao Lin; Chen, Wen Feng

    2015-12-01

    In present study, we report our extensive survey on the diversity and biogeography of rhizobia associated with Sophora flavescens, a sophocarpidine (matrine)-containing medicinal legume. We additionally investigated the cross nodulation, infection pattern, light and electron microscopies of root nodule sections of S. flavescens infected by various rhizobia. Seventeen genospecies of rhizobia belonging to five genera with seven types of symbiotic nodC genes were found to nodulate S. flavescens in natural soils. In the cross-nodulation tests, most representative rhizobia in class α-Proteobacteria, whose host plants belong to different cross-nodulation groups, form effective indeterminate nodules, while representative rhizobia in class β-Proteobacteria form ineffective nodules on S. flavescens. Highly host-specific biovars of Rhizobium leguminosarum (bv. trifolii and bv. viciae) and Rhizobium etli bv. phaseoli could establish symbioses with S. flavescens, providing further evidence that S. flavescens is an extremely promiscuous legume and it does not have strict selectivity on either the symbiotic genes or the species-determining housekeeping genes of rhizobia. Root-hair infection is found as the pattern that rhizobia have gained entry into the curled root hairs. Electron microscopies of ultra-thin sections of S. flavescens root nodules formed by different rhizobia show that the bacteroids are regular or irregular rod shape and nonswollen types. Some bacteroids contain poly-β-hydroxybutyrate (PHB), while others do not, indicating the synthesis of PHB in bacteroids is rhizobia-dependent. The extremely promiscuous symbiosis between S. flavescens and different rhizobia provide us a basis for future studies aimed at understanding the molecular interactions of rhizobia and legumes. PMID:26389798

  10. Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis

    PubMed Central

    2014-01-01

    Background The nematode Pratylenchus neglectus has a wide host range and is able to feed on the root systems of cereals, oilseeds, grain and pasture legumes. Under the Mediterranean low rainfall environments of Australia, annual Medicago pasture legumes are used in rotation with cereals to fix atmospheric nitrogen and improve soil parameters. Considerable efforts are being made in breeding programs to improve resistance and tolerance to Pratylenchus neglectus in the major crops wheat and barley, which makes it vital to develop appropriate selection tools in medics. Results A strong source of tolerance to root damage by the root lesion nematode (RLN) Pratylenchus neglectus had previously been identified in line RH-1 (strand medic, M. littoralis). Using RH-1, we have developed a single seed descent (SSD) population of 138 lines by crossing it to the intolerant cultivar Herald. After inoculation, RLN-associated root damage clearly segregated in the population. Genetic analysis was performed by constructing a genetic map using simple sequence repeat (SSR) and gene-based SNP markers. A highly significant quantitative trait locus (QTL), QPnTolMl.1, was identified explaining 49% of the phenotypic variation in the SSD population. All SSRs and gene-based markers in the QTL region were derived from chromosome 1 of the sequenced genome of the closely related species M. truncatula. Gene-based markers were validated in advanced breeding lines derived from the RH-1 parent and also a second RLN tolerance source, RH-2 (M. truncatula ssp. tricycla). Comparative analysis to sequenced legume genomes showed that the physical QTL interval exists as a synteny block in Lotus japonicus, common bean, soybean and chickpea. Furthermore, using the sequenced genome information of M. truncatula, the QTL interval contains 55 genes out of which five are discussed as potential candidate genes responsible for the mapped tolerance. Conclusion The closely linked set of SNP-based PCR markers is

  11. Carbon metabolism in legume nodules. Progress report, July 1982-July 1983

    SciTech Connect

    LaRue, T.A.

    1983-01-01

    The goal is to understand how the legume nodule metabolizes carbohydrate to provide energy and reductant for symbiotic fixation. The working hypothesis has been that the plant cytosol is microacrobic and that some carbon metabolism may be via anaerobic pathways similar to those in roots of flood tolerant plants. A method of analyzing redox changes in intact mitochondria, bacteroids or bacteria was adapted; a method of manipulating nitrogenase activity by oxygen inhibition was developed; the production of alcohol by soybean nodules was studied; and enzymes metabolizing alcohol/aldehyde were found in other nitrogen fixing systems. (ACR)

  12. Seasonal and Species Variation of the Hepatotoxin Indospicine in Australian Indigofera Legumes As Measured by UPLC-MS/MS.

    PubMed

    Tan, Eddie T T; Materne, Christopher M; Silcock, Richard G; D'Arcy, Bruce R; Al Jassim, Rafat; Fletcher, Mary T

    2016-08-31

    Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine the indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analyzed. Of the 84 samples analyzed, *I. spicata (the asterisk indicates a naturalized species) contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species and at only low levels (<10 mg/kg DM) in 2 of 8 I. colutea specimens and in 1 of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha, *I. oblongifolia, I. australis, and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (from 159 to 2128 mg/kg DM, n = 51) and differs across both regions and seasons. Its first regrowth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only *I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing

  13. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.

    PubMed

    Del Cerro, Pablo; Rolla-Santos, Amanda A P; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  14. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  15. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis

    PubMed Central

    del Cerro, Pablo; Rolla-Santos, Amanda A. P.; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A.; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  16. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America.

    PubMed

    Chen, Wen-Ming; de Faria, Sergio M; Straliotto, Rosângela; Pitard, Rosa M; Simões-Araùjo, Jean L; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Elliott, Geoffrey N; Sprent, Janet I; Young, J Peter W; James, Euan K

    2005-11-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.

  17. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  18. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes.

    PubMed

    Baudin, Maël; Laloum, Tom; Lepage, Agnès; Rípodas, Carolina; Ariel, Federico; Frances, Lisa; Crespi, Martin; Gamas, Pascal; Blanco, Flavio Antonio; Zanetti, Maria Eugenia; de Carvalho-Niebel, Fernanda; Niebel, Andreas

    2015-12-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.

  19. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.

    PubMed

    Del Cerro, Pablo; Rolla-Santos, Amanda A P; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five