Science.gov

Sample records for leishmania major dihydroorotate

  1. Crystal structure of dihydroorotate dehydrogenase from Leishmania major.

    PubMed

    Cordeiro, Artur T; Feliciano, Patricia R; Pinheiro, Matheus P; Nonato, M Cristina

    2012-08-01

    Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases.

  2. The mechanistic study of Leishmania major dihydro-orotate dehydrogenase based on steady- and pre-steady-state kinetic analysis.

    PubMed

    Reis, Renata A G; Ferreira, Patricia; Medina, Milagros; Nonato, M Cristina

    2016-03-01

    Leishmania major dihydro-orotate dehydrogenase (DHODHLm) has been considered as a potential therapeutic target against leishmaniasis. DHODHLm, a member of class 1A DHODH, oxidizes dihydro-orotate (DHO) to orotate (ORO) during pyrimidine biosynthesis using fumarate (FUM) as the oxidizing substrate. In the present study, the chemistry of reduction and reoxidation of the flavin mononucleotide (FMN) cofactor in DHODHLm was examined by steady- and pre-steady state kinetics under both aerobic and anaerobic environments. Our results provide for the first time the experimental evidence of co-operative behaviour in class 1A DHODH regulated by DHO binding and reveal that the initial reductive flavin half-reaction follows a mechanism with two steps. The first step is consistent with FMN reduction and shows a hyperbolic dependence on the DHO concentration with a limiting rate (kred) of 110±6 s(-1) and a K(DHO) d of 180±27 μM. Dissociation of the reduced flavin-ORO complex corresponds to the second step, with a limiting rate of 6 s(-1). In the oxidative half-reaction, the oxygen-sensitive reoxidation of the reduced FMN cofactor of DHODHLm by FUM exhibited a hyperbolic saturation profile dependent on FUM concentration allowing estimation of K(FUM) d and the limiting rate (kreox) of 258±53 μM and 35±2 s(-1), respectively. Comparison between steady- and pre-steady-state parameters together with studies of interaction for DHODHLm with both ORO and succinate (SUC), suggests that ORO release is the rate-limiting step in overall catalysis. Our results provide evidence of mechanistic differences between class 1A and class 2 individual half-reactions to be exploited for the development of selective inhibitors.

  3. Mixed mucosal leishmaniasis infection caused by Leishmania tropica and Leishmania major.

    PubMed

    Shirian, Sadegh; Oryan, Ahmad; Hatam, Gholam Reza; Daneshbod, Yahya

    2012-11-01

    Mixed infections with different Leishmania species could explain differences in the clinical courses of these infections. On identification of Leishmania parasites from Iranian patients with mucosal leishmaniasis (ML), a patient with both oral and nasal lesions was found to be concomitantly infected with Leishmania tropica and L. major. Mixed infection was identified by PCR amplification of Leishmania kinetoplast DNA on scraping of cytological smears and histopathological sections. L. major and L. tropica were isolated from the nasal and oral lesions, respectively. These species were also confirmed by immunohistochemistry. This seems to be the first reported case of concurrent ML infection with two Leishmania species. It indicates that, at least in this patient, previous infection with one of these Leishmania species did not protect against infection with the other. This result has important implications for the development of vaccines against leishmaniases and implies careful attention in the treatment of this infectious disease.

  4. Structure of Leishmania major cysteine synthase

    PubMed Central

    Fyfe, Paul K.; Westrop, Gareth D.; Ramos, Tania; Müller, Sylke; Coombs, Graham H.; Hunter, William N.

    2012-01-01

    Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-­glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (K i = 4 µM) by DYVI, a peptide based on the C-­terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization. PMID:22750854

  5. Leishmania major, the predominant Leishmania species responsible for cutaneous leishmaniasis in Mali.

    PubMed

    Paz, Carlos; Samake, Sibiry; Anderson, Jennifer M; Faye, Ousmane; Traore, Pierre; Tall, Koureishi; Cisse, Moumine; Keita, Somita; Valenzuela, Jesus G; Doumbia, Seydou

    2013-03-01

    Leishmania major is the only species of Leishmania known to cause cutaneous leishmanisis (CL) in Mali. We amplified Leishmania DNA stored on archived Giemsa-stained dermal scraping slides obtained from self-referral patients with clinically suspected CL seen in the Center National d'Appui A La Lutte Contre La Maladie (CNAM) in Bamako, Mali, to determine if any other Leishmania species were responsible for CL in Mali and evaluate its geographic distribution. Polymerase chain reaction (PCR) amplification was performed using a Leishmania species-specific primer pair that can amplify DNA from L. major, L. tropica, L. infantum, and L. donovani parasites, possible causative agents of CL in Mali. L. major was the only species detected in 41 microscopically confirmed cases of CL from five regions of Mali (Kayes, Koulikoro, Ségou, Mopti, and Tombouctou). These results implicate L. major as the predominant, possibly exclusive species responsible for CL in Mali.

  6. Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: live imaging of coinfected macrophages.

    PubMed

    Real, Fernando; Mortara, Renato A; Rabinovitch, Michel

    2010-12-07

    Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms

  7. Fusion between Leishmania amazonensis and Leishmania major Parasitophorous Vacuoles: Live Imaging of Coinfected Macrophages

    PubMed Central

    Real, Fernando; Mortara, Renato A.; Rabinovitch, Michel

    2010-01-01

    Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes - which were destroyed - differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation – a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the

  8. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Fontana, Letícia Correa; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-07-01

    Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 μg/ml up to 7.8 μg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.

  9. Detection of Leishmania major and Leishmania tropica in domestic cats in the Ege Region of Turkey.

    PubMed

    Paşa, Serdar; Tetik Vardarlı, Aslı; Erol, Nural; Karakuş, Mehmet; Töz, Seray; Atasoy, Abidin; Balcıoğlu, İ Cüneyt; Emek Tuna, Gülten; Ermiş, Özge V; Ertabaklar, Hatice; Özbel, Yusuf

    2015-09-15

    Leishmaniosis is a group of diseases caused by different species of Leishmania parasites in mammalian species. The aim of the present study was to investigate the presence of Leishmania spp. DNA in cats using real time polymerase chain reaction (RT-PCR) assays targeting internal transcribed spacer (ITS1) and heat-shock protein 70 gene (Hsp70) regions with Leishmania species-specific primers and probes. Blood samples were collected from 147 cats (73 female; 74 male) in the endemic regions for zoonotic visceral leishmaniasis in the western provinces of Turkey and analyzed using two RT-PCR assays. Additionally, Hsp70 RT-PCR products were sequenced. ELISA assays for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) were also carried out for 145 of the 147 samples. Overall, 13/147 (8.84%) cats were positive for Leishmania by RT-PCR (4 L. major and 9 L. tropica). FIV and FeLV antibody and/or antigen was detected in 4 and 5 cats among Leishmania DNA positives, respectively. To the best of our knowledge, this study is the first to investigate and report the presence of L. major and L. tropica infections in a large group of domestic cats in Turkey. The results obtained indicate that species identification of Leishmania is essential for epidemiological understanding and that clinical signs alone are not indicative for leishmaniosis in cats, as it is in dogs. This study suggests that extensive research should be carried out in cat populations in order to fully understand the role of cats in the epidemiology of the disease.

  10. Fitness and Phenotypic Characterization of Miltefosine-Resistant Leishmania major.

    PubMed

    Turner, Kimbra G; Vacchina, Paola; Robles-Murguia, Maricela; Wadsworth, Mariha; McDowell, Mary Ann; Morales, Miguel A

    2015-01-01

    Trypanosomatid parasites of the genus Leishmania are the causative agents of leishmaniasis, a neglected tropical disease with several clinical manifestations. Leishmania major is the causative agent of cutaneous leishmaniasis (CL), which is largely characterized by ulcerative lesions appearing on the skin. Current treatments of leishmaniasis include pentavalent antimonials and amphotericin B, however, the toxic side effects of these drugs and difficulty with distribution makes these options less than ideal. Miltefosine (MIL) is the first oral treatment available for leishmaniasis. Originally developed for cancer chemotherapy, the mechanism of action of MIL in Leishmania spp. is largely unknown. While treatment with MIL has proven effective, higher tolerance to the drug has been observed, and resistance is easily developed in an in vitro environment. Utilizing stepwise selection we generated MIL-resistant cultures of L. major and characterized the fitness of MIL-resistant L. major. Resistant parasites proliferate at a comparable rate to the wild-type (WT) and exhibit similar apoptotic responses. As expected, MIL-resistant parasites demonstrate decreased susceptibility to MIL, which reduces after the drug is withdrawn from culture. Our data demonstrate metacyclogenesis is elevated in MIL-resistant L. major, albeit these parasites display attenuated in vitro and in vivo virulence and standard survival rates in the natural sandfly vector, indicating that development of experimental resistance to miltefosine does not lead to an increased competitive fitness in L. major.

  11. An agent-based model for Leishmania major infection

    NASA Astrophysics Data System (ADS)

    Dancik, Garrett M.; Jones, Douglas E.; Dorman, Karin S.

    Leishmania are protozoan parasites transmitted by bites of infected sandflies. Over 20 species of Leishmania, endemic in 88 countries, are capable of causing human disease. Disease is either cutaneous, where skin ulcers occur on exposed surfaces of the body, or visceral, with near certain mortality if left untreated. C3HeB/FeJ mice are resistant to L. major, but develop chronic cutaneous lesions when infected with another species L. amazonensis. The well-characterized mechanism of resistance to L. major depends on a CD4+ Thl immune response, macrophage activation, and elimination of the parasite [Sacks 2002]. The factors that account for host susceptibility to L. Amazonensis, however, are not completely understood, despite being generally attributed to a weakened Th1 response [Vanloubbeck 2004].

  12. An agent-based model for Leishmania major infection

    NASA Astrophysics Data System (ADS)

    Dancik, Garrett M.; Jones, Douglas E.; Dorman, Karin S.

    Leishmania are protozoan parasites transmitted by bites of infected sandflies. Over 20 species of Leishmania, endemic in 88 countries, are capable of causing human disease. Disease is either cutaneous, where skin ulcers occur on exposed surfaces of the body, or visceral, with near certain mortality if untreated. C3HeB/FeJ mice are resistant to L. major, but develop chronic cutaneous lesions when infected with another species L. amazonensis. The well-characterized mechanism of resistance to L. major depends on a CD4+ Thl immune response, macrophage activation, and elimination of the parasite [Sacks 2002]. The factors that account for host susceptibility to L. Amazonensis, however, are not completely understood, despite being generally attributed to a weakened Th1 response [Vanloubbeck 2004].

  13. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major.

    PubMed

    Lye, Lon-Fye; Kang, Song Ok; Nosanchuk, Joshua D; Casadevall, Arturo; Beverley, Stephen M

    2011-01-01

    Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.

  14. Glycosome turnover in Leishmania major is mediated by autophagy

    PubMed Central

    Cull, Benjamin; Prado Godinho, Joseane Lima; Fernandes Rodrigues, Juliany Cola; Frank, Benjamin; Schurigt, Uta; Williams, Roderick AM; Coombs, Graham H; Mottram, Jeremy C

    2015-01-01

    Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ∼20 glycosomes per cell, whereas amastigotes contain ∼10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ∼15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the

  15. Identification of geographically distributed sub-populations of Leishmania (Leishmania) major by microsatellite analysis

    PubMed Central

    2008-01-01

    Background Leishmania (Leishmania) major, one of the agents causing cutaneous leishmaniasis (CL) in humans, is widely distributed in the Old World where different species of wild rodent and phlebotomine sand fly serve as animal reservoir hosts and vectors, respectively. Despite this, strains of L. (L.) major isolated from many different sources over many years have proved to be relatively uniform. To investigate the population structure of the species highly polymorphic microsatellite markers were employed for greater discrimination among it's otherwise closely related strains, an approach applied successfully to other species of Leishmania. Results Multilocus Microsatellite Typing (MLMT) based on 10 different microsatellite markers was applied to 106 strains of L. (L.) major from different regions where it is endemic. On applying a Bayesian model-based approach, three main populations were identified, corresponding to three separate geographical regions: Central Asia (CA); the Middle East (ME); and Africa (AF). This was congruent with phylogenetic reconstructions based on genetic distances. Re-analysis separated each of the populations into two sub-populations. The two African sub-populations did not correlate well with strains' geographical origin. Strains falling into the sub-populations CA and ME did mostly group according to their place of isolation although some anomalies were seen, probably, owing to human migration. Conclusion The model- and distance-based analyses of the microsatellite data exposed three main populations of L. (L.) major, Central Asia, the Middle East and Africa, each of which separated into two sub-populations. This probably correlates with the different species of rodent host. PMID:18577226

  16. In Vitro and In Vivo Antileishmanial Effects of Pistacia khinjuk against Leishmania tropica and Leishmania major

    PubMed Central

    Saedi Dezaki, Ebrahim; Mahmoudvand, Hossein; Azadpour, Mojgan; Ezzatkhah, Fatemeh

    2015-01-01

    The present study aims to evaluate the in vitro and in vivo antileishmanial activities of Pistacia khinjuk Stocks (Anacardiaceae) alcoholic extract and to compare its efficacy with a reference drug, meglumine antimoniate (MA, Glucantime), against Leishmania tropica and Leishmania major. This extract (0–100 µg/mL) was evaluated in vitro against promastigote and intracellular amastigote forms of L. tropica (MRHO/IR/75/ER) and then tested on cutaneous leishmaniasis (CL) in male BALB/c mice with L. major to reproduce the antileishmanial activity topically. In vitro, P. khinjuk extract significantly (P < 0.05) inhibited the growth rate of promastigote (IC50 58.6 ± 3.2 µg/mL) and intramacrophage amastigotes (37.3 ± 2.5 µg/mL) of L. tropica as a dose-dependent response. In the in vivo assay, after 30 days of treatment, 75% recovery was observed in the infected mice treated with 30% extract. After treatment of the subgroups with the concentration of 20 and 30% of P. khinjuk extract, mean diameter of lesions was significantly (P < 0.05) reduced. To conclude, the present investigation demonstrated that P. vera extract had in vitro and in vivo effectiveness against L. major. Obtained findings also provide the scientific evidences that natural plants could be used in the traditional medicine for the prevention and treatment of CL. PMID:25815025

  17. In Vitro and In Vivo Antileishmanial Effects of Pistacia khinjuk against Leishmania tropica and Leishmania major.

    PubMed

    Ezatpour, Behrouz; Saedi Dezaki, Ebrahim; Mahmoudvand, Hossein; Azadpour, Mojgan; Ezzatkhah, Fatemeh

    2015-01-01

    The present study aims to evaluate the in vitro and in vivo antileishmanial activities of Pistacia khinjuk Stocks (Anacardiaceae) alcoholic extract and to compare its efficacy with a reference drug, meglumine antimoniate (MA, Glucantime), against Leishmania tropica and Leishmania major. This extract (0-100 µg/mL) was evaluated in vitro against promastigote and intracellular amastigote forms of L. tropica (MRHO/IR/75/ER) and then tested on cutaneous leishmaniasis (CL) in male BALB/c mice with L. major to reproduce the antileishmanial activity topically. In vitro, P. khinjuk extract significantly (P < 0.05) inhibited the growth rate of promastigote (IC50 58.6 ± 3.2 µg/mL) and intramacrophage amastigotes (37.3 ± 2.5 µg/mL) of L. tropica as a dose-dependent response. In the in vivo assay, after 30 days of treatment, 75% recovery was observed in the infected mice treated with 30% extract. After treatment of the subgroups with the concentration of 20 and 30% of P. khinjuk extract, mean diameter of lesions was significantly (P < 0.05) reduced. To conclude, the present investigation demonstrated that P. vera extract had in vitro and in vivo effectiveness against L. major. Obtained findings also provide the scientific evidences that natural plants could be used in the traditional medicine for the prevention and treatment of CL.

  18. Protective immunity against Leishmania major induced by Leishmania tropica infection of BALB/c mice.

    PubMed

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2011-02-01

    Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4(+) lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4(-) lymphocyte up to one month post-challenge suggesting that CD4(-) lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.

  19. A proposed role for Leishmania major carboxypeptidase in peptide catabolism

    PubMed Central

    Isaza, Clara E.; Zhong, Xuejun; Rosas, Lucia E.; White, James D.; Chen, Rita P.-Y.; Liang, George F.-C.; Chan, Sunney I.; Satoskar, Abhay R.; Chan, Michael K.

    2008-01-01

    Leishmaniasis is a tropical disease caused by Leishmania, eukaryotic parasites transmitted to humans by sand flies. Towards the development of new chemotherapeutic targets for this disease, biochemical and in vivo expression studies were performed on one of two M32 carboxypeptidases present within the Leishmania major (LmaCP1) genome. Enzymatic studies reveal that like previously studied M32 carboxypeptidases, LmaCP1 cleaves substrates with a variety of C-terminal amino acids - the primary exception being those having C-terminal acidic residues. Cleavage assays with a series of FRET-based peptides suggest that LmaCP1 exhibits a substrate length restriction, preferring peptides shorter than 9–12 amino acids. The in vivo expression of LmaCP1 was analyzed for each major stage of the L. major life cycle. These studies reveal that LmaCP1 expression occurs only in procyclic promastigotes – the stage of life where the organism resides in the abdominal midgut of the insect. The implications of these results are discussed. PMID:18539138

  20. Effect of Amphotericin B Nanodisks on Leishmania major Infected Mice

    PubMed Central

    Cole, PA; Bishop, JV; Beckstead, JA; Titus, R; Ryan, RO

    2014-01-01

    Objective To assess the efficacy of a novel formulation of the polyene antibiotic, amphotericin B (AMB), as therapy for cutaneous leishmaniasis in different mouse strains. Methods (AMB), was formulated into water-soluble transport particles, termed nanodisks (ND). Balb/c and CH3 mice infected with Leishmania major on Day 0 were administered vehicle alone, empty ND or AMB-ND on Day 1 and day 7, via the tail vein. Mice were sacrificed 25 or 50 days post inoculation and tissue histology evaluated. Balb/c mice treated with vehicle or empty ND showed signs of severe infection while CH3 mice had less inflammation and fewer parasites. AMB-ND treatment (2 mg/kg) had a marked therapeutic effect on L. major infected Balb/c mice and a discernable therapeutic benefit on CH3 mice. Conclusions AMB-ND is efficacious in the treatment of cutaneous leishmaniasis in both susceptible and resistant mouse strains. It may be inferred that AMB-ND may be useful for prophylactic and/or treatment of early stage Leishmania spp. infection. PMID:25584195

  1. Structure of the SAS-6 cartwheel hub from Leishmania major

    PubMed Central

    van Breugel, Mark; Wilcken, Rainer; McLaughlin, Stephen H; Rutherford, Trevor J; Johnson, Christopher M

    2014-01-01

    Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Leishmania major SAS-6 crystallizes as a 9-fold symmetric cartwheel and provide the X-ray structure of this assembly at a resolution of 3.5 Å. We furthermore demonstrate that oligomerization of Leishmania SAS-6 can be inhibited by a small molecule in vitro and provide indications for its binding site. Our results firmly establish that SAS-6 can impose cartwheel symmetry on its own and indicate how this process might occur mechanistically in vivo. Importantly, our data also provide a proof-of-principle that inhibition of SAS-6 oligomerization by small molecules is feasible. DOI: http://dx.doi.org/10.7554/eLife.01812.001 PMID:24596152

  2. Structure of the SAS-6 cartwheel hub from Leishmania major.

    PubMed

    van Breugel, Mark; Wilcken, Rainer; McLaughlin, Stephen H; Rutherford, Trevor J; Johnson, Christopher M

    2014-01-01

    Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Leishmania major SAS-6 crystallizes as a 9-fold symmetric cartwheel and provide the X-ray structure of this assembly at a resolution of 3.5 Å. We furthermore demonstrate that oligomerization of Leishmania SAS-6 can be inhibited by a small molecule in vitro and provide indications for its binding site. Our results firmly establish that SAS-6 can impose cartwheel symmetry on its own and indicate how this process might occur mechanistically in vivo. Importantly, our data also provide a proof-of-principle that inhibition of SAS-6 oligomerization by small molecules is feasible. DOI: http://dx.doi.org/10.7554/eLife.01812.001.

  3. Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro.

    PubMed

    Doroodgar, Masoud; Delavari, Mahdi; Doroodgar, Moein; Abbasi, Ali; Taherian, Ali Akbar; Doroodgar, Abbas

    2016-02-01

    Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 μg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 μg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.

  4. The first detection of Leishmania major in naturally infected Sergentomyia minuta in Portugal

    PubMed Central

    Campino, Lenea; Cortes, Sofia; Dionísio, Lídia; Neto, Luís; Afonso, Maria Odete; Maia, Carla

    2013-01-01

    Phlebotomine sandflies of the genus Sergentomyia are widely distributed throughout the Old World. It has been suggested that Sergentomyia spp are involved in the transmission of Leishmania in India and Africa, whereas Phlebotomus spp are thought to be the sole vectors of Leishmania in the Old World. In this study, Leishmania major DNA was detected in one Sergentomyia minuta specimen that was collected in the southern region of Portugal. This study challenges the dogma that Leishmania is exclusively transmitted by species of the genus Phlebotomus in the Old World. PMID:23828004

  5. Expression and subcellular localization of ORC1 in Leishmania major

    SciTech Connect

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-10-10

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.

  6. Holothuria leucospilota Extract Induces Apoptosis in Leishmania major Promastigotes

    PubMed Central

    FOROUTAN-RAD, Masoud; KHADEMVATAN, Shahram; SAKI, Jasem; HASHEMITABAR, Mahmoud

    2016-01-01

    Background: The present study aimed to survey antileishmanial activity of methanolic Holothuria leucospilota extract against Leishmania major promastigotes in vitro. Methods: Promastigotes were cultured in RPMI 1640 and after reaching the stationary phase, the study was conducted with different concentrations of the extract. Afterwards, MTT colorimetric assay for the obtaining of 50% inhibitory concentration (IC50) was utilized. Furthermore, in order to determine the possible induction of apoptosis in L. major promastigotes, flow cytometry and DNA fragmentation methods were employed using annexin-V FLUOS staining kit and DNA ladder kit, respectively. Results: The IC50 value of H. leucospilota extract at three time points of 24, 48, and 72 h was estimated 2000, 300 and 85 μg/ml, respectively. In addition, the extract revealed a dose and time-dependent antileishmanial activity. Furthermore, various characteristics of apoptosis appeared after L. major promastigotes treatment, which included cell shrinkage, formation of apoptotic bodies, blebbing of the cell membrane, and externalization of phosphatidylserine, although no laddering pattern was observed. Conclusion: The methanolic extract of H. leucospilota possesses lethal effect on L. major promastigotes and induces the apoptosis in parasites. Further studies are required to address the apoptosis mechanism in vivo. PMID:28127339

  7. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major

    PubMed Central

    Chavali, Arvind K; Whittemore, Jeffrey D; Eddy, James A; Williams, Kyle T; Papin, Jason A

    2008-01-01

    Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets. PMID:18364711

  8. Leishmania tropica infection, in comparison to Leishmania major, induces lower delayed type hypersensitivity in BALB/c mice.

    PubMed

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2007-06-01

    Leishmania tropica and L. major are etiologic agents of human cutaneous leishmaniasis. Delayed type hypersensitivity (DTH) is an immunologic response that has been frequently used as a correlate for protection against or sensitization to leishmania antigen. In BALB/c mice, L. tropica infection results in non-ulcerating disease, whereas L. major infection results in destructive lesions. In order to clarify the immunologic mechanisms of these 2 different outcomes, we compared the ability of these 2 leishmania species in induction of DTH response in this murine model. BALB/c mice were infected with L. major or L. tropica, and disease evolution and DTH responses were determined. The results show that the primary L. major infection can exacerbate the secondary L. major infection and is associated with DTH response. Higher doses of the primary L. major infection result in more disease exacerbation of the secondary L. major infection as well as higher DTH response. L. tropica infection induces lower DTH responses than L. major. We have previously reported that the primary L. tropica infection induces partial protection against the secondary L. major infection in BALB/c mice. Induction of lower DTH response by L. tropica suggests that the protection induced against L. major by prior L. tropica infection may be due to suppression of DTH response.

  9. The activity of ozonated olive oil against Leishmania major promastigotes

    PubMed Central

    Rajabi, Omid; Sazgarnia, Ameneh; Abbasi, Fatemeh; Layegh, Pouran

    2015-01-01

    Objective(s): Cutaneous Leishmaniasis is a common and endemic disease in Khorasan province in North-East of Iran. The pentavalant antimony (Sb V) is the mainstay of treatment that has many side effects and resistance to the drug has been reported. The microbicidal effect of ozone was proven in different microorganisms. Since there is no study in this respect and to achieve a low cost and effective treatment, we decided to evaluate the efficacy of ozone against promastigotes of Leishmania major, in vitro. Materials and Methods: Ozonated olive oil was prepared after production of ozone by bubbling ozone-oxygen gas produced by ozone generator through olive oil until it solidified. Promastigotes of L. major were cultivated in two phasic media. After calculation of the number of promastigotes, they were incubated with ozonated olive oil (0, 0.626, 0.938, 1.25, 2.5, 5, 10 mcg/ml) at 28 °c for 24 hr. Parasites survival percentage was evaluated using MTS and microscopic assay, and then compared with Glucantime and non-ozonated olive oil. Results: According to the results, there were significant differences in parasites survival percentage between ozonated olive oil and non-ozonated olive oil, at similar concentrations (P<0.001). Ozonated olive oil was more effective than Glucantime. According to MTS results, Glucantime and ozonated olive oil gel concentrations that are required to inhibit the growth of L. major promastigotes by 50% (IC50), were 165 and 0.002 mg/ml, respectively. Conclusion: Ozonated olive oil has in vitro activity against the promastigotes of L. major and this effect is dose dependent. PMID:26523224

  10. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species.

    PubMed

    Lage, Daniela Pagliara; Martins, Vívian Tamietti; Duarte, Mariana Costa; Costa, Lourena Emanuele; Tavares, Grasiele de Sousa Vieira; Ramos, Fernanda Fonseca; Chávez-Fumagalli, Miguel Angel; Menezes-Souza, Daniel; Roatt, Bruno Mendes; Tavares, Carlos Alberto Pereira; Coelho, Eduardo Antonio Ferraz

    2016-06-01

    Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis.

  11. Inhibition by Dications of in vitro growth of Leishmania major and Leishmania tropica: causative agents of old world cutaneous leishmaniasis.

    PubMed

    Rosypal, Alexa C; Werbovetz, Karl A; Salem, Manar; Stephens, Chad E; Kumar, Arvind; Boykin, David W; Hall, James E; Tidwell, Richard R

    2008-06-01

    Old World cutaneous leishmaniasis is caused by infection with Leishmania major and Leishmania tropica. Pentamidine and related dications exhibit broad spectrum antiprotozoal activity. Based on the previously reported efficacy of these compounds against related organisms, 18 structural analogs of pentamidine were evaluated for in vitro antileishmanial activity, using pentamidine as the standard reference drug for comparison. Furan analogs and reversed amidine compounds were examined for activity against L. major and L. tropica promastigotes. The most active compounds against both Leishmania species were in the reversed amidine series. DB745 and DB746 exhibited the highest activity against L. major and DB745 was the most active compound against L. tropica. Both of these compounds exhibited 50% inhibitory concentrations (IC50) below 1 nM for L. major. Ten reversed amidines were also tested for their ability to inhibit growth in an axenic amastigote model. Nine of 10 reversed amidine analogs were active at concentrations below 1 nM. These results justify further study of dicationic compounds as potential new agents for treating cutaneous leishmaniasis.

  12. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages

    PubMed Central

    Saunders, Eleanor C.; Kloehn, Joachim; Rupasinghe, Thusitha W.; Brown, Tracey J.; McConville, Malcolm J.

    2015-01-01

    Abstract Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites. PMID:26334531

  13. Mycobacterium hsp65 DNA entrapped into TDM-loaded PLGA microspheres induces protection in mice against Leishmania (Leishmania) major infection.

    PubMed

    Coelho, Eduardo Antonio Ferraz; Tavares, Carlos Alberto Pereira; Lima, Karla de Melo; Silva, Célio Lopes; Rodrigues, José Maciel; Fernandes, Ana Paula

    2006-05-01

    Heat shock proteins (HSPs) are highly conserved among different organisms. A mycobacterial HSP65 DNA vaccine was previously shown to have prophylactic and immunotherapeutic effects against Mycobacterium tuberculosis infection in mice. Here, BALB/c mice were immunized with mycobacterial DNA-hsp65 or with DNA-hsp65 and trehalose dymicolate (TDM), both carried by biodegradable microspheres (MHSP/TDM), and challenged with Leishmania (Leishmania) major. MHSP/TDM conferred protection against L. major infection, as indicated by a significant reduction of edema and parasite loads in infected tissues. Although high levels of interferon-gamma and low levels of interleukin (IL)-4 and IL-10 were detected in mice immunized with DNA-hsp65 or MHSP/TDM, only animals immunized with MHSP/TDM displayed a consistent Th1 immune response, i.e., significantly higher levels of anti-soluble Leishmania antigen (SLA) immunoglobulin G (IgG)2a and low anti-SLA IgG1 antibodies. These findings indicate that encapsulated MHSP/TDM is more immunogenic than naked hsp65 DNA, and has great potential to improve vaccine effectiveness against leishmaniasis and tuberculosis.

  14. Cluster of zoonotic cutaneous leishmaniasis (Leishmania major) in European travelers returning from Turkmenistan.

    PubMed

    Larréché, Sébastien; Launay, Grégoire; Weibel Galluzzo, Christelle; Bousquet, Aurore; Eperon, Gilles; Pilo, Jean-Etienne; Ravel, Christophe; Chappuis, François; Dupin, Michel; Mérens, Audrey

    2013-01-01

    We report a cluster of cutaneous leishmaniasis due to Leishmania major in four immunocompetent travelers returning from Western Turkmenistan and having atypical and/or multiple lesions. Treatments with pentamidine or fluconazole were effective. Physicians should be aware that some virulent strains of L major currently circulate in Central Asia.

  15. The route of Leishmania tropica infection determines disease outcome and protection against Leishmania major in BALB/c mice.

    PubMed

    Mahmoudzadeh-Niknam, Hamid; Khalili, Ghader; Abrishami, Firoozeh; Najafy, Ali; Khaze, Vahid

    2013-02-01

    Leishmania tropica is one of the causative agents of leishmaniasis in humans. Routes of infection have been reported to be an important variable for some species of Leishmania parasites. The role of this variable is not clear for L. tropica infection. The aim of this study was to explore the effects of route of L. tropica infection on the disease outcome and immunologic parameters in BALB/c mice. Two routes were used; subcutaneous in the footpad and intradermal in the ear. Mice were challenged by Leishmani major, after establishment of the L. tropica infection, to evaluate the level of protective immunity. Immune responses were assayed at week 1 and week 4 after challenge. The subcutaneous route in the footpad in comparison to the intradermal route in the ear induced significantly more protective immunity against L. major challenge, including higher delayed-type hypersensitivity responses, more rapid lesion resolution, lower parasite loads, and lower levels of IL-10. Our data showed that the route of infection in BALB/c model of L. tropica infection is an important variable and should be considered in developing an appropriate experimental model for L. tropica infections.

  16. Leishmania in the Old World: 1. The geographical and hostal distribution of L. major zymodemes.

    PubMed

    Le Blancq, S M; Schnur, L F; Peters, W

    1986-01-01

    135 stocks of Leishmania major from man, reservoir hosts and sandflies were characterized using thin-layer starch-gel electrophoresis of 13 enzymes: MDH, 6PGD, GD, SOD, ASAT, ALAT, PK, PGM, ES, NH, PEPD, MPI, GPI. Homogeneity in this species was demonstrated by identical electrophoretic mobilities in nine enzymes. Polymorphism in four enzymes: 6PGD, GPI, PEPD, ES, gave six zymodemes among the collection. Stocks from sandflies and several species of burrowing rodents were indistinguishable from those from man in the same areas. Stocks of Leishmania from North-West India were identified as L. major. In some foci the distribution of zymodemes has some correlation with the presence of particular rodent reservoir hosts. The enzymic homogeneity of L. major throughout its geographical and host range appears to be correlated with the close association between L. major and sandflies of the subgenus Phlebotomus. The status of L. major as a distinct species is supported.

  17. The associations of Leishmania major and Leishmania tropica aspects by focusing their morphological and molecular features on clinical appearances in Khuzestan Province, Iran.

    PubMed

    Spotin, Adel; Rouhani, Soheila; Parvizi, Parviz

    2014-01-01

    Cutaneous leishmaniasis has various phenotypic aspects consisting of polymorphic amastigotes with different genetic ranges. Samples were collected from suspected patients of Khuzestan province. Prepared smears were stained, scaled, and measured using ocular micrometer. The Cyt b, ITS-rDNA, and microsatellite genes of Leishmania were amplified and Leishmania species were identified by molecular analyses. Of 150 examined suspected patients, 102 were identified to Leishmania species (90 L. major, nine L. tropica, and three unidentified). The amastigotes of 90 L. major had regular and different irregular shapes within three clinical lesions with no and/or low genetic diversity. Three haplotypes of Cyt b of L. major were found but no variation was observed using ITS-rDNA gene. Interesting findings were that all nine L. tropica had regular amastigote shapes with more genetic variations, also a patient which had coinfection of L. major, L. tropica, and Crithidia. At least two L. major and L. tropica were identified in suspected patients of the regions. Different irregular amastigotes' shapes of L. major can be explained by various reservoir hosts and vectors. In contrast, more molecular variations in L. tropica could be justified by genetic characters. Unidentified Leishmania could be mixed pathogens or nonpathogens with mammals' Leishmania or Crithidia.

  18. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection

    PubMed Central

    Rabhi, Sameh; Rabhi, Imen; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Goyard, Sophie; Lang, Thierry; Descoteaux, Albert; Enninga, Jost; Guizani-Tabbane, Lamia

    2016-01-01

    Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source. PMID:26871576

  19. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection.

    PubMed

    Rabhi, Sameh; Rabhi, Imen; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Goyard, Sophie; Lang, Thierry; Descoteaux, Albert; Enninga, Jost; Guizani-Tabbane, Lamia

    2016-01-01

    Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.

  20. Vectorial competence of Phlebotomus papatasi (Diptera: Psychodidae) to transmit two old world Leishmania species: Leishmania major and L. Tropica.

    PubMed

    Darwish, A B; Tewfick, M K; Doha, S A; Abo-Ghalia, A H; Soliman, B A

    2011-12-01

    The vectorial competence of Phlebotomus papatasi for two old world Leishmania species, L. major & L. tropica was investigated. Phlebotomus papatasi originally collected from Suez Governorate, were membrane fed on homogenized hamster's lesion infected with L. major, MHOM/EG/06/RTC-63, and L. tropica, MGER/EG/06/RTC-74 identified from patients with suspected CL in Northern Sinai, Egypt. Fed flies were dissected at different time intervals and examined microscopically to determine the infection rate and parasite intensity. The feeding rate of P. papatasi on L. major (58.69%) was found higher than on L. tropica (45.99%). Infection rate with L. major (60.19%) was significantly higher than that with L. tropica (39.73%). Transmission by bites in case of P. papatasi/L. tropica failed. A characteristic L. major lesion was developed on the foot pads region 120 days post infective bites on healthy hamster. It is therefore concluded that P. papatasi is a much more effective vector for L. major than for L. tropica.

  1. Dataset for distribution of SIDER2 elements in the Leishmania major genome and transcriptome.

    PubMed

    Requena, Jose M; Rastrojo, Alberto; Garde, Esther; López, Manuel C; Thomas, M Carmen; Aguado, Begoña

    2017-04-01

    This paper contains data related to the research article entitled "Genomic cartography and proposal of nomenclature for the repeated, interspersed elements of the Leishmania major SIDER2 family and identification of SIDER2-containing transcripts" [1]. SIDER2 elements are repeated sequences, derived from, nowadays, extinct retrotransposons, that populate the genomes of protist of the genera Leishmania. This dataset (Supplementary file 1), an inventory of 1100 SIDER2 elements, was generated by surveying the L. major complete genome using bioinformatics tools with further manual refinements. In addition to the genomic distribution of these elements (summarized in Fig. 1), this dataset contains information regarding their association with specific transcripts, based on the recently established transcriptome for L. major[2].

  2. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells

    PubMed Central

    Hellberg, Lars; Köhl, Jörg; Laskay, Tamás

    2017-01-01

    Neutrophil granulocytes are the first leukocytes that encounter and phagocytose Leishmania major (L. major) parasites in the infected skin. The parasites can nonetheless survive within neutrophils. However, the mechanisms enabling the survival of Leishmania within neutrophils are still elusive. Previous findings indicated that human neutrophils can engulf apoptotic cells. Since apoptotic neutrophils are abundant in infected tissues, we hypothesized that the uptake of apoptotic cells results in diminished anti-leishmanial activity and, consequently, contributes to enhanced survival of the parasites at the site of infection. In the present study, we demonstrated that L. major-infected primary human neutrophils acquire enhanced capacity to engulf apoptotic cells. This was associated with increased expression of the complement receptors 1 and 3 involved in phagocytosis of apoptotic cells. Next, we showed that ingestion of apoptotic cells affects neutrophil antimicrobial functions. We observed that phagocytosis of apoptotic cells by neutrophils downregulates the phosphorylation of p38 MAPK and PKCδ, the kinases involved in activation of NADPH oxidase and hence reactive oxygen species (ROS) production. In line, uptake of apoptotic cells inhibits TNF- and L. major-induced ROS production by neutrophils. Importantly, we found that the survival of Leishmania in neutrophils is strongly enhanced in neutrophils exposed to apoptotic cells. Together, our findings reveal that apoptotic cells promote L. major survival within neutrophils by downregulating critical antimicrobial functions. This suggests that the induction of enhanced uptake of apoptotic cells represents a novel evasion mechanism of the parasites that facilitates their survival in neutrophil granulocytes. PMID:28187163

  3. Previous exposure to a low infectious dose of Leishmania major exacerbates infection with Leishmania infantum in the susceptible BALB/c mouse.

    PubMed

    Nation, Catherine S; Dondji, Blaise; Stryker, Gabrielle A

    2012-09-01

    The geographic distribution of Leishmania major overlaps with several other species of Leishmania. This study seeks to examine what effect previous exposure to L. major has on the outcome of infection with Leishmania infantum, the agent of virulent visceral leishmaniasis. The L. major immune response is well characterized by a strong Th1 response leading to resolution and protection against subsequent re-infection. A contrasting Th2 immune response leads to disseminated disease, while the role Th17 cytokines may play in Leishmania infection is still being explored. The cytokine profile, antibody titer, and parasite burden were evaluated in the susceptible BALB/c mouse after L. infantum infection in either naïve mice or those previously infected with a low/self-healing dose of L. major. Only IL-4 expression in mice previously exposed to L. major was found to be significantly increased over controls, a cytokine with an ambiguous role in L. infantum infection. However, disease exacerbation, with a notably higher parasite burden, was observed in the L. major exposed mice compared to the L. infantum only. Cross-reactive antibodies were seen in both groups of infected mice regardless of their immune history. Studies have shown a role for opsonizing antibodies leading to increased disease in visceral leishmaniasis. We speculate that cross-reactive antibodies may be playing a role in augmenting visceral disease in mice with immunological memory to L. major.

  4. Expression of a hydrophilic surface protein in infective stages of Leishmania major.

    PubMed

    Flinn, H M; Rangarajan, D; Smith, D F

    1994-06-01

    A family of differentially expressed genes from Leishmania major contains one sequence (Gene B) that encodes a novel, hydrophilic protein found on the surface of infective parasite stages. The 177-residue, acidic Gene B protein is characterised by an amino acid repetitive element, comprising 45% of the total molecule, that is related to the cell-wall binding domain of protein A from Staphylococcus aureus. No identifiable signal peptide, membrane-spanning domain or consensus for glycosylphosphatidylinositol anchor attachment to the cell surface is found elsewhere in the deduced protein sequence. In vitro, the Gene B protein fractionates with the parasite cell surface glycoconjugates, lipophosphoglycan and the glycoinositolphospholipids. This protein is the first characterised surface peptide marker for infective stages of the Leishmania life cycle.

  5. Fumarate hydratase isoforms of Leishmania major: subcellular localization, structural and kinetic properties.

    PubMed

    Feliciano, Patrícia R; Gupta, Shreedhara; Dyszy, Fabio; Dias-Baruffi, Marcelo; Costa-Filho, Antonio J; Michels, Paul A M; Nonato, M Cristina

    2012-01-01

    Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs.

  6. The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi.

    PubMed

    Hsiao, Chia-Hung Christine; Yao, Chaoqun; Storlie, Patricia; Donelson, John E; Wilson, Mary E

    2008-02-01

    The Leishmania spp. protozoa have an abundant surface metalloprotease called MSP (major surface protease), which in Leishmania chagasi is encoded by three distinct gene classes (MSPS, MSPL, MSPC). Although MSP has been characterized primarily in extracellular promastigotes, it also facilitates survival of intracellular amastigotes. Promastigotes express MSPS, MSPL, and two forms of MSPC RNAs, whereas amastigotes express only MSPL RNA and one MSPC transcript. We confirmed the presence of MSPC protein in both promastigotes and amastigotes by liquid chromatography-tandem mass spectrometry (LC-MS/MS). More than 10 MSP isoforms were visualized in both amastigotes and promastigotes using two-dimensional immunoblots, but amastigote MSPs migrated at a more acidic pI. Promastigote MSPs were N-glycosylated, whereas most amastigote MSPs were not. Immuno-electron microscopy showed that two-thirds of the promastigote MSP is distributed along the cell surface. In contrast, most amastigote MSP localized at the flagellar pocket, the major site of leishmania endocytosis/exocytosis. Biochemical analyses indicated that most amastigote MSP is soluble in the cytosol, vesicles or organelles, whereas most promastigote MSP is membrane-associated and GPI anchored. Activity gels and immunoblots confirmed the presence of a novel proteolytically active amastigote MSP of higher Mr than the promastigote MSPs. Furthermore, promastigote MSP is shed extracellularly whereas MSP is not shed from axenic amastigotes. We conclude that amastigotes and promastigotes both express multiple MSP isoforms, but these MSPs differ biochemically and localize differently in the two parasite stages. We hypothesize that MSP plays different roles in the extracellular versus intracellular forms of Leishmania spp.

  7. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis.

    PubMed

    Damerow, Sebastian; Hoppe, Carolin; Bandini, Giulia; Zarnovican, Patricia; Buettner, Falk F R; Ferguson, Michael A J; Routier, Françoise H

    2015-10-01

    Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection.

  8. Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    PubMed Central

    Corvo, Laura; Garde, Esther; Ramírez, Laura; Iniesta, Virginia; Bonay, Pedro; Gómez-Nieto, Carlos; González, Víctor M.; Martín, M. Elena; Alonso, Carlos; Coelho, Eduardo A. F.; Barral, Aldina; Barral-Netto, Manoel

    2015-01-01

    Background Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Methodology/Principal Findings Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. Conclusion/Significance The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis. PMID:25955652

  9. Natural infection of Nesokia indica with Leishmania major and Leishmania infantum parasites in Damghan city, Northern Iran.

    PubMed

    Pourmohammadi, Behrad; Mohammadi-Azni, Sadegh; Kalantari, Mohsen

    2017-03-04

    Various species of rodents are proven reservoir hosts of zoonotic cutaneous leishmaniasis in different provinces of Iran and potential reservoir hosts of zoonotic visceral leishmaniasis. Therefore, this study was conducted to determine the leishmanial infection of rodents in Damghan city from April to September, 2015. Sum of 100 rodents of three species; Nesokia indica (95), Mus musculus (3), and Microtus socialis (2), were trapped alive and their tissue samples were examined using parasitological and molecular (nested-PCR) methods. A total of 71% (71/100) of examined rodents were parasitological positive for Leishmania spp. amastigotes. The highest rate (72.6%; 69/95) of infection was related to the N. indica species. The microscopic observations showed that 42% of ear samples were positive. Additionally, 12% of rodents with negative ear result were positive in liver. 16 out of 41 (39%) parasitological positive samples, belonging to the N. indica, were shown molecularly positive. Of which, 15 were L. major (13 of ear and 2 of spleen samples) and one of spleen samples was L. infantum. This is the first report of N. indica natural infection with L. infantum parasite. To understand the role of this rodent as reservoir host of L. infantum, extant ecological and epidemiological studies are needed.

  10. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major.

    PubMed Central

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    In this study biopsies from skin lesions and draining lymph nodes of patients suffering from cutaneous leishmaniasis caused by Leishmania major were examined by immunohistochemistry, and by light and electron microscopy to identify the types of antigen-presenting cells (APC) and their location. APC, identified morphologically and by their expression of specific cell markers, included Langerhans cells, macrophages, follicular dendritic cells, and interdigitating reticulum cells of the paracortex of lymph nodes. These cells expressed MHC class II antigens and contained Leishmania antigen. Since some keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania antigen containing Langerhans cells were found in the epidermis, dermis and the regional lymph nodes. We believe these cells translocate from the epidermis to the dermis, where they take up antigen and migrate to the paracortex of the regional lymph nodes. There they are intimately associated with cells of the paracortex, and could be involved in the generation of Leishmania-specific T memory cells. LFA-1-positive T cells of the CD45RO phenotype were found in the skin lesion. Venular endothelium in the skin lesions expressed intercellular adhesion molecule-1 (ICAM-1), which is the ligand for LFA-1. The migration of lymphocytes from the vascular lumen to the site of inflammation is possibly a result of the interaction of these two adhesion molecules. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7882568

  11. First report of natural infection in hedgehogs with Leishmania major, a possible reservoir of zoonotic cutaneous leishmaniasis in Algeria.

    PubMed

    Tomás-Pérez, Míriam; Khaldi, Mourad; Riera, Cristina; Mozo-León, Denis; Ribas, Alexis; Hide, Mallorie; Barech, Ghania; Benyettou, Meryam; Seghiri, Kamel; Doudou, Souad; Fisa, Roser

    2014-07-01

    We report here the first known cases of natural infection of hedgehogs with Leishmania major. Cutaneous leishmaniasis is an important public health problem in the area of M'sila, a semi-arid province in Algeria's northern Sahara, where two species of hedgehog live, Atelerix algirus and Paraechinus aethiopicus. The aim of this research was to survey Leishmania infection in these hedgehogs and evaluate whether they were reservoir hosts of Leishmania in an endemic zoonotic focus of leishmaniasis. Serological and molecular methods were used to determine the presence of Leishmania in 24 hedgehogs caught directly by hand and identified at species level as 19 A. algirus and 5 P. aethiopicus. Specific anti-Leishmania antibodies were detected in 29.2% of individuals by Western blot and in 26.3% by ELISA. The real-time PCR performed in spleen, ear and blood samples detected Leishmania spp. DNA in 12.5% of the individuals, one A. algirus and two P. aethiopicus. Three skin and two spleen samples of these animals were found to be parasitized and were identified by molecular test as L. major. Considering our results, it is suggested that hedgehogs have a potential epidemiological role as reservoir hosts of L. major.

  12. Genetic differences between two Leishmania major-like strains revealed by suppression subtractive hybridization.

    PubMed

    Wu, Ângela C A; Freitas, Michelle A R; Silva, Soraia de O; Nogueira, Paula M; Soares, Rodrigo P; Pesquero, João Bosco; Gomes, Maria A; Pesquero, Jorge L; Melo, Maria N

    2015-01-01

    Leishmania major, the causative agent of zoonotic leishmaniasis, is restricted to Old World countries. Molecular and biochemical techniques have been used to identify some L. major-like isolated in South America including Brazil. Here, two L. major-like strains, one virulent (BH49) and one non-virulent (BH121), were subjected to suppression subtractive hybridization (SSH) technique in order to identify differentially expressed genes. SSH technique identified nine cDNA fragments exhibiting high homology to previously sequenced L. major genes. Five cDNAs (four specific for BH49 and one for BH121) were confirmed by RT-PCR. Among those differentially expressed subtracted genes, some were involved in physiological processes including metabolism, translation and destination of proteins, production of energy, virulence factors and unknown functions. Western-blot analysis confirmed a higher expression level of β-1,3-galactosyl residues in L. major-like lipophosphoglycan (LPG). This molecular analysis opens the possibility for identification of potential virulence factors not only in different strains, but also in others species of Leishmania.

  13. Spatio-temporal Genetic Structuring of Leishmania major in Tunisia by Microsatellite Analysis

    PubMed Central

    Harrabi, Myriam; Bettaieb, Jihène; Ghawar, Wissem; Toumi, Amine; Zaâtour, Amor; Yazidi, Rihab; Chaâbane, Sana; Chalghaf, Bilel; Hide, Mallorie; Bañuls, Anne-Laure; Ben Salah, Afif

    2015-01-01

    In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations. PMID:26302440

  14. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  15. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  16. Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major

    PubMed Central

    Passos-Silva, Danielle Gomes; Rajão, Matheus Andrade; Nascimento de Aguiar, Pedro Henrique; Vieira-da-Rocha, João Pedro; Machado, Carlos Renato; Furtado, Carolina

    2010-01-01

    A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related to DNA metabolism in trypanosomatids have been very limited. Together with recent experimental studies, the genome sequencing of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, has revealed interesting features of the DNA repair mechanism in these protozoan parasites, which will be reviewed here. PMID:20976268

  17. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation

    PubMed Central

    Dillon, Laura A. L.; Okrah, Kwame; Hughitt, V. Keith; Suresh, Rahul; Li, Yuan; Fernandes, Maria Cecilia; Belew, A. Trey; Corrada Bravo, Hector; Mosser, David M.; El-Sayed, Najib M.

    2015-01-01

    Protozoan parasites of the genus Leishmania are the etiological agents of leishmaniasis, a group of diseases with a worldwide incidence of 0.9–1.6 million cases per year. We used RNA-seq to conduct a high-resolution transcriptomic analysis of the global changes in gene expression and RNA processing events that occur as L. major transforms from non-infective procyclic promastigotes to infective metacyclic promastigotes. Careful statistical analysis across multiple biological replicates and the removal of batch effects provided a high quality framework for comprehensively analyzing differential gene expression and transcriptome remodeling in this pathogen as it acquires its infectivity. We also identified precise 5′ and 3′ UTR boundaries for a majority of Leishmania genes and detected widespread alternative trans-splicing and polyadenylation. An investigation of possible correlations between stage-specific preferential trans-splicing or polyadenylation sites and differentially expressed genes revealed a lack of systematic association, establishing that differences in expression levels cannot be attributed to stage-regulated alternative RNA processing. Our findings build on and improve existing expression datasets and provide a substantially more detailed view of L. major biology that will inform the field and potentially provide a stronger basis for drug discovery and vaccine development efforts. PMID:26150419

  18. The Transcriptome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector.

    PubMed

    Inbar, Ehud; Hughitt, V Keith; Dillon, Laura A L; Ghosh, Kashinath; El-Sayed, Najib M; Sacks, David L

    2017-04-04

    The life cycle of the Leishmania parasite in the sand fly vector involves differentiation into several distinctive forms, each thought to represent an adaptation to specific microenvironments in the midgut of the fly. Based on transcriptome sequencing (RNA-Seq) results, we describe the first high-resolution analysis of the transcriptome dynamics of four distinct stages of Leishmania major as they develop in a natural vector, Phlebotomus duboscqi The early transformation from tissue amastigotes to procyclic promastigotes in the blood-fed midgut was accompanied by the greatest number of differentially expressed genes, including the downregulation of amastins, and upregulation of multiple cell surface proteins, sugar and amino acid transporters, and genes related to glucose metabolism and cell cycle progression. The global changes accompanying post-blood meal differentiation of procyclic promastigotes to the nectomonad and metacyclic stages were less extensive, though each displayed a unique signature. The transcriptome of nectomonads, which has not been studied previously, revealed changes consistent with cell cycle arrest and the upregulation of genes associated with starvation and stress, including autophagic pathways of protein recycling. Maturation to the infective, metacyclic stage was accompanied by changes suggesting preadaptation to the intracellular environment of the mammalian host, demonstrated by the amastigote-like profiles of surface proteins and metabolism-related genes. Finally, a direct comparison between sand fly-derived and culture-derived metacyclics revealed a reassuring similarity between the two forms, with the in vivo forms distinguished mainly by a stronger upregulation of transcripts associated with nutrient stress.IMPORTANCE The life cycle of Leishmania parasites in the sand fly vector includes their growth and development as morphologically distinct forms of extracellular promastigotes found within the different microenvironments of the

  19. Immunization Against Cutaneous Leishmaniasis by Alginate Microspheres Loaded With Autoclaved Leishmania Major (ALM) and Quillaja Saponins.

    PubMed

    Tafaghodi, Mohsen; Eskandari, Maryam; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2016-01-01

    Leishmania antigens are weak immunogens and need to be potentiated by various adjuvants and delivery systems. Alginate microspheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against Autoclaved Leishmania major (ALM). Microspheres were prepared by an emulsification technique and characterized for size, encapsulation efficiency and release profile of encapsulates. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded microspheres [(ALM+QS)ALG], ALM encapsulated with alginate microspheres [(ALM)ALG], (ALM)ALG + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)ALG+QS. The (ALM+QS)ALG, ALM and PBS groups showed the least protection and highest swelling, while the (ALM)ALG and ALM+QS showed an intermediate protection with no significant difference. The mice immunized with (ALM+QS)ALG showed the highest IgG2a/IgG1 ratio (P<0.05). The highest IFN-γ and IL-4 production was seen in ALM+QS (P<0.01). It is concluded that QS adjuvant has a mixed Th1/Th2 effect and has increased both humoral and cellular immune responses.

  20. STRUCTURAL CHARACTERISATION OF THE LEISHMANIA MAJOR ORTHOLOGUES OF MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF)

    PubMed Central

    Richardson, Julia M.; Morrison, Lesley S.; Bland, Nicholas D.; Bruce, Sandra; Coombs, Graham H.; Mottram, Jeremy C.; Walkinshaw, Malcolm D.

    2011-01-01

    Leishmania major, an intracellular parasitic protozoon that infects, differentiates and replicates within macrophages, encodes two closely related MIF-like proteins, which have only ~20% amino acid identity with mammalian MIF. Recombinant L. major MIF1 and MIF2 have been expressed and the structures, resolved by X-ray crystallography, show a trimeric ring architecture similar to mammalian MIF but with some structurally distinct features. LmjMIF1, but not LmjMIF2, has tautomerase activity, indicating that the LmjMIFs have evolved potentially different biological roles. This is further demonstrated by the differential life cycle expression of the proteins. LmjMIF2 is found in all life cycle stages whereas LmjMIF1 is found exclusively in amastigotes, the intracellular stage responsible for mammalian disease. The findings are consistent with parasite MIFs modulating or circumventing the host macrophage response and thereby promoting parasite survival, however analysis of the L. braziliensis genome showed that this species lacks intact MIF genes - highlighting that MIF is not a virulence factor in all species of Leishmania. PMID:19187777

  1. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection.

    PubMed

    Stober, Carmel B; Lange, Uta G; Roberts, Mark T M; Gilmartin, Brian; Francis, Richard; Almeida, Renata; Peacock, Christopher S; McCann, Sharon; Blackwell, Jenefer M

    2006-03-24

    The genomic sequence of Leishmania major provides a rich source of vaccine candidates. One hundred randomly selected amastigote-expressed genes were screened as DNA vaccines, and efficacy determined following high-dose L. major footpad challenge in BALB/c mice. Fourteen protective novel vaccine candidates were identified; seven vaccines exacerbated disease. There were no differences in the number of predicted MHC H-2d class I or II epitopes mapping to protective versus exacerbatory antigens. A proportion of both protective (7/14; 50%) and exacerbatory (4/7; 57%) proteins showed short (8- to 18-mer) 100% amino acid sequence identities to human, mouse or gut flora proteins. A high proportion of these (4/7 protective; 3/4 exacerbatory) showed full or partial overlap with RANKPEP-predicted H-2d classes I and II epitopes. Our data suggest, therefore, that there may be little difference between antigens/epitopes that drive regulatory versus effector CD4 T cell populations. The best novel protective antigen was an amastin-like gene that maps to a 17-gene tandem array on Leishmania chromosome 8 and is closely related to 37 other amastin-like genes. Two ribosomal proteins, a V-ATPase subunit, and a dynein light chain orthologue were the only other protective genes with putative functions.

  2. Leishmania major: Genetic Profiles of the Parasites Isolated from Chabahar, Southeastern Iran by PPIP-PCR

    PubMed Central

    SHARIFI-RAD, Mehdi; DABIRZADEH, Mansour; SHARIFI, Iraj; BABAEI, Zahra

    2016-01-01

    Background: Leishmaniasis is important vector-borne parasitic disease worldwide, caused by the genus Leishmania. The objective of the current study was to identify genetic polymorphism in L. major, one of the species causing cutaneous leishmaniasis (CL), isolated from southeastern Iran, using Permissively Primed Intergenic Polymorphic-Polymerase Chain Reaction (PPIP-PCR) method. Methods: Overall, 340 patients with suspected CL were examined. They referred to the Central Laboratory in Chabahar, Iran during Apr 2013 to Feb 2014. Microscopic examination of Giemsa-stained slides from lesions as well as aspirates cultured in Novy- Mac Neal-Nicolle (NNN) Media was employed in order to diagnose CL in these patients. Our analyses detected 86 suspected subjects as having CL from which 35 isolates were cultured successfully. PPIP-PCR method was performed on extracted genomic DNA from selected isolates in order to determine the genetic polymorphism among L. major isolates. Results: The electrophoresis patterns demonstrated two genetic profiles including A or A1 patterns between all samples tested. Frequency of A and A1 sub-types were 33 (94.3%) and two (5.7%), respectively. Conclusion: Both host and parasite factors may contribute to the clinical profile of human leishmaniasis in the endemic foci of the disease. Here we showed that genetic variations pertaining to the Leishmania parasites might determine, in part, the clinical outcomes of human leishmaniasis. PMID:28127333

  3. Immunomodulatory properties of borage (Echium amoenum) on BALB/c mice infected with Leishmania major.

    PubMed

    Hosseini, Nahid; Abolhassani, Mohsen

    2011-06-01

    Leishmaniasis is caused by parasitic protozoa transmitted by the bite of a female sand fly and is currently endemic in 88 countries. BALB/c mice are highly susceptible to the infection with the parasite Leishmania major, and this susceptibility has been attributed, in part, to the expansion of Th2 cells, production of their cytokines, and downregulation of Th1 cytokine, interferon gamma (IFN-γ). In this report, we used both aqueous and alcoholic extracts of Iranian borage (Echium amoenum Fisch & C.A. Mey) for treatment of L. major infection in BALB/c mice. We found that both extracts had immunomodulatory properties and increased the level of IFN-γ and lowered the parasite burden in the proximal lymph nodes and prevented the necrosis of the footpad as compared with the untreated infected mice. These results may provide a basis for further studies directed toward the use of the Iranian borage against L. major infection.

  4. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D

    2000-07-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control.

  5. Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major.

    PubMed

    Zalila, Habib; González, Iveth J; El-Fadili, Amal Kuendig; Delgado, Maria Belen; Desponds, Chantal; Schaff, Cédric; Fasel, Nicolas

    2011-01-01

    Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.

  6. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed Central

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control. PMID:10861207

  7. Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I

    PubMed Central

    Ariza, Antonio; Vickers, Tim J.; Greig, Neil; Fairlamb, Alan H.; Bond, Charles S.

    2005-01-01

    Glyoxalase I (GLO1) is a putative drug target for trypanosomatids, which are pathogenic protozoa that include the causative agents of leishmaniasis. Significant sequence and functional differences between Leishmania major and human GLO1 suggest that it may make a suitable template for rational inhibitor design. L. major GLO1 was crystallized in two forms: the first is extremely disordered and does not diffract, while the second, an orthorhombic form, produces diffraction to 2.0 Å. Molecular-replacement calculations indicate that there are three GLO1 dimers in the asymmetric unit, which take up a helical arrangement with their molecular dyads arranged approximately perpendicular to the c axis. Further analysis of these data are under way. PMID:16511153

  8. Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite

    PubMed Central

    2013-01-01

    Background Leishmania are obligated intracellular pathogens that replicate almost exclusively in macrophages. The outcome of infection depends largely on parasite pathogenicity and virulence but also on the activation status and genetic background of macrophages. Animal models are essential for a better understanding of pathogenesis of different microbes including Leishmania. Results Here we compared the transcriptional signatures of resistant (C57BL/6) and susceptible (BALB/c) mouse bone marrow-derived macrophages in response to Leishmania major (L. major) promastigotes infection. Microarray results were first analyzed for significant pathways using the Kyoto Encylopedia of Genes and Genomes (KEGG) database. The analysis revealed that a large set of the shared genes is involved in the immune response and that difference in the expression level of some chemokines and chemokine receptors could partially explain differences in resistance. We next focused on up-regulated genes unique to either BALB/c or C57BL/6 derived macrophages and identified, using KEGG database, signal transduction pathways among the most relevant pathways unique to both susceptible and resistant derived macrophages. Indeed, genes unique to C57BL/6 BMdMs were associated with target of rapamycin (mTOR) signaling pathway while a range of genes unique to BALB/c BMdMs, belong to p53 signaling pathway. We next investigated whether, in a given mice strain derived macrophages, the different up-regulated unique genes could be coordinately regulated. Using GeneMapp Cytoscape, we showed that the induced genes unique to BALB/c or C57BL/6 BMdMs are interconnected. Finally, we examined whether the induced pathways unique to BALB/c derived macrophages interfere with the ones unique to C57BL/6 derived macrophages. Protein-protein interaction analysis using String database highlights the existence of a cross-talk between p53 and mTOR signaling pathways respectively specific to susceptible and resistant BMd

  9. Murine immune response induced by Leishmania major during the implantation of paraffin tablets

    PubMed Central

    Reis, Maria Letícia Costa; Ferreira, Vanessa Martins; Zhang, Xia; Gonçalves, Ricardo; Vieira, Leda Quércia; Tafuri, Washington Luiz; Mosser, David M.

    2011-01-01

    We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation. PMID:20857143

  10. Murine immune response induced by Leishmania major during the implantation of paraffin tablets.

    PubMed

    Reis, Maria Letícia Costa; Ferreira, Vanessa Martins; Zhang, Xia; Gonçalves, Ricardo; Vieira, Leda Quércia; Tafuri, Washington Luiz; Mosser, David M; Tafuri, Wagner Luiz

    2010-11-01

    We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation.

  11. Miltefosine-induced apoptotic cell death on Leishmania major and L. tropica strains.

    PubMed

    Khademvatan, Shahram; Gharavi, Mohammad Javad; Rahim, Fakher; Saki, Jasem

    2011-03-01

    The aim of this study was to assess the cytotoxic effects of various concentrations of miltefosine on Leishmania major (MRHO/IR/75/ER) and L. tropica (MHOM/IR/02/Mash10) promastigotes and to observe the programmed cell death features. The colorimetric MTT assay was used to find L. major and L. tropica viability and the obtained results were expressed as 50% inhibitory concentration (IC50). Also, 50% effective doses (ED50) for L. major and L. tropica amastigotes were also determined. Annexin-V FLUOS staining was performed to study the cell death properties of miltefosine using FACS analysis. Qualitative analysis of the total genomic DNA fragmentation was performed by agarose gel electrophoresis. Furthermore, to observe changes in cell morphology, promastigotes were examined using light microscopy. In both strains of L. major and L. tropica, miltefosine induced dose-dependent death with features of apoptosis, including cell shrinkage, DNA laddering, and externalization of phosphatidylserine. The IC50 was achieved at 22 µM and 11 µM for L. major and L. tropica after 48 hr of incubation, respectively. ED50 of L. major and L. tropica amastigotes were 5.7 µM and 4.2 µM, respectively. Our results indicate that miltefosine induces apoptosis of the causative agent of cutaneous leishmaniasis in a dose-dependent manner. Interestingly, L. major did not display any apoptotic changes when it was exposed to miltefosine in concentrations sufficient to kill L. tropica.

  12. Phototoxic effects of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) on the viability of Leishmania major and Leishmania braziliensis promastigotes

    NASA Astrophysics Data System (ADS)

    Guerra Pinto, Juliana; Ferreira-Strixino, Juliana; Mittmann, Josane

    2016-06-01

    American cutaneous leishmaniasis (ACL) is an infectious disease caused by protozoans of the genus Leishmania. The treatment may consist of pentavalent antimonials or pentamidine and amphotericin. However, these treatments are extremely aggressive. Photodynamic antimicrobial chemotherapy (PACT) involves the same mechanism of photodynamic therapy which associates a photosensitizer with oxygen and a light source generating a photochemical reaction leading to cell death. The aim of this study was to verify the potential use of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) compound in photodynamic treatment through evaluation of its phototoxic effect in promastigotes of the genus Leishmania braziliensis and Leishmania major. Treatment with SiPc was able to drastically affect the viability of the parasites as well as affect their growth and morphology, after PACT treatment. The data shown in this study allows us to conclude that SiPc is a promising photosensitizer (PS) since it does not affect parasite growth and viability in the dark. After PACT with this phthalocyanine, over 99% of parasites were killed with the higher concentration and a light dose used. These results suggest that SiPc can be used in future to treat CL, however, further studies are necessary to determine whether the PS are toxic to mononuclear phagocytic cells and epithelial cells which will also be affected by therapy when applied topically.

  13. Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major

    SciTech Connect

    Petrillo-Peixoto, M.L.; Beverley, S.M. )

    1988-12-01

    We describe the structure of amplified DNA that was discovered in two laboratory stocks of the protozoan parasite Leishmania tarentolae. Restriction mapping and molecular cloning revealed that a region of 42 kilobases was amplified 8- to 30-fold in these lines. Southern blot analyses of digested DNAs or chromosomes separated by pulsed-field electrophoresis showed that the amplified DNA corresponded to the H region, a locus defined originally by its amplification in methotrexate-resistant Leishmania major. Similarities between the amplified DNA of the two species included (i) extensive cross-hybridization; (ii) approximate conservation of sequence order; (iii) extrachromosomal localization; (iv) an overall inverted, head-to-head configuration as a circular 140-kilobase tetrameric molecule; (v) two regions of DNA sequence rearrangement, each of which was closely associated with the two centers of the inverted repeats; (vi) association with methotrexate resistance; and (vii) phenotypically conservative amplification, in which the wild-type chromosomal arrangement was retained without apparent modification. Our data showed that amplified DNA mediating drug resistance arose in unselected L. tarentolae, although the pressures leading to apparently spontaneous amplification and maintenance of the H region are not known. The simple structure and limited extent of DNA amplified in these and other Leishmania lines suggests that the study of gene amplification in Leishmania spp. offers an attractive model system for the study of amplification in cultured mammalian cells and tumors. We also introduced a method for measuring the size of large circular DNAs, using gamma-irradiation to introduce limited double-strand breaks followed by sizing of the linear DNAs by pulsed-field electrophoresis.

  14. Molecular Detection of Leishmania major and L. turanica in Phlebotomus papatasi and First Natural Infection of P. salehi to L. major in North-East of Iran

    PubMed Central

    Rafizadeh, Sayena; Saraei, Mehrzad; Abaei, Mohammad Reza; Oshaghi, Mohammad Ali; Mohebali, Mehdi; Peymani, Amir; Naserpour-Farivar, Taghi; Bakhshi, Hassan; Rassi, Yavar

    2016-01-01

    Background: Leishmaniasis is an important public health disease in many developing countries as well in Iran. The main objective of this study was to investigate on leishmania infection of wild caught sand flies in an endemic focus of disease in Esfarayen district, north east of Iran. Methods: Sand flies were collected by sticky papers and mounted in a drop of Puri’s medium for species identification. Polymerase chain reaction techniques of kDNA, ITS1-rDNA, followed by restriction fragment length polymorphism were used for identification of DNA of Leishmania parasites within infected sand flies. Results: Among the collected female sand flies, two species of Phlebotomus papatasi and Phlebotomus salehi were found naturally infected with Leishmania major. Furthermore, mixed infection of Leishmania turanica and L. major was observed in one specimen of P. papatasi. Sequence analysis revealed two parasite ITS1 haplotypes including three L. major with accession numbers: KJ425408, KJ425407, KM056403 and one L. turanica. (KJ425406). The haplotype of L. major was identical (100%) to several L. major sequences deposited in GenBank, including isolates from Iran, (Gen Bank accession nos.AY573187, KC505421, KJ194178) and Uzbekistan (Accession no.FN677357). Conclusion: To our knowledge, this is the first detection of L. major within wild caught P. salehi in northeast of Iran. PMID:27308272

  15. Leishmania major Self-Limited Infection Increases Blood Cholesterol and Promotes Atherosclerosis Development.

    PubMed

    Fernandes, Luciana R; Ribeiro, Ana Cecília C; Segatto, Marcela; Santos, Luís Felipe F F; Amaral, Joana; Portugal, Luciane R; Leite, Jacqueline I A

    2013-01-01

    Leishmania major infection of resistant mice causes a self-limited lesion characterized by macrophage activation and a Th1 proinflammatory response. Atherosclerosis is an inflammatory disease involving hypercholesterolemia and macrophage activation. In this study, we evaluated the influence of L. major infection on the development of atherosclerosis using atherosclerosis-susceptible apolipoprotein E-deficient (apoE KO) mice. After 6 weeks of infection, apoE KO mice exhibited reduced footpad swelling and parasitemia similar to C57BL/6 controls, confirming that both strains are resistant to infection with L. major. L. major-infected mice had increased plasma cholesterol levels and reduced triacylglycerols. With regard to atherosclerosis, noninfected mice developed only fatty streak lesions, while the infected mice presented with advanced lesions containing a necrotic core and an abundant inflammatory infiltrate. CD36 expression was increased in the aortic valve of the infected mice, indicating increased macrophage activation. In conclusion, L. major infection, although localized and self-limited in resistant apoE KO mice, has a detrimental effect on the blood lipid profile, increases the inflammatory cell migration to atherosclerotic lesions, and promotes atherogenesis. These effects are consequences of the stimulation of the immune system by L. major, which promotes the inflammatory components of atherosclerosis, which are primarily the parasite-activated macrophages.

  16. Leishmania major Self-Limited Infection Increases Blood Cholesterol and Promotes Atherosclerosis Development

    PubMed Central

    Fernandes, Luciana R.; Ribeiro, Ana Cecília C.; Segatto, Marcela; Santos, Luís Felipe F. F.; Amaral, Joana; Portugal, Luciane R.; Leite, Jacqueline I. A.

    2013-01-01

    Leishmania major infection of resistant mice causes a self-limited lesion characterized by macrophage activation and a Th1 proinflammatory response. Atherosclerosis is an inflammatory disease involving hypercholesterolemia and macrophage activation. In this study, we evaluated the influence of L. major infection on the development of atherosclerosis using atherosclerosis-susceptible apolipoprotein E-deficient (apoE KO) mice. After 6 weeks of infection, apoE KO mice exhibited reduced footpad swelling and parasitemia similar to C57BL/6 controls, confirming that both strains are resistant to infection with L. major. L. major-infected mice had increased plasma cholesterol levels and reduced triacylglycerols. With regard to atherosclerosis, noninfected mice developed only fatty streak lesions, while the infected mice presented with advanced lesions containing a necrotic core and an abundant inflammatory infiltrate. CD36 expression was increased in the aortic valve of the infected mice, indicating increased macrophage activation. In conclusion, L. major infection, although localized and self-limited in resistant apoE KO mice, has a detrimental effect on the blood lipid profile, increases the inflammatory cell migration to atherosclerotic lesions, and promotes atherogenesis. These effects are consequences of the stimulation of the immune system by L. major, which promotes the inflammatory components of atherosclerosis, which are primarily the parasite-activated macrophages. PMID:23710353

  17. Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection

    PubMed Central

    2010-01-01

    Background Leishmaniasis is a virulent parasitic infection that causes a worldwide disease burden. Most treatments have toxic side-effects and efficacy has decreased due to the emergence of resistant strains. The outlook is worsened by the absence of promising drug targets for this disease. We have taken a computational approach to the detection of new drug targets, which may become an effective strategy for the discovery of new drugs for this tropical disease. Results We have predicted the protein interaction network of Leishmania major by using three validated methods: PSIMAP, PEIMAP, and iPfam. Combining the results from these methods, we calculated a high confidence network (confidence score > 0.70) with 1,366 nodes and 33,861 interactions. We were able to predict the biological process for 263 interacting proteins by doing enrichment analysis of the clusters detected. Analyzing the topology of the network with metrics such as connectivity and betweenness centrality, we detected 142 potential drug targets after homology filtering with the human proteome. Further experiments can be done to validate these targets. Conclusion We have constructed the first protein interaction network of the Leishmania major parasite by using a computational approach. The topological analysis of the protein network enabled us to identify a set of candidate proteins that may be both (1) essential for parasite survival and (2) without human orthologs. These potential targets are promising for further experimental validation. This strategy, if validated, may augment established drug discovery methodologies, for this and possibly other tropical diseases, with a relatively low additional investment of time and resources. PMID:20875130

  18. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase

    PubMed Central

    Mandal, Goutam; Sharma, Mansi; Kruse, Martin; Sander-Juelch, Claudia; Munro, Laura Anne; Wang, Yong; Vilg, Jenny Veide; Tamás, Markus J; Bhattacharjee, Hiranmoy; Wiese, Martin; Mukhopadhyay, Rita

    2012-01-01

    Summary Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defense against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites co-expressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr197 and this phosphorylation requires LmjMPK2 activity. Lys42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. L. mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a MAP kinase. PMID:22779703

  19. The Transcriptome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector

    PubMed Central

    Inbar, Ehud; Hughitt, V. Keith; Dillon, Laura A. L.; Ghosh, Kashinath

    2017-01-01

    ABSTRACT The life cycle of the Leishmania parasite in the sand fly vector involves differentiation into several distinctive forms, each thought to represent an adaptation to specific microenvironments in the midgut of the fly. Based on transcriptome sequencing (RNA-Seq) results, we describe the first high-resolution analysis of the transcriptome dynamics of four distinct stages of Leishmania major as they develop in a natural vector, Phlebotomus duboscqi. The early transformation from tissue amastigotes to procyclic promastigotes in the blood-fed midgut was accompanied by the greatest number of differentially expressed genes, including the downregulation of amastins, and upregulation of multiple cell surface proteins, sugar and amino acid transporters, and genes related to glucose metabolism and cell cycle progression. The global changes accompanying post-blood meal differentiation of procyclic promastigotes to the nectomonad and metacyclic stages were less extensive, though each displayed a unique signature. The transcriptome of nectomonads, which has not been studied previously, revealed changes consistent with cell cycle arrest and the upregulation of genes associated with starvation and stress, including autophagic pathways of protein recycling. Maturation to the infective, metacyclic stage was accompanied by changes suggesting preadaptation to the intracellular environment of the mammalian host, demonstrated by the amastigote-like profiles of surface proteins and metabolism-related genes. Finally, a direct comparison between sand fly-derived and culture-derived metacyclics revealed a reassuring similarity between the two forms, with the in vivo forms distinguished mainly by a stronger upregulation of transcripts associated with nutrient stress. PMID:28377524

  20. Characterization of Chronic Cutaneous Lesions from TNF-Receptor-1-Deficient Mice Infected by Leishmania major

    PubMed Central

    Oliveira, Carolina Ferreira; Manzoni-de-Almeida, Daniel; Mello, Paula Seixas; Natale, Caio Cotta; Santiago, Helton da Costa; Miranda, Luíza da Silva; Ferraz, Fernanda Oliveira; dos Santos, Liliane Martins; Teixeira, Mauro Martins; Arantes, Rosa Maria Esteves; Vieira, Leda Quercia

    2012-01-01

    Leishmania major-infected TNF receptor 1 deficient (TNFR1 KO) mice resolve parasitism but fail to resolve lesions, while wild-type mice completely heal. We investigated the cell composition, cytokine production, and apoptosis in lesions from L. major-infected TNFR1 KO and wild-type (WT) mice. Chronic lesions from L. major-infected TNFR1 KO mice presented larger number of CD8+ T and Ly6G+ cells. In addition, higher concentrations of mRNA for IFN-γ CCL2 and CCL5, as well as protein, but lower numbers of apoptotic cells, were found in lesions from TNFR1 KO mice than in WT, at late time points of infection. Our studies showed that persistent lesions in L. major-infected TNFR1 KO mice may be mediated by continuous migration of cells to the site of inflammation due to the presence of chemokines and also by lower levels of apoptosis. We suggest that this model has some striking similarities to the mucocutaneous clinical form of leishmaniasis. PMID:22203861

  1. First molecular detection of Leishmania major within naturally infected Phlebotomus salehi from a zoonotic cutaneous leishmaniasis focus in southern Iran.

    PubMed

    Azizi, K; Fakoorziba, M R; Jalali, M; Moemenbellah-Fard, M D

    2012-03-01

    Human cutaneous leishmaniasis (CL) is a major notifiable public health problem in many parts of Iran. It is often caused by the zooflagellate parasite Leishmania major which is mainly transmitted by the bites of female phlebotomine sandflies belonging to the genus Phlebotomus (Diptera: Psychodidae). The annual incidence of CL in Fars province, southern Iran, was about 108-144 in 2007. The leishmanial infections of wild sandflies that may act as vectors were thus investigated at an endemic focus in this province. In all 330 female Phlebotomus sandflies were screened for the detection of Leishmania-specific kinetoplast DNA (kDNA) by polymerase chain reaction (PCR) methods. A two stage nested PCR protocol was used to establish the identity of Leishmania major species in naturally infected sandflies. The L. major kDNA was detected in 18 (5.5%) individual sandflies which belonged to four different Phlebotomus species (Phlebotomus papatasi, Phlebotomus salehi, Phlebotomus sergenti and P. major group). For the first time, one naturally infected P. salehi specimen contained the kDNA of the protozoan parasite, L. major, with a main band of 560 base pairs identified using the nested PCR method. It seems most likely therefore that P. salehi is potentially a rare sylvatic vector of L. major parasites in parts of this province. This is the first combined morphological and molecular studies of P. salehi in Iran.

  2. Leishmania major Promastigotes Evade LC3-Associated Phagocytosis through the Action of GP63

    PubMed Central

    Matte, Christine; Casgrain, Pierre-André; Séguin, Olivier; Moradin, Neda; Hong, Wan Jin; Descoteaux, Albert

    2016-01-01

    The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery. PMID:27280768

  3. Immunotherapeutic effects of chitin in comparison with chitosan against Leishmania major infection.

    PubMed

    Hoseini, Mostafa Haji Molla; Moradi, Maryam; Alimohammadian, Mohammad Hossein; Shahgoli, Vahid Khaze; Darabi, Hayedeh; Rostami, Ali

    2016-04-01

    Chitin and chitosan microparticles (MPs) are important immune system stimulators. The aim of this study was to evaluate the protective effects of these compounds in comparison with each other against Leishmania infection in BALB/c mice infected with Leishmania major (L. major). Female BALB/c mice were injected subcutaneously with 2×10(5) promastigotes. Chitin and/or chitosan MPs (<40 μm) were subcutaneously injected in the BALB/c mice with two-day intervals until two weeks. Mice in all groups were sacrificed at 12 weeks post-infection. Enumeration of viable parasites was performed using limiting dilution assay. Furthermore, the animals (5 mice/group) were sacrificed two weeks post-infection. The lymph node cells were isolated and the effects of the chitinous MPs on the proliferation and production of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were determined. The mean sizes of lesions were significantly smaller in chitin (0.6±0.12 mm) and chitosan treated groups (1.2±0.8 mm) than in the control group (6.2±1.7 mm) (P<0.05). The parasite load in the lymph nodes of the treated mice was significantly lower than that in the lymph nodes of controls (1.31×10(6) vs 8.24×10(7) parasite/lymph node [P=0.032] and 7.49×10(6) vs 8.24×10(7) parasite/lymph node [P=0.05] for chitin and chitosan MPs treatment, respectively). We found that chitinous MPs induced cell proliferation and that chitin but not chitosan increased TNF-α and IL-10 production. Chitin appears that it has more effect than chitosan against leishmaniasis. The current study revealed that chitinous MPs had significant activity against L. major and could be considered as new therapeutic modality in leishmaniasis.

  4. Aberrant host defense against Leishmania major in the absence of SLPI

    PubMed Central

    McCartney-Francis, Nancy; Jin, Wenwen; Belkaid, Yasmine; McGrady, George; Wahl, Sharon M.

    2014-01-01

    SLPI, a potent epithelial and myeloid-derived serine protease inhibitor with antimicrobial and anti-inflammatory functions, is induced by the intracellular parasite Leishmania major, and increased SLPI expression is evident within lesions that follow L. major infection. In contrast to self-resolving infection in C57Bl/6 WT mice, Slpi−/− mice launch a strong Th1 response to L. major, yet fail to control infection and develop destructive, nonhealing lesions with systemic spread of parasites. Because SLPI is both produced by murine macrophages and antagonizes their function, we examined the contribution of macrophage polarization to the defective host response in the absence of SLPI. Slpi−/− and Slpi+/+ macrophages were first primed with either IFNγ or IL-4 to generate classically activated M1 or alternatively activated M2 macrophages. After infection with L. major, Slpi−/− M1 macrophages expressed elevated iNOS RNA, whereas arginase was more highly expressed in WT than Slpi−/− M2 macrophages. After in vivo infection, we found that both IFNγ and iNOS were persistently overexpressed in chronic lesions in Slpi−/− mice, but surprisingly, IL-4 and arginase concomitantly remained elevated. Moreover, overexpression of the negative regulators SOCS1 and IL-27 provided insight into the failure of IFNγ to clear L. major from the dermal lesions. Notably, adenoviral delivery of SLPI to L. major-infected Slpi−/− mice significantly limited the progression of infection. These studies suggest that convergence of M1 and M2 macrophage responses may influence the outcome of innate host defense against intracellular parasites and that SLPI is critical for coordinating resistance to chronic leishmaniasis. PMID:25030421

  5. First report of Leishmania tropica from a classical focus of L. major in North-Sinai, Egypt.

    PubMed

    Shehata, Magdi G; Samy, Abdallah M; Doha, Said A; Fahmy, Adel R; Kaldas, Rania M; Furman, Barry D; Villinski, Jeffrey T

    2009-08-01

    Cutaneous leishmaniasis (CL) is prevalent in the Egyptian Sinai Peninsula and previous research has consistently documented the etiologic agent to be Leishmania major. We report the first isolation of Leishmania tropica from human cases of CL in a Northern Sinai community bordering Palestine. Parasite culturing, real-time polymerase chain reaction (PCR), gene sequencing, and restriction fragment length polymorphism (RFLP) analyses indicate CL cases in this community were caused by either L. major or L. tropica (three cases each). Two wild-caught rodents (Gerbillus pyramidum floweri) were infected with L. tropica. Phlebotomus papatasi sand flies were found harboring L. major, however only non-infected individuals of Phlebotomus sergenti, a vector for L. tropica, were caught. Patients with L. tropica had not traveled from the region in over a year, suggesting these cases are autochthonous. This scenario is consistent with an incursion of L. tropica from bordering countries and raises concerns about expansion of this parasite further into Egypt.

  6. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    PubMed

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  7. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    PubMed Central

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  8. Implication of different domains of the Leishmania major metacaspase in cell death and autophagy

    PubMed Central

    Casanova, M; Gonzalez, I J; Sprissler, C; Zalila, H; Dacher, M; Basmaciyan, L; Späth, G F; Azas, N; Fasel, N

    2015-01-01

    Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains. PMID:26492367

  9. An essential role for the Leishmania major metacaspase in cell cycle progression.

    PubMed

    Ambit, A; Fasel, N; Coombs, G H; Mottram, J C

    2008-01-01

    Metacaspases (MCAs) are distant orthologues of caspases and have been proposed to play a role in programmed cell death in yeast and plants, but little is known about their function in parasitic protozoa. The MCA gene of Leishmania major (LmjMCA) is expressed in actively replicating amastigotes and procyclic promastigotes, but at a lower level in metacyclic promastigotes. LmjMCA has a punctate distribution throughout the cell in interphase cells, but becomes concentrated in the kinetoplast (mitochondrial DNA) at the time of the organelle's segregation. LmjMCA also translocates to the nucleus during mitosis, where it associates with the mitotic spindle. Overexpression of LmjMCA in promastigotes leads to a severe growth retardation and changes in ploidy, due to defects in kinetoplast segregation and nuclear division and an impairment of cytokinesis. LmjMCA null mutants could not be generated and following genetic manipulation to express LmjMCA from an episome, the only mutants that were viable were those expressing LmjMCA at physiological levels. Together these data suggest that in L. major active LmjMCA is essential for the correct segregation of the nucleus and kinetoplast, functions that could be independent of programmed cell death, and that the amount of LmjMCA is crucial. The absence of MCAs from mammals makes the enzyme a potential drug target against protozoan parasites.

  10. Implication of different domains of the Leishmania major metacaspase in cell death and autophagy.

    PubMed

    Casanova, M; Gonzalez, I J; Sprissler, C; Zalila, H; Dacher, M; Basmaciyan, L; Späth, G F; Azas, N; Fasel, N

    2015-10-22

    Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine-cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.

  11. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major

    PubMed Central

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-01-01

    Background Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. Methodology/Principal findings After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. Conclusions/Significance This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how

  12. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis.

    PubMed

    Montrieux, Elly; Perera, Wilmer H; García, Marley; Maes, Louis; Cos, Paul; Monzote, Lianet

    2014-08-01

    The search for new therapeutic agents from natural sources has been a constant for the treatment of diseases such as leishmaniasis. Herein, in vitro and in vivo pharmacological activities of pure major phenolic constituents (caffeic acid, chlorogenic acid, ferulic acid, quercetin, and rosmarinic acid) from Pluchea carolinensis against Leishmania amazonensis are presented. Pure compounds showed inhibitory activity against promastigotes (IC50 = 0.2-0.9 μg/mL) and intracellular amastigotes (IC50 = 1.3-2.9 μg/mL). Four of them were selected after testing against macrophages of BALB/c mice: caffeic acid, ferulic acid, quercetin, and rosmarinic acid, with selective indices of 11, 17, 10, and 20, respectively. Ferulic acid, rosmarinic acid, and caffeic acid controlled lesion size development and parasite burden in footpads from BALB/c experimentally infected mice, after five injections of compounds by intralesional route at 30 mg/kg every 4 days. Pure compounds from P. carolinensis demonstrated antileishmanial properties.

  13. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major

    PubMed Central

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C. A. V.; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  14. An in vitro model for infection with Leishmania major that mimics the immune response in mice.

    PubMed Central

    Soares, M B; David, J R; Titus, R G

    1997-01-01

    By using a primary in vitro response specific for Leishmania major, normal T cells from resistant CBA/CaH-T6J and susceptible BALB/c mice commit to a Th1 and a Th2 response, respectively. Since commitment occurred, we measured the production of gamma interferon (IFN-gamma), interleukin-1 (IL-1), IL-2, IL-4, IL-5, IL-10, and IL-12, prostaglandin E2 (PGE2), transforming growth factor beta (TGF-beta), and nitric oxide in the first 7 days of the response to identify factors that are critical for Th1 and Th2 development. While cells from resistant CBA mice produced more IFN-gamma, IL-10, and nitric oxide, cells from susceptible BALB/c mice produced more IL-1alpha, IL-5, PGE2, and TGF-beta. Although substantial amounts of IL-12 were detected, IL-12 did not associate with either Th1 or Th2 development. We did not anticipate that cells from resistant CBA mice would make more IL-10 in vitro. However, this also occurred in vivo since CBA mice produced substantial amounts of IL-10 following infection with L. major. Moreover, adding anti-IL-10 to primary in vitro responses enhanced production of IFN-gamma and nitric oxide by cells from CBA and BALB/c mice. Therefore, IL-10 cannot be regarded as a cytokine that associates with susceptibility to infection with L. major. Finally, the data presented here suggest that a collection of factors that can be produced by accessory cells influence Th commitment (e.g., IL-1, PGE2, and TGF-beta favor Th2 development). PMID:9199457

  15. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major.

    PubMed

    Mou, Zhirong; Liu, Dong; Okwor, Ifeoma; Jia, Ping; Orihara, Kanami; Uzonna, Jude Ezeh

    2014-09-01

    Although it is generally believed that CD4(+) T cells play important roles in anti-Leishmania immunity, some studies suggest that they may be dispensable, and that MHC II-restricted CD3(+)CD4(-)CD8(-) (double negative, DN) T cells may be more important in regulating primary anti-Leishmania immunity. In addition, while there are reports of increased numbers of DN T cells in Leishmania-infected patients, dogs and mice, concrete evidence implicating these cells in secondary anti-Leishmania immunity has not yet been documented. Here, we report that DN T cells extensively proliferate and produce effector cytokines (IFN-γ, TNF and IL-17) and granzyme B (GrzB) in the draining lymph nodes and spleens of mice following primary and secondary L. major infections. DN T cells from healed mice display functional characteristics of protective anti-Leishmania memory-like cells: rapid and extensive proliferation and effector cytokines production following L. major challenge in vitro and in vivo. DN T cells express predominantly (> 95%) alpha-beta T cell receptor (αβ TCR), are Leishmania-specific, restricted mostly by MHC class II molecules and display transcriptional profile of innate-like genes. Using in vivo depletion and adoptive transfer studies, we show that DN T cells contribute to optimal primary and secondary anti-Leishmania immunity in mice. These results directly identify DN T cells as important players in effective and protective primary and secondary anti-L. major immunity in experimental cutaneous leishmaniasis.

  16. Experimental therapeutic studies of Solanum aculeastrum Dunal. on Leishmania major infection in BALB/c mice

    PubMed Central

    Laban, Linet T; Anjili, Christopher O; Mutiso, Joshua M; Ingonga, Johnstone; Kiige, Samuel G; Ngedzo, Mgala M; Gicheru, Michael M

    2015-01-01

    Objective(s): Solanum acueastrum Dunal. has been shown to have some chemotherapeutic value. Leaf and berry water and methanol compounds of S. acueastrum were evaluated for possible antileishmanial activity In vivo on BALB/c mice and in vitro against Leishmania major promastigotes, amastigotes and vero cells. Materials and Methods: Dry S. aculeastrum berry and leaf material were extracted in methanol and water. L. major parasites were exposed to different concentrations of S. aculeastrum fruit and leaf compounds and the IC50 on the promastigotes, percentage of infection rate of macrophages by amastigotes and the toxicological effect on vero cells were determined. BALB/c mice were infected subcutaneously with 1×106 promastigotes and kept for four weeks to allow for disease establishment. Infected mice were treated with fruit and leaf methanolic and water compounds, amphotericin B (AmB), and sterile phosphate buffered saline (PBS). Results: Fruit methanol compound was most effective in inhibiting the growth of promastigotes with IC5078.62 μg/ml. Fruit water compound showed the best activity in inhibiting infection of macrophages by amastigotes. Fruit methanol compound was more toxic at Ld50=8.06 mg/ml to vero cells than amphotericin B. Analysis of variance computation indicated statistically significant difference in lesion sizes between experimental and control mice groups (P=0.0001). Splenic impression smears ANOVA indicated a highly significant difference in parasitic numbers between the experimental and the control groups (P=0.0001). Conclusion: The results demonstrate that compounds from S. aculeastrum have potential anti-leishmanial activities and the medicinal use of the plant poses considerable toxicity against dividing vero cells. PMID:25810878

  17. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice

    PubMed Central

    Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. PMID:26554591

  18. Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors

    PubMed Central

    Brannigan, James A.; Roberts, Shirley M.; Bell, Andrew S.; Hutton, Jennie A.; Hodgkinson, Michael R.; Tate, Edward W.; Leatherbarrow, Robin J.; Smith, Deborah F.; Wilkinson, Anthony J.

    2014-01-01

    The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed. PMID:25075346

  19. A New ABC Half-Transporter in Leishmania major Is Involved in Resistance to Antimony

    PubMed Central

    Manzano, J. I.; García-Hernández, R.; Castanys, S.

    2013-01-01

    The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes. PMID:23716044

  20. PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major

    PubMed Central

    Nare, Bakela; Garraway, Levi A.; Vickers, Tim J.; Beverley, Stephen M.

    2009-01-01

    Leishmania must survive oxidative stress, but lack many classical antioxidant enzymes and rely heavily on trypanothione-dependent pathways. We used forward genetic screens to recover loci mediating oxidant resistance via overexpression in Leishmania major, which identified pteridine reductase 1 (PTR1). Comparisons of isogenic lines showed ptr1- null mutants were 18-fold more sensitive to H2O2 than PTR1-overproducing lines, and significant 3-5 fold differences were seen with a broad panel of oxidant-inducing agents. The toxicities of simple nitric oxide generators and other drug classes (except antifolates) were unaffected by PTR1 levels. H2O2 susceptibility could be modulated by exogenous biopterin but not folate, in a PTR1-but not dihydrofolate reductase-dependent manner, implicating H4B metabolism specifically. Neither H2O2 consumption, nor the level of intracellular oxidative stress, was affected by PTR1 levels. Coupled with the fact that reduced pteridines are at least 100-fold less abundant than cellular thiols), these data argue strongly that reduced pteridines act through a mechanism other than scavenging. The ability of unconjugated pteridines to counter oxidative stress has implications to infectivity and response to chemotherapy. Since the intracellular pteridine levels of Leishmania can be readily manipulated, these organisms offer a powerful setting for the dissection of pteridine-dependent oxidant susceptibility in higher eukaryotes. PMID:19396443

  1. The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine*

    PubMed Central

    Hemsworth, Glyn R.; Moroz, Olga V.; Fogg, Mark J.; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S.

    2011-01-01

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds. PMID:21454646

  2. Anti Leishmanial Effect of Zinc Sulphate on the Viability of Leishmania tropica and L. major Promastigotes

    PubMed Central

    Fattahi Bafghi, Ali; Noorbala, Mohammad; Noorbala, Mohammad Taghi; Aghabagheri, Mahdi

    2014-01-01

    Background: Cutaneous leishmaniasis (CL) is an endemic disease in developing countries. Although pentamidine orantimonite (Glucantime) has been recommended for cutaneous leishmaniasis treatment by the World Health Organization, there are some concerns too such as high cost, side effects, need for frequent injections, and restricted efficacy. Therefore, different methods have been used for CL treatment so far. Objectives: This study assessed the sensitivity of two parasite agents of cutaneous leishmaniasis: Leishmania major and L. tropica to zinc sulphate in vitro. In the present study, the zinc sulphate effect on urban and rural strains of cutaneous leishmaniasis, viability of old world, in vitro is under investigation. Materials and Methods: The design of the present study was experimental (laboratory-trial) based. Iranian endemic species of L. major and L. tropica were appropriately collected, proliferated, and maintained in the standard culture. Afterward, the proper concentrations of zinc sulphate were provided, sterilized, and added to the cultures containing parasites. In different intervals, parasites were counted by two methods: the slide and cell proliferation ELISA. Results: Both parasite species showed sensitivity to zinc sulphate in vitro and in comparison with the control group, their numbers were reduced. Zinc sulphate (in concentrations of 0.5, 1, 2, and 3 percent) was added to the cultures containing parasites, and the total number of the live parasites was counted through the slide method (Neubauer slide) every day up to the fifth day. The results were analyzed and found statistically significant (P < 0.05). In the second phase, the counting process was repeated with the addition of zinc sulphate compound with different concentrations (3, 4, 5, and 6 percent) and live parasite numbers were counted by ELISA method after 24 hours. The findings revealed that all the cultures containing zinc sulphate showed a slower growth in comparison to the control

  3. Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells

    PubMed Central

    Jayakumar, Asha; Hickerson, Suzanne; Mostrom, Janet; Turco, Salvatore J.; Beverley, Stephen M.; McDowell, Mary Ann

    2015-01-01

    Background Leishmania major infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction. Methodology/Principal Findings Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating L. major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L. major or purified LPG induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2- infections revealed that FV1 lpg1- mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription. Conclusions/Significance These data suggest that L. major LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring Leishmania surface glycoconjugates that result in modulation of host cellular IL12. PMID:26630499

  4. A Newly Emerged Cutaneous Leishmaniasis Focus in Northern Israel and Two New Reservoir Hosts of Leishmania major

    PubMed Central

    Faiman, Roy; Abbasi, Ibrahim; Jaffe, Charles; Motro, Yoav; Nasereddin, Abdelmagid; Schnur, Lionel F.; Torem, Moshe; Pratlong, Francine; Dedet, Jean-Pierre; Warburg, Alon

    2013-01-01

    In 2006/7, 18 cases of cutaneous leishmaniasis (CL) were reported for the first time from Sde Eliyahu (pop. 650), a village in the Beit She'an valley of Israel. Between 2007–2011, a further 88 CL cases were diagnosed bringing the total to 106 (16.3% of the population of Sde Eliyahu). The majority of cases resided in the south-western part of the village along the perimeter fence. The causative parasite was identified as Leishmania major Yakimoff & Schokhor, 1914 (Kinetoplastida: Trypanosomatidae). Phlebotomus papatasi (Scopoli), 1786 (Diptera: Psychodidae) was found to be the most abundant phlebotomine species comprising 97% of the sand flies trapped inside the village, and an average of 7.9% of the females were positive for Leishmania ITS1 DNA. Parasite isolates from CL cases and a sand fly were characterized using several methods and shown to be L. major. During a comprehensive survey of rodents 164 Levant voles Microtus guentheri Danford & Alston, 1880 (Rodentia: Cricetidae) were captured in alfalfa fields bordering the village. Of these 27 (16.5%) tested positive for Leishmania ITS1 DNA and shown to be L. major by reverse line blotting. A very high percentage (58.3% - 21/36) of Tristram's jirds Meriones tristrami Thomas, 1892 (Rodentia: Muridae), found further away from the village also tested positive for ITS1 by PCR. Isolates of L. major were successfully cultured from the ear of a wild jird found positive by ITS1 PCR. Although none of the wild PCR-positive voles exhibited external pathology, laboratory-reared voles that were infected by intradermal L. major inoculation, developed patent lesions and sand flies became infected by feeding on the ears of these laboratory-infected voles. This is the first report implicating M. guentheri and M. tristrami as reservoirs of Leishmania. The widespread co-distribution of M. guentheri and P. papatasi, suggests a significant threat from the spread of CL caused by L. major in the Middle East, central Asia and southern

  5. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    PubMed Central

    Parsons, Marilyn; Worthey, Elizabeth A; Ward, Pauline N; Mottram, Jeremy C

    2005-01-01

    Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function

  6. Identification of Potent Chemotypes Targeting Leishmania major Using a High-Throughput, Low-Stringency, Computationally Enhanced, Small Molecule Screen

    PubMed Central

    Sharlow, Elizabeth R.; Close, David; Shun, Tongying; Leimgruber, Stephanie; Reed, Robyn; Mustata, Gabriela; Wipf, Peter; Johnson, Jacob; O'Neil, Michael; Grögl, Max; Magill, Alan J.; Lazo, John S.

    2009-01-01

    Patients with clinical manifestations of leishmaniasis, including cutaneous leishmaniasis, have limited treatment options, and existing therapies frequently have significant untoward liabilities. Rapid expansion in the diversity of available cutaneous leishmanicidal chemotypes is the initial step in finding alternative efficacious treatments. To this end, we combined a low-stringency Leishmania major promastigote growth inhibition assay with a structural computational filtering algorithm. After a rigorous assay validation process, we interrogated ∼200,000 unique compounds for L. major promastigote growth inhibition. Using iterative computational filtering of the compounds exhibiting >50% inhibition, we identified 553 structural clusters and 640 compound singletons. Secondary confirmation assays yielded 93 compounds with EC50s ≤ 1 µM, with none of the identified chemotypes being structurally similar to known leishmanicidals and most having favorable in silico predicted bioavailability characteristics. The leishmanicidal activity of a representative subset of 15 chemotypes was confirmed in two independent assay formats, and L. major parasite specificity was demonstrated by assaying against a panel of human cell lines. Thirteen chemotypes inhibited the growth of a L. major axenic amastigote-like population. Murine in vivo efficacy studies using one of the new chemotypes document inhibition of footpad lesion development. These results authenticate that low stringency, large-scale compound screening combined with computational structure filtering can rapidly expand the chemotypes targeting in vitro and in vivo Leishmania growth and viability. PMID:19888337

  7. Myeloid-derived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses.

    PubMed

    Pereira, Wânia F; Ribeiro-Gomes, Flávia L; Guillermo, Landi V Costilla; Vellozo, Natália S; Montalvão, Fabrício; Dosreis, George A; Lopes, Marcela F

    2011-12-01

    Th1/Th2 cytokines play a key role in immune responses to Leishmania major by controlling macrophage activation for NO production and parasite killing. MDSCs, including myeloid precursors and immature monocytes, produce NO and suppress T cell responses in tumor immunity. We hypothesized that NO-producing MDSCs could help immunity to L. major infection. Gr1(hi)(Ly6C(hi)) CD11b(hi) MDSCs elicited by L. major infection suppressed polyclonal and antigen-specific T cell proliferation. Moreover, L. major-induced MDSCs killed intracellular parasites in a NO-dependent manner and reduced parasite burden in vivo. By contrast, treatment with ATRA, which induces MDSCs to differentiate into macrophages, increased development of lesions, parasite load, and T cell proliferation in draining LNs. Altogether, these results indicate that NO-producing MDSCs help protective immunity to L. major infection, despite suppressed T cell proliferation.

  8. Enzymatic Mechanism of Leishmania major Peroxidase and the Critical Role of Specific Ionic Interactions

    PubMed Central

    Chreifi, Georges; Hollingsworth, Scott A.; Li, Huiying; Tripathi, Sarvind; Arce, Anton P.; Magaña-Garcia, Hugo I.; Poulos, Thomas L.

    2015-01-01

    Leishmania major peroxidase (LmP) is very similar to the well-known yeast cytochrome c peroxidase (CcP). Both enzymes catalyze the peroxidation of cytochrome c. Like CcP, LmP reacts with H2O2 to form Compound I, which consists of a ferryl heme and a Trp radical, FeIV= O;Trp•+. Cytochrome c (Cytc) reduces the Trp radical to give Compound II, FeIV= O;Trp, which is followed by an intramolecular electron transfer to give FeIII–OH;Trp•+, and in the last step, Cytc reduces the Trp radical. In this study, we have used steady-state and single-turnover kinetics to improve our understanding of the overall mechanism of LmP catalysis. While the activity of CcP greatly increases with ionic strength, the kcat for LmP remains relatively constant at all ionic strengths tested. Therefore, unlike CcP, where dissociation of oxidized Cytc is limiting at low ionic strengths, association/dissociation reactions are not limiting at any ionic strength in LmP. We conclude that in LmP, the intramolecular electron transfer reaction, FeIV= O;Trp to FeIII–OH;Trp•+, is limiting at all ionic strengths. Unlike CcP, LmP depends on key intermolecular ion pairs to form the electron transfer competent complex. Mutating these sites causes the initial rate of association to decrease by 2 orders of magnitude and a substantial decrease in kcat. The drop in kcat is due to a switch in the rate-limiting step of the mutants from intramolecular electron transfer to the rate of association in forming the LmP–LmCytc complex. These studies show that while LmP and CcP form very similar complexes and exhibit similar activities, they substantially differ in how their activity changes as a function of ionic strength. This difference is primarily due to the heavy reliance of LmP on highly specific intermolecular ion pairs, while CcP relies mainly on nonpolar interactions. PMID:25941976

  9. Leishmania major lacking arginase are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice

    PubMed Central

    Reguera, Rosa M.; Balaña-Fouce, Rafael; Showalter, Melissa; Hickerson, Suzanne; Beverley, Stephen M.

    2009-01-01

    Polyamines are essential metabolites in eukaryotes participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. Whereas the polyamine biosynthesis arising from L-ornithine has been well studied in protozoa, the metabolic origin(s) of L-ornithine have received less attention. Arginase (EC 3.5.3.1) catalyzes the enzymatic hydrolysis of L-arginine to L-ornithine and urea, and we tested the role of arginase in polyamine synthesis by the generation of an arg− knockout in Leishmania major by double targeted gene replacement. This mutant lacked arginase activity and required the nutritional provision of polyamines or L-ornithine for growth. A complemented line (arg−/+ARG) expressing arginase from a multicopy expression vector showed 30-fold elevation of arginase activity, similar polyamine and ornithine levels as the wild-type, and resistance to the inhibitors α-difluoromethylornithine (DFMO) and Nω-hydroxy-L-arginine (NOHA). This established that arginase is the major route of polyamine synthesis in promastigotes cultured in vitro. The arg− parasites retained the ability to differentiate normally to the infective metacyclic stage, and were able to induce progressive disease following inoculation into susceptible BALB/c mice, albeit less efficiently than WT parasites. These data suggest that the infective amastigote form of Leishmania, which normally resides within an acidified parasitophorous vacuole, can survive in vivo through salvage of host polyamines and/or other molecules, aided by the tendency of acidic compartments to concentrate basic metabolites. This may thus contribute to the relative resistance of Leishmania to ornithine decarboxylase (ODC) inhibitors. The availability of infective, viable, arginase-deficient parasites should prove useful in dissecting the role of L-arginine metabolism in both pro- and anti-parasitic responses involving host nitric

  10. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins.

    PubMed

    Tafaghodi, M; Eskandari, M; Kharazizadeh, M; Khamesipour, A; Jaafari, M R

    2010-12-01

    Immune responses against the Leishmania antigens are not sufficient to protect against a leishmania challenge. Therefore these antigens need to be potentiated by various adjuvants and delivery systems. In this study, Poly (d,l-lactide-co-glycolide (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter for nanospheres loaded with ALM+QS was 294 ± 106 nm. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded nanospheres [(ALM+QS)PLGA], ALM encapsulated with PLGA nanospheres [(ALM)PLGA], (ALM)PLGA + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)PLGA. The (ALM+QS)PLGA group showed the least protection and highest swelling, while the (ALM)PLGA+QS, ALM+QS and ALM showed an intermediate protection with no significant difference. The mice immunized with ALM and ALM+QS showed the highest IgG2a/IgG1 ratio (P < 0.01), followed by (ALM)PLGA+QS. The highest IFN-γ and lowest IL-4 production was seen in (ALM)PLGA+QS, ALM+QS groups. The highest parasite burden was observed in (ALM)PLGA+QS and (ALM+QS)PLGA groups. It is concluded that PLGA nanospheres as a vaccine delivery system could increase the protective immune responses, but QS adjuvant has a reverse effect on protective immune responses and the least protective responses were seen in the presence of this adjuvant.

  11. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major

    PubMed Central

    Murta, Silvane M. F.; Vickers, Tim J.; Scott, David A.; Beverley, Stephen M.

    2009-01-01

    Summary 10-formyl tetrahydrofolate is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP+-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analog 5,10-CO-THF (Ki 105 nM), as was Leishmania growth (EC50 1.1 μM). Previous studies showed null ftl− mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1− null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based upon segregational loss of episomal complementing genes rather than transfection; analysis of ~1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed ‘genetic metabolite complementation’ using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1− null parasites were readily obtained. These data establish a requirement for 10-CHO tetrahydrofolate metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites. PMID:19183277

  12. Cell homeostasis in a Leishmania major mutant overexpressing the spliced leader RNA is maintained by an increased proteolytic activity.

    PubMed

    Toledo, Juliano S; Ferreira, Tiago R; Defina, Tânia P A; Dossin, Fernando de M; Beattie, Kenneth A; Lamont, Douglas J; Cloutier, Serge; Papadopoulou, Barbara; Schenkman, Sergio; Cruz, Angela K

    2010-10-01

    Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.

  13. Cathepsin B-Deficient Mice Resolve Leishmania major Inflammation Faster in a T Cell-Dependent Manner

    PubMed Central

    Mériaux, Véronique; Khan, Erin M.; Borde, Chloé; Ciulean, Ioana S.; Fitting, Catherine; Manoury, Bénédicte; Cavaillon, Jean-Marc; Doyen, Noëlle

    2016-01-01

    A critical role for intracellular TLR9 has been described in recognition and host resistance to Leishmania parasites. As TLR9 requires endolysosomal proteolytic cleavage to achieve signaling functionality, we investigated the contribution of different proteases like asparagine endopeptidase (AEP) or cysteine protease cathepsins B (CatB), L (CatL) and S (CatS) to host resistance during Leishmania major (L. major) infection in C57BL/6 (WT) mice and whether they would impact on TLR9 signaling. Unlike TLR9-/-, which are more susceptible to infection, AEP-/-, CatL-/- and CatS-/- mice are as resistant to L. major infection as WT mice, suggesting that these proteases are not individually involved in TLR9 processing. Interestingly, we observed that CatB-/- mice resolve L. major lesions significantly faster than WT mice, however we did not find evidence for an involvement of CatB on either TLR9-dependent or independent cytokine responses of dendritic cells and macrophages or in the innate immune response to L. major infection. We also found no difference in antigen presenting capacity. We observed a more precocious development of T helper 1 responses accompanied by a faster decline of inflammation, resulting in resolution of footpad inflammation, reduced IFNγ levels and decreased parasite burden. Adoptive transfer experiments into alymphoid RAG2-/-γc-/- mice allowed us to identify CD3+ T cells as responsible for the immune advantage of CatB-/- mice towards L. major. In vitro data confirmed the T cell intrinsic differences between CatB-/- mice and WT. Our study brings forth a yet unappreciated role for CatB in regulating T cell responses during L. major infection. PMID:27182703

  14. Protective response to Leishmania major in BALB/c mice requires antigen processing in the absence of DM.

    PubMed

    Kamala, Tirumalai; Nanda, Navreet K

    2009-04-15

    Protection from the parasite Leishmania major is mediated by CD4 T cells. BALB/c mice are susceptible to L. major and show a nonprotective immunodominant CD4 T cell response to Leishmania homolog of activated receptor for c-kinase (LACK) 158-173. Host genes that underlie BALB/c susceptibility to L. major infections are poorly defined. DM, a nonclassical MHC class II molecule, due to its peptide editing properties has been shown to 1) edit the repertoire of peptides displayed by APC, and 2) focus the display of epitopes by APC to the immunodominant ones. We tested the hypothesis that deficiency of DM, by causing presentation of a different array of epitopes by infected APC than that presented by DM-sufficient APC, may change the course of L. major infection in the susceptible BALB/c mice. We show herein that unlike their susceptible wild-type counterparts, BALB/c mice deficient in DM are protected from infections with L. major. Furthermore, DM-deficient mice fail to display the immunodominant LACK 158-173 on infected APC. In its place, infected DM(-/-) hosts show elicitation of CD4 T cells specific for newer epitopes not presented by wild-type L. major-infected APC. Protection of BALB/c DM(-/-) mice is dependent on IFN-gamma. DM is thus a host susceptibility gene in BALB/c mice, and Ag processing in the absence of DM results in elicitation of a protective T cell response against L. major infections. This report suggests a novel mechanism to trigger host resistance against pathogens.

  15. Effects of Leishmania major clones showing different levels of virulence on infectivity, differentiation and maturation of human dendritic cells.

    PubMed

    Markikou-Ouni, W; Ben Achour-Chenik, Y; Meddeb-Garnaoui, A

    2012-09-01

    Leishmania parasites and dendritic cell interactions (DCs) play an essential role in initiating and directing T cell responses and influence disease evolution. These interactions may vary depending on Leishmania species and strains. To evaluate the correlation between Leishmania major (Lm) virulence and in-vitro human DC response, we compared the ability of high (HV) and low virulent (LV) Lm clones to invade, modulate cytokine production and interfere with differentiation of DCs. Clones derived from HV and LV (HVΔlmpdi and LVΔlmpdi), and deleted for the gene coding for a Lm protein disulphide isomerase (LmPDI), probably involved in parasite natural pathogenicity, were also used. Unlike LV, which fails to invade DCs in half the donors, HV promastigotes were associated with a significant increase of the infected cells percentage and parasite burden. A significant decrease of both parameters was observed in HVΔlmpdi-infected DCs, compared to wild-type cells. Whatever Lm virulence, DC differentiation was accompanied by a significant decrease in CD1a expression. Lm clones decreased interleukin (IL)-12p70 production similarly during lipopolysaccharide (LPS)-induced maturation of DCs. LPS stimulation was associated with a weak increase in tumour necrosis factor (TNF)-α and IL-10 productions in HV-, HVΔlmpdi- and LVΔlmpdi-infected DCs. These results indicate that there is a significant variability in the capacity of Lm clones to infect human DCs which depends upon their virulence, probably involving LmPDI protein. However, independently of their virulence, Lm clones were able to down-regulate CD1a expression during DC differentiation and IL-12p70 production during DC maturation, which may favour their survival.

  16. In vitro and in vivo antileishmanial effects of aloe-emodin on Leishmania major.

    PubMed

    Dalimi, Abdolhossein; Delavari, Mahdi; Ghaffarifar, Fatemeh; Sadraei, Javid

    2015-04-01

    Cutaneous leishmaniasis is a common parasitic disease that is endemic in some parts of Iran. The drugs of choice used for leishmaniasis therapy are associated with a risk of recurrence and serious adverse effects. Therefore, finding a safe and effective treatment is of great importance. In the present study, the effect of aloe-emodin on the growth of Leishmania major amastigotes was evaluated under in vitro conditions. In addition, the efficacy of a topical of aloe-emodin ointment was investigated in BALB/c mice with cutaneous leishmanial ulcers. Different concentrations (40 μg/mL, 80 μg/mL, 120 μg/mL, and 160 μg/mL) of aloe-emodin were tested on Leishmania amastigotes twice: 24 hours and 48 hours. The induced apoptosis and necrotic effects of two concentrations (40 μg/mL and 120 μg/mL) of aloe-emodin on promastigotes were investigated by flow cytometry. Under the in vivo condition, aloe-emodin ointment efficacy was evaluated at two concentrations (i.e., 0.1% and 1%). Serum indicator factors of the test and control groups were tested to evaluate the toxic effects of this compound on the liver and kidney. Results showed that aloe-emodin inhibited the growth of Leishmania amastigotes and induced apoptosis in promastigotes. Topical application of aloe-emodin ointment likewise reduced the ulcer size. No significant differences in biochemical analysis were observed between the control and treated groups. In conclusion, aloe-emodin showed antileishmanial effects under in vitro and in vivo conditions and may be used in clinical trials.

  17. In vitro and in vivo antileishmanial effects of aloe-emodin on Leishmania major

    PubMed Central

    Dalimi, Abdolhossein; Delavari, Mahdi; Ghaffarifar, Fatemeh; Sadraei, Javid

    2015-01-01

    Cutaneous leishmaniasis is a common parasitic disease that is endemic in some parts of Iran. The drugs of choice used for leishmaniasis therapy are associated with a risk of recurrence and serious adverse effects. Therefore, finding a safe and effective treatment is of great importance. In the present study, the effect of aloe-emodin on the growth of Leishmania major amastigotes was evaluated under in vitro conditions. In addition, the efficacy of a topical of aloe-emodin ointment was investigated in BALB/c mice with cutaneous leishmanial ulcers. Different concentrations (40 μg/mL, 80 μg/mL, 120 μg/mL, and 160 μg/mL) of aloe-emodin were tested on Leishmania amastigotes twice: 24 hours and 48 hours. The induced apoptosis and necrotic effects of two concentrations (40 μg/mL and 120 μg/mL) of aloe-emodin on promastigotes were investigated by flow cytometry. Under the in vivo condition, aloe-emodin ointment efficacy was evaluated at two concentrations (i.e., 0.1% and 1%). Serum indicator factors of the test and control groups were tested to evaluate the toxic effects of this compound on the liver and kidney. Results showed that aloe-emodin inhibited the growth of Leishmania amastigotes and induced apoptosis in promastigotes. Topical application of aloe-emodin ointment likewise reduced the ulcer size. No significant differences in biochemical analysis were observed between the control and treated groups. In conclusion, aloe-emodin showed antileishmanial effects under in vitro and in vivo conditions and may be used in clinical trials. PMID:26151018

  18. KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

    PubMed Central

    Gomes, Regis; Teixeira, Clarissa; Oliveira, Fabiano; Lawyer, Phillip G.; Elnaiem, Dia-Eldin; Meneses, Claudio; Goto, Yasuyuki; Bhatia, Ajay; Howard, Randall F.; Reed, Steven G.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2012-01-01

    Background Recombinant KSAC and L110f are promising Leishmania vaccine candidates. Both antigens formulated in stable emulsions (SE) with the natural TLR4 agonist MPL® and L110f with the synthetic TLR4 agonist GLA in SE protected BALB/c mice against L. major infection following needle challenge. Considering the virulence of vector-transmitted Leishmania infections, we vaccinated BALB/c mice with either KSAC+GLA-SE or L110f+GLA-SE to assess protection against L. major transmitted via its vector Phlebotomus duboscqi. Methods Mice receiving the KSAC or L110f vaccines were challenged by needle or L. major-infected sand flies. Weekly disease progression and terminal parasite loads were determined. Immunological responses to KSAC, L110f, or soluble Leishmania antigen (SLA) were assessed throughout vaccination, three and twelve weeks after immunization, and one week post-challenge. Results Following sand fly challenge, KSAC-vaccinated mice were protected while L110f-vaccinated animals showed partial protection. Protection correlated with the ability of SLA to induce IFN-γ-producing CD4+CD62LlowCCR7low effector memory T cells pre- and post-sand fly challenge. Conclusions This study demonstrates the protective efficacy of KSAC+GLA-SE against sand fly challenge; the importance of vector-transmitted challenge in evaluating vaccine candidates against Leishmania infection; and the necessity of a rapid potent Th1 response against Leishmania to attain true protection. PMID:22509423

  19. Three Leishmania/L. species--L. infantum, L. major, L. tropica--as causative agents of mucosal leishmaniasis in Iran.

    PubMed

    Shirian, Sadegh; Oryan, Ahmad; Hatam, Gholam Reza; Daneshbod, Yahya

    2013-07-01

    Cases of human oro-mucosal leishmaniasis are mainly reported in areas where Leishmania (Viannia) braziliensis perpetuates and the damages are mainly located at the cartilaginous nasal septum and frontal portions of the nasal fossa. In Iran, an area free of any L.(V) braziliensis, three Leishmania species are known to perpetuate through distinct (i) blood-feeding sand flies and (ii) rodents or (iii) canidae. Thus while establishing the diagnosis of any human oro-mucosal lesions, three Leishmania species - L. infantum, L. major, and L. tropica - must be considered as potential etiological agents of these damages. With these objectives in mind, features such as localization, extent, severity of oro-mucosal lesions, and duration of symptoms at the time of diagnosis were recorded from 11 patients with respect to the presence or absence of cutaneous lesions in other body parts. The biopsy samples were collected from the oro-mucosal and cutaneous lesions and were processed for further identification of the Leishmania species. The lesions ranged from mucosal nodules without ulceration, nodules with erosion, and shallow to deep ulcerations. Leishmania major was isolated from six (55%) cases showing lesions or scars. The scars were restricted to upper and lower extremities. For the other five patients who did not display any signs of former or active cutaneous leishmaniasis, L. major, L. tropica, and L. infantum were isolated from their lesions. In conclusion L. major, L. infantum, and L. tropica, regardless of common tropism, can be seen in mucosal tissues. However, L. major was the predominant species detected from the lesions in the nasal, gingival, and hard and soft palates, and L. tropica was isolated from the gingival and lower lip lesions. Leishmania infantum was isolated from two severe cases of deep mucosal damage displayed by the epiglottis, cricoarytenoid muscle, and laryngeal mucosa. One important finding was the association of L. major with active or scarred

  20. The activity of azithromycin against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the golden hamster model.

    PubMed

    Sinagra, Angel; Luna, Concepción; Abraham, David; Iannella, Maria del Carmen; Riarte, Adelina; Krolewiecki, Alejandro J

    2007-01-01

    New therapeutic alternatives against leishmaniasis remain a priority. The activity of azithromycin against Leishmania (Leishmania) major has been previously demonstrated. Different responses among species of Leishmania make species-specific drug screening necessary. The activity of azithromycin against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis was evaluated in golden hamsters infected through footpad injections of metacyclic promastigotes, and compared with untreated controls and animals treated with meglumine antimoniate. Footpad thickness, lesion cultures and dissemination sites were analyzed. Treatment of golden hamsters with oral azithromycin at 450mg/kg had no activity against infections with Leishmania (Leishmania) amazonensis. For infections due to Leishmania (Viannia) braziliensis, azithromycin demonstrated significant activity relative to untreated controls, but inferior to meglumine antimoniate, for controlling lesion size. Neither drug was able to totally eliminate parasites from the lesions. It was concluded that azithromycin has activity against Leishmania (Viannia) braziliensis but not against Leishmania (Leishmania) amazonensis in this model.

  1. The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice.

    PubMed

    Iborra, Salvador; Soto, Manuel; Carrión, Javier; Nieto, Ana; Fernández, Edgar; Alonso, Carlos; Requena, Jose M

    2003-11-01

    In this study, we examined the immunogenic properties of the Leishmania infantum acidic ribosomal protein P0 (LiP0) in the BALB/c mouse model. The humoral and cellular responses induced by the administration of the LiP0 antigen, either as soluble recombinant LiP0 (rLiP0) or as a plasmid DNA formulation (pcDNA3-LiP0), were determined. Also, the immunological response associated with a prime-boost strategy, consisting of immunization with pcDNA3-LiP0 followed by a boost with rLiP0, was assayed. Immunization with rLiP0 induced a predominant Th2-like humoral response, but no anti-LiP0 antibodies were induced after immunization with pcDNA3-LiP0, whereas a strong humoral response consisting of a mixed immunoglobulin G2a (IgG2a)-IgG1 isotype profile was induced in mice immunized with the prime-boost regime. For all three immunization protocols, rLiP0-stimulated production of gamma interferon (IFN-gamma) in both splenocytes and lymph node cells from immunized mice was observed. However, it was only when mice were immunized with pcDNA3-LiP0 that noticeable protection against L. major infection was achieved, as determined by both lesion development and parasite burden. Immunization of mice with LiP0-DNA primes both CD4(+) and CD8(+) T cells, which, with the L. major challenge, were boosted to produce significant levels of IL-12-dependent, antigen-specific IFN-gamma. Taken together, these data indicate that genetic vaccination with LiP0 induces protective immunological effector mechanisms, yet the immunological response elicited by LiP0 is not sufficient to keep the infection from progressing.

  2. The Leishmania major BBSome subunit BBS1 is essential for parasite virulence in the mammalian host

    PubMed Central

    Price, Helen P; Paape, Daniel; Hodgkinson, Michael R; Farrant, Katie; Doehl, Johannes; Stark, Meg; Smith, Deborah F

    2013-01-01

    Summary Bardet–Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole-like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild-type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity. PMID:23998526

  3. Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major

    PubMed Central

    Stamper, Lisa W.; Patrick, Rachel L.; Fay, Michael P.; Lawyer, Phillip G.; Elnaiem, Dia-Eldin A.; Secundino, Nagila; Debrabant, Alain; Sacks, David L.; Peters, Nathan C.

    2011-01-01

    To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite. PMID:21886852

  4. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking

    PubMed Central

    Brindisi, Margherita; Brogi, Simone; Relitti, Nicola; Vallone, Alessandra; Butini, Stefania; Gemma, Sandra; Novellino, Ettore; Colotti, Gianni; Angiulli, Gabriella; Di Chiaro, Francesco; Fiorillo, Annarita; Ilari, Andrea; Campiani, Giuseppe

    2015-01-01

    Leishmaniasis is a neglected vector-born disease caused by a protozoan of the genus Leishmania and affecting more than 1.300.000 people worldwide. The couple tryparedoxin/tryparedoxin peroxidase is essential for parasite survival in the host since it neutralizes the hydrogen peroxide produced by macrophages during the infection. Herein we report a study aimed at discovering the first class of compounds able to non-covalently inhibit tryparedoxin peroxidase. We have solved the high-resolution structure of Tryparedoxin peroxidase I from Leishmania major (LmTXNPx) in the reduced state and in fully folded conformation. A first series of compounds able to inhibit LmTXNPx was identified by means of the high throughput docking technique. The inhibitory activity of these compounds was validated by a Horseradish peroxidase-based enzymatic assay and their affinity for LmTXNPx calculated by surface plasmon resonance experiments. On the basis of these results, the analysis of the enzyme-inhibitor docked models allowed us to rationally design and synthesize a series of N,N-disubstituted 3-aminomethyl quinolones. These compounds showed an inhibitory potency against LmTXNPx in the micromolar range. Among them, compound 12 represents the first non-covalent LmTXNPx inhibitor reported to date and could pave the way to the discovery of a new class of drugs against leishmaniasis. PMID:25951439

  5. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination

    PubMed Central

    Reynolds, David L.; Hofmeister, Brigitte T.; Cliffe, Laura; Siegel, T. Nicolai; Anderson, Britta A.; Beverley, Stephen M.; Schmitz, Robert J.; Sabatini, Robert

    2016-01-01

    Summary The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription. PMID:27125778

  6. Involvement of Different CD4+ T Cell Subsets Producing Granzyme B in the Immune Response to Leishmania major Antigens

    PubMed Central

    Naouar, Ikbel; Boussoffara, Thouraya; Ben Ahmed, Melika; Belhaj Hmida, Nabil; Gharbi, Adel; Gritli, Sami; Ben Salah, Afif; Louzir, Hechmi

    2014-01-01

    The nature of effector cells and the potential immunogenicity of Leishmania major excreted/secreted proteins (LmES) were evaluated using peripheral blood mononuclear cells (PBMCs) from healed zoonotic cutaneous leishmaniasis individuals (HZCL) and healthy controls (HC). First, we found that PBMCs from HZCL individuals proliferate and produce high levels of IFN-γ and granzyme B (GrB), used as a marker of activated cytotoxic T cells, in response to the parasite antigens. IFN-γ is produced by CD4+ T cells, but unexpectedly GrB is also produced by CD4+ T cells in response to stimulation with LmES, which were found to be as effective as soluble Leishmania antigens to induce proliferation and cytokine production by PBMCs from immune individuals. To address the question of regulatory T cell (Tregs) involvement, the frequency of circulating Tregs was assessed and found to be higher in HZCL individuals compared to that of HC. Furthermore, both CD4+CD25+ and CD4+CD25− T cells, purified from HZCL individuals, produced IFN-γ and GrB when stimulated with LmES. Additional experiments showed that CD4+CD25+CD127dim/− Tregs were involved in GrB production. Collectively, our data indicate that LmES are immunogenic in humans and emphasize the involvement of CD4+ T cells including activated and regulatory T cells in the immune response against parasite antigens. PMID:25104882

  7. Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase.

    PubMed

    Pinheiro, Matheus Pinto; Emery, Flávio da Silva; Nonato, M Cristina

    2013-01-01

    Trypanosomatids consist of a large group of flagellated parasitic protozoa, including parasites from the genera Leishmania and Trypanosoma, responsible for causing infections in millions of humans worldwide and for which currently no appropriate therapy is available. The significance of pyrimidines in cellular metabolism makes their de novo and salvage pathways ideal druggable targets for pharmacological intervention and open an opportunity for pharmaceutical innovation. In the current review, we discuss the merits in targeting the enzyme dihydroorotate dehydrogenase (DHODH), a flavin-dependent enzyme that catalyzes the fourth and only redox step in pyrimidine de novo biosynthesis, as a strategy for the development of efficient therapeutic strategies for trypanosomatid-related diseases.We also describe the advances and perspectives from the structural biology point of view in order to unravel the structure-function relationship of trypanosomatid DHODHs, and to identify and validate target sites for drug development.

  8. Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection

    PubMed Central

    Gonzalez-Leal, Iris J.; Röger, Bianca; Schwarz, Angela; Schirmeister, Tanja; Reinheckel, Thomas; Lutz, Manfred B.; Moll, Heidrun

    2014-01-01

    Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb−/− and Ctsl−/− mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb−/− BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl−/− BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb−/− mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb−/− BMDC display more pro-Th1 properties than their WT and Ctsl−/− counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression. PMID:25255101

  9. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate.

    PubMed

    Larson, Eric T; Kim, Jessica E; Zucker, Frank H; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Van Voorhis, Wesley C; Merritt, Ethan A; Hol, Wim G J

    2011-03-01

    Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions of people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg(2+) ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of Escherichia coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNA(Met) complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme.

  10. Therapeutic Effect of Hedera helix Alcoholic Extract Against Cutaneous Leishmaniasis Caused by Leishmania major in Balb/c Mice

    PubMed Central

    Hooshyar, Hossein; Talari, Safarali; Feyzi, Fatemeh

    2014-01-01

    Background: Cutaneous leishmaniasis (CL) is common and endemic in many areas of Iran, caused by species of a protozoan parasite belonging to the genus Leishmania. There is not any effective vaccine against leishmaniasis; so, therapy is important for prevention and separation of disease. Herbal extract for treatment of CL is cost-effective, applicable topically to lesions, and can avoid the development of drug resistance. Objectives: The aim of this study was to evaluate the in vivo activity of an alcoholic extract of Hedera helix (a native Iranian plant) on the experimental ulcer of zoonotic CL in Balb/c mice. Materials and Methods: At least 5x l06 promastigotes of Leishmania major (MHOM/64/IR/ER75) were inoculated subcutaneously in the tail base of Balb/c mice. Fifty six infected mice were distributed in four groups, two groups (16 mice for 20% alcoholic extract of H. helix and 13 for 70% extract) were used as experimental groups, one (15 mice) as placebo control (Control A), and one (12 mice) as negative control. Treatment effects of two concentrations were determined by comparison of placebo and nontreated groups via measuring the size of skin lesions and the number of parasitologically positive and negative mice after the therapy period. Results: This study showed that the main lesion size did not decrease significantly, or the small lesions did not completely disappear after treatment by H. helix alcoholic extract. Amastigotes counts (mean ± SD) of the skin lesions decreased in control A and 20% concentration groups, but in negative control and 70% concentration groups the number of parasites did not reduce. Conclusions: The present study did not support the in vivo antileishmanial effect of H. helix extract. We recommend further studies using major components of H. helix, especially hederasaponin (saponin K10), to investigate the antileishmanial effect of this plant on L. major. PMID:25147703

  11. Development of an Ex Vivo Lymph Node Explant Model for Identification of Novel Molecules Active against Leishmania major

    PubMed Central

    Peniche, Alex G.; Osorio, Yaneth; Renslo, Adam R.; Frantz, Doug E.; Melby, Peter C.

    2014-01-01

    Leishmaniasis is a vector-borne zoonotic infection affecting people in tropical and subtropical regions of the world. Current treatments for cutaneous leishmaniasis are difficult to administer, toxic, expensive, and limited in effectiveness and availability. Here we describe the development and application of a medium-throughput screening approach to identify new drug candidates for cutaneous leishmaniasis using an ex vivo lymph node explant culture (ELEC) derived from the draining lymph nodes of Leishmania major-infected mice. The ELEC supported intracellular amastigote proliferation and contained lymph node cell populations (and their secreted products) that enabled the testing of compounds within a system that mimicked the immunopathological environment of the infected host, which is known to profoundly influence parasite replication, killing, and drug efficacy. The activity of known antileishmanial drugs in the ELEC system was similar to the activity measured in peritoneal macrophages infected in vitro with L. major. Using the ELEC system, we screened a collection of 334 compounds, some of which we had demonstrated previously to be active against L. donovani, and identified 119 hits, 85% of which were confirmed to be active by determination of the 50% effective concentration (EC50). We found 24 compounds (7%) that had an in vitro therapeutic index (IVTI; 50% cytotoxic/effective concentration [CC50]/EC50) > 100; 19 of the compounds had an EC50 below 1 μM. According to PubChem searchs, 17 of those compounds had not previously been reported to be active against Leishmania. We expect that this novel method will help to accelerate discovery of new drug candidates for treatment of cutaneous leishmaniasis. PMID:24126577

  12. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN.

    PubMed

    Tafaghodi, Mohsen; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-05-01

    Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.

  13. Inhibition of caspase-8 activity promotes protective Th1- and Th2-mediated immunity to Leishmania major infection.

    PubMed

    Pereira-Manfro, Wânia F; Ribeiro-Gomes, Flávia L; Filardy, Alessandra Almeida; Vellozo, Natália S; Guillermo, Landi V C; Silva, Elisabeth M; Siegel, Richard M; Dosreis, George A; Lopes, Marcela F

    2014-02-01

    We investigated how apoptosis pathways mediated by death receptors and caspase-8 affect cytokine responses and immunity to Leishmania major parasites. Splenic CD4 T cells undergo activation-induced apoptosis, and blockade of FasL-Fas interaction increased IFN-γ and IL-4 cytokine responses to L. major antigens. To block death receptor-induced death, we used mice expressing a T cell-restricted transgene for vFLIP. Inhibition of caspase-8 activation in vFLIP mice enhanced Th1 and Th2 cytokine responses to L. major infection, even in the Th1-prone B6 background. We also observed increased NO production by splenocytes from vFLIP mice upon T cell activation. Despite an exacerbated Th2 response, vFLIP mice controlled better L. major infection, with reduced lesions and lower parasite loads compared with WT mice. Moreover, injection of anti-IL-4 mAb in infected vFLIP mice disrupted control of parasite infection. Therefore, blockade of caspase-8 activity in T cells improves immunity to L. major infection by promoting increased Th1 and Th2 responses.

  14. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves.

    PubMed

    Moradi, M; Sattarahmady, N; Rahi, A; Hatam, G R; Sorkhabadi, S M Rezayat; Heli, H

    2016-12-01

    Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10(-10) to 1.0×10(-19)molL(-1) with a limit of detection of 1.8×10(-20)molL(-1), and genomic DNA in a range of 0.5-20ngμL(-1) with a limit of detection of 0.07ngμL(-1). The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples.

  15. Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major.

    PubMed

    Machado, M; Pires, P; Dinis, A M; Santos-Rosa, M; Alves, V; Salgueiro, L; Cavaleiro, C; Sousa, M C

    2012-03-01

    In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis.

  16. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major

    SciTech Connect

    Bisacchi, Davide; Zhou, Yao; Rosen, Barry P.; Mukhopadhyay, Rita; Bordo, Domenico

    2006-10-01

    LmACR2 from L. major is the first rhodanese-like enzyme directly involved in the reduction of arsenate and antimonate to be crystallized. Diffraction data have been collected to 1.99 Å resolution using synchrotron X-rays. Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3{sub 1}21/P3{sub 2}21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 Å and a = b = 111.0, c = 175.6 Å, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 Å.

  17. The Contribution of the Fas/FasL Apoptotic Pathway in Ulcer Formation during Leishmania major-Induced Cutaneous Leishmaniasis

    PubMed Central

    Eidsmo, Liv; Nylen, Susanne; Khamesipour, Ali; Hedblad, Mari-Anne; Chiodi, Francesca; Akuffo, Hannah

    2005-01-01

    Cutaneous leishmaniasis (CL), caused by the intracellular protozoan Leishmania major, is characterized by lesion formation and ulceration at the site of infection. The mechanism of ulcer formation during CL is not fully understood. The expression of Fas and FasL and the levels of apoptosis in skin biopsies and in restimulated blood mononuclear cells from patients with 1 to 7 months of L. major-induced CL were analyzed using immunohistochemistry and fluorescence-activated cell sorting analysis. The levels of soluble Fas and FasL were also analyzed by enzyme-linked immunosorbent assay. A substantial number of apoptotic keratinocytes were observed mainly in the superficial epidermis of morphologically active and healing CL skin samples. Fas expression was increased on epidermis in active CL, whereas Fas expression was similar in healing and healthy epidermis. FasL-expressing macrophages and T cells were found in subepidermal infiltrate, mainly in active disease. When CL peripheral blood mononuclear cells were restimulated with L. major, Fas was up-regulated on effector T cells, and high levels of sFasL were secreted. Supernatants from restimulated cultures induced apoptosis in human keratinocytes (HaCaT), possibly through Fas/FasL interactions. Our results indicate that FasL-expressing effector T cells and macrophages may act to induce apoptosis and ulcer formation in Fas-expressing keratinocytes during L. major infection. PMID:15793290

  18. Qualitative differences in the early immune response to live and killed Leishmania major: Implications for vaccination strategies against Leishmaniasis.

    PubMed

    Okwor, Ifeoma; Liu, Dong; Uzonna, Jude

    2009-04-28

    Recovery from natural or deliberate infection with Leishmania major leads to the development of lifelong immunity against rechallenge infections. In contrast, vaccination with killed parasites or defined leishmanial antigens generally induces only short-term protection. The reasons for this difference are currently not known but may be related to differences in the quality of the early immune responses to live and killed parasites. Here, we report that live and killed L. major parasites elicit comparable early inflammatory response as evidenced by influx and/or proliferation of cells in the draining lymph nodes (dLNs). In contrast, the early cytokine responses were qualitatively different. Cells from mice inoculated with killed parasites produced significantly more antigen-specific IL-4 and less IFN-gamma than those from mice injected with live parasites. Inclusion of CpG ODN into killed parasite preparations changed the early response to killed parasites from IL-4 to a predominantly IFN-gamma response, resulting in better protection following secondary high dose virulent L. major challenge. Interestingly, CpG-mediated enhancement of killed parasites-induced protection was short-lived and waned after 12 weeks. Taken together, these results suggest that the nature of primary immunity induced by killed and live parasites are qualitatively different and that these differences may account for the differential protection seen in mice following vaccination with live and killed parasites. They further suggest that modulating the early response with an appropriate adjuvant could enhance efficacy of killed parasite vaccines.

  19. Magnesium oxide nanoparticles coated with glucose can silence important genes of Leishmania major at sub-toxic concentrations.

    PubMed

    Bafghi, Ali Fatahi; Daghighi, Mojtaba; Daliri, Karim; Jebali, Ali

    2015-12-01

    The aim of this study was to investigate the effect of magnesium oxide nanoparticles (MgO NPs) and MgO NPs coated with glucose (MONPCG) on Leishmania (L) major. First, the promastigotes of L. major were separately incubated with serial concentrations of MgO NPs and MONPCG for 24, 48, and 72 h at 37 °C. Then, the cell viability of promastigotes was evaluated by MTT assay. On the other hand, the relative expression of Cpb and GP63 genes was detected by quantitative-real time PCR. Based on results, the increase of concentration, both MgO NPs and MONPCG, and incubation time led to decrease of cell viability. Moreover, the expression of Cpb and GP63 genes was decreased with increase of concentration of MgO NPs and MONPCG. Also, the increase of incubation time led to decrease of their expression in MgO NPs treated promastogotes. But, in case of MONPCG treated promastogotes, the increase of incubation time did not change the expression of Cpb and GP63. Interestingly, MONPCG could silence Cpb and GP63 genes better than MgO NPs. Note, the capability was also seen at sub-toxic concentrations of MONPCG.

  20. Therapeutic Effect of Scrophularia striata Ethanolic Extract against Localized Cutaneous Leishmaniasis Caused by Leishmania major (MRHO/IR/75/ER)

    PubMed Central

    ZAHIRI, Malihe; MOHEBALI, Mehdi; KHANAVI, Mahnaz; SAHEBGHARANI, Mousa; SAGHAFIPOUR, Abedin; ESMAEILI, Jamileh; HAJJARAN, Homa; AKHAVAN, Amir Ahmad; REZAYAT, Seyed Mahdi

    2016-01-01

    Background: We evaluated the effect of the ethanolic extract of Scrophularia striata on the Iranian strain of Leishmania major (MRHO/IR/75/ER) both in vitro and in vivo conditions Methods: The effective dose (ED) of ethanolic extract of S. striata were determined using MTT assay on the growth of promastigote forms of L. major in axenic culture media. Then, the ED50 of S. striata on mice peritoneal macrophages was determined using calculation of amastigote forms on mice peritoneal macrophages. For in vivo experiments, the therapeutic effects of various concentrations of S. striata on infected BALB/c mice was studied. A total of 75 infected mice were randomly divided into five groups: two groups (10% and 50% of S. striata) as experimental and three as control (ethanol 50%, Glucantime® and no treatment). The efficacy were determined by comparing the diameters of lesions and the microscopically examinations. Results: The effect of S. striata extract (0/625%, 1/25%, 2/5%, 5%, 10%, 20% and 50%) on peritoneal macrophages of Balb/c mice infected with L.major in tissue-culture slides was assessed. S. striata extract (10%) removed the L.major amastigotes-infected macrophages significantly after 24 h (P < 0.05). The higher concentrations of S. striata ethanolic extract (20%, and 50%) had highly toxic effects on macrophages, resulted in the disintegration of the cytoplasm of macrophages after 48 and 72 h. In concentration 10% of S. striata, more than 85% of L. major amastigotes-infected macrophages were damaged without cytotoxicity effects on macrophages. The higher concentrations had toxic effects on cultured macrophages. Conclusion: S. striata ethanolic extract 10% had anti leishmanial effects in both in vivo and in vitro. PMID:27957441

  1. Replication Attempt: “Effect of BMAP-28 Antimicrobial Peptides on Leishmania Major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival”

    PubMed Central

    Iorns, Elizabeth; Gunn, William; Erath, Jessey; Rodriguez, Ana; Zhou, Jian; Benzinou, Michael

    2014-01-01

    This study describes an attempt to replicate experiments from the paper “Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival,” which was submitted to the Reproducibility Initiative for independent validation. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28) and its isomers were previously shown to have potent antiparasitic activity against Leishmania major. We tested the effectiveness of L-BMAP-28 and two of its isomers, the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), in both unamidated and amidated forms, as anti-leishmanial agents against Leishmania major promastigotes in vitro. We observed that L-BMAP-28, as well as its D and RI isomers, demonstrate anti-leishmanial activity against L. major promastigotes in vitro. The inhibitory effect was lower than what was seen in the original study. At 2 µM of amidated peptides, the viability was 94%, 36%, and 66% with L-, D- and RI-peptides, versus 57%, 6%, and 18% in the original study. PMID:25517992

  2. Optimization of the Timing of Induction for the Assessment of Nitric Oxide Production in Leishmania major Infected Macrophage Cells

    PubMed Central

    SADEGHI, Somaye; SEYED, Negar; RAFATI, Sima; TAHERI, Tahereh

    2016-01-01

    Background: The present study was conducted to investigate the optimized timing for macrophages induction and nitric oxide (NO) production against invading Leishmania parasite. Methods: The present study examined the murine macrophage cell line, B10R, in three different states. In the first state, the cells were first infected with L. major and then treated with IFN-γ and LPS as stimulants. In the second state, the cells were infected after stimulation with IFN-γ and LPS. In the third state, the cells were only exposed to stimulants as controls. In all the three states, cell culture supernatants were collected at three points in time (6, 24 and 48 h) and the amount of NO production was measured using Griess assay. Results: The treatment of macrophages with inducers prior to infection with stationary phase parasite led to the secretion of significant amounts of NO, particularly at early time points quit contrary to the cells infected with parasites prior to induction. The amount of NO produced by cells induced after infection was detected significantly lower. Conclusion: The induction of macrophages prior to infection with parasites leads to the production and secretion of greater amounts of NO, resulting in an increased ability to suppress and inhibit parasite proliferation even in the early stages of infection. PMID:28127337

  3. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    SciTech Connect

    Aripirala, Srinivas; Gonzalez-Pacanowska, Dolores; Oldfield, Eric; Kaiser, Marcel; Amzel, L. Mario; Gabelli, Sandra B.

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  4. Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity.

    PubMed

    González, Iveth J; Desponds, Chantal; Schaff, Cédric; Mottram, Jeremy C; Fasel, Nicolas

    2007-02-01

    The human protozoan parasite Leishmania major has been shown to exhibit several morphological and biochemical features characteristic of a cell death program when differentiating into infectious stages and under a variety of stress conditions. Although some caspase-like peptidase activity has been reported in dying parasites, no caspase gene is present in the genome. However, a single metacaspase gene is present in L. major whose encoded protein harbors the predicted secondary structure and the catalytic dyad histidine/cysteine described for caspases and other metacaspases identified in plants and yeast. The Saccharomyces cerevisiae metacaspase YCA1 has been implicated in the death of aging cells, cells defective in some biological functions, and cells exposed to different environmental stresses. In this study, we describe the functional heterologous complementation of a S. cerevisiae yca1 null mutant with the L. major metacaspase (LmjMCA) in cell death induced by oxidative stress. We show that LmjMCA is involved in yeast cell death, similar to YCA1, and that this function depends on its catalytic activity. LmjMCA was found to be auto-processed as occurs for caspases, however LmjMCA did not exhibit any activity with caspase substrates. In contrast and similarly to Arabidopsis thaliana metacaspases, LmjMCA was active towards substrates with arginine in the P1 position, with the activity being abolished following H147A and C202A catalytic site mutations. These results suggest that metacaspases are members of a family of peptidases with a role in cell death conserved in evolution notwithstanding possible differences in their catalytic activity.

  5. Anti-Leishmanial Activity (In Vitro and In Vivo) of Allicin and Allicin Cream Using Leishmania major (Sub-strain Zymowme LON4) and Balb/c Mice

    PubMed Central

    Metwally, Dina M.; Al-Olayan, Ebtesam M.; El-Khadragy, Manal F.; Alkathiri, Badriah

    2016-01-01

    Background Leishmania is a unicellular protozoan parasite that produces several human diseases, ranging from localized self-healing cutaneous lesions to deadly visceral infections. Objective The effect of allicin on the growth of Leishmania major (L. major) promastigotes was evaluated under in vitro conditions. Moreover, the efficacy of a topical allicin cream was examined in BALB/c (Bagg albino, laboratory-bred strain of the House Mouse) mice with cutaneous leishmanial lesions compared to the currently used drug, sodiumstibogluconate (pentostam). Methods Cytotoxiciy and promastigote proliferation were measured. Different concentrations (50, 100, 150, and 200 μM) of liquid allicin were tested on L. major promastigotes twice: after 24 and 48 hours using an MTT colorimetric assay. In the in vivo condition, the efficacies of allicin cream and liquid allicin at two concentrations (0.15 μM/mouse and 0.30 μM/mouse) were evaluated. Serum factors of the control and treated groups were tested to evaluate the toxic effects of allicin on the liver and kidney. Results Allicin at a concentration of 50 μM inhibited the growth of Leishmania promastigotes. Topical application of allicin cream reduced lesion sizes in mice. No significant differences in biochemical analysis were observed between the control and treated groups. Conclusions Allicin has antileishmanial effects under in vitro and in vivo conditions and may be used in clinical applications. PMID:27537199

  6. First microscopical and molecular-based characterization of Leishmania major within naturally infected Phlebotomus salehi (Diptera; Psychodidae) in Fars province, southern Iran

    PubMed Central

    DAVAMI, M H; MOTAZEDIAN, M H; KALANTARI, M; ASGARI, Q; BADZOHRE, A; MOHAMMADPOUR, I

    2011-01-01

    Zoonotoc cutaneous leishmaniasis is endemic in several parts of Iran. Jahrom district is one of the most important endemic foci of leishmaniasis located in Fars province, southern Iran. To identify the vectors of leishmaniasis in this area, a total of 349 sandflies were collected during May to August 2009. They were caught from outdoors in five regions of Jahrom district including villages of Mousavieh, Ghotb-Abad, Heydar-Abad, Fath-Abad and Jahrom County. Eleven species of Phlebotomine (three Phlebotomus spp. and eight Sergentomyia spp.) were detected. To determine the sandflies naturally infected by Leishmania spp., 122 female sandflies were dissected and evaluated microscopically using Giemsa-stained slides. Natural infection of 2 out of 38 (5.26%) P. papatasi and 1 out of 8 (12.5%) P. salehi to Leishmania major was confirmed in the region. Sequencing and nested polymerase chain reaction-based detection of Leishmania were carried out to confirm the microscopic findings. Five (13.16%) P. papatasi and two (25%) P. salehi were positive in nested polymerase chain reaction assay. All positive samples were shown 72–76% similarity with L. major Friedlin. On the basis of our knowledge, this is the first molecular detection of L. major within naturally infected P. salehi in this region in southern Iran. PMID:22185942

  7. Evaluation of Apoptotic and Antileishmanial Activities of Artemisinin on Promastigotes and BALB/C Mice Infected with Leishmania major

    PubMed Central

    GHAFFARIFAR, Fatemeh; ESAVAND HEYDARI, Farzad; DALIMI, Abdolhosein; HASSAN, Zuhair M.; DELAVARI, Mahdi; MIKAEILOO, Hajar

    2015-01-01

    Background: In leishmaniasis, some drugs prescribed for treatment have toxic effects and there are reports about drug resistance in some countries. Due to this fact, using herbal drugs such as artemisinin with good efficacy and low toxic effect might be suitable. Methods: We evaluated the apoptotic effect of artemisinin on Leishmania major in vitro and the antileishmanial activities of artemisinin on leishmaniasis in BALB/c mice and at the end INF-γ and IL-4 cytokines levels were detected by ELISA in spleen cell culture supernatants. During treatment the lesion size and survival rate were measured each four and ten days, respectively. Results: Percentage of early and late apoptosis in promastigotes of control group and promastigotes treated with 10, 25, 50 and 100 μg/ml of artemisinin after 48 h were 0.13, 16.04, 41.23, 49.03 and 81.83, respectively. The IFN-γ in ointment treated group were higher than those of other groups (P<0.05). The in vivo results showed that ointment compounds healed the lesions more effectively rather than intraperitoneal injection method (P<0.05). The survival rate of mice 150 days after challenge in treated group with ointment of artemisinin was 66% while all mice in control groups were died. Conclusion: All of in vitro results represented that this drug had antileishmanial effects and these results were confirmed by evaluation effects in vivo condition of leishmaniasis. Interestingly, according to these results it can be concluded that this drug has antileishmanial effects in vitro and in vivo conditions. Artemisinin induces cytotoxic effect on L. major via apoptosis-related mechanism. PMID:26246824

  8. Mesenchymal stem cells alter macrophage immune responses to Leishmania major infection in both susceptible and resistance mice.

    PubMed

    Dameshghi, Safura; Zavaran-Hosseini, Ahmad; Soudi, Sara; Shirazi, Fatemeh Jalali; Nojehdehi, Shahrzad; Hashemi, Seyed Mahmoud

    2016-02-01

    Mesenchymal stem cells (MSCs) are attracted to inflammation site and switch immune system to modulate inflammatory responses. This ability makes MSCs the best candidate cells for stem cell therapy of infection diseases. Therefore, we aimed to evaluate the modulatory effect of adipose-derived MSCs (AD-MSCs) on macrophages in Leishmania (L.) major infection. Macrophages and MSCs were isolated from both susceptible (BALB/c) and resistance (C57BL/6) strains. After co-culture of AD-MSCs with macrophages using a transwell system, we assessed MSCs-educated macrophage responses to L. major infection. Our results indicated suppression in levels of tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10) of MSCs co-cultured macrophages in response to L. major infection. To clarify the effects of this suppression on inflammatory conditions, TNF-α/IL-10 ratio was calculated, indicating an increase in TNF-α/IL-10 ratio in MSCs co-cultured groups. The higher TNF-α/IL-10 ratio was observed in BALB/c macrophages co-cultured with BALB/c MSCs. Nitric oxide (NO) assay presented a significant reduction in the supernatant of all MSCs co-cultured groups compared to control. We observed a significant reduction in phagocytosis of MSCs co-cultured groups in response to L. major infection without any significant differences in the phagocytic index. In conclusion, our results represented a new spectrum of immunomodulation induced by MSCs co-cultured with macrophages in response to L. major infection. The magnitude of immunoregulation was different between BALB/c and C57BL/6 strains. Our findings also showed that MSCs exerted potential effect of M1 polarization due to unequal decrease in levels of TNF-α and IL-10 when we considered TNF-α and IL-10as representatives of M1 and M2 phenotypes, respectively. Induction of inflammatory cytokine milieu and reduction in level of IL-10 provides a new hope for stem cell therapy of leishmaniasis in susceptible models.

  9. Isolation of new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic activity against Leishmania major and cancer cells.

    PubMed

    Sakunpak, A; Matsunami, K; Otsuka, H; Panichayupakaranant, P

    2013-08-15

    On the basis of a leishmanicidal assay-guided isolation, two new monoterpene coumarins, minutin A and minutin B, were purified from Micromelum minutum leaves together with four known coumarins, 8,4″-dihydroxy-3″,4″-dihydrocapnolactone-2',3'-diol, 8-hydroxyisocapnolactone-2',3'-diol, 8-hydroxy-3″,4″-dihydrocapnolactone-2',3'-diol, and clauslactone E. Among these compounds, minutin A, minutin B, 8-hydroxyisocapnolactone-2',3'-diol and clauslactone E showed a significant cytotoxic activity against Leishmania major with IC50 values of 26.2, 20.2, 12.1, and 9.8 μM, respectively, while 8,4″-dihydroxy-3″4″-dihydrocapnolactone-2',3'-diol and 8-hydroxy-3″,4″-dihydrocapnolactone-2',3'-diol were not active. However, all these compounds exhibited some inhibitory activity against one or more lung adenocarcinoma (SBC3 and A549) and leukaemia (K562, and K562/ADM) cell lines. Amongst these, clauslactone E, minutin B and 8-hydroxyisocapnolactone-2',3'-diol possessed the strongest cytotoxic activity against SBC3, A549, K562, and K562/ADM cell lines, with IC50 values of 3.7, 10.4, 12.1, and 10.8 μM for clauslactone E; 9.6, 17.5, 8.7 and 6.7 μM for minutin B; 8.8, 10.1, 16.9, and 10.1 μM for 8-hydroxyisocapnolactone-2',3'-diol, respectively.

  10. Crystal Structure of Leishmania major Oligopeptidase B Gives Insight into the Enzymatic Properties of a Trypanosomatid Virulence Factor*

    PubMed Central

    McLuskey, Karen; Paterson, Neil G.; Bland, Nicholas D.; Isaacs, Neil W.; Mottram, Jeremy C.

    2010-01-01

    Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general. PMID:20926390

  11. Infection with arginase deficient Leishmania major reveals a parasite number-dependent and cytokine-independent regulation of host cellular arginase activity and disease pathogenesis1

    PubMed Central

    Muleme, Helen M; Reguera, Rosa M; Berard, Alicia; Azinwi, Richard; Jia, Ping; Okwor, Ifeoma B; Beverley, Stephen; Uzonna, Jude E

    2009-01-01

    The balance between the products of L-arginine metabolism in macrophages regulates the outcome of Leishmania major infection. L-arginine can be oxidized by host inducible nitric oxide synthase (iNOS) to produce nitric oxide (NO), which contributes to parasite killing. In contrast, L-arginine hydrolysis by host arginase blocks NO generation and provides polyamines, which can support parasite proliferation. Additionally, Leishmania encode their own arginase which has considereable potential to modulate infectivity and disease pathogenesis. Here, we compare the infectivity and impact on host cellular immune response in vitro and in vivo of wild-type (WT) L. major with that of a parasite arginase null mutant (arg-). We found that arg- L. major are impaired in their macrophage infectivity in vitro independent of host iNOS activities. As with in vitro results, the proliferation of arg- L. major in animal infections was also significantly impaired in vivo resulting in delayed onset of lesion development, attenuated pathology and low parasite burden. Despite this attenuated pathology, the production of cytokines by cells from the draining lymph node of mice infected with WT and arg- L. major was similar at all times tested. Interestingly, in vitro and in vivo arginase levels were significantly lower in arg- than in WT infected cases and were directly correlated with parasite numbers inside infected cells. These results suggest that Leishmania-encoded arginase enhances disease pathogenesis by augmenting host cellular arginase activities leading and that contrary to previous in vitro studies, the host cytokine response does not influence host arginase activity. PMID:19923451

  12. Effect of trinitroglycerin therapy on serum zinc and copper levels and liver enzyme activities in BALB/c mice infected with Leishmania major MRHO/IR/75/ER

    PubMed Central

    Najafzade, Mana; Mosapour, Abbas; Nahrevanian, Hossein; Zamani, Zahra; Javadian, Seifoddin; Mirkhani, Fatemeh

    2015-01-01

    Objective(s): To evaluate the effect of trinitroglycerin (TNG) as nitric oxide donor agent on serum copper (Cu) and zinc (Zn) levels and liver enzymes in BALB/c mice infected with Leishmania major (L. major) MRHO/IR/75/ER. Materials and Methods: Inbred female mice were divided into three groups: healthy group (uninfected naive mice), control group (infected with L. major), and test group (L. major infected mice treated with TNG). TNG (200 µg/µl) was inoculated subcutaneously into the mice of the test group. Serum Cu and Zn levels and liver enzymes activities were then evaluated by atomic absorption spectrophometer and colorimetric methods, respectively. Results: Serum Cu levels were significantly higher in the test group than in the control and naive groups (P-value <0.05), while Zn levels were higher in the test group than in the control group with no significant difference. Serum glutamicoxaloacetic transaminase concentrations in the test group were significantly lower than those in other groups (P-value <0.05), while serum glutamate pyruvic transaminase concentrations were significantly higher in test compared with those in other groups (P-value <0.05). Moreover, alkaline phosphatase in the control and test groups were significantly lower than that in the naive group (P-value <0.05). Conclusion: TNG treatment increased Zn and Cu levels and thus increased resistance to Leishmania because of the role of Zn and Cu; therefore, TNG therapy will be useful for treating cutaneous leishmania. In addition, the decrease of serum glutamicoxaloacetic transaminase activity can be an index of therapeutic process of TNG. PMID:25945241

  13. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen.

    PubMed Central

    Vouldoukis, I; Riveros-Moreno, V; Dugas, B; Ouaaz, F; Bécherel, P; Debré, P; Moncada, S; Mossalayi, M D

    1995-01-01

    Serum IgE concentrations and the expression of the low-affinity receptor for IgE (Fc epsilon RII/CD23) are increased in cutaneous leishmaniasis or after immune challenge with Leishmania antigens. In vitro, the ligation of CD23 by IgE-anti-IgE immune complexes (IgE-IC) or by anti-CD23 monoclonal antibody (mAb) induces nitric oxide (NO) synthase and the generation of various cytokines by human monocytes/macrophages. The present study shows that IgE-IC, via CD23 binding, induce intracellular killing of Leishmania major in human monocyte-derived macrophages through the induction of the L-arginine:NO pathway. This was demonstrated by increased generation of nitrite (NO2-), the stable oxidation product of NO, and by the ability of NG-monomethyl-L-arginine to block both NO generation and parasite killing. A similar NO-dependent effect was observed with interferon gamma-treated cells. Tumor necrosis factor alpha is involved in this process, since both the induction of NO synthase and the killing of parasites caused by anti-CD23 mAb were inhibited by an anti-tumor necrosis factor alpha mAb. Treatment of noninfected CD23+ macrophages with IgE-IC provided protection against subsequent in vitro infection of these cells by Leishmania major promastigotes. Thus, IgE-IC promote killing of L. major by inducing NO synthase in human macrophages. Images Fig. 1 Fig. 5 PMID:7544003

  14. Characterization of the Early Inflammatory Infiltrate at the Feeding Site of Infected Sand Flies in Mice Protected from Vector-Transmitted Leishmania major by Exposure to Uninfected Bites

    PubMed Central

    Teixeira, Clarissa; Gomes, Regis; Oliveira, Fabiano; Meneses, Claudio; Gilmore, Dana C.; Elnaiem, Dia-Eldin A.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2014-01-01

    Background Mice exposed to sand fly saliva are protected against vector-transmitted Leishmania major. Although protection has been related to IFN- γ producing T cells, the early inflammatory response orchestrating this outcome has not been defined. Methodology/Principal findings Mice exposed to uninfected P. duboscqi bites and naïve mice were challenged with L. major-infected flies to characterize their early immune response at the bite site. Mostly, chemokine and cytokine transcript expression post-infected bites was amplified in exposed compared to naïve mice. In exposed mice, induced chemokines were mostly involved in leukocyte recruitment and T cell and NK cell activation; IL-4 was expressed at 6 h followed by IFN-γ and iNOS2 as well as IL-5 and IL-10 expression. In naïve animals, the transcript expression following Leishmania-infected sand fly bites was suppressed. Expression profiles translated to an earlier and significantly larger recruitment of leukocytes including neutrophils, macrophages, Gr+ monocytes, NK cells and CD4+ T cells to the bite site of exposed compared to naïve mice post-infected bites. Additionally, up to 48 hours post-infected bites the number of IFN-γ-producing CD4+T cells and NK cells arriving at the bite site was significantly higher in exposed compared to naïve mice. Thereafter, NK cells become cytolytic and persist at the bite site up to a week post-bite. Conclusion/Significance The quiet environment induced by a Leishmania-infected sand fly bite in naïve mice was significantly altered in animals previously exposed to saliva of uninfected flies. We propose that the enhanced recruitment of Gr+ monocytes, NK cells and CD4 Th1 cells observed at the bite site of exposed mice creates an inhospitable environment that counters the establishment of L. major infection. PMID:24762408

  15. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    PubMed Central

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-01-01

    Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area. PMID:25945706

  16. Transgenic expression of CXCR3 on T cells enhances susceptibility to cutaneous Leishmania major infection by inhibiting monocyte maturation and promoting a Th2 response.

    PubMed

    Oghumu, Steve; Stock, James C; Varikuti, Sanjay; Dong, Ran; Terrazas, Cesar; Edwards, Jessica A; Rappleye, Chad A; Holovatyk, Ariel; Sharpe, Arlene; Satoskar, Abhay R

    2015-01-01

    Cutaneous leishmaniasis, caused mainly by Leishmania major, an obligate intracellular parasite, is a disfiguring disease characterized by large skin lesions and is transmitted by a sand fly vector. We previously showed that the chemokine receptor CXCR3 plays a critical role in mediating resistance to cutaneous leishmaniasis caused by Leishmania major. Furthermore, T cells from L. major-susceptible BALB/c but not L. major-resistant C57BL/6 mice fail to efficiently upregulate CXCR3 upon activation. We therefore examined whether transgenic expression of CXCR3 on T cells would enhance resistance to L. major infection in susceptible BALB/c mice. We generated BALB/c and C57BL/6 transgenic mice, which constitutively overexpressed CXCR3 under a CD2 promoter, and then examined the outcomes with L. major infection. Contrary to our hypothesis, transgenic expression of CXCR3 (CXCR3(Tg)) on T cells of BALB/c mice resulted in increased lesion sizes and parasite burdens compared to wild-type (WT) littermates after L. major infection. Restimulated lymph node cells from L. major-infected BALB/c-CXCR3(Tg) mice produced more interleukin-4 (IL-4) and IL-10 and less gamma interferon (IFN-γ). Cells in draining lymph nodes from BALB/c-CXCR3(Tg) mice showed enhanced Th2 and reduced Th1 cell accumulation associated with increased neutrophils and inflammatory monocytes. However, monocytes displayed an immature phenotype which correlated with increased parasite burdens. Interestingly, transgenic expression of CXCR3 on T cells did not impact the outcome of L. major infection in C57BL/6 mice, which mounted a predominantly Th1 response and spontaneously resolved their infection similar to WT littermates. Our findings demonstrate that transgenic expression of CXCR3 on T cells increases susceptibility of BALB/c mice to L. major.

  17. Isolation of a myoinhibitory peptide from Leishmania major (Kinetoplastida: Trypanosomatidae) and its function in the vector sand fly Phlebotomus papatasi (Diptera: Psychodidae).

    PubMed

    Vaidyanathan, Rajeev

    2005-03-01

    Protozoan parasites in the genus Leishmania are ingested by sand flies with blood and multiply in the gut until they are transmitted to a vertebrate host when the sand fly blood feeds again. Infections of the enzootic vector Phlebotomus papatasi Scopoli result in distended midguts with no spontaneous gut contractions. Using a P. papatasi hindgut contraction bioassay, a paralytic factor sensitive to trypsin, chymotrypsin, proteinase-K, and heating at 56 degrees C was detected in crude lysates of Leishmania major promastigotes. Application of parasite lysate to isolated hindguts resulted in reversible, dose-dependent inhibition of spontaneous contractions. Mean volume of isolated midguts and hindguts increased by 50-60% after application of L. major lysate. L. major paralytic factor was purified 10(4)-fold over the total protein preparation and yielded a hydrophobic 12-kDa peptide. Myoinhibitory activity eluted as a single peak in reverse phase-high-pressure liquid chromatography. Tandem mass spectrometry resulted in 15 amino acid sequences, three of them sharing 45-73% homology with short hypothetical gene products of undefined function from Pseudomonas, Halobacterium, and Drosophila. This unique protozoan peptide mimics the function of endogenous insect neuropeptides that control visceral muscle contractions. By this novel mechanism, parasites persist in the expanded, relaxed midgut after blood meal and peritrophic matrix digestion. This allows time for development and migration of infective forms, facilitating sand fly vector competence and parasite transmission.

  18. Designing and Cloning Molecular Constructs to Knock Out N-Acetylglucosamine Phosphatidylinositol De-N-Acetylase (GPI12) Gene in Leishmania major (MRHO/IR/75/ER)

    PubMed Central

    GHASEMI NEJAD ALMANI, Pooya; SHARIFI, Iraj; KAZEMI, Bahram; BABAEI, Zahra; BANDEHPOUR, Mojgan; SALARI, Samira; SAEDI DEZAKI, Ebrahim

    2016-01-01

    Background: Leishmaniasis represents a major public health concern in tropical and sub-tropical countries. At present, there is no efficacious vaccine against the disease and new control methods are needed. One way to access this important goal is to knock out genes of specific macromolecules to evaluate the effect of deletion on the growth, multiplication, pathogenesis and immunity of the parasite. The aim of this study was to design and clone molecular constructs to knock out N-acetylglucosamine phosphatidylinositol de-N-acetylase (GPI12) gene in Leishmania major. Methods: For designing and making molecular constructs, we used pLEXSY-neo2 and pLEXSY-hyg2 vectors. The molecular constructs were cloned in E. coli strain Top10. The molecular constructs were transfected by electroporation into L. major in two stages. Results: The molecular constructs were confirmed by Colony PCR and sequencing. The recombinant strains were isolated by selective antibiotics, after which they were confirmed by PCR, Southern and Western blots. Conclusion: Recombinant parasites were created and examined for subsequent study. With the use of molecular constructs, it was possible to remove and study gene GPI12 and to achieve a live recombinant Leishmania parasite that maintained the original form of the antigenic parasites. This achievement can be used as an experimental model for vaccine development studies. Further investigations are essential to check this model in a suitable host. PMID:28127356

  19. Colonization of Phlebotomus papatasi changes the effect of pre-immunization with saliva from lack of protection towards protection against experimental challenge with Leishmania major and saliva

    PubMed Central

    2011-01-01

    Background Sand fly saliva has been postulated as a potential vaccine or as a vaccine component within multi component vaccine against leishmaniasis. It is important to note that these studies were performed using long-term colonized Phlebotomus papatasi. The effect of sand flies colonization on the outcome of Leishmania infection is reported. Results While pre-immunization of mice with salivary gland homogenate (SGH) of long-term colonized (F5 and beyond) female Phlebotomus papatasi induced protection against Leishmania major co-inoculated with the same type of SGH, pre-immunization of mice with SGH of recently colonized (F2 and F3) female P. papatasi did not confer protection against L. major co-inoculated with the same type of SGH. Our data showed for the first time that a shift from lack of protection to protection occurs at the fourth generation (F4) during the colonization process of P. papatasi. Conclusion For the development of a sand fly saliva-based vaccine, inferences based on long-term colonized populations of sand flies should be treated with caution as colonization of P. papatasi appears to modulate the outcome of L. major infection from lack of protection to protection. PMID:21726438

  20. Antigen-Experienced T cells Limit the Priming of Naïve T cells During Infection with Leishmania major1

    PubMed Central

    Gray, Peter M.; Reiner, Steven L.; Smith, Deborah F.; Kaye, Paul M.; Scott, Phillip

    2009-01-01

    One mechanism to control immune responses following infection is to rapidly down regulate antigen presentation, which has been observed in acute viral and bacterial infections. Here we describe experiments designed to address whether antigen presentation is decreased after an initial response to Leishmania major. Naïve α-β-Leishmania-specific (ABLE) T cell receptor transgenic T cells were adoptively transferred into mice at various times after L. major infection to determine the duration of presentation of parasite-derived antigens. ABLE T cells responded vigorously at the initiation of infection, but the ability to prime these cells quickly diminished, independent of IL-10, regulatory T cells or antigen load. However, antigen-experienced clonal and polyclonal T cell populations could respond, indicating that the diminution in naïve ABLE cell responses was not due to lack of antigen presentation. Since naïve T cell priming could be restored by removal of the endogenous T cell population, or adoptive transfer of antigen pulsed dendritic cells, it appears that T cells that have previously encountered antigen during infection compete with naïve antigen-specific T cells. These results suggest that during L. major infection antigen-experienced T cells, rather than naïve T cells, may be primarily responsible for sustaining the immune response. PMID:16818747

  1. Genomic cartography and proposal of nomenclature for the repeated, interspersed elements of the Leishmania major SIDER2 family and identification of SIDER2-containing transcripts.

    PubMed

    Requena, Jose M; Rastrojo, Alberto; Garde, Esther; López, Manuel C; Thomas, M Carmen; Aguado, Begoña

    2017-03-01

    The genomes of most eukaryotic organisms contain a large number of transposable elements that are able to move from one genomic site to another either by transferring of DNA mobile elements (transposons) or transpose via reverse transcription of an RNA intermediate (retroposons). An exception to this rule is found in protists of the subgenus Leishmania, in which active retroposons degenerated after a flourishing era, leaving only retroposon remains; these have been classified into two families: SIDER1 and SIDER2. In this work, we have re-examined the elements belonging to the family SIDER2 present in the genome of Leishmania major with the aim of providing a nomenclature that will facilitate a future reference to particular elements. According to sequence conservation, the 1100 SIDER2 elements have been grouped into subfamilies, and the inferred taxonomic relationships have also been incorporated into the nomenclature. Additionally, we are providing detailed data regarding the genomic distribution of these elements and their association with specific transcripts, based on the recently established transcriptome for L. major. Thus, the presented data can help to study and better understand the roles played by these degenerated retroposons in both regulation of gene expression and genome plasticity.

  2. Identification, biochemical characterization, and in-vivo expression of the intracellular invertase BfrA from the pathogenic parasite Leishmania major.

    PubMed

    Belaz, Sorya; Rattier, Thibault; Lafite, Pierre; Moreau, Philippe; Routier, Françoise H; Robert-Gangneux, Florence; Gangneux, Jean-Pierre; Daniellou, Richard

    2015-10-13

    The parasitic life cycle of Leishmania includes an extracellular promastigote stage that occurs in the gut of the insect vector. During that period, the sucrose metabolism and more specifically the first glycosidase of this pathway are essential for growth and survival of the parasite. We investigated the expression of the invertase BfrA in the promastigote and amastigote stages of three parasite species representative of the three various clinical forms and of various geographical areas, namely Leishmania major, L. donovani and L. braziliensis. Thereafter, we cloned, overexpressed and biochemically characterized this invertase BfrA from L. major, heterologously expressed in both Escherichia coli and L. tarentolae. For all species, expression levels of BfrA mRNA were correlated to the time of the culture and the parasitic stage (promastigotes > amastigotes). BfrA exhibited no activity when expressed as a glycoprotein in L. tarentolae but proved to be an invertase when not glycosylated, yet owing low sequence homology with other invertases from the same family. Our data suggest that BfrA is an original invertase that is located inside the parasite. It is expressed in both parasitic stages, though to a higher extent in promastigotes. This work provides new insight into the parasite sucrose metabolism.

  3. Habitats of the sandfly vectors of Leishmania tropica and L. major in a mixed focus of cutaneous leishmaniasis in southeast Tunisia.

    PubMed

    Tabbabi, Ahmed; Ghrab, Jamila; Aoun, Karim; Ready, Paul Donald; Bouratbine, Aïda

    2011-08-01

    From 2009 to 2010, 3129 sandflies were caught in CDC light traps placed in various habitats in Ghomrassen, Tataouine governorate, southeast Tunisia, a mixed focus of human cutaneous leishmaniasis caused by Leishmania tropica and Leishmania major. Species diversity was quantified in anthropogenic, semi-anthropogenic and semi-natural locations. Sandflies were identified according to morphological characters and also by the comparative sequence analysis of a fragment of the mitochondrial cytochrome b gene to distinguish between two putative local vectors of L. tropica, namely Phlebotomus chabaudi and Phlebotomus riouxi. The lowest sandfly diversities were found in L. major sites, where the incriminated vector P. papatasi predominated in the burrows of the rodent reservoir hosts (Meriones) as well as inside and outside houses of human cases. In L. tropica sites, the incriminated peri-domestic vector Phlebotomus sergenti was the most abundant species inside houses, whereas P. riouxi or P. chabaudi was the dominant species in the semi-natural rocky habitats favoured by the putative rodent reservoir, Ctenodactylus gundi. All specimens of P. chabaudi identified molecularly had the diagnostic cytochrome b characters of P. riouxi, indicating either that the latter represents only a geographical variant of P. chabaudi or that these two species may sometimes hybridize.

  4. Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain

    PubMed Central

    Adak, Subrata; Datta, Alok K.

    2005-01-01

    Haem-containing enzymes (peroxidase and catalase) are widely distributed among prokaryotes and eukaryotes and play a vital role in H2O2 detoxification. But, to date, no haem-containing enzymatic defence against toxic H2O2 has been discovered in Leishmania species. We cloned, expressed and purified an unusual plant-like APX (ascorbate peroxidase) from Leishmania major (LmAPX) and characterized its catalytic parameters under steady-state conditions. Examination of its protein sequence indicated approx. 30–60% identity with other APXs. The N-terminal extension of LmAPX is characterized by a charged region followed by a stretch of 22 amino acids containing a transmembrane domain. To understand how the transmembrane domain influences the structure–function of LmAPX, we generated, purified and extensively characterized a variant that lacked the transmembrane domain. Eliminating the transmembrane domain had no impact on substrate-binding affinity but slowed down ascorbate oxidation and increased resistance to H2O2-dependent inactivation in the absence of electron donor by 480-fold. Spectral studies show that H2O2 can quickly oxidize the native enzyme to compound (II), which subsequently is reduced back to the native enzyme by an electron donor. In contrast, ascorbate-free transmembrane domain-containing enzyme did not react with H2O2, as revealed by the absence of compound (II) formation. Our findings suggest that the single copy LmAPX gene may play an important role in detoxification of H2O2 that is generated by endogenous processes and as a result of external influences such as the oxidative burst of infected host macrophages or during drug metabolism by Leishmania. PMID:15850459

  5. Concomitant Immunity Induced by Persistent Leishmania major Does Not Preclude Secondary Re-Infection: Implications for Genetic Exchange, Diversity and Vaccination

    PubMed Central

    Mandell, Michael A.

    2016-01-01

    Background Many microbes have evolved the ability to co-exist for long periods of time within other species in the absence of overt pathology. Evolutionary biologists have proposed benefits to the microbe from ‘asymptomatic persistent infections’, most commonly invoking increased likelihood of transmission by longer-lived hosts. Typically asymptomatic persistent infections arise from strong containment by the immune system, accompanied by protective immunity; such ‘vaccination’ from overt disease in the presence of a non-sterilizing immune response is termed premunition or concomitant immunity. Here we consider another potential benefit of persistence and concomitant immunity to the parasite: the ‘exclusion’ of competing super-infecting strains, which would favor transmission of the original infecting organism. Methodology / Principle Findings To investigate this in the protozoan parasite Leishmania major, a superb model for the study of asymptomatic persistence, we used isogenic lines of comparable virulence bearing independent selectable markers. One was then used to infect genetically resistant mice, yielding infections which healed and progressed to asymptomatic persistent infection; these mice were then super-infected with the second marked line. As anticipated, super-infection yielded minimal pathology, showing that protective immunity against disease pathology had been established. The relative abundance of the primary and super-infecting secondary parasites was then assessed by plating on selective media. The data show clearly that super-infecting parasites were able to colonize the immune host effectively, achieving numbers comparable to and sometimes greater than that of the primary parasite. Conclusions / Significance We conclude that induction of protective immunity does not guarantee the Leishmania parasite exclusive occupation of the infected host. This finding has important consequences to the maintenance and generation of parasite

  6. Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World

    PubMed Central

    Mukhopadhyay, Jaba; Braig, Henk R.; Rowton, Edgar D.; Ghosh, Kashinath

    2012-01-01

    Background Cutaneous leishmaniasis is a neglected, vector-borne parasitic disease and is responsible for persistent, often disfiguring lesions and other associated complications. Leishmania, causing zoonotic cutaneous leishmaniasis (ZCL) in the Old World are mainly transmitted by the predominant sand fly vector, Phlebotomus papatasi. To date, there is no efficient control measure or vaccine available for this widespread insect-borne infectious disease. Methodology/Principal Findings A survey was carried out to study the abundance of different natural gut flora in P. papatasi, with the long-term goal of generating a paratransgenic sand fly that can potentially block the development of Leishmania in the sand fly gut, thereby preventing transmission of leishmania in endemic disease foci. Sand flies, in particular, P. papatasi were captured from different habitats of various parts of the world. Gut microbes were cultured and identified using 16S ribosomal DNA analysis and a phylogenetic tree was constructed. We found variation in the species and abundance of gut flora in flies collected from different habitats. However, a few Gram-positive, nonpathogenic bacteria including Bacillus flexus and B. pumilus were common in most of the sites examined. Conclusion/Significance Our results indicate that there is a wide range of variation of aerobic gut flora inhabiting sand fly guts, which possibly reflect the ecological condition of the habitat where the fly breeds. Also, some species of bacteria (B. pumilus, and B. flexus) were found from most of the habitats. Important from an applied perspective of dissemination, our results support a link between oviposition induction and adult gut flora. PMID:22629302

  7. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNβ

    PubMed Central

    Faria, Marilia S.; Calegari-Silva, Tereza C.; de Carvalho Vivarini, Aislan; Mottram, Jeremy C.; Lopes, Ulisses Gazos; Lima, Ana Paula C. A.

    2014-01-01

    In cutaneous leishmaniasis, Leishmania amazonensis activates macrophage double-stranded, RNA-activated protein kinase R (PKR) to promote parasite growth. In our study, Leishmania major grew normally in RAW cells, RAW-expressing dominant-negative PKR (PKR-DN) cells, and macrophages of PKR-knockout mice, revealing that PKR is dispensable for L. major growth in macrophages. PKR activation in infected macrophages with poly I:C resulted in parasite death. Fifty percent of L. major-knockout lines for the ecotin-like serine peptidase inhibitor (ISP2; Δisp2/isp3), an inhibitor of neutrophil elastase (NE), died in RAW cells or macrophages from 129Sv mice, as a result of PKR activation. Inhibition of PKR or NE or neutralization of Toll-like receptor 4 or 2(TLR4 or TLR2) prevented the death of Δisp2/isp3. Δisp2/isp3 grew normally in RAW-PKR-DN cells or macrophages from 129Sv pkr−/−, tlr2−/−, trif−/−, and myd88−/− mice, associating NE activity, PKR, and TLR responses with parasite death. Δisp2/isp3 increased the expression of mRNA for TNF-α by 2-fold and of interferon β (IFNβ) in a PKR-dependent manner. Antibodies to TNF-α reversed the 95% killing by Δisp2/isp3, whereas they grew normally in macrophages from IFN receptor–knockout mice. We propose that ISP2 prevents the activation of PKR via an NE-TLR4-TLR2 axis to control innate responses that contribute to the killing of L. major.—Faria, M. S., Calegari-Silva, T. C., de Carvalho Vivarini, A., Mottram, J. C., Lopes, U. G., Lima, A. P. C. A. Role of protein kinase R in the killing of Leishmania major by macrophages in response to neutrophil elastase and TLR4 via TNFα and IFNβ. PMID:24732131

  8. Direct Visualization of Peptide/MHC Complexes at the Surface and in the Intracellular Compartments of Cells Infected In Vivo by Leishmania major

    PubMed Central

    Cazareth, Julie; Hoebeke, Johan; Lippuner, Christoph; Davalos-Misslitz, Ana; Aebischer, Toni; Muller, Sylviane; Glaichenhaus, Nicolas; Mougneau, Evelyne

    2010-01-01

    Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of

  9. Les leishmanioses cutanées à Leishmania major et à Leishmania tropica au Maroc: aspects épidémio-cliniques comparatifs de 268 cas

    PubMed Central

    Chiheb, Soumia; Slaoui, Widad; Mouttaqui, Tarik; Riyad, Meriem; Benchikhi, Hakima

    2014-01-01

    Introduction Depuis 1995, le Maroc a connu une réactivation des foyers de leishmanioses cutanées (LC) à L. major et une nouvelle répartition géographique des foyers à L. tropica. Le but de cette étude est de comparer les aspects épidémio-cliniques associés aux LC potentiellement dûes à L. major et à L. tropica. Méthodes Une étude rétrospective a colligé 268 cas de LC au service de dermatologie du CHU Ibn Rochd de Casablanca entre Janvier 1995 et Septembre 2010. Les données étaient analysées par Epi info version 3.5.1. Le test X2 était appliqué (Différence significative = p< 0,05). Résultats Deux cent soixante-huit cas de LC ont été colligés, dont 160 femmes et 108 hommes. Ils ont été répartis en 123 patients originaires des foyers à L.major et 145 patients originaires des foyers à L. tropica. L'aspect ulcéronodulaire, ulcérovégétant ou végétant était retrouvé dans 58 cas (47,2%) des cas de LC à L. major versus 24 cas (16,7%) dans la L.C à L. tropica. L'aspect papulonodulaire était retrouvé dans 84 cas (58%) de LC à L. tropica contre 41 cas (33,3%) de LC à L. major. Conclusion Dans la LC à L. major, l'atteinte des membres et les aspects cliniques végétant ou ulcéro-végétant restent toujours prédominants. Dans la L.C à L. tropica, l'atteinte papulonodulaire unique du visage reste prédominante mais des formes ulcéronodulaires, végétantes ou ulcérovégétantes existent également dans les foyers récents à L. tropica, prêtant à confusion cliniquement avec des LC à L. major. PMID:25810796

  10. An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots.

    PubMed

    Heli, H; Sattarahmady, N; Hatam, G R; Reisi, F; Vais, R Dehdari

    2016-08-15

    Identification of Leishmania parasites is important in diagnosis and clinical studies of leishmaniasis. Although epidemiological and clinical methods are available, they are not sufficient for identification of causative agents of leishmaniasis. In the present study, quantum dots of magnetic cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) were synthesized and characterized by physicochemical methods. The quantum dots were then employed as an electrode modifier to immobilize a 24-mer specific single stranded DNA probe, and fabrication of a label-free, PCR-free and signal-on electrochemical genosensor for the detection of Leishmania major. Hybridization of the complementary single stranded DNA sequence with the probe under the selected conditions was explored using methylene blue as a redox marker, utilizing the electrocatalytic effect of the quantum dots on the methylene blue electroreduction process. The genosensor could detect a synthetic single stranded DNA target in a range of 1.0×10(-11) to 1.0×10(-18)molL(-1) with a limit of detection of 2.0×10(-19)molL(-1), and genomic DNA in a range of 7.31×10(-14) to 7.31×10(-6)ngμL(-1) with a limit of detection of 1.80×10(-14)ngμL(-1) with a high selectivity and sensitivity.

  11. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    SciTech Connect

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-04-21

    The structure of a tubulin-binding cofactor from L. major is reported and compared with yeast, plant and human orthologues. Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.

  12. Gluconeogenesis in Leishmania mexicana

    PubMed Central

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-01-01

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. PMID:25288791

  13. Comparison of the Proteome Profiling of Iranian isolates of Leishmania tropica, L. major and L. infantum by Two-Dimensional Electrophoresis (2-DE) and Mass-spectrometry

    PubMed Central

    HAJJARAN, Homa; MOHAMMADI BAZARGANI, Mitra; MOHEBALI, Mehdi; BURCHMORE, Richard; HOSSEINI SALEKDEH, Ghasem; KAZEMI-RAD, Elham; KHORAMIZADEH, Mohammad Reza

    2015-01-01

    Background: The mechanisms of virulence and species differences of Leishmania parasites are under the influence of gene expression regulations at posttranscriptional stages. In Iran, L. major and L. tropica are known as principal agents of cutaneous leishmaniasis, while L. infantum causes visceral leishmaniasis. Methods: As a preliminary study, we compared the proteome mapping of the above three Iranian isolates of Leishmania species through the 2-dimension electrophoresis (2-DE), and identified the prominent proteins by Liquid Chromatography (LC) mass spectrometry. Results: We reproducibly detected about 700 protein spots in each species by using the Melanie software. Totally, 264 proteins exhibited significant changes among 3 species. Forty nine protein spots identified in both L. tropica and L. major were similar in position in the gel, whereas only 35 of L. major proteins and 10 of L. tropica proteins were matched with those of L. infantum. Having identified 24 proteins in the three species, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. Conclusion: The comparison of proteome profiling pattern of the 3 species identified limit up and limit down regulated or absent /present proteins. In addition, the LC-MS data analysis showed that most of the protein spots with differential abundance in the 3 species are involved in cell motility and cytoskeleton, cell signaling and vesicular trafficking, intracellular survival / proteolysis, oxidative stress defense, protein synthesis, protein ubiquitination / proteolysis, and stress related proteins. Differentially proteins distributed among the species maybe implicated in host pathogenecity interactions and parasite tropism to cutaneous or visceral tissue macrophages. PMID:26811718

  14. Effect of hydroalcoholic extract of Echinacea purpurea in combination with meglumine antimoniate on treatment of Leishmania major-induced cutaneous leishmaniasis in BALB/c mice

    PubMed Central

    Sarkari, Bahador; Mohseni, Mobin; Moein, Mahmoud Reza; Shahriarirad, Reza; Asgari, Qasem

    2017-01-01

    Context: Progressive resistance of Leishmania parasite to available drugs including, meglumine antimoniate, has been reported from various regions of the world, especially Iran. Aims: This study was conducted to evaluate the effect of hydroalcoholic extract of Echinacea purpurea in a combination therapy with glucantime in the treatment of cutaneous leishmaniasis caused by Leishmania major. Materials and Methods: Hydroalcoholic extract of E. purpurea was prepared from the plant. Amastigote form of L. major was inoculated to the tail base of thirty mice. After their tails became wounded, mice were divided into six groups. The first group was used as control and the second group received 100 mg/kg of Echinacea extract (orally). The third group was treated by meglumine antimoniate with dose of 20 mg/kg. Combination therapy was used for group four, five, and six where the mice received a different concentration of extract (100–200 mg/kg) and glucantime (10–20 mg/kg). The size of the cutaneous lesion on tail base was measured regularly. Findings were analyzed by SPSS software and using Kruskal-Wallis test. Results: The sizes of the lesion were increased in all mice of control group by the time. The mean size of lesions in mice receiving the extract and/or receiving the extract along with meglumine antimoniate was lower than those of control mice, but the differences were not statistically significant (P > 0.05). On the other hand, the differences between the group of mice which received meglumine antimoniate alone, and the rest of groups were statistically significant (P < 0.05). Conclusion: E. purpurea extract in doses which have been used in this study and combination with meglumine antimoniate was not much effective against L. major in BALB/C mice. PMID:28251109

  15. A novel protein coding potential of long intergenic non-coding RNAs (lincRNAs) in the kinetoplastid protozoan parasite Leishmania major.

    PubMed

    Pawar, Harsh; Pai, Kalpana; Patole, Milind S

    2017-03-01

    Cutaneous leishmaniasis (CL) is caused by a kinetoplastid protozoan parasite Leishmania major, as a skin ulcer at the site of the sandfly bite. CL is curable and in most cases ulcers heal spontaneously within three to six months leaving a scar and disfiguration. Complete genome of L. major was reported in 2005 at the very initial phase of kinetoplastid parasite genome sequencing project. Presently, L. major genome is most studied and comprehensively annotated genome and therefore, it is being used as a reference genome for annotating recently sequenced Leishmanial genomes. A recent study reporting global transcriptome of L. major promastigotes, identified 1884 uniquely expressed non-coding RNAs (ncRNA) in L. major. In the current study, an in-depth analysis of the 1884 novel ncRNAs was carried out using a proteogenomic approach to identify their protein coding potential. Our analysis resulted in identification of eight novel protein coding genes based on mass spectrometry data. We have analyzed each of these eight novel CDS and in the process have improved the genome annotation of L. major on the basis of mass spectrometry derived peptide data. Although sequenced a decade ago, the improvement in the L. major genome annotation thus is an ongoing process.

  16. Gender Is a Major Determinant of the Clinical Evolution and Immune Response in Hamsters Infected with Leishmania spp.

    PubMed Central

    Travi, Bruno L.; Osorio, Yaneth; Melby, Peter C.; Chandrasekar, Bysani; Arteaga, Lourdes; Saravia, Nancy G.

    2002-01-01

    In regions where leishmaniasis is endemic, clinical disease is usually reported more frequently among males than females. This difference could be due to disparate risks of exposure of males and females, but gender-related differences in the host response to infection may also play a role. Experimental studies of the influence of gender on Leishmania infection have not included parasites of the subgenus Viannia, which is the most common cause of cutaneous leishmaniasis in the Americas. Mice are not readily susceptible to infection by Leishmania (Viannia) spp., but cutaneous infection of hamsters with L. (V.) panamensis or L. (V.) guyanensis resulted in chronic lesions typical of the human disease caused by these parasites. Strikingly, infection of male hamsters resulted in significantly greater lesion size and severity, an increased rate of dissemination to distant cutaneous sites, and a greater parasite burden in the draining lymph node than infection in female animals. Two lines of evidence indicated this gender-related difference in disease evolution was determined at least in part by the sex hormone status of the animal. First, prepubertal male animals had smaller and/or less severe cutaneous lesions than adult male animals. Second, infection of testosterone-treated female animals resulted in significantly larger lesions than in untreated female animals. The increased severity of disease in male compared to female animals was associated with significantly greater intralesional expression of interleukin-4 (IL-4) (P = 0.04), IL-10 (P = 0.04), and transforming growth factor β (TGF-β) (P < 0.001), cytokines known to promote disease in experimental leishmaniasis. There was a direct correlation between the expression of TGF-β mRNA and lesion size (Spearman's correlation coefficient = 0.873; P < 0.001). These findings demonstrate an inherent risk of increased disease severity in male animals, which is associated with a more permissive immune response. PMID:11953362

  17. Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds

    SciTech Connect

    Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah; Kaminsky, Werner; Malmquist, Nicholas A.; Goldsmith, Elizabeth J.; Rathod, Pradipsinh K.; Phillips, Margaret A.

    2010-01-20

    Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.

  18. Crystal structure of an Fe-S cluster-containing fumarate hydratase enzyme from Leishmania major reveals a unique protein fold.

    PubMed

    Feliciano, Patricia R; Drennan, Catherine L; Nonato, M Cristina

    2016-08-30

    Fumarate hydratases (FHs) are essential metabolic enzymes grouped into two classes. Here, we present the crystal structure of a class I FH, the cytosolic FH from Leishmania major, which reveals a previously undiscovered protein fold that coordinates a catalytically essential [4Fe-4S] cluster. Our 2.05 Å resolution data further reveal a dimeric architecture for this FH that resembles a heart, with each lobe comprised of two domains that are arranged around the active site. Besides the active site, where the substrate S-malate is bound bidentate to the unique iron of the [4Fe-4S] cluster, other binding pockets are found near the dimeric enzyme interface, some of which are occupied by malonate, shown here to be a weak inhibitor of this enzyme. Taken together, these data provide a framework both for investigations of the class I FH catalytic mechanism and for drug design aimed at fighting neglected tropical diseases.

  19. Immune response of BALB/c mice against an experimental vaccine of Alum precipitated autoclaved Leishmania major (Alum-ALM) mixed with BCG or Mycobacterium vaccae.

    PubMed

    Nateghi Rostami, M; Keshavarz, H; Khamesipour, A

    2010-04-01

    Immune response in BALB/c mice immunized 3 times with different doses (50 μg or 200 μg of protein) of Alum precipitated autoclaved Leishmania major (Alum-ALM) mixed with either BCG (1x10(7); CFU) or different doses of killed Mycobacterium vaccae (1x10(6), 1x10(7)) was assessed. Mice immunized with low dose of Alum-ALM mixed with either BCG or low M. vaccae showed a significantly higher IFN-gamma production and a lower IL-4 level and a significantly lower parasite burden compared to the control PBS injected group. It seems that immunization with a low dose of Alum-ALM mixed with an adjuvant induces a Th1 type of immune response in susceptible BALB/c mice.

  20. Crystal structure of an Fe-S cluster-containing fumarate hydratase enzyme from Leishmania major reveals a unique protein fold

    PubMed Central

    Drennan, Catherine L.; Nonato, M. Cristina

    2016-01-01

    Fumarate hydratases (FHs) are essential metabolic enzymes grouped into two classes. Here, we present the crystal structure of a class I FH, the cytosolic FH from Leishmania major, which reveals a previously undiscovered protein fold that coordinates a catalytically essential [4Fe-4S] cluster. Our 2.05 Å resolution data further reveal a dimeric architecture for this FH that resembles a heart, with each lobe comprised of two domains that are arranged around the active site. Besides the active site, where the substrate S-malate is bound bidentate to the unique iron of the [4Fe-4S] cluster, other binding pockets are found near the dimeric enzyme interface, some of which are occupied by malonate, shown here to be a weak inhibitor of this enzyme. Taken together, these data provide a framework both for investigations of the class I FH catalytic mechanism and for drug design aimed at fighting neglected tropical diseases. PMID:27528683

  1. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    PubMed

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  2. Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor.

    PubMed

    Hurt, Darrell E; Widom, Joanne; Clardy, Jon

    2006-03-01

    Membrane-associated dihydroorotate dehydrogenase (DHODH) is an antimalarial therapeutic target without an effective inhibitor. Studies on human DHODH (HsDHODH) led to a structural mechanistic model in which respiratory quinones bind in a tunnel formed by the highly variable N-terminus that leads to the flavin mononucleotide-binding site. The therapeutic agents leflunomide (Arava) and brequinar sodium inhibit HsDHODH by binding in this tunnel. Plasmodium falciparum DHODH (PfDHODH) and HsDHODH have markedly different sensitivities to the two drugs. To understand the structural basis of this differential sensitivity and begin a structure-based drug-design cycle for PfDHODH inhibitors, the three-dimensional structure (2.4 Angstroms, R = 20.1%) of PfDHODH bound to the active metabolite of leflunomide was determined by X-ray crystallography. Comparison of the structures of HsDHODH and PfDHODH reveals a completely different binding mode for the same inhibitor in these two catalytically identical enzymes and explains the previously observed species-specific preferential binding. Because no effective inhibitors have been described for PfDHODH, this structure provides critical insight for the design of potential antimalarials.

  3. Experimental Transmission of Leishmania infantum by Two Major Vectors: A Comparison between a Viscerotropic and a Dermotropic Strain

    PubMed Central

    Maia, Carla; Seblova, Veronika; Sadlova, Jovana; Votypka, Jan; Volf, Petr

    2011-01-01

    We quantified Leishmania infantum parasites transmitted by natural vectors for the first time. Both L. infantum strains studied, dermotropic CUK3 and viscerotropic IMT373, developed well in Phlebotomus perniciosus and Lutzomyia longipalpis. They produced heavy late-stage infection and colonized the stomodeal valve, which is a prerequisite for successful transmission. Infected sand fly females, and especially those that transmit parasites, feed significantly longer on the host (1.5–1.8 times) than non-transmitting females. Quantitative PCR revealed that P. perniciosus harboured more CUK3 strain parasites, while in L. longipalpis the intensity of infection was higher for the IMT373 strain. However, in both sand fly species the parasite load transmitted was higher for the strain with dermal tropism (CUK3). All but one sand fly female infected by the IMT373 strain transmitted less than 600 promastigotes; in contrast, 29% of L. longipalpis and 14% of P. perniciosus infected with the CUK3 strain transmitted more than 1000 parasites. The parasite number transmitted by individual sand flies ranged from 4 up to 4.19×104 promastigotes; thus, the maximal natural dose found was still about 250 times lower than the experimental challenge dose used in previous studies. This finding emphasizes the importance of determining the natural infective dose for the development of an accurate experimental model useful for the evaluation of new drugs and vaccines. PMID:21695108

  4. In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis.

    PubMed

    Santin, Marta Regina; dos Santos, Adriana Oliveira; Nakamura, Celso Vataru; Dias Filho, Benedito Prado; Ferreira, Izabel Cristina Piloto; Ueda-Nakamura, Tânia

    2009-11-01

    Leishmaniasis causes considerable mortality throughout the world, affecting more than 12 million people. Cymbopogon citratus (DC) Stapf, Family Poaceae, is a widely used herb in tropical countries and is also known as a source of ethnomedicines. In this study, the inhibitory effect and the morphological and ultrastructural alterations on Leishmania amazonensis by the essential oil (EO) of C. citratus and its main constituent, citral, were evaluated. The results showed that the antiproliferative activity of EO on promastigotes and axenic amastigotes, and intracellular amastigote forms of L. amazonensis was significantly better than citral, and indicated a dose-dependent effect. Neither compound showed a cytotoxic effect on macrophage strain J774G8. The promastigote forms of L. amazonensis underwent remarkable morphological and ultrastructural alterations compared with untreated cultures. These alterations were visible by light, scanning, and transmission electron microscopy of promastigotes treated with EO and citral at concentrations corresponding to the IC(50) (1.7 and 8.0 microg/ml) and IC(90) (3.2 and 25 microg/ml), respectively, after 72 h of incubation. This study revealed that citral-rich essential oil from C. citratus has promising antileishmanial properties, and is a good candidate for further research to develop a new anti-protozoan drug.

  5. Metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells.

    PubMed

    Iniguez, Eva; Sánchez, Antonio; Vasquez, Miguel A; Martínez, Alberto; Olivas, Joanna; Sattler, Aaron; Sánchez-Delgado, Roberto A; Maldonado, Rosa A

    2013-10-01

    In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium-ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes-cis,fac-[Ru(II)Cl2(DMSO)3(KTZ)] (1) and cis-[Ru(II)Cl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2'-bipyridine)-and four organometallic compounds-[Ru(II)(η(6)-p-cymene)Cl2(KTZ)] (3), [Ru(II)(η(6)-p-cymene)(en)(KTZ)][BF4]2 (4), [Ru(II)(η(6)-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [Ru(II)(η(6)-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with Ru(II) in compounds 3-5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3-5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.

  6. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads.

    PubMed

    Rajasekaran, Rajalakshmi; Chen, Yi-Ping Phoebe

    2012-09-01

    Leishmaniasis, a multi-faceted ethereal disease is considered to be one of the World's major communicable diseases that demands exhaustive research and control measures. The substantial data on these protozoan parasites has not been utilized completely to develop potential therapeutic strategies against Leishmaniasis. Dihydrofolate reductase thymidylate synthase (DHFR-TS) plays a major role in the infective state of the parasite and hence the DHFR-TS based drugs remains of much interest to researchers working on Leishmaniasis. Although, crystal structures of DHFR-TS from different species including Plasmodium falciparum and Trypanosoma cruzi are available, the experimentally determined structure of the Leishmania major DHFR-TS has not yet been reported in the Protein Data Bank. A high quality three dimensional structure of L.major DHFR-TS has been modeled through the homology modeling approach. Carefully refined and the energy minimized structure of the modeled protein was validated using a number of structure validation programs to confirm its structure quality. The modeled protein structure was used in the process of structure based virtual screening to figure out a potential lead structure against DHFR TS. The lead molecule identified has a binding affinity of 0.51 nM and clearly follows drug like properties.

  7. The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection.

    PubMed

    Arcanjo, Angélica F; LaRocque-de-Freitas, Isabel F; Rocha, Juliana Dutra B; Zamith, Daniel; Costa-da-Silva, Ana Caroline; Nunes, Marise Pinheiro; Mesquita-Santos, Fabio P; Morrot, Alexandre; Filardy, Alessandra A; Mariano, Mario; Bandeira-Melo, Christianne; DosReis, George A; Decote-Ricardo, Debora; Freire-de-Lima, Célio Geraldo

    2015-01-01

    B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10.

  8. Increased myelopoiesis during Leishmania major infection in mice: generation of 'safe targets', a possible way to evade the effector immune mechanism.

    PubMed Central

    Mirkovich, A M; Galelli, A; Allison, A C; Modabber, F Z

    1986-01-01

    BALB/c mice are highly susceptible to Leishmania major infection and develop a disseminated lethal disease. Previous experiments indicate that during infection the spleen is heavily populated with large mononuclear cells containing amastigotes. Morphologically these cells resemble undifferentiated monocytes and granulocytes. In this study we examined myelopoiesis in BALB/c and C57BL/6 (resistant) mice during infection with L. major. The number of macrophage-granulocyte precursors in the spleen of infected BALB/c mice, determined by colony forming units in soft-agar cultures (cfu-c), increased steadily to a level of about 60 times that of normal sex- and age-matched controls. In C57BL/6 mice, spleen cfu-c peaked at about 1 month post-infection (four times that of normal controls) and declined thereafter to about two times normal levels. The number of cfu-c in the bone marrow did not change significantly in either strain during the infection. Colony stimulating activity (CSA) was found in supernates of cultures of adherent cells from the spleen of infected BALB/c mice. Under the same conditions, CSA was non-detectable in supernates of nonadherent spleen cells of infected mice, and those of adherent or nonadherent spleen cells of control animals. A possible role of undifferentiated macrophage-granulocytes in the exquisite susceptibility of BALB/c mice to L. major infection is discussed. PMID:3488146

  9. Leishmania major: genetic heterogeneity of Iranian isolates by single-strand conformation polymorphism and sequence analysis of ribosomal DNA internal transcribed spacer.

    PubMed

    Tashakori, Mahnaz; Mahnaz, Tashakori; Kuhls, Katrin; Katrin, Kuhls; Al-Jawabreh, Amer; Amer, Al-Jawabreh; Mauricio, Isabel L; Isabel, Mauricio; Schönian, Gabriele; Gabriele, Schönian; Farajnia, Safar; Safar, Farajnia; Alimohammadian, Mohammad Hossein; Hossein, Alimohammadian Mohammad

    2006-04-01

    Protozoan parasites of Leishmania major are the causative agents of cutaneous leishmaniasis in different parts of Iran. We applied PCR-based methods to analyze L. major parasites isolated from patients with active lesions from different geographic areas in Iran in order to understand DNA polymorphisms within L. major species. Twenty-four isolates were identified as L. major by RFLP analysis of the ribosomal internal transcribed spacer 1 (ITS1) amplicons. These isolates were further studied by single-strand conformation polymorphism (SSCP) analysis and sequencing of ITS1 and ITS2. Data obtained from SSCP analysis of the ITS1 and ITS2 loci revealed three and four different patterns among all studied samples, respectively. Sequencing of ITS1 and ITS2 confirmed the results of SSCP analysis and showed the potential of the PCR-SSCP method for assessing genetic heterogeneity within L. major. Different patterns in ITS1 were due to substitution of one nucleotide, whereas in ITS2 the changes were defined by variation in the number of repeats in two polymorphic microsatellites. In total five genotypic groups LmA, LmB, LmC, LmD and LmE were identified among L. major isolates. The most frequent genotype, LmA, was detected in isolates collected from different endemic areas of cutaneous leishmaniasis in Iran. Genotypes LmC, LmD and LmE were found only in the new focus of CL in Damghan (Semnan province) and LmB was identified exclusively among isolates of Kashan focus (Isfahan province). The distribution of genetic polymorphisms suggests the existence of distinct endemic regions of L. major in Iran.

  10. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    PubMed

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog.

  11. PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition.

    PubMed

    Mathur, Deepti; Stratikopoulos, Elias; Ozturk, Sait; Steinbach, Nicole; Pegno, Sarah; Schoenfeld, Sarah; Yong, Raymund; Murty, Vundavalli V; Asara, John M; Cantley, Lewis C; Parsons, Ramon

    2017-04-01

    Metabolic changes induced by oncogenic drivers of cancer contribute to tumor growth and are attractive targets for cancer treatment. Here, we found that increased growth of PTEN-mutant cells was dependent on glutamine flux through the de novo pyrimidine synthesis pathway, which created sensitivity to the inhibition of dihydroorotate dehydrogenase, a rate-limiting enzyme for pyrimidine ring synthesis. S-phase PTEN-mutant cells showed increased numbers of replication forks, and inhibitors of dihydroorotate dehydrogenase led to chromosome breaks and cell death due to inadequate ATR activation and DNA damage at replication forks. Our findings indicate that enhanced glutamine flux generates vulnerability to dihydroorotate dehydrogenase inhibition, which then causes synthetic lethality in PTEN-deficient cells due to inherent defects in ATR activation. Inhibition of dihydroorotate dehydrogenase could thus be a promising therapy for patients with PTEN-mutant cancers.Significance: We have found a prospective targeted therapy for PTEN-deficient tumors, with efficacy in vitro and in vivo in tumors derived from different tissues. This is based upon the changes in glutamine metabolism, DNA replication, and DNA damage response which are consequences of inactivation of PTENCancer Discov; 7(4); 380-90. ©2017 AACR.See related article by Brown et al., p. 391This article is highlighted in the In This Issue feature, p. 339.

  12. Zoonotic disease in a peripheral population: persistence and transmission of Leishmania major in a putative sink-source system in the Negev Highlands, Israel.

    PubMed

    Berger, Ruti; Wasserberg, Gideon; Warburg, Alon; Orshan, Laor; Kotler, Burt P

    2014-08-01

    Populations at the edge of their geographic distributions are referred to as peripheral populations. Very little attention has been given to this topic in the context of persistence of infectious disease in natural populations. In this study, we examined this question using zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major in the Negev Desert of Israel as a model system. Here, we suggest that the regional persistence of Phlebotomus papatasi populations and L. major transmission in the Sede Boqer region could be explained through processes akin to sink-source and/or mainland-island metapopulation dynamics. Given its potentially enzootically superior ecological conditions, we hypothesize that the Zin Valley ecotope constitutes the "mainland" or the "source" patch for the Sede Boqer area where L. major transmission is persistent and resistant to local extinctions (die-outs) whereas the local sand fly populations on the Zin Plateau ("island patch" or "sink patch") are more prone to local extinctions. Between 2007 and 2008, we trapped sand flies and sand rats in the two areas and compared sand fly abundance and L. major infection prevalence in both. In both 2007 and 2008, sand fly abundance was high and continuous in the Zin Wadi but low and discontinuous in the Zin Plateau. Infection prevalence of sand rats was significantly higher in the Wadi (13%) compared with the Zin Plateau (3%). Minimum infection rate in sand flies did not differ significantly between the two areas. Overall, our results are consistent with the premise that the Zin Valley population is relatively robust in terms of L. major transmission, whereas transmission is potentially more tenuous in the plateau. Understanding the biotic and abiotic processes enabling the persistence of L. major and other vector-borne diseases in peripheral disease foci is important for predicting the effect of anthropogenic land use and climate change.

  13. The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes.

    PubMed

    Berg, K; Zhai, L; Chen, M; Kharazmi, A; Owen, T C

    1994-01-01

    One of the methods to quantitate Leishmania major promastigotes (LmP) has been to utilize the formation of a formazan dye, which in turn is produced via conversion of an artificial substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The method has one major drawback in that the formazan complex precipitates inside the parasites and has to be extracted by denaturants before measurements can be performed. By using a new synthetic substrate, 3-(4,5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-2-(4-sulfonyl)-2H-tetrazolium (MTS), the extraction procedure is eliminated as the formazan-like dye is released spontaneously into the medium, making it possible to perform several measurements on the same parasite culture without disturbing or killing the parasites. The measurements were shown to reflect the numbers of parasites as confirmed via comparative experiments using radioactive thymidine uptake and cell counting, respectively. The method is simple, fast, and highly reproducible and is suitable for drug screening, identification of drug-resistant isolates, and growth-kinetics studies. It is therefore contemplated that the MTS method will be a general and useful technique in this field of parasitology.

  14. Crystal Structure of the Leishmania Major Phosphodiesterase LmjPDEB1 and Insight into the Design of hte Parasite-Selective Inhibitors

    SciTech Connect

    Wang,H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H.

    2007-01-01

    Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Angstroms resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.

  15. Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches

    NASA Astrophysics Data System (ADS)

    Surekha, Kanagarajan; Nachiappan, Mutharasappan; Prabhu, Dhamodharan; Choubey, Sanjay Kumar; Biswal, Jayashree; Jeyakanthan, Jeyaraman

    2017-01-01

    Dihydroorotate dehydrogenase (DHODH) plays a major role in the rate limiting step of de novo pyrimidine biosynthesis pathway and it is pronounced as a novel target for drug development of cancer. The currently available drugs against DHODH are ineffective and bear various side effects. Three-dimensional structure of the targeted protein was constructed using molecular modeling approach followed by 100 ns molecular dynamics simulations. In this study, High Throughput Virtual Screening (HTVS) was performed using various compound libraries to identify pharmacologically potential molecules. The top four identified lead molecules includes NCI_47074, HitFinder_7630, Binding_66981 and Specs_108872 with high docking score of -9.45, -8.29, -8.04 and -8.03 kcal/mol and the corresponding binding free energy were -16.25, -56.37, -26.93 and -48.04 kcal/mol respectively. Arg122, Arg185, Glu255 and Gly257 are the key residues found to be interacting with the ligands. Molecular dynamics simulations of DHODH-inhibitors complexes were performed to assess the stability of various conformations from complex structures of TtDHODH. Furthermore, stereoelectronic features of the ligands were explored to facilitate charge transfer during the protein-ligand interactions using Density Functional Theoretical approach. Based on in silico analysis, the ligand NCI_47074 ((2Z)-3-({6-[(2Z)-3-carboxylatoprop-2-enamido]pyridin-2-yl}carbamoyl)prop-2-enoate) was found to be the most potent lead molecule which was validated using energetic and electronic parameters and it could serve as a template for designing effective anticancerous drug molecule.

  16. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major.

    PubMed

    Jebali, Ali; Anvari-Tafti, Mohammad Hosssein

    2015-05-01

    The use of antisense oligonucleotides is a novel strategy to treat infectious diseases. In this approach, vital mRNAs are targeted by antisense oligonucleotides. The aim of this study was to evaluate the effects of gold nanoparticles hybridized with different antisense oligonucleotides on Leishmania (L) major. In this project, gold nanoparticles were first synthesized, and then conjugated with primary oligonucleotides, 3'-AAA-5'. Next, conjugated gold nanoparticles (NP1) were separately hybridized with three types of antisense oligonucleotide from coding reign of GP63 gene (NP2), non-coding reign of GP63 gene (NP3), and both coding and non-coding reigns of GP63 (NP4). Then, 1mL of L. major suspension was separately added to 1mL of different hybridized gold nanoparticles at serial concentrations (1-200μg/mL), and incubated for 24, 48, and 72h at 37°C. Next, the uptake of each nanoparticle was separately measured by atomic absorption spectroscopy. After incubation, the cell viability was separately evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Also, the expression of GP63 gene was read out by quantitative-real-time PCR. This study showed that NP2 and NP3 had higher (5-fold) uptake than NP1 and NP4. Moreover, NP2 and NP3 led to less cell viability and gene expression, compared with NP1 and NP4. It could be concluded that both sequence and size of antisense oligonucleotide were important for transfection of L. major. Importantly, these antisense oligonucleotides can be obtained from both coding and non-coding reign of GP63 gene. Moreover, hybridized gold nanoparticles not only could silence GP63 gene, but also could kill L. major.

  17. Peganum harmala Aqueous and Ethanol Extracts Effects on Lesions Caused by Leishmania major (MRHO/IR/75/ER) in BALB/c Mice

    PubMed Central

    Khoshzaban, Fariba; Ghaffarifar, Fatemeh; Jamshidi Koohsari, Hamid Reza

    2014-01-01

    Background: Leishmaniasis is one of the six most common parasitic infections in the tropical regions. There are different therapeutic modalities, however therapeutic resistance is developed and resulted in numerous problems. Therefore, evaluation of other therapeutic modalities is performed extensively. Objectives: The current study aimed to compare the therapeutic response of cutaneous leishmaniasis with Glucantime and Peganum harmala extracts (aqueous and ethanol) in the animal model. Materials and Methods: The therapeutic response of Leishmania major to Glucantime and P. harmala extracts (aqueous and ethanol) in animal model was studied in BALB/c mice. These mice were divided into four groups according to receiving either one of these three agents, and the control group. The therapeutic response was evaluated according to the parasitic load before and after treatment and also with measuring the size of the lesions. Results: The results showed that ethanol extract of P. harmala had good therapeutic efficacy in treatment of lesions in mice (P < 0.05), and the efficacy was significant in the eighth week after the treatment. There was also a statistically significant difference between the groups regarding the parasitic load (P < 0.05). Conclusions: According to the current study results, it may be concluded that ethanol extract of P. harmala is efficient in the treatment of cutaneous leishmaniasis, and the efficiency is comparable with that of Glucantime. PMID:25368792

  18. A Listeria monocytogenes-Based Vaccine That Secretes Sand Fly Salivary Protein LJM11 Confers Long-Term Protection against Vector-Transmitted Leishmania major

    PubMed Central

    Abi Abdallah, Delbert S.; Pavinski Bitar, Alan; Oliveira, Fabiano; Meneses, Claudio; Park, Justin J.; Mendez, Susana; Kamhawi, Shaden; Valenzuela, Jesus G.

    2014-01-01

    Cutaneous leishmaniasis is a sand fly-transmitted disease characterized by skin ulcers that carry significant scarring and social stigmatization. Over the past years, there has been cumulative evidence that immunity to specific sand fly salivary proteins confers a significant level of protection against leishmaniasis. In this study, we used an attenuated strain of Listeria monocytogenes as a vaccine expression system for LJM11, a sand fly salivary protein identified as a good vaccine candidate. We observed that mice were best protected against an intradermal needle challenge with Leishmania major and sand fly saliva when vaccinated intravenously. However, this protection was short-lived. Importantly, groups of vaccinated mice were protected long term when challenged with infected sand flies. Protection correlated with smaller lesion size, fewer scars, and better parasite control between 2 and 6 weeks postchallenge compared to the control group of mice vaccinated with the parent L. monocytogenes strain not expressing LJM11. Moreover, protection correlated with high numbers of CD4+, gamma interferon-positive (IFN-γ+), tumor necrosis factor alpha-positive/negative (TNF-α+/−), interleukin-10-negative (IL-10−) cells and low numbers of CD4+ IFN-γ+/− TNF-α− IL-10+ T cells at 2 weeks postchallenge. Overall, our data indicate that delivery of LJM11 by Listeria is a promising vaccination strategy against cutaneous leishmaniasis inducing long-term protection against ulcer formation following a natural challenge with infected sand flies. PMID:24733091

  19. Atenolol Reduces Leishmania major-Induced Hyperalgesia and TNF-α Without Affecting IL-1β or Keratinocyte Derived Chemokines (KC)

    PubMed Central

    Karam, Marc C.; Merckbawi, Rana; Salman, Sara; Mobasheri, Ali

    2016-01-01

    Infection with a high dose of the intracellular parasitic protozoan Leishmania major induces a sustained hyperalgesia in susceptible BALB/c mice accompanied by up-regulation of the pro-inflammatory cytokines IL-1β and IL-6. Interleukin-13 (IL-13) has been shown to reduce this hyperalgesia (despite increased levels of IL-6) and the levels of IL-1β during and after the treatment period. These findings favor the cytokine cascade leading to the production of sympathetic amines (involving TNF-α and KC) over prostaglandins (involving IL-lβ and IL-6) as the final mediators of hyperalgesia. The aim of this study was to investigate the effect of daily treatment with the β-blockers atenolol on L. major-induced inflammation in mice with respect to hyperalgesia as well as the levels of TNF-α and KC (the analog of IL-8 in mice). Our data demonstrates that atenolol is able to reduce the L. major induced sustained peripheral hyperalgesia, which does not seem to involve a direct role for neither IL-lβ nor KC. Moreover, our results show that TNF-α may play a pivotal and direct role in sensitizing the peripheral nerve endings (nociceptors) since its level was reduced during the period of atenolol treatment, which correlates well with the reduction of the observed peripheral, but not central, hyperalgesia. These findings contribute to a better understanding of the cytokine cascade leading to hyperalgesia and may lead to the development of new and more efficient medications for many types of pain. PMID:26913003

  20. Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection.

    PubMed

    Campbell, S A; Alawa, J; Doro, B; Henriquez, F L; Roberts, C W; Nok, A; Alawa, C B I; Alsaadi, M; Mullen, A B; Carter, K C

    2012-02-08

    Leishmaniasis is a major health problem and it is estimated that 12 million people are currently infected. A vaccine which could cross-protect people against different Leishmania spp. would facilitate control of this disease as more than one species of Leishmania may be present. In this study the ability of a DNA vaccine, using the full gene sequence for L. donovani gamma glutamyl cysteine synthetase (γGCS) incorporated in the pVAX vector (pVAXγGCS), and a protein vaccine, using the corresponding recombinant L. donovani γGCS protein (LdγGCS), to protect against L. major or L. mexicana infection was evaluated. DNA vaccination gave transient protection against L. major and no protection against L. mexicana despite significantly enhancing specific antibody titres in vaccinated infected mice compared to infected controls. Vaccination with the LdγGCS protected against both species but only if the protein was incorporated into non-ionic surfactant vesicles for L. mexicana. The results of this study indicate that a L. donovani γGCS vaccine could be used to vaccinate against more than one Leishmania species but only if the recombinant protein is used.

  1. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    SciTech Connect

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  2. The dendritic cell receptor DC-SIGN discriminates among species and life cycle forms of Leishmania.

    PubMed

    Colmenares, María; Corbí, Angel L; Turco, Salvatore J; Rivas, Luis

    2004-01-15

    Infection of dendritic cells by the human protozoal parasite Leishmania is part of its survival strategy. The dendritic cell receptors for Leishmania have not been established and might differ in their interactions among Leishmania species and infective stages. We present evidence that the surface C-type lectin DC-SIGN (CD 209) is a receptor for promastigote and amastigote infective stages from both visceral (Leishmania infantum) and New World cutaneous (Leishmania pifanoi) Leishmania species, but not for Leishmania major metacyclic promastigotes, an Old World species causing cutaneous leishmaniasis. Leishmania binding to DC-SIGN was found to be independent of lipophosphoglycan, the major glycoconjugate of the promastigote plasma membrane. Our findings emphasize the relevance of DC-SIGN in Leishmania-dendritic cell interactions, an essential link between innate and Leishmania-specific adaptive immune responses, and suggest that DC-SIGN might be a therapeutic target for both visceral and cutaneous leishmaniasis

  3. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4).

    PubMed

    Carrión, Javier

    2011-09-01

    The immune phenotype conferred by two different sets of histone genes (H2A-H2B or H3-H4) was assessed. BALB/c mice vaccinated with pcDNA3H2AH2B succumbed to progressive cutaneous leishmaniosis (CL), whereas vaccination with pcDNA3H3H4 resulted in partial resistance to Leishmania major challenge associated with the development of mixed T helper 1 (Th1)/Th2-type response and a reduction in parasite-specific Treg cells number at the site of infection. Therefore, the presence of histones H3 and H4 may be considered essential in the development of vaccine strategies against CL based on the Leishmania histones.

  4. Blocking Junctional Adhesion Molecule C Enhances Dendritic Cell Migration and Boosts the Immune Responses against Leishmania major

    PubMed Central

    Ballet, Romain; Emre, Yalin; Jemelin, Stéphane; Charmoy, Mélanie; Tacchini-Cottier, Fabienne; Imhof, Beat A.

    2014-01-01

    The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response. PMID:25474593

  5. Brequinar derivatives and species-specific drug design for dihydroorotate dehydrogenase.

    PubMed

    Hurt, Darrell E; Sutton, Amanda E; Clardy, Jon

    2006-03-15

    Therapeutic agents brequinar sodium and leflunomide (Arava) work by binding in a hydrophobic tunnel formed by a highly variable N-terminus of family 2 dihydroorotate dehydrogenase (DHODH). The X-ray crystallographic structure of an analog of brequinar bound to human DHODH was determined. In silico screening of a library of compounds suggested another subset of brequinar analogs that do not inhibit human DHODH as potentially effective inhibitors of Plasmodium falciparum DHODH.

  6. In Silico Analysis of Six Known Leishmania major Antigens and In Vitro Evaluation of Specific Epitopes Eliciting HLA-A2 Restricted CD8 T Cell Response

    PubMed Central

    Seyed, Negar; Zahedifard, Farnaz; Safaiyan, Shima; Gholami, Elham; Doustdari, Fatemeh; Azadmanesh, Kayhan; Mirzaei, Maryam; Saeedi Eslami, Nasir; Khadem Sadegh, Akbar; Eslami far, Ali; Sharifi, Iraj; Rafati, Sima

    2011-01-01

    Background As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population. Methods and Findings Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2− individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2− recovered individuals. Based on cutoff scores calculated from the response of HLA-A2− recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2− recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals. Conclusion Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for

  7. Depletion of interleukin-4 in BALB/c mice with established Leishmania major infections increases the efficacy of antimony therapy and promotes Th1-like responses.

    PubMed Central

    Nabors, G S; Farrell, J P

    1994-01-01

    Whereas most inbred mouse strains mount a protective Th1 helper T-cell response following infection with Leishmania major, an ineffective Th2 response develops in BALB/c mice, leading to the development of disseminated, ultimately fatal disease. Interleukin-4 (IL-4) production is required for the initiation of the Th2 response, though little is known about the requirements for the long-term maintenance of this response. In order to investigate the role of the expanding parasite population on the Th2 response, mice infected for 2 weeks with L. major, which exhibited a Th2-like cytokine profile, were treated with a leishmanicidal agent (Pentostam) and/or various doses of anti-IL-4 antibody. Untreated mice, mice treated with Pentostam alone, or mice treated with 2.5 mg of anti-IL-4 antibody given at days 13 and 21 of infection developed progressive disease. However, in 8 of 10 mice treated with this dose of anti-IL-4 antibody plus Pentostam lesion development was arrested and lesions were either controlled or eventually healed. Healing was associated with the production of high levels of gamma interferon by spleen cells, and low levels of immunoglobulin E in serum compared with levels for control animals, indicating that a Th1-like response had developed in mice receiving both treatments. Thus, depletion of IL-4 only in combination with a reduction in the parasite burden allowed the expression of a Th1 response. When the dose of anti-IL-4 antibody was increased to 5 mg per injection, all mice treated with this dose of antibody, with or without Pentostam therapy, healed. However, combined therapy with Pentostam in mice treated with this dose of antibody had an additional protective effect. As expected, a Th1 response developed in mice treated with this dose of anti-IL-4 antibody with or without combined therapy with Pentostam, whereas a Th2 response developed in control mice. Thus, a significant effect on the course of disease is noted when mice with established L

  8. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni.

    PubMed

    Patel, Priyanka; Mandlik, Vineetha; Singh, Shailza

    2016-03-01

    A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database) is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the mentioned organisms. It is the first database of its kind that has together with the network designing showed the simulation pattern of the product. This database intends to create a comprehensive canopy for the regulation of lipid metabolism reaction in the parasite by integrating the transcription factors, regulatory genes and the protein products controlled by the transcription factors and hence operating the metabolism at genetic level.

  9. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni

    PubMed Central

    Patel, Priyanka; Mandlik, Vineetha; Singh, Shailza

    2015-01-01

    A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database) is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the mentioned organisms. It is the first database of its kind that has together with the network designing showed the simulation pattern of the product. This database intends to create a comprehensive canopy for the regulation of lipid metabolism reaction in the parasite by integrating the transcription factors, regulatory genes and the protein products controlled by the transcription factors and hence operating the metabolism at genetic level. PMID:26981382

  10. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    SciTech Connect

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari; Nara, Takeshi; Aoki, Takashi; Harada, Shigeharu; Kita, Kiyoshi

    2005-10-01

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  11. Optimization of Topical Therapy for Leishmania major Localized Cutaneous Leishmaniasis Using a Reliable C57BL/6 Model

    PubMed Central

    Lecoeur, Hervé; Buffet, Pierre; Morizot, Gloria; Goyard, Sophie; Guigon, Ghislaine; Milon, Geneviève; Lang, Thierry

    2007-01-01

    Background Because topical therapy is easy and usually painless, it is an attractive first-line option for the treatment of localized cutaneous leishmaniasis (LCL). Promising ointments are in the final stages of development. One main objective was to help optimize the treatment modalities of human LCL with WR279396, a topical formulation of aminoglycosides that was recently proven to be efficient and safe for use in humans. Methodology/Principal Findings C57BL/6 mice were inoculated in the ear with luciferase transgenic L. major and then treated with WR279396. The treatment period spanned lesion onset, and the evolution of clinical signs and bioluminescent parasite loads could be followed for several months without killing the mice. As judged by clinical healing and a 1.5-3 log parasite load decrease in less than 2 weeks, the 94% efficacy of 10 daily applications of WR279396 in mice was very similar to what had been previously observed in clinical trials. When WR279396 was applied with an occlusive dressing, parasitological and clinical efficacy was significantly increased and no rebound of parasite load was observed. In addition, 5 applications under occlusion were more efficient when done every other day for 10 days than daily for 5 days, showing that length of therapy is a more important determinant of treatment efficacy than the total dose topically applied. Conclusions/Significance Occlusion has a significant adjuvant effect on aminoglycoside ointment therapy of experimental cutaneaous leishmaniasis (CL), a concept that might apply to other antileishmanial or antimicrobial ointments. Generated in a laboratory mouse-based model that closely mimics the course of LCL in humans, our results support a schedule based on discontinuous applications for a few weeks rather than several daily applications for a few days. PMID:18060082

  12. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis.

    PubMed

    Tafaghodi, Mohsen; Eskandari, Maryam; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-10-01

    A suitable adjuvant and delivery system are needed to enhance efficacy of vaccines against leishmaniasis. In this study, alginate microspheres as an antigen delivery system and CpG-ODN as an immunoadjuvant were used to enhance immune response and induce protection against an experimental autoclaved Leishmania major (ALM) vaccine. Alginate microspheres were prepared by an emulsification technique and the characteristics of the preparation such as size, encapsulation efficiency and release profile of encapsulates were studied. Mean diameter of microspheres was determined using SEM (Scanning Electron Microscopy) and particle size analyzer. The encapsulation efficiency was determined using Lowry protein assay method. The integrity of ALM antigens was assessed using SDS-PAGE. Mean diameter of microspheres was 1.8±1.0μm. BALB/c mice were immunized three times in 3-weeks intervals with ALM+CpG-ODN loaded microspheres [(ALM+CpG)(ALG)], ALM encapsulated alginate microspheres [(ALM)(ALG)], (ALM)(ALG)+CpG, ALM+CpG, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection was observed in group of mice immunized with (ALM+CpG)(ALG). The groups of mice received (ALM+CpG)(ALG), (ALM)(ALG)+CpG, (ALM)(ALG) and ALM+CpG were also showed a significantly (P<0.05) smaller footpad swelling compared with the group that received either ALM alone or PBS. The mice immunized with (ALM+CpG)(ALG) or ALM+CpG showed the significantly (P<0.05) highest IgG2a/IgG1 ratio. The IFN-γ level was significantly (P<0.0001) highest in group of mice immunized with either (ALM)(ALG)+CpG or ALM+CpG. It is concluded that alginate microspheres and CpG-ODN adjuvant when are used simultaneously induced protection and enhanced immune response against ALM antigen.

  13. C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice

    PubMed Central

    Doroud, Delaram; Zahedifard, Farnaz; Vatanara, Alireza; Taslimi, Yasaman; Vahabpour, Rouholah; Torkashvand, Fatemeh; Vaziri, Behrooz; Rouholamini Najafabadi, Abdolhossein; Rafati, Sima

    2011-01-01

    Background We have demonstrated that vaccination with pDNA encoding cysteine proteinase Type II (CPA) and Type I (CPB) with its unusual C-terminal extension (CTE) can partially protect BALB/c mice against cutaneous leishmanial infection. Unfortunately, this protection is insufficient to completely control infection without booster injection. Furthermore, in developing vaccines for leishmaniasis, it is necessary to consider a proper adjuvant and/or delivery system to promote an antigen specific immune response. Solid lipid nanoparticles have found their way in drug delivery system development against intracellular infections and cancer, but not Leishmania DNA vaccination. Therefore, undefined effect of cationic solid lipid nanoparticles (cSLN) as an adjuvant in enhancing the immune response toward leishmanial antigens led us to refocus our vaccine development projects. Methodology/Principal Findings Three pDNAs encoding L. major cysteine proteinase type I and II (with or without CTE) were formulated by cSLN. BALB/c mice were immunized twice by 3-week interval, with cSLN-pcDNA-cpa/b, pcDNA-cpa/b, cSLN-pcDNA-cpa/b-CTE, pcDNA-cpa/b-CTE, cSLN, cSLN-pcDNA and PBS. Mice vaccinated with cSLN-pcDNA-cpa/b-CTE showed significantly higher levels of parasite inhibition related to protection with specific Th1 immune response development, compared to other groups. Parasite inhibition was determined by different techniques currently available in exploration vacciation efficacy, i.e., flowcytometry on footpad and lymph node, footpad caliper based measurements and imaging as well as lymph node microtitration assay. Among these techniques, lymph node flowcytometry was found to be the most rapid, sensitive and easily reproducible method for discrimination between the efficacy of vaccination strategies. Conclusions/Significance This report demonstrates cSLN's ability to boost immune response magnitude of cpa/cpb-CTE cocktail vaccination against leishmaniasis so that the average

  14. Leishmania metacaspase: an arginine-specific peptidase.

    PubMed

    Martin, Ricardo; Gonzalez, Iveth; Fasel, Nicolas

    2014-01-01

    The purpose of this chapter is to give insights into metacaspase of Leishmania protozoan parasites as arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible expression systems, metacaspase-deficient yeast cells (Δyca1) have been instrumental in studying the activity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA substrates.

  15. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis.

    PubMed

    Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel

    2013-02-18

    Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species.

  16. Lack of Protection of Pre-Immunization with Saliva of Long-Term Colonized Phlebotomus papatasi against Experimental Challenge with Leishmania major and Saliva of Wild-Caught P. papatasi

    PubMed Central

    Ahmed, Sami Ben Hadj; Kaabi, Belhassen; Chelbi, Ifhem; Derbali, Mohamed; Cherni, Saifedine; Laouini, Dhafer; Zhioua, Elyes

    2010-01-01

    Immunity to saliva of Phlebotomus papatasi protects against Leishmania major infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female P. papatasi. We investigated the effect of pre-immunization with SGH of long-term colonized P. papatasi against L. major infection co-inoculated with SGH of wild-caught P. papatasi. Our results showed that pre-exposure to SGH of long-term, colonized P. papatasi do not confer protection against infection with L. major co-inoculated with SGH of wild-caught P. papatasi. These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure. PMID:20810812

  17. Lack of protection of pre-immunization with saliva of long-term colonized Phlebotomus papatasi against experimental challenge with Leishmania major and saliva of wild-caught P. papatasi.

    PubMed

    Ahmed, Sami Ben Hadj; Kaabi, Belhassen; Chelbi, Ifhem; Derbali, Mohamed; Cherni, Saifedine; Laouini, Dhafer; Zhioua, Elyes

    2010-09-01

    Immunity to saliva of Phlebotomus papatasi protects against Leishmania major infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female P. papatasi. We investigated the effect of pre-immunization with SGH of long-term colonized P. papatasi against L. major infection co-inoculated with SGH of wild-caught P. papatasi. Our results showed that pre-exposure to SGH of long-term, colonized P. papatasi do not confer protection against infection with L. major co-inoculated with SGH of wild-caught P. papatasi. These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure.

  18. Natural infection of bats with Leishmania in Ethiopia.

    PubMed

    Kassahun, Aysheshm; Sadlova, Jovana; Benda, Petr; Kostalova, Tatiana; Warburg, Alon; Hailu, Asrat; Baneth, Gad; Volf, Petr; Votypka, Jan

    2015-10-01

    The leishmaniases, a group of diseases with a worldwide-distribution, are caused by different species of Leishmania parasites. Both cutaneous and visceral leishmaniasis remain important public health problems in Ethiopia. Epidemiological cycles of these protozoans involve various sand fly (Diptera: Psychodidae) vectors and mammalian hosts, including humans. In recent years, Leishmania infections in bats have been reported in the New World countries endemic to leishmaniasis. The aim of this study was to survey natural Leishmania infection in bats collected from various regions of Ethiopia. Total DNA was isolated from spleens of 163 bats belonging to 23 species and 18 genera. Leishmania infection was detected by real-time (RT) PCR targeting a kinetoplast (k) DNA and internal transcribed spacer one (ITS1) gene of the parasite. Detection was confirmed by sequencing of the PCR products. Leishmania kDNA was detected in eight (4.9%) bats; four of them had been captured in the Aba-Roba and Awash-Methara regions that are endemic for leishmaniasis, while the other four specimens originated from non-endemic localities of Metu, Bedele and Masha. Leishmania isolates from two bats were confirmed by ITS1 PCR to be Leishmania tropica and Leishmania major, isolated from two individual bats, Cardioderma cor and Nycteris hispida, respectively. These results represent the first confirmed observation of natural infection of bats with the Old World Leishmania. Hence, bats should be considered putative hosts of Leishmania spp. affecting humans with a significant role in the transmission.

  19. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    PubMed

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.

  20. Discovery of diverse human dihydroorotate dehydrogenase inhibitors as immunosuppressive agents by structure-based virtual screening.

    PubMed

    Diao, Yanyan; Lu, Weiqiang; Jin, Huangtao; Zhu, Junsheng; Han, Le; Xu, Minghao; Gao, Rui; Shen, Xu; Zhao, Zhenjiang; Liu, Xiaofeng; Xu, Yufang; Huang, Jin; Li, Honglin

    2012-10-11

    This study applied an efficient virtual screening strategy integrating molecular docking with MM-GBSA rescoring to identify diverse human dihydroorotate dehydrogenase (hDHODH) inhibitors. Eighteen compounds with IC(50) values ranging from 0.11 to 18.8 μM were identified as novel hDHODH inhibitors that exhibited overall species-selectivity over Plasmodium falciparum dihydroorotate dehydrogenase (pfDHODH). Compound 8, the most potent one, showed low micromolar inhibitory activity against hDHODH with an IC(50) value of 0.11 μM. Moreover, lipopolysaccharide-induced B-cell assay and mixed lymphocyte reaction assay revealed that most of the hits showed potent antiproliferative activity against B and T cells, which demonstrates their potential application as immunosuppressive agents. In particular, compound 18 exhibited potent B-cell inhibitory activity (IC(50) = 1.78 μM) and presents a B-cell-specific profile with 17- and 26-fold selectivities toward T and Jurkat cells, respectively.

  1. Fluorescence assay of dihydroorotate dehydrogenase that may become a cancer biomarker

    PubMed Central

    Yin, Sheng; Kabashima, Tsutomu; Zhu, Qinchang; Shibata, Takayuki; Kai, Masaaki

    2017-01-01

    We developed an assay method for measuring dihydroorotate dehydrogenase (DHODH) activity in cultured HeLa cells and fibroblasts, and in stage III stomach cancer and adjacent normal tissues from the same patient. The assay comprised enzymatic reaction of DHODH with a large amount of dihydroorotic acid substrate, followed by fluorescence (FL) detection specific for orotic acid using the 4-trifluoromethyl-benzamidoxime fluorogenic reagent. The DHODH activities in the biologically complex samples were readily measured by the assay method. Our data indicate significantly higher DHODH activity in HeLa cells (340 ± 25.9 pmol/105 cells/h) than in normal fibroblasts (54.1 ± 7.40 pmol/105 cells/h), and in malignant tumour tissue (1.10 ± 0.19 nmol/mg total proteins/h) than in adjacent normal tissue (0.24 ± 0.11 nmol/mg total proteins/h). This is the first report that DHODH activity may be a diagnostic biomarker for cancer. PMID:28084471

  2. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome.

    PubMed

    Jaafari, Mahmoud R; Badiee, Ali; Khamesipour, Ali; Samiei, Afshin; Soroush, Dina; Kheiri, Masoumeh Tavassoti; Barkhordari, Farzaneh; McMaster, W Robert; Mahboudi, Fereidoun

    2007-08-10

    CpG oligodeoxynucleotides (CpG ODN) are known to be a potent immunoadjuvant for a wide range of antigens. The aim of this study was to evaluate the role of CpG ODN co-encapsulated with rgp63 antigen in cationic liposomes (Lip-rgp63-CpG ODN) in immune response enhancement and protection in BALB/c mice against leishmaniasis. Lip-rgp63-CpG ODN prepared by using dehydration-rehydration vesicle (DRV) method significantly inhibited (P<0.001) Leishmania major infection in mice measured by footpad swelling compared to Lip-rgp63, rgp63 alone, rgp63 plus CpG ODN, PBS or control liposomes. The mice immunized with Lip-rgp63-CpG ODN also showed the lowest spleen parasite burden, highest IgG2a/IgG1 ratio and IFN-gamma production and the lowest IL-4 production compared to the other groups. The results indicate that co-encapsulation of CpG ODN in liposomes improves the immunogenicity of Leishmania antigen.

  3. In vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7- hydroxycalamenene against Leishmania chagasi

    PubMed Central

    2013-01-01

    Background Visceral leishmaniasis is the most serious form of leishmaniasis and can be lethal if left untreated. Currently available treatments for these parasitic diseases are frequently associated to severe side effects. The leaves of Croton cajucara are used as an infusion in popular medicine to combat several diseases. Previous studies have demonstrated that the linalool-rich essential oil from C. cajucara (white sacaca) is extremely efficient against the tegumentary specie Leishmania amazonensis. In this study, we investigated the effects of the 7-hydroxycalamenene-rich essential oil from the leaves of C. cajucara (red sacaca) against Leishmania chagasi, as well as on the interaction of these parasites with host cells. Methods Promastigotes were treated with different concentrations of the essential oil for determination of its minimum inhibitory concentration (MIC). In addition, the effects of the essential oil on parasite ultrastructure were analyzed by transmission electron microscopy. To evaluate its efficacy against infected cells, mouse peritoneal macrophages infected with L. chagasi promastigotes were treated with the inhibitory and sub-inhibitory concentrations of the essential oil. Results The minimum inhibitory concentrations of the essential oil and its purified component 7-hydroxycalamenene against L. chagasi were 250 and 15.6 μg/mL, respectively. Transmission electron microscopy analysis revealed important nuclear and kinetoplastic alterations in L. chagasi promastigotes. Pre-treatment of macrophages and parasites with the essential oil reduced parasite/macrophage interaction by 52.8%, while it increased the production of nitric oxide by L. chagasi-infected macrophages by 80%. Conclusion These results indicate that the 7-hydroxycalamenene-rich essential oil from C. cajucara is a promising source of leishmanicidal compounds. PMID:24088644

  4. Susceptibility of Inbred Mice to Leishmania major Infection: Genetic Analysis of Macrophage Activation and Innate Resistance to Disease in Individual Progeny of P/J (Susceptible) and C3H/HeN (Resistant) Mice

    DTIC Science & Technology

    1990-12-01

    mediated immu- ease and defective macrophage activation in Bx mice that nity in mice highly susceptible to Leishmania tropica . J. Exp. could not be...inbred mice to Leishmania tropica infec- tion: correlation of susceptibility with in vitro defective macro- LITERATURE CITED phage microbicidal...probability and phage activation to kill Leishmania tropica : characterization of statistics. Chemical Rubber Co., Cleveland. P/J mouse macrophage defects for

  5. Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria

    PubMed Central

    2011-01-01

    Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure–activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug–drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate. PMID:24900364

  6. The role of fluorine in stabilizing the bioactive conformation of dihydroorotate dehydrogenase inhibitors.

    PubMed

    Bonomo, Silvia; Tosco, Paolo; Giorgis, Marta; Lolli, Marco; Fruttero, Roberta

    2013-03-01

    Dihydroorotate dehydrogenase (DHODH) is an important drug target due to its prominent role in pyrimidine biosynthesis. Leflunomide and brequinar are two well-known DHODH inhibitors, which bind to the enzyme in the same pocket with different binding modes. We have recently realized a series of new inhibitors based on the 4-hydroxy-1,2,5-oxadiazole ring, whose activity profile was found to be closely dependent on the degree of fluorine substitution at the phenyl ring adjacent to the oxadiazole moiety; a positive influence of fluorine on the DHODH inhibitory potency was observed previously [Baumgartner et al. (2006) J Med Chem 49:1239-1247]. Potential energy surface scans showed that fluorine plays an important role in stabilizing the bioactive conformations; additionally, fluorine influences the balance between leflunomide-like and brequinar-like binding modes. These findings may serve as a guide to design more potent DHODH inhibitors.

  7. The genus Leishmania

    PubMed Central

    Garnham, P. C. C.

    1971-01-01

    The systematic position of the so-called ”species” of Leishmania is examined and an attempt made to determine their phylogenetic relationships. The morphology of the organisms as seen by light- and electron-microscopy is described; neither method provides useful criteria for the determination of species. The behaviour of the parasites in insect and in vertebrate hosts offers a better method of classification. In this way, the species may be divided into 4 main groups, comprising the mammalian species involving man, the distinctive species L. enriettii in the guinea-pig, those infecting lizards, and species apparently in various stages of evolution in phlebotomines. The so-called ”human” group is divided into visceral forms (originating chiefly in wild canidae) and cutaneous forms (probably of rodent origin). The named species of the former group include L. donovani and L. infantum. The cutaneous species include L. tropica tropica (=minor), L. tropica major, L. brasiliensis, L. peruana, L. guyanensis, and L. mexicana. L. pifanoi is probably not a distinct species but represents various forms as modified by the failure of cell-mediated immunity in the host. Leishmanial infections can be identified first by ascertaining the geographical area where the infection was acquired, and then by more or less complicated laboratory investigations including characteristics in culture, serological tests, the response of special hosts in terms of symptomatology, and the behaviour of the parasite in the phlebotomine host. No test is infallible, and an effective simple test is urgently needed. The preservation of Leishmania strains is an important research procedure and a method for conserving parasites by lyophilization is described briefly. PMID:5316250

  8. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    SciTech Connect

    Couto, Sheila G.; Cristina Nonato, M.

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  9. An imported case of cutaneous leishmaniasis caused by Leishmania (Leishmania) donovani in Japan.

    PubMed

    Ito, Kotaro; Takahara, Masakazu; Ito, Makoto; Oshiro, Minoru; Takahashi, Kenzo; Uezato, Hiroshi; Imafuku, Shinichi

    2014-10-01

    Leishmaniasis is a major world health problem, and 12 million people are estimated to be infected in 88 countries. There have been few reports of leishmaniasis in Japan and all were of foreign origin; therefore diagnosis is difficult for Japanese physicians. There are 21 different pathogenic Leishmania species, and identification is obtained by polymerase chain reaction (PCR). Here we report an imported case of leishmaniasis by Leishmania (Leishmania) donovani infection from Sri Lanka. L. (L.) donovani usually causes visceral leishmaniasis, but in this case, the patient manifested cutaneous leishmaniasis. The identification of Leishmania species by PCR and investigation of the patient's background such as nationality and disease endemicity are important for diagnosis and treatment. This is the first report of cutaneous leishmaniasis by L. (L.) donovani in Japan.

  10. Validation of Recombinant Salivary Protein PpSP32 as a Suitable Marker of Human Exposure to Phlebotomus papatasi, the Vector of Leishmania major in Tunisia

    PubMed Central

    Bettaieb, Jihene; Abdeladhim, Maha; Hadj Kacem, Saoussen; Abdelkader, Rania; Gritli, Sami; Chemkhi, Jomaa; Aslan, Hamide; Kamhawi, Shaden; Ben Salah, Afif; Louzir, Hechmi; Valenzuela, Jesus G.; Ben Ahmed, Melika

    2015-01-01

    Background During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. Methodology/Principal Findings Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. Conclusions/Significance Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease. PMID:26368935

  11. Searching for New Chemotherapies for Tropical Diseases: Ruthenium-Clotrimazole Complexes Display High in vitro Activity Against Leishmania major and Trypanosoma cruzi and Low Toxicity Toward Normal Mammalian Cells

    PubMed Central

    Martínez, Alberto; Carreon, Teresia; Iniguez, Eva; Anzellotti, Atilio; Sánchez, Antonio; Tyan, Marina; Sattler, Aaron; Herrera, Linda; Maldonado, Rosa A.; Sánchez-Delgado, Roberto A.

    2012-01-01

    Eight new ruthenium complexes of clotrimazole (CTZ) with high antiparasitic activity have been synthesized, cis,fac-[RuIICl2(DMSO)3(CTZ)] (1), cis,cis,trans-[RuIICl2(DMSO)2(CTZ)2] (2), Na[RuIIICl4(DMSO)(CTZ)] (3) and Na[trans-RuIIICl4(CTZ)2] (4), [RuII(η6-p-cymene)Cl2(CTZ)] (5), [RuII(η6-p-cymene)(bipy)(CTZ)][BF4]2 (6), [RuII(η6-p-cymene)(en)(CTZ)][BF4]2 (7) and [RuII(η6-p-cymene)(acac)(CTZ)][BF4] (8) (bipy = bipyridine; en = ethlylenediamine; acac = acetylacetonate). The crystal structures of compounds 4-8 are described. Complexes 1-8 are active against promastigotes of Leishmania major and epimastigotes of Trypanosoma cruzi. Most notably complex 5 increases the activity of CTZ by factors of 110 and 58 against L. major and T. cruzi, with no appreciable toxicity to human osteoblasts, resulting in nanomolar and low micromolar lethal doses and therapeutic indexes of 500 and 75, respectively. In a high-content imaging assay on L. major infected intraperitoneal mice macrophages, complex 5 showed significant inhibition on the proliferation of intracellular amastigotes (IC70 = 29 nM), while complex 8 displayed some effect at a higher concentration (IC40 = 1 μM). PMID:22448965

  12. An overview on Leishmania vaccines: A narrative review article.

    PubMed

    Rezvan, Hossein; Moafi, Mohammad

    2015-01-01

    Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation.

  13. An overview on Leishmania vaccines: A narrative review article

    PubMed Central

    Rezvan, Hossein; Moafi, Mohammad

    2015-01-01

    Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation. PMID:25992245

  14. Diagnostic Antigens of Leishmania.

    DTIC Science & Technology

    1994-01-31

    braziliensis (MHOM/BR/75/M2903), L. chagasi (MJOM/BR/82/BA-2,C 1), L. donovani (MHOMiEt/67iHU3), Leishmania guyanensis (MIHOMJBR/75/M4147), L. infantum (IPT-1...comparative test to a variety of other recombinant Leishmania antigens including L. chagasi hsp70, L. braziliensis hsp83/90, L. braziliensis eIF4A, L...34 4. AD CONTRACT NO: DAMD17-92-C-2082 EC•£ 2 j 994 ’i, L TITLE: DIAGNOSTIC ANTIGENS OF LEISHMANIA L PRINCIPAL INVESTIGATOR: Steven G. Reed, Ph.D

  15. Study of Compounds for Activity against Leishmania

    DTIC Science & Technology

    1994-03-27

    Comparative Antileishmanial Activity of Selected Compounds Against Leishmania Leishmania donovani and Leishmania Viannia braziliensis 7 IV. Zn vitro...Studies of Oligonucleotides Against Leishmania Leishmania donovani ............................................................ 9 Discussion...for several years in studies to identify new compounds for antileishmanial activity against both visceral (Lelshmania Leishmania donovani ) and

  16. Hunger tolerance and Leishmania in sandflies.

    PubMed

    Schlein, Y; Jacobson, R L

    2001-11-08

    The sandfly Phlebotomus papatasi transmits Leishmania major, the agent of cutaneous leishmaniasis, in desert and savannah regions of the Old World, where seasonal stress of dehydration and heat reduces the quantity of sugar in plant leaves. Without essential sugar, only a few flies that feed on leaves can survive for long enough to deposit eggs and transmit Leishmania. Accordingly, selection for hunger tolerance may also select for pathogen susceptibility in flies. Here we provide evidence of a link between these advantageous and costly properties by testing the susceptibility of flies selected by sugar deprivation and of flies from irrigated and arid habitats.

  17. Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs

    PubMed Central

    Akhavan, Amir Ahmad; Mirhendi, Hossein; Khamesipour, Ali; Alimohammadian, Mohammad Hossein; Rassi, Yavar; Bates, Paul; Kamhawi, Shaden; Valenzuela, Jesus G.; Arandian, Mohammad Hossein; Abdoli, Hamid; Jalali-zand, Niloufar; Jafari, Reza; Shareghi, Niloufar; Ghanei, Maryam; Yaghoobi-Ershadi, Mohammad Reza

    2010-01-01

    Many rodent species act as reservoir hosts of zoonotic cutaneous leishmaniasis in endemic areas. In the present study a simple and reliable assay based on nested PCR was developed for the detection and identification of Leishmania parasites from rodent skin samples. We designed Leishmania-specific primers that successfully amplified ITS regions of Leishmania major, Leishmania gerbilli and Leishmania turanica using nested PCR. Out of 95 field collected Rhombomys opimus, 21 were positive by microscopic examination and 48 by nested PCR. The percentage of gerbils infected with L. major, L. gerbilli and L. turanica was 3.2%, 1.1% and 27.4%, respectively. In 15.8% of the rodents, we found mixed natural infections by L. major and L. turanica, 1.1% by L. major and L. gerbilli, and 2.1% by the three species. We concluded that this method is simple and reliable for detecting and identifying Leishmania species circulating in rodent populations. PMID:20566364

  18. Leishmania Skin Test

    DTIC Science & Technology

    2010-03-01

    Ninhydrin ), SDS-PAGE and non-viability testing . See Table 3 below: Table 3: Drug Substance Specifications Test Method Specification SDS-PAGE...AD_________________ Award Number: DAMD17-00-C-0030 TITLE: Leishmania Skin Test PRINCIPAL INVESTIGATOR: Nielsen, H.S., Jr...TYPE FINAL, PHASE II ADDENDUM 3. DATES COVERED (From - To) 1 APR 2009 - 28 FEB 2010 4. TITLE AND SUBTITLE Leishmania Skin Test 5a

  19. High Quality Long-Term CD4+ and CD8+ Effector Memory Populations Stimulated by DNA-LACK/MVA-LACK Regimen in Leishmania major BALB/c Model of Infection

    PubMed Central

    Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; S. Sorzano, Carlos Oscar; Esteban, Mariano

    2012-01-01

    Heterologous vaccination based on priming with a plasmid DNA vector and boosting with an attenuated vaccinia virus MVA recombinant, with both vectors expressing the Leishmania infantum LACK antigen (DNA-LACK and MVA-LACK), has shown efficacy conferring protection in murine and canine models against cutaneus and visceral leishmaniasis, but the immune parameters of protection remain ill defined. Here we performed by flow cytometry an in depth analysis of the T cell populations induced in BALB/c mice during the vaccination protocol DNA-LACK/MVA-LACK, as well as after challenge with L. major parasites. In the adaptive response, there is a polyfunctional CD4+ and CD8+ T cell activation against LACK antigen. At the memory phase the heterologous vaccination induces high quality LACK-specific long-term CD4+ and CD8+ effector memory cells. After parasite challenge, there is a moderate boosting of LACK-specific CD4+ and CD8+ T cells. Anti-vector responses were largely CD8+-mediated. The immune parameters induced against LACK and triggered by the combined vaccination DNA/MVA protocol, like polyfunctionality of CD4+ and CD8+ T cells with an effector phenotype, could be relevant in protection against leishmaniasis. PMID:22715418

  20. Activity of Cuban Plants Extracts against Leishmania amazonensis

    PubMed Central

    García, Marley; Monzote, Lianet; Scull, Ramón; Herrera, Pedro

    2012-01-01

    Natural products have long been providing important drug leads for infectious diseases. Leishmaniasis is a major health problem worldwide that affects millions of people especially in the developing nations. There is no immunoprophylaxis (vaccination) available for Leishmania infections, and conventional treatments are unsatisfactory; therefore, antileishmanial drugs are urgently needed. In this work, 48 alcoholic extracts from 46 Cuban plants were evaluated by an in vitro bioassay against Leishmania amazonensis. Furthermore, their toxicity was assayed against murine macrophage. The three most potent extracts against the amastigote stage of Leishmania amazonensis were from Hura crepitans, Bambusa vulgaris, and Simarouba glauca. PMID:22530133

  1. Target Oriented Drugs against Leishmania

    DTIC Science & Technology

    1981-10-26

    leishmanlal excreted factor (EF) antibody in rabbit sera was developed. The assay, using Leishmania trop ica and Leishmania donovani promastigote EF...tropica LRC L137 L52 Leishmaniia donovani LRC L52 These strains were obtained from the WHO Leishmania Peference Centre collection maintained in the...FO 0 AD M FINAL REPORT0 (N TARGET ORIENTED DRUGS AGAINST LEISHMANIA I URI ZEHAVI, Ph.D. and JOSEPH EL-ON, Ph.D. Supported by U.S. ARMY MEDICAL

  2. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    SciTech Connect

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  3. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria

    PubMed Central

    Phillips, Margaret A.; Lotharius, Julie; Marsh, Kennan; White, John; Dayan, Anthony; White, Karen L.; Njoroge, Jacqueline W.; El Mazouni, Farah; Lao, Yanbin; Kokkonda, Sreekanth; Tomchick, Diana R.; Deng, Xiaoyi; Laird, Trevor; Bhatia, Sangeeta N.; March, Sandra; Ng, Caroline L.; Fidock, David A.; Wittlin, Sergio; Lafuente-Monasterio, Maria; Benito, Francisco Javier Gamo; Alonso, Laura Maria Sanz; Martinez, Maria Santos; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Haselden, John N.; Louttit, James; Cui, Yi; Sridhar, Arun; Zeeman, Anna-Marie; Kocken, Clemens; Sauerwein, Robert; Dechering, Koen; Avery, Vicky M.; Duffy, Sandra; Delves, Michael; Sinden, Robert; Ruecker, Andrea; Wickham, Kristina S.; Rochford, Rosemary; Gahagen, Janet; Iyer, Lalitha; Riccio, Ed; Mirsalis, Jon; Bathhurst, Ian; Rueckle, Thomas; Ding, Xavier; Campo, Brice; Leroy, Didier; Rogers, M. John; Rathod, Pradipsinh K.; Burrows, Jeremy N.; Charman, Susan A.

    2015-01-01

    Malaria is one of the most significant causes of childhood mortality but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective towards DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200–400 mg. DSM265 was well tolerated in repeat dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood and liver-stage activity, and predicted long human half-life position DSM265 as a new potential drug combination partner for either single-dose treatment or once weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive on the parasite liver-stage PMID:26180101

  4. Characterization of Leishmania (Leishmania) tropica axenic amastigotes.

    PubMed

    Nasereddin, Abedelmajeed; Schweynoch, Carola; Schonian, Gabriele; Jaffe, Charles L

    2010-01-01

    Optimum conditions for generating Leishmania (Leishmania) tropica axenic amastigotes (AxA) in culture were determined, pH 5.5/36 degrees C, and the parasites characterized by different techniques, including light microscopy, macrophage infection, stage specific antigen expression and differential display. AxA were morphologically similar to amastigotes and 15.5-fold more infective than stationary phase promastigotes for mouse peritoneal macrophages. Western blotting with promastigote stage specific monoclonal antibodies to either lipophosphoglycan (T2) or a 60 kDa flagella antigen (F3) showed a dramatic decrease in antigen expression when AxA were compared to promastigotes. Similarly F3 gave strong immune fluorescent staining of the promastigote flagellum, but no fluorescence was detected when AxA were examined. Conversely, Western blotting with the amastigote specific monoclonal antibody (T16) showed that this antigen is more highly expressed in AxA than promastigotes. Differential display-PCR was used to identify several parasite genes showing stage specific expression. One gene selectively expressed by AxA was partially sequenced and identified as Leishmania (L.) tropicaamastin. Amastigote specific expression of this gene was further confirmed by reverse transcriptase-PCR (RT-PCR) using AxA and infected macrophages. No amastin expression was observed with promastigotes. Expression of the cysteine protease B (cpb) and protein kinase A catalytic isoform 1 subunit (pkac1) in promastigotes and AxA was also examined by RT-PCR. Pkac1 was strongly expressed by promastigotes, while cpb expression was only seen with AxA or infected macrophages. L. (L.) tropica AxA will prove useful for further studies on parasite differentiation and gene regulation, as well as for drug screening.

  5. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response

    PubMed Central

    1995-01-01

    Mice with homologous disruption of the gene coding for the ligand- binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN- gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells. PMID:7869054

  6. Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guérrin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers.

    PubMed

    Kamil, A A; Khalil, E A G; Musa, A M; Modabber, F; Mukhtar, M M; Ibrahim, M E; Zijlstra, E E; Sacks, D; Smith, P G; Zicker, F; El-Hassan, A M

    2003-01-01

    In a previous efficacy study, autoclaved Leishmania major (ALM) + bacille Calmette-Guérrin (BCG) vaccine was shown to be safe, but not superior to BCG alone, in protecting against visceral leishmaniasis. From June 1999 to June 2000, we studied the safety and immunogenicity of different doses of alum-precipitated ALM + BCG vaccine mixture administered intradermally to evaluate whether the addition of alum improved the immunogenicity of ALM. Twenty-four healthy adult volunteers were recruited and sequentially allocated to receive either 10 microg, 100 microg, 200 microg, or 400 microg of leishmanial protein in the alum-precipitated ALM + BCG vaccine mixture. Side effects were minimal for all doses and confined to the site of injection. All volunteers in the 10 microg, 100 microg, and 400 microg groups had a leishmanin skin test (LST) reaction of > or = 5 mm by day 42 and this response was maintained when tested after 90 d. Only 1 volunteer out of 5 in the 200 microg group had a LST reaction of > or = 5 mm by day 42 and the reasons for the different LST responses in this group are unclear. This is the first time that an alum adjuvant with ALM has been in used in humans and the vaccine mixture was safe and induced a strong delayed type hypersensitivity (DTH) reaction in the study volunteers. On the basis of this study we suggest that 100 1 microg of leishmanial protein in the vaccine mixture is a suitable dose for future efficacy studies, as it induced the strongest DTH reaction following vaccination.

  7. Proteomic analysis of the secretome of Leishmania donovani

    PubMed Central

    Silverman, J Maxwell; Chan, Simon K; Robinson, Dale P; Dwyer, Dennis M; Nandan, Devki; Foster, Leonard J; Reiner, Neil E

    2008-01-01

    Background Leishmania and other intracellular pathogens have evolved strategies that support invasion and persistence within host target cells. In some cases the underlying mechanisms involve the export of virulence factors into the host cell cytosol. Previous work from our laboratory identified one such candidate leishmania effector, namely elongation factor-1α, to be present in conditioned medium of infectious leishmania as well as within macrophage cytosol after infection. To investigate secretion of potential effectors more broadly, we used quantitative mass spectrometry to analyze the protein content of conditioned medium collected from cultures of stationary-phase promastigotes of Leishmania donovani, an agent of visceral leishmaniasis. Results Analysis of leishmania conditioned medium resulted in the identification of 151 proteins apparently secreted by L. donovani. Ratios reflecting the relative amounts of each leishmania protein secreted, as compared to that remaining cell associated, revealed a hierarchy of protein secretion, with some proteins secreted to a greater extent than others. Comparison with an in silico approach defining proteins potentially exported along the classic eukaryotic secretion pathway suggested that few leishmania proteins are targeted for export using a classic eukaryotic amino-terminal secretion signal peptide. Unexpectedly, a large majority of known eukaryotic exosomal proteins was detected in leishmania conditioned medium, suggesting a vesicle-based secretion system. Conclusion This analysis shows that protein secretion by L. donovani is a heterogeneous process that is unlikely to be determined by a classical amino-terminal secretion signal. As an alternative, L. donovani appears to use multiple nonclassical secretion pathways, including the release of exosome-like microvesicles. PMID:18282296

  8. Use of parasitological culture to detect Leishmania (Leishmania) chagasi in naturally infected dogs.

    PubMed

    de Almeida, Arleana do Bom Parto Ferreira; Sousa, Valéria Régia Franco; Sorte, Eveline da Cruz Boa; Figueiredo, Fabiano Borges; de Paula, Daphine Ariadne Jesus; Pimentel, Maria Fernanda Aranega; Dutra, Valéria; Madeira, Maria de Fátima

    2011-12-01

    In Brazil, although the domestic dog is a major target for the control actions for visceral leishmaniasis, knowledge gaps of the Leishmania species present in those animals still exist in many endemic areas. The objective of this study was the use of parasitological culture as a diagnosis tool and identification of species of Leishmania and other trypanosomatids in the canine population in the city of Cuiaba/Mato Grosso. Biological samples such as blood, intact skin fragments, cutaneous ulcers, and bone marrow were collected during a cross-sectional study and cultured on biphasic medium (Novy-MacNeil-Nicolle [NNN]/Schneider's). Leishmania isolates were characterized through isoenzyme electrophoresis. Isolates were obtained from 11.2% (n=54) of the 482 animals studied considering the different anatomical sites investigated. Leishmania chagasi was confirmed in 8.3% (n=40) dogs and Trypanosoma caninum in 2.9% (n=14). The sample of intact skin presented a higher chance of isolation of L. chagasi in symptomatic dogs and bone marrow in asymptomatic dogs (p<0.05). The results presented in this study emphasize the value of culture and confirm, for the first time, the circulation of L. chagasi in the canine population in different neighborhoods of the city of Cuiaba and broaden the knowledge of the geographical distribution of T. caninum in Brazil.

  9. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  10. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum

    PubMed Central

    Dickerman, Benjamin K.; Elsworth, Brendan; Cobbold, Simon A.; Nie, Catherine Q.; McConville, Malcolm J.; Crabb, Brendan S.; Gilson, Paul R.

    2016-01-01

    Plasmodium parasites are responsible for the devastating disease malaria that affects hundreds of millions of people each year. Blood stage parasites establish new permeability pathways (NPPs) in infected red blood cell membranes to facilitate the uptake of nutrients and removal of parasite waste products. Pharmacological inhibition of the NPPs is expected to lead to nutrient starvation and accumulation of toxic metabolites resulting in parasite death. Here, we have screened a curated library of antimalarial compounds, the MMV Malaria Box, identifying two compounds that inhibit NPP function. Unexpectedly, metabolic profiling suggested that both compounds also inhibit dihydroorotate dehydrogense (DHODH), which is required for pyrimidine synthesis and is a validated drug target in its own right. Expression of yeast DHODH, which bypasses the need for the parasite DHODH, increased parasite resistance to these compounds. These studies identify two potential candidates for therapeutic development that simultaneously target two essential pathways in Plasmodium, NPP and DHODH. PMID:27874068

  11. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

    PubMed Central

    Akhoundi, Mohammad; Kuhls, Katrin; Cannet, Arnaud; Votýpka, Jan; Marty, Pierre; Delaunay, Pascal; Sereno, Denis

    2016-01-01

    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they

  12. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    PubMed

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  13. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs

    PubMed Central

    Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  14. Cross-protective efficacy from a immunogen firstly identified in Leishmania infantum against tegumentary leishmaniasis.

    PubMed

    Martins, V T; Lage, D P; Duarte, M C; Costa, L E; Chávez-Fumagalli, M A; Roatt, B M; Menezes-Souza, D; Tavares, C A P; Coelho, E A F

    2016-02-01

    Experimental vaccine candidates have been evaluated to prevent leishmaniasis, but no commercial vaccine has been proved to be effective against more than one parasite species. LiHyT is a Leishmania-specific protein that was firstly identified as protective against Leishmania infantum. In this study, LiHyT was evaluated as a vaccine to against two Leishmania species causing tegumentary leishmaniasis (TL): Leishmania major and Leishmania braziliensis. BALB/c mice were immunized with rLiHyT plus saponin and lately challenged with promastigotes of the two parasite species. The immune response generated was evaluated before and 10 weeks after infection, as well as the parasite burden at this time after infection. The vaccination induced a Th1 response, which was characterized by the production of IFN-γ, IL-12 and GM-CSF, as well as by high levels of IgG2a antibodies, after in vitro stimulation using both the protein and parasite extracts. After challenge, vaccinated mice showed significant reductions in their infected footpads, as well as in the parasite burden in the tissue and organs evaluated, when compared to the control groups. The anti-Leishmania Th1 response was maintained after infection, being the IFN-γ production based mainly on CD4(+) T cells. We described one conserved Leishmania-specific protein that could compose a pan-Leishmania vaccine.

  15. The genomic fingerprinting of the coding region of the beta-tubulin gene in Leishmania identification.

    PubMed

    Luis, L; Ramírez, A; Aguilar, C M; Eresh, S; Barker, D C; Mendoza-León, A

    1998-06-01

    We have demonstrated the polymorphism of the beta-tubulin gene region in Leishmania and its value in the identification of the parasite. In this work we have shown that the coding region of the gene has sufficient variation to accurately discriminate these parasites at the subgenus level. Nevertheless, intrasubgenus diversity, for particular restriction enzymes, was found in New World Leishmania belonging to the Leishmania subgenus. For instance, differences were found between mexicana and amazonensis strains. A unique pattern at the species level was found in particular species of both subgenera, e.g. L. (L.) major strain P and L. (L.) tropica belonging to the Leishmania subgenus, and L. (V.) panamensis strain LS94 from the Viannia subgenus. Particular endonucleases are diagnostic in Leishmania species discrimination as in the case of PvuII for the mexicana and amazonensis. This variation evidenced in the beta-tubulin gene region of Leishmania also occurred in other Kinetoplastida e.g. Trypanosoma cruzi, Leptomonas spp. and Crithidia spp. Moreover, these organisms showed a different genomic fingerprinting for the beta-tubulin gene among them and also Leishmania. Thus, the polymorphism of the coding region of the beta-tubulin gene can be used as a molecular marker for the identification of Leishmania.

  16. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?

    PubMed Central

    McConville, Malcolm J.; Saunders, Eleanor C.; Kloehn, Joachim; Dagley, Michael J.

    2015-01-01

    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania. PMID:26594352

  17. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase.

    PubMed

    da Silva, Edson R; Boechat, Nubia; Pinheiro, Luiz C S; Bastos, Monica M; Costa, Carolina C P; Bartholomeu, Juliana C; da Costa, Talita H

    2015-11-01

    Arginase is a glycosomal enzyme in Leishmania that is involved in polyamine and trypanothione biosynthesis. The central role of arginase in Leishmania (Leishmania) amazonensis was demonstrated by the generation of two mutants: one with an arginase lacking the glycosomal addressing signal and one in which the arginase-coding gene was knocked out. Both of these mutants exhibited decreased infectivity. Thus, arginase seems to be a potential drug target for Leishmania treatment. In an attempt to search for arginase inhibitors, 29 derivatives of the [1,2,4]triazolo[1,5-a]pyrimidine system were tested against Leishmania (Leishmania) amazonensis arginase in vitro. The [1,2,4]triazolo[1,5-a]pyrimidine scaffold containing R1  = CF3 exhibited greater activity against the arginase rather than when the substituent R1  = CH3 in the 2-position. The novel compound 2-(5-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)hydrazinecarbothioamide (30) was the most potent, inhibiting arginase by a non-competitive mechanism, with the Ki and IC50 values for arginase inhibition estimated to be 17 ± 1 μm and 16.5 ± 0.5 μm, respectively. These results can guide the development of new drugs against leishmaniasis based on [1,2,4]triazolo[1,5-a]pyrimidine derivatives targeting the arginase enzyme.

  18. Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns.

    PubMed Central

    Beverley, S M; Ismach, R B; Pratt, D M

    1987-01-01

    Restriction endonuclease DNA fragment patterns have been used to examine the relationships among 28 isolates of Leishmania as well as Crithidia, Endotrypanum, and Trypanosoma cruzi. Fragments of nuclear DNA were generated with six restriction enzymes, and blots were hybridized with probes from three loci. Among the major lineages the fragment patterns are essentially completely different, while within the major lineages various degrees of divergence are found. Molecular evolutionary trees were constructed using the method of Nei and Li to estimate the percent nucleotide sequence divergence among strains from the fraction of fragments shared. Defined groups, such as species or subspecies within the major lineages, are also grouped by nuclear DNA comparisons. Within the donovani complex, we find Leishmania donovani chagasi and Leishmania donovani infantum to be as similar as strains within Leishmania donovani donovani, consistent with the proposal by other workers that New World visceral leishmaniasis originated quite recently. Images PMID:3025876

  19. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    PubMed

    Peters, Nathan C; Kimblin, Nicola; Secundino, Nagila; Kamhawi, Shaden; Lawyer, Phillip; Sacks, David L

    2009-06-01

    Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM)+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  20. Perifosine Mechanisms of Action in Leishmania Species.

    PubMed

    López-Arencibia, Atteneri; Martín-Navarro, Carmen; Sifaoui, Ines; Reyes-Batlle, María; Wagner, Carolina; Lorenzo-Morales, Jacob; Maciver, Sutherland K; Piñero, José E

    2017-04-01

    Here the mechanism by which perifosine induced cell death in Leishmania donovani and Leishmania amazonensis is described. The drug reduced Leishmania mitochondrial membrane potential and decreased cellular ATP levels while increasing phosphatidylserine externalization. Perifosine did not increase membrane permeabilization. We also found that the drug inhibited the phosphorylation of Akt in the parasites. These results highlight the potential use of perifosine as an alternative to miltefosine against Leishmania.

  1. In vivo antileishmanial efficacy of miltefosine against Leishmania (Leishmania) amazonensis.

    PubMed

    García Bustos, María F; Barrio, Alejandra; Prieto, Gabriela G; de Raspi, Emma M; Cimino, Rubén O; Cardozo, Rubén M; Parada, Luis A; Yeo, Matthew; Soto, Jaime; Uncos, Delfor A; Parodi, Cecilia; Basombrío, Miguel A

    2014-12-01

    Leishmaniasis, a disease caused by parasites of the Leishmania genus, constitutes a significant health and social problem in many countries and is increasing worldwide. The conventional treatment, meglumine antimoniate (MA), presents numerous disadvantages, including invasiveness, toxicity, and frequent therapeutic failure, justifying the attempts at finding alternatives to the first-line therapy. We have studied the comparative long-term efficacy of MA against miltefosine (MF) in Leishmania infection in experimental mice. The criteria for efficacy evaluation were footpad lesion size, anti-Leishmania antibodies level, histopathology of the site of inoculation (right footpad, RFP), splenic index (SI), and the presence of parasites in RFP, spleen, and liver, determined by polymerase chain reaction (PCR). Swiss mice, infected with Leishmania (Leishmania) amazonensis were treated, at different time points (5 and 40 days after infection) with either MA or MF. The efficacy of MF was better than that of MA for inhibiting lesions and for reducing tissue damage and presence/load of amastigotes in spleen and liver. Moreover, early administration of MF produced a clear reduction in splenomegaly and was equal in reducing antibody titles in comparison with MA. Our results demonstrated that MF is an effective and safe therapeutic alternative for leishmaniasis by L. (L.) amazonensis and is more efficacious than MA.

  2. Mucosal Leishmaniasis Caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon

    PubMed Central

    de Oliveira Guerra, Jorge Augusto; Prestes, Suzane Ribeiro; Silveira, Henrique; Coelho, Leila Inês de Aguiar Raposo Câmara; Gama, Pricila; Moura, Aristoteles; Amato, Valdir; Barbosa, Maria das Graças Vale; de Lima Ferreira, Luiz Carlos

    2011-01-01

    Background Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis. Methodology Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit. Results This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Pará, Acre, and Rondônia and cases of ML caused by L. (V.) braziliensis in the state of Rondônia. Conclusions/Significance L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River. PMID:21408116

  3. A Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Improved Drug-like Properties for Treatment and Prevention of Malaria.

    PubMed

    Phillips, Margaret A; White, Karen L; Kokkonda, Sreekanth; Deng, Xiaoyi; White, John; El Mazouni, Farah; Marsh, Kennan; Tomchick, Diana R; Manjalanagara, Krishne; Rudra, Kakali Rani; Wirjanata, Grennady; Noviyanti, Rintis; Price, Ric N; Marfurt, Jutta; Shackleford, David M; Chiu, Francis C K; Campbell, Michael; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Martinez, Maria Santos; Lafuente-Monasterio, Maria; Kaminsky, Werner; Silue, Kigbafori; Zeeman, Anne-Marie; Kocken, Clemens; Leroy, Didier; Blasco, Benjamin; Rossignol, Emilie; Rueckle, Thomas; Matthews, Dave; Burrows, Jeremy N; Waterson, David; Palmer, Michael J; Rathod, Pradipsinh K; Charman, Susan A

    2016-12-09

    The emergence of drug-resistant malaria parasites continues to hamper efforts to control this lethal disease. Dihydroorotate dehydrogenase has recently been validated as a new target for the treatment of malaria, and a selective inhibitor (DSM265) of the Plasmodium enzyme is currently in clinical development. With the goal of identifying a backup compound to DSM265, we explored replacement of the SF5-aniline moiety of DSM265 with a series of CF3-pyridinyls while maintaining the core triazolopyrimidine scaffold. This effort led to the identification of DSM421, which has improved solubility, lower intrinsic clearance, and increased plasma exposure after oral dosing compared to DSM265, while maintaining a long predicted human half-life. Its improved physical and chemical properties will allow it to be formulated more readily than DSM265. DSM421 showed excellent efficacy in the SCID mouse model of P. falciparum malaria that supports the prediction of a low human dose (<200 mg). Importantly DSM421 showed equal activity against both P. falciparum and P. vivax field isolates, while DSM265 was more active on P. falciparum. DSM421 has the potential to be developed as a single-dose cure or once-weekly chemopreventative for both P. falciparum and P. vivax malaria, leading to its advancement as a preclinical development candidate.

  4. Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting Plasmodium falciparum Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity

    PubMed Central

    2016-01-01

    Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen. PMID:27127993

  5. Effects of dihydroorotate dehydrogenase (DHODH) inhibitors on the growth of Theileria equi and Babesia caballi in vitro.

    PubMed

    Kamyingkird, Ketsarin; Cao, Shinuo; Tuvshintulga, Bumduuren; Salama, Akram; Mousa, Ahmed Abdelmoniem; Efstratiou, Artemis; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Igarashi, Ikuo; Xuan, Xuenan

    2017-05-01

    Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), which affects equine production in various parts of the world. However, a safe and effective drug is not currently available for treatment of EP. Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine synthesis pathway and has been known as a novel drug target for several apicomplexan protozoan parasites. In this study, we evaluated four DHODH inhibitors; atovaquone (ATV), leflunomide (LFN), brequinar (Breq), and 7-hydroxy-5-[1,2,4] triazolo [1,5,a] pyrimidine (TAZ) on the growth of T. equi and B. caballi in vitro and compared them to diminacene aceturate (Di) as the control drug. The growth of T. equi and B. caballi was significantly hindered by all inhibitors except TAZ. The half maximal inhibitory concentration (IC50) of ATV, LFN, Breq and Di against T. equi was approximately 0.028, 109, 11 and 40 μM, respectively, whereas the IC50 of ATV, LFN, Breq and Di against B. caballi was approximately 0.128, 193, 5.2 and 16.2 μM, respectively. Using bioinformatics and Western blot analysis, we showed that TeDHODH was similar to other Babesia parasite DHODHs, and confirmed that targeting DHODHs could be useful for the development of novel chemotherapeutics for treatment of EP.

  6. Anti-Leishmania Activity of Osthole

    PubMed Central

    Kermani, Elaheh Kordzadeh; Sajjadi, Seyed Ebrahim; Hejazi, Seyed Hossein; Arjmand, Reza; Saberi, Sedigheh; Eskandarian, Abbas Ali

    2016-01-01

    Background: Treatment of cutaneous leishmaniasis (CL) is occasionally highly resistant to pentavalent antimonials, the gold standard in pharmacotherapy of CL. Since there is no effective vaccine, the discovery of natural antileishmanial products as complementary therapeutic agents could be used to improve the current regimens. Objective: In this study in vitro and in vivo antileishmanial activities of osthole, a natural coumarin known to possess antibacterial and parasiticidal activities are evaluated. Materials and Methods: Leishmania major infected J774.A1 macrophages were treated with increasing concentrations of osthole. CL lesions of BALB/c mice were treated topically with 0.2% osthole. Results: Osthole exhibited dose-dependent leishmanicidal activity against intracellular amastigotes with IC50 value of 14.95 μg/ml. Treatment of CL lesions in BALB/c mice with osthole significantly declined lesion progression compared to untreated mice (P < 0.05), however did not result in recovery. Conclusion: Osthole demonstrated remarkable leishmanicidal activity in vitro. Higher concentrations of osthole may demonstrate the therapeutic property in vivo. SUMMARY In vitro and in vivo antileishmanial activities of osthole, a pernylated coumarin extracted from Prangos asperula Boiss., are studied against Leishmania major. PMID:27114685

  7. HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites

    PubMed Central

    White, Rhian E.; Powell, David J.; Berry, Colin

    2011-01-01

    HIV proteinase inhibitors reduce the levels of Leishmania parasites in vivo and in vitro, but their biochemical target is unknown. We have identified an ortholog of the yeast Ddi1 protein as the only member of the aspartic proteinase family in Leishmania parasites, and in this study we investigate this protein as a potential target for the drugs. To date, no enzyme assay has been developed for the Ddi1 proteins, but Saccharomyces cerevisiae lacking the DDI1 gene secrete high levels of protein into the medium. We developed an assay in which these knockout yeast were functionally complemented to low secretion by introduction of genes encoding Ddi1 orthologs from Leishmania major or humans. Plasmid alone controls gave no complementation. Treatment of the Ddi1 transformants with HIV proteinase inhibitors showed differential effects dependent on the origin of the Ddi1. Dose responses allowed calculation of IC50 values; e.g., for nelfinavir, of 3.4 μM (human Ddi1) and 0.44 μM (Leishmania Ddi1). IC50 values with Leishmania constructs mirror the potency of inhibitors against parasites. Our results show that Ddi1 proteins are targets of HIV proteinase inhibitors and indicates the Leishmania Ddi1 as the likely target for these drugs and a potential target for antiparasitic therapy.—White, R. E., Powell, D. J., Berry, C. HIV proteinase inhibitors target the Ddi1-Like protein of Leishmania parasites. PMID:21266539

  8. Enzymatic activities of Ura2 and Ura1 proteins (aspartate carbamoyltransferase and dihydro-orotate dehydrogenase) are present in both isolated membranes and cytoplasm of Saccharomyces cerevisiae.

    PubMed

    Vorísek, J; Techniková, Z; Schwippel, J; Benoist, P

    2002-03-30

    Computational analysis predicted three potential hydrophobic transmembrane alpha-helices within the Ura2 multidomain protein of Saccharomyces cerevisiae, the C-terminal subdomain of which catalyses the second step of uridine-monophosphate biosynthesis by its L-aspartate carbamoyltransferase activity (EC 2.1.3.2). The fourth step of pyrimidine biosynthesis is catalysed by dihydro-orotate dehydrogenase (Ura1 protein; EC 1.3.99.11), which was similarly characterized as a peripheral membrane protein. Ex situ, the activities of the investigated enzymes were associated both with isolated yeast membranes, fractionated by differential centrifugation to remove intact nuclei, and with soluble cytoplasmic proteins.

  9. Passive transfer of leishmania lipopolysaccharide confers parasite survival in macrophages

    SciTech Connect

    Handman, E.; Schnur, L.F.; Spithill, T.W.; Mitchell, G.F.

    1986-12-01

    Infection of macrophages by the intracellular protozoan parasite Leishmania involves specific attachment to the host membrane, followed by phagocytosis and intracellular survival and growth. Two parasite molecules have been implicated in the attachment event: Leishmania lipopolysaccharide (L-LPS) and a glycoprotein (gp63). This study was designed to clarify the role of L-LPS in infection and the stage in the process of infection at which it operates. The authors have recently identified a Leishmania major strain (LRC-L119) which lacks the L-LPS molecule and is not infective for hamsters or mice. This parasite was isolated from a gerbil in Kenya and was identified phenotypically as L. major by isoenzyme and fatty acid analysis. In this study they have confirmed at the genotype level that LRC-L119 is L. major by analyzing and comparing the organization of cloned DNA sequences in the genome of different strains of L. major. Here they show that LRC-L119 promastigotes are phagocytosed rapidly by macrophages in vitro, but in contrast to virulent strains of L. major, they are then killed over a period of 18 hr. In addition, they show that transfer of purified L-LPS from a virulent clone of L. major (V121) into LRC-L119 promastigotes confers on them the ability to survive in macrophages in vitro.

  10. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.

    PubMed

    Di-Blasi, Tatiana; Lobo, Amanda R; Nascimento, Luanda M; Córdova-Rojas, Jose L; Pestana, Karen; Marín-Villa, Marcel; Tempone, Antonio J; Telleria, Erich L; Ramalho-Ortigão, Marcelo; McMahon-Pratt, Diane; Traub-Csekö, Yara M

    2015-03-01

    Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.

  11. Attenuation of Leishmania infantum chagasi Metacyclic Promastigotes by Sterol Depletion

    PubMed Central

    Gaur Dixit, Upasna; Barker, Jason H.; Teesch, Lynn M.; Love-Homan, Laurie; Donelson, John E.; Wilson, Mary E.

    2013-01-01

    The infectious metacyclic promastigotes of Leishmania protozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. Several Leishmania virulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). Metacyclic Leishmania infantum chagasi promastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viability in vitro. MβCD-treated promastigotes were more susceptible to complement-mediated lysis than untreated controls and reduced the parasite load 3-fold when inoculated into BALB/c mice. Paradoxically, MβCD-treated promastigotes caused a higher initial in vitro infection rate in human or murine macrophages than untreated controls, although their intracellular multiplication was hindered upon infection establishment. There was a corresponding larger amount of covalently bound C3b than iC3b on the parasite surfaces of MβCD-treated promastigotes exposed to healthy human serum in vitro, as well as loss of MSP, a protease that enhances C3b cleavage to iC3b. Mass spectrometry showed that MβCD promotes the release of proteins into the extracellular medium, including both MSP and MSP-like protein (MLP), from virulent metacyclic promastigotes. These data support the hypothesis that plasma membrane sterols are important for the virulence of Leishmania protozoa at least in part through retention of membrane virulence proteins. PMID:23630964

  12. Attenuation of Leishmania infantum chagasi metacyclic promastigotes by sterol depletion.

    PubMed

    Yao, Chaoqun; Gaur Dixit, Upasna; Barker, Jason H; Teesch, Lynn M; Love-Homan, Laurie; Donelson, John E; Wilson, Mary E

    2013-07-01

    The infectious metacyclic promastigotes of Leishmania protozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. Several Leishmania virulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). Metacyclic Leishmania infantum chagasi promastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viability in vitro. MβCD-treated promastigotes were more susceptible to complement-mediated lysis than untreated controls and reduced the parasite load 3-fold when inoculated into BALB/c mice. Paradoxically, MβCD-treated promastigotes caused a higher initial in vitro infection rate in human or murine macrophages than untreated controls, although their intracellular multiplication was hindered upon infection establishment. There was a corresponding larger amount of covalently bound C3b than iC3b on the parasite surfaces of MβCD-treated promastigotes exposed to healthy human serum in vitro, as well as loss of MSP, a protease that enhances C3b cleavage to iC3b. Mass spectrometry showed that MβCD promotes the release of proteins into the extracellular medium, including both MSP and MSP-like protein (MLP), from virulent metacyclic promastigotes. These data support the hypothesis that plasma membrane sterols are important for the virulence of Leishmania protozoa at least in part through retention of membrane virulence proteins.

  13. First Isolation of Leishmania from Northern Thailand: Case Report, Identification as Leishmania martiniquensis and Phylogenetic Position within the Leishmania enriettii Complex

    PubMed Central

    Pothirat, Thatawan; Tantiworawit, Adisak; Chaiwarith, Romanee; Jariyapan, Narissara; Wannasan, Anchalee; Siriyasatien, Padet; Supparatpinyo, Khuanchai; Bates, Michelle D.; Kwakye-Nuako, Godwin; Bates, Paul A.

    2014-01-01

    Since 1996, there have been several case reports of autochthonous visceral leishmaniasis in Thailand. Here we report a case in a 52-year-old Thai male from northern Thailand, who presented with subacute fever, huge splenomegaly and pancytopenia. Bone marrow aspiration revealed numerous amastigotes within macrophages. Isolation of Leishmania LSCM1 into culture and DNA sequence analysis (ribosomal RNA ITS-1 and large subunit of RNA polymerase II) revealed the parasites to be members of the Leishmania enriettii complex, and apparently identical to L. martiniquensis previously reported from the Caribbean island of Martinique. This is the first report of visceral leishmaniasis caused by L. martiniquensis from the region. Moreover, the majority of parasites previously identified as “L. siamensis” also appear to be L. martiniquensis. PMID:25474647

  14. Leishmania and human immunodeficiency virus coinfection: the first 10 years.

    PubMed Central

    Alvar, J; Cañavate, C; Gutiérrez-Solar, B; Jiménez, M; Laguna, F; López-Vélez, R; Molina, R; Moreno, J

    1997-01-01

    Over 850 Leishmania-human immunodeficiency virus (HIV) coinfection cases have been recorded, the majority in Europe, where 7 to 17% of HIV-positive individuals with fever have amastigotes, suggesting that Leishmania-infected individuals without symptoms will express symptoms of leishmaniasis if they become immunosuppressed. However, there are indirect reasons and statistical data demonstrating that intravenous drug addiction plays a specific role in Leishmania infantum transmission: an anthroponotic cycle complementary to the zoonotic one has been suggested. Due to anergy in patients with coinfection, L. infantum dermotropic zymodemes are isolated from patient viscera and a higher L. infantum phenotypic variability is seen. Moreover, insect trypanosomatids that are currently considered nonpathogenic have been isolated from coinfected patients. HIV infection and Leishmania infection each induce important analogous immunological changes whose effects are multiplied if they occur concomitantly, such as a Th1-to-Th2 response switch; however, the consequences of the viral infection predominate. In fact, a large proportion of coinfected patients have no detectable anti-Leishmania antibodies. The microorganisms share target cells, and it has been demonstrated in vitro how L. infantum induces the expression of latent HIV-1. Bone marrow culture is the most useful diagnostic technique, but it is invasive. Blood smears and culture are good alternatives. PCR, xenodiagnosis, and circulating-antigen detection are available only in specialized laboratories. The relationship with low levels of CD4+ cells conditions the clinical presentation and evolution of disease. Most patients have visceral leishmaniasis, but asymptomatic, cutaneous, mucocutaneous, diffuse cutaneous, and post-kala-azar dermal leishmaniasis can be produced by L. infantum. The digestive and respiratory tracts are frequently parasitized. The course of coinfection is marked by a high relapse rate. There is a lack

  15. A general classification of New World Leishmania using numerical zymotaxonomy.

    PubMed

    Cupolillo, E; Grimaldi, G; Momen, H

    1994-03-01

    More than 250 strains of Leishmania isolated from different localities and hosts in the New World were analyzed by enzyme electrophoresis, and their electromorphic profiles were compared with 19 reference strains representing most of the described species of this parasite. The 18 enzymic loci analyzed were very polymorphic, and the strains were classified into 44 zymodemes, each grouping strains with the same enzyme profiles. Each zymodeme was considered as an elementary taxon and the phenetic and phylogenetic relationships were determined by agglomerative hierarchical, ordination, and cladistic techniques. The different classification methods produced very similar results. The 44 zymodemes could be clustered into two groups, corresponding to the subgenera Leishmania and Viannia, by the numerical methods. The subgenus Viannia was shown to be monophyletic and could be further divided into species complexes representing L. braziliensis, L. naiffi, and L. guyanensis/L. panamensis/L. shawi, as well as some isolated taxa including L. lainsoni. The subgenus Leishmania, on the other hand, was polyphyletic, with New World isolates related to L. major clustered separately from the L. mexicana species complex. Most of the other zymodemes in this group represented independent taxa. The results confirm Viannia as a valid taxon but suggest that the status of the subgenus Leishmania should be further investigated. Leishmania braziliensis and L. naiffi were shown to be the most polymorphic species, while L. guyanensis, in spite of being the most common species found in this study, was remarkably homogeneous. The only variants were found south of the Amazon river. North of this river, the species was monomorphic.

  16. Investigations of Cross Immunity between Leishmania tropica (Jericho) and Leishmania braziliensis in Experimentally Infected Mystromys albacaudatus.

    DTIC Science & Technology

    1979-09-01

    AD-AL15 528 VIR61NIA UNIV CHARLOTTESVILLE DEPT OF DERMATOLOGY F/G 6/5 INVESTIGATIONS OF CROSS IMMUNITY BETWEEN LEISHMANIA TROPICA (JE--ETC(U) SEP 79...Investigations of Cross Immunity Between First Annual -- Leishmania tropica (Jericho) and Leishmania Feburary 1979-September 1979 braziliensis in... Leishmania tropica (Jericho) and LeisLmania braziliensis panamensis in Experimentally Infected Mystromys albacaudatus" First Annual Report Bruce E

  17. Leishmania in synanthropic rodents (Rattus rattus): new evidence for the urbanization of Leishmania (Leishmania) amazonensis.

    PubMed

    Caldart, Eloiza Teles; Freire, Roberta Lemos; Ferreira, Fernanda Pinto; Ruffolo, Bruno Bergamo; Sbeghen, Mônica Raquel; Mareze, Marcelle; Garcia, João Luis; Mitsuka-Breganó, Regina; Navarro, Italmar Teodorico

    2017-02-06

    This study aimed to detect parasites from Leishmania genus, to determine the prevalence of anti-Leishmania spp. antibodies, to identify circulating species of the parasite, and to determine epidemiological variables associated with infection in rats caught in urban area of Londrina, Paraná, Brazil. Animal capture was carried out from May to December 2006, serological and molecular methods were performed. DNA was extracted from total blood, and nested-PCR, targeting SSu rRNA from Leishmania genus, was performed in triplicate. The positive samples were sequenced twice by Sanger method to species determination. In total, 181 rodents were captured, all were identified as Rattus rattus and none showed clinical alterations. Forty-one of the 176 (23.3%) animals were positive for Leishmania by ELISA and 6/181 (3.3%) were positive by IFAT. Nine of 127 tested animals (7.1%) were positive by PCR; seven were identified as L. (L.) amazonensis, one as L. (L.) infantum. Four rats were positive using more than one test. This was the first description of synanthropic rodents naturally infected by L. (L.) amazonensis (in the world) and by L. (L.) infantum (in South Brazil). Regarding L. (L.) amazonensis, this finding provides new evidence of the urbanization of this etiological agent.

  18. Natural infection of Algerian hedgehog, Atelerix algirus (Lereboullet 1842) with Leishmania parasites in Tunisia.

    PubMed

    Chemkhi, Jomaa; Souguir, Hejer; Ali, Insaf Bel Hadj; Driss, Mehdi; Guizani, Ikram; Guerbouj, Souheila

    2015-10-01

    In Tunisia, Leishmania parasites are responsible of visceral leishmaniasis, caused by Leishmania infantum species while three cutaneous disease forms are documented: chronic cutaneous leishmaniasis due to Leishmania killicki, sporadic cutaneous form (SCL) caused by L. infantum and the predominant zoonotic cutaneous leishmanaisis (ZCL) due to Leishmania major. ZCL reservoirs are rodents of the Psammomys and Meriones genera, while for SCL the dog is supposed to be a reservoir. Ctenodactylus gundii is involved in the transmission of L. killicki. However, other mammals could constitute potential reservoir hosts in Tunisia and other North African countries. In order to explore the role of hedgehogs as potential reservoirs of leishmaniasis, specimens (N=6) were captured during July-November period in 2011-2013 in an SCL endemic area in El Kef region, North-Western Tunisia. Using morphological characteristics, all specimens were described and measured. Biopsies from liver, heart, kidney and spleen of each animal were used to extract genomic DNA, which was further used in PCR assays to assess the presence of Leishmania parasites. Different PCRs targeting kinetoplast minicircles, ITS1, mini-exon genes and a repetitive Leishmania- specific sequence, were applied. To further identify Leishmania species involved, RFLP analysis of amplified fragments was performed with appropriate restriction enzymes. Using morphological characters, animals were identified as North African hedgehogs, also called Algerian hedgehogs, that belong to the Erinaceidae family, genus Atelerix Pomel 1848, and species algirus (Lereboullet, 1842). PCR results showed in total that all specimens were Leishmania infected, with different organs incriminated, mainly liver and spleen. Results were confirmed by direct sequencing of amplified fragments. Species identification showed that all specimens were infected with L. major, three of which were additionally co-infected with L. infantum. The present study

  19. Molecular detection of Leishmania infection in sand flies in border line of Iran-Turkmenistan: restricted and permissive vectors.

    PubMed

    Bakhshi, H; Oshaghi, M A; Abai, M R; Rassi, Y; Akhavan, A A; Sheikh, Z; Mohtarami, F; Saidi, Z; Mirzajani, H; Anjomruz, M

    2013-10-01

    A molecular study was carried out to incriminate sand fly vectors of cutaneous leishmaniasis (CL) in rural areas of Sarakhs district, Khorassane-Razavi Province, northeastern Iran, in 2011. Sand flies of Sergentomyia with three species and Phlebotomus with six species respectively comprised 73.3% and 26.7% of the specimens. Phlebotomus papatasi was the most common Phlebotomine species in outdoor and indoor resting places. Leishmania infection was found at least in 17 (22%) specimens including Ph. papatasi (n=9 pool samples), Phlebotomus caucasicus (n=6), Phlebotomus alexandri (n=1), and Sergentomyia sintoni (n=1). The parasites were found comprised Leishmania major (n=5), Leishmania turanica (n=10), and Leishmania gerbilli (n=4). Infection of Ph. papatasi with both L. major and L. turanica supporting the new suggestion indicating that it is not restricted only with L. major. Circulation of L. major by Ph. alexandri, and both L. gerbilli and L. turanica by Ph. caucasicus, in addition to previous data indicating the ability of Ph. alexandri to circulate Leishmania infantum and Leishmania donovani, and Ph. caucasicus to circulate L. major, suggests that these two species can be permissive vectors. The results suggest that Ph. papatasi and Ph. alexandri are the primary and secondary vectors of CL where circulating L. major between human and reservoirs, whereas Ph. caucasicus is circulating L. turanica and L. gerbilli between the rodents in the region.

  20. Ultrastructural and cytochemical identification of megasome in Leishmania (Leishmania) chagasi.

    PubMed

    Alberio, Sanny O; Dias, Suzana S; Faria, Flávio P; Mortara, Renato A; Barbiéri, Clara L; Freymüller Haapalainen, Edna

    2004-02-01

    The present work showed the presence of a megasome in Leishmania (Leishmania) chagasi amastigotes. Transmission electron microscopy analysis of ultrathin serial sections and three-dimensional reconstruction allowed visualization of large structures in amastigote forms of L. (L.) chagasi and a multivesicular tubule-lysosome structure in metacyclic promastigotes. Morphometric data showed that the relative volume occupied by the megasome and the multivesicular tubule (MVT)-lysosome structures was about 5% and 3.2%, respectively, in amastigotes and promastigotes of L. (L.) chagasi. Further characterization of the megasome in L. (L.) chagasi amastigotes was carried out by immunolabeling of cysteine proteinase, whereas the lysosomal content of amastigotes and promastigotes was confirmed by arylsulfatase cytochemistry.

  1. Detection of Leishmania RNA Virus in Leishmania Parasites

    PubMed Central

    Desponds, Chantal; Kuhlmann, F. Matthew; Robinson, John; Hartley, Mary-Anne; Prevel, Florence; Castiglioni, Patrik; Pratlong, Francine; Bastien, Patrick; Müller, Norbert; Parmentier, Laurent; Saravia, Nancy Gore; Beverley, Stephen M.; Fasel, Nicolas

    2013-01-01

    Background Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. Methodology/Principal Findings This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. Conclusions/Significance We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV

  2. Molecular and Cellular Characterization of an AT-Hook Protein from Leishmania

    PubMed Central

    Kelly, Ben L.; Singh, Gyanendra; Aiyar, Ashok

    2011-01-01

    AT-rich DNA, and the proteins that bind it (AT-hook proteins), modulate chromosome structure and function in most eukaryotes. Unlike other trypanosomatids, the genome of Leishmania species is unusually GC-rich, and the regulation of Leishmania chromosome structure, replication, partitioning is not fully understood. Because AT-hook proteins modulate these functions in other eukaryotes, we examined whether AT-hook proteins are encoded in the Leishmania genome, to test their potential functions. Several Leishmania ORFs predicted to be AT-hook proteins were identified using in silico approaches based on sequences shared between eukaryotic AT-hook proteins. We have used biochemical, molecular and cellular techniques to characterize the L. amazonensis ortholog of the L. major protein LmjF06.0720, a potential AT-hook protein that is highly conserved in Leishmania species. Using a novel fusion between the AT-hook domain encoded by LmjF06.0720 and a herpesviral protein, we have demonstrated that LmjF06.0720 functions as an AT-hook protein in mammalian cells. Further, as observed for mammalian and viral AT-hook proteins, the AT-hook domains of LmjF06.0720 bind specific regions of condensed mammalian metaphase chromosomes, and support the licensed replication of DNA in mammalian cells. LmjF06.0720 is nuclear in Leishmania, and this localization is disrupted upon exposure to drugs that displace AT-hook proteins from AT-rich DNA. Coincidentally, these drugs dramatically alter the cellular physiology of Leishmania promastigotes. Finally, we have devised a novel peptido-mimetic agent derived from the sequence of LmjF06.0720 that blocks the proliferation of Leishmania promastigotes, and lowers amastigote parasitic burden in infected macrophages. Our results indicate that AT-hook proteins are critical for the normal biology of Leishmania. In addition, we have described a simple technique to examine the function of Leishmania chromatin-binding proteins in a eukaryotic context

  3. Serine protease activities in Leishmania (Leishmania) chagasi promastigotes.

    PubMed

    da Silva-López, Raquel Elisa; dos Santos, Tatiana Resende; Morgado-Díaz, José Andrés; Tanaka, Marcelo Neves; de Simone, Salvatore Giovanni

    2010-10-01

    The present work reports the isolation, biochemical characterization, and subcellular location of serine proteases from aqueous, detergent soluble, and culture supernatant of Leishmania chagasi promastigote extracts, respectively, LCSII, LCSI, and LCSIII. The active enzyme molecular masses of LCSII were about 105, 66, and 60 kDa; of LCSI, 60 and 58 kDa; and of LCSIII, approximately 76 and 68 kDa. Optimal pH for the enzymes was 7.0 for LCSI and LCSIII and 8.5 for LCSII, and the optimal temperature for all enzymes was 37°C, using α-N-ρ-tosyl-L: -arginine methyl ester as substrate. Assay of thermal stability indicated that LCSIII is the more stable enzyme. Hemoglobin, bovine serum albumin, and ovalbumin were hydrolyzed by LCSII and LCSI but not by LCSIII. Inhibition studies suggested that enzymes belong to the serine protease class modulated by divalent cations. Rabbit antiserum against 56-kDa serine protease of Leishmania amazonensis identified proteins in all extracts of L. chagasi. Furthermore, immunocytochemistry demonstrated that serine proteases are located in flagellar pocket region and cytoplasmic vesicles of L. chagasi promastigotes. These findings indicate that L. chagasi serine proteases differ from L. amazonensis proteases and all known flagellate proteases, but display some similarities with serine proteases from other Leishmania species, suggesting a conservation of this enzymatic activity in the genus.

  4. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells.

    PubMed

    Mohamad Fairus, A K; Choudhary, B; Hosahalli, S; Kavitha, N; Shatrah, O

    2017-04-01

    Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion

  5. Folate metabolic pathways in Leishmania.

    PubMed

    Vickers, Tim J; Beverley, Stephen M

    2011-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.

  6. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Özdemir, H Gökhan; Şahar, Esra Atalay; Karakavuk, Muhammet; Pektaş, Bayram; Karakuş, Mehmet; Töz, Seray; Caner, Ayşe; Döşkaya, Aysu Değirmenci; İz, Sultan Gülce; Özbel, Yusuf; Gürüz, Yüksel

    2016-08-01

    Leishmaniasis caused by more than 20 species of genus Leishmania is transmitted by the bite of infected phlebotomine sand flies. The studies on Leishmania infection in cats is very few in Turkey and therefore we aimed to screen stray cats living in city of İzmir located in western Turkey using nested PCR targeting kinetoplast DNA and serological techniques (ELISA and IFA). Leishmania DNA positive samples were also studied by ITS1 real time PCR. Whole blood and serum samples were obtained from stray cats (n: 1101) living in different counties of İzmir. In serological assays, a serum sample was considered positive in 1:40 dilution in IFA and for ELISA a serum sample was accepted positive when the absorbance value (AV) exceeded the mean AV + Standard Deviation (SD) of the negative control serum samples. According to the results, the seropositivity rates were 10.8% (119/1101) and 15.2% (167/1101) by in house ELISA and IFA, respectively. Among serology coherent samples, the seropositivity rate was 11.1% (116/1047) as detected by both assays after discordant samples (n: 54) were discarded. Of the 1101 stray cats, six (0.54%) were positive by nested PCR while only one of these six samples was positive by ITS1 real time PCR. During PCR, three controls designated as Leishmania infantum, Leishmania tropica, and Leishmania major were used for species identification. According to nested PCR results, L. tropica was identified in two cats (no.76 and 95). In another cat (no. 269), there were two bands in which one of them was well-matched with L. infantum and the other band had ∼850 bp size which does not match with any controls. Remaining three cats (no. 86, 514, and 622) also had the ∼850 bp atypical band size. ITS1 real time PCR detected L. tropica in only one cat (no. 622) which showed an atypical band size in nested PCR. These results indicated that three cats with only one atypical band (no. 86, 514, and 622) and the cat with mixed infection (no. 269) were

  7. Molecular characterization of Leishmania parasites isolated from sandflies species of a zoonotic cutaneous leishmaniasis in Musiyan south west Iran.

    PubMed

    Kavarizadeh, Farzaneh; Khademvatan, Shahram; Vazirianzadeh, Babak; Feizhaddad, Mohammad Hossein; Zarean, Mehdi

    2017-03-01

    Cutaneous leishmaniasis (CL) is vector borne parasitic disease, considered as public health problem especially in border of Iran and Iraq, Dehloran County (Musian district). The aim of this study was molecular identification of Leishmania parasites in sandfly as vectors of Leishmaniasis. Totally 280 female sandflies were trapped by sticky traps from 7 rural areas of Musiyan in September-November 2012. All sandflies were identified using morphological characters of the head and abdominal terminalia. DNA was extracted from female sandflies and Leishmania was identified using PCR and sequencing. All 280 trapped sandflies were identified as Phelobotumus Papatasi and Leishmania infections were detected in 3.2 % out of 280 female sandflies. All leishmania were identified as L. major and submitted in Gene bank as: LC014642.1, LC014641.1, LC014640.1 and LC014639.1. Frequency of Phlebotomus Papatasi and infection with L. major in studied regions showed that this vector is dominant in these areas.

  8. Development of a human dihydroorotate dehydrogenase (hDHODH) pharma-similarity index approach with scaffold-hopping strategy for the design of novel potential inhibitors.

    PubMed

    Shih, Kuei-Chung; Lee, Chi-Ching; Tsai, Chi-Neu; Lin, Yu-Shan; Tang, Chuan-Yi

    2014-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is a class-2 dihydroorotate dehydrogenase. Because it is extensively used by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index approach (PhSIA) using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative molecular similarity index analysis (CoMSIA) contour information techniques. The approach, for the discovery and design of novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the performance of hDHODH PhSIA. Fischer's cross-validation test provided a 98% confidence level and the goodness of hit (GH) test score was 0.61. The q(2), r(2), and predictive r(2) values were 0.55, 0.97, and 0.92, respectively, for a partial least squares validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist medicinal chemists in their efforts to identify novel inhibitors.

  9. Geographical Distribution of Leishmania Species of Human Cutaneous Leishmaniasis in Fars Province, Southern Iran

    PubMed Central

    Akhoundi, M; Hajjaran, H; Baghaei, A; Mohebali, M

    2013-01-01

    Background The goal of this study was to know the identity of Leishmania species responsible of cutaneous leishmaniasis (CL) in Fars Province, southern Iran. Methods Five counties of Shiraz, Firouz Abad, Ghir-Karzin, Farashband and Larestan were prospected. Forty-four patients exhibiting cutaneous lesions were selected. Samples collected on skin lesions were examined both microscopically (after Giemsa staining) and molecularly (after PCR-RFLP). Results On the 44 examined patients, 39 exhibit Leishmania sp. by microscopical examination, all confirmed by PCR. For five patients with negative microscopical examination, PCR was positive for three of them. Among these 42 positive samples, 3 (7%) were infected by L. tropica and 39 (93%) by L. major. Conclusions Leishmania major is the most prevalent species in prospected area and L. tropica occurs in Shiraz and Ghir-Karzin counties. PMID:23682265

  10. A comparative protein function analysis databaseof different Leishmania strains

    PubMed Central

    Dikhit, Manas Ranjan; Nathasharma, Yangya Prasad; Patel, Lelin; Rana, Sindhu Prava; Sahoo, Ganesh Chandra; Das, Pradeep

    2011-01-01

    A complete understanding of different protein functional families and template information opens new avenues for novel drug development. Protein identification and analysis software performs a central role in the investigation of proteins and leads to the development of refined database for description of proteins of different Leishmania strains. There are certain databases for different strains that lack template information and functional family annotation. Rajendra Memorial Research Institute of Medical Sciences (RMRIMS) has developed a web-based unique database to provide information about functional families of different proteins and its template information in different Leishmania species. Based on the template information users can model the tertiary structure of protein. The database facilitates significant relationship between template information and possible protein functional families assigned to different proteins by SVMProt. This database is designed to provide comprehensive descriptions of certain important proteins found in four different species of Leishmania i.e. L. donovani, L. infantum, L. major and L. braziliensis. A specific characterization information table provides information related to species and specific functional families. This database aims to be a resource for scientists working on proteomics. The database is freely available at http://biomedinformri.org/calp/. PMID:21464840

  11. Chemotherapy and Biochemistry of Leishmania

    DTIC Science & Technology

    1985-12-01

    D,’IBR18 flC FiLE (,QP,Y U. CHEMOTHERAPY AND BIOCHEMISTRY OF LEISHMANIA AANNUAL REPORT LINDA L. NOLAN, Ph.D. DECEMBE 198598 Supported by U. S. ARMY...NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Four 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Chemotherapy and Biochemistry...enzymes may be ex- ploited for chemotherapy . MATERIALS AND METHODS [3H]TP (45 Ci mmole -1 ) was purchased from Amersham. Heparin-Sepharose CL- 6B

  12. Natural Infection of North African Gundi (Ctenodactylus gundi) by Leishmania tropica in the Focus of Cutaneous Leishmaniasis, Southeast Tunisia

    PubMed Central

    Bousslimi, Nadia; Ben-Ayed, Soumaya; Ben-Abda, Imène; Aoun, Karim; Bouratbine, Aïda

    2012-01-01

    North African gundis (Ctenodactylus gundi) were trapped in the Leishmania (L.) tropica focus of cutaneous leishmaniasis, situated in southeast Tunisia and evaluated for Leishmania infection by real-time kinetoplast DNA polymerase chain reaction (PCR). Species identification was performed by internal transcribed spacer one (ITS1)-PCR-restriction fragment length polymorphism (RFLP) and high-resolution melting (HRM) analysis of the 7SL RNA gene. Real-time PCR on blood was positive in 6 of 13 (46.2%) tested gundis. Leishmania tropica was identified in five infected gundis and Leishmania major in one specimen. Alignments of the ITS-1 DNA sequences and 7S-HRM curves analysis indicated that similar genotypes were present in humans, a sandfly, and gundis from the same region suggesting a potential role of this rodent as reservoir host of L. tropica in southeast Tunisia. PMID:22665601

  13. Natural infection of North African gundi (Ctenodactylus gundi) by Leishmania tropica in the focus of cutaneous leishmaniasis, Southeast Tunisia.

    PubMed

    Bousslimi, Nadia; Ben-Ayed, Soumaya; Ben-Abda, Imène; Aoun, Karim; Bouratbine, Aïda

    2012-06-01

    North African gundis (Ctenodactylus gundi) were trapped in the Leishmania (L.) tropica focus of cutaneous leishmaniasis, situated in southeast Tunisia and evaluated for Leishmania infection by real-time kinetoplast DNA polymerase chain reaction (PCR). Species identification was performed by internal transcribed spacer one (ITS1)-PCR-restriction fragment length polymorphism (RFLP) and high-resolution melting (HRM) analysis of the 7SL RNA gene. Real-time PCR on blood was positive in 6 of 13 (46.2%) tested gundis. Leishmania tropica was identified in five infected gundis and Leishmania major in one specimen. Alignments of the ITS-1 DNA sequences and 7S-HRM curves analysis indicated that similar genotypes were present in humans, a sandfly, and gundis from the same region suggesting a potential role of this rodent as reservoir host of L. tropica in southeast Tunisia.

  14. Phospholipid and sphingolipid metabolism in Leishmania

    PubMed Central

    Zhang, Kai; Beverley, Stephen M.

    2009-01-01

    In many eukaryotes, phospholipids (PLs) and sphingolipids (SLs) are abundant membrane components and reservoirs for important signaling molecules. In Leishmania, the composition, metabolism, and function of PLs and SLs differ significantly from those in mammalian cells. Although only a handful of enzymes have been experimentally characterized, available data suggest many steps of PL/SL metabolism are critical for Leishmania viability and/or virulence, and could be a source for new drug targets. Further studies of genes involved in the synthesis (de novo and salvage) and degradation of PLs and SLs will reveal their diverse effects on Leishmania pathogenesis. PMID:20026359

  15. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies.

    PubMed

    Hlavacova, J; Votypka, J; Volf, P

    2013-09-01

    The spread of leishmaniasis to areas where it was previously considered nonendemic has been recently found in the New and Old Worlds, and climate changes are suspected as a crucial factor responsible for this spread. Ambient temperature is known to significantly affect the metabolism of sand flies and their developmental times, but little is known about the effect of temperature on the Leishmania life cycle in vectors. This study assesses the effect of temperature on the development of two closely related New World Viannia species, Leishmania braziliensis and Leishmania peruviana, in the permissive vector Lutzomyia longipalpis, and on the development of New and Old World Leishmania infantum in its natural vectors Lu. longipalpis and Phlebotomus perniciosus, respectively. The mountain species L. peruviana developed well in sand fly females kept at 20 degrees C, whereas at 26 degrees C, most infections were lost during the defecation ofbloodmeal remains; this suggests an adaptation to the slower metabolism of sand flies living at lower ambient temperature. On the contrary, L. infantum and L. braziliensis developed well at both temperatures tested; heavy late-stage infections were observed in a majority of sand fly females maintained at 20 degrees C as well 26 degrees C. Frequent fully developed infections of L. infantum and L. braziliensis at 20 degrees C suggest a certain risk of the spread of these two Leishmania species to higher latitudes and altitudes.

  16. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection

    PubMed Central

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-01-01

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival. PMID:27548150

  17. Leishmania infection: painful or painless?

    PubMed

    Borghi, Sergio M; Fattori, Victor; Conchon-Costa, Ivete; Pinge-Filho, Phileno; Pavanelli, Wander R; Verri, Waldiceu A

    2017-02-01

    The complex life cycle and immunopathological features underpinning the interaction of Leishmania parasites and their mammalian hosts poses frequent poorly explored and inconclusively resolved questions. The altered nociceptive signals over the course of leishmaniasis remain an intriguing issue for nociceptive and parasitology researchers. Experimental investigations have utilized behavioral, morphological, and neuro-immune approaches in the study of experimental cutaneous leishmaniasis (CL). The data generated indicates new venues for the study of the pathological characteristics of nociceptive processing in this parasitic disease. Leishmania-induced pain may be easily observed in mice and rats. However, nociceptive data is more complex in human investigations, including the occurrence of painless lesions in mucocutaneous and cutaneous leishmaniasis. Data from recent decades indicate that humans can also be affected by pain-related symptoms, often distinct from the region of body infection. The molecular and cellular mechanisms underlying such variable nociceptive states in humans during the course of leishmaniasis are an active area of research. The present article reviews nociception in leishmaniasis, including in experimental models of CL and clinical reports.

  18. Serological survey of dogs from Egypt for antibodies to Leishmania spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leishmaniasis is an insect-transmitted parasitic disease with worldwide distribution. Leishmania spp. infections cause a broad spectrum of clinical signs ranging from skin lesions to fatal visceral disease. Dogs are a major reservoir host for visceral leishmaniasis in humans. Leishmaniasis is endemi...

  19. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    PubMed

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (Tm) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the Tm values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate.

  20. Development and validation of four Leishmania species constitutively expressing GFP protein. A model for drug discovery and disease pathogenesis studies.

    PubMed

    Patel, Asha Parbhu; Deacon, Andrew; Getti, Giulia

    2014-04-01

    Green fluorescent protein (GFP)-parasite transfectants have been widely used as a tool for studying disease pathogenesis in several protozoan models and their application in drug screening assays has increased rapidly. In the past decade, the expression of GFP has been established in several Leishmania species, mostly for in vitro studies. The current work reports generation of four transgenic parasites constitutively expressing GFP (Leishmania mexicana, Leishmania aethiopica, Leishmania tropica and Leishmania major) and their validation as a representative model of infection. This is the first report where stable expression of GFP has been achieved in L. aethiopica and L. tropica. Integration of GFP was accomplished through homologous recombination of the expression construct, pRib1.2αNEOαGFP downstream of the 18S rRNA promoter in all species. A homogeneous and high level expression of GFP was detected in both the promastigote and the intracellular amastigote stages. All transgenic species showed the same growth pattern, ability to infect mammalian host cells and sensitivity to reference drugs as their wild type counterparts. All four transgenic Leishmania are confirmed as models for in vitro and possibly in vivo infections and represent an ideal tool for medium throughput testing of compound libraries.

  1. Molecular organization of Leishmania RNA virus 1.

    PubMed Central

    Stuart, K D; Weeks, R; Guilbride, L; Myler, P J

    1992-01-01

    The complete 5284-nucleotide sequence of the double-stranded RNA genome of Leishmania RNA virus 1 (LRV1) was determined and contains three open reading frames (ORFs) on the plus (+) (mRNA) strand. The predicted amino acid sequence of ORF3 has motifs characteristic of viral RNA-dependent RNA polymerases. ORF2, which may encode the major viral coat protein, overlaps ORF3 by 71 nucleotides, suggesting a +1 translational frameshift to produce a gag-pol type of fusion protein. Two alternative models for the frameshift are presented. The 5' splice leader sequence of kinetoplastid mRNAs is not in LRV1 RNA. This suggests that the 450-base region at the 5' end of the LRV1 (+)-strand, which contains ORF1 and is highly conserved among viral strains, does not encode protein but has a role in initiation of translation and/or RNA stability. The similarity of LRV1 genomic organization, replication cycle, and RNA-dependent RNA polymerase sequence to those of the yeast virus ScV L-A suggests a common ancestral origin. The possibility that LRV1 affects pathogenesis in leishmaniasis is intriguing. Images PMID:1382295

  2. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut.

    PubMed

    Atayde, Vanessa Diniz; Aslan, Hamide; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-11-03

    Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect's bite, possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in-vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite's infectious life cycle, and we propose to add these vesicles to the repertoire of virulence factors associated with vector-transmitted infections.

  3. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut

    PubMed Central

    Atayde, Vanessa Diniz; Suau, Hamide Aslan; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-01-01

    SUMMARY Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect’s bite possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite’s infectious life cycle and propose to add these vesicles to the repertoire of virulence factors associated to vector-transmitted infections. PMID:26565909

  4. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.

    PubMed

    Azeredo, Luís Felipe S P; Coutinho, Julia P; Jabor, Valquiria A P; Feliciano, Patricia R; Nonato, Maria Cristina; Kaiser, Carlos R; Menezes, Carla Maria S; Hammes, Amanda S O; Caffarena, Ernesto Raul; Hoelz, Lucas V B; de Souza, Nicolli B; Pereira, Glaécia A N; Cerávolo, Isabela P; Krettli, Antoniana U; Boechat, Nubia

    2017-01-27

    Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.

  5. Adenine Aminohydrolase from Leishmania donovani

    PubMed Central

    Boitz, Jan M.; Strasser, Rona; Hartman, Charles U.; Jardim, Armando; Ullman, Buddy

    2012-01-01

    Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent Km of 15.4 μm, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2′-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2′-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani. PMID:22238346

  6. Vaccine Development Against Leishmania donovani

    PubMed Central

    Das, Amrita; Ali, Nahid

    2012-01-01

    Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for

  7. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    DTIC Science & Technology

    2010-07-01

    4 Introduction: Leishmania are parasitic protozoa that cause devastating diseases throughout much of the tropical and subtropical...inhibitors was dem inhibitor of PfHT. . Introduction Parasitic protozoa such as Leishmania species, Trypanosoma rucei, and Plasmodium falciparum, the

  8. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management

    PubMed Central

    Sardar, Abul Hasan; Jardim, Armando; Ghosh, Ayan Kumar; Mandal, Abhishek; Das, Sushmita; Saini, Savita; Abhishek, Kumar; Singh, Ruby; Verma, Sudha; Kumar, Ajay; Das, Pradeep

    2016-01-01

    Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments

  9. Testing of Experimental Compounds for Efficacy against Leishmania.

    DTIC Science & Technology

    1987-02-01

    KEY WORDS (Continue on reveree side if nocoesary and Identlity by block number) Leishmania donovani WR06026 chemotherapy metabolites golden hamster...primary visceral test system for suppressive activity against Leishmania donovani in golden hamsters. Twenty-nine of these compounds were noted to have...3 Introduction .. .. .. .. .. .. .. .. .. .. .. .. . .. 5 Materials and Methods I. Studies Involving Leishmania donovani

  10. Molecular Diagnosis and Identification of Leishmania Species in Jordan from Saved Dry Samples

    PubMed Central

    Hijjawi, Nawal; Kanani, Kalil A.; Rasheed, Malak; Atoum, Manar; Abdel-Dayem, Mona; Irhimeh, Mohammad R.

    2016-01-01

    Diagnosis of the endemic cutaneous leishmaniasis (CL) in Jordan relies on patient clinical presentation and microscopic identification. Studies toward improved identification of the causative Leishmania species, especially in regions where multiple species exist, and the introduction of these techniques into medical diagnosis is paramount. This study looked at the current epidemiology of CL in Jordan. Clinically diagnosed 41 patients with CL were tested for the presence of Leishmania parasite using both Giemsa staining from skin scraps on glass slides and ITS1-PCR from samples blotted onto storage cards (NucleoCards®). Microscopically, 28 out of the 41 (68.3%) collected samples were positive for amastigotes, whereas the molecular ITS1-PCR amplification successfully identified 30 of the 41 samples (73.2%). Furthermore, PCR-RFLP analysis allowed species identification which is impossible microscopically. Of the 30 PCR positive samples, 28 were Leishmania major positive and the other two samples were Leishmania tropica. This indicates that L. major is the most prevalent species in Jordan and the two L. tropica cases originated from Syria indicating possible future L. tropica outbreaks. Diagnosis of CL based on clinical presentation only may falsely increase its prevalence. Although PCR is more sensitive, it is still not available in our medical laboratories in Jordan. PMID:27403435

  11. Lead-optimization of aryl and aralkyl amine based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice

    PubMed Central

    Gujjar, Ramesh; Mazouni, Farah El; White, Karen L.; White, John; Creason, Sharon; Shackleford, David M.; Deng, Xiaoyi; Charman, William N.; Bathurst, Ian; Burrows, Jeremy; Floyd, David M.; Matthews, David; Buckner, Frederick S.; Charman, Susan A.; Phillips, Margaret A.; Rathod, Pradipsinh K.

    2011-01-01

    Malaria is one of the leading causes of severe infectious disease worldwide, yet our ability to maintain effective therapy to combat the illness is continually challenged by the emergence of drug resistance. We previously reported identification of a new class of triazolopyrimidine based P. falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors with antimalarial activity, leading to the discovery of a new lead series and novel target for drug development. Active compounds from the series contained a triazolopyrimidine ring attached to an aromatic group through a bridging nitrogen atom. Herein we describe systematic efforts to optimize the aromatic functionality with the goal of improving potency and in vivo properties of compounds from the series. These studies led to the identification of two new substituted aniline moieties (4-SF5-Ph and 3,5-Di-F-4-CF3-Ph) which, when coupled to the triazolopyrimidine ring showed good plasma exposure and better efficacy in the P. berghei mouse model of the disease, than previously reported compounds from the series. PMID:21517059

  12. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor (DSM421) with improved drug-like properties for treatment and prevention of malaria

    PubMed Central

    Phillips, Margaret A.; White, Karen L.; Kokkonda, Sreekanth; Deng, Xiaoyi; White, John; Mazouni, Farah El; Marsh, Kennan; Tomchick, Diana R.; Manjalanagara, Krishne; Rudra, Kakali Rani; Wirjanata, Grennady; Noviyanti, Rintis; Price, Ric N; Marfurt, Jutta; Shackleford, David M.; Chiu, Francis C.K.; Campbell, Michael; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Martinez, Maria Santos; Lafuente-Monasterio, Maria; Kaminsky, Werner; Silue, Kigbafori; Zeeman, Anne-Marie; Kocken, Clemens; Leroy, Didier; Blasco, Benjamin; Rossignol, Emilie; Rueckle, Thomas; Matthews, Dave; Burrows, Jeremy N.; Waterson, David; Palmer, Michael J.; Rathod, Pradipsinh K.; Charman, Susan A.

    2016-01-01

    The emergence of drug resistant malaria parasites continues to hamper efforts to control this lethal disease. Dihydroorotate dehydrogenase has recently been validated as a new target for the treatment of malaria and a selective inhibitor (DSM265) of the Plasmodium enzyme is currently in clinical development. With the goal of identifying a backup compound to DSM265, we explored replacement of the SF5-aniline moiety of DSM265 with a series of CF3-pyridinyls, while maintaining the core triazolopyrimidine scaffold. This effort led to the identification of DSM421, which has improved solubility, lower intrinsic clearance and increased plasma exposure after oral dosing compared to DSM265, while maintaining a long predicted human half-life. Its improved physical and chemical properties will allow it to be formulated more readily than DSM265. DSM421 showed excellent efficacy in the SCID mouse model of P. falciparum malaria that supports the prediction of a low human dose (<200 mg). Importantly DSM421 showed equal activity against both P. falciparum and P. vivax field isolates, while DSM265 was more active on P. falciparum. DSM421 has the potential to be developed as a single dose cure or once-weekly chemopreventative for both P. falciparum and P. vivax malaria leading to its advancement as a preclinical development candidate. PMID:27641613

  13. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    SciTech Connect

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; El Mazouni, Farah; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Angulo-Barturen, Inigo; Ferrer, Santiago B.; Jimenez-Diaz, Maria Belen; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A.

    2012-02-27

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

  14. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential

    PubMed Central

    Coteron, Jose M.; Marco, María; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; Mazouni, Farah El; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Barturen, Iñigo Angulo; Ferrer, Santiago B.; Jiménez-Díaz, María Belén; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A.

    2011-01-01

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential anti-malarials we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound towards clinical candidate status. PMID:21696174

  15. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major.

    PubMed

    Dolat, Elham; Rajabi, Omid; Salarabadi, Samaneh Soudmand; Yadegari-Dehkordi, Sajedeh; Sazgarnia, Ameneh

    2015-12-01

    Leishmaniasis is an emerging and uncontrolled disease. The use of routine drugs has been limited due to proven side effects and drug resistance. Interestingly, novel approaches such as nanotechnology have been applied as a therapeutic modality. Silver nanoparticles have shown antileishmanial effects but because of their nonspecific and toxic effects on normal cells, their use has been limited. On the other hand, it has been demonstrated that electric pulses induce electropores on cell membranes resulting in higher entrance of certain molecules into cells. There is a hypothesis proposing that use of electroporation and silver nanoparticles simultaneously can induce greater accumulation of particles in infected cells, besides higher toxicity. In this study, after applying electric pulses with different concentrations of silver nanoparticles (SNPs), cell survival rate was determined by standard viability assays. On the basis of these data, 2 μg/ml of SNPs and 700 V/cm with 100 μs duration of electroporation were selected as the non-lethal condition. Promastigotes and infected macrophage cells received both treatments and the survival percentage and Infection Index were calculated. In parasites and cells receiving both treatments, higher toxicity was observed in comparison to each treatment given individually, showing a synergic effect on promastigotes. Therefore, application of electric pulses could overcome limitations in using the antileishmanial properties of silver nanoparticles.

  16. Cutaneous leishmaniasis caused by Leishmania infantum in Southern Israel.

    PubMed

    Ben-Shimol, Shalom; Sagi, Orli; Horev, Amir; Avni, Yonat Shemer; Ziv, Mati; Riesenberg, Klaris

    2016-12-01

    Cutaneous leishmaniasis (CL) caused by Leishmania major is common in southern Israel, while Leishmania infantum (sub-strain of L. donovani, causing zoonotic visceral leishmaniasis) infections were rarely reported in Israel and only in other regions. We report the first case of L. infantum infection in southern Israel, presented atypically as CL in an immunosuppressed 47-year old male. The patient was treated with liposomal amphotericin-B and recovered, without extra-cutaneous complications. Diagnosis of L. infantum CL was confirmed by microscopic identification of amastigotes in Gimsa-stained smear of skin lesion, positive blood serology and a positive polymerase chain reaction (PCR) amplification of the internal transcribed spacer 1 genes (ITS1) and restriction fragment length polymorphism (ITS1 PCR-RFLP). We also review the medical literature on old-world CL caused by L. infantum. Multiple L. donovani/infantum CL cases were identified in the literature search. These can be divided schematically to two: 1) In several endemic countries, L. infantum strains are the main causative agents of CL; 2) In other regions, CL is almost exclusively caused by L. major or L. tropica, while L. donovani strains CL cases were reported sporadically or as imported disease.

  17. The proliferation potential of promastigotes of the main Leishmania species of the old world in NNN culture medium prepared using blood of four different mammals.

    PubMed

    Ladopoulos, Theodoros; Ntais, Pantelis; Tsirigotakis, Nikolaos; Dokianakis, Emmanouil; Antoniou, Maria

    2015-10-01

    The efficacy of the in vitro cultivation of promastigotes of four Leishmania spp. was tested in the biphasic Novy-MacNeal-Nicolle (NNN) medium prepared using blood from different animals (horse, donkey, goat and sheep). The aim was to test which NNN preparation gave the best yield in the shortest time for different parasite species, in order to obtain a large crop of promastigotes for experimental work and for antigen preparation. Promastigotes of Leishmania infantum, Leishmania donovani, Leishmania tropica and Leishmania major, the four main parasite species occurring in the old world, were defrosted from -80 °C and placed, at equal numbers, in the 4 different NNN preparations. At the end of the 7th day, the NNN medium using horse blood produced the greatest number of promastigotes for all Leishmania spp. tested, whilst goat blood proved the poorest medium, providing culture results only for L. infantum. This finding may be explained by the fact that Leishmania is a nicotinamide adenine dinucleotide (NAD) auxotroph and horse erythrocytes support NAD-dependent microorganisms.

  18. Immunity to Sand Fly Salivary Protein LJM11 Modulates Host Response to Vector-Transmitted Leishmania Conferring Ulcer-Free Protection

    PubMed Central

    Gomes, Regis; Oliveira, Fabiano; Teixeira, Clarissa; Meneses, Claudio; Gilmore, Dana C; Elnaiem, Dia-Eldin; Kamhawi, Shaden; Valenzuela, Jesus G

    2012-01-01

    Leishmania vaccines that protect against needle challenge fail against the potency of a Leishmania-infected sand fly transmission. Here, we demonstrate that intradermal immunization of mice with 500 ng of the sand fly salivary recombinant protein LJM11 (rLJM11) from Lutzomyia longipalpis, in the absence of adjuvant, induces long-lasting immunity that results in ulcer-free protection against Leishmania major delivered by vector bites. This protection is antibody independent and abrogated by depletion of CD4+ T cells. Two weeks after challenge, early induction of IFN-γ specifically to rLJM11 correlates to diminished parasite replication in protected animals. At this time point, Leishmania-specific induction of IFN-γ in these mice is low in comparison with its high level in non-protected controls. We hypothesize that early control of parasites in a T-cell helper type 1 environment induced by immunity to LJM11 permits the slow development of Leishmania-specific immunity in the absence of open ulcers. Leishmania-specific immunity observed 5 weeks after infection in rLJM11-immunized mice shows a twofold increase over controls in the percentage of IFN-γ-producing CD4+ T cells. We propose LJM11 as an immunomodulator that drives an efficient and controlled protective immune response to a sand fly–transmitted Leishmania somewhat mimicking “leishmanization”-induced protective immunity but without its associated lesions. PMID:22739793

  19. Differentiation of Leishmania species by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  20. Testing of Four Leishmania Vaccine Candidates in a Mouse Model of Infection with Leishmania (Viannia) braziliensis, the Main Causative Agent of Cutaneous Leishmaniasis in the New World▿

    PubMed Central

    Salay, G.; Dorta, M. L.; Santos, N. M.; Mortara, R. A.; Brodskyn, C.; Oliveira, C. I.; Barbiéri, C. L.; Rodrigues, M. M.

    2007-01-01

    We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies. PMID:17626159

  1. Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World.

    PubMed

    Salay, G; Dorta, M L; Santos, N M; Mortara, R A; Brodskyn, C; Oliveira, C I; Barbiéri, C L; Rodrigues, M M

    2007-09-01

    We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies.

  2. Identification of Leishmania species causing cutaneous leishmaniasis using Random Amplified Polymorphic DNA (RAPD-PCR) in Kharve, Iran

    PubMed Central

    Saadabadi, Fatemeh; Mohajery, Masoud; Poostchi, Elham; Shamsian, Seyyed Ali Akbar

    2013-01-01

    Background: Leishmaniasis, especially cutaneous leishmaniasis, is considered an important health problem in many parts of Iran including Kharve, Khorasan Razavi province. Cutaneous leishmaniasis is caused by various species of Leishmania, each having a different secondary host. Thus, identifying the parasites’ specie is of paramount importance for containment strategy planning. The morphological differentiation of Leishmania species is not possible, rendering the molecular methods as the sole means to this purpose. Therefore, to identify the causative agent of cutaneous leishmaniasis in Kharve, Random Amplified Polymorphic DNA-PCR (RAPD-PCR) was used. Methods: The disease was first confirmed by direct smears. Samples were gathered from 22 patients with established cutaneous leishmaniasis. The samples were immediately cultured in NNN medium, followed by sub-culture in RPMI-1640. Afterwards, DNA was extracted and amplified using RAPD-PCR. Electrophoresis patterns from each isolate were compared with reference strains of Leishmania major (L. major) and Leishmania tropica (L. tropica). Results: The results of this study indicated that the parasite causing cutaneous leishmaniasis in Kharve is L. tropica. Conclusion: It seems that L. tropica is the only causative agent of cutaneous leishmaniasis in Kharve, and RAPD-PCR is a suitable tool for Leishmania characterization in epidemiological studies. PMID:26989711

  3. Different susceptibilities of Leishmania spp. promastigotes to the Annona muricata acetogenins annonacinone and corossolone, and the Platymiscium floribundum coumarin scoparone.

    PubMed

    Vila-Nova, Nadja Soares; de Morais, Selene Maia; Falcão, Maria José Cajazeiras; Alcantara, Terezinha Thaize Negreiros; Ferreira, Pablito Augusto Travassos; Cavalcanti, Eveline Solon Barreira; Vieira, Icaro Gusmão Pinto; Campello, Cláudio Cabral; Wilson, Mary

    2013-03-01

    Leishmaniasis is a zoonotic disease that can manifest itself in visceral and cutaneous form. The aim of this study was to search for new leishmanicidal compounds. Preliminarily, Artemia salina assay was applied to compounds from two plants found in Northeastern Brazil, Platymiscium floribundum and Annona muricata. Then these compounds were tested against three Leishmania species (Leishmania donovani, Leishmania mexicana and Leishmania major). A screening assay using luciferase-expressing promastigote form were used to measure the viability of promastigote One coumarin, scoparone, isolated from P. floribundum and two acetogenins, annonacinone and corossolone isolated from A. muricata showed leishmanicidal activity in all species tested. Nevertheless, Leishmania species indicated different susceptibilities in relation to the tested compounds: L. mexicana was more sensitive to scoparone followed by L. major and L. donovani. The three species presented similar inhibition to corossolone and annonacinone. Acetogenin annonacinone (EC(50)=6.72-8.00 μg/mL) indicated high leishmanicidal activity; corossolone (EC(50)=16.14-18.73 μg/mL) and scoparone (EC(50)=9.11-27.51 μg/mL) moderate activity. A. saline larvae were less sensitive to the coumarin scoparone and acetogenin corossolone was the most toxic. In conclusion, the leishmanicidal activity demonstrated by the coumarin and acetogenins indicate these compounds for further studies aiming the development of new leishmanicidal agents.

  4. T Helper1/T Helper2 Cells and Resistance/Susceptibility to Leishmania Infection: Is This Paradigm Still Relevant?

    PubMed Central

    Alexander, James; Brombacher, Frank

    2012-01-01

    Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans. PMID:22566961

  5. Mechanisms of pathogenesis: differences amongst Leishmania species.

    PubMed

    Colmenares, Maria; Kar, Sujata; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane

    2002-04-01

    One of the features of the genus Leishmania is the diversity of tropism/disease resulting from infection. With notable exceptions, the form (visceral, cutaneous, diffuse cutaneous, mucocutaneous) and severity of disease is a function of the infecting Leishmania species together with host genetics and consequent inflammatory and immune responses. It has become evident from genetic and immunological studies using the murine model that the various members of the genus Leishmania differ in aspects of their 'approach' to the host immune system. We are just beginning to appreciate the complexities of these interactions, which have import for the development of a vaccine against leishmaniasis. In this paper, what is currently understood concerning the mechanisms of leishmanial pathogenesis (based upon studies employing the murine model) is briefly summarized.

  6. First evidence of autochthonous cases of Leishmania (Leishmania) infantum in horse (Equus caballus) in the Americas and mixed infection of Leishmania infantum and Leishmania (Viannia) braziliensis.

    PubMed

    Soares, Isabel R; Silva, Soraia O; Moreira, Filipe Moraghi; Prado, Luan Gavião; Fantini, Priscila; Maranhão, Renata de Pino Albuquerque; da Silva Filho, José Monteiro; Melo, Maria Norma; Palhares, Maristela S

    2013-11-08

    This study reports the first evidence of infection by Leishmania infantum in Equus caballus in Americas and the first mixed infection of L. infantum/Leishmania braziliensis on this mammalian species in the world. The diagnoses was based on presence of parasites in lesions and bone marrow aspirates, their identification by using specific primers for L. infantum and L. braziliensis complexes and also serological methods IFAT and ELISA. The analysis of the PCR products suggested mixed infection in three animals. Further studies involving equine leishmaniasis are carrying out in order to clarify the dynamic of Leishmania sp. in this mammalian specie and their role in the transmission of those parasites in urban endemic area of Belo Horizonte, Minas Gerais State, Brazil.

  7. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite

    PubMed Central

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline SR; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto MR

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the “Mexicana complex”, reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development. PMID:25336895

  8. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite.

    PubMed

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline Sr; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto Mr

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the "Mexicana complex", reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.

  9. Development of a Murine Infection Model with Leishmania killicki, Responsible for Cutaneous Leishmaniosis in Algeria: Application in Pharmacology

    PubMed Central

    Eddaikra, Naouel; Kherachi Djenad, Ihcene; Benbetka, Sihem; Benikhlef, Razika; Aït-Oudhia, Khatima; Moulti-Mati, Farida; Oury, Bruno; Sereno, Denis; Harrat, Zoubir

    2016-01-01

    In Algeria, Leishmania infantum, Leishmania major, and Leishmania killicki (Leishmania tropica) are responsible for cutaneous leishmaniosis. We established a murine model of L. killicki infection to investigate its infective capacity, some immunophysiopathological aspects, and its suitability for pharmacological purposes. Following the injection of L. major or L. killicki metacyclic promastigotes in the ear dermis of BALB/c mice, the course of infection was followed. The infection with L. killicki caused slower lesion formation than with L. major. The presence of L. killicki or L. major DNA and parasites was detected in the ear dermis and in lymph nodes, spleen, and liver. Lesions induced by L. killicki were nonulcerative in their aspect, whereas those caused by L. major were highly ulcerative and necrotic, which matches well with the lesion phenotype reported in humans for L. killicki and L. major, respectively. The treatment of L. killicki lesions by injection of Glucantime® significantly reduced the lesion thickness and parasite burden. Ear dermal injection of BALB/c mice constitutes a model to study lesions physiopathology caused by L. killicki and presents interest for in vivo screening of new compounds against this pathogen, emerging in Algeria. PMID:26949705

  10. Attenuation and Production of the Amphotericin B-Resistant Leishmania tropica Strain

    PubMed Central

    Khan, Imran; Khan, Momin; Umar, Muhammad Naveed; Oh, Deog-Hwan

    2016-01-01

    Background Infections caused by Leishmania are becoming major public health problems on a global scale. Many species of Leishmania around the world are obtaining resistance levels of up to 15 folds, as estimated by the World Health Organization. Leishmania showing resistance is relatively difficult to observe and maintain in laboratory settings. Objectives The current study deals with the generation of Leishmania tropica strains that are resistant to amphotericin B (amp B). Materials and Methods The L. tropica strain was attenuated using continuous passaging 20 times. The infectivity of L. tropica was confirmed in BALB/c mice. The L. tropica resistant strain was produced in vitro using a continuous increase in drug pressure. The cross resistance of L. tropica to other drugs was also investigated. Results After 20 continuous passages, the BALB/c mice tested negative in the development of leishmaniasis. At a concentration of 0.1 µg/mL, L. tropica showed resistance to amp B. The newly developed promastigotes were 16 times more resistant compared to the resistance of the wild type promastigotes. The resistant L. tropica strain showed cross resistance to itraconazole and had a resistance index that was greater than five. The resistant strain displayed maximum stability for more than three months in the drug-free medium. Conclusions The resistant strain of L. tropica can be produced in laboratories using continuous drug pressure. The attenuated resistant strain has significant implications (both medically and academically) in the ability to overcome resistance. PMID:27630762

  11. The Role of Leishmania Proteophosphoglycans in Sand Fly Transmission and Infection of the Mammalian Host

    PubMed Central

    Rogers, Matthew E.

    2012-01-01

    Leishmania are transmitted by the bite of their sand fly vector and this has a significant influence on the virulence of the resulting infection. From our studies into the interaction between parasite, vector, and host we have uncovered an important missing ingredient during Leishmania transmission. Leishmania actively adapt their sand fly hosts into efficient vectors by secreting Promastigote Secretory Gel (PSG), a proteophosphoglycan (PPG)-rich, mucin-like gel which accumulates in sand fly gut and mouthparts. This has the effect of blocking the fly, such that during bloodfeeding both parasites and gel are co-transmitted in an act of regurgitation. We are discovering that this has further implications for the mammalian infection, again, in favor of the parasite. Experimentally, PSG exacerbates cutaneous and visceral leishmaniasis and can promote the chronicity of Leishmania infection, even in mouse strains normally capable of controlling leishmaniasis. The underlying mechanism of PSG’s action is a major focus of our ongoing work. This review aims to synthesize what is known about the role and action of PSG and its constituent proteophosphoglycans, for parasite colonization of the sand fly, transmission, and mammalian infection. Lastly, we discuss potential exploitation of this important vector-transmitted product and future avenues of research. PMID:22754550

  12. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection.

    PubMed

    Novais, Fernanda O; Santiago, Rômulo C; Báfica, André; Khouri, Ricardo; Afonso, Lilian; Borges, Valéria M; Brodskyn, Cláudia; Barral-Netto, Manoel; Barral, Aldina; de Oliveira, Camila I

    2009-12-15

    Neutrophils play an active role in the control of infections caused by intracellular pathogens such as Leishmania. In the present study, we investigated the effect of neutrophil depletion at the time of Leishmania braziliensis infection of BALB/c mice and how neutrophils interact with the infected macrophage to promote parasite elimination. The in vivo depletion of neutrophils led to a significant increase in parasite load and enhanced the Th1-Th2 immune response in this experimental model of infection. BALB/c mice coinoculated with both parasites and live neutrophils displayed lower parasite burdens at the site of infection and in the draining lymph nodes. In vitro, we observed that live neutrophils significantly reduced the parasite load in L. braziliensis-infected murine macrophages, an effect not observed with Leishmania major. L. braziliensis elimination was dependent on the interaction between neutrophils and macrophages and was associated with TNF-alpha as well as superoxide production. Furthermore, cooperation between neutrophils and macrophages toward parasite elimination was also observed in experiments performed with L. braziliensis-infected human cells and, importantly, with two other New World Leishmania species. These results indicate that neutrophils play an important and previously unappreciated role in L. braziliensis infection, favoring the induction of a protective immune response.

  13. Leishmania is not prone to develop resistance to tamoxifen

    PubMed Central

    Coelho, Adriano C.; Trinconi, Cristiana T.; Senra, Luisa; Yokoyama-Yasunaka, Jenicer K.U.; Uliana, Silvia R.B.

    2015-01-01

    Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis. PMID:26150922

  14. Proteinases as virulence factors in Leishmania spp. infection in mammals

    PubMed Central

    2012-01-01

    Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients’ biological samples and from assays with animal models confirm the involvement of an array of the parasite’s components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis. PMID:22871236

  15. Leishmania is not prone to develop resistance to tamoxifen.

    PubMed

    Coelho, Adriano C; Trinconi, Cristiana T; Senra, Luisa; Yokoyama-Yasunaka, Jenicer K U; Uliana, Silvia R B

    2015-12-01

    Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis.

  16. Natural Leishmania infection of Lutzomyia spp. in Peru.

    PubMed

    Perez, J E; Ogusuku, E; Inga, R; Lopez, M; Monje, J; Paz, L; Nieto, E; Arevalo, J; Guerra, H

    1994-01-01

    Natural infection of Lutzomyia spp. with Leishmania was studied with the aid of the polymerase chain reaction (PCR) in Chaute, Lima, Perú, a locality endemic for Andean cutaneous leishmaniasis (uta). The PCR, with primers specific for the L. braziliensis complex, was applied to sandfly pools. Sandflies were sampled from April 1990 to May 1991 with CDC light traps in homes, and from near homes with a Shannon trap using protected human bait. Lu. verrucarum (4 pools) and Lu. peruenis (2 pools) from the anthropophilic collections, and Lu. verrucarum (2 pools) from indoors were found to be infected with Leishmania. The majority of infected sandflies were recorded mainly in April 1991 (4 pools), coinciding with the highest sandfly densities and the maximum number of new cases of uta (7). Non-infected sandflies were found from May to October 1990 and January to March 1991. Thus, these 2 sandfly species play a role in the spread of leishmaniasis among humans and other animals in Chaute.

  17. Monoclonal antibody affinity purification of a Leishmania membrane glycoprotein and its inhibition of leishmania-macrophage binding.

    PubMed Central

    Chang, C S; Chang, K P

    1986-01-01

    Specific monoclonal antibody coupled to Affi-Gel 10 was used to purify a major membrane glycoprotein of Leishmania mexicana amazonensis, one of a group of parasitic protozoa that specifically infect mammalian macrophages. Immobilized antigen was eluted at a 34% efficiency with buffers at either pH 2.5 or 11 or with MgCl2, but only the antigen eluted under basic conditions could be readsorbed to the immunobeads. Sephacryl S-300 gel filtration of the purified antigen gave a single peak of protein estimated to have a molecular mass of 400 kDa. However, NaDodSO4/polyacrylamide gel electrophoresis showed a single band of this protein with an apparent molecular mass of 63 kDa. The antigen is an N-linked glycoprotein, as indicated by its increase in electrophoretic mobility after treatment with endoglycosidase H and by its binding to lentil lectin-Sepharose, elutable with methyl alpha-D-mannoside and methyl alpha-D-glucoside. Purified antigen inhibits the binding of leishmania cells to macrophages by 50%, suggesting that it may play a role in the process of infection. Images PMID:3079902

  18. Impact of tumor necrosis factor receptor p55 deficiency in susceptibility of C57BL/6 mice to infection with Leishmania (Leishmania) amazonensis.

    PubMed

    Cargnelutti, Diego Esteban; Salomón, María Cristina; Celedon, Verónica; Cuello-Carrión, Fernando Darío; Gea, Susana; Di Genaro, María Silvia; Scodeller, Eduardo Alberto

    2016-04-01

    Tumor necrosis factor (TNF) is involved in host resistance to several intracellular pathogens. Although the critical role of TNF receptor (TNFR)p55 in Leishmania (Leishmania) major infection has been demonstrated, the impact of TNFRp55 deficiency on L. (L.) amazonensis infection has not been explored. L. (L.) amazonensis-infected TNFRp55(-/-) mice failed to resolve lesions, whereas C57BL/6 wild-type mice completely healed. The susceptibility of the TNFRp55(-/-) mice was characterized by higher lesion size and histopathological damage in comparison with the wild-type mice. A marked increased of the splenic index was observed in the TNFRp55(-/-) mice after 15 weeks infection. These results show that in the absence of TNFRp55, L. (L.) amazonensis-infected knockout mice fail to resolve lesions, whereas wild-type mice completely heal.

  19. High Affinity S-Adenosylmethionine Plasma Membrane Transporter of Leishmania Is a Member of the Folate Biopterin Transporter (FBT) Family*

    PubMed Central

    Dridi, Larbi; Ahmed Ouameur, Amin; Ouellette, Marc

    2010-01-01

    S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms. PMID:20406813

  20. Plants used in the treatment of leishmanial ulcers due to Leishmania (Viannia) braziliensis in an endemic area of Bahia, Brazil.

    PubMed

    França, F; Lago, E L; Marsden, P D

    1996-01-01

    This paper records the plants used in the treatment of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis (L(V)b) among the rural population of a cocoa-producing coastal area of Bahia state, Brazil. An enquiry conducted among a hundred patients identified 49 plants species used to treat skin ulceration caused by this Leishmania species. The principal plants used are caju-branco (Anacardium occidentale, Anacardiaceae), used by 65% of the population, folha-fogo (Clidemia hirta,Melastomataceae) 39%, alfavaca-grossa (Plectranthus amboinicus, Lamiaceae) 33%, mastruz (Chenopodium ambrosioides, Chenopodiaceae) 31%, erva-de-santa-maria (Solanum americanum, Solanaceae) (25%) and transagem (Plantago major, Plantaginaceae) 2%.

  1. Identification and phylogenetic relationship of Iranian strains of various Leishmania species isolated from cutaneous and visceral cases of leishmaniasis based on N-acetylglucosamine-1-phosphate transferase gene.

    PubMed

    Hajjaran, Homa; Mohebali, Mehdi; Teimouri, Aref; Oshaghi, Mohammad Ali; Mirjalali, Hamed; Kazemi-Rad, Elham; Shiee, Mohammad Reza; Naddaf, Saied Reza

    2014-08-01

    The identity of Iranian Leishmania species has been resolved to some extent by some genetic markers. In this study, based on N-acetylglucosamine-1-phosphate transferase (nagt) gene, we further elucidated the identity and phylogeny of the prevalent species in this country. DNAs of 121 isolates belonging to cutaneous leishmaniasis (CL) patients, canine visceral leishmaniasis (CVL) cases, and Rhombomys opimus rodents were amplified by targeting a partial sequence of nagt gene. All the amplicons were analyzed with restriction fragment length polymorphism (RFLP) using Acc1 enzyme, and 49 amplicons representing different reservoir hosts were sequenced and aligned with similar sequences from GenBank database. The RFLP analysis revealed that 41 CL patients were infected Leishmania tropica and 36 with Leishmania major. Among 10 CVL isolates, 6 were identified as Leishmania infantum and 4 as L. tropica. Amongst 34 rodents' isolates, 11 and 23 isolates exhibited patterns similar to those of L. major, and L. tropica/Leishmania turanica, respectively. The sequencing results from all CL patients, CVL cases, and 4 reservoir rodents were in agreement with RFLP analysis and showed 99-100% homologies with the registered species of L. major, L. tropica, and L. infantum from Turkey, Tunisia, Iraq and Israel. Of the 7 rodent isolates exhibiting RFLP patterns similar to L. tropica/L. turanica, 3 exhibited the highest homologies (99-100%) with L. turanica and 4 with Leishmania gerbilli. The 49 nagt DNA sequences were grouped into five clusters representing L. major, L. tropica, L. infantum, L. turanica and L. gerbilli species, encompassing 19 haplotypes. No correlation was observed between intraspecies divergence and geographic distribution of haplotypes. The L. tropica haplotypes exhibited more homologies with those of L. infantum than L. major (97.2% vs. 96.9%), a probable indication to the potential ability of L. tropica to visceralize. Characterization of Iranian Leishmania isolates

  2. Isotype patterns of immunoglobulins: hallmarks for clinical status and tissue parasite density in Brazilian dogs naturally infected by Leishmania (Leishmania) chagasi.

    PubMed

    Reis, Alexandre B; Teixeira-Carvalho, Andréa; Vale, André M; Marques, Marcos J; Giunchetti, Rodolfo C; Mayrink, Wilson; Guerra, Luanda Liboreiro; Andrade, Renata A; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo A

    2006-08-15

    The role of anti-leishmanial immune response underlying the susceptibility/resistance during canine visceral leishmaniasis (CVL) has been recognized throughout ex vivo and in vitro investigations. Recently, we demonstrated that immunoglobulin levels (Igs), as well as the parasite load are relevant hallmarks of distinct clinical status of CVL. To further characterize and upgrade the background on this issue, herein, we have evaluated, in Leishmania (Leishmania) chagasi naturally infected dogs, the relationship between tissue parasitism (skin, bone marrow, spleen, liver and lymph node), the CVL clinical status (asymptomatic (AD), with no suggestive signs of the disease; oligosymptomatic (OD), with maximum three clinical signs-opaque bristles; localized alopecia and moderate loss of weight; symptomatic (SD), serologically positive with severe clinical signs of visceral leishmaniasis), and the humoral immunological profile of anti-Leishmania immunoglobulins (IgG, IgG1, IgG2, IgM, IgA and IgE). Our major statistically significant findings revealed distinct patterns of tissue parasite density within L. chagasi-infected dogs despite their clinical status, pointing out the spleen and skin as the most relevant sites of high parasitism during ongoing CVL. Parasite density of bone marrow and spleen were the most reliable parasitological markers to decode the clinical status of CVL. Moreover, the parasite density of bone marrow better correlates with most anti-Leishmania Igs reactivity. Additionally, a prognostic hallmark for canine visceral leishmaniasis was found, highlighting strong correlation between IgG1 and asymptomatic disease, but with IgA, IgE and IgG2 displaying better association with symptomatic disease. The new aspects of this study highlighted pioneer findings that correlated the degree of tissue parasite density (low (LP), medium (MP) and high (HP) parasitism) with distinct patterns of anti-Leishmania Igs reactivity. In this scope, our data re-enforce the anti-Leishmania

  3. Footprinting of Inhibitor Interactions of In Silico Identified Inhibitors of Trypanothione Reductase of Leishmania Parasite

    PubMed Central

    Venkatesan, Santhosh K.; Dubey, Vikash Kumar

    2012-01-01

    Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471

  4. Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts.

    PubMed

    Gaur, Upasna; Showalter, Melissa; Hickerson, Suzanne; Dalvi, Rahul; Turco, Salvatore J; Wilson, Mary E; Beverley, Stephen M

    2009-07-01

    Surface phosophoglycans such as lipophosphoglycan (LPG) or proteophosphoglycan (PPG) and glycosylinositol phospholipids (GIPLs) modulate essential interactions between Leishmania and mammalian macrophages. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by LPG2. LPG2-null (lpg2(-)) Leishmania major cannot establish macrophage infections or induce acute pathology, whereas lpg2(-)Leishmania mexicana retain virulence. lpg2(-)Leishmania donovani has been reported to survive poorly in cultured macrophages but in vivo survival has not been explored. Herein we discovered that, similar to lpg2(-)L. major, lpg2(-)L. donovani promastigotes exhibited diminished virulence in mice, but persisted at consistently low levels. lpg2(-)L. donovani promastigotes could not establish infection in macrophages and could not transiently inhibit phagolysosomal fusion. Furthermore, lpg2(-) promastigotes of L. major, L. donovani and L. mexicana were highly susceptible to complement-mediated lysis. We conclude that phosphoglycan assembly and expression mediated by L. donovani LPG2 are important for promastigote and amastigote virulence, unlike L. mexicana but similar to L. major.

  5. First detection of Leishmania infantum DNA in wild caught Phlebotomus papatasi in endemic focus of cutaneous leishmaniasis, South of Iran

    PubMed Central

    Yavar, Rassi; Hadi, Karami; Reza, Abai Mohammad; Mohebali, M; Hasan, Bakshi; Ali, Oshaghi Mohammad; Sina, Rafizadeh; Habib, Bagherpoor Hagigi; Abodolrahim, Hosseini; Manuchehr, Gholami

    2013-01-01

    Objective To identify the vectors and reservoirs of cutaneous leishmaniasis in the endemic focus of Farashband, Fars Province, South of Iran. Methods Sticky papers and Sherman trap were used for collection of sand flies and rodents, respectively. Polymerase chain reaction (PCR) of kDNA, ITS1-rDNA were used for identification of Leishmania parasite in sand flies as well as rodents. Results Totally 2 010 sand flies were collected and the species of Phlebotomus papatasi Scopoli was the common specimen in outdoors and indoors places. PCR technique was employed on 130 females of Phlebotomus papatasi. One of them (0.76%) was positive to parasite Leishmania major (L. major) and one specimen (0.76%) was positive to Leishmania infantum. Microscopic investigation on blood smear of the animal reservoirs for amastigote parasites revealed 16 (44%) infected Tatera indica. Infection of them to L. major was confirmed by PCR against kDNA loci of the parasite. Conclusions The results indicated that Phlebotomus papatasi was the dominant species circulating two species of parasites including L. major and Leishmania infantum among human and reservoirs. Furthermore, Tatera indica is the only main host reservoir for maintenance of the parasite source in the area. PMID:24075350

  6. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis.

    PubMed

    Lakshmi, Bhavana Sethu; Wang, Ruobing; Madhubala, Rentala

    2014-06-24

    Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform.

  7. Testing of Experimental Compounds for Efficacy against Leishmania

    DTIC Science & Technology

    1990-02-28

    system were noted to have suppressive activity against Leishmania donovani (suppressed parasite numbers in the liver by at least 50% at one of the dosages...dose 3 days prior to infection with Leishmania donovani resulted in lower efficacy in suppressing parasite numbers in the liver than when administered 3... donovani A. Primary Screening Data .. .................. 10 B. Clucantime Reference Data. ................. 10 II. Studies Involving Leishmania

  8. Drought, smallpox, and emergence of Leishmania braziliensis in northeastern Brazil.

    PubMed

    Sousa, Anastácio Q; Pearson, Richard

    2009-06-01

    Cutaneous leishmaniasis caused by Leishmania (Vianna) braziliensis is a major health problem in the state of Ceará in northeastern Brazil. We propose that the disease emerged as a consequence of the displacement of persons from Ceará to the Amazon region following the Great Drought and smallpox epidemic of 1877-1879. As the economic and social situation in Ceará deteriorated, approximately 55,000 residents migrated to the Amazon region to find work, many on rubber plantations. Those that returned likely introduced L. (V.) brazilensis into Ceará, where the first cases of cutaneous leishmaniasis were reported early in the 20th century. The absence of an animal reservoir in Ceará, apart from dogs, supports the hypothesis. The spread of HIV/AIDS into the region and the possibility of concurrent cutaneous leishmaniasis raise the possibility of future problems.

  9. Drought, Smallpox, and Emergence of Leishmania braziliensis in Northeastern Brazil

    PubMed Central

    Pearson, Richard

    2009-01-01

    Cutaneous leishmaniasis caused by Leishmania (Vianna) braziliensis is a major health problem in the state of Ceará in northeastern Brazil. We propose that the disease emerged as a consequence of the displacement of persons from Ceará to the Amazon region following the Great Drought and smallpox epidemic of 1877–1879. As the economic and social situation in Ceará deteriorated, ≈55,000 residents migrated to the Amazon region to find work, many on rubber plantations. Those that returned likely introduced L. (V.) brazilensis into Ceará, where the first cases of cutaneous leishmaniasis were reported early in the 20th century. The absence of an animal reservoir in Ceará, apart from dogs, supports the hypothesis. The spread of HIV/AIDS into the region and the possibility of concurrent cutaneous leishmaniasis raise the possibility of future problems. PMID:19523291

  10. Prevalence of Leishmania infantum Infection in Dogs Living in an Area of Canine Leishmaniasis Endemicity Using PCR on Several Tissues and Serology

    PubMed Central

    Solano-Gallego, Laia; Morell, Pere; Arboix, Margarita; Alberola, Jordi; Ferrer, Lluis

    2001-01-01

    We studied and compared the prevalence of Leishmania infection and the seroprevalence and the prevalence of canine leishmaniasis in an area where canine leishmaniasis is endemic. One hundred dogs living on the island of Mallorca (Spain) were studied. In this study, we clinically examined each dog for the presence of symptoms compatible with leishmaniasis, determined the titer of anti-Leishmania antibodies, and investigated the presence of Leishmania DNA by PCR in skin, conjunctiva, and bone marrow samples of each dog. The prevalence of the disease and the seroprevalence were 13 and 26%, respectively. In 63% of the dogs, Leishmania DNA could be detected by PCR in at least one of the tissues studied. The results of positive PCR in the bone marrow, the conjunctiva, and the skin were 17.8, 32, and 51%, respectively. The prevalence of the infection, 67%, was calculated using all animals that were seropositive and/or positive by PCR with any tissue. The results showed that the majority of dogs living in an area where canine leishmaniasis is endemic are infected by Leishmania and that the prevalence of infection is much greater than the prevalence of overt Leishmania-related disease. PMID:11158106

  11. Diffuse intralobular liver fibrosis in dogs naturally infected with Leishmania (Leishmania) chagasi.

    PubMed

    Melo, Ferdinan; Amaral, Marina; Oliveira, Patricia; Lima, Wanderson; Andrade, Marina; Michalick, Marilene; Raso, Pedro; Tafuri, Washington; Tafuri, Wagner

    2008-08-01

    The aim of this study was to evaluate the diffuse intralobular fibrosis in dogs naturally infected with Leishmania (Leishmania) chagasi. One hundred five infected animals with positive serologic tests for Leishmania were divided into two clinical groups: 69 symptomatic animals and 36 asymptomatic. Special staining with Gomori, Heidenhain, Silver, and Picrosirius Red was applied to characterize fibrilopoesis. The tissue parasite load was measured by immunohistochemistry and associated histomorphometric analyses. Intralobular fibrosis was observed in all dogs, and more collagen deposition was confirmed in the infected animals than in the controls by these histomorphometric studies. There were significant differences among the distinct clinical groups. In fact, symptomatic dogs showed an increased collagen deposition in the liver compared with asymptomatic ones. A peculiar diffuse intralobular fibrosis, where the collagen fibers encircled small groups of hepatocyte(s), was observed in two cases (1.9%).

  12. Study of Compounds for Activity against Leishmania

    DTIC Science & Technology

    1992-10-27

    Mrs. Barbara Harris, Miss Laura A. Lamb, and Miss Shannon Waits. tORZWORD Opinions, interpretations, conclusions and recommendations are those of the...antileishmanial activity against both visceral (Leishmania donovani) and cutaneous (Lebs-Qnia, braziliensis panamensis) leishmaniasis . Among the most promising...active compounds found against visceral leishmaniasis durinq these studies is the 8-aminoquinoline, WR06026. This compound is now undergoing clinical

  13. Sclerosing Orbital Inflammation Caused by Leishmania braziliensis.

    PubMed

    Cruz, Antonio Augusto V; Alves-Ferreira, Eliza V C; Milbratz-Moré, Gherusa; Chahud, Fernando; Ruy, Patricia C; Duarte, Maria Irma Seixas; Cruz, Angela Kaysel

    2017-01-11

    Orbital biopsy of nonspecific orbital inflammation, commonly referred to as "orbital pseudotumor," typically shows a combination of polyclonal lymphocytes, plasmocytes, leukocytes, macrophages, and variable degrees of collagen deposition. Herein, we report a patient with a positive history of mucocutaneous leishmaniasis who presented with an orbital mass with a histological profile of idiopathic orbital inflammation. Immunohistochemical and molecular analysis of the orbital specimens demonstrated that the orbital inflammation was associated with the presence of antigens of Leishmania braziliensis and DNA from the parasite.

  14. Leishmania infantum and Leishmania braziliensis: Differences and Similarities to Evade the Innate Immune System.

    PubMed

    Falcão, Sarah de Athayde Couto; Jaramillo, Tatiana M G; Ferreira, Luciana G; Bernardes, Daniela M; Santana, Jaime M; Favali, Cecília B F

    2016-01-01

    Visceral leishmaniasis is a severe form of the disease, caused by Leishmania infantum in the New World. Patients present an anergic immune response that favors parasite establishment and spreading through tissues like bone marrow and liver. On the other hand, Leishmania braziliensis causes localized cutaneous lesions, which can be self-healing in some individuals. Interactions between host and parasite are essential to understand disease pathogenesis and progression. In this context, dendritic cells (DCs) act as essential bridges that connect innate and adaptive immune responses. In this way, the aim of this study was to compare the effects of these two Leishmania species, in some aspects of human DCs' biology for better understanding of the evasion mechanisms of Leishmania from host innate immune response. To do so, DCs were obtained from monocytes from whole peripheral blood of healthy volunteer donors and from those infected with L. infantum or L. braziliensis for 24 h. We observed similar rates of infection (around 40%) as well as parasite burden for both Leishmania species. Concerning surface molecules, we observed that both parasites induced CD86 expression when DCs were infected for 24 h. On the other hand, we detected a lower surface expression of CD209 in the presence of both L. braziliensis and L. infantum, but only the last one promoted the survival of DCs after 24 h. Therefore, DCs infected by both Leishmania species showed a higher expression of CD86 and a decrease of CD209 expression, suggesting that both enter DCs through CD209 molecule. However, only L. infantum had the ability to inhibit DC apoptotic death, as an evasion mechanism that enables its spreading to organs like bone marrow and liver. Lastly, L. braziliensis was more silent parasite, once it did not inhibit DC apoptosis in our in vitro model.

  15. Leishmania infantum and Leishmania braziliensis: Differences and Similarities to Evade the Innate Immune System

    PubMed Central

    Falcão, Sarah de Athayde Couto; Jaramillo, Tatiana M. G.; Ferreira, Luciana G.; Bernardes, Daniela M.; Santana, Jaime M.; Favali, Cecília B. F.

    2016-01-01

    Visceral leishmaniasis is a severe form of the disease, caused by Leishmania infantum in the New World. Patients present an anergic immune response that favors parasite establishment and spreading through tissues like bone marrow and liver. On the other hand, Leishmania braziliensis causes localized cutaneous lesions, which can be self-healing in some individuals. Interactions between host and parasite are essential to understand disease pathogenesis and progression. In this context, dendritic cells (DCs) act as essential bridges that connect innate and adaptive immune responses. In this way, the aim of this study was to compare the effects of these two Leishmania species, in some aspects of human DCs’ biology for better understanding of the evasion mechanisms of Leishmania from host innate immune response. To do so, DCs were obtained from monocytes from whole peripheral blood of healthy volunteer donors and from those infected with L. infantum or L. braziliensis for 24 h. We observed similar rates of infection (around 40%) as well as parasite burden for both Leishmania species. Concerning surface molecules, we observed that both parasites induced CD86 expression when DCs were infected for 24 h. On the other hand, we detected a lower surface expression of CD209 in the presence of both L. braziliensis and L. infantum, but only the last one promoted the survival of DCs after 24 h. Therefore, DCs infected by both Leishmania species showed a higher expression of CD86 and a decrease of CD209 expression, suggesting that both enter DCs through CD209 molecule. However, only L. infantum had the ability to inhibit DC apoptotic death, as an evasion mechanism that enables its spreading to organs like bone marrow and liver. Lastly, L. braziliensis was more silent parasite, once it did not inhibit DC apoptosis in our in vitro model. PMID:27536300

  16. Genetic and clinical characterization of canine leishmaniasis caused by Leishmania (Leishmania) infantum in northeastern Argentina.

    PubMed

    Barroso, Paola A; Nevot, M Cecilia; Hoyos, Carlos L; Locatelli, Fabricio M; Lauthier, Juan J; Ruybal, Paula; Cardozo, Rubén M; Russo, Pablo D; Vassiliades, Carola N; Mora, María C; Estévez, J Octavio; Hashiguchi, Yoshihisa; Korenaga, Masataka; Basombrío, Miguel A; Marco, Jorge D

    2015-10-01

    Leishmaniases comprise zoonotic diseases caused by protozoan flagellates of the Leishmania genus. They are endemic to South America, and the visceral form has been recently reported in Argentina. Dogs can play different roles in the Leishmania transmission cycles, depending mainly on the species of parasite involved. Here we focused on the clinical characterization of canine leishmaniasis (CanL) in Northeast Argentina and on the molecular typing of its etiological agent. The nested polymerase chain reaction and sequence analysis of the Leishmania cytochrome b (cyt b) gene was performed on DNA templates purified from lymph nodes, bone marrow or spleen aspirates obtained from 48 dogs previously diagnosed by the observation of Leishmania amastigotes on smears from these aspirates. Their clinical and epidemiological data were also recorded. Systemic abnormalities were observed in 46 subjects (95.8%), most frequently lymphadenopathy, and emaciation (89.6 and 75%). Furthermore, 87% also presented tegumentary abnormalities, such as alopecia (54.2%) or secondary skin lesions (47.9%), among others. Twenty three dogs were positive for cyt b amplification. The sequence analysis showed the presence of two genotypes, LiA1 and LiA2, assigned to Leishmania (Leishmania) infantum, with 99.9 and 100% homology with the reference strain MHOM/TN/80/IPT1 respectively. LiA1 was identified in 18 cases (78.3%) and LiA2 in five (21.7%). Two cyt b variants of L. (L.) infantum were incriminated as the causative agents of CanL cases from three cities: Posadas, Garupá, and Ituzaingó. All three cities are located in the northeastern area of the country, where these parasites seem to be spreading in urban areas.

  17. Sitamaquine Sensitivity in Leishmania Species Is Not Mediated by Drug Accumulation in Acidocalcisomes▿

    PubMed Central

    López-Martín, Carmen; Pérez-Victoria, José María; Carvalho, Luis; Castanys, Santiago; Gamarro, Francisco

    2008-01-01

    Sitamaquine (WR6026), an 8-aminoquinoline derivative, is a new antileishmanial oral drug. As a lipophilic weak base, it rapidly accumulates in acidic compartments, represented mainly by acidocalcisomes. In this work, we show that the antileishmanial action of sitamaquine is unrelated to its level of accumulation in these acidic vesicles. We have observed significant differences in sitamaquine sensitivity and accumulation between Leishmania species and strains, and interestingly, there is no correlation between them. However, there is a relationship between the levels of accumulation of sitamaquine and acidotropic probes, acidocalcisomes size, and polyphosphate levels. The Leishmania major AP3δ-null mutant line, in which acidocalcisomes are devoid of their usual polyphosphate and proton content, is unable to accumulate sitamaquine; however, both the parental strain and the AP3δ-null mutants showed similar sensitivities to sitamaquine. Our findings provide clear evidence that the antileishmanial action of sitamaquine is unrelated to its accumulation in acidocalcisomes. PMID:18794384

  18. Molecular mechanisms of in vitro betulin-induced apoptosis of Leishmania donovani.

    PubMed

    Saudagar, Prakash; Dubey, Vikash Kumar

    2014-02-01

    Although leishmanial infections of humans occur globally, the major health impact lies in developing nations, thus, leishmaniases remain "neglected" diseases for new drugs development. Multidrug resistance has been documented in most countries where leishmaniases is endemic. Betulin is a widely available and affordable natural product exerting leishmanicidal activity at micromolar concentration. In this study, the molecular mechanisms of death that contribute to the anti-leishmanial activity of betulin are investigated. In promastigotes, betulin stimulated reactive oxygen species generation at micromolar concentrations in Leishmania. Apoptosis was observed in betulin-treated promastigotes using flow cytometric analysis of treated cells stained with annexin V-FITC and propidium iodide. Furthermore, betulin treatment of promastigotes led to mitochondrial membrane damage, activation of caspase-like proteases, and DNA fragmentation in Leishmania donovani promastigotes. Betulin treatment of amastigotes cultured within macrophages, resulted in a reduced number of amastigotes, with no substantive cytotoxic damage to the host macrophage cells at leishmanicidal drug concentrations.

  19. Detection and separation of overlapping cells based on contour concavity for Leishmania images.

    PubMed

    Neves, João C; Castro, Helena; Tomás, Ana; Coimbra, Miguel; Proença, Hugo

    2014-06-01

    Life scientists often must count cells in microscopy images, which is a tedious and time-consuming task. Automatic approaches present a solution to this problem. Several procedures have been devised for this task, but the majority suffer from performance degradation in the case of cell overlap. In this article, we propose a method to determine the positions of macrophages and parasites in fluorescence images of Leishmania-infected macrophages. The proposed strategy is primarily based on blob detection, clustering, and separation using concave regions of the cells' contours. In comparison with the approaches of Nogueira (Master's thesis, Department of University of Porto Computer Science, 2011) and Leal et al. (Proceedings of the 9th international conference on Image Analysis and Recognition, Vol. II, ICIAR'12. Berlin, Heidelberg: Springer-Verlag; 2012. pp. 432-439), which also addressed this type of image, we conclude that the proposed methodology achieves better performance in the automatic annotation of Leishmania infections.

  20. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  1. Identification of Leishmania Species Isolated from Human Cutaneous Leishmaniasis in Mehran, Western Iran Using Nested PCR

    PubMed Central

    FEIZ HADDAD, Mohammad Hossein; GHASEMI, Ezatollah; MARAGHI, Sharif; TAVALA, Mehdi

    2016-01-01

    Background: The incidence of cutaneous leishmaniasis in the city of Mehran has risen sharply in recent years because the city borders Iraq, which has allowed entrance of different Leishmania strains. These strains have different shapes, periods of disease, and healing of lesions. The present study identified and determined cutaneous leishmaniasis species in this region. Methods: This cross-sectional study was carried out by preparing slides from 92 patients with suspected cutaneous leishmaniasis lesions from Mehran during 2012–2013. Parasite genomic DNA was extracted and CSB2XF and CSB1XR primers were used to amplify the Leishmania minicircle kDNA regions. The parasite species were detected by specific 13Z and LIR primers by applying nested PCR technique. Results: All banding patterns were diagnosed as L. major parasite by comparison of standard models with amplified fragments 560 bp in length from bands. The patients were 56.5% male and 43.5% female. The most frequently-infected age group was the 21–30 years group at a rate of 27.2%. About 56.3% of patients had a single lesion and a significant correlation was observed between age and number of lesions (P > 0.05). Conclusion: The nested PCR technique was shown to be an effective method with high sensitivity and specificity for identification of human Leishmania parasites. Molecular analysis revealed that parasites isolated from Mehran were identified as L. major and the disease was rural in form. PMID:27095970

  2. Herbal extract targets in Leishmania tropica.

    PubMed

    Mohammad, Bassim I; Al Shammary, Maani N; Abdul Mageed, Roaa H; Yousif, Nasser Ghaly

    2015-12-01

    The present study aims to investigate the effect of some herbal extract such as phenolic compounds on the viability of Leishmania tropica promastigotes in vitro. Four tested chemical agents (caffeic acid (CA), ferulic acid (FA), syringic acid (SA) and 4-hydroxybenzoic acid (4-HBA)) were used in this study. The viability of Leishmania tropica promastigotes was investigated under five different concentrations (10, 15, 20, 25 and 30 mg/ml) of each agent after (72 h). CA was the most active agent on the promastigotes viability after 72 h exposure to 30 mg/ml concentration so that the parasiticidal effect reach (53 × 10(4)) promastigote/ml. FA is the second agent in parasiticidal effect that parasiticidal effect reach to (50 × 10(4) promastigote/ml) at a concentration (30 mg/ml), 4-HBA is the third agent in parasiticidal effect that reach to (48 × 10(4) promastigote/ml) at a concentration (30 mg/ml), SA is the weakest agent in parasiticidal activity that reach to (44 × 10(4) promastigote/ml) at a concentration (30 mg/ml). It can be concluded that (CA, FA, SA and 4-HBA) possess acidal effect on the Leishmania tropica promastigotes in vitro.

  3. First evidence of Leishmania infection in European brown hare (Lepus europaeus) in Greece: GIS analysis and phylogenetic position within the Leishmania spp.

    PubMed

    Tsokana, C N; Sokos, C; Giannakopoulos, A; Mamuris, Z; Birtsas, P; Papaspyropoulos, K; Valiakos, G; Spyrou, V; Lefkaditis, M; Chatzopoulos, D C; Kantere, M; Manolakou, K; Touloudi, A; Burriel, A Rodi; Ferroglio, E; Hadjichristodoulou, C; Billinis, C

    2016-01-01

    Although the existence of a sylvatic transmission cycle of Leishmania spp., independent from the domestic cycle, has been proposed, data are scarce on Leishmania infection in wild mammals in Greece. In this study, we aimed to investigate the presence of Leishmania infection in the European brown hare in Greece, to infer the phylogenetic position of the Leishmania parasites detected in hares in Greece, and to identify any possible correlation between Leishmania infection in hares with environmental parameters, using the geographical information system (GIS). Spleen samples from 166 hares were tested by internal transcribed spacer-1 (ITS-1)-nested PCR for the detection of Leishmania DNA. Phylogenetic analysis was performed on Leishmania sequences from hares in Greece in conjunction with Leishmania sequences from dogs in Greece and 46 Leishmania sequences retrieved from GenBank. The Leishmania DNA prevalence in hares was found to be 23.49 % (95 % confidence interval (CI) 17.27-30.69). The phylogenetic analysis confirmed that the Leishmania sequences from hares in Greece belong in the Leishmania donovani complex. The widespread Leishmania infection in hares should be taken into consideration because under specific circumstances, this species can act as a reservoir host. This study suggests that the role of wild animals, including hares, in the epidemiology of Leishmania spp. in Greece deserves further elucidation.

  4. Clinical manifestations and genetic variation of Leishmania infantum and Leishmania tropica in Southern Turkey.

    PubMed

    Eroglu, Fadime; Koltas, Ismail S; Alabaz, Derya; Uzun, Soner; Karakas, Mehmet

    2015-07-01

    L. infantum was isolated from cutaneous leishmaniasis (CL) skin lesions in patients having no signs and symptoms of visceral leishmaniasis (VL). Similarly, L. tropica had previously been isolated from patients with VL in the absence of cutaneous lesions. It was not certain how visceralization occurred. Smears (207) and bone marrow samples (135) were taken from CL and VL-suspected patients, respectively. Microscopic examination, ITS1-PCR, RFLP and DNA sequencing for all samples were analyzed. The microscopic examination of smears was found to be 61.3% (127/207) in CL-suspected cases and bone marrow samples were found to be positive 8.8% (12/135) in VL-suspected cases. L. tropica 48.6% (72/148), L. infantum 35.8% (53/148), L. major 15.6% (23/148) in CL, and L. infantum 56.3% (18/32), L. donovani 31.2% (10/32), L. tropica 12.5% (4/32) in VL were found with PCR-RFLP. In addition, the DNA sequencing revealed a genetic variation in L. infantum (variants 1-3) and L. tropica (variants 1-5). We assume that the increased disease occurrence may have resulted from geographical expansion of disease, changing patterns of international travel, population migrations, non-immune people into endemic regions of infected people into non-endemic regions. In this study, L. infantum (variant 3) only in CL-patients and L. tropica (variant 2) only in VL-patients were identified. We hypothesize that genetic variation might play a role in the causation of CL and VL in southern Turkey and the genetic variants may differ according to the geographical location among Leishmania strains.

  5. Spread of Leishmania infantum in Europe with dog travelling.

    PubMed

    Maia, Carla; Cardoso, Luís

    2015-09-30

    Leishmania infantum is the etiological agent of canine leishmaniosis (CanL) in Europe, where it is endemic in the Mediterranean region, with dogs being considered the major reservoir of the parasite for humans and other mammalian hosts. The main transmission mode of Leishmania is by the bite of infected phlebotomine sand fly insects (genus Phlebotomus), which are the only proven vectors of this zoonotic protozoan. Less common, non-vectorial transmission between dogs include infection through transfused blood products from infected donors, transplacental and venereal transmission. CanL has exhibited an expansion to new locations in Europe, mainly northwards, either by territorial contiguity, often in association with global warming that favours vectorial transmission, or by the long-distance importation of infected dogs. The increasing incidence of CanL in countries where the disease is not endemic is challenging owners, veterinarians and government authorities. Most infected dogs in these new areas have been relocated from or travelled with their owners to endemic regions, but in some cases transmission might have also been autochthonous. In the absence of prophylactic measures, the introduction of infected dogs in areas previously free of endemic CanL but which have competent sand fly vectors can result in a potential persistence of L. infantum. The spread of L. infantum in Europe is reviewed with a focus on transmission, epidemiology and geographic distribution of endemic and non-endemic CanL, infection and disease in humans and animal hosts other than dogs, together with prevention and additional control strategies.

  6. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development

    PubMed Central

    Dupé, Aurélien; Dumas, Carole; Papadopoulou, Barbara

    2015-01-01

    Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in

  7. An improved purification procedure for Leishmania RNA virus (LRV)

    PubMed Central

    de Souza, Marcos Michel; Manzine, Livia Regina; da Silva, Marcos Vinicius G.; Bettini, Jefferson; Portugal, Rodrigo Vilares; Cruz, Angela Kaysel; Arruda, Eurico; Thiemann, Otavio Henrique

    2014-01-01

    Leishmania RNA Virus (LRV, Totiviridae) infect Leishmania cells and subvert mice immune response, probably promoting parasite persistence, suggesting significant roles for LRV in host-parasite interaction. Here we describe a new LRV1-4 purification protocol, enabling capsid visualization by negatively stained electron microscopy representing a significant contribution to future LRV investigations. PMID:25242960

  8. An improved purification procedure for Leishmania RNA virus (LRV).

    PubMed

    de Souza, Marcos Michel; Manzine, Livia Regina; da Silva, Marcos Vinicius G; Bettini, Jefferson; Portugal, Rodrigo Vilares; Cruz, Angela Kaysel; Arruda, Eurico; Thiemann, Otavio Henrique

    2014-01-01

    Leishmania RNA Virus (LRV, Totiviridae) infect Leishmania cells and subvert mice immune response, probably promoting parasite persistence, suggesting significant roles for LRV in host-parasite interaction. Here we describe a new LRV1-4 purification protocol, enabling capsid visualization by negatively stained electron microscopy representing a significant contribution to future LRV investigations.

  9. Nitric oxide production by Peromyscus yucatanicus (Rodentia) infected with Leishmania (Leishmania) mexicana

    PubMed Central

    Loría-Cervera, Elsy Nalleli; Sosa-Bibiano, Erika Ivett; Villanueva-Lizama, Liliana Estefanía; Van Wynsberghe, Nicole Raymonde; Canto-Lara, Silvia Beatriz; Batún-Cutz, José Luis; Andrade-Narváez, Fernando José

    2013-01-01

    Peromyscus yucatanicus (Rodentia: Cricetidae) is a primary reservoir of Leishmania (Leishmania) mexicana (Kinetoplastida: Trypanosomatidae). Nitric oxide (NO) generally plays a crucial role in the containment and elimination of Leishmania. The aim of this study was to determine the amount of NO produced by P. yucatanicus infected with L. (L.) mexicana. Subclinical and clinical infections were established in P. yucatanicus through inoculation with 1 x 102 and 2.5 x 106 promastigotes, respectively. Peritoneal macrophages were cultured alone or co-cultured with lymphocytes with or without soluble Leishmania antigen. The level of NO production was determined using the Griess reaction. The amount of NO produced was significantly higher (p ≤ 0.0001) in co-cultured macrophages and lymphocytes than in macrophages cultured alone. No differences in NO production were found between P. yucatanicus with subclinical L. (L.) mexicana infections and animals with clinical infections. These results support the hypothesis that the immunological mechanisms of NO production in P. yucatanicus are similar to those described in mouse models of leishmaniasis and, despite NO production, P. yucatanicus is unable to clear the parasite infection. PMID:23579796

  10. Development of Leishmania vaccines: predicting the future from past and present experience

    PubMed Central

    Mutiso, Joshua Muli; Macharia, John Chege; Kiio, Maria Ndunge; Ichagichu, James Maina; Rikoi, Hitler; Gicheru, Michael Muita

    2013-01-01

    Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. Resistance to infection is associated with a T-helper-1 immune response that activates macrophages to kill the intracellular parasite in a nitric oxide-dependent manner. Conversely, disease progression is generally associated with a T-helper-2 response that activates humoral immunity. Current control is based on chemotherapeutic treatments which are expensive, toxic and associated with high relapse and resistance rates. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no vaccine is available despite substantial efforts by many laboratories. Major impediments in Leishmania vaccine development include: lack of adequate funding from national and international agencies, problems related to the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, an important but least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on the progress of the search for an effective vaccine against human and canine leishmaniasis. PMID:23554800

  11. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    PubMed Central

    2011-01-01

    Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis. PMID:21794145

  12. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps.

    PubMed

    Gabriel, Christelle; McMaster, W Robert; Girard, Denis; Descoteaux, Albert

    2010-10-01

    Upon their recruitment to a site of infection and their subsequent activation, neutrophils release DNA and a subset of their granule content to form filamentous structures, known as neutrophil extracellular traps, which capture and kill microorganisms. In this study, we show that Leishmania promastigotes induced the rapid release of neutrophil extracellular traps from human neutrophils and were trapped by these structures. The use of Leishmania mutants defective in the biosynthesis of either lipophosphoglycan or GP63 revealed that these two major surface promastigote virulence determinants were not responsible for inducing the release of the surface protease neutrophil extracellular traps. We also demonstrate that this induction was independent of superoxide production by neutrophils. Finally, in contrast to wild-type Leishmania donovani promastigotes, mutants defective in lipophosphoglycan biosynthesis were highly susceptible to the antimicrobial activity of neutrophil extracellular traps. Altogether, our data suggest that neutrophil extracellular traps may contribute to the containment of L. donovani promastigotes at the site of inoculation, thereby facilitating their uptake by mononuclear phagocytes.

  13. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum.

    PubMed

    McNicoll, François; Drummelsmith, Jolyne; Müller, Michaela; Madore, Eric; Boilard, Nathalie; Ouellette, Marc; Papadopoulou, Barbara

    2006-06-01

    Protozoan parasites of the genus Leishmania are found as promastigotes in the sandfly vector and as amastigotes in mammalian macrophages. Mechanisms controlling stage-regulated gene expression in these organisms are poorly understood. Here, we applied a comprehensive approach consisting of protein prefractionation, global proteomics and targeted DNA microarray analysis to the study of stage differentiation in Leishmania. By excluding some abundant structural proteins and reducing complexity, we detected and identified numerous novel differentially expressed protein isoforms in L. infantum. Using 2-D gels, over 2200 protein isoforms were visualized in each developmental stage. Of these, 6.1% were strongly increased or appeared unique in the promastigote stage, while the relative amounts of 12.4% were increased in amastigotes. Amastigote-specific protein isoform and mRNA expression trends correlated modestly (53%), while no correlation was found for promastigote-specific spots. Even where direction of regulation was similar, fold-changes were more modest at the RNA than protein level. Many proteins were present in multiple spots, suggesting that PTM is extensive in this organism. In several cases, different isoforms appeared to be specific to different life stages. Our results suggest that post-transcriptional controls at translational and post-translational levels could play major roles in differentiation in Leishmania parasites.

  14. Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis.

    PubMed

    Peña, Mauricio S; Cabral, Guilherme C; Fotoran, Wesley L; Perez, Katia R; Stolf, Beatriz S

    2017-03-02

    Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species. Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.

  15. Leishmania spp: temperature sensitivity of promastigotes in vitro as a model for tropism in vivo.

    PubMed

    Callahan, H L; Portal, I F; Bensinger, S J; Grogl, M

    1996-12-01

    Since in humans, skin temperature is lower than internal temperature, the temperature sensitivity of Leishmania may influence the tropism of Leishmania in the human host; temperature-sensitive parasites may remain in the skin, temperature-resistant parasites may go to the viscera. In order to pursue the genetic factors controlling Leishmania tropism, we have developed an in vitro promastigote temperature model. Promastigote growth is measured at 30, 32, and 34 degrees C and compared with growth at the control temperature (25 degrees C). The results from tests of the promastigote temperature sensitivity of eight species (33 different strains) show that visceral species (L. donovani and L. chagasi) are more temperature resistant than cutaneous species (L. major, L. tropica, L. mexicana, L. braziliensis, L. panamensis, and L. amazonensis), that Old World species are more temperature-resistant than New World species, and that within the New World cutaneous species there are three distinct temperature sensitivity groupings (L. mexicana > L. braziliensis and L. panamensis > L. amazonensis). Interestingly, viscerotropic L. tropica from Operation Desert Storm and L. donovani complex strains isolated from cutaneous lesions are more and less temperature-sensitive, respectively, than strains of the same species with the expected tropism in vivo.

  16. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  17. Molecular Evaluation of a Case of Visceral Leishmaniasis Due to Leishmania tropica in Southwestern Iran.

    PubMed

    Sarkari, Bahador; Bavarsad Ahmadpour, Niloofar; Moshfe, Abdolali; Hajjaran, Homa

    2016-01-01

    We describe a case of visceral leishmaniasis (VL) due to Leishmania tropica in a 50-year-old Iranian man lived in a VL-endemic area in southwest of Iran. The patient presented with a 3-month history of fever and splenomegaly. Clinical signs and serological findings were suggestive of VL. Spleen biopsy was taken from the patient and intracellular forms of Leishmania amastigotes was seen in Giemsa stained smears. The patient was treated with pentavalent antimonial compound with complete resolution of his systemic signs and symptoms. DNA was extracted from the microscopic slides of the spleen biopsy and the nagt (N-Acetylglucosamine-1-Phosphate Transferase) gene of Leishmania was PCR-amplified. Sequence analysis of the PCR product demonstrated that the case has 99% identity with those of available sequences of L. tropica. Intra-species variation within isolate was 0-0.1%; whereas, inter-species differences of the isolate with those of L. major and L. infantum was significantly higher.

  18. Immunogenicity and functional characterization of Leishmania-derived hepatitis C virus envelope glycoprotein complex

    PubMed Central

    Grzyb, Katarzyna; Czarnota, Anna; Brzozowska, Agnieszka; Cieślik, Anna; Rąbalski, Łukasz; Tyborowska, Jolanta; Bieńkowska-Szewczyk, Krystyna

    2016-01-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are the main inducers of a cross-neutralizing antibody response which plays an important role in the early phase of viral infection. Correctly folded and immunologically active E1E2 complex can be expressed in mammalian cells, though the production process might still prove restrictive, even if the immunological response of a vaccine candidate is positive. Here, we report a characterization and immunogenicity study of a full-length (fE1E2) and soluble version of the E1E2 complex (tE1E2) from genotype 1a, successfully expressed in the cells of Leishmania tarentolae. In a functional study, we confirmed the binding of both Leishmania-derived E1E2 complexes to the CD-81 receptor and the presence of the major epitopes participating in a neutralizing antibody response. Both complexes were proved to be highly immunogenic in mice and elicited neutralizing antibody response. Moreover, cross-reactivity of the mouse sera was detected for all tested HCV genotypes with the highest signal intensity observed for genotypes 1a, 1b, 5 and 6. Since the development of a prophylactic vaccine against HCV is still needed to control the global infection, our Leishmania-derived E1E2 glycoproteins could be considered a potential cost-effective vaccine candidate. PMID:27481352

  19. New PCR Assay Using Glucose-6-Phosphate Dehydrogenase for Identification of Leishmania Species

    PubMed Central

    Castilho, Tiago M.; Shaw, Jeffrey Jon; Floeter-Winter, Lucile M.

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is one of the multilocus enzymes used to identify Leishmania by zymodeme analysis. The polymorphic pattern revealed by partial characterization of the gene encoding G6PD generated molecular markers useful in the identification of different Leishmania species by PCR. Initially degenerate oligonucleotides were designed on the basis of data on the conserved active center described for other organisms. Primers for reverse transcription-PCR experiments, designed from the nucleotide sequence of the PCR product, enabled us to characterize the 5′ and 3′ untranslated regions and the G6PD open reading frame of reference strains of Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) amazonensis. Sets of paired primers were designed and used in PCR assays to discriminate between the parasites responsible for tegumentar leishmaniasis of the subgenera Leishmania (Leishmania) and Leishmania (Viannia) and to distinguish L. (Viannia) braziliensis from others organisms of the subgenus Leishmania (Viannia). No amplification products were detected for the DNA of Crithidia fasciculata, Trypanosoma cruzi, or Leishmania (Sauroleishmania) tarentolae or DNA from a healthy human control. The tests proved to be specific and were sensitive enough to detect parasites in human biopsy specimens. The successful discrimination of L. (Viannia) braziliensis from other parasites of the subgenus Leishmania (Viannia) opens the way to epidemiological studies in areas where more than one species of the subgenus Leishmania (Viannia) exist, such as Amazonia, as well as follow-up studies after chemotherapy and assessment of clinical prognoses. PMID:12574243

  20. Leishmania infantum Genetic Diversity and Lutzomyia longipalpis Mitochondrial Haplotypes in Brazil

    PubMed Central

    Ribolla, Paulo Eduardo Martins; Gushi, Letícia Tsieme; Pires e Cruz, Maria do Socorro; Costa, Carlos Henrique Nery; Costa, Dorcas Lamounier; Lima Júnior, Manoel Sebastião da Costa; Dorval, Maria Elizabeth Moraes Cavalheiros; Gutierrez de Oliveira, Alessandra; da Cunha Santos, Mirella Ferreira; Fonseca Camargo-Neves, Vera Lúcia; Fortaleza, Carlos Magno Castello Branco; Alonso, Diego Peres

    2016-01-01

    Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in the Americas with domestic dogs being its major reservoir hosts. The main VL vector is the sandfly Lutzomyia longipalpis, while other Lutzomyia species may play a role in disease transmission. Although the genetic structure of L. infantum populations has been widely evaluated, only a few studies have addressed this subject coupled to the genetic structure of the respective sandfly vectors. In this study, we analyzed the population structure of L. infantum in three major VL endemic areas in Brazil and associated it with Lutzomyia longipalpis geographic structure. PMID:27119085

  1. Leishmania infantum Genetic Diversity and Lutzomyia longipalpis Mitochondrial Haplotypes in Brazil.

    PubMed

    Ribolla, Paulo Eduardo Martins; Gushi, Letícia Tsieme; Pires E Cruz, Maria do Socorro; Costa, Carlos Henrique Nery; Costa, Dorcas Lamounier; Lima Júnior, Manoel Sebastião da Costa; Dorval, Maria Elizabeth Moraes Cavalheiros; Gutierrez de Oliveira, Alessandra; da Cunha Santos, Mirella Ferreira; Fonseca Camargo-Neves, Vera Lúcia; Fortaleza, Carlos Magno Castello Branco; Alonso, Diego Peres

    2016-01-01

    Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in the Americas with domestic dogs being its major reservoir hosts. The main VL vector is the sandfly Lutzomyia longipalpis, while other Lutzomyia species may play a role in disease transmission. Although the genetic structure of L. infantum populations has been widely evaluated, only a few studies have addressed this subject coupled to the genetic structure of the respective sandfly vectors. In this study, we analyzed the population structure of L. infantum in three major VL endemic areas in Brazil and associated it with Lutzomyia longipalpis geographic structure.

  2. Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA.

    PubMed

    Ceccarelli, Marcello; Galluzzi, Luca; Migliazzo, Antonella; Magnani, Mauro

    2014-01-01

    Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples

  3. Leukocyte entry into the CNS of Leishmania chagasi naturally infected dogs.

    PubMed

    Melo, G D; Marcondes, M; Vasconcelos, R O; Machado, G F

    2009-06-10

    In dogs, there is an association of chronic visceral leishmaniasis with neurological symptoms, and very few publications have investigated whether these neurological manifestations correlate with specific alterations in brain. A total of 42 mixed-breed adult dogs were selected from the Veterinary Hospital of UNESP-Araçatuba and the Control Zoonosis Center in Araçatuba, São Paulo State, Brazil, which is an endemic area for visceral leishmaniasis. Animals presenting positive ELISA and/or positive parasitological diagnosis of Leishmania were enrolled in the group of infected dogs (n=32). Animals with negative ELISA results and parasitological tests for Leishmania, including a negative immunofluorescence test for toxoplasmosis and neosporosis, were included as the control group (n=10). Brain samples were collected, stored in 10% buffered formalin and subjected to routine histological procedures, following by staining with haematoxylin-eosin (HE) and immunohistochemical examination for T and B lymphocytes and phagocytic cells. Cerebrospinal fluid was collected to determine the anti-Leishmania antibody titers. Histological examination of HE stains demonstrated intense inflammatory infiltrate, primarily in the choroid plexus, which was composed of mononuclear cells with no detectable parasites. Immunohistochemistry revealed that CD3(+) T lymphocytes were the major components of the inflammatory infiltrate at the choroid plexus and in the brain. Infected dogs had more CD3(+) T cells than uninfected animals (P=0.0002). Cerebrospinal fluid from infected dogs contained high titers of anti-Leishmania antibodies in comparison with control animals (P<0.0001), which suggests a compromise of the blood-cerebrospinal fluid barrier. Leukocyte entry into the brain suggests the participation of these cells in the pathogenesis of neurological disorders during the advanced stages of leishmaniasis and confirms that the choroid plexus is an important structure for T cell influx.

  4. Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background

    PubMed Central

    Decuypere, Saskia; Vanaerschot, Manu; Brunker, Kirstyn; Imamura, Hideo; Müller, Sylke; Khanal, Basudha; Rijal, Suman; Dujardin, Jean-Claude; Coombs, Graham H.

    2012-01-01

    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability. PMID:22389733

  5. Activity of olive leaf extracts against the promastigote stage of Leishmania species and their correlation with the antioxidant activity.

    PubMed

    Sifaoui, Ines; López-Arencibia, Atteneri; Martín-Navarro, Carmen Ma; Chammem, Nadia; Reyes-Batlle, María; Mejri, Mondher; Lorenzo-Morales, Jacob; Abderabba, Manef; Piñero, José E

    2014-06-01

    Leishmaniasis is one of the neglected tropical diseases in terms of drug discovery and development. Furthermore, the chemotherapy used to treat this disease has been proved to be highly toxic and to present resistance issues. As consequent, the need for novel leishmanicidal molecules has notably increased in the recent years. In the present work an attempt was made to evaluate the antioxidant and leishmanicidal activities besides presence of compounds in leaf extracts of 5 different Tunisian olive tree varieties, used as traditional medicine in this country. The concentration of extracts needed to inhibit 50% of the parasitic growth (IC50) was estimated using different Leishmania strains. All tested extracts showed an inhibitory effect on the parasite growth with IC50 ranging from 2.130±0.023 to 71.570±4.324μg/ml, respectively for the methanolic extracts of Limouni and Zarrazi against Leishmania donovani. In fact, this activity was significantly affected by the olive cultivar and the tested Leishmania strain. Furthermore, the activities against both Leishmania tropica and major species were correlated to the total phenolic compounds. These results could suggest that olive leaf extract could carry potential new compounds for the development of novel drugs against Leishmaniasis.

  6. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania

    PubMed Central

    Flegontov, Pavel; Butenko, Anzhelika; Firsov, Sergei; Kraeva, Natalya; Eliáš, Marek; Field, Mark C.; Filatov, Dmitry; Flegontova, Olga; Gerasimov, Evgeny S.; Hlaváčová, Jana; Ishemgulova, Aygul; Jackson, Andrew P.; Kelly, Steve; Kostygov, Alexei Y.; Logacheva, Maria D.; Maslov, Dmitri A.; Opperdoes, Fred R.; O’Reilly, Amanda; Sádlová, Jovana; Ševčíková, Tereza; Venkatesh, Divya; Vlček, Čestmír; Volf, Petr; Jan Votýpka; Záhonová, Kristína; Yurchenko, Vyacheslav; Lukeš, Julius

    2016-01-01

    Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum. PMID:27021793

  7. Calcium and Magnesium Ions Modulate the Oligomeric State and Function of Mitochondrial 2-Cys Peroxiredoxins in Leishmania Parasites.

    PubMed

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-03-14

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allowed mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function was demonstrated to be critical for the parasite infectivity in mammals and its activation was considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in the mitochondrial metabolism and now also integrate a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondrion. Moreover, we demonstrated that a constitutively dimeric Prx1m mutant impairs Leishmania's survival under heat stress, supporting the central role of chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.

  8. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania.

    PubMed

    Flegontov, Pavel; Butenko, Anzhelika; Firsov, Sergei; Kraeva, Natalya; Eliáš, Marek; Field, Mark C; Filatov, Dmitry; Flegontova, Olga; Gerasimov, Evgeny S; Hlaváčová, Jana; Ishemgulova, Aygul; Jackson, Andrew P; Kelly, Steve; Kostygov, Alexei Y; Logacheva, Maria D; Maslov, Dmitri A; Opperdoes, Fred R; O'Reilly, Amanda; Sádlová, Jovana; Ševčíková, Tereza; Venkatesh, Divya; Vlček, Čestmír; Volf, Petr; Votýpka, Jan; Záhonová, Kristína; Yurchenko, Vyacheslav; Lukeš, Julius

    2016-03-29

    Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.

  9. Identification of highly specific and cross-reactive antigens of Leishmania species by antibodies from Leishmania (Leishmania) chagasi naturally infected dogs.

    PubMed

    Vale, A M; Fujiwara, R T; da Silva Neto, A F; Miret, J A; Alvarez, D C C; da Silva, J C F; Campos-Neto, A; Reed, S; Mayrink, W; Nascimento, E

    2009-02-01

    The Leishmania species present a genetic homology that ranges from 69 to 90%. Because of this homology, heterologous antigens have been used in the immunodiagnosis and vaccine development against Leishmania infections. In the current work, we describe the identification of species-specific and cross-reactive antigens among several New World Leishmania species, using symptomatic and asymptomatic naturally Leishmania chagasi-infected dog sera. Soluble antigens from five strains of New World Leishmania were separated by electrophoresis in SDS-PAGE and immunoblotted. Different proteins were uniquely recognized in the L. chagasi panel by either symptomatic or asymptomatic dog sera suggesting their use as markers for the progression of disease and diagnosis of the initial (sub-clinical) phase of the infection. Cross-reactive antigens were identified using heterologous antigenic panels (L. amazonensis strains PH8 and BH6, L. guyanensis and L. braziliensis). L. guyanensis panel showed the highest cross-reactivity against L. chagasi specific antibodies, suggesting that proteins from this extract might be suitable for the diagnosis of visceral canine leishmaniasis. Interestingly, the 51 and 97 kDa proteins of Leishmania were widely recognized (77.8% to 100%) among all antigenic panels tested, supporting their potential use for immunodiagnosis. Finally, we identified several leishmanial antigens that might be useful for routine diagnosis and seroepidemiological studies of the visceral canine leishmaniasis.

  10. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis

    PubMed Central

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection. PMID:26513474

  11. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis.

    PubMed

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.

  12. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

    PubMed

    Rabhi, Imen; Rabhi, Sameh; Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.

  13. Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View

    PubMed Central

    Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection. PMID:22928052

  14. New Insights Into the Transmissibility of Leishmania infantum From Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites

    PubMed Central

    Aslan, Hamide; Oliveira, Fabiano; Meneses, Claudio; Castrovinci, Philip; Gomes, Regis; Teixeira, Clarissa; Derenge, Candace A.; Orandle, Marlene; Gradoni, Luigi; Oliva, Gaetano; Fischer, Laurent; Valenzuela, Jesus G.; Kamhawi, Shaden

    2016-01-01

    Canine leishmaniasis (CanL) is a chronic fatal disease of dogs and a major source of human infection through propagation of parasites in vectors. Here, we infected 8 beagles through multiple experimental vector transmissions with Leishmania infantum–infected Lutzomyia longipalpis. CanL clinical signs varied, although live parasites were recovered from all dog spleens. Splenic parasite burdens correlated positively with Leishmania-specific interleukin 10 levels, negatively with Leishmania-specific interferon γ and interleukin 2 levels, and negatively with Leishmania skin test reactivity. A key finding was parasite persistence for 6 months in lesions observed at the bite sites in all dogs. These recrudesced following a second transmission performed at a distal site. Notably, sand flies efficiently acquired parasites after feeding on lesions at the primary bite site. In this study, controlled vector transmissions identify a potentially unappreciated role for skin at infectious bite sites in dogs with CanL, providing a new perspective regarding the mechanism of Leishmania transmissibility to vector sand flies. PMID:26768257

  15. Molecular characterization of Leishmania infection in sand flies from Al-madinah Al-munawarah province, western Saudi Arabia.

    PubMed

    El-Beshbishy, Hesham A; Al-Ali, Khalil H; El-Badry, Ayman A

    2013-06-01

    Cutaneous leishmaniasis (CL) is caused by various species of the genus Leishmania. The disease is considered a major health problem in different areas of Saudi Arabia including Al-madinah Al-munawarah province. We aimed to identify Leishmania species isolated from sand fly vectors by molecular analysis. Sand fly sampling was carried out from May 2010 to October 2010 in province of Al-madinah Al-munawarah from four different localities. Female sand flies collected were subjected to DNA extraction followed by molecular analysis using the semi-nested PCR and conventional PCR protocols, respectively, against minicircle kDNA and ribosomal internal transcribed spacer 1 (ITS1-rDNA). The PCR positive specimens against ITS1-rDNA locus were digested for further confirmation of species identification. A total of 2910 sand flies were collected. Phlebotomus papatasi accounted for 93.8% (1673 males and 1057 females), however, the number of Phlebotomus sergenti was only 180 (109 males and 71 females). Sixty-two out of 250 (23.7%) female P. papatasi tested for Leishmania parasite were positive for Leishmania major using the semi-nested PCR method against kDNA. All of the 62 positive specimens produced a band size 650 bp. A 31% of female P. sergenti were positive against kDNA of Leishmania tropica and produced a 720 bp band. These positive P. sergenti for L. tropica DNA produced ITS1-PCR-RFLP profile showed two bands of ∼200 bp and 57 bp which are specific for L. tropica, confirming the presence of L. tropica in P. sergenti. However, the ITS1-PCR-RFLP profile showed two bands of ∼203 bp and 132 bp which are specific for L. major in P. papatasi. We concluded that, the semi-nested PCR method against kDNA and the ITS1-PCR-RFLP analysis are useful tools for molecular identification of both L. major and L. tropica. A multicenter study is necessary in order to evaluate the extent of the disease and functional analysis of new Leishmania genes.

  16. Functional Analysis of Leishmania Cyclopropane Fatty Acid Synthetase

    PubMed Central

    Oyola, Samuel O.; Evans, Krystal J.; Smith, Terry K.; Smith, Barbara A.; Hilley, James D.; Mottram, Jeremy C.; Kaye, Paul M.; Smith, Deborah F.

    2012-01-01

    The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism. PMID:23251490

  17. COMPARATIVE STUDIES OF HERPETOMONADS AND LEISHMANIAS

    PubMed Central

    Noguchi, Hideyo

    1926-01-01

    Serological reactions and fermentation tests have been employed in the present investigation as a means of differentiating various strains of herpetomonads from one another as well as from leishmanias. The twelve strains of herpetomonads isolated from insects and plants all proved to be serologically unrelated to any of the leishmanias, and were distinguishable from them by the manner in which they affected various carbohydrates. Three of the strains of herpetomonads tested had been isolated from milkweeds (Asclepias syriaca and A. nivea) and four from bugs which feed on the latices of these plants (Oncopeltus fasciatus, Oncopeltus sp.? from Peru, and Lygæus kalmii). When tested for their serological and carbohydrate-fermenting properties, however, the seven strains proved to be of two kinds only, one represented by the strain first isolated from Oncopeltus fasciatus) and hence named H. oncofelti, the other by H. lygæorum, so named because it was first isolated from Lygæus kalmii. Serologically there was a certain degree of group reaction among the flagellates of these two types, but in their action upon carbohydrates they were entirely different, H. oncopelti splitting thirteen carbohydrates, H. lygæorum only three. Three strains of herpetomonads isolated from flies proved to be distinct both in serological properties and in their action upon carbohydrates. One, derived from the house fly, and called H. muscidarum, was able to ferment most of the carbohydrates tested, including lactose which was not affected by any of the other strains. The other two, isolated from bluebottle flies, behaved much the same as the leishmanias with regard to carbohydrate fermentation, attacking five of the same sugars. One of them fermented galactose in addition, the other both galactose and inulin. Two strains from mosquitoes (Anopheles and Culex) behaved identically in serological reactions and also in fermentation tests. They are regarded as one species and have been named H

  18. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host

    PubMed Central

    Doehl, Johannes S. P.; Sádlová, Jovana; Aslan, Hamide; Pružinová, Kateřina; Votýpka, Jan; Kamhawi, Shaden; Volf, Petr

    2017-01-01

    Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation. PMID:28095465

  19. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  20. Antiproliferative and ultrastructural effects of phenethylamine derivatives on promastigotes and amastigotes of Leishmania (Leishmania) infantum chagasi.

    PubMed

    Brasil, Paula Ferreira; de Freitas, Júlia Araújo; Barreto, Anna Léa Silva; Adade, Camila Marques; Reis de Sá, Leandro Figueira; Constantino-Teles, Pamella; Toledo, Fabiano Travanca; de Sousa, Bruno A; Gonçalves, Augusto Cesar; Romanos, Maria Teresa Villela; Comasseto, João V; Dos Santos, Alcindo A; Tessis, Ana Claudia; Souto-Padrón, Thais; Soares, Rosangela Maria A; Ferreira-Pereira, Antonio

    2017-04-01

    Leishmania (Leishmania) infantum chagasi is one of the agents that cause visceral leishmaniasis. This disease occurs more frequently in third world countries, such as Brazil. The treatment is arduous, and is dependent on just a few drugs like the antimonial derivatives and amphotericin B. Moreover, these drugs are not only expensive, but they can also cause severe side effects and require long-term treatment. Therefore, it is very important to find new compounds that are effective against leishmaniasis. In the present work we evaluated a new group of synthetic amides against the promastigote and amastigote forms of L. infantum chagasi. The results showed that one of these amides in particular, presented very effective activity against the promastigotes and amastigotes of L. infantum chagasi at low concentrations and it also presented low toxicity for mammal cells, which makes this synthetic amide a promising drug for combating leishmaniasis.

  1. First report of vertical transmission of Leishmania (Leishmania) infantum in a naturally infected bitch from Brazil.

    PubMed

    da Silva, Sydnei Magno; Ribeiro, Vitor Marcio; Ribeiro, Raul Rio; Tafuri, Wagner Luiz; Melo, Maria Norma; Michalick, Marilene Suzan Marques

    2009-12-03

    Dogs are the most important reservoir of Leishmania (L.) infantum, the causal agent of visceral leishmaniasis (VL) in Brazil. Vectorial infection is the main route of transmission of the parasites. This paper reports the first case of vertical transmission of L. infantum in Brazil, confirmed by PCR and immunohistochemistry techniques in samples from spleen and liver of two stillborn pups from a bitch naturally infected with L. infantum in Belo Horizonte city, endemic area of VL. This result confirms the existence of transplacental transmission of Leishmania between dogs, and suggests the need for further studies to determine the rate of occurrence of this fact in endemic areas and what is their role in the epidemiology of the disease.

  2. An Epidemic Outbreak of Canine Cutaneous Leishmaniasis in Colombia Caused by Leishmania braziliensis and Leishmania panamensis

    PubMed Central

    Vélez, Iván D.; Carrillo, Lina M.; López, Liliana; Rodríguez, Erwin; Robledo, Sara M.

    2012-01-01

    The largest recorded outbreak of cutaneous leishmaniasis in Colombia's history occurred during 2005–2009 in soldiers of the Colombian Army, with ∼40,000 cases. This outbreak was caused by the influx of military personnel into the jungle with the mission of combat illicit crops and the guerrilla. The soldiers remain for long periods within the rainforest and are exposed to the bite of infected sand flies. During the military activities, soldiers work with dogs specially trained to detect landmines, and therefore, dogs are also exposed to the infected sand flies and show high incidence of cutaneous leishmaniasis (CL). This work describes an epidemic outbreak of canine CL caused by Leishmania braziliensis and Leishmania panamensis in Colombia, South America. The clinical features of the disease and the response to treatment with pentavalent antimonials observed in 72 guard dogs from the Colombian Army are described. A program for prevention and control of canine CL is also discussed. PMID:22556078

  3. Hepatic extracellular matrix alterations in dogs naturally infected with Leishmania (Leishmania) chagasi

    PubMed Central

    Melo, Ferdinan Almeida; Moura, Eliane Perlatto; Ribeiro, Raul Rio; Alves, Cíntia Fontes; Caliari, Marcelo Vidigal; Tafuri, Washington Luiz; da Silva Calabrese, Kátia; Tafuri, Wagner Luiz

    2009-01-01

    The aim of this work was to study alterations in the extracellular matrix of liver in dogs naturally infected with Leishmania (Leishmania) chagasi that are correlated with clinical aspects and with histological, parasitological and immunological findings. The study was carried out on 30 dogs, 10 uninfected (control group) and 20 infected. The infected animals were further divided into two groups: an asymptomatic group of 10 dogs without clinical signs of the disease; and a symptomatic group of 10 dogs with classical clinical signs. All thirty animals were mongrel dogs of undefined age, obtained from the municipality of Belo Horizonte, MG, metropolitan area. During necropsy, liver fragments were collected and fixed in 10% buffered formaldehyde for histological examination. Paraffined sections of the tissues were stained with haematoxylin–eosin, Gomori’s ammoniacal silver stain for reticular fibres and strepto-avidin peroxidase for immunohistochemical detection of Leishmania amastigotes. Frozen tissue sections were stained by immunofluorescence for fibronectin (FN) and laminin (LN). Liver collagen deposition was significantly greater in the infected than the control animals and differed significantly between the symptomatic and asymptomatic dogs. There was a positive correlation between the parasite load and liver collagen deposition. The increased collagen deposition in infected animal livers may be associated with the parasite burden. Adhesive FN and LN fibres were significantly more highly expressed in the livers of symptomatic than of asymptomatic dogs. Our results demonstrate that canine visceral leishmaniasis causes fibrogenesis in liver, associated with the parasite load and degenerative processes. PMID:19765108

  4. Relationship between canine visceral leishmaniosis and the Leishmania (Leishmania) chagasi burden in dermal inflammatory foci.

    PubMed

    Giunchetti, R C; Mayrink, W; Genaro, O; Carneiro, C M; Corrêa-Oliveira, R; Martins-Filho, O A; Marques, M J; Tafuri, W L; Reis, A B

    2006-01-01

    The skin is the first point of contact with organisms of the genus Leishmania from sand fly vectors, and apparently normal skin of sick dogs harbours amastigote forms of Leishmania chagasi. In relation to canine visceral leishmaniosis (CVL), the ear skin was examined in 10 uninfected dogs (UDs) and in 31 dogs dogs naturally infected with L. chagasi. The infected animals consisted of 10 symptomless dogs (SLDs), 12 mildly affected dogs (MADs) and nine affected dogs (ADs). A higher parasite burden was demonstrated in ADs than in SLDs by anti-Leishmania immunohistochemistry (P<0.01), and by Leishman Donivan Unit (LDU) indices (P=0.0024) obtained from Giemsa-stained impression smears. Sections stained with haematoxylin and eosin demonstrated a higher intensity of inflammatory changes in ADs than in SLDs (P<0.05), and in the latter group flow cytometry demonstrated a correlation (P=0.05/r=0.7454) between the percentage of CD14(+) monocytes in peripheral blood and chronic dermal inflammation. Extracellular matrix assessment for reticular fibres by staining of sections with Masson trichrome and Gomori ammoniacal silver demonstrated a decrease in collagen type I and an increase in collagen type III as the clinical signs increased. The data on correlation between cellular phenotypes and histological changes seemed to reflect cellular activation and migration from peripheral blood to the skin, mediated by antigenic stimulation. The results suggested that chronic dermal inflammation and cutaneous parasitism were directly related to the severity of clinical disease.

  5. Validation of a Leishmania infantum ELISA rapid test for serological diagnosis of Leishmania chagasi in dogs.

    PubMed

    Marcondes, M; Biondo, A W; Gomes, A A D; Silva, A R S; Vieira, R F C; Camacho, A A; Quinn, John; Chandrashekar, R

    2011-01-10

    Canine visceral leishmaniasis (CVL) is caused by Leishmania donovani complex parasites including L. donovani, Leishmania infantum and Leishmania chagasi. As some studies suggest that L. chagasi and L. infantum may be very similar or even the same species, the aim of the present study was to evaluate a commercial rapid ELISA test, originally designed for L. infantum, in the diagnosis of CVL in dogs naturally infected by L. chagasi. A total of 400 serum canine samples, including 283 positive dogs for CVL from an endemic area, 86 clinically healthy dogs from a non-endemic area and 31 dogs seropositive for confounding infectious agents (Trypanosoma cruzi, Toxoplasma gondii, Neospora caninum, Babesia canis and Ehrlichia canis) were used for test validation. An overall sensitivity of 94.7% (95% CI=91.41-97.01%) and specificity of 90.6% (95% CI=83.80-95.21%) was found, with a high degree of agreement (k=0.8445) to the indirect ELISA. When confounding infectious diseases were excluded, specificity increased to 100% (95% CI=95.8-100%), with a higher degree of agreement (k=0.8928). In conclusion, the commercial kit designed for L. infantum was a highly sensitive and specific device for detection of L. chagasi infection in dogs, which indicates high immunoreactivity similarities between L. infantum and L. chagasi.

  6. A comparison of molecular markers to detect Lutzomyia longipalpis naturally infected with Leishmania (Leishmania) infantum

    PubMed Central

    Freitas-Lidani, Kárita Cláudia; de Messias-Reason, Iara J; Ishikawa, Edna Aoba Y

    2014-01-01

    The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite. PMID:25004147

  7. Leishmania (Leishmania) amazonensis: purification and enzymatic characterization of a soluble serine oligopeptidase from promastigotes.

    PubMed

    de Andrade, A S; Santoro, M M; de Melo, M N; Mares-Guia, M

    1998-06-01

    A soluble proteinase was purified 90-fold from extracts of promastigotes of Leishmania (Leishmania) amazonensis using a combination of ion-exchange chromatography in Q-Sepharose Fast Flow, gel filtration chromatography in Sephacryl HR S-200, and chromatofocusing. The enzyme appeared as a single band with an apparent molecular weight of 101 kDa by silver staining following SDS-PAGE, under both reducing and nonreducing conditions. The proteinase has a pH optimum between 8.0 and 8.5 and an isoelectric point between 5.12 and 5.23, belongs to the serine proteinase class, and is inhibited by Mg2+, Ca2+, and K+. The primary specificity determined using synthetic substrates is for basic amino acids. The kinetic parameters for the Bz-L-Arg-Nam substrate are Km = 26 microM, kcat = 32 min(-1), and Ksi = 1270 microM (the proteinase showed inhibition by excess substrate). The enzyme does not hydrolyze casein, albumin, and gelatin or large peptides like the oxidized insulin B chain, but hydrolyzes small peptides like bradykinin and fragment 4-10 of the adrenocorticotropic hormone, at the carboxyl side of basic residues and aromatic residues preceding basic residues. The enzyme appears, thus, to be restricted in its action, cleaving only small peptide substrates, which characterizes the proteinase as an oligopeptidase. This is the first report of purification of a serine peptidase from Leishmania species and it increases the short list of known oligopeptidases.

  8. Impact of phlebotomine sand flies on U.S. military operations at Tallil Air Base, Iraq: 4. Detection and identification of leishmania parasites in sand flies.

    PubMed

    Coleman, Russell E; Hochberg, Lisa P; Swanson, Katherine I; Lee, John S; McAvin, James C; Moulton, John K; Eddington, David O; Groebner, Jennifer L; O'Guinn, Monica L; Putnam, John L

    2009-05-01

    Sand flies collected between April 2003 and November 2004 at Tallil Air Base, Iraq, were evaluated for the presence of Leishmania parasites using a combination of a real-time Leishmania-generic polymerase chain reaction (PCR) assay and sequencing of a 360-bp fragment of the glucose-6-phosphate-isomerase (GPI) gene. A total of 2,505 pools containing 26,574 sand flies were tested using the real-time PCR assay. Leishmania DNA was initially detected in 536 pools; however, after extensive retesting with the real-time PCR assay, a total of 456 pools were considered positive and 80 were considered indeterminate. A total of 532 samples were evaluated for Leishmania GPI by sequencing, to include 439 PCR-positive samples, 80 PCR-indeterminate samples, and 13 PCR-negative samples. Leishmania GPI was detected in 284 samples that were sequenced, to include 281 (64%) of the PCR-positive samples and 3 (4%) of the PCR-indeterminate samples. Of the 284 sequences identified as Leishmania, 261 (91.9%) were L. tarentolae, 18 (6.3%) were L. donovani-complex parasites, 3 (1.1%) were L. tropica, and 2 were similar to both L. major and L. tropica. Minimum field infection rates were 0.09% for L. donovani-complex parasites, 0.02% for L. tropica, and 0.01% for the L. major/tropica-like parasite. Subsequent sequencing of a 600-bp region of the "Hyper" gene of 12 of the L. donovani-complex parasites showed that all 12 parasites were L. infantum. These data suggest that L. infantum was the primary leishmanial threat to U.S. military personnel deployed to Tallil Air Base. The implications of these findings are discussed.

  9. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica

    PubMed Central

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A.; Jiang, Xiong-Jie; Ng, Dennis K. P.

    2016-01-01

    Photodynamic inactivation of Leishmania spp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency against Leishmania tropica promastigotes and axenic amastigotes in vitro. The uptake of these PCs by both Leishmania stages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation of Leishmania spp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitized Leishmania tropica strains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm−2. Quantitative fluorescence assays based on the loss of GFP/CFSE from live Leishmania tropica showed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Leishmania tropica strains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation of Leishmania spp. for use as vaccines or vaccine carriers. PMID:26824938

  10. Performance of commercially available serological diagnostic tests to detect Leishmania infantum infection on experimentally infected dogs.

    PubMed

    Rodríguez-Cortés, Alhelí; Ojeda, Ana; Todolí, Felicitat; Alberola, Jordi

    2013-01-31

    Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of a widespread serious zoonotic disease that affects both humans and dogs. Prevalence and incidence of the canine infection are important parameters to determine the risk and the ways to control this reemergent zoonosis. Unfortunately, there is not a gold standard test for Leishmania infection. Our aim was to assess the operative validity of commercial tests used to detect antibodies to Leishmania in serum samples from experimental infections. Three ELISA tests (LEISCAN(®) Leishmania ELISA Test, INGEZIM(®) LEISHMANIA, and INGEZIM(®) LEISHMANIA VET), three immunochromatographic tests (INGEZIM(®) LEISHMACROM, SNAP(®) Leishmania, and WITNESS(®) Leishmania), and one IFAT were evaluated. LEISCAN(®) Leishmania ELISA test achieved the highest sensitivity and accuracy (both 0.98). Specificity was 1 for all tests except for IFAT. All tests but IFAT obtained a positive predictive value of 1, while the maximum negative predictive value was achieved by LEISCAN(®) Leishmania ELISA Test (0.93). The best positive likelihood ratio was obtained by INGEZIM(®) LEISHMANIA VET (30.26), while the best negative likelihood ratio was obtained by LEISCAN(®) Leishmania ELISA Test (0.02). The highest diagnostic odds ratio was achieved by LEISCAN(®) Leishmania ELISA Test (729.00). The largest area under the ROC curve was obtained by LEISCAN(®) Leishmania ELISA Test (0.981). Quantitative ELISA based tests performmed better than qualitative tests ("Rapid Tests"), and the test best suited to detect Leishmania in infected dogs and to provide clinically useful information was LEISCAN(®) Leishmania ELISA Test. This and other results point also to the need of revising the status of IFAT as a gold standard for the diagnosis of leishmaniasis.

  11. Leishmania Metacyclogenesis Is Promoted in the Absence of Purines

    PubMed Central

    Serafim, Tiago Donatelli; Figueiredo, Amanda Braga; Costa, Pedro Augusto Carvalho; Marques-da-Silva, Eduardo Almeida; Gonçalves, Ricardo; de Moura, Sandra Aparecida Lima; Gontijo, Nelder Figueiredo; da Silva, Sydnei Magno; Michalick, Marilene Suzan Marques; Meyer-Fernandes, José Roberto; de Carvalho, Roberto Paes; Uliana, Silvia Reni Bortolin; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2012-01-01

    Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that “stressful conditions” will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines. PMID:23050028

  12. Canine inflammatory myopathy associated with Leishmania Infantum infection.

    PubMed

    Paciello, Orlando; Oliva, Gaetano; Gradoni, Luigi; Manna, Laura; Foglia Manzillo, Valentina; Wojcik, Slawomir; Trapani, Francesca; Papparella, Serenella

    2009-02-01

    Inflammatory myopathy associated with several infectious diseases occurs in dogs including those caused by Toxoplasma gondii, Neospora caninum, Ehrlichia canis and Hepatozoon canis. However, muscle disease due to Leishmania infection has been poorly documented. The aim of this study was to examine the distribution and types of cellular infiltrates and expression of MHC class I and II in muscle biopsies obtained from 15 male beagle dogs from a breeder group with an established diagnosis of leishmaniasis. Myopathic features were characterized by necrosis, regeneration, fibrosis and infiltration of mononuclear inflammatory cells consisting of lymphocytes, plasma cells and histiocytes. The predominant leukocyte populations were CD3+, CD8+ and CD45RA+ with lesser numbers of CD4+ cells. Many muscle fibers had MHC class I and II positivity on the sarcolemma. There was a direct correlation between the severity of pathological changes, clinical signs, and the numbers of Leishmania amastigotes. Our studies provided evidence that: 1) Leishmania should be considered as a cause of IM in dogs; 2) Leishmania is not present within muscle fibers but in macrophages, and that 3) the muscle damage might be related to immunological alterations associated with Leishmania infection. Leishmania spp. should also be considered as a possible cause in the pathogenesis of human myositis.

  13. Natural Leishmania infection in rock hyrax, Procavia capensis (Pallas, 1766) order: Hyracoidea, trapped in Najran, Saudi Arabia.

    PubMed

    Morsy, T A; al Dakhil, M A; el Bahrawy, A F

    1997-04-01

    Cutaneous leishmaniasis caused by Leishmania major (zoonotic, ZCL) and L. tropica (anthroponotic, ACL) is found in most countries of the Eastern Mediterranean Region. Phlebotomus papatasii is the proven vector of L. major and rodents Rhombomys opimus, Psammomys obesus, Meriones spp. and Gerbillus spp. serve as animal reservoirs. Ph. sergenti is the vector of L. tropica in the majority of endemic foci. On the other hand; in the Eastern African highlands (mainly Ethiopia and Kenya), stable foci of L. aethiopica are maintanined by hyraxes and transmitted by Ph. longipes and Ph. pedifer. In this paper, natural Leishmania sp. infection was demonstrated serologically (IHAT) and parasitologically (smear examination) in two out of four rock hyraxes trapped in the highlands of Najran, southern part of the Kingdom. It is concluded that the identity of the Leishmania parasite(s)in such a focus is essential since it has implication in control and treatment. Also, passive case-detection and isolates from man and sandfly in the vicinity of Najran for typing is a must.

  14. A piezoelectric immunosensor for Leishmania chagasi antibodies in canine serum.

    PubMed

    Ramos-Jesus, Joilson; Carvalho, Kellyanne A; Fonseca, Rosana A S; Oliveira, Geraldo G S; Melo, Stella M Barrouin; Alcântara-Neves, Neuza M; Dutra, Rosa F

    2011-08-01

    The American visceral leishmaniasis is an important cause of morbidity and mortality in Brazil for both humans and dogs. Attempts to make a diagnosis of this disease need to be improved, especially in endemic areas, and in the tracking and screening of asymptomatic dogs, which are their main host in urban areas. A quartz crystal microbalance immunosensor for the diagnosis of the canine visceral leishmaniasis using a recombinant antigen of Leishmania chagasi (rLci2B-NH6) was developed. The rLci2B-NH6 was tightly immobilized on a quartz crystal gold electrode by self-assembled monolayer based on short-chain length thiol. The strategy was the use of the antigen-histidine tail covalently linked to glutaraldehyde performing a Schift base which permits a major exposure of epitopes and a reduced steric hindrance. The immunosensor showed good results regarding sensitivity and reproducibility, being able to distinguish positive and negative canine serum for L. chagasi. Furthermore, the immunosensor can be reused through exposure to sodium dodecyl sulfate solution, which promotes the dissociation of antigen-antibody binding, restoring the sensor surface with immobilized biologically active antigens for further analysis.

  15. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  16. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  17. Leishmania amazonensis: characterization of an ecto-pyrophosphatase activity.

    PubMed

    Freitas-Mesquita, Anita Leocadio; Fonseca-de-Souza, André Luiz; Meyer-Fernandes, José Roberto

    2014-02-01

    Several ecto-enzymatic activities have been described in the plasma membrane of the protozoan Leishmania amazonensis, which is the major etiological agent of diffuse cutaneous leishmaniasis in South America. These enzymes, including ecto-phosphatases, contribute to the survival of the parasite by participating in phosphate metabolism. This work identifies and characterizes the extracellular hydrolysis of inorganic pyrophosphate related to an ecto-pyrophosphatase activity of the promastigote form of L. amazonensis. This ecto-pyrophosphatase activity is insensitive to MnCl2 but is strongly stimulated by MgCl2. This stimulation was not observed during the hydrolysis of p-nitrophenyl phosphate (p-NPP) or β-glycerophosphate, two substrates for different ecto-phosphatases present in the L. amazonensis plasma membrane. Furthermore, extracellular PPi hydrolysis is more efficient at alkaline pHs, while p-NPP hydrolysis occurs mainly at acidic pHs. These results led us to conclude that extracellular PPi is hydrolyzed not by non-specific ecto-phosphatases but rather by a genuine ecto-pyrophosphatase. In the presence of 5mM MgCl2, the ecto-pyrophosphatase activity from L. amazonensis is sensitive to micromolar concentrations of NaF and millimolar concentrations of CaCl2. Moreover, this activity is significantly higher during the first days of L. amazonensis culture, which suggests a possible role for this enzyme in parasite growth.

  18. Adenine and adenosine salvage in Leishmania donovani.

    PubMed

    Boitz, Jan M; Ullman, Buddy

    2013-08-01

    6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.

  19. Leishmaniosis (Leishmania infantum infection) in dogs.

    PubMed

    Gharbi, M; Mhadhbi, M; Rejeb, A; Jaouadi, K; Rouatbi, M; Darghouth, M A

    2015-08-01

    The authors present an overview of canine leishmaniosis due to Leishmania infantum. This protozoan is transmitted by sandflies and the disease is frequently characterised by chronic evolution. Cutaneous and visceral clinical signs appear as the infection progresses. Lymph node enlargement, emaciation and skin lesions are the main signs observed in the classical forms of the disease. Control is difficult since infected dogs remain carriers for years and may relapse at any time. The mass screening of infected animals and their treatment or euthanasia represent the best way to reduce the prevalence of this disease in endemic regions. Further research is needed to improve the efficiency of the vaccines available to protect dogs against infection. This disease is zoonotic; in humans, clinical cases are reported mainly in elderly people, the young and those whose immune systems have been compromised.

  20. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species.

    PubMed

    Da Silva, B J M; Da Silva, R R P; Rodrigues, A P D; Farias, L H S; Do Nascimento, J L M; Silva, E O

    2016-03-01

    Leishmaniasis are a neglected group of emerging diseases that have been found in 98 countries and are caused by protozoa of the genus Leishmania. The therapy for leishmaniasis causes several side effects and leads to drug-resistant strains. Natural products from plants have exhibited activities against Leishmania in various experimental models. Physalis angulata is a widely used plant in popular medicine, and in the literature it has well-documented leishmanicidal activity. However, its mechanism of action is still unknown. Thus, this study aims to evaluate the mechanism driving the leishmanicidal activity of an aqueous extract of P. angulata root (AEPa). AEPa was effective against both promastigotes and intracellular amastigote forms of Leishmania amazonensis. This effect was mediated by an increase of reactive oxygen species (ROS), but not of nitric oxide (NO). The increased production of ROS induces cell death by phenotypes seems by apoptosis cell death in Leishmania, but not autophagy or necrosis. In addition, morphological analysis of macrophages showed that AEPa induced a high number of cytoplasmic projections, increased the volume of cytoplasm and number of vacuoles, caused cytoskeleton alterations and resulted in high spreading ability. AEPa also promoted superoxide anion (O2(-)) production in both uninfected macrophages and those infected with Leishmania. Therefore, these results revealed that AEPa causes cell death by phenotypes seems by apoptosis cell death in L. amazonensis and modulates macrophage activation through morphofunctional alterations and O2(-) generation to induce Leishmania death.

  1. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species

    PubMed Central

    Andrade, Juvana M.; Baba, Elio H.; Machado-de-Avila, Ricardo A.; Chavez-Olortegui, Carlos; Demicheli, Cynthia P.; Frézard, Frédéric

    2016-01-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (SbIII) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased SbIII susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to SbIII exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, SbIII-sodium nitrate or SbIII-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of SbIII alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to SbIII and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated SbIII susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and SbIII. PMID:27161624

  2. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    PubMed

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III).

  3. Recombinant Leishmania infantum Heat Shock Protein 83 for the Serodiagnosis of Cutaneous, Mucosal, and Visceral Leishmaniases

    PubMed Central

    Celeste, Beatriz Julieta; Arroyo Sanchez, Maria Carmen; Ramos-Sanchez, Eduardo Milton; Castro, Luiz Guilherme M.; Lima Costa, Francisco Assis; Goto, Hiro

    2014-01-01

    Routine serological diagnoses for leishmaniases, except in visceral cases, are performed using whole-parasite antigens. We used enzyme-linked immunosorbent assay (ELISA) to evaluate the performance of Leishmania infantum rHsp83 compared with L. major-like total promastigote antigen in the diagnosis of cutaneous (CL), mucosal (ML), and visceral leishmaniases (VL). ELISA-rHsp83 was significantly more sensitive than ELISA–L. major-like when considering either CL/ML (P = 0.041) or all leishmaniasis patients (P = 0.013). When samples from other infectious disease patients were evaluated for cross-reactivity, ELISA-rHsp83 was more specific than ELISA–L. major-like, specifically for Chagas disease samples (P < 0.001). We also evaluated the anti-rHsp83 antibody titers months after treatment and observed no significant difference in ML (P = 0.607) or CL (P = 0.205). We recommend ELISA–L. infantum-rHsp83 as a routine confirmatory serological assay for the diagnosis of Leishmania infection because of the high sensitivity, the specificity, and the insignificant cross-reactivity with other infectious diseases. PMID:24615136

  4. Glucantime® causes oxidative stress-derived DNA damage in Balb/c mice infected by Leishmania (Leishmania) infantum.

    PubMed

    Moreira, Vanessa Ribeiro; de Jesus, Luís Cláudio Lima; Soares, Rossy-Eric Pereira; Silva, Luis Douglas Miranda; Pinto, Bruno Araújo Serra; Melo, Maria Norma; Paes, Antonio Marcus de Andrade; Pereira, Silma Regina Ferreira

    2017-03-20

    Leishmaniasis is a neglected tropical disease caused by over 20 species of the protozoan parasite Leishmania Regarding treatment, Glucantime® is the first-choice drug recommended by the World Health Organization for the treatment of all types of leishmaniasis. However, the mechanisms of action and toxicity of pentavalent antimonials, including genotoxic effetcs, remain unclear. Therefore, the mechanism by which Glucantime® causes DNA damage was investigated in BALB/c mice infected by Leishmania (Leishmania) infantum and treated with Glucantime® (20 mg/kg for 20 days). DNA damage was carried out by comet assay using mice leukocytes. Furthermore, comet assays followed by Formamidopyrimidine-DNA-glicosilase and Endonuclease III were performed, which remove oxidized DNA bases. In addition, the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were also assessed in the animals serum. To investigate mutagenicity, we carried out micronucleus test. Our data demonstrate that Glucantime® as well as Leishmania (Leishmania) infantum infection induce DNA damage in mammalian cell by oxidation of nitrogenous bases. Additionally, the antileishmanial increased the frequency of micronucleated cells, confirming its mutagenic potential. According to our data, either Glucantime® treatment as well as Leishmania (Leishmania) infantum infection promote oxidative stress-derived DNA damage, which promoted overactivation of the SOD-CAT axis, whereas SOD-GPx axis was inhibited as a probable consequence of GSH depletion. Finally, our data still enable us to suggest that Glucantime® regimen, as recommended by World Health Organization, would compromise GPx activity leading to saturation of antioxidant defense systems that use thiol groups and might be harmful to patients under treatment.

  5. Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite.

    PubMed Central

    Schlein, Y; Jacobson, R L; Messer, G

    1992-01-01

    Leishmania parasites are transmitted by the bites of infected female sandflies by a mechanism that has not been clarified. Leishmania infections in the vector develop only in the gut, and the parasites' exit is through the food channel in the proboscis. The problem is how during the bite, when blood flows in, parasites are emitted through the same channel in the opposite direction. It is well documented that infected sandflies maintained on sugar diets are potent vectors, whereas transmission fails after constant feeding on blood. Hence to study the mechanism of transmission, we fed these diets to Phlebotomus papatasi infected with L. major. Histological examination demonstrated that only in the sugar-fed flies did the cuticle lining of the cardiac valve detach and other valve tissues degenerate gradually. The injury of the main valve of the food pumps hindered gorging of most flies when force-fed from capillaries, and they regurgitated the gut contents with fluids from the capillaries. We suggest that infections are caused by parasites regurgitated from the stomach that are deposited in the host tissue. We found that secretion of chitinolytic enzymes by cultured L. major parasites is inhibited by blood or hemoglobin, and hence these enzymes are apparently absent from the blood-fed infected flies, where the cardiac valve appears undamaged. We therefore presume that lysis of the chitin in the cuticle lining of the valve leads to exposure and degeneration of the underlying tissues. Images PMID:1409724

  6. TACI deficiency leads to alternatively activated macrophage phenotype and susceptibility to Leishmania infection

    PubMed Central

    Allman, Windy R.; Dey, Ranadhir; Liu, Lunhua; Siddiqui, Shafiuddin; Coleman, Adam S.; Bhattacharya, Parna; Yano, Masahide; Uslu, Kadriye; Takeda, Kazuyo; Nakhasi, Hira L.; Akkoyunlu, Mustafa

    2015-01-01

    The TNF family member, transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), is a key molecule for plasma cell maintenance and is required in infections where protection depends on antibody response. Here, we report that compared with WT mouse, TACI KO Μϕs expressed lower levels of Toll-like receptors (TLRs), CD14, myeloid differentiation primary response protein 88, and adaptor protein Toll/IL-1 receptor domain-containing adapter-inducing IFN-β and responded poorly to TLR agonists. Analysis of Μϕ phenotype revealed that, in the absence of TACI, Μϕs adapt the alternatively activated (M2) phenotype. Steady-state expression levels for M2 markers IL-4Rα, CD206, CCL22, IL-10, Arg1, IL1RN, and FIZZ1 were significantly higher in TACI KO Μϕ than in WT cells. Confirming their M2 phenotype, TACI-KO Mϕs were unable to control Leishmania major infection in vitro, and intradermal inoculation of Leishmania resulted in a more severe manifestation of disease than in the resistant C57BL/6 strain. Transfer of WT Μϕs to TACI KO mice was sufficient to significantly reduce disease severity. TACI is likely to influence Mϕ phenotype by mediating B cell-activating factor belonging to the TNF family (BAFF) and a proliferation inducing ligand (APRIL) signals because both these ligands down-regulated M2 markers in WT but not in TACI-deficient Μϕs. Moreover, treatment of Μϕs with BAFF or APRIL enhanced the clearance of Leishmania from cells only when TACI is expressed. These findings may have implications for understanding the shortcomings of host response in newborns where TACI expression is reduced and in combined variable immunodeficiency patients where TACI signaling is ablated. PMID:26170307

  7. Leishmania pifanoi pathogenesis: selective lack of a local cutaneous response in the absence of circulating antibody.

    PubMed

    Colmenares, María; Constant, Stephanie L; Kima, Peter E; McMahon-Pratt, Diane

    2002-12-01

    Recently, a role for B cells in the pathogenesis associated with infection by Leishmania (Leishmania mexicana complex and L. donovani) has been established. In the case of L. mexicana complex parasites (L. mexicana, L. pifanoi, and L. amazonensis), a critical role for immunoglobulin G-mediated mechanisms for the amastigote stage in the host is evident; however, the immunological mechanisms involved remain to be established. In vitro analysis of the kinetics of parasite uptake by macrophages failed to indicate a major effect of antibody opsonization. Given the importance of CD4(+) T cells in the development of disease caused by these parasites, the possibility that the lack of pathogenesis was due to the lack of development of an immune response at the local site (draining lymph node and/or cutaneous site) was explored. Interestingly, the level of CD4(+)-T-cell activation (proliferation and cytokine) in draining lymph nodes from mice lacking circulating antibody (resistant) was found to be comparable to that in nodes from wild-type mice (susceptible) at 2, 5, and 10 weeks postinfection. However, antibody-deficient animals had markedly reduced numbers of monocytes and lymphocytes recruited or retained at the site of cutaneous infection in comparison to wild-type mice, indicating a selective impairment in the local cutaneous immune response. In vitro antigen presentation studies employing tissue-derived (opsonized) amastigotes demonstrated that L. pifanoi-infected FcR(-/-) macrophages, in contrast to comparably infected wild-type cells, failed to activate Leishmania antigen-specific T lymphocytes. These data, taken together, suggest that one possible mechanism for the role of antibody in pathogenesis may be to mediate parasite uptake and regulate the immune response at the local cutaneous site of infection.

  8. Pterocarpanquinone LQB-118 Induces Apoptosis in Leishmania (Viannia) braziliensis and Controls Lesions in Infected Hamsters

    PubMed Central

    Costa, Luciana; Pinheiro, Roberta O.; Dutra, Patrícia M. L.; Santos, Rosiane F.; Cunha-Júnior, Edézio F.; Torres-Santos, Eduardo C.; da Silva, Alcides J. M.; Costa, Paulo R. R.; Da-Silva, Silvia A. G.

    2014-01-01

    Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the

  9. Mechanism of ascaridole activation in Leishmania.

    PubMed

    Geroldinger, Gerald; Tonner, Matthias; Hettegger, Hubert; Bacher, Markus; Monzote, Lianet; Walter, Martin; Staniek, Katrin; Rosenau, Thomas; Gille, Lars

    2017-03-02

    Endoperoxides (EP) are an emerging class of drugs which have potential in antiparasitic therapy, but also in other fields. For malaria therapy the EP artemisinin (Art) and its derivatives are successfully used. We have shown in the past that the EP ascaridole (Asc) is useful for the treatment of cutaneous leishmaniasis in a mouse model. Biomimetic experiments suggested that these drugs need activation in the respective target pathogens to exert their function. In spite of this idea, direct activation of EP to radicals inside cells has never been demonstrated. Therefore, this study was initiated to explore the activation of Asc in biomimetic systems and inside Leishmania in comparison to Art. Using electron paramagnetic resonance spectroscopy (EPR) in combination with spin-trapping we identified the secondary alkyl radical intermediates arising from reduction by Fe(2+) in cell-free systems. Combined GC/NMR analysis confirmed the loss of isopropyl residues from Asc during this process as intermediates. This activation of Asc was stimulated by low molecular Fe(2+) complexes or alternatively by hemin in conjunction with thiol reductants, such as cysteine (Cys). In Leishmania tarentolae promastigotes (LtP) as model for pathogenic forms of Leishmania carbon-centered radicals were identified in the presence of Asc by EPR spin-trapping. Both Asc and Art inhibited the viability in LtP with IC50 values in the low micromolar range while IC50 values for J774 macrophages were considerably higher. A similar structure without EP bridge (1,4-cineole) resulted in no detectable radicals and possessed much less cytotoxicity in LtP and no selectivity for LtP compared to J774 cells. The Asc-derived radical formation in LtP was inhibited by the iron chelator deferoxamine (DFO), and stimulated by Cys (a suitable reductant for hemin). The IC50 values for LtP viability in the presence of Asc or Art were increased significantly by the spin trap DMPO, while Cys and DFO increased only IC50

  10. FIRST REPORT OF CUTANEOUS LEISHMANIASIS CAUSED BY Leishmania (Leishmania) infantum chagasi IN AN URBAN AREA OF RIO DE JANEIRO, BRAZIL.

    PubMed

    Lyra, Marcelo Rosandiski; Pimentel, Maria Inês Fernandes; Madeira, Maria de Fátima; Antonio, Liliane de Fátima; Lyra, Janine Pontes de Miranda; Fagundes, Aline; Schubach, Armando de Oliveira

    2015-01-01

    American tegumentary leishmaniasis (ATL) is an infectious disease caused by protozoa of the genus Leishmania, and transmitted by sandflies. In the state of Rio de Janeiro, almost all of the cases of American tegumentary leishmaniasis (ATL) are caused by Leishmania (Viannia) braziliensis, while cases of visceral leishmaniasis (VL) are caused by Leishmania (Leishmania) infantum chagasi. The resurgence of autochthonous VL cases in Rio de Janeiro is related to the geographic expansion of the vector Lutzomyia longipalpis and its ability to adapt to urban areas. We report the first case of leishmaniasis with exclusively cutaneous manifestations caused by L. (L.) infantum chagasi in an urban area of Rio de Janeiro. An eighty-one-year-old woman presented three pleomorphic skin lesions that were not associated with systemic symptoms or visceromegalies. Multilocus enzyme electrophoresis identified L. (L.) infantum chagasi, but direct smear and PCR of bone narrow were negative for Leishmania sp. (suggesting exclusively cutaneous involvement). We discuss the different dermatological presentations of viscerotropic leishmaniasis of the New and Old World, and the clinical and epidemiological importance of the case. Etiologic diagnosis of ATL based upon exclusive clinical criteria may lead to incorrect conclusions. We should be aware of the constant changes in epidemiological patterns related to leishmaniases.

  11. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    PubMed

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.

  12. Seasonal transmission of Leishmania (Leishmania) mexicana in the state of Campeche, Yucatan Peninsula, Mexico.

    PubMed

    Andrade-Narvaez, Fernando J; Canto Lara, Silvia B; Van Wynsberghe, Nicole R; Rebollar-Tellez, Eduardo A; Vargas-Gonzalez, Alberto; Albertos-Alpuche, Nelly E

    2003-12-01

    In the Yucatan Peninsula, Mexico, localized cutaneous leishmaniasis (LCL) caused by Leishmania (Leishmania) mexicana is a typical wild zoonosis restricted to the forest, and humans are only accidentally involved. The transmission of L. (L.) mexicana has been related to the patient's occupation: "chicleros" (gum collectors) and agricultural workers. The objective of this study was to document L. (L.) mexicana seasonally of transmission in endemic areas of LCL in the state of Campeche, Yucatan Peninsula, Mexico. The timing of incidence of LCL in humans during 1993-1994, as well as the rate and time of infection in rodents and sand flies between February 1993 and March 1995 were analyzed. Rodents and sand flies were found infected between November and March, when men carried out their field activities and are exposed. Based on results analyzed, it is concluded that L. (L.) mexicana in the endemic area of LCL in the state of Campeche, Yucatan Peninsula, Mexico, presents a seasonal transmission restricted to the months of November to March. The knowledge of the timing of the transmission cycle in an endemic area of leishmaniasis is very important because intervention measures on the high-risk focus and population might be restricted.

  13. A recombinant cysteine proteinase from Leishmania (Leishmania) chagasi suitable for serodiagnosis of American visceral leishmaniasis.

    PubMed

    de Souza Dias, Suzana; da Costa Pinheiro, Paulo Henrique; Katz, Simone; dos Santos, Márcia Regina Machado; Barbiéri, Clara Lúcia

    2005-02-01

    A recombinant protein, rLdccys1, which was produced by expression of the gene encoding a 30 kDa cysteine proteinase from Leishmania (Leishmania) chagasi, was used for detection of antibodies in sera from patients with active visceral leishmaniasis (VL) in enzyme-linked immunosorbent assays. Analysis of the predicted amino acid sequence of rLdccys1 showed that it contains all the characteristics of a cysteine proteinase. The ability of the protein to react with sera from humans with VL was also shown by Western blotting. The sensitivity for detection of specific antibodies to L. (L.) chagasi bodies using rLdccys1, L. (L.) chagasi promastigote lysates, and amastigote lysates was 80%, 98%, and 99%, respectively. No cross-reactivity between rLdccys1 and Chagas disease was observed, and there was little positive reactivity with sera from patients with cutaneous leishmaniasis and tuberculosis, compared with promastigote and amastigote extracts. Our findings indicate that rLdccys1 from L. (L.) chagasi constitutes a potential tool for the diagnosis of American VL.

  14. Detection and quantification of Leishmania braziliensis in ectoparasites from dogs.

    PubMed

    de Morais, Rayana Carla Silva; Gonçalves-de-Albuquerque, Suênia da Cunha; Pessoa e Silva, Rômulo; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-09-23

    American cutaneous leishmaniasis (ACL) is a disease caused by different species of Leishmania protozoa, Leishmania braziliensis being the main species found in Brazil. In this study, two rural areas in Pernambuco, northeastern Brazil, where ACL is endemic, were selected. Genomic DNA was extracted from canine ectoparasites (ticks, fleas, and lice) and tested using a conventional PCR and a quantitative real time PCR. A total of 117 ectoparasites were collected, being 50 (42.74%) of them positive for L. braziliensis (in at least one PCR protocol), with a mean parasite load of 14.14 fg/μL. Furthermore, 46 (92.00%) positive ectoparasites were collected from positive dogs and 4 (8.00%) from negative ones. This study reports the detection of L. braziliensis DNA in ectoparasites, but does not prove their vector competence. Certainly, experimental transmission studies are necessary to assess their role, if any, in the transmission of Leishmania parasites to dogs.

  15. Chronic infection by Leishmania amazonensis mediated through MAPK ERK mechanisms.

    PubMed

    Martinez, Pedro A; Petersen, Christine A

    2014-08-01

    Leishmania amazonensis is an intracellular protozoan parasite responsible for chronic cutaneous leishmaniasis (CL). CL is a neglected tropical disease responsible for infecting millions of people worldwide. L. amazonensis promotes alteration of various signaling pathways that are essential for host cell survival. Specifically, through parasite-mediated phosphorylation of extracellular signal regulated kinase (ERK), L. amazonensis inhibits cell-mediated parasite killing and promotes its own survival by co-opting multiple host cell functions. In this review, we highlight Leishmania-host cell signaling alterations focusing on those specific to (1) motor proteins, (2) prevention of NADPH subunit phosphorylation impairing reactive oxygen species production, and (3) localized endosomal signaling to up-regulate ERK phosphorylation. This review will focus upon mechanisms and possible explanations as to how Leishmania spp. evades the various layers of defense employed by the host immune response.

  16. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression

    PubMed Central

    2013-01-01

    Background Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. Results We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation. Conclusions Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic

  17. Leishmania (infantum) chagasi in canine urinary sediment.

    PubMed

    de Mendonça, Ivete Lopes; Batista, Joilson Ferreira; Alves, Leucio Camara

    2015-01-01

    Canine visceral leishmaniasis (CVL) is difficult to diagnosis, mainly due to the presence of asymptomatic animals, the diversity of clinical symptoms and the difficulty in obtaining diagnostic evidence of high sensitivity and specificity. The purpose of this study was to diagnose CVL in urinary sediment of 70 dogs of different breeds, sexes and ages from the veterinary hospital of the Federal University of Piauí and Zoonosis Control Center of Teresina, Brazil. The serological tests were TR DPP® for CVL and enzyme-linked immunosorbent assay (ELISA) for CVL, parasitological exams of bone marrow and lymph nodes and urine sediment cultures. Leishmania was detected in the bone marrow and/or lymph node of 61.0% of the animals (43/70), and urine sediment culture was positive in 9.30% (4/43) of these animals. In the serological exams, 70.0% (49/70) were reactive using the DPP and 78.2% (55/70) were reactive using ELISA. The goal of this study was to diagnose the presence of L. (infantum) chagasi in a culture of urinary sediment.

  18. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge

    PubMed Central

    Resende, Lucilene Aparecida; Aguiar-Soares, Rodrigo Dian de Oliveira; Gama-Ker, Henrique; Roatt, Bruno Mendes; de Mendonça, Ludmila Zanandreis; Alves, Marina Luiza Rodrigues; da Silveira-Lemos, Denise; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Araújo, Márcio Sobreira Silva; Fujiwara, Ricardo Toshio; Gontijo, Nelder Figueiredo; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2016-01-01

    Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the “LbSapSal” vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with “LbSapSal” is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after “LbSapSal” immunization sup